1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 13 /* constant macro */ 14 #define NULL_SEGNO ((unsigned int)(~0)) 15 #define NULL_SECNO ((unsigned int)(~0)) 16 17 #define DEF_RECLAIM_PREFREE_SEGMENTS 100 /* 200MB of prefree segments */ 18 19 /* L: Logical segment # in volume, R: Relative segment # in main area */ 20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) 21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) 22 23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) 24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) 25 26 #define IS_CURSEG(sbi, seg) \ 27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 33 34 #define IS_CURSEC(sbi, secno) \ 35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 36 sbi->segs_per_sec) || \ 37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 38 sbi->segs_per_sec) || \ 39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 40 sbi->segs_per_sec) || \ 41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 42 sbi->segs_per_sec) || \ 43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 44 sbi->segs_per_sec) || \ 45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 46 sbi->segs_per_sec)) \ 47 48 #define START_BLOCK(sbi, segno) \ 49 (SM_I(sbi)->seg0_blkaddr + \ 50 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) 51 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 52 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) 53 54 #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) 55 56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ 57 ((blk_addr) - SM_I(sbi)->seg0_blkaddr) 58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 59 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) 60 #define GET_SEGNO(sbi, blk_addr) \ 61 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ 62 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 63 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 64 #define GET_SECNO(sbi, segno) \ 65 ((segno) / sbi->segs_per_sec) 66 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ 67 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) 68 69 #define GET_SUM_BLOCK(sbi, segno) \ 70 ((sbi->sm_info->ssa_blkaddr) + segno) 71 72 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 73 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) 74 75 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 76 (segno % sit_i->sents_per_block) 77 #define SIT_BLOCK_OFFSET(sit_i, segno) \ 78 (segno / SIT_ENTRY_PER_BLOCK) 79 #define START_SEGNO(sit_i, segno) \ 80 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK) 81 #define SIT_BLK_CNT(sbi) \ 82 ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 83 #define f2fs_bitmap_size(nr) \ 84 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 85 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) 86 #define TOTAL_SECS(sbi) (sbi->total_sections) 87 88 #define SECTOR_FROM_BLOCK(sbi, blk_addr) \ 89 (((sector_t)blk_addr) << (sbi)->log_sectors_per_block) 90 #define SECTOR_TO_BLOCK(sbi, sectors) \ 91 (sectors >> (sbi)->log_sectors_per_block) 92 #define MAX_BIO_BLOCKS(max_hw_blocks) \ 93 (min((int)max_hw_blocks, BIO_MAX_PAGES)) 94 95 /* 96 * indicate a block allocation direction: RIGHT and LEFT. 97 * RIGHT means allocating new sections towards the end of volume. 98 * LEFT means the opposite direction. 99 */ 100 enum { 101 ALLOC_RIGHT = 0, 102 ALLOC_LEFT 103 }; 104 105 /* 106 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 107 * LFS writes data sequentially with cleaning operations. 108 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 109 */ 110 enum { 111 LFS = 0, 112 SSR 113 }; 114 115 /* 116 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 117 * GC_CB is based on cost-benefit algorithm. 118 * GC_GREEDY is based on greedy algorithm. 119 */ 120 enum { 121 GC_CB = 0, 122 GC_GREEDY 123 }; 124 125 /* 126 * BG_GC means the background cleaning job. 127 * FG_GC means the on-demand cleaning job. 128 */ 129 enum { 130 BG_GC = 0, 131 FG_GC 132 }; 133 134 /* for a function parameter to select a victim segment */ 135 struct victim_sel_policy { 136 int alloc_mode; /* LFS or SSR */ 137 int gc_mode; /* GC_CB or GC_GREEDY */ 138 unsigned long *dirty_segmap; /* dirty segment bitmap */ 139 unsigned int max_search; /* maximum # of segments to search */ 140 unsigned int offset; /* last scanned bitmap offset */ 141 unsigned int ofs_unit; /* bitmap search unit */ 142 unsigned int min_cost; /* minimum cost */ 143 unsigned int min_segno; /* segment # having min. cost */ 144 }; 145 146 struct seg_entry { 147 unsigned short valid_blocks; /* # of valid blocks */ 148 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 149 /* 150 * # of valid blocks and the validity bitmap stored in the the last 151 * checkpoint pack. This information is used by the SSR mode. 152 */ 153 unsigned short ckpt_valid_blocks; 154 unsigned char *ckpt_valid_map; 155 unsigned char type; /* segment type like CURSEG_XXX_TYPE */ 156 unsigned long long mtime; /* modification time of the segment */ 157 }; 158 159 struct sec_entry { 160 unsigned int valid_blocks; /* # of valid blocks in a section */ 161 }; 162 163 struct segment_allocation { 164 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 165 }; 166 167 struct sit_info { 168 const struct segment_allocation *s_ops; 169 170 block_t sit_base_addr; /* start block address of SIT area */ 171 block_t sit_blocks; /* # of blocks used by SIT area */ 172 block_t written_valid_blocks; /* # of valid blocks in main area */ 173 char *sit_bitmap; /* SIT bitmap pointer */ 174 unsigned int bitmap_size; /* SIT bitmap size */ 175 176 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 177 unsigned int dirty_sentries; /* # of dirty sentries */ 178 unsigned int sents_per_block; /* # of SIT entries per block */ 179 struct mutex sentry_lock; /* to protect SIT cache */ 180 struct seg_entry *sentries; /* SIT segment-level cache */ 181 struct sec_entry *sec_entries; /* SIT section-level cache */ 182 183 /* for cost-benefit algorithm in cleaning procedure */ 184 unsigned long long elapsed_time; /* elapsed time after mount */ 185 unsigned long long mounted_time; /* mount time */ 186 unsigned long long min_mtime; /* min. modification time */ 187 unsigned long long max_mtime; /* max. modification time */ 188 }; 189 190 struct free_segmap_info { 191 unsigned int start_segno; /* start segment number logically */ 192 unsigned int free_segments; /* # of free segments */ 193 unsigned int free_sections; /* # of free sections */ 194 rwlock_t segmap_lock; /* free segmap lock */ 195 unsigned long *free_segmap; /* free segment bitmap */ 196 unsigned long *free_secmap; /* free section bitmap */ 197 }; 198 199 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 200 enum dirty_type { 201 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 202 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 203 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 204 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 205 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 206 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 207 DIRTY, /* to count # of dirty segments */ 208 PRE, /* to count # of entirely obsolete segments */ 209 NR_DIRTY_TYPE 210 }; 211 212 struct dirty_seglist_info { 213 const struct victim_selection *v_ops; /* victim selction operation */ 214 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 215 struct mutex seglist_lock; /* lock for segment bitmaps */ 216 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 217 unsigned long *victim_secmap; /* background GC victims */ 218 }; 219 220 /* victim selection function for cleaning and SSR */ 221 struct victim_selection { 222 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 223 int, int, char); 224 }; 225 226 /* for active log information */ 227 struct curseg_info { 228 struct mutex curseg_mutex; /* lock for consistency */ 229 struct f2fs_summary_block *sum_blk; /* cached summary block */ 230 unsigned char alloc_type; /* current allocation type */ 231 unsigned int segno; /* current segment number */ 232 unsigned short next_blkoff; /* next block offset to write */ 233 unsigned int zone; /* current zone number */ 234 unsigned int next_segno; /* preallocated segment */ 235 }; 236 237 /* 238 * inline functions 239 */ 240 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 241 { 242 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 243 } 244 245 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 246 unsigned int segno) 247 { 248 struct sit_info *sit_i = SIT_I(sbi); 249 return &sit_i->sentries[segno]; 250 } 251 252 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 253 unsigned int segno) 254 { 255 struct sit_info *sit_i = SIT_I(sbi); 256 return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; 257 } 258 259 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 260 unsigned int segno, int section) 261 { 262 /* 263 * In order to get # of valid blocks in a section instantly from many 264 * segments, f2fs manages two counting structures separately. 265 */ 266 if (section > 1) 267 return get_sec_entry(sbi, segno)->valid_blocks; 268 else 269 return get_seg_entry(sbi, segno)->valid_blocks; 270 } 271 272 static inline void seg_info_from_raw_sit(struct seg_entry *se, 273 struct f2fs_sit_entry *rs) 274 { 275 se->valid_blocks = GET_SIT_VBLOCKS(rs); 276 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 277 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 278 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 279 se->type = GET_SIT_TYPE(rs); 280 se->mtime = le64_to_cpu(rs->mtime); 281 } 282 283 static inline void seg_info_to_raw_sit(struct seg_entry *se, 284 struct f2fs_sit_entry *rs) 285 { 286 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 287 se->valid_blocks; 288 rs->vblocks = cpu_to_le16(raw_vblocks); 289 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 290 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 291 se->ckpt_valid_blocks = se->valid_blocks; 292 rs->mtime = cpu_to_le64(se->mtime); 293 } 294 295 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 296 unsigned int max, unsigned int segno) 297 { 298 unsigned int ret; 299 read_lock(&free_i->segmap_lock); 300 ret = find_next_bit(free_i->free_segmap, max, segno); 301 read_unlock(&free_i->segmap_lock); 302 return ret; 303 } 304 305 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 306 { 307 struct free_segmap_info *free_i = FREE_I(sbi); 308 unsigned int secno = segno / sbi->segs_per_sec; 309 unsigned int start_segno = secno * sbi->segs_per_sec; 310 unsigned int next; 311 312 write_lock(&free_i->segmap_lock); 313 clear_bit(segno, free_i->free_segmap); 314 free_i->free_segments++; 315 316 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); 317 if (next >= start_segno + sbi->segs_per_sec) { 318 clear_bit(secno, free_i->free_secmap); 319 free_i->free_sections++; 320 } 321 write_unlock(&free_i->segmap_lock); 322 } 323 324 static inline void __set_inuse(struct f2fs_sb_info *sbi, 325 unsigned int segno) 326 { 327 struct free_segmap_info *free_i = FREE_I(sbi); 328 unsigned int secno = segno / sbi->segs_per_sec; 329 set_bit(segno, free_i->free_segmap); 330 free_i->free_segments--; 331 if (!test_and_set_bit(secno, free_i->free_secmap)) 332 free_i->free_sections--; 333 } 334 335 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 336 unsigned int segno) 337 { 338 struct free_segmap_info *free_i = FREE_I(sbi); 339 unsigned int secno = segno / sbi->segs_per_sec; 340 unsigned int start_segno = secno * sbi->segs_per_sec; 341 unsigned int next; 342 343 write_lock(&free_i->segmap_lock); 344 if (test_and_clear_bit(segno, free_i->free_segmap)) { 345 free_i->free_segments++; 346 347 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), 348 start_segno); 349 if (next >= start_segno + sbi->segs_per_sec) { 350 if (test_and_clear_bit(secno, free_i->free_secmap)) 351 free_i->free_sections++; 352 } 353 } 354 write_unlock(&free_i->segmap_lock); 355 } 356 357 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 358 unsigned int segno) 359 { 360 struct free_segmap_info *free_i = FREE_I(sbi); 361 unsigned int secno = segno / sbi->segs_per_sec; 362 write_lock(&free_i->segmap_lock); 363 if (!test_and_set_bit(segno, free_i->free_segmap)) { 364 free_i->free_segments--; 365 if (!test_and_set_bit(secno, free_i->free_secmap)) 366 free_i->free_sections--; 367 } 368 write_unlock(&free_i->segmap_lock); 369 } 370 371 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 372 void *dst_addr) 373 { 374 struct sit_info *sit_i = SIT_I(sbi); 375 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 376 } 377 378 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 379 { 380 struct sit_info *sit_i = SIT_I(sbi); 381 block_t vblocks; 382 383 mutex_lock(&sit_i->sentry_lock); 384 vblocks = sit_i->written_valid_blocks; 385 mutex_unlock(&sit_i->sentry_lock); 386 387 return vblocks; 388 } 389 390 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 391 { 392 struct free_segmap_info *free_i = FREE_I(sbi); 393 unsigned int free_segs; 394 395 read_lock(&free_i->segmap_lock); 396 free_segs = free_i->free_segments; 397 read_unlock(&free_i->segmap_lock); 398 399 return free_segs; 400 } 401 402 static inline int reserved_segments(struct f2fs_sb_info *sbi) 403 { 404 return SM_I(sbi)->reserved_segments; 405 } 406 407 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 408 { 409 struct free_segmap_info *free_i = FREE_I(sbi); 410 unsigned int free_secs; 411 412 read_lock(&free_i->segmap_lock); 413 free_secs = free_i->free_sections; 414 read_unlock(&free_i->segmap_lock); 415 416 return free_secs; 417 } 418 419 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 420 { 421 return DIRTY_I(sbi)->nr_dirty[PRE]; 422 } 423 424 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 425 { 426 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 427 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 428 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 429 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 430 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 431 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 432 } 433 434 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 435 { 436 return SM_I(sbi)->ovp_segments; 437 } 438 439 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 440 { 441 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; 442 } 443 444 static inline int reserved_sections(struct f2fs_sb_info *sbi) 445 { 446 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; 447 } 448 449 static inline bool need_SSR(struct f2fs_sb_info *sbi) 450 { 451 return (prefree_segments(sbi) / sbi->segs_per_sec) 452 + free_sections(sbi) < overprovision_sections(sbi); 453 } 454 455 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) 456 { 457 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 458 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 459 460 if (unlikely(sbi->por_doing)) 461 return false; 462 463 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + 464 reserved_sections(sbi)); 465 } 466 467 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 468 { 469 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 470 } 471 472 static inline int utilization(struct f2fs_sb_info *sbi) 473 { 474 return div_u64((u64)valid_user_blocks(sbi) * 100, 475 sbi->user_block_count); 476 } 477 478 /* 479 * Sometimes f2fs may be better to drop out-of-place update policy. 480 * And, users can control the policy through sysfs entries. 481 * There are five policies with triggering conditions as follows. 482 * F2FS_IPU_FORCE - all the time, 483 * F2FS_IPU_SSR - if SSR mode is activated, 484 * F2FS_IPU_UTIL - if FS utilization is over threashold, 485 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 486 * threashold, 487 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 488 */ 489 #define DEF_MIN_IPU_UTIL 70 490 491 enum { 492 F2FS_IPU_FORCE, 493 F2FS_IPU_SSR, 494 F2FS_IPU_UTIL, 495 F2FS_IPU_SSR_UTIL, 496 F2FS_IPU_DISABLE, 497 }; 498 499 static inline bool need_inplace_update(struct inode *inode) 500 { 501 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 502 503 /* IPU can be done only for the user data */ 504 if (S_ISDIR(inode->i_mode)) 505 return false; 506 507 switch (SM_I(sbi)->ipu_policy) { 508 case F2FS_IPU_FORCE: 509 return true; 510 case F2FS_IPU_SSR: 511 if (need_SSR(sbi)) 512 return true; 513 break; 514 case F2FS_IPU_UTIL: 515 if (utilization(sbi) > SM_I(sbi)->min_ipu_util) 516 return true; 517 break; 518 case F2FS_IPU_SSR_UTIL: 519 if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 520 return true; 521 break; 522 case F2FS_IPU_DISABLE: 523 break; 524 } 525 return false; 526 } 527 528 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 529 int type) 530 { 531 struct curseg_info *curseg = CURSEG_I(sbi, type); 532 return curseg->segno; 533 } 534 535 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 536 int type) 537 { 538 struct curseg_info *curseg = CURSEG_I(sbi, type); 539 return curseg->alloc_type; 540 } 541 542 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 543 { 544 struct curseg_info *curseg = CURSEG_I(sbi, type); 545 return curseg->next_blkoff; 546 } 547 548 #ifdef CONFIG_F2FS_CHECK_FS 549 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 550 { 551 unsigned int end_segno = SM_I(sbi)->segment_count - 1; 552 BUG_ON(segno > end_segno); 553 } 554 555 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 556 { 557 struct f2fs_sm_info *sm_info = SM_I(sbi); 558 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; 559 block_t start_addr = sm_info->seg0_blkaddr; 560 block_t end_addr = start_addr + total_blks - 1; 561 BUG_ON(blk_addr < start_addr); 562 BUG_ON(blk_addr > end_addr); 563 } 564 565 /* 566 * Summary block is always treated as invalid block 567 */ 568 static inline void check_block_count(struct f2fs_sb_info *sbi, 569 int segno, struct f2fs_sit_entry *raw_sit) 570 { 571 struct f2fs_sm_info *sm_info = SM_I(sbi); 572 unsigned int end_segno = sm_info->segment_count - 1; 573 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 574 int valid_blocks = 0; 575 int cur_pos = 0, next_pos; 576 577 /* check segment usage */ 578 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); 579 580 /* check boundary of a given segment number */ 581 BUG_ON(segno > end_segno); 582 583 /* check bitmap with valid block count */ 584 do { 585 if (is_valid) { 586 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 587 sbi->blocks_per_seg, 588 cur_pos); 589 valid_blocks += next_pos - cur_pos; 590 } else 591 next_pos = find_next_bit_le(&raw_sit->valid_map, 592 sbi->blocks_per_seg, 593 cur_pos); 594 cur_pos = next_pos; 595 is_valid = !is_valid; 596 } while (cur_pos < sbi->blocks_per_seg); 597 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 598 } 599 #else 600 #define check_seg_range(sbi, segno) 601 #define verify_block_addr(sbi, blk_addr) 602 #define check_block_count(sbi, segno, raw_sit) 603 #endif 604 605 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 606 unsigned int start) 607 { 608 struct sit_info *sit_i = SIT_I(sbi); 609 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start); 610 block_t blk_addr = sit_i->sit_base_addr + offset; 611 612 check_seg_range(sbi, start); 613 614 /* calculate sit block address */ 615 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 616 blk_addr += sit_i->sit_blocks; 617 618 return blk_addr; 619 } 620 621 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 622 pgoff_t block_addr) 623 { 624 struct sit_info *sit_i = SIT_I(sbi); 625 block_addr -= sit_i->sit_base_addr; 626 if (block_addr < sit_i->sit_blocks) 627 block_addr += sit_i->sit_blocks; 628 else 629 block_addr -= sit_i->sit_blocks; 630 631 return block_addr + sit_i->sit_base_addr; 632 } 633 634 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 635 { 636 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start); 637 638 if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) 639 f2fs_clear_bit(block_off, sit_i->sit_bitmap); 640 else 641 f2fs_set_bit(block_off, sit_i->sit_bitmap); 642 } 643 644 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 645 { 646 struct sit_info *sit_i = SIT_I(sbi); 647 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - 648 sit_i->mounted_time; 649 } 650 651 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 652 unsigned int ofs_in_node, unsigned char version) 653 { 654 sum->nid = cpu_to_le32(nid); 655 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 656 sum->version = version; 657 } 658 659 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 660 { 661 return __start_cp_addr(sbi) + 662 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 663 } 664 665 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 666 { 667 return __start_cp_addr(sbi) + 668 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 669 - (base + 1) + type; 670 } 671 672 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 673 { 674 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 675 return true; 676 return false; 677 } 678 679 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) 680 { 681 struct block_device *bdev = sbi->sb->s_bdev; 682 struct request_queue *q = bdev_get_queue(bdev); 683 return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q)); 684 } 685