xref: /openbmc/linux/fs/f2fs/segment.h (revision 49f3806d89e4cf9e330b6f2e39db1c913a8fd25a)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 #define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20 
21 /* L: Logical segment # in volume, R: Relative segment # in main area */
22 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24 
25 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27 #define SE_PAGETYPE(se)	((IS_NODESEG((se)->type) ? NODE : DATA))
28 
29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
30 						unsigned short seg_type)
31 {
32 	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
33 }
34 
35 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
36 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
37 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
38 
39 #define IS_CURSEG(sbi, seg)						\
40 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
41 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
42 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
43 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
44 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
45 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
46 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
47 	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
48 
49 #define IS_CURSEC(sbi, secno)						\
50 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
51 	  (sbi)->segs_per_sec) ||	\
52 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
53 	  (sbi)->segs_per_sec) ||	\
54 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
55 	  (sbi)->segs_per_sec) ||	\
56 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
57 	  (sbi)->segs_per_sec) ||	\
58 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
59 	  (sbi)->segs_per_sec) ||	\
60 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
61 	  (sbi)->segs_per_sec) ||	\
62 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
63 	  (sbi)->segs_per_sec) ||	\
64 	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
65 	  (sbi)->segs_per_sec))
66 
67 #define MAIN_BLKADDR(sbi)						\
68 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
69 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
70 #define SEG0_BLKADDR(sbi)						\
71 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
72 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
73 
74 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
75 #define MAIN_SECS(sbi)	((sbi)->total_sections)
76 
77 #define TOTAL_SEGS(sbi)							\
78 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
79 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
80 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
81 
82 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
83 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
84 					(sbi)->log_blocks_per_seg))
85 
86 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
87 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
88 
89 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
90 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
91 
92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
94 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
96 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
97 
98 #define GET_SEGNO(sbi, blk_addr)					\
99 	((!__is_valid_data_blkaddr(blk_addr)) ?			\
100 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
101 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
102 #define BLKS_PER_SEC(sbi)					\
103 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
104 #define CAP_BLKS_PER_SEC(sbi)					\
105 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg -		\
106 	 (sbi)->unusable_blocks_per_sec)
107 #define CAP_SEGS_PER_SEC(sbi)					\
108 	((sbi)->segs_per_sec - ((sbi)->unusable_blocks_per_sec >>\
109 	(sbi)->log_blocks_per_seg))
110 #define GET_SEC_FROM_SEG(sbi, segno)				\
111 	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
112 #define GET_SEG_FROM_SEC(sbi, secno)				\
113 	((secno) * (sbi)->segs_per_sec)
114 #define GET_ZONE_FROM_SEC(sbi, secno)				\
115 	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
116 #define GET_ZONE_FROM_SEG(sbi, segno)				\
117 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
118 
119 #define GET_SUM_BLOCK(sbi, segno)				\
120 	((sbi)->sm_info->ssa_blkaddr + (segno))
121 
122 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
123 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
124 
125 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
126 	((segno) % (sit_i)->sents_per_block)
127 #define SIT_BLOCK_OFFSET(segno)					\
128 	((segno) / SIT_ENTRY_PER_BLOCK)
129 #define	START_SEGNO(segno)		\
130 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
131 #define SIT_BLK_CNT(sbi)			\
132 	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
133 #define f2fs_bitmap_size(nr)			\
134 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
135 
136 #define SECTOR_FROM_BLOCK(blk_addr)					\
137 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
138 #define SECTOR_TO_BLOCK(sectors)					\
139 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
140 
141 /*
142  * indicate a block allocation direction: RIGHT and LEFT.
143  * RIGHT means allocating new sections towards the end of volume.
144  * LEFT means the opposite direction.
145  */
146 enum {
147 	ALLOC_RIGHT = 0,
148 	ALLOC_LEFT
149 };
150 
151 /*
152  * In the victim_sel_policy->alloc_mode, there are three block allocation modes.
153  * LFS writes data sequentially with cleaning operations.
154  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
155  * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
156  * fragmented segment which has similar aging degree.
157  */
158 enum {
159 	LFS = 0,
160 	SSR,
161 	AT_SSR,
162 };
163 
164 /*
165  * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes.
166  * GC_CB is based on cost-benefit algorithm.
167  * GC_GREEDY is based on greedy algorithm.
168  * GC_AT is based on age-threshold algorithm.
169  */
170 enum {
171 	GC_CB = 0,
172 	GC_GREEDY,
173 	GC_AT,
174 	ALLOC_NEXT,
175 	FLUSH_DEVICE,
176 	MAX_GC_POLICY,
177 };
178 
179 /*
180  * BG_GC means the background cleaning job.
181  * FG_GC means the on-demand cleaning job.
182  */
183 enum {
184 	BG_GC = 0,
185 	FG_GC,
186 };
187 
188 /* for a function parameter to select a victim segment */
189 struct victim_sel_policy {
190 	int alloc_mode;			/* LFS or SSR */
191 	int gc_mode;			/* GC_CB or GC_GREEDY */
192 	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
193 	unsigned int max_search;	/*
194 					 * maximum # of segments/sections
195 					 * to search
196 					 */
197 	unsigned int offset;		/* last scanned bitmap offset */
198 	unsigned int ofs_unit;		/* bitmap search unit */
199 	unsigned int min_cost;		/* minimum cost */
200 	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
201 	unsigned int min_segno;		/* segment # having min. cost */
202 	unsigned long long age;		/* mtime of GCed section*/
203 	unsigned long long age_threshold;/* age threshold */
204 };
205 
206 struct seg_entry {
207 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
208 	unsigned int valid_blocks:10;	/* # of valid blocks */
209 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
210 	unsigned int padding:6;		/* padding */
211 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
212 #ifdef CONFIG_F2FS_CHECK_FS
213 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
214 #endif
215 	/*
216 	 * # of valid blocks and the validity bitmap stored in the last
217 	 * checkpoint pack. This information is used by the SSR mode.
218 	 */
219 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
220 	unsigned char *discard_map;
221 	unsigned long long mtime;	/* modification time of the segment */
222 };
223 
224 struct sec_entry {
225 	unsigned int valid_blocks;	/* # of valid blocks in a section */
226 };
227 
228 #define MAX_SKIP_GC_COUNT			16
229 
230 struct revoke_entry {
231 	struct list_head list;
232 	block_t old_addr;		/* for revoking when fail to commit */
233 	pgoff_t index;
234 };
235 
236 struct sit_info {
237 	block_t sit_base_addr;		/* start block address of SIT area */
238 	block_t sit_blocks;		/* # of blocks used by SIT area */
239 	block_t written_valid_blocks;	/* # of valid blocks in main area */
240 	char *bitmap;			/* all bitmaps pointer */
241 	char *sit_bitmap;		/* SIT bitmap pointer */
242 #ifdef CONFIG_F2FS_CHECK_FS
243 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
244 
245 	/* bitmap of segments to be ignored by GC in case of errors */
246 	unsigned long *invalid_segmap;
247 #endif
248 	unsigned int bitmap_size;	/* SIT bitmap size */
249 
250 	unsigned long *tmp_map;			/* bitmap for temporal use */
251 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
252 	unsigned int dirty_sentries;		/* # of dirty sentries */
253 	unsigned int sents_per_block;		/* # of SIT entries per block */
254 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
255 	struct seg_entry *sentries;		/* SIT segment-level cache */
256 	struct sec_entry *sec_entries;		/* SIT section-level cache */
257 
258 	/* for cost-benefit algorithm in cleaning procedure */
259 	unsigned long long elapsed_time;	/* elapsed time after mount */
260 	unsigned long long mounted_time;	/* mount time */
261 	unsigned long long min_mtime;		/* min. modification time */
262 	unsigned long long max_mtime;		/* max. modification time */
263 	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
264 	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
265 
266 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
267 };
268 
269 struct free_segmap_info {
270 	unsigned int start_segno;	/* start segment number logically */
271 	unsigned int free_segments;	/* # of free segments */
272 	unsigned int free_sections;	/* # of free sections */
273 	spinlock_t segmap_lock;		/* free segmap lock */
274 	unsigned long *free_segmap;	/* free segment bitmap */
275 	unsigned long *free_secmap;	/* free section bitmap */
276 };
277 
278 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
279 enum dirty_type {
280 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
281 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
282 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
283 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
284 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
285 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
286 	DIRTY,			/* to count # of dirty segments */
287 	PRE,			/* to count # of entirely obsolete segments */
288 	NR_DIRTY_TYPE
289 };
290 
291 struct dirty_seglist_info {
292 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
293 	unsigned long *dirty_secmap;
294 	struct mutex seglist_lock;		/* lock for segment bitmaps */
295 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
296 	unsigned long *victim_secmap;		/* background GC victims */
297 	unsigned long *pinned_secmap;		/* pinned victims from foreground GC */
298 	unsigned int pinned_secmap_cnt;		/* count of victims which has pinned data */
299 	bool enable_pin_section;		/* enable pinning section */
300 };
301 
302 /* for active log information */
303 struct curseg_info {
304 	struct mutex curseg_mutex;		/* lock for consistency */
305 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
306 	struct rw_semaphore journal_rwsem;	/* protect journal area */
307 	struct f2fs_journal *journal;		/* cached journal info */
308 	unsigned char alloc_type;		/* current allocation type */
309 	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
310 	unsigned int segno;			/* current segment number */
311 	unsigned short next_blkoff;		/* next block offset to write */
312 	unsigned int zone;			/* current zone number */
313 	unsigned int next_segno;		/* preallocated segment */
314 	int fragment_remained_chunk;		/* remained block size in a chunk for block fragmentation mode */
315 	bool inited;				/* indicate inmem log is inited */
316 };
317 
318 struct sit_entry_set {
319 	struct list_head set_list;	/* link with all sit sets */
320 	unsigned int start_segno;	/* start segno of sits in set */
321 	unsigned int entry_cnt;		/* the # of sit entries in set */
322 };
323 
324 /*
325  * inline functions
326  */
327 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
328 {
329 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
330 }
331 
332 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
333 						unsigned int segno)
334 {
335 	struct sit_info *sit_i = SIT_I(sbi);
336 	return &sit_i->sentries[segno];
337 }
338 
339 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
340 						unsigned int segno)
341 {
342 	struct sit_info *sit_i = SIT_I(sbi);
343 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
344 }
345 
346 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
347 				unsigned int segno, bool use_section)
348 {
349 	/*
350 	 * In order to get # of valid blocks in a section instantly from many
351 	 * segments, f2fs manages two counting structures separately.
352 	 */
353 	if (use_section && __is_large_section(sbi))
354 		return get_sec_entry(sbi, segno)->valid_blocks;
355 	else
356 		return get_seg_entry(sbi, segno)->valid_blocks;
357 }
358 
359 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
360 				unsigned int segno, bool use_section)
361 {
362 	if (use_section && __is_large_section(sbi)) {
363 		unsigned int start_segno = START_SEGNO(segno);
364 		unsigned int blocks = 0;
365 		int i;
366 
367 		for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) {
368 			struct seg_entry *se = get_seg_entry(sbi, start_segno);
369 
370 			blocks += se->ckpt_valid_blocks;
371 		}
372 		return blocks;
373 	}
374 	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
375 }
376 
377 static inline void seg_info_from_raw_sit(struct seg_entry *se,
378 					struct f2fs_sit_entry *rs)
379 {
380 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
381 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
382 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
383 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
384 #ifdef CONFIG_F2FS_CHECK_FS
385 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
386 #endif
387 	se->type = GET_SIT_TYPE(rs);
388 	se->mtime = le64_to_cpu(rs->mtime);
389 }
390 
391 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
392 					struct f2fs_sit_entry *rs)
393 {
394 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
395 					se->valid_blocks;
396 	rs->vblocks = cpu_to_le16(raw_vblocks);
397 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
398 	rs->mtime = cpu_to_le64(se->mtime);
399 }
400 
401 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
402 				struct page *page, unsigned int start)
403 {
404 	struct f2fs_sit_block *raw_sit;
405 	struct seg_entry *se;
406 	struct f2fs_sit_entry *rs;
407 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
408 					(unsigned long)MAIN_SEGS(sbi));
409 	int i;
410 
411 	raw_sit = (struct f2fs_sit_block *)page_address(page);
412 	memset(raw_sit, 0, PAGE_SIZE);
413 	for (i = 0; i < end - start; i++) {
414 		rs = &raw_sit->entries[i];
415 		se = get_seg_entry(sbi, start + i);
416 		__seg_info_to_raw_sit(se, rs);
417 	}
418 }
419 
420 static inline void seg_info_to_raw_sit(struct seg_entry *se,
421 					struct f2fs_sit_entry *rs)
422 {
423 	__seg_info_to_raw_sit(se, rs);
424 
425 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
426 	se->ckpt_valid_blocks = se->valid_blocks;
427 }
428 
429 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
430 		unsigned int max, unsigned int segno)
431 {
432 	unsigned int ret;
433 	spin_lock(&free_i->segmap_lock);
434 	ret = find_next_bit(free_i->free_segmap, max, segno);
435 	spin_unlock(&free_i->segmap_lock);
436 	return ret;
437 }
438 
439 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
440 {
441 	struct free_segmap_info *free_i = FREE_I(sbi);
442 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
443 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
444 	unsigned int next;
445 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
446 
447 	spin_lock(&free_i->segmap_lock);
448 	clear_bit(segno, free_i->free_segmap);
449 	free_i->free_segments++;
450 
451 	next = find_next_bit(free_i->free_segmap,
452 			start_segno + sbi->segs_per_sec, start_segno);
453 	if (next >= start_segno + usable_segs) {
454 		clear_bit(secno, free_i->free_secmap);
455 		free_i->free_sections++;
456 	}
457 	spin_unlock(&free_i->segmap_lock);
458 }
459 
460 static inline void __set_inuse(struct f2fs_sb_info *sbi,
461 		unsigned int segno)
462 {
463 	struct free_segmap_info *free_i = FREE_I(sbi);
464 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
465 
466 	set_bit(segno, free_i->free_segmap);
467 	free_i->free_segments--;
468 	if (!test_and_set_bit(secno, free_i->free_secmap))
469 		free_i->free_sections--;
470 }
471 
472 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
473 		unsigned int segno, bool inmem)
474 {
475 	struct free_segmap_info *free_i = FREE_I(sbi);
476 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
477 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
478 	unsigned int next;
479 	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
480 
481 	spin_lock(&free_i->segmap_lock);
482 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
483 		free_i->free_segments++;
484 
485 		if (!inmem && IS_CURSEC(sbi, secno))
486 			goto skip_free;
487 		next = find_next_bit(free_i->free_segmap,
488 				start_segno + sbi->segs_per_sec, start_segno);
489 		if (next >= start_segno + usable_segs) {
490 			if (test_and_clear_bit(secno, free_i->free_secmap))
491 				free_i->free_sections++;
492 		}
493 	}
494 skip_free:
495 	spin_unlock(&free_i->segmap_lock);
496 }
497 
498 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
499 		unsigned int segno)
500 {
501 	struct free_segmap_info *free_i = FREE_I(sbi);
502 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
503 
504 	spin_lock(&free_i->segmap_lock);
505 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
506 		free_i->free_segments--;
507 		if (!test_and_set_bit(secno, free_i->free_secmap))
508 			free_i->free_sections--;
509 	}
510 	spin_unlock(&free_i->segmap_lock);
511 }
512 
513 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
514 		void *dst_addr)
515 {
516 	struct sit_info *sit_i = SIT_I(sbi);
517 
518 #ifdef CONFIG_F2FS_CHECK_FS
519 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
520 						sit_i->bitmap_size))
521 		f2fs_bug_on(sbi, 1);
522 #endif
523 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
524 }
525 
526 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
527 {
528 	return SIT_I(sbi)->written_valid_blocks;
529 }
530 
531 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
532 {
533 	return FREE_I(sbi)->free_segments;
534 }
535 
536 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
537 {
538 	return SM_I(sbi)->reserved_segments +
539 			SM_I(sbi)->additional_reserved_segments;
540 }
541 
542 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
543 {
544 	return FREE_I(sbi)->free_sections;
545 }
546 
547 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
548 {
549 	return DIRTY_I(sbi)->nr_dirty[PRE];
550 }
551 
552 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
553 {
554 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
555 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
556 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
557 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
558 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
559 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
560 }
561 
562 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
563 {
564 	return SM_I(sbi)->ovp_segments;
565 }
566 
567 static inline int reserved_sections(struct f2fs_sb_info *sbi)
568 {
569 	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
570 }
571 
572 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi,
573 			unsigned int node_blocks, unsigned int dent_blocks)
574 {
575 
576 	unsigned int segno, left_blocks;
577 	int i;
578 
579 	/* check current node segment */
580 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
581 		segno = CURSEG_I(sbi, i)->segno;
582 		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
583 				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
584 
585 		if (node_blocks > left_blocks)
586 			return false;
587 	}
588 
589 	/* check current data segment */
590 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
591 	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
592 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
593 	if (dent_blocks > left_blocks)
594 		return false;
595 	return true;
596 }
597 
598 /*
599  * calculate needed sections for dirty node/dentry
600  * and call has_curseg_enough_space
601  */
602 static inline void __get_secs_required(struct f2fs_sb_info *sbi,
603 		unsigned int *lower_p, unsigned int *upper_p, bool *curseg_p)
604 {
605 	unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
606 					get_pages(sbi, F2FS_DIRTY_DENTS) +
607 					get_pages(sbi, F2FS_DIRTY_IMETA);
608 	unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
609 	unsigned int node_secs = total_node_blocks / CAP_BLKS_PER_SEC(sbi);
610 	unsigned int dent_secs = total_dent_blocks / CAP_BLKS_PER_SEC(sbi);
611 	unsigned int node_blocks = total_node_blocks % CAP_BLKS_PER_SEC(sbi);
612 	unsigned int dent_blocks = total_dent_blocks % CAP_BLKS_PER_SEC(sbi);
613 
614 	if (lower_p)
615 		*lower_p = node_secs + dent_secs;
616 	if (upper_p)
617 		*upper_p = node_secs + dent_secs +
618 			(node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0);
619 	if (curseg_p)
620 		*curseg_p = has_curseg_enough_space(sbi,
621 				node_blocks, dent_blocks);
622 }
623 
624 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
625 					int freed, int needed)
626 {
627 	unsigned int free_secs, lower_secs, upper_secs;
628 	bool curseg_space;
629 
630 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
631 		return false;
632 
633 	__get_secs_required(sbi, &lower_secs, &upper_secs, &curseg_space);
634 
635 	free_secs = free_sections(sbi) + freed;
636 	lower_secs += needed + reserved_sections(sbi);
637 	upper_secs += needed + reserved_sections(sbi);
638 
639 	if (free_secs > upper_secs)
640 		return false;
641 	else if (free_secs <= lower_secs)
642 		return true;
643 	return !curseg_space;
644 }
645 
646 static inline bool has_enough_free_secs(struct f2fs_sb_info *sbi,
647 					int freed, int needed)
648 {
649 	return !has_not_enough_free_secs(sbi, freed, needed);
650 }
651 
652 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
653 {
654 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
655 		return true;
656 	if (likely(has_enough_free_secs(sbi, 0, 0)))
657 		return true;
658 	return false;
659 }
660 
661 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
662 {
663 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
664 }
665 
666 static inline int utilization(struct f2fs_sb_info *sbi)
667 {
668 	return div_u64((u64)valid_user_blocks(sbi) * 100,
669 					sbi->user_block_count);
670 }
671 
672 /*
673  * Sometimes f2fs may be better to drop out-of-place update policy.
674  * And, users can control the policy through sysfs entries.
675  * There are five policies with triggering conditions as follows.
676  * F2FS_IPU_FORCE - all the time,
677  * F2FS_IPU_SSR - if SSR mode is activated,
678  * F2FS_IPU_UTIL - if FS utilization is over threashold,
679  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
680  *                     threashold,
681  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
682  *                     storages. IPU will be triggered only if the # of dirty
683  *                     pages over min_fsync_blocks. (=default option)
684  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
685  * F2FS_IPU_NOCACHE - disable IPU bio cache.
686  * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has
687  *                            FI_OPU_WRITE flag.
688  * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode)
689  */
690 #define DEF_MIN_IPU_UTIL	70
691 #define DEF_MIN_FSYNC_BLOCKS	8
692 #define DEF_MIN_HOT_BLOCKS	16
693 
694 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
695 
696 #define F2FS_IPU_DISABLE	0
697 
698 /* Modification on enum should be synchronized with ipu_mode_names array */
699 enum {
700 	F2FS_IPU_FORCE,
701 	F2FS_IPU_SSR,
702 	F2FS_IPU_UTIL,
703 	F2FS_IPU_SSR_UTIL,
704 	F2FS_IPU_FSYNC,
705 	F2FS_IPU_ASYNC,
706 	F2FS_IPU_NOCACHE,
707 	F2FS_IPU_HONOR_OPU_WRITE,
708 	F2FS_IPU_MAX,
709 };
710 
711 static inline bool IS_F2FS_IPU_DISABLE(struct f2fs_sb_info *sbi)
712 {
713 	return SM_I(sbi)->ipu_policy == F2FS_IPU_DISABLE;
714 }
715 
716 #define F2FS_IPU_POLICY(name)					\
717 static inline bool IS_##name(struct f2fs_sb_info *sbi)		\
718 {								\
719 	return SM_I(sbi)->ipu_policy & BIT(name);		\
720 }
721 
722 F2FS_IPU_POLICY(F2FS_IPU_FORCE);
723 F2FS_IPU_POLICY(F2FS_IPU_SSR);
724 F2FS_IPU_POLICY(F2FS_IPU_UTIL);
725 F2FS_IPU_POLICY(F2FS_IPU_SSR_UTIL);
726 F2FS_IPU_POLICY(F2FS_IPU_FSYNC);
727 F2FS_IPU_POLICY(F2FS_IPU_ASYNC);
728 F2FS_IPU_POLICY(F2FS_IPU_NOCACHE);
729 F2FS_IPU_POLICY(F2FS_IPU_HONOR_OPU_WRITE);
730 
731 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
732 		int type)
733 {
734 	struct curseg_info *curseg = CURSEG_I(sbi, type);
735 	return curseg->segno;
736 }
737 
738 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
739 		int type)
740 {
741 	struct curseg_info *curseg = CURSEG_I(sbi, type);
742 	return curseg->alloc_type;
743 }
744 
745 static inline bool valid_main_segno(struct f2fs_sb_info *sbi,
746 		unsigned int segno)
747 {
748 	return segno <= (MAIN_SEGS(sbi) - 1);
749 }
750 
751 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
752 {
753 	struct f2fs_sb_info *sbi = fio->sbi;
754 
755 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
756 		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
757 					META_GENERIC : DATA_GENERIC);
758 	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
759 					META_GENERIC : DATA_GENERIC_ENHANCE);
760 }
761 
762 /*
763  * Summary block is always treated as an invalid block
764  */
765 static inline int check_block_count(struct f2fs_sb_info *sbi,
766 		int segno, struct f2fs_sit_entry *raw_sit)
767 {
768 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
769 	int valid_blocks = 0;
770 	int cur_pos = 0, next_pos;
771 	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
772 
773 	/* check bitmap with valid block count */
774 	do {
775 		if (is_valid) {
776 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
777 					usable_blks_per_seg,
778 					cur_pos);
779 			valid_blocks += next_pos - cur_pos;
780 		} else
781 			next_pos = find_next_bit_le(&raw_sit->valid_map,
782 					usable_blks_per_seg,
783 					cur_pos);
784 		cur_pos = next_pos;
785 		is_valid = !is_valid;
786 	} while (cur_pos < usable_blks_per_seg);
787 
788 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
789 		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
790 			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
791 		set_sbi_flag(sbi, SBI_NEED_FSCK);
792 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
793 		return -EFSCORRUPTED;
794 	}
795 
796 	if (usable_blks_per_seg < sbi->blocks_per_seg)
797 		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
798 				sbi->blocks_per_seg,
799 				usable_blks_per_seg) != sbi->blocks_per_seg);
800 
801 	/* check segment usage, and check boundary of a given segment number */
802 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
803 					|| !valid_main_segno(sbi, segno))) {
804 		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
805 			 GET_SIT_VBLOCKS(raw_sit), segno);
806 		set_sbi_flag(sbi, SBI_NEED_FSCK);
807 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SIT);
808 		return -EFSCORRUPTED;
809 	}
810 	return 0;
811 }
812 
813 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
814 						unsigned int start)
815 {
816 	struct sit_info *sit_i = SIT_I(sbi);
817 	unsigned int offset = SIT_BLOCK_OFFSET(start);
818 	block_t blk_addr = sit_i->sit_base_addr + offset;
819 
820 	f2fs_bug_on(sbi, !valid_main_segno(sbi, start));
821 
822 #ifdef CONFIG_F2FS_CHECK_FS
823 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
824 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
825 		f2fs_bug_on(sbi, 1);
826 #endif
827 
828 	/* calculate sit block address */
829 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
830 		blk_addr += sit_i->sit_blocks;
831 
832 	return blk_addr;
833 }
834 
835 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
836 						pgoff_t block_addr)
837 {
838 	struct sit_info *sit_i = SIT_I(sbi);
839 	block_addr -= sit_i->sit_base_addr;
840 	if (block_addr < sit_i->sit_blocks)
841 		block_addr += sit_i->sit_blocks;
842 	else
843 		block_addr -= sit_i->sit_blocks;
844 
845 	return block_addr + sit_i->sit_base_addr;
846 }
847 
848 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
849 {
850 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
851 
852 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
853 #ifdef CONFIG_F2FS_CHECK_FS
854 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
855 #endif
856 }
857 
858 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
859 						bool base_time)
860 {
861 	struct sit_info *sit_i = SIT_I(sbi);
862 	time64_t diff, now = ktime_get_boottime_seconds();
863 
864 	if (now >= sit_i->mounted_time)
865 		return sit_i->elapsed_time + now - sit_i->mounted_time;
866 
867 	/* system time is set to the past */
868 	if (!base_time) {
869 		diff = sit_i->mounted_time - now;
870 		if (sit_i->elapsed_time >= diff)
871 			return sit_i->elapsed_time - diff;
872 		return 0;
873 	}
874 	return sit_i->elapsed_time;
875 }
876 
877 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
878 			unsigned int ofs_in_node, unsigned char version)
879 {
880 	sum->nid = cpu_to_le32(nid);
881 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
882 	sum->version = version;
883 }
884 
885 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
886 {
887 	return __start_cp_addr(sbi) +
888 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
889 }
890 
891 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
892 {
893 	return __start_cp_addr(sbi) +
894 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
895 				- (base + 1) + type;
896 }
897 
898 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
899 {
900 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
901 		return true;
902 	return false;
903 }
904 
905 /*
906  * It is very important to gather dirty pages and write at once, so that we can
907  * submit a big bio without interfering other data writes.
908  * By default, 512 pages for directory data,
909  * 512 pages (2MB) * 8 for nodes, and
910  * 256 pages * 8 for meta are set.
911  */
912 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
913 {
914 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
915 		return 0;
916 
917 	if (type == DATA)
918 		return sbi->blocks_per_seg;
919 	else if (type == NODE)
920 		return 8 * sbi->blocks_per_seg;
921 	else if (type == META)
922 		return 8 * BIO_MAX_VECS;
923 	else
924 		return 0;
925 }
926 
927 /*
928  * When writing pages, it'd better align nr_to_write for segment size.
929  */
930 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
931 					struct writeback_control *wbc)
932 {
933 	long nr_to_write, desired;
934 
935 	if (wbc->sync_mode != WB_SYNC_NONE)
936 		return 0;
937 
938 	nr_to_write = wbc->nr_to_write;
939 	desired = BIO_MAX_VECS;
940 	if (type == NODE)
941 		desired <<= 1;
942 
943 	wbc->nr_to_write = desired;
944 	return desired - nr_to_write;
945 }
946 
947 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
948 {
949 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
950 	bool wakeup = false;
951 	int i;
952 
953 	if (force)
954 		goto wake_up;
955 
956 	mutex_lock(&dcc->cmd_lock);
957 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
958 		if (i + 1 < dcc->discard_granularity)
959 			break;
960 		if (!list_empty(&dcc->pend_list[i])) {
961 			wakeup = true;
962 			break;
963 		}
964 	}
965 	mutex_unlock(&dcc->cmd_lock);
966 	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
967 		return;
968 wake_up:
969 	dcc->discard_wake = true;
970 	wake_up_interruptible_all(&dcc->discard_wait_queue);
971 }
972