xref: /openbmc/linux/fs/f2fs/segment.h (revision 483eb062)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 
13 /* constant macro */
14 #define NULL_SEGNO			((unsigned int)(~0))
15 #define NULL_SECNO			((unsigned int)(~0))
16 
17 #define DEF_RECLAIM_PREFREE_SEGMENTS	100	/* 200MB of prefree segments */
18 
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
22 
23 #define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
25 
26 #define IS_CURSEG(sbi, seg)						\
27 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
28 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
29 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
30 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
31 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
32 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33 
34 #define IS_CURSEC(sbi, secno)						\
35 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
36 	  sbi->segs_per_sec) ||	\
37 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
38 	  sbi->segs_per_sec) ||	\
39 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
40 	  sbi->segs_per_sec) ||	\
41 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
42 	  sbi->segs_per_sec) ||	\
43 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
44 	  sbi->segs_per_sec) ||	\
45 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
46 	  sbi->segs_per_sec))	\
47 
48 #define START_BLOCK(sbi, segno)						\
49 	(SM_I(sbi)->seg0_blkaddr +					\
50 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
52 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53 
54 #define MAIN_BASE_BLOCK(sbi)	(SM_I(sbi)->main_blkaddr)
55 
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)				\
57 	((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
59 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_SEGNO(sbi, blk_addr)					\
61 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
62 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
63 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64 #define GET_SECNO(sbi, segno)					\
65 	((segno) / sbi->segs_per_sec)
66 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
67 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
68 
69 #define GET_SUM_BLOCK(sbi, segno)				\
70 	((sbi->sm_info->ssa_blkaddr) + segno)
71 
72 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
73 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
74 
75 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
76 	(segno % sit_i->sents_per_block)
77 #define SIT_BLOCK_OFFSET(sit_i, segno)					\
78 	(segno / SIT_ENTRY_PER_BLOCK)
79 #define	START_SEGNO(sit_i, segno)		\
80 	(SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
81 #define SIT_BLK_CNT(sbi)			\
82 	((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
83 #define f2fs_bitmap_size(nr)			\
84 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
85 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->main_segments)
86 #define TOTAL_SECS(sbi)	(sbi->total_sections)
87 
88 #define SECTOR_FROM_BLOCK(sbi, blk_addr)				\
89 	(((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
90 #define SECTOR_TO_BLOCK(sbi, sectors)					\
91 	(sectors >> (sbi)->log_sectors_per_block)
92 #define MAX_BIO_BLOCKS(max_hw_blocks)					\
93 	(min((int)max_hw_blocks, BIO_MAX_PAGES))
94 
95 /*
96  * indicate a block allocation direction: RIGHT and LEFT.
97  * RIGHT means allocating new sections towards the end of volume.
98  * LEFT means the opposite direction.
99  */
100 enum {
101 	ALLOC_RIGHT = 0,
102 	ALLOC_LEFT
103 };
104 
105 /*
106  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
107  * LFS writes data sequentially with cleaning operations.
108  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
109  */
110 enum {
111 	LFS = 0,
112 	SSR
113 };
114 
115 /*
116  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
117  * GC_CB is based on cost-benefit algorithm.
118  * GC_GREEDY is based on greedy algorithm.
119  */
120 enum {
121 	GC_CB = 0,
122 	GC_GREEDY
123 };
124 
125 /*
126  * BG_GC means the background cleaning job.
127  * FG_GC means the on-demand cleaning job.
128  */
129 enum {
130 	BG_GC = 0,
131 	FG_GC
132 };
133 
134 /* for a function parameter to select a victim segment */
135 struct victim_sel_policy {
136 	int alloc_mode;			/* LFS or SSR */
137 	int gc_mode;			/* GC_CB or GC_GREEDY */
138 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
139 	unsigned int max_search;	/* maximum # of segments to search */
140 	unsigned int offset;		/* last scanned bitmap offset */
141 	unsigned int ofs_unit;		/* bitmap search unit */
142 	unsigned int min_cost;		/* minimum cost */
143 	unsigned int min_segno;		/* segment # having min. cost */
144 };
145 
146 struct seg_entry {
147 	unsigned short valid_blocks;	/* # of valid blocks */
148 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
149 	/*
150 	 * # of valid blocks and the validity bitmap stored in the the last
151 	 * checkpoint pack. This information is used by the SSR mode.
152 	 */
153 	unsigned short ckpt_valid_blocks;
154 	unsigned char *ckpt_valid_map;
155 	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
156 	unsigned long long mtime;	/* modification time of the segment */
157 };
158 
159 struct sec_entry {
160 	unsigned int valid_blocks;	/* # of valid blocks in a section */
161 };
162 
163 struct segment_allocation {
164 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
165 };
166 
167 struct sit_info {
168 	const struct segment_allocation *s_ops;
169 
170 	block_t sit_base_addr;		/* start block address of SIT area */
171 	block_t sit_blocks;		/* # of blocks used by SIT area */
172 	block_t written_valid_blocks;	/* # of valid blocks in main area */
173 	char *sit_bitmap;		/* SIT bitmap pointer */
174 	unsigned int bitmap_size;	/* SIT bitmap size */
175 
176 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
177 	unsigned int dirty_sentries;		/* # of dirty sentries */
178 	unsigned int sents_per_block;		/* # of SIT entries per block */
179 	struct mutex sentry_lock;		/* to protect SIT cache */
180 	struct seg_entry *sentries;		/* SIT segment-level cache */
181 	struct sec_entry *sec_entries;		/* SIT section-level cache */
182 
183 	/* for cost-benefit algorithm in cleaning procedure */
184 	unsigned long long elapsed_time;	/* elapsed time after mount */
185 	unsigned long long mounted_time;	/* mount time */
186 	unsigned long long min_mtime;		/* min. modification time */
187 	unsigned long long max_mtime;		/* max. modification time */
188 };
189 
190 struct free_segmap_info {
191 	unsigned int start_segno;	/* start segment number logically */
192 	unsigned int free_segments;	/* # of free segments */
193 	unsigned int free_sections;	/* # of free sections */
194 	rwlock_t segmap_lock;		/* free segmap lock */
195 	unsigned long *free_segmap;	/* free segment bitmap */
196 	unsigned long *free_secmap;	/* free section bitmap */
197 };
198 
199 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
200 enum dirty_type {
201 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
202 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
203 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
204 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
205 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
206 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
207 	DIRTY,			/* to count # of dirty segments */
208 	PRE,			/* to count # of entirely obsolete segments */
209 	NR_DIRTY_TYPE
210 };
211 
212 struct dirty_seglist_info {
213 	const struct victim_selection *v_ops;	/* victim selction operation */
214 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
215 	struct mutex seglist_lock;		/* lock for segment bitmaps */
216 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
217 	unsigned long *victim_secmap;		/* background GC victims */
218 };
219 
220 /* victim selection function for cleaning and SSR */
221 struct victim_selection {
222 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
223 							int, int, char);
224 };
225 
226 /* for active log information */
227 struct curseg_info {
228 	struct mutex curseg_mutex;		/* lock for consistency */
229 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
230 	unsigned char alloc_type;		/* current allocation type */
231 	unsigned int segno;			/* current segment number */
232 	unsigned short next_blkoff;		/* next block offset to write */
233 	unsigned int zone;			/* current zone number */
234 	unsigned int next_segno;		/* preallocated segment */
235 };
236 
237 /*
238  * inline functions
239  */
240 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
241 {
242 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
243 }
244 
245 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
246 						unsigned int segno)
247 {
248 	struct sit_info *sit_i = SIT_I(sbi);
249 	return &sit_i->sentries[segno];
250 }
251 
252 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
253 						unsigned int segno)
254 {
255 	struct sit_info *sit_i = SIT_I(sbi);
256 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
257 }
258 
259 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
260 				unsigned int segno, int section)
261 {
262 	/*
263 	 * In order to get # of valid blocks in a section instantly from many
264 	 * segments, f2fs manages two counting structures separately.
265 	 */
266 	if (section > 1)
267 		return get_sec_entry(sbi, segno)->valid_blocks;
268 	else
269 		return get_seg_entry(sbi, segno)->valid_blocks;
270 }
271 
272 static inline void seg_info_from_raw_sit(struct seg_entry *se,
273 					struct f2fs_sit_entry *rs)
274 {
275 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
276 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
277 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
278 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
279 	se->type = GET_SIT_TYPE(rs);
280 	se->mtime = le64_to_cpu(rs->mtime);
281 }
282 
283 static inline void seg_info_to_raw_sit(struct seg_entry *se,
284 					struct f2fs_sit_entry *rs)
285 {
286 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
287 					se->valid_blocks;
288 	rs->vblocks = cpu_to_le16(raw_vblocks);
289 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
290 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
291 	se->ckpt_valid_blocks = se->valid_blocks;
292 	rs->mtime = cpu_to_le64(se->mtime);
293 }
294 
295 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
296 		unsigned int max, unsigned int segno)
297 {
298 	unsigned int ret;
299 	read_lock(&free_i->segmap_lock);
300 	ret = find_next_bit(free_i->free_segmap, max, segno);
301 	read_unlock(&free_i->segmap_lock);
302 	return ret;
303 }
304 
305 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
306 {
307 	struct free_segmap_info *free_i = FREE_I(sbi);
308 	unsigned int secno = segno / sbi->segs_per_sec;
309 	unsigned int start_segno = secno * sbi->segs_per_sec;
310 	unsigned int next;
311 
312 	write_lock(&free_i->segmap_lock);
313 	clear_bit(segno, free_i->free_segmap);
314 	free_i->free_segments++;
315 
316 	next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
317 	if (next >= start_segno + sbi->segs_per_sec) {
318 		clear_bit(secno, free_i->free_secmap);
319 		free_i->free_sections++;
320 	}
321 	write_unlock(&free_i->segmap_lock);
322 }
323 
324 static inline void __set_inuse(struct f2fs_sb_info *sbi,
325 		unsigned int segno)
326 {
327 	struct free_segmap_info *free_i = FREE_I(sbi);
328 	unsigned int secno = segno / sbi->segs_per_sec;
329 	set_bit(segno, free_i->free_segmap);
330 	free_i->free_segments--;
331 	if (!test_and_set_bit(secno, free_i->free_secmap))
332 		free_i->free_sections--;
333 }
334 
335 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
336 		unsigned int segno)
337 {
338 	struct free_segmap_info *free_i = FREE_I(sbi);
339 	unsigned int secno = segno / sbi->segs_per_sec;
340 	unsigned int start_segno = secno * sbi->segs_per_sec;
341 	unsigned int next;
342 
343 	write_lock(&free_i->segmap_lock);
344 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
345 		free_i->free_segments++;
346 
347 		next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
348 								start_segno);
349 		if (next >= start_segno + sbi->segs_per_sec) {
350 			if (test_and_clear_bit(secno, free_i->free_secmap))
351 				free_i->free_sections++;
352 		}
353 	}
354 	write_unlock(&free_i->segmap_lock);
355 }
356 
357 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
358 		unsigned int segno)
359 {
360 	struct free_segmap_info *free_i = FREE_I(sbi);
361 	unsigned int secno = segno / sbi->segs_per_sec;
362 	write_lock(&free_i->segmap_lock);
363 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
364 		free_i->free_segments--;
365 		if (!test_and_set_bit(secno, free_i->free_secmap))
366 			free_i->free_sections--;
367 	}
368 	write_unlock(&free_i->segmap_lock);
369 }
370 
371 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
372 		void *dst_addr)
373 {
374 	struct sit_info *sit_i = SIT_I(sbi);
375 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
376 }
377 
378 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
379 {
380 	struct sit_info *sit_i = SIT_I(sbi);
381 	block_t vblocks;
382 
383 	mutex_lock(&sit_i->sentry_lock);
384 	vblocks = sit_i->written_valid_blocks;
385 	mutex_unlock(&sit_i->sentry_lock);
386 
387 	return vblocks;
388 }
389 
390 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
391 {
392 	struct free_segmap_info *free_i = FREE_I(sbi);
393 	unsigned int free_segs;
394 
395 	read_lock(&free_i->segmap_lock);
396 	free_segs = free_i->free_segments;
397 	read_unlock(&free_i->segmap_lock);
398 
399 	return free_segs;
400 }
401 
402 static inline int reserved_segments(struct f2fs_sb_info *sbi)
403 {
404 	return SM_I(sbi)->reserved_segments;
405 }
406 
407 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
408 {
409 	struct free_segmap_info *free_i = FREE_I(sbi);
410 	unsigned int free_secs;
411 
412 	read_lock(&free_i->segmap_lock);
413 	free_secs = free_i->free_sections;
414 	read_unlock(&free_i->segmap_lock);
415 
416 	return free_secs;
417 }
418 
419 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
420 {
421 	return DIRTY_I(sbi)->nr_dirty[PRE];
422 }
423 
424 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
425 {
426 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
427 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
428 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
429 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
430 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
431 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
432 }
433 
434 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
435 {
436 	return SM_I(sbi)->ovp_segments;
437 }
438 
439 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
440 {
441 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
442 }
443 
444 static inline int reserved_sections(struct f2fs_sb_info *sbi)
445 {
446 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
447 }
448 
449 static inline bool need_SSR(struct f2fs_sb_info *sbi)
450 {
451 	return (prefree_segments(sbi) / sbi->segs_per_sec)
452 			+ free_sections(sbi) < overprovision_sections(sbi);
453 }
454 
455 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
456 {
457 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
458 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
459 
460 	if (unlikely(sbi->por_doing))
461 		return false;
462 
463 	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
464 						reserved_sections(sbi));
465 }
466 
467 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
468 {
469 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
470 }
471 
472 static inline int utilization(struct f2fs_sb_info *sbi)
473 {
474 	return div_u64((u64)valid_user_blocks(sbi) * 100,
475 					sbi->user_block_count);
476 }
477 
478 /*
479  * Sometimes f2fs may be better to drop out-of-place update policy.
480  * And, users can control the policy through sysfs entries.
481  * There are five policies with triggering conditions as follows.
482  * F2FS_IPU_FORCE - all the time,
483  * F2FS_IPU_SSR - if SSR mode is activated,
484  * F2FS_IPU_UTIL - if FS utilization is over threashold,
485  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
486  *                     threashold,
487  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
488  */
489 #define DEF_MIN_IPU_UTIL	70
490 
491 enum {
492 	F2FS_IPU_FORCE,
493 	F2FS_IPU_SSR,
494 	F2FS_IPU_UTIL,
495 	F2FS_IPU_SSR_UTIL,
496 	F2FS_IPU_DISABLE,
497 };
498 
499 static inline bool need_inplace_update(struct inode *inode)
500 {
501 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
502 
503 	/* IPU can be done only for the user data */
504 	if (S_ISDIR(inode->i_mode))
505 		return false;
506 
507 	switch (SM_I(sbi)->ipu_policy) {
508 	case F2FS_IPU_FORCE:
509 		return true;
510 	case F2FS_IPU_SSR:
511 		if (need_SSR(sbi))
512 			return true;
513 		break;
514 	case F2FS_IPU_UTIL:
515 		if (utilization(sbi) > SM_I(sbi)->min_ipu_util)
516 			return true;
517 		break;
518 	case F2FS_IPU_SSR_UTIL:
519 		if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
520 			return true;
521 		break;
522 	case F2FS_IPU_DISABLE:
523 		break;
524 	}
525 	return false;
526 }
527 
528 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
529 		int type)
530 {
531 	struct curseg_info *curseg = CURSEG_I(sbi, type);
532 	return curseg->segno;
533 }
534 
535 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
536 		int type)
537 {
538 	struct curseg_info *curseg = CURSEG_I(sbi, type);
539 	return curseg->alloc_type;
540 }
541 
542 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
543 {
544 	struct curseg_info *curseg = CURSEG_I(sbi, type);
545 	return curseg->next_blkoff;
546 }
547 
548 #ifdef CONFIG_F2FS_CHECK_FS
549 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
550 {
551 	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
552 	BUG_ON(segno > end_segno);
553 }
554 
555 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
556 {
557 	struct f2fs_sm_info *sm_info = SM_I(sbi);
558 	block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
559 	block_t start_addr = sm_info->seg0_blkaddr;
560 	block_t end_addr = start_addr + total_blks - 1;
561 	BUG_ON(blk_addr < start_addr);
562 	BUG_ON(blk_addr > end_addr);
563 }
564 
565 /*
566  * Summary block is always treated as invalid block
567  */
568 static inline void check_block_count(struct f2fs_sb_info *sbi,
569 		int segno, struct f2fs_sit_entry *raw_sit)
570 {
571 	struct f2fs_sm_info *sm_info = SM_I(sbi);
572 	unsigned int end_segno = sm_info->segment_count - 1;
573 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
574 	int valid_blocks = 0;
575 	int cur_pos = 0, next_pos;
576 
577 	/* check segment usage */
578 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
579 
580 	/* check boundary of a given segment number */
581 	BUG_ON(segno > end_segno);
582 
583 	/* check bitmap with valid block count */
584 	do {
585 		if (is_valid) {
586 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
587 					sbi->blocks_per_seg,
588 					cur_pos);
589 			valid_blocks += next_pos - cur_pos;
590 		} else
591 			next_pos = find_next_bit_le(&raw_sit->valid_map,
592 					sbi->blocks_per_seg,
593 					cur_pos);
594 		cur_pos = next_pos;
595 		is_valid = !is_valid;
596 	} while (cur_pos < sbi->blocks_per_seg);
597 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
598 }
599 #else
600 #define check_seg_range(sbi, segno)
601 #define verify_block_addr(sbi, blk_addr)
602 #define check_block_count(sbi, segno, raw_sit)
603 #endif
604 
605 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
606 						unsigned int start)
607 {
608 	struct sit_info *sit_i = SIT_I(sbi);
609 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
610 	block_t blk_addr = sit_i->sit_base_addr + offset;
611 
612 	check_seg_range(sbi, start);
613 
614 	/* calculate sit block address */
615 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
616 		blk_addr += sit_i->sit_blocks;
617 
618 	return blk_addr;
619 }
620 
621 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
622 						pgoff_t block_addr)
623 {
624 	struct sit_info *sit_i = SIT_I(sbi);
625 	block_addr -= sit_i->sit_base_addr;
626 	if (block_addr < sit_i->sit_blocks)
627 		block_addr += sit_i->sit_blocks;
628 	else
629 		block_addr -= sit_i->sit_blocks;
630 
631 	return block_addr + sit_i->sit_base_addr;
632 }
633 
634 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
635 {
636 	unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
637 
638 	if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
639 		f2fs_clear_bit(block_off, sit_i->sit_bitmap);
640 	else
641 		f2fs_set_bit(block_off, sit_i->sit_bitmap);
642 }
643 
644 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
645 {
646 	struct sit_info *sit_i = SIT_I(sbi);
647 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
648 						sit_i->mounted_time;
649 }
650 
651 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
652 			unsigned int ofs_in_node, unsigned char version)
653 {
654 	sum->nid = cpu_to_le32(nid);
655 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
656 	sum->version = version;
657 }
658 
659 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
660 {
661 	return __start_cp_addr(sbi) +
662 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
663 }
664 
665 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
666 {
667 	return __start_cp_addr(sbi) +
668 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
669 				- (base + 1) + type;
670 }
671 
672 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
673 {
674 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
675 		return true;
676 	return false;
677 }
678 
679 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
680 {
681 	struct block_device *bdev = sbi->sb->s_bdev;
682 	struct request_queue *q = bdev_get_queue(bdev);
683 	return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
684 }
685