1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 13 /* constant macro */ 14 #define NULL_SEGNO ((unsigned int)(~0)) 15 #define NULL_SECNO ((unsigned int)(~0)) 16 17 /* L: Logical segment # in volume, R: Relative segment # in main area */ 18 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) 19 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) 20 21 #define IS_DATASEG(t) \ 22 ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \ 23 (t == CURSEG_WARM_DATA)) 24 25 #define IS_NODESEG(t) \ 26 ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \ 27 (t == CURSEG_WARM_NODE)) 28 29 #define IS_CURSEG(sbi, seg) \ 30 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 31 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 32 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 33 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 34 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 35 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 36 37 #define IS_CURSEC(sbi, secno) \ 38 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 39 sbi->segs_per_sec) || \ 40 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 41 sbi->segs_per_sec) || \ 42 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 43 sbi->segs_per_sec) || \ 44 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 45 sbi->segs_per_sec) || \ 46 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 47 sbi->segs_per_sec) || \ 48 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 49 sbi->segs_per_sec)) \ 50 51 #define START_BLOCK(sbi, segno) \ 52 (SM_I(sbi)->seg0_blkaddr + \ 53 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) 54 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 55 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) 56 57 #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) 58 59 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ 60 ((blk_addr) - SM_I(sbi)->seg0_blkaddr) 61 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 62 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) 63 #define GET_SEGNO(sbi, blk_addr) \ 64 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ 65 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 66 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 67 #define GET_SECNO(sbi, segno) \ 68 ((segno) / sbi->segs_per_sec) 69 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ 70 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) 71 72 #define GET_SUM_BLOCK(sbi, segno) \ 73 ((sbi->sm_info->ssa_blkaddr) + segno) 74 75 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 76 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) 77 78 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 79 (segno % sit_i->sents_per_block) 80 #define SIT_BLOCK_OFFSET(sit_i, segno) \ 81 (segno / SIT_ENTRY_PER_BLOCK) 82 #define START_SEGNO(sit_i, segno) \ 83 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK) 84 #define f2fs_bitmap_size(nr) \ 85 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 86 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) 87 #define TOTAL_SECS(sbi) (sbi->total_sections) 88 89 #define SECTOR_FROM_BLOCK(sbi, blk_addr) \ 90 (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE)) 91 #define SECTOR_TO_BLOCK(sbi, sectors) \ 92 (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE)) 93 94 /* during checkpoint, bio_private is used to synchronize the last bio */ 95 struct bio_private { 96 struct f2fs_sb_info *sbi; 97 bool is_sync; 98 void *wait; 99 }; 100 101 /* 102 * indicate a block allocation direction: RIGHT and LEFT. 103 * RIGHT means allocating new sections towards the end of volume. 104 * LEFT means the opposite direction. 105 */ 106 enum { 107 ALLOC_RIGHT = 0, 108 ALLOC_LEFT 109 }; 110 111 /* 112 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 113 * LFS writes data sequentially with cleaning operations. 114 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 115 */ 116 enum { 117 LFS = 0, 118 SSR 119 }; 120 121 /* 122 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 123 * GC_CB is based on cost-benefit algorithm. 124 * GC_GREEDY is based on greedy algorithm. 125 */ 126 enum { 127 GC_CB = 0, 128 GC_GREEDY 129 }; 130 131 /* 132 * BG_GC means the background cleaning job. 133 * FG_GC means the on-demand cleaning job. 134 */ 135 enum { 136 BG_GC = 0, 137 FG_GC 138 }; 139 140 /* for a function parameter to select a victim segment */ 141 struct victim_sel_policy { 142 int alloc_mode; /* LFS or SSR */ 143 int gc_mode; /* GC_CB or GC_GREEDY */ 144 unsigned long *dirty_segmap; /* dirty segment bitmap */ 145 unsigned int max_search; /* maximum # of segments to search */ 146 unsigned int offset; /* last scanned bitmap offset */ 147 unsigned int ofs_unit; /* bitmap search unit */ 148 unsigned int min_cost; /* minimum cost */ 149 unsigned int min_segno; /* segment # having min. cost */ 150 }; 151 152 struct seg_entry { 153 unsigned short valid_blocks; /* # of valid blocks */ 154 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 155 /* 156 * # of valid blocks and the validity bitmap stored in the the last 157 * checkpoint pack. This information is used by the SSR mode. 158 */ 159 unsigned short ckpt_valid_blocks; 160 unsigned char *ckpt_valid_map; 161 unsigned char type; /* segment type like CURSEG_XXX_TYPE */ 162 unsigned long long mtime; /* modification time of the segment */ 163 }; 164 165 struct sec_entry { 166 unsigned int valid_blocks; /* # of valid blocks in a section */ 167 }; 168 169 struct segment_allocation { 170 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 171 }; 172 173 struct sit_info { 174 const struct segment_allocation *s_ops; 175 176 block_t sit_base_addr; /* start block address of SIT area */ 177 block_t sit_blocks; /* # of blocks used by SIT area */ 178 block_t written_valid_blocks; /* # of valid blocks in main area */ 179 char *sit_bitmap; /* SIT bitmap pointer */ 180 unsigned int bitmap_size; /* SIT bitmap size */ 181 182 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 183 unsigned int dirty_sentries; /* # of dirty sentries */ 184 unsigned int sents_per_block; /* # of SIT entries per block */ 185 struct mutex sentry_lock; /* to protect SIT cache */ 186 struct seg_entry *sentries; /* SIT segment-level cache */ 187 struct sec_entry *sec_entries; /* SIT section-level cache */ 188 189 /* for cost-benefit algorithm in cleaning procedure */ 190 unsigned long long elapsed_time; /* elapsed time after mount */ 191 unsigned long long mounted_time; /* mount time */ 192 unsigned long long min_mtime; /* min. modification time */ 193 unsigned long long max_mtime; /* max. modification time */ 194 }; 195 196 struct free_segmap_info { 197 unsigned int start_segno; /* start segment number logically */ 198 unsigned int free_segments; /* # of free segments */ 199 unsigned int free_sections; /* # of free sections */ 200 rwlock_t segmap_lock; /* free segmap lock */ 201 unsigned long *free_segmap; /* free segment bitmap */ 202 unsigned long *free_secmap; /* free section bitmap */ 203 }; 204 205 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 206 enum dirty_type { 207 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 208 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 209 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 210 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 211 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 212 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 213 DIRTY, /* to count # of dirty segments */ 214 PRE, /* to count # of entirely obsolete segments */ 215 NR_DIRTY_TYPE 216 }; 217 218 struct dirty_seglist_info { 219 const struct victim_selection *v_ops; /* victim selction operation */ 220 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 221 struct mutex seglist_lock; /* lock for segment bitmaps */ 222 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 223 unsigned long *victim_secmap; /* background GC victims */ 224 }; 225 226 /* victim selection function for cleaning and SSR */ 227 struct victim_selection { 228 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 229 int, int, char); 230 }; 231 232 /* for active log information */ 233 struct curseg_info { 234 struct mutex curseg_mutex; /* lock for consistency */ 235 struct f2fs_summary_block *sum_blk; /* cached summary block */ 236 unsigned char alloc_type; /* current allocation type */ 237 unsigned int segno; /* current segment number */ 238 unsigned short next_blkoff; /* next block offset to write */ 239 unsigned int zone; /* current zone number */ 240 unsigned int next_segno; /* preallocated segment */ 241 }; 242 243 /* 244 * inline functions 245 */ 246 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 247 { 248 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 249 } 250 251 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 252 unsigned int segno) 253 { 254 struct sit_info *sit_i = SIT_I(sbi); 255 return &sit_i->sentries[segno]; 256 } 257 258 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 259 unsigned int segno) 260 { 261 struct sit_info *sit_i = SIT_I(sbi); 262 return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; 263 } 264 265 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 266 unsigned int segno, int section) 267 { 268 /* 269 * In order to get # of valid blocks in a section instantly from many 270 * segments, f2fs manages two counting structures separately. 271 */ 272 if (section > 1) 273 return get_sec_entry(sbi, segno)->valid_blocks; 274 else 275 return get_seg_entry(sbi, segno)->valid_blocks; 276 } 277 278 static inline void seg_info_from_raw_sit(struct seg_entry *se, 279 struct f2fs_sit_entry *rs) 280 { 281 se->valid_blocks = GET_SIT_VBLOCKS(rs); 282 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 283 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 284 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 285 se->type = GET_SIT_TYPE(rs); 286 se->mtime = le64_to_cpu(rs->mtime); 287 } 288 289 static inline void seg_info_to_raw_sit(struct seg_entry *se, 290 struct f2fs_sit_entry *rs) 291 { 292 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 293 se->valid_blocks; 294 rs->vblocks = cpu_to_le16(raw_vblocks); 295 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 296 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 297 se->ckpt_valid_blocks = se->valid_blocks; 298 rs->mtime = cpu_to_le64(se->mtime); 299 } 300 301 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 302 unsigned int max, unsigned int segno) 303 { 304 unsigned int ret; 305 read_lock(&free_i->segmap_lock); 306 ret = find_next_bit(free_i->free_segmap, max, segno); 307 read_unlock(&free_i->segmap_lock); 308 return ret; 309 } 310 311 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 312 { 313 struct free_segmap_info *free_i = FREE_I(sbi); 314 unsigned int secno = segno / sbi->segs_per_sec; 315 unsigned int start_segno = secno * sbi->segs_per_sec; 316 unsigned int next; 317 318 write_lock(&free_i->segmap_lock); 319 clear_bit(segno, free_i->free_segmap); 320 free_i->free_segments++; 321 322 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); 323 if (next >= start_segno + sbi->segs_per_sec) { 324 clear_bit(secno, free_i->free_secmap); 325 free_i->free_sections++; 326 } 327 write_unlock(&free_i->segmap_lock); 328 } 329 330 static inline void __set_inuse(struct f2fs_sb_info *sbi, 331 unsigned int segno) 332 { 333 struct free_segmap_info *free_i = FREE_I(sbi); 334 unsigned int secno = segno / sbi->segs_per_sec; 335 set_bit(segno, free_i->free_segmap); 336 free_i->free_segments--; 337 if (!test_and_set_bit(secno, free_i->free_secmap)) 338 free_i->free_sections--; 339 } 340 341 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 342 unsigned int segno) 343 { 344 struct free_segmap_info *free_i = FREE_I(sbi); 345 unsigned int secno = segno / sbi->segs_per_sec; 346 unsigned int start_segno = secno * sbi->segs_per_sec; 347 unsigned int next; 348 349 write_lock(&free_i->segmap_lock); 350 if (test_and_clear_bit(segno, free_i->free_segmap)) { 351 free_i->free_segments++; 352 353 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), 354 start_segno); 355 if (next >= start_segno + sbi->segs_per_sec) { 356 if (test_and_clear_bit(secno, free_i->free_secmap)) 357 free_i->free_sections++; 358 } 359 } 360 write_unlock(&free_i->segmap_lock); 361 } 362 363 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 364 unsigned int segno) 365 { 366 struct free_segmap_info *free_i = FREE_I(sbi); 367 unsigned int secno = segno / sbi->segs_per_sec; 368 write_lock(&free_i->segmap_lock); 369 if (!test_and_set_bit(segno, free_i->free_segmap)) { 370 free_i->free_segments--; 371 if (!test_and_set_bit(secno, free_i->free_secmap)) 372 free_i->free_sections--; 373 } 374 write_unlock(&free_i->segmap_lock); 375 } 376 377 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 378 void *dst_addr) 379 { 380 struct sit_info *sit_i = SIT_I(sbi); 381 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 382 } 383 384 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 385 { 386 struct sit_info *sit_i = SIT_I(sbi); 387 block_t vblocks; 388 389 mutex_lock(&sit_i->sentry_lock); 390 vblocks = sit_i->written_valid_blocks; 391 mutex_unlock(&sit_i->sentry_lock); 392 393 return vblocks; 394 } 395 396 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 397 { 398 struct free_segmap_info *free_i = FREE_I(sbi); 399 unsigned int free_segs; 400 401 read_lock(&free_i->segmap_lock); 402 free_segs = free_i->free_segments; 403 read_unlock(&free_i->segmap_lock); 404 405 return free_segs; 406 } 407 408 static inline int reserved_segments(struct f2fs_sb_info *sbi) 409 { 410 return SM_I(sbi)->reserved_segments; 411 } 412 413 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 414 { 415 struct free_segmap_info *free_i = FREE_I(sbi); 416 unsigned int free_secs; 417 418 read_lock(&free_i->segmap_lock); 419 free_secs = free_i->free_sections; 420 read_unlock(&free_i->segmap_lock); 421 422 return free_secs; 423 } 424 425 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 426 { 427 return DIRTY_I(sbi)->nr_dirty[PRE]; 428 } 429 430 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 431 { 432 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 433 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 434 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 435 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 436 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 437 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 438 } 439 440 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 441 { 442 return SM_I(sbi)->ovp_segments; 443 } 444 445 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 446 { 447 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; 448 } 449 450 static inline int reserved_sections(struct f2fs_sb_info *sbi) 451 { 452 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; 453 } 454 455 static inline bool need_SSR(struct f2fs_sb_info *sbi) 456 { 457 return ((prefree_segments(sbi) / sbi->segs_per_sec) 458 + free_sections(sbi) < overprovision_sections(sbi)); 459 } 460 461 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) 462 { 463 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 464 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 465 466 if (sbi->por_doing) 467 return false; 468 469 return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + 470 reserved_sections(sbi))); 471 } 472 473 static inline int utilization(struct f2fs_sb_info *sbi) 474 { 475 return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count); 476 } 477 478 /* 479 * Sometimes f2fs may be better to drop out-of-place update policy. 480 * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write 481 * data in the original place likewise other traditional file systems. 482 * But, currently set 100 in percentage, which means it is disabled. 483 * See below need_inplace_update(). 484 */ 485 #define MIN_IPU_UTIL 100 486 static inline bool need_inplace_update(struct inode *inode) 487 { 488 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 489 if (S_ISDIR(inode->i_mode)) 490 return false; 491 if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL) 492 return true; 493 return false; 494 } 495 496 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 497 int type) 498 { 499 struct curseg_info *curseg = CURSEG_I(sbi, type); 500 return curseg->segno; 501 } 502 503 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 504 int type) 505 { 506 struct curseg_info *curseg = CURSEG_I(sbi, type); 507 return curseg->alloc_type; 508 } 509 510 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 511 { 512 struct curseg_info *curseg = CURSEG_I(sbi, type); 513 return curseg->next_blkoff; 514 } 515 516 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 517 { 518 unsigned int end_segno = SM_I(sbi)->segment_count - 1; 519 BUG_ON(segno > end_segno); 520 } 521 522 /* 523 * This function is used for only debugging. 524 * NOTE: In future, we have to remove this function. 525 */ 526 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 527 { 528 struct f2fs_sm_info *sm_info = SM_I(sbi); 529 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; 530 block_t start_addr = sm_info->seg0_blkaddr; 531 block_t end_addr = start_addr + total_blks - 1; 532 BUG_ON(blk_addr < start_addr); 533 BUG_ON(blk_addr > end_addr); 534 } 535 536 /* 537 * Summary block is always treated as invalid block 538 */ 539 static inline void check_block_count(struct f2fs_sb_info *sbi, 540 int segno, struct f2fs_sit_entry *raw_sit) 541 { 542 struct f2fs_sm_info *sm_info = SM_I(sbi); 543 unsigned int end_segno = sm_info->segment_count - 1; 544 int valid_blocks = 0; 545 int i; 546 547 /* check segment usage */ 548 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); 549 550 /* check boundary of a given segment number */ 551 BUG_ON(segno > end_segno); 552 553 /* check bitmap with valid block count */ 554 for (i = 0; i < sbi->blocks_per_seg; i++) 555 if (f2fs_test_bit(i, raw_sit->valid_map)) 556 valid_blocks++; 557 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 558 } 559 560 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 561 unsigned int start) 562 { 563 struct sit_info *sit_i = SIT_I(sbi); 564 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start); 565 block_t blk_addr = sit_i->sit_base_addr + offset; 566 567 check_seg_range(sbi, start); 568 569 /* calculate sit block address */ 570 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 571 blk_addr += sit_i->sit_blocks; 572 573 return blk_addr; 574 } 575 576 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 577 pgoff_t block_addr) 578 { 579 struct sit_info *sit_i = SIT_I(sbi); 580 block_addr -= sit_i->sit_base_addr; 581 if (block_addr < sit_i->sit_blocks) 582 block_addr += sit_i->sit_blocks; 583 else 584 block_addr -= sit_i->sit_blocks; 585 586 return block_addr + sit_i->sit_base_addr; 587 } 588 589 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 590 { 591 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start); 592 593 if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) 594 f2fs_clear_bit(block_off, sit_i->sit_bitmap); 595 else 596 f2fs_set_bit(block_off, sit_i->sit_bitmap); 597 } 598 599 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 600 { 601 struct sit_info *sit_i = SIT_I(sbi); 602 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - 603 sit_i->mounted_time; 604 } 605 606 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 607 unsigned int ofs_in_node, unsigned char version) 608 { 609 sum->nid = cpu_to_le32(nid); 610 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 611 sum->version = version; 612 } 613 614 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 615 { 616 return __start_cp_addr(sbi) + 617 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 618 } 619 620 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 621 { 622 return __start_cp_addr(sbi) + 623 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 624 - (base + 1) + type; 625 } 626 627 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 628 { 629 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 630 return true; 631 return false; 632 } 633 634 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) 635 { 636 struct block_device *bdev = sbi->sb->s_bdev; 637 struct request_queue *q = bdev_get_queue(bdev); 638 return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q)); 639 } 640