xref: /openbmc/linux/fs/f2fs/segment.h (revision 089a49b6)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 
13 /* constant macro */
14 #define NULL_SEGNO			((unsigned int)(~0))
15 #define NULL_SECNO			((unsigned int)(~0))
16 
17 /* L: Logical segment # in volume, R: Relative segment # in main area */
18 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
19 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
20 
21 #define IS_DATASEG(t)							\
22 	((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) ||		\
23 	(t == CURSEG_WARM_DATA))
24 
25 #define IS_NODESEG(t)							\
26 	((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) ||		\
27 	(t == CURSEG_WARM_NODE))
28 
29 #define IS_CURSEG(sbi, seg)						\
30 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
31 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
32 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
33 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
34 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
35 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
36 
37 #define IS_CURSEC(sbi, secno)						\
38 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
39 	  sbi->segs_per_sec) ||	\
40 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
41 	  sbi->segs_per_sec) ||	\
42 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
43 	  sbi->segs_per_sec) ||	\
44 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
45 	  sbi->segs_per_sec) ||	\
46 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
47 	  sbi->segs_per_sec) ||	\
48 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
49 	  sbi->segs_per_sec))	\
50 
51 #define START_BLOCK(sbi, segno)						\
52 	(SM_I(sbi)->seg0_blkaddr +					\
53 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
54 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
55 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
56 
57 #define MAIN_BASE_BLOCK(sbi)	(SM_I(sbi)->main_blkaddr)
58 
59 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)				\
60 	((blk_addr) - SM_I(sbi)->seg0_blkaddr)
61 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
62 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
63 #define GET_SEGNO(sbi, blk_addr)					\
64 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
65 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
66 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
67 #define GET_SECNO(sbi, segno)					\
68 	((segno) / sbi->segs_per_sec)
69 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
70 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
71 
72 #define GET_SUM_BLOCK(sbi, segno)				\
73 	((sbi->sm_info->ssa_blkaddr) + segno)
74 
75 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
76 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
77 
78 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
79 	(segno % sit_i->sents_per_block)
80 #define SIT_BLOCK_OFFSET(sit_i, segno)					\
81 	(segno / SIT_ENTRY_PER_BLOCK)
82 #define	START_SEGNO(sit_i, segno)		\
83 	(SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
84 #define f2fs_bitmap_size(nr)			\
85 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
86 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->main_segments)
87 #define TOTAL_SECS(sbi)	(sbi->total_sections)
88 
89 #define SECTOR_FROM_BLOCK(sbi, blk_addr)				\
90 	(blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
91 #define SECTOR_TO_BLOCK(sbi, sectors)					\
92 	(sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
93 
94 /* during checkpoint, bio_private is used to synchronize the last bio */
95 struct bio_private {
96 	struct f2fs_sb_info *sbi;
97 	bool is_sync;
98 	void *wait;
99 };
100 
101 /*
102  * indicate a block allocation direction: RIGHT and LEFT.
103  * RIGHT means allocating new sections towards the end of volume.
104  * LEFT means the opposite direction.
105  */
106 enum {
107 	ALLOC_RIGHT = 0,
108 	ALLOC_LEFT
109 };
110 
111 /*
112  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
113  * LFS writes data sequentially with cleaning operations.
114  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
115  */
116 enum {
117 	LFS = 0,
118 	SSR
119 };
120 
121 /*
122  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
123  * GC_CB is based on cost-benefit algorithm.
124  * GC_GREEDY is based on greedy algorithm.
125  */
126 enum {
127 	GC_CB = 0,
128 	GC_GREEDY
129 };
130 
131 /*
132  * BG_GC means the background cleaning job.
133  * FG_GC means the on-demand cleaning job.
134  */
135 enum {
136 	BG_GC = 0,
137 	FG_GC
138 };
139 
140 /* for a function parameter to select a victim segment */
141 struct victim_sel_policy {
142 	int alloc_mode;			/* LFS or SSR */
143 	int gc_mode;			/* GC_CB or GC_GREEDY */
144 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
145 	unsigned int max_search;	/* maximum # of segments to search */
146 	unsigned int offset;		/* last scanned bitmap offset */
147 	unsigned int ofs_unit;		/* bitmap search unit */
148 	unsigned int min_cost;		/* minimum cost */
149 	unsigned int min_segno;		/* segment # having min. cost */
150 };
151 
152 struct seg_entry {
153 	unsigned short valid_blocks;	/* # of valid blocks */
154 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
155 	/*
156 	 * # of valid blocks and the validity bitmap stored in the the last
157 	 * checkpoint pack. This information is used by the SSR mode.
158 	 */
159 	unsigned short ckpt_valid_blocks;
160 	unsigned char *ckpt_valid_map;
161 	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
162 	unsigned long long mtime;	/* modification time of the segment */
163 };
164 
165 struct sec_entry {
166 	unsigned int valid_blocks;	/* # of valid blocks in a section */
167 };
168 
169 struct segment_allocation {
170 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
171 };
172 
173 struct sit_info {
174 	const struct segment_allocation *s_ops;
175 
176 	block_t sit_base_addr;		/* start block address of SIT area */
177 	block_t sit_blocks;		/* # of blocks used by SIT area */
178 	block_t written_valid_blocks;	/* # of valid blocks in main area */
179 	char *sit_bitmap;		/* SIT bitmap pointer */
180 	unsigned int bitmap_size;	/* SIT bitmap size */
181 
182 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
183 	unsigned int dirty_sentries;		/* # of dirty sentries */
184 	unsigned int sents_per_block;		/* # of SIT entries per block */
185 	struct mutex sentry_lock;		/* to protect SIT cache */
186 	struct seg_entry *sentries;		/* SIT segment-level cache */
187 	struct sec_entry *sec_entries;		/* SIT section-level cache */
188 
189 	/* for cost-benefit algorithm in cleaning procedure */
190 	unsigned long long elapsed_time;	/* elapsed time after mount */
191 	unsigned long long mounted_time;	/* mount time */
192 	unsigned long long min_mtime;		/* min. modification time */
193 	unsigned long long max_mtime;		/* max. modification time */
194 };
195 
196 struct free_segmap_info {
197 	unsigned int start_segno;	/* start segment number logically */
198 	unsigned int free_segments;	/* # of free segments */
199 	unsigned int free_sections;	/* # of free sections */
200 	rwlock_t segmap_lock;		/* free segmap lock */
201 	unsigned long *free_segmap;	/* free segment bitmap */
202 	unsigned long *free_secmap;	/* free section bitmap */
203 };
204 
205 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
206 enum dirty_type {
207 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
208 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
209 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
210 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
211 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
212 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
213 	DIRTY,			/* to count # of dirty segments */
214 	PRE,			/* to count # of entirely obsolete segments */
215 	NR_DIRTY_TYPE
216 };
217 
218 struct dirty_seglist_info {
219 	const struct victim_selection *v_ops;	/* victim selction operation */
220 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
221 	struct mutex seglist_lock;		/* lock for segment bitmaps */
222 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
223 	unsigned long *victim_secmap;		/* background GC victims */
224 };
225 
226 /* victim selection function for cleaning and SSR */
227 struct victim_selection {
228 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
229 							int, int, char);
230 };
231 
232 /* for active log information */
233 struct curseg_info {
234 	struct mutex curseg_mutex;		/* lock for consistency */
235 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
236 	unsigned char alloc_type;		/* current allocation type */
237 	unsigned int segno;			/* current segment number */
238 	unsigned short next_blkoff;		/* next block offset to write */
239 	unsigned int zone;			/* current zone number */
240 	unsigned int next_segno;		/* preallocated segment */
241 };
242 
243 /*
244  * inline functions
245  */
246 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
247 {
248 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
249 }
250 
251 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
252 						unsigned int segno)
253 {
254 	struct sit_info *sit_i = SIT_I(sbi);
255 	return &sit_i->sentries[segno];
256 }
257 
258 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
259 						unsigned int segno)
260 {
261 	struct sit_info *sit_i = SIT_I(sbi);
262 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
263 }
264 
265 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
266 				unsigned int segno, int section)
267 {
268 	/*
269 	 * In order to get # of valid blocks in a section instantly from many
270 	 * segments, f2fs manages two counting structures separately.
271 	 */
272 	if (section > 1)
273 		return get_sec_entry(sbi, segno)->valid_blocks;
274 	else
275 		return get_seg_entry(sbi, segno)->valid_blocks;
276 }
277 
278 static inline void seg_info_from_raw_sit(struct seg_entry *se,
279 					struct f2fs_sit_entry *rs)
280 {
281 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
282 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
283 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
284 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
285 	se->type = GET_SIT_TYPE(rs);
286 	se->mtime = le64_to_cpu(rs->mtime);
287 }
288 
289 static inline void seg_info_to_raw_sit(struct seg_entry *se,
290 					struct f2fs_sit_entry *rs)
291 {
292 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
293 					se->valid_blocks;
294 	rs->vblocks = cpu_to_le16(raw_vblocks);
295 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
296 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
297 	se->ckpt_valid_blocks = se->valid_blocks;
298 	rs->mtime = cpu_to_le64(se->mtime);
299 }
300 
301 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
302 		unsigned int max, unsigned int segno)
303 {
304 	unsigned int ret;
305 	read_lock(&free_i->segmap_lock);
306 	ret = find_next_bit(free_i->free_segmap, max, segno);
307 	read_unlock(&free_i->segmap_lock);
308 	return ret;
309 }
310 
311 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
312 {
313 	struct free_segmap_info *free_i = FREE_I(sbi);
314 	unsigned int secno = segno / sbi->segs_per_sec;
315 	unsigned int start_segno = secno * sbi->segs_per_sec;
316 	unsigned int next;
317 
318 	write_lock(&free_i->segmap_lock);
319 	clear_bit(segno, free_i->free_segmap);
320 	free_i->free_segments++;
321 
322 	next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
323 	if (next >= start_segno + sbi->segs_per_sec) {
324 		clear_bit(secno, free_i->free_secmap);
325 		free_i->free_sections++;
326 	}
327 	write_unlock(&free_i->segmap_lock);
328 }
329 
330 static inline void __set_inuse(struct f2fs_sb_info *sbi,
331 		unsigned int segno)
332 {
333 	struct free_segmap_info *free_i = FREE_I(sbi);
334 	unsigned int secno = segno / sbi->segs_per_sec;
335 	set_bit(segno, free_i->free_segmap);
336 	free_i->free_segments--;
337 	if (!test_and_set_bit(secno, free_i->free_secmap))
338 		free_i->free_sections--;
339 }
340 
341 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
342 		unsigned int segno)
343 {
344 	struct free_segmap_info *free_i = FREE_I(sbi);
345 	unsigned int secno = segno / sbi->segs_per_sec;
346 	unsigned int start_segno = secno * sbi->segs_per_sec;
347 	unsigned int next;
348 
349 	write_lock(&free_i->segmap_lock);
350 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
351 		free_i->free_segments++;
352 
353 		next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
354 								start_segno);
355 		if (next >= start_segno + sbi->segs_per_sec) {
356 			if (test_and_clear_bit(secno, free_i->free_secmap))
357 				free_i->free_sections++;
358 		}
359 	}
360 	write_unlock(&free_i->segmap_lock);
361 }
362 
363 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
364 		unsigned int segno)
365 {
366 	struct free_segmap_info *free_i = FREE_I(sbi);
367 	unsigned int secno = segno / sbi->segs_per_sec;
368 	write_lock(&free_i->segmap_lock);
369 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
370 		free_i->free_segments--;
371 		if (!test_and_set_bit(secno, free_i->free_secmap))
372 			free_i->free_sections--;
373 	}
374 	write_unlock(&free_i->segmap_lock);
375 }
376 
377 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
378 		void *dst_addr)
379 {
380 	struct sit_info *sit_i = SIT_I(sbi);
381 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
382 }
383 
384 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
385 {
386 	struct sit_info *sit_i = SIT_I(sbi);
387 	block_t vblocks;
388 
389 	mutex_lock(&sit_i->sentry_lock);
390 	vblocks = sit_i->written_valid_blocks;
391 	mutex_unlock(&sit_i->sentry_lock);
392 
393 	return vblocks;
394 }
395 
396 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
397 {
398 	struct free_segmap_info *free_i = FREE_I(sbi);
399 	unsigned int free_segs;
400 
401 	read_lock(&free_i->segmap_lock);
402 	free_segs = free_i->free_segments;
403 	read_unlock(&free_i->segmap_lock);
404 
405 	return free_segs;
406 }
407 
408 static inline int reserved_segments(struct f2fs_sb_info *sbi)
409 {
410 	return SM_I(sbi)->reserved_segments;
411 }
412 
413 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
414 {
415 	struct free_segmap_info *free_i = FREE_I(sbi);
416 	unsigned int free_secs;
417 
418 	read_lock(&free_i->segmap_lock);
419 	free_secs = free_i->free_sections;
420 	read_unlock(&free_i->segmap_lock);
421 
422 	return free_secs;
423 }
424 
425 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
426 {
427 	return DIRTY_I(sbi)->nr_dirty[PRE];
428 }
429 
430 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
431 {
432 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
433 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
434 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
435 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
436 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
437 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
438 }
439 
440 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
441 {
442 	return SM_I(sbi)->ovp_segments;
443 }
444 
445 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
446 {
447 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
448 }
449 
450 static inline int reserved_sections(struct f2fs_sb_info *sbi)
451 {
452 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
453 }
454 
455 static inline bool need_SSR(struct f2fs_sb_info *sbi)
456 {
457 	return ((prefree_segments(sbi) / sbi->segs_per_sec)
458 			+ free_sections(sbi) < overprovision_sections(sbi));
459 }
460 
461 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
462 {
463 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
464 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
465 
466 	if (sbi->por_doing)
467 		return false;
468 
469 	return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
470 						reserved_sections(sbi)));
471 }
472 
473 static inline int utilization(struct f2fs_sb_info *sbi)
474 {
475 	return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count);
476 }
477 
478 /*
479  * Sometimes f2fs may be better to drop out-of-place update policy.
480  * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
481  * data in the original place likewise other traditional file systems.
482  * But, currently set 100 in percentage, which means it is disabled.
483  * See below need_inplace_update().
484  */
485 #define MIN_IPU_UTIL		100
486 static inline bool need_inplace_update(struct inode *inode)
487 {
488 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
489 	if (S_ISDIR(inode->i_mode))
490 		return false;
491 	if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
492 		return true;
493 	return false;
494 }
495 
496 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
497 		int type)
498 {
499 	struct curseg_info *curseg = CURSEG_I(sbi, type);
500 	return curseg->segno;
501 }
502 
503 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
504 		int type)
505 {
506 	struct curseg_info *curseg = CURSEG_I(sbi, type);
507 	return curseg->alloc_type;
508 }
509 
510 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
511 {
512 	struct curseg_info *curseg = CURSEG_I(sbi, type);
513 	return curseg->next_blkoff;
514 }
515 
516 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
517 {
518 	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
519 	BUG_ON(segno > end_segno);
520 }
521 
522 /*
523  * This function is used for only debugging.
524  * NOTE: In future, we have to remove this function.
525  */
526 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
527 {
528 	struct f2fs_sm_info *sm_info = SM_I(sbi);
529 	block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
530 	block_t start_addr = sm_info->seg0_blkaddr;
531 	block_t end_addr = start_addr + total_blks - 1;
532 	BUG_ON(blk_addr < start_addr);
533 	BUG_ON(blk_addr > end_addr);
534 }
535 
536 /*
537  * Summary block is always treated as invalid block
538  */
539 static inline void check_block_count(struct f2fs_sb_info *sbi,
540 		int segno, struct f2fs_sit_entry *raw_sit)
541 {
542 	struct f2fs_sm_info *sm_info = SM_I(sbi);
543 	unsigned int end_segno = sm_info->segment_count - 1;
544 	int valid_blocks = 0;
545 	int i;
546 
547 	/* check segment usage */
548 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
549 
550 	/* check boundary of a given segment number */
551 	BUG_ON(segno > end_segno);
552 
553 	/* check bitmap with valid block count */
554 	for (i = 0; i < sbi->blocks_per_seg; i++)
555 		if (f2fs_test_bit(i, raw_sit->valid_map))
556 			valid_blocks++;
557 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
558 }
559 
560 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
561 						unsigned int start)
562 {
563 	struct sit_info *sit_i = SIT_I(sbi);
564 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
565 	block_t blk_addr = sit_i->sit_base_addr + offset;
566 
567 	check_seg_range(sbi, start);
568 
569 	/* calculate sit block address */
570 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
571 		blk_addr += sit_i->sit_blocks;
572 
573 	return blk_addr;
574 }
575 
576 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
577 						pgoff_t block_addr)
578 {
579 	struct sit_info *sit_i = SIT_I(sbi);
580 	block_addr -= sit_i->sit_base_addr;
581 	if (block_addr < sit_i->sit_blocks)
582 		block_addr += sit_i->sit_blocks;
583 	else
584 		block_addr -= sit_i->sit_blocks;
585 
586 	return block_addr + sit_i->sit_base_addr;
587 }
588 
589 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
590 {
591 	unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
592 
593 	if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
594 		f2fs_clear_bit(block_off, sit_i->sit_bitmap);
595 	else
596 		f2fs_set_bit(block_off, sit_i->sit_bitmap);
597 }
598 
599 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
600 {
601 	struct sit_info *sit_i = SIT_I(sbi);
602 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
603 						sit_i->mounted_time;
604 }
605 
606 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
607 			unsigned int ofs_in_node, unsigned char version)
608 {
609 	sum->nid = cpu_to_le32(nid);
610 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
611 	sum->version = version;
612 }
613 
614 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
615 {
616 	return __start_cp_addr(sbi) +
617 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
618 }
619 
620 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
621 {
622 	return __start_cp_addr(sbi) +
623 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
624 				- (base + 1) + type;
625 }
626 
627 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
628 {
629 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
630 		return true;
631 	return false;
632 }
633 
634 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
635 {
636 	struct block_device *bdev = sbi->sb->s_bdev;
637 	struct request_queue *q = bdev_get_queue(bdev);
638 	return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
639 }
640