1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (f2fs_lfs_mode(sbi)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT_HIGH) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct inmem_pages *new; 189 190 f2fs_trace_pid(page); 191 192 f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE); 193 194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 195 196 /* add atomic page indices to the list */ 197 new->page = page; 198 INIT_LIST_HEAD(&new->list); 199 200 /* increase reference count with clean state */ 201 get_page(page); 202 mutex_lock(&F2FS_I(inode)->inmem_lock); 203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 205 mutex_unlock(&F2FS_I(inode)->inmem_lock); 206 207 trace_f2fs_register_inmem_page(page, INMEM); 208 } 209 210 static int __revoke_inmem_pages(struct inode *inode, 211 struct list_head *head, bool drop, bool recover, 212 bool trylock) 213 { 214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 215 struct inmem_pages *cur, *tmp; 216 int err = 0; 217 218 list_for_each_entry_safe(cur, tmp, head, list) { 219 struct page *page = cur->page; 220 221 if (drop) 222 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 223 224 if (trylock) { 225 /* 226 * to avoid deadlock in between page lock and 227 * inmem_lock. 228 */ 229 if (!trylock_page(page)) 230 continue; 231 } else { 232 lock_page(page); 233 } 234 235 f2fs_wait_on_page_writeback(page, DATA, true, true); 236 237 if (recover) { 238 struct dnode_of_data dn; 239 struct node_info ni; 240 241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 242 retry: 243 set_new_dnode(&dn, inode, NULL, NULL, 0); 244 err = f2fs_get_dnode_of_data(&dn, page->index, 245 LOOKUP_NODE); 246 if (err) { 247 if (err == -ENOMEM) { 248 congestion_wait(BLK_RW_ASYNC, 249 DEFAULT_IO_TIMEOUT); 250 cond_resched(); 251 goto retry; 252 } 253 err = -EAGAIN; 254 goto next; 255 } 256 257 err = f2fs_get_node_info(sbi, dn.nid, &ni); 258 if (err) { 259 f2fs_put_dnode(&dn); 260 return err; 261 } 262 263 if (cur->old_addr == NEW_ADDR) { 264 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 265 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 266 } else 267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 268 cur->old_addr, ni.version, true, true); 269 f2fs_put_dnode(&dn); 270 } 271 next: 272 /* we don't need to invalidate this in the sccessful status */ 273 if (drop || recover) { 274 ClearPageUptodate(page); 275 clear_cold_data(page); 276 } 277 f2fs_clear_page_private(page); 278 f2fs_put_page(page, 1); 279 280 list_del(&cur->list); 281 kmem_cache_free(inmem_entry_slab, cur); 282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 283 } 284 return err; 285 } 286 287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 288 { 289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 290 struct inode *inode; 291 struct f2fs_inode_info *fi; 292 unsigned int count = sbi->atomic_files; 293 unsigned int looped = 0; 294 next: 295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 296 if (list_empty(head)) { 297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 298 return; 299 } 300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 301 inode = igrab(&fi->vfs_inode); 302 if (inode) 303 list_move_tail(&fi->inmem_ilist, head); 304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 305 306 if (inode) { 307 if (gc_failure) { 308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) 309 goto skip; 310 } 311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 312 f2fs_drop_inmem_pages(inode); 313 skip: 314 iput(inode); 315 } 316 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 317 cond_resched(); 318 if (gc_failure) { 319 if (++looped >= count) 320 return; 321 } 322 goto next; 323 } 324 325 void f2fs_drop_inmem_pages(struct inode *inode) 326 { 327 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 328 struct f2fs_inode_info *fi = F2FS_I(inode); 329 330 while (!list_empty(&fi->inmem_pages)) { 331 mutex_lock(&fi->inmem_lock); 332 __revoke_inmem_pages(inode, &fi->inmem_pages, 333 true, false, true); 334 mutex_unlock(&fi->inmem_lock); 335 } 336 337 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 338 339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 340 if (!list_empty(&fi->inmem_ilist)) 341 list_del_init(&fi->inmem_ilist); 342 if (f2fs_is_atomic_file(inode)) { 343 clear_inode_flag(inode, FI_ATOMIC_FILE); 344 sbi->atomic_files--; 345 } 346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 347 } 348 349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 350 { 351 struct f2fs_inode_info *fi = F2FS_I(inode); 352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 353 struct list_head *head = &fi->inmem_pages; 354 struct inmem_pages *cur = NULL; 355 356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 357 358 mutex_lock(&fi->inmem_lock); 359 list_for_each_entry(cur, head, list) { 360 if (cur->page == page) 361 break; 362 } 363 364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 365 list_del(&cur->list); 366 mutex_unlock(&fi->inmem_lock); 367 368 dec_page_count(sbi, F2FS_INMEM_PAGES); 369 kmem_cache_free(inmem_entry_slab, cur); 370 371 ClearPageUptodate(page); 372 f2fs_clear_page_private(page); 373 f2fs_put_page(page, 0); 374 375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 376 } 377 378 static int __f2fs_commit_inmem_pages(struct inode *inode) 379 { 380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 381 struct f2fs_inode_info *fi = F2FS_I(inode); 382 struct inmem_pages *cur, *tmp; 383 struct f2fs_io_info fio = { 384 .sbi = sbi, 385 .ino = inode->i_ino, 386 .type = DATA, 387 .op = REQ_OP_WRITE, 388 .op_flags = REQ_SYNC | REQ_PRIO, 389 .io_type = FS_DATA_IO, 390 }; 391 struct list_head revoke_list; 392 bool submit_bio = false; 393 int err = 0; 394 395 INIT_LIST_HEAD(&revoke_list); 396 397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 398 struct page *page = cur->page; 399 400 lock_page(page); 401 if (page->mapping == inode->i_mapping) { 402 trace_f2fs_commit_inmem_page(page, INMEM); 403 404 f2fs_wait_on_page_writeback(page, DATA, true, true); 405 406 set_page_dirty(page); 407 if (clear_page_dirty_for_io(page)) { 408 inode_dec_dirty_pages(inode); 409 f2fs_remove_dirty_inode(inode); 410 } 411 retry: 412 fio.page = page; 413 fio.old_blkaddr = NULL_ADDR; 414 fio.encrypted_page = NULL; 415 fio.need_lock = LOCK_DONE; 416 err = f2fs_do_write_data_page(&fio); 417 if (err) { 418 if (err == -ENOMEM) { 419 congestion_wait(BLK_RW_ASYNC, 420 DEFAULT_IO_TIMEOUT); 421 cond_resched(); 422 goto retry; 423 } 424 unlock_page(page); 425 break; 426 } 427 /* record old blkaddr for revoking */ 428 cur->old_addr = fio.old_blkaddr; 429 submit_bio = true; 430 } 431 unlock_page(page); 432 list_move_tail(&cur->list, &revoke_list); 433 } 434 435 if (submit_bio) 436 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 437 438 if (err) { 439 /* 440 * try to revoke all committed pages, but still we could fail 441 * due to no memory or other reason, if that happened, EAGAIN 442 * will be returned, which means in such case, transaction is 443 * already not integrity, caller should use journal to do the 444 * recovery or rewrite & commit last transaction. For other 445 * error number, revoking was done by filesystem itself. 446 */ 447 err = __revoke_inmem_pages(inode, &revoke_list, 448 false, true, false); 449 450 /* drop all uncommitted pages */ 451 __revoke_inmem_pages(inode, &fi->inmem_pages, 452 true, false, false); 453 } else { 454 __revoke_inmem_pages(inode, &revoke_list, 455 false, false, false); 456 } 457 458 return err; 459 } 460 461 int f2fs_commit_inmem_pages(struct inode *inode) 462 { 463 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 464 struct f2fs_inode_info *fi = F2FS_I(inode); 465 int err; 466 467 f2fs_balance_fs(sbi, true); 468 469 down_write(&fi->i_gc_rwsem[WRITE]); 470 471 f2fs_lock_op(sbi); 472 set_inode_flag(inode, FI_ATOMIC_COMMIT); 473 474 mutex_lock(&fi->inmem_lock); 475 err = __f2fs_commit_inmem_pages(inode); 476 mutex_unlock(&fi->inmem_lock); 477 478 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 479 480 f2fs_unlock_op(sbi); 481 up_write(&fi->i_gc_rwsem[WRITE]); 482 483 return err; 484 } 485 486 /* 487 * This function balances dirty node and dentry pages. 488 * In addition, it controls garbage collection. 489 */ 490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 491 { 492 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 493 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 494 f2fs_stop_checkpoint(sbi, false); 495 } 496 497 /* balance_fs_bg is able to be pending */ 498 if (need && excess_cached_nats(sbi)) 499 f2fs_balance_fs_bg(sbi, false); 500 501 if (!f2fs_is_checkpoint_ready(sbi)) 502 return; 503 504 /* 505 * We should do GC or end up with checkpoint, if there are so many dirty 506 * dir/node pages without enough free segments. 507 */ 508 if (has_not_enough_free_secs(sbi, 0, 0)) { 509 down_write(&sbi->gc_lock); 510 f2fs_gc(sbi, false, false, NULL_SEGNO); 511 } 512 } 513 514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 515 { 516 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 517 return; 518 519 /* try to shrink extent cache when there is no enough memory */ 520 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 521 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 522 523 /* check the # of cached NAT entries */ 524 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 525 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 526 527 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 528 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 529 else 530 f2fs_build_free_nids(sbi, false, false); 531 532 if (!is_idle(sbi, REQ_TIME) && 533 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 534 return; 535 536 /* checkpoint is the only way to shrink partial cached entries */ 537 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 538 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 539 excess_prefree_segs(sbi) || 540 excess_dirty_nats(sbi) || 541 excess_dirty_nodes(sbi) || 542 f2fs_time_over(sbi, CP_TIME)) { 543 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 544 struct blk_plug plug; 545 546 mutex_lock(&sbi->flush_lock); 547 548 blk_start_plug(&plug); 549 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 550 blk_finish_plug(&plug); 551 552 mutex_unlock(&sbi->flush_lock); 553 } 554 f2fs_sync_fs(sbi->sb, true); 555 stat_inc_bg_cp_count(sbi->stat_info); 556 } 557 } 558 559 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 560 struct block_device *bdev) 561 { 562 struct bio *bio; 563 int ret; 564 565 bio = f2fs_bio_alloc(sbi, 0, false); 566 if (!bio) 567 return -ENOMEM; 568 569 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 570 bio_set_dev(bio, bdev); 571 ret = submit_bio_wait(bio); 572 bio_put(bio); 573 574 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 575 test_opt(sbi, FLUSH_MERGE), ret); 576 return ret; 577 } 578 579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 580 { 581 int ret = 0; 582 int i; 583 584 if (!f2fs_is_multi_device(sbi)) 585 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 586 587 for (i = 0; i < sbi->s_ndevs; i++) { 588 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 589 continue; 590 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 591 if (ret) 592 break; 593 } 594 return ret; 595 } 596 597 static int issue_flush_thread(void *data) 598 { 599 struct f2fs_sb_info *sbi = data; 600 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 601 wait_queue_head_t *q = &fcc->flush_wait_queue; 602 repeat: 603 if (kthread_should_stop()) 604 return 0; 605 606 sb_start_intwrite(sbi->sb); 607 608 if (!llist_empty(&fcc->issue_list)) { 609 struct flush_cmd *cmd, *next; 610 int ret; 611 612 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 613 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 614 615 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 616 617 ret = submit_flush_wait(sbi, cmd->ino); 618 atomic_inc(&fcc->issued_flush); 619 620 llist_for_each_entry_safe(cmd, next, 621 fcc->dispatch_list, llnode) { 622 cmd->ret = ret; 623 complete(&cmd->wait); 624 } 625 fcc->dispatch_list = NULL; 626 } 627 628 sb_end_intwrite(sbi->sb); 629 630 wait_event_interruptible(*q, 631 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 632 goto repeat; 633 } 634 635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 636 { 637 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 638 struct flush_cmd cmd; 639 int ret; 640 641 if (test_opt(sbi, NOBARRIER)) 642 return 0; 643 644 if (!test_opt(sbi, FLUSH_MERGE)) { 645 atomic_inc(&fcc->queued_flush); 646 ret = submit_flush_wait(sbi, ino); 647 atomic_dec(&fcc->queued_flush); 648 atomic_inc(&fcc->issued_flush); 649 return ret; 650 } 651 652 if (atomic_inc_return(&fcc->queued_flush) == 1 || 653 f2fs_is_multi_device(sbi)) { 654 ret = submit_flush_wait(sbi, ino); 655 atomic_dec(&fcc->queued_flush); 656 657 atomic_inc(&fcc->issued_flush); 658 return ret; 659 } 660 661 cmd.ino = ino; 662 init_completion(&cmd.wait); 663 664 llist_add(&cmd.llnode, &fcc->issue_list); 665 666 /* update issue_list before we wake up issue_flush thread */ 667 smp_mb(); 668 669 if (waitqueue_active(&fcc->flush_wait_queue)) 670 wake_up(&fcc->flush_wait_queue); 671 672 if (fcc->f2fs_issue_flush) { 673 wait_for_completion(&cmd.wait); 674 atomic_dec(&fcc->queued_flush); 675 } else { 676 struct llist_node *list; 677 678 list = llist_del_all(&fcc->issue_list); 679 if (!list) { 680 wait_for_completion(&cmd.wait); 681 atomic_dec(&fcc->queued_flush); 682 } else { 683 struct flush_cmd *tmp, *next; 684 685 ret = submit_flush_wait(sbi, ino); 686 687 llist_for_each_entry_safe(tmp, next, list, llnode) { 688 if (tmp == &cmd) { 689 cmd.ret = ret; 690 atomic_dec(&fcc->queued_flush); 691 continue; 692 } 693 tmp->ret = ret; 694 complete(&tmp->wait); 695 } 696 } 697 } 698 699 return cmd.ret; 700 } 701 702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 703 { 704 dev_t dev = sbi->sb->s_bdev->bd_dev; 705 struct flush_cmd_control *fcc; 706 int err = 0; 707 708 if (SM_I(sbi)->fcc_info) { 709 fcc = SM_I(sbi)->fcc_info; 710 if (fcc->f2fs_issue_flush) 711 return err; 712 goto init_thread; 713 } 714 715 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 716 if (!fcc) 717 return -ENOMEM; 718 atomic_set(&fcc->issued_flush, 0); 719 atomic_set(&fcc->queued_flush, 0); 720 init_waitqueue_head(&fcc->flush_wait_queue); 721 init_llist_head(&fcc->issue_list); 722 SM_I(sbi)->fcc_info = fcc; 723 if (!test_opt(sbi, FLUSH_MERGE)) 724 return err; 725 726 init_thread: 727 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 728 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 729 if (IS_ERR(fcc->f2fs_issue_flush)) { 730 err = PTR_ERR(fcc->f2fs_issue_flush); 731 kfree(fcc); 732 SM_I(sbi)->fcc_info = NULL; 733 return err; 734 } 735 736 return err; 737 } 738 739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 740 { 741 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 742 743 if (fcc && fcc->f2fs_issue_flush) { 744 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 745 746 fcc->f2fs_issue_flush = NULL; 747 kthread_stop(flush_thread); 748 } 749 if (free) { 750 kfree(fcc); 751 SM_I(sbi)->fcc_info = NULL; 752 } 753 } 754 755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 756 { 757 int ret = 0, i; 758 759 if (!f2fs_is_multi_device(sbi)) 760 return 0; 761 762 if (test_opt(sbi, NOBARRIER)) 763 return 0; 764 765 for (i = 1; i < sbi->s_ndevs; i++) { 766 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 767 continue; 768 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 769 if (ret) 770 break; 771 772 spin_lock(&sbi->dev_lock); 773 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 774 spin_unlock(&sbi->dev_lock); 775 } 776 777 return ret; 778 } 779 780 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 781 enum dirty_type dirty_type) 782 { 783 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 784 785 /* need not be added */ 786 if (IS_CURSEG(sbi, segno)) 787 return; 788 789 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 790 dirty_i->nr_dirty[dirty_type]++; 791 792 if (dirty_type == DIRTY) { 793 struct seg_entry *sentry = get_seg_entry(sbi, segno); 794 enum dirty_type t = sentry->type; 795 796 if (unlikely(t >= DIRTY)) { 797 f2fs_bug_on(sbi, 1); 798 return; 799 } 800 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 801 dirty_i->nr_dirty[t]++; 802 803 if (__is_large_section(sbi)) { 804 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 805 block_t valid_blocks = 806 get_valid_blocks(sbi, segno, true); 807 808 f2fs_bug_on(sbi, unlikely(!valid_blocks || 809 valid_blocks == BLKS_PER_SEC(sbi))); 810 811 if (!IS_CURSEC(sbi, secno)) 812 set_bit(secno, dirty_i->dirty_secmap); 813 } 814 } 815 } 816 817 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 818 enum dirty_type dirty_type) 819 { 820 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 821 block_t valid_blocks; 822 823 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 824 dirty_i->nr_dirty[dirty_type]--; 825 826 if (dirty_type == DIRTY) { 827 struct seg_entry *sentry = get_seg_entry(sbi, segno); 828 enum dirty_type t = sentry->type; 829 830 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 831 dirty_i->nr_dirty[t]--; 832 833 valid_blocks = get_valid_blocks(sbi, segno, true); 834 if (valid_blocks == 0) { 835 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 836 dirty_i->victim_secmap); 837 #ifdef CONFIG_F2FS_CHECK_FS 838 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 839 #endif 840 } 841 if (__is_large_section(sbi)) { 842 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 843 844 if (!valid_blocks || 845 valid_blocks == BLKS_PER_SEC(sbi)) { 846 clear_bit(secno, dirty_i->dirty_secmap); 847 return; 848 } 849 850 if (!IS_CURSEC(sbi, secno)) 851 set_bit(secno, dirty_i->dirty_secmap); 852 } 853 } 854 } 855 856 /* 857 * Should not occur error such as -ENOMEM. 858 * Adding dirty entry into seglist is not critical operation. 859 * If a given segment is one of current working segments, it won't be added. 860 */ 861 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 862 { 863 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 864 unsigned short valid_blocks, ckpt_valid_blocks; 865 unsigned int usable_blocks; 866 867 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 868 return; 869 870 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 871 mutex_lock(&dirty_i->seglist_lock); 872 873 valid_blocks = get_valid_blocks(sbi, segno, false); 874 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 875 876 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 877 ckpt_valid_blocks == usable_blocks)) { 878 __locate_dirty_segment(sbi, segno, PRE); 879 __remove_dirty_segment(sbi, segno, DIRTY); 880 } else if (valid_blocks < usable_blocks) { 881 __locate_dirty_segment(sbi, segno, DIRTY); 882 } else { 883 /* Recovery routine with SSR needs this */ 884 __remove_dirty_segment(sbi, segno, DIRTY); 885 } 886 887 mutex_unlock(&dirty_i->seglist_lock); 888 } 889 890 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 891 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 892 { 893 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 894 unsigned int segno; 895 896 mutex_lock(&dirty_i->seglist_lock); 897 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 898 if (get_valid_blocks(sbi, segno, false)) 899 continue; 900 if (IS_CURSEG(sbi, segno)) 901 continue; 902 __locate_dirty_segment(sbi, segno, PRE); 903 __remove_dirty_segment(sbi, segno, DIRTY); 904 } 905 mutex_unlock(&dirty_i->seglist_lock); 906 } 907 908 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 909 { 910 int ovp_hole_segs = 911 (overprovision_segments(sbi) - reserved_segments(sbi)); 912 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 913 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 914 block_t holes[2] = {0, 0}; /* DATA and NODE */ 915 block_t unusable; 916 struct seg_entry *se; 917 unsigned int segno; 918 919 mutex_lock(&dirty_i->seglist_lock); 920 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 921 se = get_seg_entry(sbi, segno); 922 if (IS_NODESEG(se->type)) 923 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 924 se->valid_blocks; 925 else 926 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 927 se->valid_blocks; 928 } 929 mutex_unlock(&dirty_i->seglist_lock); 930 931 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 932 if (unusable > ovp_holes) 933 return unusable - ovp_holes; 934 return 0; 935 } 936 937 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 938 { 939 int ovp_hole_segs = 940 (overprovision_segments(sbi) - reserved_segments(sbi)); 941 if (unusable > F2FS_OPTION(sbi).unusable_cap) 942 return -EAGAIN; 943 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 944 dirty_segments(sbi) > ovp_hole_segs) 945 return -EAGAIN; 946 return 0; 947 } 948 949 /* This is only used by SBI_CP_DISABLED */ 950 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 951 { 952 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 953 unsigned int segno = 0; 954 955 mutex_lock(&dirty_i->seglist_lock); 956 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 957 if (get_valid_blocks(sbi, segno, false)) 958 continue; 959 if (get_ckpt_valid_blocks(sbi, segno)) 960 continue; 961 mutex_unlock(&dirty_i->seglist_lock); 962 return segno; 963 } 964 mutex_unlock(&dirty_i->seglist_lock); 965 return NULL_SEGNO; 966 } 967 968 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 969 struct block_device *bdev, block_t lstart, 970 block_t start, block_t len) 971 { 972 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 973 struct list_head *pend_list; 974 struct discard_cmd *dc; 975 976 f2fs_bug_on(sbi, !len); 977 978 pend_list = &dcc->pend_list[plist_idx(len)]; 979 980 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 981 INIT_LIST_HEAD(&dc->list); 982 dc->bdev = bdev; 983 dc->lstart = lstart; 984 dc->start = start; 985 dc->len = len; 986 dc->ref = 0; 987 dc->state = D_PREP; 988 dc->queued = 0; 989 dc->error = 0; 990 init_completion(&dc->wait); 991 list_add_tail(&dc->list, pend_list); 992 spin_lock_init(&dc->lock); 993 dc->bio_ref = 0; 994 atomic_inc(&dcc->discard_cmd_cnt); 995 dcc->undiscard_blks += len; 996 997 return dc; 998 } 999 1000 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 1001 struct block_device *bdev, block_t lstart, 1002 block_t start, block_t len, 1003 struct rb_node *parent, struct rb_node **p, 1004 bool leftmost) 1005 { 1006 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1007 struct discard_cmd *dc; 1008 1009 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1010 1011 rb_link_node(&dc->rb_node, parent, p); 1012 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1013 1014 return dc; 1015 } 1016 1017 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1018 struct discard_cmd *dc) 1019 { 1020 if (dc->state == D_DONE) 1021 atomic_sub(dc->queued, &dcc->queued_discard); 1022 1023 list_del(&dc->list); 1024 rb_erase_cached(&dc->rb_node, &dcc->root); 1025 dcc->undiscard_blks -= dc->len; 1026 1027 kmem_cache_free(discard_cmd_slab, dc); 1028 1029 atomic_dec(&dcc->discard_cmd_cnt); 1030 } 1031 1032 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1033 struct discard_cmd *dc) 1034 { 1035 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1036 unsigned long flags; 1037 1038 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1039 1040 spin_lock_irqsave(&dc->lock, flags); 1041 if (dc->bio_ref) { 1042 spin_unlock_irqrestore(&dc->lock, flags); 1043 return; 1044 } 1045 spin_unlock_irqrestore(&dc->lock, flags); 1046 1047 f2fs_bug_on(sbi, dc->ref); 1048 1049 if (dc->error == -EOPNOTSUPP) 1050 dc->error = 0; 1051 1052 if (dc->error) 1053 printk_ratelimited( 1054 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1055 KERN_INFO, sbi->sb->s_id, 1056 dc->lstart, dc->start, dc->len, dc->error); 1057 __detach_discard_cmd(dcc, dc); 1058 } 1059 1060 static void f2fs_submit_discard_endio(struct bio *bio) 1061 { 1062 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1063 unsigned long flags; 1064 1065 spin_lock_irqsave(&dc->lock, flags); 1066 if (!dc->error) 1067 dc->error = blk_status_to_errno(bio->bi_status); 1068 dc->bio_ref--; 1069 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1070 dc->state = D_DONE; 1071 complete_all(&dc->wait); 1072 } 1073 spin_unlock_irqrestore(&dc->lock, flags); 1074 bio_put(bio); 1075 } 1076 1077 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1078 block_t start, block_t end) 1079 { 1080 #ifdef CONFIG_F2FS_CHECK_FS 1081 struct seg_entry *sentry; 1082 unsigned int segno; 1083 block_t blk = start; 1084 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1085 unsigned long *map; 1086 1087 while (blk < end) { 1088 segno = GET_SEGNO(sbi, blk); 1089 sentry = get_seg_entry(sbi, segno); 1090 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1091 1092 if (end < START_BLOCK(sbi, segno + 1)) 1093 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1094 else 1095 size = max_blocks; 1096 map = (unsigned long *)(sentry->cur_valid_map); 1097 offset = __find_rev_next_bit(map, size, offset); 1098 f2fs_bug_on(sbi, offset != size); 1099 blk = START_BLOCK(sbi, segno + 1); 1100 } 1101 #endif 1102 } 1103 1104 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1105 struct discard_policy *dpolicy, 1106 int discard_type, unsigned int granularity) 1107 { 1108 /* common policy */ 1109 dpolicy->type = discard_type; 1110 dpolicy->sync = true; 1111 dpolicy->ordered = false; 1112 dpolicy->granularity = granularity; 1113 1114 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1115 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1116 dpolicy->timeout = false; 1117 1118 if (discard_type == DPOLICY_BG) { 1119 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1120 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1121 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1122 dpolicy->io_aware = true; 1123 dpolicy->sync = false; 1124 dpolicy->ordered = true; 1125 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1126 dpolicy->granularity = 1; 1127 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1128 } 1129 } else if (discard_type == DPOLICY_FORCE) { 1130 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1131 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1132 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1133 dpolicy->io_aware = false; 1134 } else if (discard_type == DPOLICY_FSTRIM) { 1135 dpolicy->io_aware = false; 1136 } else if (discard_type == DPOLICY_UMOUNT) { 1137 dpolicy->io_aware = false; 1138 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1139 dpolicy->granularity = 1; 1140 dpolicy->timeout = true; 1141 } 1142 } 1143 1144 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1145 struct block_device *bdev, block_t lstart, 1146 block_t start, block_t len); 1147 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1148 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1149 struct discard_policy *dpolicy, 1150 struct discard_cmd *dc, 1151 unsigned int *issued) 1152 { 1153 struct block_device *bdev = dc->bdev; 1154 struct request_queue *q = bdev_get_queue(bdev); 1155 unsigned int max_discard_blocks = 1156 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1157 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1158 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1159 &(dcc->fstrim_list) : &(dcc->wait_list); 1160 int flag = dpolicy->sync ? REQ_SYNC : 0; 1161 block_t lstart, start, len, total_len; 1162 int err = 0; 1163 1164 if (dc->state != D_PREP) 1165 return 0; 1166 1167 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1168 return 0; 1169 1170 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1171 1172 lstart = dc->lstart; 1173 start = dc->start; 1174 len = dc->len; 1175 total_len = len; 1176 1177 dc->len = 0; 1178 1179 while (total_len && *issued < dpolicy->max_requests && !err) { 1180 struct bio *bio = NULL; 1181 unsigned long flags; 1182 bool last = true; 1183 1184 if (len > max_discard_blocks) { 1185 len = max_discard_blocks; 1186 last = false; 1187 } 1188 1189 (*issued)++; 1190 if (*issued == dpolicy->max_requests) 1191 last = true; 1192 1193 dc->len += len; 1194 1195 if (time_to_inject(sbi, FAULT_DISCARD)) { 1196 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1197 err = -EIO; 1198 goto submit; 1199 } 1200 err = __blkdev_issue_discard(bdev, 1201 SECTOR_FROM_BLOCK(start), 1202 SECTOR_FROM_BLOCK(len), 1203 GFP_NOFS, 0, &bio); 1204 submit: 1205 if (err) { 1206 spin_lock_irqsave(&dc->lock, flags); 1207 if (dc->state == D_PARTIAL) 1208 dc->state = D_SUBMIT; 1209 spin_unlock_irqrestore(&dc->lock, flags); 1210 1211 break; 1212 } 1213 1214 f2fs_bug_on(sbi, !bio); 1215 1216 /* 1217 * should keep before submission to avoid D_DONE 1218 * right away 1219 */ 1220 spin_lock_irqsave(&dc->lock, flags); 1221 if (last) 1222 dc->state = D_SUBMIT; 1223 else 1224 dc->state = D_PARTIAL; 1225 dc->bio_ref++; 1226 spin_unlock_irqrestore(&dc->lock, flags); 1227 1228 atomic_inc(&dcc->queued_discard); 1229 dc->queued++; 1230 list_move_tail(&dc->list, wait_list); 1231 1232 /* sanity check on discard range */ 1233 __check_sit_bitmap(sbi, lstart, lstart + len); 1234 1235 bio->bi_private = dc; 1236 bio->bi_end_io = f2fs_submit_discard_endio; 1237 bio->bi_opf |= flag; 1238 submit_bio(bio); 1239 1240 atomic_inc(&dcc->issued_discard); 1241 1242 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1243 1244 lstart += len; 1245 start += len; 1246 total_len -= len; 1247 len = total_len; 1248 } 1249 1250 if (!err && len) { 1251 dcc->undiscard_blks -= len; 1252 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1253 } 1254 return err; 1255 } 1256 1257 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1258 struct block_device *bdev, block_t lstart, 1259 block_t start, block_t len, 1260 struct rb_node **insert_p, 1261 struct rb_node *insert_parent) 1262 { 1263 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1264 struct rb_node **p; 1265 struct rb_node *parent = NULL; 1266 bool leftmost = true; 1267 1268 if (insert_p && insert_parent) { 1269 parent = insert_parent; 1270 p = insert_p; 1271 goto do_insert; 1272 } 1273 1274 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1275 lstart, &leftmost); 1276 do_insert: 1277 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1278 p, leftmost); 1279 } 1280 1281 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1282 struct discard_cmd *dc) 1283 { 1284 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1285 } 1286 1287 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1288 struct discard_cmd *dc, block_t blkaddr) 1289 { 1290 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1291 struct discard_info di = dc->di; 1292 bool modified = false; 1293 1294 if (dc->state == D_DONE || dc->len == 1) { 1295 __remove_discard_cmd(sbi, dc); 1296 return; 1297 } 1298 1299 dcc->undiscard_blks -= di.len; 1300 1301 if (blkaddr > di.lstart) { 1302 dc->len = blkaddr - dc->lstart; 1303 dcc->undiscard_blks += dc->len; 1304 __relocate_discard_cmd(dcc, dc); 1305 modified = true; 1306 } 1307 1308 if (blkaddr < di.lstart + di.len - 1) { 1309 if (modified) { 1310 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1311 di.start + blkaddr + 1 - di.lstart, 1312 di.lstart + di.len - 1 - blkaddr, 1313 NULL, NULL); 1314 } else { 1315 dc->lstart++; 1316 dc->len--; 1317 dc->start++; 1318 dcc->undiscard_blks += dc->len; 1319 __relocate_discard_cmd(dcc, dc); 1320 } 1321 } 1322 } 1323 1324 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1325 struct block_device *bdev, block_t lstart, 1326 block_t start, block_t len) 1327 { 1328 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1329 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1330 struct discard_cmd *dc; 1331 struct discard_info di = {0}; 1332 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1333 struct request_queue *q = bdev_get_queue(bdev); 1334 unsigned int max_discard_blocks = 1335 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1336 block_t end = lstart + len; 1337 1338 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1339 NULL, lstart, 1340 (struct rb_entry **)&prev_dc, 1341 (struct rb_entry **)&next_dc, 1342 &insert_p, &insert_parent, true, NULL); 1343 if (dc) 1344 prev_dc = dc; 1345 1346 if (!prev_dc) { 1347 di.lstart = lstart; 1348 di.len = next_dc ? next_dc->lstart - lstart : len; 1349 di.len = min(di.len, len); 1350 di.start = start; 1351 } 1352 1353 while (1) { 1354 struct rb_node *node; 1355 bool merged = false; 1356 struct discard_cmd *tdc = NULL; 1357 1358 if (prev_dc) { 1359 di.lstart = prev_dc->lstart + prev_dc->len; 1360 if (di.lstart < lstart) 1361 di.lstart = lstart; 1362 if (di.lstart >= end) 1363 break; 1364 1365 if (!next_dc || next_dc->lstart > end) 1366 di.len = end - di.lstart; 1367 else 1368 di.len = next_dc->lstart - di.lstart; 1369 di.start = start + di.lstart - lstart; 1370 } 1371 1372 if (!di.len) 1373 goto next; 1374 1375 if (prev_dc && prev_dc->state == D_PREP && 1376 prev_dc->bdev == bdev && 1377 __is_discard_back_mergeable(&di, &prev_dc->di, 1378 max_discard_blocks)) { 1379 prev_dc->di.len += di.len; 1380 dcc->undiscard_blks += di.len; 1381 __relocate_discard_cmd(dcc, prev_dc); 1382 di = prev_dc->di; 1383 tdc = prev_dc; 1384 merged = true; 1385 } 1386 1387 if (next_dc && next_dc->state == D_PREP && 1388 next_dc->bdev == bdev && 1389 __is_discard_front_mergeable(&di, &next_dc->di, 1390 max_discard_blocks)) { 1391 next_dc->di.lstart = di.lstart; 1392 next_dc->di.len += di.len; 1393 next_dc->di.start = di.start; 1394 dcc->undiscard_blks += di.len; 1395 __relocate_discard_cmd(dcc, next_dc); 1396 if (tdc) 1397 __remove_discard_cmd(sbi, tdc); 1398 merged = true; 1399 } 1400 1401 if (!merged) { 1402 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1403 di.len, NULL, NULL); 1404 } 1405 next: 1406 prev_dc = next_dc; 1407 if (!prev_dc) 1408 break; 1409 1410 node = rb_next(&prev_dc->rb_node); 1411 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1412 } 1413 } 1414 1415 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1416 struct block_device *bdev, block_t blkstart, block_t blklen) 1417 { 1418 block_t lblkstart = blkstart; 1419 1420 if (!f2fs_bdev_support_discard(bdev)) 1421 return 0; 1422 1423 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1424 1425 if (f2fs_is_multi_device(sbi)) { 1426 int devi = f2fs_target_device_index(sbi, blkstart); 1427 1428 blkstart -= FDEV(devi).start_blk; 1429 } 1430 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1431 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1432 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1433 return 0; 1434 } 1435 1436 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1437 struct discard_policy *dpolicy) 1438 { 1439 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1440 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1441 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1442 struct discard_cmd *dc; 1443 struct blk_plug plug; 1444 unsigned int pos = dcc->next_pos; 1445 unsigned int issued = 0; 1446 bool io_interrupted = false; 1447 1448 mutex_lock(&dcc->cmd_lock); 1449 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1450 NULL, pos, 1451 (struct rb_entry **)&prev_dc, 1452 (struct rb_entry **)&next_dc, 1453 &insert_p, &insert_parent, true, NULL); 1454 if (!dc) 1455 dc = next_dc; 1456 1457 blk_start_plug(&plug); 1458 1459 while (dc) { 1460 struct rb_node *node; 1461 int err = 0; 1462 1463 if (dc->state != D_PREP) 1464 goto next; 1465 1466 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1467 io_interrupted = true; 1468 break; 1469 } 1470 1471 dcc->next_pos = dc->lstart + dc->len; 1472 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1473 1474 if (issued >= dpolicy->max_requests) 1475 break; 1476 next: 1477 node = rb_next(&dc->rb_node); 1478 if (err) 1479 __remove_discard_cmd(sbi, dc); 1480 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1481 } 1482 1483 blk_finish_plug(&plug); 1484 1485 if (!dc) 1486 dcc->next_pos = 0; 1487 1488 mutex_unlock(&dcc->cmd_lock); 1489 1490 if (!issued && io_interrupted) 1491 issued = -1; 1492 1493 return issued; 1494 } 1495 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1496 struct discard_policy *dpolicy); 1497 1498 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1499 struct discard_policy *dpolicy) 1500 { 1501 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1502 struct list_head *pend_list; 1503 struct discard_cmd *dc, *tmp; 1504 struct blk_plug plug; 1505 int i, issued; 1506 bool io_interrupted = false; 1507 1508 if (dpolicy->timeout) 1509 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1510 1511 retry: 1512 issued = 0; 1513 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1514 if (dpolicy->timeout && 1515 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1516 break; 1517 1518 if (i + 1 < dpolicy->granularity) 1519 break; 1520 1521 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1522 return __issue_discard_cmd_orderly(sbi, dpolicy); 1523 1524 pend_list = &dcc->pend_list[i]; 1525 1526 mutex_lock(&dcc->cmd_lock); 1527 if (list_empty(pend_list)) 1528 goto next; 1529 if (unlikely(dcc->rbtree_check)) 1530 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1531 &dcc->root, false)); 1532 blk_start_plug(&plug); 1533 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1534 f2fs_bug_on(sbi, dc->state != D_PREP); 1535 1536 if (dpolicy->timeout && 1537 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1538 break; 1539 1540 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1541 !is_idle(sbi, DISCARD_TIME)) { 1542 io_interrupted = true; 1543 break; 1544 } 1545 1546 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1547 1548 if (issued >= dpolicy->max_requests) 1549 break; 1550 } 1551 blk_finish_plug(&plug); 1552 next: 1553 mutex_unlock(&dcc->cmd_lock); 1554 1555 if (issued >= dpolicy->max_requests || io_interrupted) 1556 break; 1557 } 1558 1559 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1560 __wait_all_discard_cmd(sbi, dpolicy); 1561 goto retry; 1562 } 1563 1564 if (!issued && io_interrupted) 1565 issued = -1; 1566 1567 return issued; 1568 } 1569 1570 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1571 { 1572 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1573 struct list_head *pend_list; 1574 struct discard_cmd *dc, *tmp; 1575 int i; 1576 bool dropped = false; 1577 1578 mutex_lock(&dcc->cmd_lock); 1579 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1580 pend_list = &dcc->pend_list[i]; 1581 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1582 f2fs_bug_on(sbi, dc->state != D_PREP); 1583 __remove_discard_cmd(sbi, dc); 1584 dropped = true; 1585 } 1586 } 1587 mutex_unlock(&dcc->cmd_lock); 1588 1589 return dropped; 1590 } 1591 1592 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1593 { 1594 __drop_discard_cmd(sbi); 1595 } 1596 1597 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1598 struct discard_cmd *dc) 1599 { 1600 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1601 unsigned int len = 0; 1602 1603 wait_for_completion_io(&dc->wait); 1604 mutex_lock(&dcc->cmd_lock); 1605 f2fs_bug_on(sbi, dc->state != D_DONE); 1606 dc->ref--; 1607 if (!dc->ref) { 1608 if (!dc->error) 1609 len = dc->len; 1610 __remove_discard_cmd(sbi, dc); 1611 } 1612 mutex_unlock(&dcc->cmd_lock); 1613 1614 return len; 1615 } 1616 1617 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1618 struct discard_policy *dpolicy, 1619 block_t start, block_t end) 1620 { 1621 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1622 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1623 &(dcc->fstrim_list) : &(dcc->wait_list); 1624 struct discard_cmd *dc, *tmp; 1625 bool need_wait; 1626 unsigned int trimmed = 0; 1627 1628 next: 1629 need_wait = false; 1630 1631 mutex_lock(&dcc->cmd_lock); 1632 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1633 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1634 continue; 1635 if (dc->len < dpolicy->granularity) 1636 continue; 1637 if (dc->state == D_DONE && !dc->ref) { 1638 wait_for_completion_io(&dc->wait); 1639 if (!dc->error) 1640 trimmed += dc->len; 1641 __remove_discard_cmd(sbi, dc); 1642 } else { 1643 dc->ref++; 1644 need_wait = true; 1645 break; 1646 } 1647 } 1648 mutex_unlock(&dcc->cmd_lock); 1649 1650 if (need_wait) { 1651 trimmed += __wait_one_discard_bio(sbi, dc); 1652 goto next; 1653 } 1654 1655 return trimmed; 1656 } 1657 1658 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1659 struct discard_policy *dpolicy) 1660 { 1661 struct discard_policy dp; 1662 unsigned int discard_blks; 1663 1664 if (dpolicy) 1665 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1666 1667 /* wait all */ 1668 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1669 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1670 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1671 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1672 1673 return discard_blks; 1674 } 1675 1676 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1677 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1678 { 1679 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1680 struct discard_cmd *dc; 1681 bool need_wait = false; 1682 1683 mutex_lock(&dcc->cmd_lock); 1684 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1685 NULL, blkaddr); 1686 if (dc) { 1687 if (dc->state == D_PREP) { 1688 __punch_discard_cmd(sbi, dc, blkaddr); 1689 } else { 1690 dc->ref++; 1691 need_wait = true; 1692 } 1693 } 1694 mutex_unlock(&dcc->cmd_lock); 1695 1696 if (need_wait) 1697 __wait_one_discard_bio(sbi, dc); 1698 } 1699 1700 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1701 { 1702 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1703 1704 if (dcc && dcc->f2fs_issue_discard) { 1705 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1706 1707 dcc->f2fs_issue_discard = NULL; 1708 kthread_stop(discard_thread); 1709 } 1710 } 1711 1712 /* This comes from f2fs_put_super */ 1713 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1714 { 1715 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1716 struct discard_policy dpolicy; 1717 bool dropped; 1718 1719 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1720 dcc->discard_granularity); 1721 __issue_discard_cmd(sbi, &dpolicy); 1722 dropped = __drop_discard_cmd(sbi); 1723 1724 /* just to make sure there is no pending discard commands */ 1725 __wait_all_discard_cmd(sbi, NULL); 1726 1727 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1728 return dropped; 1729 } 1730 1731 static int issue_discard_thread(void *data) 1732 { 1733 struct f2fs_sb_info *sbi = data; 1734 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1735 wait_queue_head_t *q = &dcc->discard_wait_queue; 1736 struct discard_policy dpolicy; 1737 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1738 int issued; 1739 1740 set_freezable(); 1741 1742 do { 1743 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1744 dcc->discard_granularity); 1745 1746 wait_event_interruptible_timeout(*q, 1747 kthread_should_stop() || freezing(current) || 1748 dcc->discard_wake, 1749 msecs_to_jiffies(wait_ms)); 1750 1751 if (dcc->discard_wake) 1752 dcc->discard_wake = 0; 1753 1754 /* clean up pending candidates before going to sleep */ 1755 if (atomic_read(&dcc->queued_discard)) 1756 __wait_all_discard_cmd(sbi, NULL); 1757 1758 if (try_to_freeze()) 1759 continue; 1760 if (f2fs_readonly(sbi->sb)) 1761 continue; 1762 if (kthread_should_stop()) 1763 return 0; 1764 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1765 wait_ms = dpolicy.max_interval; 1766 continue; 1767 } 1768 1769 if (sbi->gc_mode == GC_URGENT_HIGH) 1770 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1771 1772 sb_start_intwrite(sbi->sb); 1773 1774 issued = __issue_discard_cmd(sbi, &dpolicy); 1775 if (issued > 0) { 1776 __wait_all_discard_cmd(sbi, &dpolicy); 1777 wait_ms = dpolicy.min_interval; 1778 } else if (issued == -1){ 1779 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1780 if (!wait_ms) 1781 wait_ms = dpolicy.mid_interval; 1782 } else { 1783 wait_ms = dpolicy.max_interval; 1784 } 1785 1786 sb_end_intwrite(sbi->sb); 1787 1788 } while (!kthread_should_stop()); 1789 return 0; 1790 } 1791 1792 #ifdef CONFIG_BLK_DEV_ZONED 1793 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1794 struct block_device *bdev, block_t blkstart, block_t blklen) 1795 { 1796 sector_t sector, nr_sects; 1797 block_t lblkstart = blkstart; 1798 int devi = 0; 1799 1800 if (f2fs_is_multi_device(sbi)) { 1801 devi = f2fs_target_device_index(sbi, blkstart); 1802 if (blkstart < FDEV(devi).start_blk || 1803 blkstart > FDEV(devi).end_blk) { 1804 f2fs_err(sbi, "Invalid block %x", blkstart); 1805 return -EIO; 1806 } 1807 blkstart -= FDEV(devi).start_blk; 1808 } 1809 1810 /* For sequential zones, reset the zone write pointer */ 1811 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1812 sector = SECTOR_FROM_BLOCK(blkstart); 1813 nr_sects = SECTOR_FROM_BLOCK(blklen); 1814 1815 if (sector & (bdev_zone_sectors(bdev) - 1) || 1816 nr_sects != bdev_zone_sectors(bdev)) { 1817 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1818 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1819 blkstart, blklen); 1820 return -EIO; 1821 } 1822 trace_f2fs_issue_reset_zone(bdev, blkstart); 1823 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1824 sector, nr_sects, GFP_NOFS); 1825 } 1826 1827 /* For conventional zones, use regular discard if supported */ 1828 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1829 } 1830 #endif 1831 1832 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1833 struct block_device *bdev, block_t blkstart, block_t blklen) 1834 { 1835 #ifdef CONFIG_BLK_DEV_ZONED 1836 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1837 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1838 #endif 1839 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1840 } 1841 1842 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1843 block_t blkstart, block_t blklen) 1844 { 1845 sector_t start = blkstart, len = 0; 1846 struct block_device *bdev; 1847 struct seg_entry *se; 1848 unsigned int offset; 1849 block_t i; 1850 int err = 0; 1851 1852 bdev = f2fs_target_device(sbi, blkstart, NULL); 1853 1854 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1855 if (i != start) { 1856 struct block_device *bdev2 = 1857 f2fs_target_device(sbi, i, NULL); 1858 1859 if (bdev2 != bdev) { 1860 err = __issue_discard_async(sbi, bdev, 1861 start, len); 1862 if (err) 1863 return err; 1864 bdev = bdev2; 1865 start = i; 1866 len = 0; 1867 } 1868 } 1869 1870 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1871 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1872 1873 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1874 sbi->discard_blks--; 1875 } 1876 1877 if (len) 1878 err = __issue_discard_async(sbi, bdev, start, len); 1879 return err; 1880 } 1881 1882 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1883 bool check_only) 1884 { 1885 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1886 int max_blocks = sbi->blocks_per_seg; 1887 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1888 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1889 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1890 unsigned long *discard_map = (unsigned long *)se->discard_map; 1891 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1892 unsigned int start = 0, end = -1; 1893 bool force = (cpc->reason & CP_DISCARD); 1894 struct discard_entry *de = NULL; 1895 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1896 int i; 1897 1898 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1899 return false; 1900 1901 if (!force) { 1902 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1903 SM_I(sbi)->dcc_info->nr_discards >= 1904 SM_I(sbi)->dcc_info->max_discards) 1905 return false; 1906 } 1907 1908 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1909 for (i = 0; i < entries; i++) 1910 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1911 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1912 1913 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1914 SM_I(sbi)->dcc_info->max_discards) { 1915 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1916 if (start >= max_blocks) 1917 break; 1918 1919 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1920 if (force && start && end != max_blocks 1921 && (end - start) < cpc->trim_minlen) 1922 continue; 1923 1924 if (check_only) 1925 return true; 1926 1927 if (!de) { 1928 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1929 GFP_F2FS_ZERO); 1930 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1931 list_add_tail(&de->list, head); 1932 } 1933 1934 for (i = start; i < end; i++) 1935 __set_bit_le(i, (void *)de->discard_map); 1936 1937 SM_I(sbi)->dcc_info->nr_discards += end - start; 1938 } 1939 return false; 1940 } 1941 1942 static void release_discard_addr(struct discard_entry *entry) 1943 { 1944 list_del(&entry->list); 1945 kmem_cache_free(discard_entry_slab, entry); 1946 } 1947 1948 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1949 { 1950 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1951 struct discard_entry *entry, *this; 1952 1953 /* drop caches */ 1954 list_for_each_entry_safe(entry, this, head, list) 1955 release_discard_addr(entry); 1956 } 1957 1958 /* 1959 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1960 */ 1961 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1962 { 1963 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1964 unsigned int segno; 1965 1966 mutex_lock(&dirty_i->seglist_lock); 1967 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1968 __set_test_and_free(sbi, segno, false); 1969 mutex_unlock(&dirty_i->seglist_lock); 1970 } 1971 1972 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1973 struct cp_control *cpc) 1974 { 1975 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1976 struct list_head *head = &dcc->entry_list; 1977 struct discard_entry *entry, *this; 1978 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1979 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1980 unsigned int start = 0, end = -1; 1981 unsigned int secno, start_segno; 1982 bool force = (cpc->reason & CP_DISCARD); 1983 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 1984 1985 mutex_lock(&dirty_i->seglist_lock); 1986 1987 while (1) { 1988 int i; 1989 1990 if (need_align && end != -1) 1991 end--; 1992 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1993 if (start >= MAIN_SEGS(sbi)) 1994 break; 1995 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1996 start + 1); 1997 1998 if (need_align) { 1999 start = rounddown(start, sbi->segs_per_sec); 2000 end = roundup(end, sbi->segs_per_sec); 2001 } 2002 2003 for (i = start; i < end; i++) { 2004 if (test_and_clear_bit(i, prefree_map)) 2005 dirty_i->nr_dirty[PRE]--; 2006 } 2007 2008 if (!f2fs_realtime_discard_enable(sbi)) 2009 continue; 2010 2011 if (force && start >= cpc->trim_start && 2012 (end - 1) <= cpc->trim_end) 2013 continue; 2014 2015 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 2016 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2017 (end - start) << sbi->log_blocks_per_seg); 2018 continue; 2019 } 2020 next: 2021 secno = GET_SEC_FROM_SEG(sbi, start); 2022 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2023 if (!IS_CURSEC(sbi, secno) && 2024 !get_valid_blocks(sbi, start, true)) 2025 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2026 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2027 2028 start = start_segno + sbi->segs_per_sec; 2029 if (start < end) 2030 goto next; 2031 else 2032 end = start - 1; 2033 } 2034 mutex_unlock(&dirty_i->seglist_lock); 2035 2036 /* send small discards */ 2037 list_for_each_entry_safe(entry, this, head, list) { 2038 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2039 bool is_valid = test_bit_le(0, entry->discard_map); 2040 2041 find_next: 2042 if (is_valid) { 2043 next_pos = find_next_zero_bit_le(entry->discard_map, 2044 sbi->blocks_per_seg, cur_pos); 2045 len = next_pos - cur_pos; 2046 2047 if (f2fs_sb_has_blkzoned(sbi) || 2048 (force && len < cpc->trim_minlen)) 2049 goto skip; 2050 2051 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2052 len); 2053 total_len += len; 2054 } else { 2055 next_pos = find_next_bit_le(entry->discard_map, 2056 sbi->blocks_per_seg, cur_pos); 2057 } 2058 skip: 2059 cur_pos = next_pos; 2060 is_valid = !is_valid; 2061 2062 if (cur_pos < sbi->blocks_per_seg) 2063 goto find_next; 2064 2065 release_discard_addr(entry); 2066 dcc->nr_discards -= total_len; 2067 } 2068 2069 wake_up_discard_thread(sbi, false); 2070 } 2071 2072 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2073 { 2074 dev_t dev = sbi->sb->s_bdev->bd_dev; 2075 struct discard_cmd_control *dcc; 2076 int err = 0, i; 2077 2078 if (SM_I(sbi)->dcc_info) { 2079 dcc = SM_I(sbi)->dcc_info; 2080 goto init_thread; 2081 } 2082 2083 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2084 if (!dcc) 2085 return -ENOMEM; 2086 2087 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2088 INIT_LIST_HEAD(&dcc->entry_list); 2089 for (i = 0; i < MAX_PLIST_NUM; i++) 2090 INIT_LIST_HEAD(&dcc->pend_list[i]); 2091 INIT_LIST_HEAD(&dcc->wait_list); 2092 INIT_LIST_HEAD(&dcc->fstrim_list); 2093 mutex_init(&dcc->cmd_lock); 2094 atomic_set(&dcc->issued_discard, 0); 2095 atomic_set(&dcc->queued_discard, 0); 2096 atomic_set(&dcc->discard_cmd_cnt, 0); 2097 dcc->nr_discards = 0; 2098 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2099 dcc->undiscard_blks = 0; 2100 dcc->next_pos = 0; 2101 dcc->root = RB_ROOT_CACHED; 2102 dcc->rbtree_check = false; 2103 2104 init_waitqueue_head(&dcc->discard_wait_queue); 2105 SM_I(sbi)->dcc_info = dcc; 2106 init_thread: 2107 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2108 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2109 if (IS_ERR(dcc->f2fs_issue_discard)) { 2110 err = PTR_ERR(dcc->f2fs_issue_discard); 2111 kfree(dcc); 2112 SM_I(sbi)->dcc_info = NULL; 2113 return err; 2114 } 2115 2116 return err; 2117 } 2118 2119 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2120 { 2121 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2122 2123 if (!dcc) 2124 return; 2125 2126 f2fs_stop_discard_thread(sbi); 2127 2128 /* 2129 * Recovery can cache discard commands, so in error path of 2130 * fill_super(), it needs to give a chance to handle them. 2131 */ 2132 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2133 f2fs_issue_discard_timeout(sbi); 2134 2135 kfree(dcc); 2136 SM_I(sbi)->dcc_info = NULL; 2137 } 2138 2139 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2140 { 2141 struct sit_info *sit_i = SIT_I(sbi); 2142 2143 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2144 sit_i->dirty_sentries++; 2145 return false; 2146 } 2147 2148 return true; 2149 } 2150 2151 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2152 unsigned int segno, int modified) 2153 { 2154 struct seg_entry *se = get_seg_entry(sbi, segno); 2155 se->type = type; 2156 if (modified) 2157 __mark_sit_entry_dirty(sbi, segno); 2158 } 2159 2160 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2161 block_t blkaddr) 2162 { 2163 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2164 2165 if (segno == NULL_SEGNO) 2166 return 0; 2167 return get_seg_entry(sbi, segno)->mtime; 2168 } 2169 2170 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2171 unsigned long long old_mtime) 2172 { 2173 struct seg_entry *se; 2174 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2175 unsigned long long ctime = get_mtime(sbi, false); 2176 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2177 2178 if (segno == NULL_SEGNO) 2179 return; 2180 2181 se = get_seg_entry(sbi, segno); 2182 2183 if (!se->mtime) 2184 se->mtime = mtime; 2185 else 2186 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2187 se->valid_blocks + 1); 2188 2189 if (ctime > SIT_I(sbi)->max_mtime) 2190 SIT_I(sbi)->max_mtime = ctime; 2191 } 2192 2193 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2194 { 2195 struct seg_entry *se; 2196 unsigned int segno, offset; 2197 long int new_vblocks; 2198 bool exist; 2199 #ifdef CONFIG_F2FS_CHECK_FS 2200 bool mir_exist; 2201 #endif 2202 2203 segno = GET_SEGNO(sbi, blkaddr); 2204 2205 se = get_seg_entry(sbi, segno); 2206 new_vblocks = se->valid_blocks + del; 2207 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2208 2209 f2fs_bug_on(sbi, (new_vblocks < 0 || 2210 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2211 2212 se->valid_blocks = new_vblocks; 2213 2214 /* Update valid block bitmap */ 2215 if (del > 0) { 2216 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2217 #ifdef CONFIG_F2FS_CHECK_FS 2218 mir_exist = f2fs_test_and_set_bit(offset, 2219 se->cur_valid_map_mir); 2220 if (unlikely(exist != mir_exist)) { 2221 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2222 blkaddr, exist); 2223 f2fs_bug_on(sbi, 1); 2224 } 2225 #endif 2226 if (unlikely(exist)) { 2227 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2228 blkaddr); 2229 f2fs_bug_on(sbi, 1); 2230 se->valid_blocks--; 2231 del = 0; 2232 } 2233 2234 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2235 sbi->discard_blks--; 2236 2237 /* 2238 * SSR should never reuse block which is checkpointed 2239 * or newly invalidated. 2240 */ 2241 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2242 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2243 se->ckpt_valid_blocks++; 2244 } 2245 } else { 2246 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2247 #ifdef CONFIG_F2FS_CHECK_FS 2248 mir_exist = f2fs_test_and_clear_bit(offset, 2249 se->cur_valid_map_mir); 2250 if (unlikely(exist != mir_exist)) { 2251 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2252 blkaddr, exist); 2253 f2fs_bug_on(sbi, 1); 2254 } 2255 #endif 2256 if (unlikely(!exist)) { 2257 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2258 blkaddr); 2259 f2fs_bug_on(sbi, 1); 2260 se->valid_blocks++; 2261 del = 0; 2262 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2263 /* 2264 * If checkpoints are off, we must not reuse data that 2265 * was used in the previous checkpoint. If it was used 2266 * before, we must track that to know how much space we 2267 * really have. 2268 */ 2269 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2270 spin_lock(&sbi->stat_lock); 2271 sbi->unusable_block_count++; 2272 spin_unlock(&sbi->stat_lock); 2273 } 2274 } 2275 2276 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2277 sbi->discard_blks++; 2278 } 2279 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2280 se->ckpt_valid_blocks += del; 2281 2282 __mark_sit_entry_dirty(sbi, segno); 2283 2284 /* update total number of valid blocks to be written in ckpt area */ 2285 SIT_I(sbi)->written_valid_blocks += del; 2286 2287 if (__is_large_section(sbi)) 2288 get_sec_entry(sbi, segno)->valid_blocks += del; 2289 } 2290 2291 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2292 { 2293 unsigned int segno = GET_SEGNO(sbi, addr); 2294 struct sit_info *sit_i = SIT_I(sbi); 2295 2296 f2fs_bug_on(sbi, addr == NULL_ADDR); 2297 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2298 return; 2299 2300 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2301 2302 /* add it into sit main buffer */ 2303 down_write(&sit_i->sentry_lock); 2304 2305 update_segment_mtime(sbi, addr, 0); 2306 update_sit_entry(sbi, addr, -1); 2307 2308 /* add it into dirty seglist */ 2309 locate_dirty_segment(sbi, segno); 2310 2311 up_write(&sit_i->sentry_lock); 2312 } 2313 2314 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2315 { 2316 struct sit_info *sit_i = SIT_I(sbi); 2317 unsigned int segno, offset; 2318 struct seg_entry *se; 2319 bool is_cp = false; 2320 2321 if (!__is_valid_data_blkaddr(blkaddr)) 2322 return true; 2323 2324 down_read(&sit_i->sentry_lock); 2325 2326 segno = GET_SEGNO(sbi, blkaddr); 2327 se = get_seg_entry(sbi, segno); 2328 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2329 2330 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2331 is_cp = true; 2332 2333 up_read(&sit_i->sentry_lock); 2334 2335 return is_cp; 2336 } 2337 2338 /* 2339 * This function should be resided under the curseg_mutex lock 2340 */ 2341 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2342 struct f2fs_summary *sum) 2343 { 2344 struct curseg_info *curseg = CURSEG_I(sbi, type); 2345 void *addr = curseg->sum_blk; 2346 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2347 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2348 } 2349 2350 /* 2351 * Calculate the number of current summary pages for writing 2352 */ 2353 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2354 { 2355 int valid_sum_count = 0; 2356 int i, sum_in_page; 2357 2358 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2359 if (sbi->ckpt->alloc_type[i] == SSR) 2360 valid_sum_count += sbi->blocks_per_seg; 2361 else { 2362 if (for_ra) 2363 valid_sum_count += le16_to_cpu( 2364 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2365 else 2366 valid_sum_count += curseg_blkoff(sbi, i); 2367 } 2368 } 2369 2370 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2371 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2372 if (valid_sum_count <= sum_in_page) 2373 return 1; 2374 else if ((valid_sum_count - sum_in_page) <= 2375 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2376 return 2; 2377 return 3; 2378 } 2379 2380 /* 2381 * Caller should put this summary page 2382 */ 2383 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2384 { 2385 if (unlikely(f2fs_cp_error(sbi))) 2386 return ERR_PTR(-EIO); 2387 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2388 } 2389 2390 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2391 void *src, block_t blk_addr) 2392 { 2393 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2394 2395 memcpy(page_address(page), src, PAGE_SIZE); 2396 set_page_dirty(page); 2397 f2fs_put_page(page, 1); 2398 } 2399 2400 static void write_sum_page(struct f2fs_sb_info *sbi, 2401 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2402 { 2403 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2404 } 2405 2406 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2407 int type, block_t blk_addr) 2408 { 2409 struct curseg_info *curseg = CURSEG_I(sbi, type); 2410 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2411 struct f2fs_summary_block *src = curseg->sum_blk; 2412 struct f2fs_summary_block *dst; 2413 2414 dst = (struct f2fs_summary_block *)page_address(page); 2415 memset(dst, 0, PAGE_SIZE); 2416 2417 mutex_lock(&curseg->curseg_mutex); 2418 2419 down_read(&curseg->journal_rwsem); 2420 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2421 up_read(&curseg->journal_rwsem); 2422 2423 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2424 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2425 2426 mutex_unlock(&curseg->curseg_mutex); 2427 2428 set_page_dirty(page); 2429 f2fs_put_page(page, 1); 2430 } 2431 2432 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2433 struct curseg_info *curseg, int type) 2434 { 2435 unsigned int segno = curseg->segno + 1; 2436 struct free_segmap_info *free_i = FREE_I(sbi); 2437 2438 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2439 return !test_bit(segno, free_i->free_segmap); 2440 return 0; 2441 } 2442 2443 /* 2444 * Find a new segment from the free segments bitmap to right order 2445 * This function should be returned with success, otherwise BUG 2446 */ 2447 static void get_new_segment(struct f2fs_sb_info *sbi, 2448 unsigned int *newseg, bool new_sec, int dir) 2449 { 2450 struct free_segmap_info *free_i = FREE_I(sbi); 2451 unsigned int segno, secno, zoneno; 2452 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2453 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2454 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2455 unsigned int left_start = hint; 2456 bool init = true; 2457 int go_left = 0; 2458 int i; 2459 2460 spin_lock(&free_i->segmap_lock); 2461 2462 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2463 segno = find_next_zero_bit(free_i->free_segmap, 2464 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2465 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2466 goto got_it; 2467 } 2468 find_other_zone: 2469 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2470 if (secno >= MAIN_SECS(sbi)) { 2471 if (dir == ALLOC_RIGHT) { 2472 secno = find_next_zero_bit(free_i->free_secmap, 2473 MAIN_SECS(sbi), 0); 2474 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2475 } else { 2476 go_left = 1; 2477 left_start = hint - 1; 2478 } 2479 } 2480 if (go_left == 0) 2481 goto skip_left; 2482 2483 while (test_bit(left_start, free_i->free_secmap)) { 2484 if (left_start > 0) { 2485 left_start--; 2486 continue; 2487 } 2488 left_start = find_next_zero_bit(free_i->free_secmap, 2489 MAIN_SECS(sbi), 0); 2490 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2491 break; 2492 } 2493 secno = left_start; 2494 skip_left: 2495 segno = GET_SEG_FROM_SEC(sbi, secno); 2496 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2497 2498 /* give up on finding another zone */ 2499 if (!init) 2500 goto got_it; 2501 if (sbi->secs_per_zone == 1) 2502 goto got_it; 2503 if (zoneno == old_zoneno) 2504 goto got_it; 2505 if (dir == ALLOC_LEFT) { 2506 if (!go_left && zoneno + 1 >= total_zones) 2507 goto got_it; 2508 if (go_left && zoneno == 0) 2509 goto got_it; 2510 } 2511 for (i = 0; i < NR_CURSEG_TYPE; i++) 2512 if (CURSEG_I(sbi, i)->zone == zoneno) 2513 break; 2514 2515 if (i < NR_CURSEG_TYPE) { 2516 /* zone is in user, try another */ 2517 if (go_left) 2518 hint = zoneno * sbi->secs_per_zone - 1; 2519 else if (zoneno + 1 >= total_zones) 2520 hint = 0; 2521 else 2522 hint = (zoneno + 1) * sbi->secs_per_zone; 2523 init = false; 2524 goto find_other_zone; 2525 } 2526 got_it: 2527 /* set it as dirty segment in free segmap */ 2528 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2529 __set_inuse(sbi, segno); 2530 *newseg = segno; 2531 spin_unlock(&free_i->segmap_lock); 2532 } 2533 2534 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2535 { 2536 struct curseg_info *curseg = CURSEG_I(sbi, type); 2537 struct summary_footer *sum_footer; 2538 unsigned short seg_type = curseg->seg_type; 2539 2540 curseg->inited = true; 2541 curseg->segno = curseg->next_segno; 2542 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2543 curseg->next_blkoff = 0; 2544 curseg->next_segno = NULL_SEGNO; 2545 2546 sum_footer = &(curseg->sum_blk->footer); 2547 memset(sum_footer, 0, sizeof(struct summary_footer)); 2548 2549 sanity_check_seg_type(sbi, seg_type); 2550 2551 if (IS_DATASEG(seg_type)) 2552 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2553 if (IS_NODESEG(seg_type)) 2554 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2555 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2556 } 2557 2558 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2559 { 2560 struct curseg_info *curseg = CURSEG_I(sbi, type); 2561 unsigned short seg_type = curseg->seg_type; 2562 2563 sanity_check_seg_type(sbi, seg_type); 2564 2565 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2566 if (__is_large_section(sbi)) 2567 return curseg->segno; 2568 2569 /* inmem log may not locate on any segment after mount */ 2570 if (!curseg->inited) 2571 return 0; 2572 2573 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2574 return 0; 2575 2576 if (test_opt(sbi, NOHEAP) && 2577 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2578 return 0; 2579 2580 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2581 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2582 2583 /* find segments from 0 to reuse freed segments */ 2584 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2585 return 0; 2586 2587 return curseg->segno; 2588 } 2589 2590 /* 2591 * Allocate a current working segment. 2592 * This function always allocates a free segment in LFS manner. 2593 */ 2594 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2595 { 2596 struct curseg_info *curseg = CURSEG_I(sbi, type); 2597 unsigned short seg_type = curseg->seg_type; 2598 unsigned int segno = curseg->segno; 2599 int dir = ALLOC_LEFT; 2600 2601 if (curseg->inited) 2602 write_sum_page(sbi, curseg->sum_blk, 2603 GET_SUM_BLOCK(sbi, segno)); 2604 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2605 dir = ALLOC_RIGHT; 2606 2607 if (test_opt(sbi, NOHEAP)) 2608 dir = ALLOC_RIGHT; 2609 2610 segno = __get_next_segno(sbi, type); 2611 get_new_segment(sbi, &segno, new_sec, dir); 2612 curseg->next_segno = segno; 2613 reset_curseg(sbi, type, 1); 2614 curseg->alloc_type = LFS; 2615 } 2616 2617 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2618 struct curseg_info *seg, block_t start) 2619 { 2620 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2621 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2622 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2623 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2624 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2625 int i, pos; 2626 2627 for (i = 0; i < entries; i++) 2628 target_map[i] = ckpt_map[i] | cur_map[i]; 2629 2630 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2631 2632 seg->next_blkoff = pos; 2633 } 2634 2635 /* 2636 * If a segment is written by LFS manner, next block offset is just obtained 2637 * by increasing the current block offset. However, if a segment is written by 2638 * SSR manner, next block offset obtained by calling __next_free_blkoff 2639 */ 2640 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2641 struct curseg_info *seg) 2642 { 2643 if (seg->alloc_type == SSR) 2644 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2645 else 2646 seg->next_blkoff++; 2647 } 2648 2649 /* 2650 * This function always allocates a used segment(from dirty seglist) by SSR 2651 * manner, so it should recover the existing segment information of valid blocks 2652 */ 2653 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush) 2654 { 2655 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2656 struct curseg_info *curseg = CURSEG_I(sbi, type); 2657 unsigned int new_segno = curseg->next_segno; 2658 struct f2fs_summary_block *sum_node; 2659 struct page *sum_page; 2660 2661 if (flush) 2662 write_sum_page(sbi, curseg->sum_blk, 2663 GET_SUM_BLOCK(sbi, curseg->segno)); 2664 2665 __set_test_and_inuse(sbi, new_segno); 2666 2667 mutex_lock(&dirty_i->seglist_lock); 2668 __remove_dirty_segment(sbi, new_segno, PRE); 2669 __remove_dirty_segment(sbi, new_segno, DIRTY); 2670 mutex_unlock(&dirty_i->seglist_lock); 2671 2672 reset_curseg(sbi, type, 1); 2673 curseg->alloc_type = SSR; 2674 __next_free_blkoff(sbi, curseg, 0); 2675 2676 sum_page = f2fs_get_sum_page(sbi, new_segno); 2677 if (IS_ERR(sum_page)) { 2678 /* GC won't be able to use stale summary pages by cp_error */ 2679 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2680 return; 2681 } 2682 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2683 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2684 f2fs_put_page(sum_page, 1); 2685 } 2686 2687 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2688 int alloc_mode, unsigned long long age); 2689 2690 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2691 int target_type, int alloc_mode, 2692 unsigned long long age) 2693 { 2694 struct curseg_info *curseg = CURSEG_I(sbi, type); 2695 2696 curseg->seg_type = target_type; 2697 2698 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2699 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2700 2701 curseg->seg_type = se->type; 2702 change_curseg(sbi, type, true); 2703 } else { 2704 /* allocate cold segment by default */ 2705 curseg->seg_type = CURSEG_COLD_DATA; 2706 new_curseg(sbi, type, true); 2707 } 2708 stat_inc_seg_type(sbi, curseg); 2709 } 2710 2711 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2712 { 2713 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2714 2715 if (!sbi->am.atgc_enabled) 2716 return; 2717 2718 down_read(&SM_I(sbi)->curseg_lock); 2719 2720 mutex_lock(&curseg->curseg_mutex); 2721 down_write(&SIT_I(sbi)->sentry_lock); 2722 2723 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2724 2725 up_write(&SIT_I(sbi)->sentry_lock); 2726 mutex_unlock(&curseg->curseg_mutex); 2727 2728 up_read(&SM_I(sbi)->curseg_lock); 2729 2730 } 2731 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2732 { 2733 __f2fs_init_atgc_curseg(sbi); 2734 } 2735 2736 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2737 { 2738 struct curseg_info *curseg = CURSEG_I(sbi, type); 2739 2740 mutex_lock(&curseg->curseg_mutex); 2741 if (!curseg->inited) 2742 goto out; 2743 2744 if (get_valid_blocks(sbi, curseg->segno, false)) { 2745 write_sum_page(sbi, curseg->sum_blk, 2746 GET_SUM_BLOCK(sbi, curseg->segno)); 2747 } else { 2748 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2749 __set_test_and_free(sbi, curseg->segno, true); 2750 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2751 } 2752 out: 2753 mutex_unlock(&curseg->curseg_mutex); 2754 } 2755 2756 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2757 { 2758 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2759 2760 if (sbi->am.atgc_enabled) 2761 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2762 } 2763 2764 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2765 { 2766 struct curseg_info *curseg = CURSEG_I(sbi, type); 2767 2768 mutex_lock(&curseg->curseg_mutex); 2769 if (!curseg->inited) 2770 goto out; 2771 if (get_valid_blocks(sbi, curseg->segno, false)) 2772 goto out; 2773 2774 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2775 __set_test_and_inuse(sbi, curseg->segno); 2776 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2777 out: 2778 mutex_unlock(&curseg->curseg_mutex); 2779 } 2780 2781 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2782 { 2783 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2784 2785 if (sbi->am.atgc_enabled) 2786 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2787 } 2788 2789 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2790 int alloc_mode, unsigned long long age) 2791 { 2792 struct curseg_info *curseg = CURSEG_I(sbi, type); 2793 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2794 unsigned segno = NULL_SEGNO; 2795 unsigned short seg_type = curseg->seg_type; 2796 int i, cnt; 2797 bool reversed = false; 2798 2799 sanity_check_seg_type(sbi, seg_type); 2800 2801 /* f2fs_need_SSR() already forces to do this */ 2802 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2803 curseg->next_segno = segno; 2804 return 1; 2805 } 2806 2807 /* For node segments, let's do SSR more intensively */ 2808 if (IS_NODESEG(seg_type)) { 2809 if (seg_type >= CURSEG_WARM_NODE) { 2810 reversed = true; 2811 i = CURSEG_COLD_NODE; 2812 } else { 2813 i = CURSEG_HOT_NODE; 2814 } 2815 cnt = NR_CURSEG_NODE_TYPE; 2816 } else { 2817 if (seg_type >= CURSEG_WARM_DATA) { 2818 reversed = true; 2819 i = CURSEG_COLD_DATA; 2820 } else { 2821 i = CURSEG_HOT_DATA; 2822 } 2823 cnt = NR_CURSEG_DATA_TYPE; 2824 } 2825 2826 for (; cnt-- > 0; reversed ? i-- : i++) { 2827 if (i == seg_type) 2828 continue; 2829 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2830 curseg->next_segno = segno; 2831 return 1; 2832 } 2833 } 2834 2835 /* find valid_blocks=0 in dirty list */ 2836 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2837 segno = get_free_segment(sbi); 2838 if (segno != NULL_SEGNO) { 2839 curseg->next_segno = segno; 2840 return 1; 2841 } 2842 } 2843 return 0; 2844 } 2845 2846 /* 2847 * flush out current segment and replace it with new segment 2848 * This function should be returned with success, otherwise BUG 2849 */ 2850 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2851 int type, bool force) 2852 { 2853 struct curseg_info *curseg = CURSEG_I(sbi, type); 2854 2855 if (force) 2856 new_curseg(sbi, type, true); 2857 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2858 curseg->seg_type == CURSEG_WARM_NODE) 2859 new_curseg(sbi, type, false); 2860 else if (curseg->alloc_type == LFS && 2861 is_next_segment_free(sbi, curseg, type) && 2862 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2863 new_curseg(sbi, type, false); 2864 else if (f2fs_need_SSR(sbi) && 2865 get_ssr_segment(sbi, type, SSR, 0)) 2866 change_curseg(sbi, type, true); 2867 else 2868 new_curseg(sbi, type, false); 2869 2870 stat_inc_seg_type(sbi, curseg); 2871 } 2872 2873 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2874 unsigned int start, unsigned int end) 2875 { 2876 struct curseg_info *curseg = CURSEG_I(sbi, type); 2877 unsigned int segno; 2878 2879 down_read(&SM_I(sbi)->curseg_lock); 2880 mutex_lock(&curseg->curseg_mutex); 2881 down_write(&SIT_I(sbi)->sentry_lock); 2882 2883 segno = CURSEG_I(sbi, type)->segno; 2884 if (segno < start || segno > end) 2885 goto unlock; 2886 2887 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2888 change_curseg(sbi, type, true); 2889 else 2890 new_curseg(sbi, type, true); 2891 2892 stat_inc_seg_type(sbi, curseg); 2893 2894 locate_dirty_segment(sbi, segno); 2895 unlock: 2896 up_write(&SIT_I(sbi)->sentry_lock); 2897 2898 if (segno != curseg->segno) 2899 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2900 type, segno, curseg->segno); 2901 2902 mutex_unlock(&curseg->curseg_mutex); 2903 up_read(&SM_I(sbi)->curseg_lock); 2904 } 2905 2906 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type) 2907 { 2908 struct curseg_info *curseg = CURSEG_I(sbi, type); 2909 unsigned int old_segno; 2910 2911 if (!curseg->inited) 2912 goto alloc; 2913 2914 if (!curseg->next_blkoff && 2915 !get_valid_blocks(sbi, curseg->segno, false) && 2916 !get_ckpt_valid_blocks(sbi, curseg->segno)) 2917 return; 2918 2919 alloc: 2920 old_segno = curseg->segno; 2921 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 2922 locate_dirty_segment(sbi, old_segno); 2923 } 2924 2925 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type) 2926 { 2927 down_write(&SIT_I(sbi)->sentry_lock); 2928 __allocate_new_segment(sbi, type); 2929 up_write(&SIT_I(sbi)->sentry_lock); 2930 } 2931 2932 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2933 { 2934 int i; 2935 2936 down_write(&SIT_I(sbi)->sentry_lock); 2937 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 2938 __allocate_new_segment(sbi, i); 2939 up_write(&SIT_I(sbi)->sentry_lock); 2940 } 2941 2942 static const struct segment_allocation default_salloc_ops = { 2943 .allocate_segment = allocate_segment_by_default, 2944 }; 2945 2946 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2947 struct cp_control *cpc) 2948 { 2949 __u64 trim_start = cpc->trim_start; 2950 bool has_candidate = false; 2951 2952 down_write(&SIT_I(sbi)->sentry_lock); 2953 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2954 if (add_discard_addrs(sbi, cpc, true)) { 2955 has_candidate = true; 2956 break; 2957 } 2958 } 2959 up_write(&SIT_I(sbi)->sentry_lock); 2960 2961 cpc->trim_start = trim_start; 2962 return has_candidate; 2963 } 2964 2965 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2966 struct discard_policy *dpolicy, 2967 unsigned int start, unsigned int end) 2968 { 2969 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2970 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2971 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2972 struct discard_cmd *dc; 2973 struct blk_plug plug; 2974 int issued; 2975 unsigned int trimmed = 0; 2976 2977 next: 2978 issued = 0; 2979 2980 mutex_lock(&dcc->cmd_lock); 2981 if (unlikely(dcc->rbtree_check)) 2982 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2983 &dcc->root, false)); 2984 2985 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2986 NULL, start, 2987 (struct rb_entry **)&prev_dc, 2988 (struct rb_entry **)&next_dc, 2989 &insert_p, &insert_parent, true, NULL); 2990 if (!dc) 2991 dc = next_dc; 2992 2993 blk_start_plug(&plug); 2994 2995 while (dc && dc->lstart <= end) { 2996 struct rb_node *node; 2997 int err = 0; 2998 2999 if (dc->len < dpolicy->granularity) 3000 goto skip; 3001 3002 if (dc->state != D_PREP) { 3003 list_move_tail(&dc->list, &dcc->fstrim_list); 3004 goto skip; 3005 } 3006 3007 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3008 3009 if (issued >= dpolicy->max_requests) { 3010 start = dc->lstart + dc->len; 3011 3012 if (err) 3013 __remove_discard_cmd(sbi, dc); 3014 3015 blk_finish_plug(&plug); 3016 mutex_unlock(&dcc->cmd_lock); 3017 trimmed += __wait_all_discard_cmd(sbi, NULL); 3018 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 3019 goto next; 3020 } 3021 skip: 3022 node = rb_next(&dc->rb_node); 3023 if (err) 3024 __remove_discard_cmd(sbi, dc); 3025 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3026 3027 if (fatal_signal_pending(current)) 3028 break; 3029 } 3030 3031 blk_finish_plug(&plug); 3032 mutex_unlock(&dcc->cmd_lock); 3033 3034 return trimmed; 3035 } 3036 3037 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3038 { 3039 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3040 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3041 unsigned int start_segno, end_segno; 3042 block_t start_block, end_block; 3043 struct cp_control cpc; 3044 struct discard_policy dpolicy; 3045 unsigned long long trimmed = 0; 3046 int err = 0; 3047 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3048 3049 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3050 return -EINVAL; 3051 3052 if (end < MAIN_BLKADDR(sbi)) 3053 goto out; 3054 3055 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3056 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3057 return -EFSCORRUPTED; 3058 } 3059 3060 /* start/end segment number in main_area */ 3061 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3062 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3063 GET_SEGNO(sbi, end); 3064 if (need_align) { 3065 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3066 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3067 } 3068 3069 cpc.reason = CP_DISCARD; 3070 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3071 cpc.trim_start = start_segno; 3072 cpc.trim_end = end_segno; 3073 3074 if (sbi->discard_blks == 0) 3075 goto out; 3076 3077 down_write(&sbi->gc_lock); 3078 err = f2fs_write_checkpoint(sbi, &cpc); 3079 up_write(&sbi->gc_lock); 3080 if (err) 3081 goto out; 3082 3083 /* 3084 * We filed discard candidates, but actually we don't need to wait for 3085 * all of them, since they'll be issued in idle time along with runtime 3086 * discard option. User configuration looks like using runtime discard 3087 * or periodic fstrim instead of it. 3088 */ 3089 if (f2fs_realtime_discard_enable(sbi)) 3090 goto out; 3091 3092 start_block = START_BLOCK(sbi, start_segno); 3093 end_block = START_BLOCK(sbi, end_segno + 1); 3094 3095 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3096 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3097 start_block, end_block); 3098 3099 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3100 start_block, end_block); 3101 out: 3102 if (!err) 3103 range->len = F2FS_BLK_TO_BYTES(trimmed); 3104 return err; 3105 } 3106 3107 static bool __has_curseg_space(struct f2fs_sb_info *sbi, 3108 struct curseg_info *curseg) 3109 { 3110 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, 3111 curseg->segno); 3112 } 3113 3114 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3115 { 3116 switch (hint) { 3117 case WRITE_LIFE_SHORT: 3118 return CURSEG_HOT_DATA; 3119 case WRITE_LIFE_EXTREME: 3120 return CURSEG_COLD_DATA; 3121 default: 3122 return CURSEG_WARM_DATA; 3123 } 3124 } 3125 3126 /* This returns write hints for each segment type. This hints will be 3127 * passed down to block layer. There are mapping tables which depend on 3128 * the mount option 'whint_mode'. 3129 * 3130 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 3131 * 3132 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 3133 * 3134 * User F2FS Block 3135 * ---- ---- ----- 3136 * META WRITE_LIFE_NOT_SET 3137 * HOT_NODE " 3138 * WARM_NODE " 3139 * COLD_NODE " 3140 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3141 * extension list " " 3142 * 3143 * -- buffered io 3144 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3145 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3146 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3147 * WRITE_LIFE_NONE " " 3148 * WRITE_LIFE_MEDIUM " " 3149 * WRITE_LIFE_LONG " " 3150 * 3151 * -- direct io 3152 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3153 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3154 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3155 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3156 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3157 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3158 * 3159 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 3160 * 3161 * User F2FS Block 3162 * ---- ---- ----- 3163 * META WRITE_LIFE_MEDIUM; 3164 * HOT_NODE WRITE_LIFE_NOT_SET 3165 * WARM_NODE " 3166 * COLD_NODE WRITE_LIFE_NONE 3167 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3168 * extension list " " 3169 * 3170 * -- buffered io 3171 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3172 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3173 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 3174 * WRITE_LIFE_NONE " " 3175 * WRITE_LIFE_MEDIUM " " 3176 * WRITE_LIFE_LONG " " 3177 * 3178 * -- direct io 3179 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3180 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3181 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3182 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3183 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3184 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3185 */ 3186 3187 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3188 enum page_type type, enum temp_type temp) 3189 { 3190 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 3191 if (type == DATA) { 3192 if (temp == WARM) 3193 return WRITE_LIFE_NOT_SET; 3194 else if (temp == HOT) 3195 return WRITE_LIFE_SHORT; 3196 else if (temp == COLD) 3197 return WRITE_LIFE_EXTREME; 3198 } else { 3199 return WRITE_LIFE_NOT_SET; 3200 } 3201 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 3202 if (type == DATA) { 3203 if (temp == WARM) 3204 return WRITE_LIFE_LONG; 3205 else if (temp == HOT) 3206 return WRITE_LIFE_SHORT; 3207 else if (temp == COLD) 3208 return WRITE_LIFE_EXTREME; 3209 } else if (type == NODE) { 3210 if (temp == WARM || temp == HOT) 3211 return WRITE_LIFE_NOT_SET; 3212 else if (temp == COLD) 3213 return WRITE_LIFE_NONE; 3214 } else if (type == META) { 3215 return WRITE_LIFE_MEDIUM; 3216 } 3217 } 3218 return WRITE_LIFE_NOT_SET; 3219 } 3220 3221 static int __get_segment_type_2(struct f2fs_io_info *fio) 3222 { 3223 if (fio->type == DATA) 3224 return CURSEG_HOT_DATA; 3225 else 3226 return CURSEG_HOT_NODE; 3227 } 3228 3229 static int __get_segment_type_4(struct f2fs_io_info *fio) 3230 { 3231 if (fio->type == DATA) { 3232 struct inode *inode = fio->page->mapping->host; 3233 3234 if (S_ISDIR(inode->i_mode)) 3235 return CURSEG_HOT_DATA; 3236 else 3237 return CURSEG_COLD_DATA; 3238 } else { 3239 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3240 return CURSEG_WARM_NODE; 3241 else 3242 return CURSEG_COLD_NODE; 3243 } 3244 } 3245 3246 static int __get_segment_type_6(struct f2fs_io_info *fio) 3247 { 3248 if (fio->type == DATA) { 3249 struct inode *inode = fio->page->mapping->host; 3250 3251 if (is_cold_data(fio->page)) { 3252 if (fio->sbi->am.atgc_enabled) 3253 return CURSEG_ALL_DATA_ATGC; 3254 else 3255 return CURSEG_COLD_DATA; 3256 } 3257 if (file_is_cold(inode) || f2fs_compressed_file(inode)) 3258 return CURSEG_COLD_DATA; 3259 if (file_is_hot(inode) || 3260 is_inode_flag_set(inode, FI_HOT_DATA) || 3261 f2fs_is_atomic_file(inode) || 3262 f2fs_is_volatile_file(inode)) 3263 return CURSEG_HOT_DATA; 3264 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3265 } else { 3266 if (IS_DNODE(fio->page)) 3267 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3268 CURSEG_HOT_NODE; 3269 return CURSEG_COLD_NODE; 3270 } 3271 } 3272 3273 static int __get_segment_type(struct f2fs_io_info *fio) 3274 { 3275 int type = 0; 3276 3277 switch (F2FS_OPTION(fio->sbi).active_logs) { 3278 case 2: 3279 type = __get_segment_type_2(fio); 3280 break; 3281 case 4: 3282 type = __get_segment_type_4(fio); 3283 break; 3284 case 6: 3285 type = __get_segment_type_6(fio); 3286 break; 3287 default: 3288 f2fs_bug_on(fio->sbi, true); 3289 } 3290 3291 if (IS_HOT(type)) 3292 fio->temp = HOT; 3293 else if (IS_WARM(type)) 3294 fio->temp = WARM; 3295 else 3296 fio->temp = COLD; 3297 return type; 3298 } 3299 3300 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3301 block_t old_blkaddr, block_t *new_blkaddr, 3302 struct f2fs_summary *sum, int type, 3303 struct f2fs_io_info *fio) 3304 { 3305 struct sit_info *sit_i = SIT_I(sbi); 3306 struct curseg_info *curseg = CURSEG_I(sbi, type); 3307 unsigned long long old_mtime; 3308 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3309 struct seg_entry *se = NULL; 3310 3311 down_read(&SM_I(sbi)->curseg_lock); 3312 3313 mutex_lock(&curseg->curseg_mutex); 3314 down_write(&sit_i->sentry_lock); 3315 3316 if (from_gc) { 3317 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3318 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3319 sanity_check_seg_type(sbi, se->type); 3320 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3321 } 3322 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3323 3324 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3325 3326 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3327 3328 /* 3329 * __add_sum_entry should be resided under the curseg_mutex 3330 * because, this function updates a summary entry in the 3331 * current summary block. 3332 */ 3333 __add_sum_entry(sbi, type, sum); 3334 3335 __refresh_next_blkoff(sbi, curseg); 3336 3337 stat_inc_block_count(sbi, curseg); 3338 3339 if (from_gc) { 3340 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3341 } else { 3342 update_segment_mtime(sbi, old_blkaddr, 0); 3343 old_mtime = 0; 3344 } 3345 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3346 3347 /* 3348 * SIT information should be updated before segment allocation, 3349 * since SSR needs latest valid block information. 3350 */ 3351 update_sit_entry(sbi, *new_blkaddr, 1); 3352 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3353 update_sit_entry(sbi, old_blkaddr, -1); 3354 3355 if (!__has_curseg_space(sbi, curseg)) { 3356 if (from_gc) 3357 get_atssr_segment(sbi, type, se->type, 3358 AT_SSR, se->mtime); 3359 else 3360 sit_i->s_ops->allocate_segment(sbi, type, false); 3361 } 3362 /* 3363 * segment dirty status should be updated after segment allocation, 3364 * so we just need to update status only one time after previous 3365 * segment being closed. 3366 */ 3367 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3368 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3369 3370 up_write(&sit_i->sentry_lock); 3371 3372 if (page && IS_NODESEG(type)) { 3373 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3374 3375 f2fs_inode_chksum_set(sbi, page); 3376 } 3377 3378 if (F2FS_IO_ALIGNED(sbi)) 3379 fio->retry = false; 3380 3381 if (fio) { 3382 struct f2fs_bio_info *io; 3383 3384 INIT_LIST_HEAD(&fio->list); 3385 fio->in_list = true; 3386 io = sbi->write_io[fio->type] + fio->temp; 3387 spin_lock(&io->io_lock); 3388 list_add_tail(&fio->list, &io->io_list); 3389 spin_unlock(&io->io_lock); 3390 } 3391 3392 mutex_unlock(&curseg->curseg_mutex); 3393 3394 up_read(&SM_I(sbi)->curseg_lock); 3395 } 3396 3397 static void update_device_state(struct f2fs_io_info *fio) 3398 { 3399 struct f2fs_sb_info *sbi = fio->sbi; 3400 unsigned int devidx; 3401 3402 if (!f2fs_is_multi_device(sbi)) 3403 return; 3404 3405 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3406 3407 /* update device state for fsync */ 3408 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3409 3410 /* update device state for checkpoint */ 3411 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3412 spin_lock(&sbi->dev_lock); 3413 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3414 spin_unlock(&sbi->dev_lock); 3415 } 3416 } 3417 3418 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3419 { 3420 int type = __get_segment_type(fio); 3421 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3422 3423 if (keep_order) 3424 down_read(&fio->sbi->io_order_lock); 3425 reallocate: 3426 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3427 &fio->new_blkaddr, sum, type, fio); 3428 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3429 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3430 fio->old_blkaddr, fio->old_blkaddr); 3431 3432 /* writeout dirty page into bdev */ 3433 f2fs_submit_page_write(fio); 3434 if (fio->retry) { 3435 fio->old_blkaddr = fio->new_blkaddr; 3436 goto reallocate; 3437 } 3438 3439 update_device_state(fio); 3440 3441 if (keep_order) 3442 up_read(&fio->sbi->io_order_lock); 3443 } 3444 3445 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3446 enum iostat_type io_type) 3447 { 3448 struct f2fs_io_info fio = { 3449 .sbi = sbi, 3450 .type = META, 3451 .temp = HOT, 3452 .op = REQ_OP_WRITE, 3453 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3454 .old_blkaddr = page->index, 3455 .new_blkaddr = page->index, 3456 .page = page, 3457 .encrypted_page = NULL, 3458 .in_list = false, 3459 }; 3460 3461 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3462 fio.op_flags &= ~REQ_META; 3463 3464 set_page_writeback(page); 3465 ClearPageError(page); 3466 f2fs_submit_page_write(&fio); 3467 3468 stat_inc_meta_count(sbi, page->index); 3469 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3470 } 3471 3472 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3473 { 3474 struct f2fs_summary sum; 3475 3476 set_summary(&sum, nid, 0, 0); 3477 do_write_page(&sum, fio); 3478 3479 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3480 } 3481 3482 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3483 struct f2fs_io_info *fio) 3484 { 3485 struct f2fs_sb_info *sbi = fio->sbi; 3486 struct f2fs_summary sum; 3487 3488 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3489 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3490 do_write_page(&sum, fio); 3491 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3492 3493 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3494 } 3495 3496 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3497 { 3498 int err; 3499 struct f2fs_sb_info *sbi = fio->sbi; 3500 unsigned int segno; 3501 3502 fio->new_blkaddr = fio->old_blkaddr; 3503 /* i/o temperature is needed for passing down write hints */ 3504 __get_segment_type(fio); 3505 3506 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3507 3508 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3509 set_sbi_flag(sbi, SBI_NEED_FSCK); 3510 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3511 __func__, segno); 3512 return -EFSCORRUPTED; 3513 } 3514 3515 stat_inc_inplace_blocks(fio->sbi); 3516 3517 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3518 err = f2fs_merge_page_bio(fio); 3519 else 3520 err = f2fs_submit_page_bio(fio); 3521 if (!err) { 3522 update_device_state(fio); 3523 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3524 } 3525 3526 return err; 3527 } 3528 3529 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3530 unsigned int segno) 3531 { 3532 int i; 3533 3534 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3535 if (CURSEG_I(sbi, i)->segno == segno) 3536 break; 3537 } 3538 return i; 3539 } 3540 3541 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3542 block_t old_blkaddr, block_t new_blkaddr, 3543 bool recover_curseg, bool recover_newaddr, 3544 bool from_gc) 3545 { 3546 struct sit_info *sit_i = SIT_I(sbi); 3547 struct curseg_info *curseg; 3548 unsigned int segno, old_cursegno; 3549 struct seg_entry *se; 3550 int type; 3551 unsigned short old_blkoff; 3552 3553 segno = GET_SEGNO(sbi, new_blkaddr); 3554 se = get_seg_entry(sbi, segno); 3555 type = se->type; 3556 3557 down_write(&SM_I(sbi)->curseg_lock); 3558 3559 if (!recover_curseg) { 3560 /* for recovery flow */ 3561 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3562 if (old_blkaddr == NULL_ADDR) 3563 type = CURSEG_COLD_DATA; 3564 else 3565 type = CURSEG_WARM_DATA; 3566 } 3567 } else { 3568 if (IS_CURSEG(sbi, segno)) { 3569 /* se->type is volatile as SSR allocation */ 3570 type = __f2fs_get_curseg(sbi, segno); 3571 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3572 } else { 3573 type = CURSEG_WARM_DATA; 3574 } 3575 } 3576 3577 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3578 curseg = CURSEG_I(sbi, type); 3579 3580 mutex_lock(&curseg->curseg_mutex); 3581 down_write(&sit_i->sentry_lock); 3582 3583 old_cursegno = curseg->segno; 3584 old_blkoff = curseg->next_blkoff; 3585 3586 /* change the current segment */ 3587 if (segno != curseg->segno) { 3588 curseg->next_segno = segno; 3589 change_curseg(sbi, type, true); 3590 } 3591 3592 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3593 __add_sum_entry(sbi, type, sum); 3594 3595 if (!recover_curseg || recover_newaddr) { 3596 if (!from_gc) 3597 update_segment_mtime(sbi, new_blkaddr, 0); 3598 update_sit_entry(sbi, new_blkaddr, 1); 3599 } 3600 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3601 invalidate_mapping_pages(META_MAPPING(sbi), 3602 old_blkaddr, old_blkaddr); 3603 if (!from_gc) 3604 update_segment_mtime(sbi, old_blkaddr, 0); 3605 update_sit_entry(sbi, old_blkaddr, -1); 3606 } 3607 3608 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3609 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3610 3611 locate_dirty_segment(sbi, old_cursegno); 3612 3613 if (recover_curseg) { 3614 if (old_cursegno != curseg->segno) { 3615 curseg->next_segno = old_cursegno; 3616 change_curseg(sbi, type, true); 3617 } 3618 curseg->next_blkoff = old_blkoff; 3619 } 3620 3621 up_write(&sit_i->sentry_lock); 3622 mutex_unlock(&curseg->curseg_mutex); 3623 up_write(&SM_I(sbi)->curseg_lock); 3624 } 3625 3626 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3627 block_t old_addr, block_t new_addr, 3628 unsigned char version, bool recover_curseg, 3629 bool recover_newaddr) 3630 { 3631 struct f2fs_summary sum; 3632 3633 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3634 3635 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3636 recover_curseg, recover_newaddr, false); 3637 3638 f2fs_update_data_blkaddr(dn, new_addr); 3639 } 3640 3641 void f2fs_wait_on_page_writeback(struct page *page, 3642 enum page_type type, bool ordered, bool locked) 3643 { 3644 if (PageWriteback(page)) { 3645 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3646 3647 /* submit cached LFS IO */ 3648 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3649 /* sbumit cached IPU IO */ 3650 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3651 if (ordered) { 3652 wait_on_page_writeback(page); 3653 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3654 } else { 3655 wait_for_stable_page(page); 3656 } 3657 } 3658 } 3659 3660 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3661 { 3662 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3663 struct page *cpage; 3664 3665 if (!f2fs_post_read_required(inode)) 3666 return; 3667 3668 if (!__is_valid_data_blkaddr(blkaddr)) 3669 return; 3670 3671 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3672 if (cpage) { 3673 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3674 f2fs_put_page(cpage, 1); 3675 } 3676 } 3677 3678 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3679 block_t len) 3680 { 3681 block_t i; 3682 3683 for (i = 0; i < len; i++) 3684 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3685 } 3686 3687 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3688 { 3689 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3690 struct curseg_info *seg_i; 3691 unsigned char *kaddr; 3692 struct page *page; 3693 block_t start; 3694 int i, j, offset; 3695 3696 start = start_sum_block(sbi); 3697 3698 page = f2fs_get_meta_page(sbi, start++); 3699 if (IS_ERR(page)) 3700 return PTR_ERR(page); 3701 kaddr = (unsigned char *)page_address(page); 3702 3703 /* Step 1: restore nat cache */ 3704 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3705 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3706 3707 /* Step 2: restore sit cache */ 3708 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3709 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3710 offset = 2 * SUM_JOURNAL_SIZE; 3711 3712 /* Step 3: restore summary entries */ 3713 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3714 unsigned short blk_off; 3715 unsigned int segno; 3716 3717 seg_i = CURSEG_I(sbi, i); 3718 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3719 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3720 seg_i->next_segno = segno; 3721 reset_curseg(sbi, i, 0); 3722 seg_i->alloc_type = ckpt->alloc_type[i]; 3723 seg_i->next_blkoff = blk_off; 3724 3725 if (seg_i->alloc_type == SSR) 3726 blk_off = sbi->blocks_per_seg; 3727 3728 for (j = 0; j < blk_off; j++) { 3729 struct f2fs_summary *s; 3730 s = (struct f2fs_summary *)(kaddr + offset); 3731 seg_i->sum_blk->entries[j] = *s; 3732 offset += SUMMARY_SIZE; 3733 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3734 SUM_FOOTER_SIZE) 3735 continue; 3736 3737 f2fs_put_page(page, 1); 3738 page = NULL; 3739 3740 page = f2fs_get_meta_page(sbi, start++); 3741 if (IS_ERR(page)) 3742 return PTR_ERR(page); 3743 kaddr = (unsigned char *)page_address(page); 3744 offset = 0; 3745 } 3746 } 3747 f2fs_put_page(page, 1); 3748 return 0; 3749 } 3750 3751 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3752 { 3753 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3754 struct f2fs_summary_block *sum; 3755 struct curseg_info *curseg; 3756 struct page *new; 3757 unsigned short blk_off; 3758 unsigned int segno = 0; 3759 block_t blk_addr = 0; 3760 int err = 0; 3761 3762 /* get segment number and block addr */ 3763 if (IS_DATASEG(type)) { 3764 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3765 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3766 CURSEG_HOT_DATA]); 3767 if (__exist_node_summaries(sbi)) 3768 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3769 else 3770 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3771 } else { 3772 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3773 CURSEG_HOT_NODE]); 3774 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3775 CURSEG_HOT_NODE]); 3776 if (__exist_node_summaries(sbi)) 3777 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3778 type - CURSEG_HOT_NODE); 3779 else 3780 blk_addr = GET_SUM_BLOCK(sbi, segno); 3781 } 3782 3783 new = f2fs_get_meta_page(sbi, blk_addr); 3784 if (IS_ERR(new)) 3785 return PTR_ERR(new); 3786 sum = (struct f2fs_summary_block *)page_address(new); 3787 3788 if (IS_NODESEG(type)) { 3789 if (__exist_node_summaries(sbi)) { 3790 struct f2fs_summary *ns = &sum->entries[0]; 3791 int i; 3792 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3793 ns->version = 0; 3794 ns->ofs_in_node = 0; 3795 } 3796 } else { 3797 err = f2fs_restore_node_summary(sbi, segno, sum); 3798 if (err) 3799 goto out; 3800 } 3801 } 3802 3803 /* set uncompleted segment to curseg */ 3804 curseg = CURSEG_I(sbi, type); 3805 mutex_lock(&curseg->curseg_mutex); 3806 3807 /* update journal info */ 3808 down_write(&curseg->journal_rwsem); 3809 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3810 up_write(&curseg->journal_rwsem); 3811 3812 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3813 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3814 curseg->next_segno = segno; 3815 reset_curseg(sbi, type, 0); 3816 curseg->alloc_type = ckpt->alloc_type[type]; 3817 curseg->next_blkoff = blk_off; 3818 mutex_unlock(&curseg->curseg_mutex); 3819 out: 3820 f2fs_put_page(new, 1); 3821 return err; 3822 } 3823 3824 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3825 { 3826 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3827 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3828 int type = CURSEG_HOT_DATA; 3829 int err; 3830 3831 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3832 int npages = f2fs_npages_for_summary_flush(sbi, true); 3833 3834 if (npages >= 2) 3835 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3836 META_CP, true); 3837 3838 /* restore for compacted data summary */ 3839 err = read_compacted_summaries(sbi); 3840 if (err) 3841 return err; 3842 type = CURSEG_HOT_NODE; 3843 } 3844 3845 if (__exist_node_summaries(sbi)) 3846 f2fs_ra_meta_pages(sbi, 3847 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 3848 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 3849 3850 for (; type <= CURSEG_COLD_NODE; type++) { 3851 err = read_normal_summaries(sbi, type); 3852 if (err) 3853 return err; 3854 } 3855 3856 /* sanity check for summary blocks */ 3857 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3858 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3859 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", 3860 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3861 return -EINVAL; 3862 } 3863 3864 return 0; 3865 } 3866 3867 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3868 { 3869 struct page *page; 3870 unsigned char *kaddr; 3871 struct f2fs_summary *summary; 3872 struct curseg_info *seg_i; 3873 int written_size = 0; 3874 int i, j; 3875 3876 page = f2fs_grab_meta_page(sbi, blkaddr++); 3877 kaddr = (unsigned char *)page_address(page); 3878 memset(kaddr, 0, PAGE_SIZE); 3879 3880 /* Step 1: write nat cache */ 3881 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3882 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3883 written_size += SUM_JOURNAL_SIZE; 3884 3885 /* Step 2: write sit cache */ 3886 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3887 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3888 written_size += SUM_JOURNAL_SIZE; 3889 3890 /* Step 3: write summary entries */ 3891 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3892 unsigned short blkoff; 3893 seg_i = CURSEG_I(sbi, i); 3894 if (sbi->ckpt->alloc_type[i] == SSR) 3895 blkoff = sbi->blocks_per_seg; 3896 else 3897 blkoff = curseg_blkoff(sbi, i); 3898 3899 for (j = 0; j < blkoff; j++) { 3900 if (!page) { 3901 page = f2fs_grab_meta_page(sbi, blkaddr++); 3902 kaddr = (unsigned char *)page_address(page); 3903 memset(kaddr, 0, PAGE_SIZE); 3904 written_size = 0; 3905 } 3906 summary = (struct f2fs_summary *)(kaddr + written_size); 3907 *summary = seg_i->sum_blk->entries[j]; 3908 written_size += SUMMARY_SIZE; 3909 3910 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3911 SUM_FOOTER_SIZE) 3912 continue; 3913 3914 set_page_dirty(page); 3915 f2fs_put_page(page, 1); 3916 page = NULL; 3917 } 3918 } 3919 if (page) { 3920 set_page_dirty(page); 3921 f2fs_put_page(page, 1); 3922 } 3923 } 3924 3925 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3926 block_t blkaddr, int type) 3927 { 3928 int i, end; 3929 if (IS_DATASEG(type)) 3930 end = type + NR_CURSEG_DATA_TYPE; 3931 else 3932 end = type + NR_CURSEG_NODE_TYPE; 3933 3934 for (i = type; i < end; i++) 3935 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3936 } 3937 3938 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3939 { 3940 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3941 write_compacted_summaries(sbi, start_blk); 3942 else 3943 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3944 } 3945 3946 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3947 { 3948 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3949 } 3950 3951 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3952 unsigned int val, int alloc) 3953 { 3954 int i; 3955 3956 if (type == NAT_JOURNAL) { 3957 for (i = 0; i < nats_in_cursum(journal); i++) { 3958 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3959 return i; 3960 } 3961 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3962 return update_nats_in_cursum(journal, 1); 3963 } else if (type == SIT_JOURNAL) { 3964 for (i = 0; i < sits_in_cursum(journal); i++) 3965 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3966 return i; 3967 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3968 return update_sits_in_cursum(journal, 1); 3969 } 3970 return -1; 3971 } 3972 3973 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3974 unsigned int segno) 3975 { 3976 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 3977 } 3978 3979 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3980 unsigned int start) 3981 { 3982 struct sit_info *sit_i = SIT_I(sbi); 3983 struct page *page; 3984 pgoff_t src_off, dst_off; 3985 3986 src_off = current_sit_addr(sbi, start); 3987 dst_off = next_sit_addr(sbi, src_off); 3988 3989 page = f2fs_grab_meta_page(sbi, dst_off); 3990 seg_info_to_sit_page(sbi, page, start); 3991 3992 set_page_dirty(page); 3993 set_to_next_sit(sit_i, start); 3994 3995 return page; 3996 } 3997 3998 static struct sit_entry_set *grab_sit_entry_set(void) 3999 { 4000 struct sit_entry_set *ses = 4001 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 4002 4003 ses->entry_cnt = 0; 4004 INIT_LIST_HEAD(&ses->set_list); 4005 return ses; 4006 } 4007 4008 static void release_sit_entry_set(struct sit_entry_set *ses) 4009 { 4010 list_del(&ses->set_list); 4011 kmem_cache_free(sit_entry_set_slab, ses); 4012 } 4013 4014 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4015 struct list_head *head) 4016 { 4017 struct sit_entry_set *next = ses; 4018 4019 if (list_is_last(&ses->set_list, head)) 4020 return; 4021 4022 list_for_each_entry_continue(next, head, set_list) 4023 if (ses->entry_cnt <= next->entry_cnt) 4024 break; 4025 4026 list_move_tail(&ses->set_list, &next->set_list); 4027 } 4028 4029 static void add_sit_entry(unsigned int segno, struct list_head *head) 4030 { 4031 struct sit_entry_set *ses; 4032 unsigned int start_segno = START_SEGNO(segno); 4033 4034 list_for_each_entry(ses, head, set_list) { 4035 if (ses->start_segno == start_segno) { 4036 ses->entry_cnt++; 4037 adjust_sit_entry_set(ses, head); 4038 return; 4039 } 4040 } 4041 4042 ses = grab_sit_entry_set(); 4043 4044 ses->start_segno = start_segno; 4045 ses->entry_cnt++; 4046 list_add(&ses->set_list, head); 4047 } 4048 4049 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4050 { 4051 struct f2fs_sm_info *sm_info = SM_I(sbi); 4052 struct list_head *set_list = &sm_info->sit_entry_set; 4053 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4054 unsigned int segno; 4055 4056 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4057 add_sit_entry(segno, set_list); 4058 } 4059 4060 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4061 { 4062 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4063 struct f2fs_journal *journal = curseg->journal; 4064 int i; 4065 4066 down_write(&curseg->journal_rwsem); 4067 for (i = 0; i < sits_in_cursum(journal); i++) { 4068 unsigned int segno; 4069 bool dirtied; 4070 4071 segno = le32_to_cpu(segno_in_journal(journal, i)); 4072 dirtied = __mark_sit_entry_dirty(sbi, segno); 4073 4074 if (!dirtied) 4075 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4076 } 4077 update_sits_in_cursum(journal, -i); 4078 up_write(&curseg->journal_rwsem); 4079 } 4080 4081 /* 4082 * CP calls this function, which flushes SIT entries including sit_journal, 4083 * and moves prefree segs to free segs. 4084 */ 4085 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4086 { 4087 struct sit_info *sit_i = SIT_I(sbi); 4088 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4089 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4090 struct f2fs_journal *journal = curseg->journal; 4091 struct sit_entry_set *ses, *tmp; 4092 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4093 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4094 struct seg_entry *se; 4095 4096 down_write(&sit_i->sentry_lock); 4097 4098 if (!sit_i->dirty_sentries) 4099 goto out; 4100 4101 /* 4102 * add and account sit entries of dirty bitmap in sit entry 4103 * set temporarily 4104 */ 4105 add_sits_in_set(sbi); 4106 4107 /* 4108 * if there are no enough space in journal to store dirty sit 4109 * entries, remove all entries from journal and add and account 4110 * them in sit entry set. 4111 */ 4112 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4113 !to_journal) 4114 remove_sits_in_journal(sbi); 4115 4116 /* 4117 * there are two steps to flush sit entries: 4118 * #1, flush sit entries to journal in current cold data summary block. 4119 * #2, flush sit entries to sit page. 4120 */ 4121 list_for_each_entry_safe(ses, tmp, head, set_list) { 4122 struct page *page = NULL; 4123 struct f2fs_sit_block *raw_sit = NULL; 4124 unsigned int start_segno = ses->start_segno; 4125 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4126 (unsigned long)MAIN_SEGS(sbi)); 4127 unsigned int segno = start_segno; 4128 4129 if (to_journal && 4130 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4131 to_journal = false; 4132 4133 if (to_journal) { 4134 down_write(&curseg->journal_rwsem); 4135 } else { 4136 page = get_next_sit_page(sbi, start_segno); 4137 raw_sit = page_address(page); 4138 } 4139 4140 /* flush dirty sit entries in region of current sit set */ 4141 for_each_set_bit_from(segno, bitmap, end) { 4142 int offset, sit_offset; 4143 4144 se = get_seg_entry(sbi, segno); 4145 #ifdef CONFIG_F2FS_CHECK_FS 4146 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4147 SIT_VBLOCK_MAP_SIZE)) 4148 f2fs_bug_on(sbi, 1); 4149 #endif 4150 4151 /* add discard candidates */ 4152 if (!(cpc->reason & CP_DISCARD)) { 4153 cpc->trim_start = segno; 4154 add_discard_addrs(sbi, cpc, false); 4155 } 4156 4157 if (to_journal) { 4158 offset = f2fs_lookup_journal_in_cursum(journal, 4159 SIT_JOURNAL, segno, 1); 4160 f2fs_bug_on(sbi, offset < 0); 4161 segno_in_journal(journal, offset) = 4162 cpu_to_le32(segno); 4163 seg_info_to_raw_sit(se, 4164 &sit_in_journal(journal, offset)); 4165 check_block_count(sbi, segno, 4166 &sit_in_journal(journal, offset)); 4167 } else { 4168 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4169 seg_info_to_raw_sit(se, 4170 &raw_sit->entries[sit_offset]); 4171 check_block_count(sbi, segno, 4172 &raw_sit->entries[sit_offset]); 4173 } 4174 4175 __clear_bit(segno, bitmap); 4176 sit_i->dirty_sentries--; 4177 ses->entry_cnt--; 4178 } 4179 4180 if (to_journal) 4181 up_write(&curseg->journal_rwsem); 4182 else 4183 f2fs_put_page(page, 1); 4184 4185 f2fs_bug_on(sbi, ses->entry_cnt); 4186 release_sit_entry_set(ses); 4187 } 4188 4189 f2fs_bug_on(sbi, !list_empty(head)); 4190 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4191 out: 4192 if (cpc->reason & CP_DISCARD) { 4193 __u64 trim_start = cpc->trim_start; 4194 4195 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4196 add_discard_addrs(sbi, cpc, false); 4197 4198 cpc->trim_start = trim_start; 4199 } 4200 up_write(&sit_i->sentry_lock); 4201 4202 set_prefree_as_free_segments(sbi); 4203 } 4204 4205 static int build_sit_info(struct f2fs_sb_info *sbi) 4206 { 4207 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4208 struct sit_info *sit_i; 4209 unsigned int sit_segs, start; 4210 char *src_bitmap, *bitmap; 4211 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4212 4213 /* allocate memory for SIT information */ 4214 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4215 if (!sit_i) 4216 return -ENOMEM; 4217 4218 SM_I(sbi)->sit_info = sit_i; 4219 4220 sit_i->sentries = 4221 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4222 MAIN_SEGS(sbi)), 4223 GFP_KERNEL); 4224 if (!sit_i->sentries) 4225 return -ENOMEM; 4226 4227 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4228 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4229 GFP_KERNEL); 4230 if (!sit_i->dirty_sentries_bitmap) 4231 return -ENOMEM; 4232 4233 #ifdef CONFIG_F2FS_CHECK_FS 4234 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; 4235 #else 4236 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; 4237 #endif 4238 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4239 if (!sit_i->bitmap) 4240 return -ENOMEM; 4241 4242 bitmap = sit_i->bitmap; 4243 4244 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4245 sit_i->sentries[start].cur_valid_map = bitmap; 4246 bitmap += SIT_VBLOCK_MAP_SIZE; 4247 4248 sit_i->sentries[start].ckpt_valid_map = bitmap; 4249 bitmap += SIT_VBLOCK_MAP_SIZE; 4250 4251 #ifdef CONFIG_F2FS_CHECK_FS 4252 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4253 bitmap += SIT_VBLOCK_MAP_SIZE; 4254 #endif 4255 4256 sit_i->sentries[start].discard_map = bitmap; 4257 bitmap += SIT_VBLOCK_MAP_SIZE; 4258 } 4259 4260 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4261 if (!sit_i->tmp_map) 4262 return -ENOMEM; 4263 4264 if (__is_large_section(sbi)) { 4265 sit_i->sec_entries = 4266 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4267 MAIN_SECS(sbi)), 4268 GFP_KERNEL); 4269 if (!sit_i->sec_entries) 4270 return -ENOMEM; 4271 } 4272 4273 /* get information related with SIT */ 4274 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4275 4276 /* setup SIT bitmap from ckeckpoint pack */ 4277 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4278 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4279 4280 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4281 if (!sit_i->sit_bitmap) 4282 return -ENOMEM; 4283 4284 #ifdef CONFIG_F2FS_CHECK_FS 4285 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4286 sit_bitmap_size, GFP_KERNEL); 4287 if (!sit_i->sit_bitmap_mir) 4288 return -ENOMEM; 4289 4290 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4291 main_bitmap_size, GFP_KERNEL); 4292 if (!sit_i->invalid_segmap) 4293 return -ENOMEM; 4294 #endif 4295 4296 /* init SIT information */ 4297 sit_i->s_ops = &default_salloc_ops; 4298 4299 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4300 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4301 sit_i->written_valid_blocks = 0; 4302 sit_i->bitmap_size = sit_bitmap_size; 4303 sit_i->dirty_sentries = 0; 4304 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4305 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4306 sit_i->mounted_time = ktime_get_boottime_seconds(); 4307 init_rwsem(&sit_i->sentry_lock); 4308 return 0; 4309 } 4310 4311 static int build_free_segmap(struct f2fs_sb_info *sbi) 4312 { 4313 struct free_segmap_info *free_i; 4314 unsigned int bitmap_size, sec_bitmap_size; 4315 4316 /* allocate memory for free segmap information */ 4317 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4318 if (!free_i) 4319 return -ENOMEM; 4320 4321 SM_I(sbi)->free_info = free_i; 4322 4323 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4324 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4325 if (!free_i->free_segmap) 4326 return -ENOMEM; 4327 4328 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4329 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4330 if (!free_i->free_secmap) 4331 return -ENOMEM; 4332 4333 /* set all segments as dirty temporarily */ 4334 memset(free_i->free_segmap, 0xff, bitmap_size); 4335 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4336 4337 /* init free segmap information */ 4338 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4339 free_i->free_segments = 0; 4340 free_i->free_sections = 0; 4341 spin_lock_init(&free_i->segmap_lock); 4342 return 0; 4343 } 4344 4345 static int build_curseg(struct f2fs_sb_info *sbi) 4346 { 4347 struct curseg_info *array; 4348 int i; 4349 4350 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4351 sizeof(*array)), GFP_KERNEL); 4352 if (!array) 4353 return -ENOMEM; 4354 4355 SM_I(sbi)->curseg_array = array; 4356 4357 for (i = 0; i < NO_CHECK_TYPE; i++) { 4358 mutex_init(&array[i].curseg_mutex); 4359 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4360 if (!array[i].sum_blk) 4361 return -ENOMEM; 4362 init_rwsem(&array[i].journal_rwsem); 4363 array[i].journal = f2fs_kzalloc(sbi, 4364 sizeof(struct f2fs_journal), GFP_KERNEL); 4365 if (!array[i].journal) 4366 return -ENOMEM; 4367 if (i < NR_PERSISTENT_LOG) 4368 array[i].seg_type = CURSEG_HOT_DATA + i; 4369 else if (i == CURSEG_COLD_DATA_PINNED) 4370 array[i].seg_type = CURSEG_COLD_DATA; 4371 else if (i == CURSEG_ALL_DATA_ATGC) 4372 array[i].seg_type = CURSEG_COLD_DATA; 4373 array[i].segno = NULL_SEGNO; 4374 array[i].next_blkoff = 0; 4375 array[i].inited = false; 4376 } 4377 return restore_curseg_summaries(sbi); 4378 } 4379 4380 static int build_sit_entries(struct f2fs_sb_info *sbi) 4381 { 4382 struct sit_info *sit_i = SIT_I(sbi); 4383 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4384 struct f2fs_journal *journal = curseg->journal; 4385 struct seg_entry *se; 4386 struct f2fs_sit_entry sit; 4387 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4388 unsigned int i, start, end; 4389 unsigned int readed, start_blk = 0; 4390 int err = 0; 4391 block_t total_node_blocks = 0; 4392 4393 do { 4394 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4395 META_SIT, true); 4396 4397 start = start_blk * sit_i->sents_per_block; 4398 end = (start_blk + readed) * sit_i->sents_per_block; 4399 4400 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4401 struct f2fs_sit_block *sit_blk; 4402 struct page *page; 4403 4404 se = &sit_i->sentries[start]; 4405 page = get_current_sit_page(sbi, start); 4406 if (IS_ERR(page)) 4407 return PTR_ERR(page); 4408 sit_blk = (struct f2fs_sit_block *)page_address(page); 4409 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4410 f2fs_put_page(page, 1); 4411 4412 err = check_block_count(sbi, start, &sit); 4413 if (err) 4414 return err; 4415 seg_info_from_raw_sit(se, &sit); 4416 if (IS_NODESEG(se->type)) 4417 total_node_blocks += se->valid_blocks; 4418 4419 /* build discard map only one time */ 4420 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4421 memset(se->discard_map, 0xff, 4422 SIT_VBLOCK_MAP_SIZE); 4423 } else { 4424 memcpy(se->discard_map, 4425 se->cur_valid_map, 4426 SIT_VBLOCK_MAP_SIZE); 4427 sbi->discard_blks += 4428 sbi->blocks_per_seg - 4429 se->valid_blocks; 4430 } 4431 4432 if (__is_large_section(sbi)) 4433 get_sec_entry(sbi, start)->valid_blocks += 4434 se->valid_blocks; 4435 } 4436 start_blk += readed; 4437 } while (start_blk < sit_blk_cnt); 4438 4439 down_read(&curseg->journal_rwsem); 4440 for (i = 0; i < sits_in_cursum(journal); i++) { 4441 unsigned int old_valid_blocks; 4442 4443 start = le32_to_cpu(segno_in_journal(journal, i)); 4444 if (start >= MAIN_SEGS(sbi)) { 4445 f2fs_err(sbi, "Wrong journal entry on segno %u", 4446 start); 4447 err = -EFSCORRUPTED; 4448 break; 4449 } 4450 4451 se = &sit_i->sentries[start]; 4452 sit = sit_in_journal(journal, i); 4453 4454 old_valid_blocks = se->valid_blocks; 4455 if (IS_NODESEG(se->type)) 4456 total_node_blocks -= old_valid_blocks; 4457 4458 err = check_block_count(sbi, start, &sit); 4459 if (err) 4460 break; 4461 seg_info_from_raw_sit(se, &sit); 4462 if (IS_NODESEG(se->type)) 4463 total_node_blocks += se->valid_blocks; 4464 4465 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4466 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4467 } else { 4468 memcpy(se->discard_map, se->cur_valid_map, 4469 SIT_VBLOCK_MAP_SIZE); 4470 sbi->discard_blks += old_valid_blocks; 4471 sbi->discard_blks -= se->valid_blocks; 4472 } 4473 4474 if (__is_large_section(sbi)) { 4475 get_sec_entry(sbi, start)->valid_blocks += 4476 se->valid_blocks; 4477 get_sec_entry(sbi, start)->valid_blocks -= 4478 old_valid_blocks; 4479 } 4480 } 4481 up_read(&curseg->journal_rwsem); 4482 4483 if (!err && total_node_blocks != valid_node_count(sbi)) { 4484 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4485 total_node_blocks, valid_node_count(sbi)); 4486 err = -EFSCORRUPTED; 4487 } 4488 4489 return err; 4490 } 4491 4492 static void init_free_segmap(struct f2fs_sb_info *sbi) 4493 { 4494 unsigned int start; 4495 int type; 4496 struct seg_entry *sentry; 4497 4498 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4499 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4500 continue; 4501 sentry = get_seg_entry(sbi, start); 4502 if (!sentry->valid_blocks) 4503 __set_free(sbi, start); 4504 else 4505 SIT_I(sbi)->written_valid_blocks += 4506 sentry->valid_blocks; 4507 } 4508 4509 /* set use the current segments */ 4510 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4511 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4512 __set_test_and_inuse(sbi, curseg_t->segno); 4513 } 4514 } 4515 4516 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4517 { 4518 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4519 struct free_segmap_info *free_i = FREE_I(sbi); 4520 unsigned int segno = 0, offset = 0, secno; 4521 block_t valid_blocks, usable_blks_in_seg; 4522 block_t blks_per_sec = BLKS_PER_SEC(sbi); 4523 4524 while (1) { 4525 /* find dirty segment based on free segmap */ 4526 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4527 if (segno >= MAIN_SEGS(sbi)) 4528 break; 4529 offset = segno + 1; 4530 valid_blocks = get_valid_blocks(sbi, segno, false); 4531 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4532 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4533 continue; 4534 if (valid_blocks > usable_blks_in_seg) { 4535 f2fs_bug_on(sbi, 1); 4536 continue; 4537 } 4538 mutex_lock(&dirty_i->seglist_lock); 4539 __locate_dirty_segment(sbi, segno, DIRTY); 4540 mutex_unlock(&dirty_i->seglist_lock); 4541 } 4542 4543 if (!__is_large_section(sbi)) 4544 return; 4545 4546 mutex_lock(&dirty_i->seglist_lock); 4547 for (segno = 0; segno < MAIN_SECS(sbi); segno += blks_per_sec) { 4548 valid_blocks = get_valid_blocks(sbi, segno, true); 4549 secno = GET_SEC_FROM_SEG(sbi, segno); 4550 4551 if (!valid_blocks || valid_blocks == blks_per_sec) 4552 continue; 4553 if (IS_CURSEC(sbi, secno)) 4554 continue; 4555 set_bit(secno, dirty_i->dirty_secmap); 4556 } 4557 mutex_unlock(&dirty_i->seglist_lock); 4558 } 4559 4560 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4561 { 4562 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4563 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4564 4565 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4566 if (!dirty_i->victim_secmap) 4567 return -ENOMEM; 4568 return 0; 4569 } 4570 4571 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4572 { 4573 struct dirty_seglist_info *dirty_i; 4574 unsigned int bitmap_size, i; 4575 4576 /* allocate memory for dirty segments list information */ 4577 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4578 GFP_KERNEL); 4579 if (!dirty_i) 4580 return -ENOMEM; 4581 4582 SM_I(sbi)->dirty_info = dirty_i; 4583 mutex_init(&dirty_i->seglist_lock); 4584 4585 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4586 4587 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4588 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4589 GFP_KERNEL); 4590 if (!dirty_i->dirty_segmap[i]) 4591 return -ENOMEM; 4592 } 4593 4594 if (__is_large_section(sbi)) { 4595 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4596 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4597 bitmap_size, GFP_KERNEL); 4598 if (!dirty_i->dirty_secmap) 4599 return -ENOMEM; 4600 } 4601 4602 init_dirty_segmap(sbi); 4603 return init_victim_secmap(sbi); 4604 } 4605 4606 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4607 { 4608 int i; 4609 4610 /* 4611 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4612 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4613 */ 4614 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4615 struct curseg_info *curseg = CURSEG_I(sbi, i); 4616 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4617 unsigned int blkofs = curseg->next_blkoff; 4618 4619 sanity_check_seg_type(sbi, curseg->seg_type); 4620 4621 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4622 goto out; 4623 4624 if (curseg->alloc_type == SSR) 4625 continue; 4626 4627 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4628 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4629 continue; 4630 out: 4631 f2fs_err(sbi, 4632 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4633 i, curseg->segno, curseg->alloc_type, 4634 curseg->next_blkoff, blkofs); 4635 return -EFSCORRUPTED; 4636 } 4637 } 4638 return 0; 4639 } 4640 4641 #ifdef CONFIG_BLK_DEV_ZONED 4642 4643 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4644 struct f2fs_dev_info *fdev, 4645 struct blk_zone *zone) 4646 { 4647 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4648 block_t zone_block, wp_block, last_valid_block; 4649 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4650 int i, s, b, ret; 4651 struct seg_entry *se; 4652 4653 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4654 return 0; 4655 4656 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4657 wp_segno = GET_SEGNO(sbi, wp_block); 4658 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4659 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4660 zone_segno = GET_SEGNO(sbi, zone_block); 4661 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4662 4663 if (zone_segno >= MAIN_SEGS(sbi)) 4664 return 0; 4665 4666 /* 4667 * Skip check of zones cursegs point to, since 4668 * fix_curseg_write_pointer() checks them. 4669 */ 4670 for (i = 0; i < NO_CHECK_TYPE; i++) 4671 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4672 CURSEG_I(sbi, i)->segno)) 4673 return 0; 4674 4675 /* 4676 * Get last valid block of the zone. 4677 */ 4678 last_valid_block = zone_block - 1; 4679 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4680 segno = zone_segno + s; 4681 se = get_seg_entry(sbi, segno); 4682 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4683 if (f2fs_test_bit(b, se->cur_valid_map)) { 4684 last_valid_block = START_BLOCK(sbi, segno) + b; 4685 break; 4686 } 4687 if (last_valid_block >= zone_block) 4688 break; 4689 } 4690 4691 /* 4692 * If last valid block is beyond the write pointer, report the 4693 * inconsistency. This inconsistency does not cause write error 4694 * because the zone will not be selected for write operation until 4695 * it get discarded. Just report it. 4696 */ 4697 if (last_valid_block >= wp_block) { 4698 f2fs_notice(sbi, "Valid block beyond write pointer: " 4699 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4700 GET_SEGNO(sbi, last_valid_block), 4701 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4702 wp_segno, wp_blkoff); 4703 return 0; 4704 } 4705 4706 /* 4707 * If there is no valid block in the zone and if write pointer is 4708 * not at zone start, reset the write pointer. 4709 */ 4710 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4711 f2fs_notice(sbi, 4712 "Zone without valid block has non-zero write " 4713 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4714 wp_segno, wp_blkoff); 4715 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4716 zone->len >> log_sectors_per_block); 4717 if (ret) { 4718 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4719 fdev->path, ret); 4720 return ret; 4721 } 4722 } 4723 4724 return 0; 4725 } 4726 4727 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4728 block_t zone_blkaddr) 4729 { 4730 int i; 4731 4732 for (i = 0; i < sbi->s_ndevs; i++) { 4733 if (!bdev_is_zoned(FDEV(i).bdev)) 4734 continue; 4735 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4736 zone_blkaddr <= FDEV(i).end_blk)) 4737 return &FDEV(i); 4738 } 4739 4740 return NULL; 4741 } 4742 4743 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4744 void *data) { 4745 memcpy(data, zone, sizeof(struct blk_zone)); 4746 return 0; 4747 } 4748 4749 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4750 { 4751 struct curseg_info *cs = CURSEG_I(sbi, type); 4752 struct f2fs_dev_info *zbd; 4753 struct blk_zone zone; 4754 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4755 block_t cs_zone_block, wp_block; 4756 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4757 sector_t zone_sector; 4758 int err; 4759 4760 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4761 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4762 4763 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4764 if (!zbd) 4765 return 0; 4766 4767 /* report zone for the sector the curseg points to */ 4768 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4769 << log_sectors_per_block; 4770 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4771 report_one_zone_cb, &zone); 4772 if (err != 1) { 4773 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4774 zbd->path, err); 4775 return err; 4776 } 4777 4778 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4779 return 0; 4780 4781 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4782 wp_segno = GET_SEGNO(sbi, wp_block); 4783 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4784 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4785 4786 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4787 wp_sector_off == 0) 4788 return 0; 4789 4790 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4791 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4792 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4793 4794 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4795 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4796 allocate_segment_by_default(sbi, type, true); 4797 4798 /* check consistency of the zone curseg pointed to */ 4799 if (check_zone_write_pointer(sbi, zbd, &zone)) 4800 return -EIO; 4801 4802 /* check newly assigned zone */ 4803 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4804 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4805 4806 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4807 if (!zbd) 4808 return 0; 4809 4810 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4811 << log_sectors_per_block; 4812 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4813 report_one_zone_cb, &zone); 4814 if (err != 1) { 4815 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4816 zbd->path, err); 4817 return err; 4818 } 4819 4820 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4821 return 0; 4822 4823 if (zone.wp != zone.start) { 4824 f2fs_notice(sbi, 4825 "New zone for curseg[%d] is not yet discarded. " 4826 "Reset the zone: curseg[0x%x,0x%x]", 4827 type, cs->segno, cs->next_blkoff); 4828 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4829 zone_sector >> log_sectors_per_block, 4830 zone.len >> log_sectors_per_block); 4831 if (err) { 4832 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4833 zbd->path, err); 4834 return err; 4835 } 4836 } 4837 4838 return 0; 4839 } 4840 4841 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4842 { 4843 int i, ret; 4844 4845 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4846 ret = fix_curseg_write_pointer(sbi, i); 4847 if (ret) 4848 return ret; 4849 } 4850 4851 return 0; 4852 } 4853 4854 struct check_zone_write_pointer_args { 4855 struct f2fs_sb_info *sbi; 4856 struct f2fs_dev_info *fdev; 4857 }; 4858 4859 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4860 void *data) { 4861 struct check_zone_write_pointer_args *args; 4862 args = (struct check_zone_write_pointer_args *)data; 4863 4864 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4865 } 4866 4867 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4868 { 4869 int i, ret; 4870 struct check_zone_write_pointer_args args; 4871 4872 for (i = 0; i < sbi->s_ndevs; i++) { 4873 if (!bdev_is_zoned(FDEV(i).bdev)) 4874 continue; 4875 4876 args.sbi = sbi; 4877 args.fdev = &FDEV(i); 4878 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4879 check_zone_write_pointer_cb, &args); 4880 if (ret < 0) 4881 return ret; 4882 } 4883 4884 return 0; 4885 } 4886 4887 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, 4888 unsigned int dev_idx) 4889 { 4890 if (!bdev_is_zoned(FDEV(dev_idx).bdev)) 4891 return true; 4892 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); 4893 } 4894 4895 /* Return the zone index in the given device */ 4896 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, 4897 int dev_idx) 4898 { 4899 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4900 4901 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> 4902 sbi->log_blocks_per_blkz; 4903 } 4904 4905 /* 4906 * Return the usable segments in a section based on the zone's 4907 * corresponding zone capacity. Zone is equal to a section. 4908 */ 4909 static inline unsigned int f2fs_usable_zone_segs_in_sec( 4910 struct f2fs_sb_info *sbi, unsigned int segno) 4911 { 4912 unsigned int dev_idx, zone_idx, unusable_segs_in_sec; 4913 4914 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); 4915 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); 4916 4917 /* Conventional zone's capacity is always equal to zone size */ 4918 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4919 return sbi->segs_per_sec; 4920 4921 /* 4922 * If the zone_capacity_blocks array is NULL, then zone capacity 4923 * is equal to the zone size for all zones 4924 */ 4925 if (!FDEV(dev_idx).zone_capacity_blocks) 4926 return sbi->segs_per_sec; 4927 4928 /* Get the segment count beyond zone capacity block */ 4929 unusable_segs_in_sec = (sbi->blocks_per_blkz - 4930 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >> 4931 sbi->log_blocks_per_seg; 4932 return sbi->segs_per_sec - unusable_segs_in_sec; 4933 } 4934 4935 /* 4936 * Return the number of usable blocks in a segment. The number of blocks 4937 * returned is always equal to the number of blocks in a segment for 4938 * segments fully contained within a sequential zone capacity or a 4939 * conventional zone. For segments partially contained in a sequential 4940 * zone capacity, the number of usable blocks up to the zone capacity 4941 * is returned. 0 is returned in all other cases. 4942 */ 4943 static inline unsigned int f2fs_usable_zone_blks_in_seg( 4944 struct f2fs_sb_info *sbi, unsigned int segno) 4945 { 4946 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 4947 unsigned int zone_idx, dev_idx, secno; 4948 4949 secno = GET_SEC_FROM_SEG(sbi, segno); 4950 seg_start = START_BLOCK(sbi, segno); 4951 dev_idx = f2fs_target_device_index(sbi, seg_start); 4952 zone_idx = get_zone_idx(sbi, secno, dev_idx); 4953 4954 /* 4955 * Conventional zone's capacity is always equal to zone size, 4956 * so, blocks per segment is unchanged. 4957 */ 4958 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4959 return sbi->blocks_per_seg; 4960 4961 if (!FDEV(dev_idx).zone_capacity_blocks) 4962 return sbi->blocks_per_seg; 4963 4964 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4965 sec_cap_blkaddr = sec_start_blkaddr + 4966 FDEV(dev_idx).zone_capacity_blocks[zone_idx]; 4967 4968 /* 4969 * If segment starts before zone capacity and spans beyond 4970 * zone capacity, then usable blocks are from seg start to 4971 * zone capacity. If the segment starts after the zone capacity, 4972 * then there are no usable blocks. 4973 */ 4974 if (seg_start >= sec_cap_blkaddr) 4975 return 0; 4976 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 4977 return sec_cap_blkaddr - seg_start; 4978 4979 return sbi->blocks_per_seg; 4980 } 4981 #else 4982 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4983 { 4984 return 0; 4985 } 4986 4987 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4988 { 4989 return 0; 4990 } 4991 4992 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 4993 unsigned int segno) 4994 { 4995 return 0; 4996 } 4997 4998 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, 4999 unsigned int segno) 5000 { 5001 return 0; 5002 } 5003 #endif 5004 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5005 unsigned int segno) 5006 { 5007 if (f2fs_sb_has_blkzoned(sbi)) 5008 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5009 5010 return sbi->blocks_per_seg; 5011 } 5012 5013 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5014 unsigned int segno) 5015 { 5016 if (f2fs_sb_has_blkzoned(sbi)) 5017 return f2fs_usable_zone_segs_in_sec(sbi, segno); 5018 5019 return sbi->segs_per_sec; 5020 } 5021 5022 /* 5023 * Update min, max modified time for cost-benefit GC algorithm 5024 */ 5025 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5026 { 5027 struct sit_info *sit_i = SIT_I(sbi); 5028 unsigned int segno; 5029 5030 down_write(&sit_i->sentry_lock); 5031 5032 sit_i->min_mtime = ULLONG_MAX; 5033 5034 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5035 unsigned int i; 5036 unsigned long long mtime = 0; 5037 5038 for (i = 0; i < sbi->segs_per_sec; i++) 5039 mtime += get_seg_entry(sbi, segno + i)->mtime; 5040 5041 mtime = div_u64(mtime, sbi->segs_per_sec); 5042 5043 if (sit_i->min_mtime > mtime) 5044 sit_i->min_mtime = mtime; 5045 } 5046 sit_i->max_mtime = get_mtime(sbi, false); 5047 sit_i->dirty_max_mtime = 0; 5048 up_write(&sit_i->sentry_lock); 5049 } 5050 5051 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5052 { 5053 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5054 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5055 struct f2fs_sm_info *sm_info; 5056 int err; 5057 5058 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5059 if (!sm_info) 5060 return -ENOMEM; 5061 5062 /* init sm info */ 5063 sbi->sm_info = sm_info; 5064 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5065 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5066 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5067 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5068 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5069 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5070 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5071 sm_info->rec_prefree_segments = sm_info->main_segments * 5072 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5073 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5074 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5075 5076 if (!f2fs_lfs_mode(sbi)) 5077 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 5078 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5079 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5080 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 5081 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5082 sm_info->min_ssr_sections = reserved_sections(sbi); 5083 5084 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5085 5086 init_rwsem(&sm_info->curseg_lock); 5087 5088 if (!f2fs_readonly(sbi->sb)) { 5089 err = f2fs_create_flush_cmd_control(sbi); 5090 if (err) 5091 return err; 5092 } 5093 5094 err = create_discard_cmd_control(sbi); 5095 if (err) 5096 return err; 5097 5098 err = build_sit_info(sbi); 5099 if (err) 5100 return err; 5101 err = build_free_segmap(sbi); 5102 if (err) 5103 return err; 5104 err = build_curseg(sbi); 5105 if (err) 5106 return err; 5107 5108 /* reinit free segmap based on SIT */ 5109 err = build_sit_entries(sbi); 5110 if (err) 5111 return err; 5112 5113 init_free_segmap(sbi); 5114 err = build_dirty_segmap(sbi); 5115 if (err) 5116 return err; 5117 5118 err = sanity_check_curseg(sbi); 5119 if (err) 5120 return err; 5121 5122 init_min_max_mtime(sbi); 5123 return 0; 5124 } 5125 5126 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5127 enum dirty_type dirty_type) 5128 { 5129 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5130 5131 mutex_lock(&dirty_i->seglist_lock); 5132 kvfree(dirty_i->dirty_segmap[dirty_type]); 5133 dirty_i->nr_dirty[dirty_type] = 0; 5134 mutex_unlock(&dirty_i->seglist_lock); 5135 } 5136 5137 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5138 { 5139 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5140 kvfree(dirty_i->victim_secmap); 5141 } 5142 5143 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5144 { 5145 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5146 int i; 5147 5148 if (!dirty_i) 5149 return; 5150 5151 /* discard pre-free/dirty segments list */ 5152 for (i = 0; i < NR_DIRTY_TYPE; i++) 5153 discard_dirty_segmap(sbi, i); 5154 5155 if (__is_large_section(sbi)) { 5156 mutex_lock(&dirty_i->seglist_lock); 5157 kvfree(dirty_i->dirty_secmap); 5158 mutex_unlock(&dirty_i->seglist_lock); 5159 } 5160 5161 destroy_victim_secmap(sbi); 5162 SM_I(sbi)->dirty_info = NULL; 5163 kfree(dirty_i); 5164 } 5165 5166 static void destroy_curseg(struct f2fs_sb_info *sbi) 5167 { 5168 struct curseg_info *array = SM_I(sbi)->curseg_array; 5169 int i; 5170 5171 if (!array) 5172 return; 5173 SM_I(sbi)->curseg_array = NULL; 5174 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5175 kfree(array[i].sum_blk); 5176 kfree(array[i].journal); 5177 } 5178 kfree(array); 5179 } 5180 5181 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5182 { 5183 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5184 if (!free_i) 5185 return; 5186 SM_I(sbi)->free_info = NULL; 5187 kvfree(free_i->free_segmap); 5188 kvfree(free_i->free_secmap); 5189 kfree(free_i); 5190 } 5191 5192 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5193 { 5194 struct sit_info *sit_i = SIT_I(sbi); 5195 5196 if (!sit_i) 5197 return; 5198 5199 if (sit_i->sentries) 5200 kvfree(sit_i->bitmap); 5201 kfree(sit_i->tmp_map); 5202 5203 kvfree(sit_i->sentries); 5204 kvfree(sit_i->sec_entries); 5205 kvfree(sit_i->dirty_sentries_bitmap); 5206 5207 SM_I(sbi)->sit_info = NULL; 5208 kvfree(sit_i->sit_bitmap); 5209 #ifdef CONFIG_F2FS_CHECK_FS 5210 kvfree(sit_i->sit_bitmap_mir); 5211 kvfree(sit_i->invalid_segmap); 5212 #endif 5213 kfree(sit_i); 5214 } 5215 5216 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5217 { 5218 struct f2fs_sm_info *sm_info = SM_I(sbi); 5219 5220 if (!sm_info) 5221 return; 5222 f2fs_destroy_flush_cmd_control(sbi, true); 5223 destroy_discard_cmd_control(sbi); 5224 destroy_dirty_segmap(sbi); 5225 destroy_curseg(sbi); 5226 destroy_free_segmap(sbi); 5227 destroy_sit_info(sbi); 5228 sbi->sm_info = NULL; 5229 kfree(sm_info); 5230 } 5231 5232 int __init f2fs_create_segment_manager_caches(void) 5233 { 5234 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5235 sizeof(struct discard_entry)); 5236 if (!discard_entry_slab) 5237 goto fail; 5238 5239 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5240 sizeof(struct discard_cmd)); 5241 if (!discard_cmd_slab) 5242 goto destroy_discard_entry; 5243 5244 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5245 sizeof(struct sit_entry_set)); 5246 if (!sit_entry_set_slab) 5247 goto destroy_discard_cmd; 5248 5249 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry", 5250 sizeof(struct inmem_pages)); 5251 if (!inmem_entry_slab) 5252 goto destroy_sit_entry_set; 5253 return 0; 5254 5255 destroy_sit_entry_set: 5256 kmem_cache_destroy(sit_entry_set_slab); 5257 destroy_discard_cmd: 5258 kmem_cache_destroy(discard_cmd_slab); 5259 destroy_discard_entry: 5260 kmem_cache_destroy(discard_entry_slab); 5261 fail: 5262 return -ENOMEM; 5263 } 5264 5265 void f2fs_destroy_segment_manager_caches(void) 5266 { 5267 kmem_cache_destroy(sit_entry_set_slab); 5268 kmem_cache_destroy(discard_cmd_slab); 5269 kmem_cache_destroy(discard_entry_slab); 5270 kmem_cache_destroy(inmem_entry_slab); 5271 } 5272