1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 13 /* constant macro */ 14 #define NULL_SEGNO ((unsigned int)(~0)) 15 #define NULL_SECNO ((unsigned int)(~0)) 16 17 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 18 19 /* L: Logical segment # in volume, R: Relative segment # in main area */ 20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) 21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) 22 23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) 24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) 25 26 #define IS_CURSEG(sbi, seg) \ 27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 33 34 #define IS_CURSEC(sbi, secno) \ 35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 36 sbi->segs_per_sec) || \ 37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 38 sbi->segs_per_sec) || \ 39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 40 sbi->segs_per_sec) || \ 41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 42 sbi->segs_per_sec) || \ 43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 44 sbi->segs_per_sec) || \ 45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 46 sbi->segs_per_sec)) \ 47 48 #define START_BLOCK(sbi, segno) \ 49 (SM_I(sbi)->seg0_blkaddr + \ 50 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) 51 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 52 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) 53 54 #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) 55 56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ 57 ((blk_addr) - SM_I(sbi)->seg0_blkaddr) 58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 59 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) 60 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 61 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1)) 62 63 #define GET_SEGNO(sbi, blk_addr) \ 64 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ 65 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 66 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 67 #define GET_SECNO(sbi, segno) \ 68 ((segno) / sbi->segs_per_sec) 69 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ 70 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) 71 72 #define GET_SUM_BLOCK(sbi, segno) \ 73 ((sbi->sm_info->ssa_blkaddr) + segno) 74 75 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 76 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) 77 78 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 79 (segno % sit_i->sents_per_block) 80 #define SIT_BLOCK_OFFSET(sit_i, segno) \ 81 (segno / SIT_ENTRY_PER_BLOCK) 82 #define START_SEGNO(sit_i, segno) \ 83 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK) 84 #define SIT_BLK_CNT(sbi) \ 85 ((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 86 #define f2fs_bitmap_size(nr) \ 87 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 88 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) 89 #define TOTAL_SECS(sbi) (sbi->total_sections) 90 91 #define SECTOR_FROM_BLOCK(sbi, blk_addr) \ 92 (((sector_t)blk_addr) << (sbi)->log_sectors_per_block) 93 #define SECTOR_TO_BLOCK(sbi, sectors) \ 94 (sectors >> (sbi)->log_sectors_per_block) 95 #define MAX_BIO_BLOCKS(max_hw_blocks) \ 96 (min((int)max_hw_blocks, BIO_MAX_PAGES)) 97 98 /* 99 * indicate a block allocation direction: RIGHT and LEFT. 100 * RIGHT means allocating new sections towards the end of volume. 101 * LEFT means the opposite direction. 102 */ 103 enum { 104 ALLOC_RIGHT = 0, 105 ALLOC_LEFT 106 }; 107 108 /* 109 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 110 * LFS writes data sequentially with cleaning operations. 111 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 112 */ 113 enum { 114 LFS = 0, 115 SSR 116 }; 117 118 /* 119 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 120 * GC_CB is based on cost-benefit algorithm. 121 * GC_GREEDY is based on greedy algorithm. 122 */ 123 enum { 124 GC_CB = 0, 125 GC_GREEDY 126 }; 127 128 /* 129 * BG_GC means the background cleaning job. 130 * FG_GC means the on-demand cleaning job. 131 */ 132 enum { 133 BG_GC = 0, 134 FG_GC 135 }; 136 137 /* for a function parameter to select a victim segment */ 138 struct victim_sel_policy { 139 int alloc_mode; /* LFS or SSR */ 140 int gc_mode; /* GC_CB or GC_GREEDY */ 141 unsigned long *dirty_segmap; /* dirty segment bitmap */ 142 unsigned int max_search; /* maximum # of segments to search */ 143 unsigned int offset; /* last scanned bitmap offset */ 144 unsigned int ofs_unit; /* bitmap search unit */ 145 unsigned int min_cost; /* minimum cost */ 146 unsigned int min_segno; /* segment # having min. cost */ 147 }; 148 149 struct seg_entry { 150 unsigned short valid_blocks; /* # of valid blocks */ 151 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 152 /* 153 * # of valid blocks and the validity bitmap stored in the the last 154 * checkpoint pack. This information is used by the SSR mode. 155 */ 156 unsigned short ckpt_valid_blocks; 157 unsigned char *ckpt_valid_map; 158 unsigned char type; /* segment type like CURSEG_XXX_TYPE */ 159 unsigned long long mtime; /* modification time of the segment */ 160 }; 161 162 struct sec_entry { 163 unsigned int valid_blocks; /* # of valid blocks in a section */ 164 }; 165 166 struct segment_allocation { 167 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 168 }; 169 170 struct sit_info { 171 const struct segment_allocation *s_ops; 172 173 block_t sit_base_addr; /* start block address of SIT area */ 174 block_t sit_blocks; /* # of blocks used by SIT area */ 175 block_t written_valid_blocks; /* # of valid blocks in main area */ 176 char *sit_bitmap; /* SIT bitmap pointer */ 177 unsigned int bitmap_size; /* SIT bitmap size */ 178 179 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 180 unsigned int dirty_sentries; /* # of dirty sentries */ 181 unsigned int sents_per_block; /* # of SIT entries per block */ 182 struct mutex sentry_lock; /* to protect SIT cache */ 183 struct seg_entry *sentries; /* SIT segment-level cache */ 184 struct sec_entry *sec_entries; /* SIT section-level cache */ 185 186 /* for cost-benefit algorithm in cleaning procedure */ 187 unsigned long long elapsed_time; /* elapsed time after mount */ 188 unsigned long long mounted_time; /* mount time */ 189 unsigned long long min_mtime; /* min. modification time */ 190 unsigned long long max_mtime; /* max. modification time */ 191 }; 192 193 struct free_segmap_info { 194 unsigned int start_segno; /* start segment number logically */ 195 unsigned int free_segments; /* # of free segments */ 196 unsigned int free_sections; /* # of free sections */ 197 rwlock_t segmap_lock; /* free segmap lock */ 198 unsigned long *free_segmap; /* free segment bitmap */ 199 unsigned long *free_secmap; /* free section bitmap */ 200 }; 201 202 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 203 enum dirty_type { 204 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 205 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 206 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 207 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 208 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 209 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 210 DIRTY, /* to count # of dirty segments */ 211 PRE, /* to count # of entirely obsolete segments */ 212 NR_DIRTY_TYPE 213 }; 214 215 struct dirty_seglist_info { 216 const struct victim_selection *v_ops; /* victim selction operation */ 217 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 218 struct mutex seglist_lock; /* lock for segment bitmaps */ 219 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 220 unsigned long *victim_secmap; /* background GC victims */ 221 }; 222 223 /* victim selection function for cleaning and SSR */ 224 struct victim_selection { 225 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 226 int, int, char); 227 }; 228 229 /* for active log information */ 230 struct curseg_info { 231 struct mutex curseg_mutex; /* lock for consistency */ 232 struct f2fs_summary_block *sum_blk; /* cached summary block */ 233 unsigned char alloc_type; /* current allocation type */ 234 unsigned int segno; /* current segment number */ 235 unsigned short next_blkoff; /* next block offset to write */ 236 unsigned int zone; /* current zone number */ 237 unsigned int next_segno; /* preallocated segment */ 238 }; 239 240 /* 241 * inline functions 242 */ 243 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 244 { 245 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 246 } 247 248 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 249 unsigned int segno) 250 { 251 struct sit_info *sit_i = SIT_I(sbi); 252 return &sit_i->sentries[segno]; 253 } 254 255 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 256 unsigned int segno) 257 { 258 struct sit_info *sit_i = SIT_I(sbi); 259 return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; 260 } 261 262 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 263 unsigned int segno, int section) 264 { 265 /* 266 * In order to get # of valid blocks in a section instantly from many 267 * segments, f2fs manages two counting structures separately. 268 */ 269 if (section > 1) 270 return get_sec_entry(sbi, segno)->valid_blocks; 271 else 272 return get_seg_entry(sbi, segno)->valid_blocks; 273 } 274 275 static inline void seg_info_from_raw_sit(struct seg_entry *se, 276 struct f2fs_sit_entry *rs) 277 { 278 se->valid_blocks = GET_SIT_VBLOCKS(rs); 279 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 280 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 281 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 282 se->type = GET_SIT_TYPE(rs); 283 se->mtime = le64_to_cpu(rs->mtime); 284 } 285 286 static inline void seg_info_to_raw_sit(struct seg_entry *se, 287 struct f2fs_sit_entry *rs) 288 { 289 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 290 se->valid_blocks; 291 rs->vblocks = cpu_to_le16(raw_vblocks); 292 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 293 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 294 se->ckpt_valid_blocks = se->valid_blocks; 295 rs->mtime = cpu_to_le64(se->mtime); 296 } 297 298 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 299 unsigned int max, unsigned int segno) 300 { 301 unsigned int ret; 302 read_lock(&free_i->segmap_lock); 303 ret = find_next_bit(free_i->free_segmap, max, segno); 304 read_unlock(&free_i->segmap_lock); 305 return ret; 306 } 307 308 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 309 { 310 struct free_segmap_info *free_i = FREE_I(sbi); 311 unsigned int secno = segno / sbi->segs_per_sec; 312 unsigned int start_segno = secno * sbi->segs_per_sec; 313 unsigned int next; 314 315 write_lock(&free_i->segmap_lock); 316 clear_bit(segno, free_i->free_segmap); 317 free_i->free_segments++; 318 319 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); 320 if (next >= start_segno + sbi->segs_per_sec) { 321 clear_bit(secno, free_i->free_secmap); 322 free_i->free_sections++; 323 } 324 write_unlock(&free_i->segmap_lock); 325 } 326 327 static inline void __set_inuse(struct f2fs_sb_info *sbi, 328 unsigned int segno) 329 { 330 struct free_segmap_info *free_i = FREE_I(sbi); 331 unsigned int secno = segno / sbi->segs_per_sec; 332 set_bit(segno, free_i->free_segmap); 333 free_i->free_segments--; 334 if (!test_and_set_bit(secno, free_i->free_secmap)) 335 free_i->free_sections--; 336 } 337 338 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 339 unsigned int segno) 340 { 341 struct free_segmap_info *free_i = FREE_I(sbi); 342 unsigned int secno = segno / sbi->segs_per_sec; 343 unsigned int start_segno = secno * sbi->segs_per_sec; 344 unsigned int next; 345 346 write_lock(&free_i->segmap_lock); 347 if (test_and_clear_bit(segno, free_i->free_segmap)) { 348 free_i->free_segments++; 349 350 next = find_next_bit(free_i->free_segmap, 351 start_segno + sbi->segs_per_sec, start_segno); 352 if (next >= start_segno + sbi->segs_per_sec) { 353 if (test_and_clear_bit(secno, free_i->free_secmap)) 354 free_i->free_sections++; 355 } 356 } 357 write_unlock(&free_i->segmap_lock); 358 } 359 360 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 361 unsigned int segno) 362 { 363 struct free_segmap_info *free_i = FREE_I(sbi); 364 unsigned int secno = segno / sbi->segs_per_sec; 365 write_lock(&free_i->segmap_lock); 366 if (!test_and_set_bit(segno, free_i->free_segmap)) { 367 free_i->free_segments--; 368 if (!test_and_set_bit(secno, free_i->free_secmap)) 369 free_i->free_sections--; 370 } 371 write_unlock(&free_i->segmap_lock); 372 } 373 374 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 375 void *dst_addr) 376 { 377 struct sit_info *sit_i = SIT_I(sbi); 378 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 379 } 380 381 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 382 { 383 return SIT_I(sbi)->written_valid_blocks; 384 } 385 386 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 387 { 388 return FREE_I(sbi)->free_segments; 389 } 390 391 static inline int reserved_segments(struct f2fs_sb_info *sbi) 392 { 393 return SM_I(sbi)->reserved_segments; 394 } 395 396 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 397 { 398 return FREE_I(sbi)->free_sections; 399 } 400 401 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 402 { 403 return DIRTY_I(sbi)->nr_dirty[PRE]; 404 } 405 406 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 407 { 408 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 409 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 410 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 411 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 412 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 413 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 414 } 415 416 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 417 { 418 return SM_I(sbi)->ovp_segments; 419 } 420 421 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 422 { 423 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; 424 } 425 426 static inline int reserved_sections(struct f2fs_sb_info *sbi) 427 { 428 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; 429 } 430 431 static inline bool need_SSR(struct f2fs_sb_info *sbi) 432 { 433 return (prefree_segments(sbi) / sbi->segs_per_sec) 434 + free_sections(sbi) < overprovision_sections(sbi); 435 } 436 437 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) 438 { 439 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 440 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 441 442 if (unlikely(sbi->por_doing)) 443 return false; 444 445 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + 446 reserved_sections(sbi)); 447 } 448 449 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 450 { 451 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 452 } 453 454 static inline int utilization(struct f2fs_sb_info *sbi) 455 { 456 return div_u64((u64)valid_user_blocks(sbi) * 100, 457 sbi->user_block_count); 458 } 459 460 /* 461 * Sometimes f2fs may be better to drop out-of-place update policy. 462 * And, users can control the policy through sysfs entries. 463 * There are five policies with triggering conditions as follows. 464 * F2FS_IPU_FORCE - all the time, 465 * F2FS_IPU_SSR - if SSR mode is activated, 466 * F2FS_IPU_UTIL - if FS utilization is over threashold, 467 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 468 * threashold, 469 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 470 */ 471 #define DEF_MIN_IPU_UTIL 70 472 473 enum { 474 F2FS_IPU_FORCE, 475 F2FS_IPU_SSR, 476 F2FS_IPU_UTIL, 477 F2FS_IPU_SSR_UTIL, 478 F2FS_IPU_DISABLE, 479 }; 480 481 static inline bool need_inplace_update(struct inode *inode) 482 { 483 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 484 485 /* IPU can be done only for the user data */ 486 if (S_ISDIR(inode->i_mode)) 487 return false; 488 489 /* this is only set during fdatasync */ 490 if (is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU)) 491 return true; 492 493 switch (SM_I(sbi)->ipu_policy) { 494 case F2FS_IPU_FORCE: 495 return true; 496 case F2FS_IPU_SSR: 497 if (need_SSR(sbi)) 498 return true; 499 break; 500 case F2FS_IPU_UTIL: 501 if (utilization(sbi) > SM_I(sbi)->min_ipu_util) 502 return true; 503 break; 504 case F2FS_IPU_SSR_UTIL: 505 if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util) 506 return true; 507 break; 508 case F2FS_IPU_DISABLE: 509 break; 510 } 511 return false; 512 } 513 514 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 515 int type) 516 { 517 struct curseg_info *curseg = CURSEG_I(sbi, type); 518 return curseg->segno; 519 } 520 521 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 522 int type) 523 { 524 struct curseg_info *curseg = CURSEG_I(sbi, type); 525 return curseg->alloc_type; 526 } 527 528 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 529 { 530 struct curseg_info *curseg = CURSEG_I(sbi, type); 531 return curseg->next_blkoff; 532 } 533 534 #ifdef CONFIG_F2FS_CHECK_FS 535 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 536 { 537 unsigned int end_segno = SM_I(sbi)->segment_count - 1; 538 BUG_ON(segno > end_segno); 539 } 540 541 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 542 { 543 struct f2fs_sm_info *sm_info = SM_I(sbi); 544 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; 545 block_t start_addr = sm_info->seg0_blkaddr; 546 block_t end_addr = start_addr + total_blks - 1; 547 BUG_ON(blk_addr < start_addr); 548 BUG_ON(blk_addr > end_addr); 549 } 550 551 /* 552 * Summary block is always treated as invalid block 553 */ 554 static inline void check_block_count(struct f2fs_sb_info *sbi, 555 int segno, struct f2fs_sit_entry *raw_sit) 556 { 557 struct f2fs_sm_info *sm_info = SM_I(sbi); 558 unsigned int end_segno = sm_info->segment_count - 1; 559 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 560 int valid_blocks = 0; 561 int cur_pos = 0, next_pos; 562 563 /* check segment usage */ 564 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); 565 566 /* check boundary of a given segment number */ 567 BUG_ON(segno > end_segno); 568 569 /* check bitmap with valid block count */ 570 do { 571 if (is_valid) { 572 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 573 sbi->blocks_per_seg, 574 cur_pos); 575 valid_blocks += next_pos - cur_pos; 576 } else 577 next_pos = find_next_bit_le(&raw_sit->valid_map, 578 sbi->blocks_per_seg, 579 cur_pos); 580 cur_pos = next_pos; 581 is_valid = !is_valid; 582 } while (cur_pos < sbi->blocks_per_seg); 583 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 584 } 585 #else 586 #define check_seg_range(sbi, segno) 587 #define verify_block_addr(sbi, blk_addr) 588 #define check_block_count(sbi, segno, raw_sit) 589 #endif 590 591 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 592 unsigned int start) 593 { 594 struct sit_info *sit_i = SIT_I(sbi); 595 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start); 596 block_t blk_addr = sit_i->sit_base_addr + offset; 597 598 check_seg_range(sbi, start); 599 600 /* calculate sit block address */ 601 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 602 blk_addr += sit_i->sit_blocks; 603 604 return blk_addr; 605 } 606 607 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 608 pgoff_t block_addr) 609 { 610 struct sit_info *sit_i = SIT_I(sbi); 611 block_addr -= sit_i->sit_base_addr; 612 if (block_addr < sit_i->sit_blocks) 613 block_addr += sit_i->sit_blocks; 614 else 615 block_addr -= sit_i->sit_blocks; 616 617 return block_addr + sit_i->sit_base_addr; 618 } 619 620 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 621 { 622 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start); 623 624 if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) 625 f2fs_clear_bit(block_off, sit_i->sit_bitmap); 626 else 627 f2fs_set_bit(block_off, sit_i->sit_bitmap); 628 } 629 630 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 631 { 632 struct sit_info *sit_i = SIT_I(sbi); 633 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - 634 sit_i->mounted_time; 635 } 636 637 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 638 unsigned int ofs_in_node, unsigned char version) 639 { 640 sum->nid = cpu_to_le32(nid); 641 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 642 sum->version = version; 643 } 644 645 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 646 { 647 return __start_cp_addr(sbi) + 648 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 649 } 650 651 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 652 { 653 return __start_cp_addr(sbi) + 654 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 655 - (base + 1) + type; 656 } 657 658 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 659 { 660 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 661 return true; 662 return false; 663 } 664 665 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) 666 { 667 struct block_device *bdev = sbi->sb->s_bdev; 668 struct request_queue *q = bdev_get_queue(bdev); 669 return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q)); 670 } 671 672 /* 673 * It is very important to gather dirty pages and write at once, so that we can 674 * submit a big bio without interfering other data writes. 675 * By default, 512 pages for directory data, 676 * 512 pages (2MB) * 3 for three types of nodes, and 677 * max_bio_blocks for meta are set. 678 */ 679 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 680 { 681 if (type == DATA) 682 return sbi->blocks_per_seg; 683 else if (type == NODE) 684 return 3 * sbi->blocks_per_seg; 685 else if (type == META) 686 return MAX_BIO_BLOCKS(max_hw_blocks(sbi)); 687 else 688 return 0; 689 } 690 691 /* 692 * When writing pages, it'd better align nr_to_write for segment size. 693 */ 694 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 695 struct writeback_control *wbc) 696 { 697 long nr_to_write, desired; 698 699 if (wbc->sync_mode != WB_SYNC_NONE) 700 return 0; 701 702 nr_to_write = wbc->nr_to_write; 703 704 if (type == DATA) 705 desired = 4096; 706 else if (type == NODE) 707 desired = 3 * max_hw_blocks(sbi); 708 else 709 desired = MAX_BIO_BLOCKS(max_hw_blocks(sbi)); 710 711 wbc->nr_to_write = desired; 712 return desired - nr_to_write; 713 } 714