1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (test_opt(sbi, LFS)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 189 struct f2fs_inode_info *fi = F2FS_I(inode); 190 struct inmem_pages *new; 191 192 f2fs_trace_pid(page); 193 194 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 195 196 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 197 198 /* add atomic page indices to the list */ 199 new->page = page; 200 INIT_LIST_HEAD(&new->list); 201 202 /* increase reference count with clean state */ 203 mutex_lock(&fi->inmem_lock); 204 get_page(page); 205 list_add_tail(&new->list, &fi->inmem_pages); 206 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 207 if (list_empty(&fi->inmem_ilist)) 208 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 209 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 210 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 211 mutex_unlock(&fi->inmem_lock); 212 213 trace_f2fs_register_inmem_page(page, INMEM); 214 } 215 216 static int __revoke_inmem_pages(struct inode *inode, 217 struct list_head *head, bool drop, bool recover, 218 bool trylock) 219 { 220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 221 struct inmem_pages *cur, *tmp; 222 int err = 0; 223 224 list_for_each_entry_safe(cur, tmp, head, list) { 225 struct page *page = cur->page; 226 227 if (drop) 228 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 229 230 if (trylock) { 231 /* 232 * to avoid deadlock in between page lock and 233 * inmem_lock. 234 */ 235 if (!trylock_page(page)) 236 continue; 237 } else { 238 lock_page(page); 239 } 240 241 f2fs_wait_on_page_writeback(page, DATA, true, true); 242 243 if (recover) { 244 struct dnode_of_data dn; 245 struct node_info ni; 246 247 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 248 retry: 249 set_new_dnode(&dn, inode, NULL, NULL, 0); 250 err = f2fs_get_dnode_of_data(&dn, page->index, 251 LOOKUP_NODE); 252 if (err) { 253 if (err == -ENOMEM) { 254 congestion_wait(BLK_RW_ASYNC, HZ/50); 255 cond_resched(); 256 goto retry; 257 } 258 err = -EAGAIN; 259 goto next; 260 } 261 262 err = f2fs_get_node_info(sbi, dn.nid, &ni); 263 if (err) { 264 f2fs_put_dnode(&dn); 265 return err; 266 } 267 268 if (cur->old_addr == NEW_ADDR) { 269 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 270 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 271 } else 272 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 273 cur->old_addr, ni.version, true, true); 274 f2fs_put_dnode(&dn); 275 } 276 next: 277 /* we don't need to invalidate this in the sccessful status */ 278 if (drop || recover) { 279 ClearPageUptodate(page); 280 clear_cold_data(page); 281 } 282 f2fs_clear_page_private(page); 283 f2fs_put_page(page, 1); 284 285 list_del(&cur->list); 286 kmem_cache_free(inmem_entry_slab, cur); 287 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 288 } 289 return err; 290 } 291 292 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 293 { 294 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 295 struct inode *inode; 296 struct f2fs_inode_info *fi; 297 next: 298 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 299 if (list_empty(head)) { 300 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 301 return; 302 } 303 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 304 inode = igrab(&fi->vfs_inode); 305 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 306 307 if (inode) { 308 if (gc_failure) { 309 if (fi->i_gc_failures[GC_FAILURE_ATOMIC]) 310 goto drop; 311 goto skip; 312 } 313 drop: 314 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 315 f2fs_drop_inmem_pages(inode); 316 iput(inode); 317 } 318 skip: 319 congestion_wait(BLK_RW_ASYNC, HZ/50); 320 cond_resched(); 321 goto next; 322 } 323 324 void f2fs_drop_inmem_pages(struct inode *inode) 325 { 326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 327 struct f2fs_inode_info *fi = F2FS_I(inode); 328 329 while (!list_empty(&fi->inmem_pages)) { 330 mutex_lock(&fi->inmem_lock); 331 __revoke_inmem_pages(inode, &fi->inmem_pages, 332 true, false, true); 333 334 if (list_empty(&fi->inmem_pages)) { 335 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 336 if (!list_empty(&fi->inmem_ilist)) 337 list_del_init(&fi->inmem_ilist); 338 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 339 } 340 mutex_unlock(&fi->inmem_lock); 341 } 342 343 clear_inode_flag(inode, FI_ATOMIC_FILE); 344 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 345 stat_dec_atomic_write(inode); 346 } 347 348 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 349 { 350 struct f2fs_inode_info *fi = F2FS_I(inode); 351 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 352 struct list_head *head = &fi->inmem_pages; 353 struct inmem_pages *cur = NULL; 354 355 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 356 357 mutex_lock(&fi->inmem_lock); 358 list_for_each_entry(cur, head, list) { 359 if (cur->page == page) 360 break; 361 } 362 363 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 364 list_del(&cur->list); 365 mutex_unlock(&fi->inmem_lock); 366 367 dec_page_count(sbi, F2FS_INMEM_PAGES); 368 kmem_cache_free(inmem_entry_slab, cur); 369 370 ClearPageUptodate(page); 371 f2fs_clear_page_private(page); 372 f2fs_put_page(page, 0); 373 374 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 375 } 376 377 static int __f2fs_commit_inmem_pages(struct inode *inode) 378 { 379 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 380 struct f2fs_inode_info *fi = F2FS_I(inode); 381 struct inmem_pages *cur, *tmp; 382 struct f2fs_io_info fio = { 383 .sbi = sbi, 384 .ino = inode->i_ino, 385 .type = DATA, 386 .op = REQ_OP_WRITE, 387 .op_flags = REQ_SYNC | REQ_PRIO, 388 .io_type = FS_DATA_IO, 389 }; 390 struct list_head revoke_list; 391 bool submit_bio = false; 392 int err = 0; 393 394 INIT_LIST_HEAD(&revoke_list); 395 396 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 397 struct page *page = cur->page; 398 399 lock_page(page); 400 if (page->mapping == inode->i_mapping) { 401 trace_f2fs_commit_inmem_page(page, INMEM); 402 403 f2fs_wait_on_page_writeback(page, DATA, true, true); 404 405 set_page_dirty(page); 406 if (clear_page_dirty_for_io(page)) { 407 inode_dec_dirty_pages(inode); 408 f2fs_remove_dirty_inode(inode); 409 } 410 retry: 411 fio.page = page; 412 fio.old_blkaddr = NULL_ADDR; 413 fio.encrypted_page = NULL; 414 fio.need_lock = LOCK_DONE; 415 err = f2fs_do_write_data_page(&fio); 416 if (err) { 417 if (err == -ENOMEM) { 418 congestion_wait(BLK_RW_ASYNC, HZ/50); 419 cond_resched(); 420 goto retry; 421 } 422 unlock_page(page); 423 break; 424 } 425 /* record old blkaddr for revoking */ 426 cur->old_addr = fio.old_blkaddr; 427 submit_bio = true; 428 } 429 unlock_page(page); 430 list_move_tail(&cur->list, &revoke_list); 431 } 432 433 if (submit_bio) 434 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 435 436 if (err) { 437 /* 438 * try to revoke all committed pages, but still we could fail 439 * due to no memory or other reason, if that happened, EAGAIN 440 * will be returned, which means in such case, transaction is 441 * already not integrity, caller should use journal to do the 442 * recovery or rewrite & commit last transaction. For other 443 * error number, revoking was done by filesystem itself. 444 */ 445 err = __revoke_inmem_pages(inode, &revoke_list, 446 false, true, false); 447 448 /* drop all uncommitted pages */ 449 __revoke_inmem_pages(inode, &fi->inmem_pages, 450 true, false, false); 451 } else { 452 __revoke_inmem_pages(inode, &revoke_list, 453 false, false, false); 454 } 455 456 return err; 457 } 458 459 int f2fs_commit_inmem_pages(struct inode *inode) 460 { 461 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 462 struct f2fs_inode_info *fi = F2FS_I(inode); 463 int err; 464 465 f2fs_balance_fs(sbi, true); 466 467 down_write(&fi->i_gc_rwsem[WRITE]); 468 469 f2fs_lock_op(sbi); 470 set_inode_flag(inode, FI_ATOMIC_COMMIT); 471 472 mutex_lock(&fi->inmem_lock); 473 err = __f2fs_commit_inmem_pages(inode); 474 475 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 476 if (!list_empty(&fi->inmem_ilist)) 477 list_del_init(&fi->inmem_ilist); 478 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 479 mutex_unlock(&fi->inmem_lock); 480 481 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 482 483 f2fs_unlock_op(sbi); 484 up_write(&fi->i_gc_rwsem[WRITE]); 485 486 return err; 487 } 488 489 /* 490 * This function balances dirty node and dentry pages. 491 * In addition, it controls garbage collection. 492 */ 493 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 494 { 495 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 496 f2fs_show_injection_info(FAULT_CHECKPOINT); 497 f2fs_stop_checkpoint(sbi, false); 498 } 499 500 /* balance_fs_bg is able to be pending */ 501 if (need && excess_cached_nats(sbi)) 502 f2fs_balance_fs_bg(sbi); 503 504 if (f2fs_is_checkpoint_ready(sbi)) 505 return; 506 507 /* 508 * We should do GC or end up with checkpoint, if there are so many dirty 509 * dir/node pages without enough free segments. 510 */ 511 if (has_not_enough_free_secs(sbi, 0, 0)) { 512 mutex_lock(&sbi->gc_mutex); 513 f2fs_gc(sbi, false, false, NULL_SEGNO); 514 } 515 } 516 517 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 518 { 519 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 520 return; 521 522 /* try to shrink extent cache when there is no enough memory */ 523 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 524 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 525 526 /* check the # of cached NAT entries */ 527 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 528 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 529 530 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 531 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 532 else 533 f2fs_build_free_nids(sbi, false, false); 534 535 if (!is_idle(sbi, REQ_TIME) && 536 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 537 return; 538 539 /* checkpoint is the only way to shrink partial cached entries */ 540 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 541 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 542 excess_prefree_segs(sbi) || 543 excess_dirty_nats(sbi) || 544 excess_dirty_nodes(sbi) || 545 f2fs_time_over(sbi, CP_TIME)) { 546 if (test_opt(sbi, DATA_FLUSH)) { 547 struct blk_plug plug; 548 549 blk_start_plug(&plug); 550 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 551 blk_finish_plug(&plug); 552 } 553 f2fs_sync_fs(sbi->sb, true); 554 stat_inc_bg_cp_count(sbi->stat_info); 555 } 556 } 557 558 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 559 struct block_device *bdev) 560 { 561 struct bio *bio; 562 int ret; 563 564 bio = f2fs_bio_alloc(sbi, 0, false); 565 if (!bio) 566 return -ENOMEM; 567 568 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 569 bio_set_dev(bio, bdev); 570 ret = submit_bio_wait(bio); 571 bio_put(bio); 572 573 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 574 test_opt(sbi, FLUSH_MERGE), ret); 575 return ret; 576 } 577 578 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 579 { 580 int ret = 0; 581 int i; 582 583 if (!sbi->s_ndevs) 584 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 585 586 for (i = 0; i < sbi->s_ndevs; i++) { 587 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 588 continue; 589 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 590 if (ret) 591 break; 592 } 593 return ret; 594 } 595 596 static int issue_flush_thread(void *data) 597 { 598 struct f2fs_sb_info *sbi = data; 599 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 600 wait_queue_head_t *q = &fcc->flush_wait_queue; 601 repeat: 602 if (kthread_should_stop()) 603 return 0; 604 605 sb_start_intwrite(sbi->sb); 606 607 if (!llist_empty(&fcc->issue_list)) { 608 struct flush_cmd *cmd, *next; 609 int ret; 610 611 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 612 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 613 614 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 615 616 ret = submit_flush_wait(sbi, cmd->ino); 617 atomic_inc(&fcc->issued_flush); 618 619 llist_for_each_entry_safe(cmd, next, 620 fcc->dispatch_list, llnode) { 621 cmd->ret = ret; 622 complete(&cmd->wait); 623 } 624 fcc->dispatch_list = NULL; 625 } 626 627 sb_end_intwrite(sbi->sb); 628 629 wait_event_interruptible(*q, 630 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 631 goto repeat; 632 } 633 634 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 635 { 636 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 637 struct flush_cmd cmd; 638 int ret; 639 640 if (test_opt(sbi, NOBARRIER)) 641 return 0; 642 643 if (!test_opt(sbi, FLUSH_MERGE)) { 644 atomic_inc(&fcc->queued_flush); 645 ret = submit_flush_wait(sbi, ino); 646 atomic_dec(&fcc->queued_flush); 647 atomic_inc(&fcc->issued_flush); 648 return ret; 649 } 650 651 if (atomic_inc_return(&fcc->queued_flush) == 1 || sbi->s_ndevs > 1) { 652 ret = submit_flush_wait(sbi, ino); 653 atomic_dec(&fcc->queued_flush); 654 655 atomic_inc(&fcc->issued_flush); 656 return ret; 657 } 658 659 cmd.ino = ino; 660 init_completion(&cmd.wait); 661 662 llist_add(&cmd.llnode, &fcc->issue_list); 663 664 /* update issue_list before we wake up issue_flush thread */ 665 smp_mb(); 666 667 if (waitqueue_active(&fcc->flush_wait_queue)) 668 wake_up(&fcc->flush_wait_queue); 669 670 if (fcc->f2fs_issue_flush) { 671 wait_for_completion(&cmd.wait); 672 atomic_dec(&fcc->queued_flush); 673 } else { 674 struct llist_node *list; 675 676 list = llist_del_all(&fcc->issue_list); 677 if (!list) { 678 wait_for_completion(&cmd.wait); 679 atomic_dec(&fcc->queued_flush); 680 } else { 681 struct flush_cmd *tmp, *next; 682 683 ret = submit_flush_wait(sbi, ino); 684 685 llist_for_each_entry_safe(tmp, next, list, llnode) { 686 if (tmp == &cmd) { 687 cmd.ret = ret; 688 atomic_dec(&fcc->queued_flush); 689 continue; 690 } 691 tmp->ret = ret; 692 complete(&tmp->wait); 693 } 694 } 695 } 696 697 return cmd.ret; 698 } 699 700 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 701 { 702 dev_t dev = sbi->sb->s_bdev->bd_dev; 703 struct flush_cmd_control *fcc; 704 int err = 0; 705 706 if (SM_I(sbi)->fcc_info) { 707 fcc = SM_I(sbi)->fcc_info; 708 if (fcc->f2fs_issue_flush) 709 return err; 710 goto init_thread; 711 } 712 713 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 714 if (!fcc) 715 return -ENOMEM; 716 atomic_set(&fcc->issued_flush, 0); 717 atomic_set(&fcc->queued_flush, 0); 718 init_waitqueue_head(&fcc->flush_wait_queue); 719 init_llist_head(&fcc->issue_list); 720 SM_I(sbi)->fcc_info = fcc; 721 if (!test_opt(sbi, FLUSH_MERGE)) 722 return err; 723 724 init_thread: 725 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 726 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 727 if (IS_ERR(fcc->f2fs_issue_flush)) { 728 err = PTR_ERR(fcc->f2fs_issue_flush); 729 kvfree(fcc); 730 SM_I(sbi)->fcc_info = NULL; 731 return err; 732 } 733 734 return err; 735 } 736 737 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 738 { 739 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 740 741 if (fcc && fcc->f2fs_issue_flush) { 742 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 743 744 fcc->f2fs_issue_flush = NULL; 745 kthread_stop(flush_thread); 746 } 747 if (free) { 748 kvfree(fcc); 749 SM_I(sbi)->fcc_info = NULL; 750 } 751 } 752 753 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 754 { 755 int ret = 0, i; 756 757 if (!sbi->s_ndevs) 758 return 0; 759 760 for (i = 1; i < sbi->s_ndevs; i++) { 761 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 762 continue; 763 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 764 if (ret) 765 break; 766 767 spin_lock(&sbi->dev_lock); 768 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 769 spin_unlock(&sbi->dev_lock); 770 } 771 772 return ret; 773 } 774 775 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 776 enum dirty_type dirty_type) 777 { 778 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 779 780 /* need not be added */ 781 if (IS_CURSEG(sbi, segno)) 782 return; 783 784 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 785 dirty_i->nr_dirty[dirty_type]++; 786 787 if (dirty_type == DIRTY) { 788 struct seg_entry *sentry = get_seg_entry(sbi, segno); 789 enum dirty_type t = sentry->type; 790 791 if (unlikely(t >= DIRTY)) { 792 f2fs_bug_on(sbi, 1); 793 return; 794 } 795 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 796 dirty_i->nr_dirty[t]++; 797 } 798 } 799 800 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 801 enum dirty_type dirty_type) 802 { 803 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 804 805 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 806 dirty_i->nr_dirty[dirty_type]--; 807 808 if (dirty_type == DIRTY) { 809 struct seg_entry *sentry = get_seg_entry(sbi, segno); 810 enum dirty_type t = sentry->type; 811 812 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 813 dirty_i->nr_dirty[t]--; 814 815 if (get_valid_blocks(sbi, segno, true) == 0) 816 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 817 dirty_i->victim_secmap); 818 } 819 } 820 821 /* 822 * Should not occur error such as -ENOMEM. 823 * Adding dirty entry into seglist is not critical operation. 824 * If a given segment is one of current working segments, it won't be added. 825 */ 826 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 827 { 828 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 829 unsigned short valid_blocks, ckpt_valid_blocks; 830 831 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 832 return; 833 834 mutex_lock(&dirty_i->seglist_lock); 835 836 valid_blocks = get_valid_blocks(sbi, segno, false); 837 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 838 839 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 840 ckpt_valid_blocks == sbi->blocks_per_seg)) { 841 __locate_dirty_segment(sbi, segno, PRE); 842 __remove_dirty_segment(sbi, segno, DIRTY); 843 } else if (valid_blocks < sbi->blocks_per_seg) { 844 __locate_dirty_segment(sbi, segno, DIRTY); 845 } else { 846 /* Recovery routine with SSR needs this */ 847 __remove_dirty_segment(sbi, segno, DIRTY); 848 } 849 850 mutex_unlock(&dirty_i->seglist_lock); 851 } 852 853 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 854 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 855 { 856 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 857 unsigned int segno; 858 859 mutex_lock(&dirty_i->seglist_lock); 860 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 861 if (get_valid_blocks(sbi, segno, false)) 862 continue; 863 if (IS_CURSEG(sbi, segno)) 864 continue; 865 __locate_dirty_segment(sbi, segno, PRE); 866 __remove_dirty_segment(sbi, segno, DIRTY); 867 } 868 mutex_unlock(&dirty_i->seglist_lock); 869 } 870 871 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi) 872 { 873 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 874 block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg; 875 block_t holes[2] = {0, 0}; /* DATA and NODE */ 876 struct seg_entry *se; 877 unsigned int segno; 878 879 mutex_lock(&dirty_i->seglist_lock); 880 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 881 se = get_seg_entry(sbi, segno); 882 if (IS_NODESEG(se->type)) 883 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; 884 else 885 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; 886 } 887 mutex_unlock(&dirty_i->seglist_lock); 888 889 if (holes[DATA] > ovp || holes[NODE] > ovp) 890 return -EAGAIN; 891 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 892 dirty_segments(sbi) > overprovision_segments(sbi)) 893 return -EAGAIN; 894 return 0; 895 } 896 897 /* This is only used by SBI_CP_DISABLED */ 898 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 899 { 900 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 901 unsigned int segno = 0; 902 903 mutex_lock(&dirty_i->seglist_lock); 904 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 905 if (get_valid_blocks(sbi, segno, false)) 906 continue; 907 if (get_ckpt_valid_blocks(sbi, segno)) 908 continue; 909 mutex_unlock(&dirty_i->seglist_lock); 910 return segno; 911 } 912 mutex_unlock(&dirty_i->seglist_lock); 913 return NULL_SEGNO; 914 } 915 916 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 917 struct block_device *bdev, block_t lstart, 918 block_t start, block_t len) 919 { 920 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 921 struct list_head *pend_list; 922 struct discard_cmd *dc; 923 924 f2fs_bug_on(sbi, !len); 925 926 pend_list = &dcc->pend_list[plist_idx(len)]; 927 928 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 929 INIT_LIST_HEAD(&dc->list); 930 dc->bdev = bdev; 931 dc->lstart = lstart; 932 dc->start = start; 933 dc->len = len; 934 dc->ref = 0; 935 dc->state = D_PREP; 936 dc->queued = 0; 937 dc->error = 0; 938 init_completion(&dc->wait); 939 list_add_tail(&dc->list, pend_list); 940 spin_lock_init(&dc->lock); 941 dc->bio_ref = 0; 942 atomic_inc(&dcc->discard_cmd_cnt); 943 dcc->undiscard_blks += len; 944 945 return dc; 946 } 947 948 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 949 struct block_device *bdev, block_t lstart, 950 block_t start, block_t len, 951 struct rb_node *parent, struct rb_node **p, 952 bool leftmost) 953 { 954 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 955 struct discard_cmd *dc; 956 957 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 958 959 rb_link_node(&dc->rb_node, parent, p); 960 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 961 962 return dc; 963 } 964 965 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 966 struct discard_cmd *dc) 967 { 968 if (dc->state == D_DONE) 969 atomic_sub(dc->queued, &dcc->queued_discard); 970 971 list_del(&dc->list); 972 rb_erase_cached(&dc->rb_node, &dcc->root); 973 dcc->undiscard_blks -= dc->len; 974 975 kmem_cache_free(discard_cmd_slab, dc); 976 977 atomic_dec(&dcc->discard_cmd_cnt); 978 } 979 980 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 981 struct discard_cmd *dc) 982 { 983 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 984 unsigned long flags; 985 986 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 987 988 spin_lock_irqsave(&dc->lock, flags); 989 if (dc->bio_ref) { 990 spin_unlock_irqrestore(&dc->lock, flags); 991 return; 992 } 993 spin_unlock_irqrestore(&dc->lock, flags); 994 995 f2fs_bug_on(sbi, dc->ref); 996 997 if (dc->error == -EOPNOTSUPP) 998 dc->error = 0; 999 1000 if (dc->error) 1001 printk_ratelimited( 1002 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d", 1003 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error); 1004 __detach_discard_cmd(dcc, dc); 1005 } 1006 1007 static void f2fs_submit_discard_endio(struct bio *bio) 1008 { 1009 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1010 unsigned long flags; 1011 1012 dc->error = blk_status_to_errno(bio->bi_status); 1013 1014 spin_lock_irqsave(&dc->lock, flags); 1015 dc->bio_ref--; 1016 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1017 dc->state = D_DONE; 1018 complete_all(&dc->wait); 1019 } 1020 spin_unlock_irqrestore(&dc->lock, flags); 1021 bio_put(bio); 1022 } 1023 1024 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1025 block_t start, block_t end) 1026 { 1027 #ifdef CONFIG_F2FS_CHECK_FS 1028 struct seg_entry *sentry; 1029 unsigned int segno; 1030 block_t blk = start; 1031 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1032 unsigned long *map; 1033 1034 while (blk < end) { 1035 segno = GET_SEGNO(sbi, blk); 1036 sentry = get_seg_entry(sbi, segno); 1037 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1038 1039 if (end < START_BLOCK(sbi, segno + 1)) 1040 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1041 else 1042 size = max_blocks; 1043 map = (unsigned long *)(sentry->cur_valid_map); 1044 offset = __find_rev_next_bit(map, size, offset); 1045 f2fs_bug_on(sbi, offset != size); 1046 blk = START_BLOCK(sbi, segno + 1); 1047 } 1048 #endif 1049 } 1050 1051 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1052 struct discard_policy *dpolicy, 1053 int discard_type, unsigned int granularity) 1054 { 1055 /* common policy */ 1056 dpolicy->type = discard_type; 1057 dpolicy->sync = true; 1058 dpolicy->ordered = false; 1059 dpolicy->granularity = granularity; 1060 1061 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1062 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1063 dpolicy->timeout = 0; 1064 1065 if (discard_type == DPOLICY_BG) { 1066 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1067 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1068 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1069 dpolicy->io_aware = true; 1070 dpolicy->sync = false; 1071 dpolicy->ordered = true; 1072 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1073 dpolicy->granularity = 1; 1074 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1075 } 1076 } else if (discard_type == DPOLICY_FORCE) { 1077 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1078 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1079 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1080 dpolicy->io_aware = false; 1081 } else if (discard_type == DPOLICY_FSTRIM) { 1082 dpolicy->io_aware = false; 1083 } else if (discard_type == DPOLICY_UMOUNT) { 1084 dpolicy->max_requests = UINT_MAX; 1085 dpolicy->io_aware = false; 1086 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1087 dpolicy->granularity = 1; 1088 } 1089 } 1090 1091 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1092 struct block_device *bdev, block_t lstart, 1093 block_t start, block_t len); 1094 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1095 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1096 struct discard_policy *dpolicy, 1097 struct discard_cmd *dc, 1098 unsigned int *issued) 1099 { 1100 struct block_device *bdev = dc->bdev; 1101 struct request_queue *q = bdev_get_queue(bdev); 1102 unsigned int max_discard_blocks = 1103 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1104 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1105 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1106 &(dcc->fstrim_list) : &(dcc->wait_list); 1107 int flag = dpolicy->sync ? REQ_SYNC : 0; 1108 block_t lstart, start, len, total_len; 1109 int err = 0; 1110 1111 if (dc->state != D_PREP) 1112 return 0; 1113 1114 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1115 return 0; 1116 1117 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1118 1119 lstart = dc->lstart; 1120 start = dc->start; 1121 len = dc->len; 1122 total_len = len; 1123 1124 dc->len = 0; 1125 1126 while (total_len && *issued < dpolicy->max_requests && !err) { 1127 struct bio *bio = NULL; 1128 unsigned long flags; 1129 bool last = true; 1130 1131 if (len > max_discard_blocks) { 1132 len = max_discard_blocks; 1133 last = false; 1134 } 1135 1136 (*issued)++; 1137 if (*issued == dpolicy->max_requests) 1138 last = true; 1139 1140 dc->len += len; 1141 1142 if (time_to_inject(sbi, FAULT_DISCARD)) { 1143 f2fs_show_injection_info(FAULT_DISCARD); 1144 err = -EIO; 1145 goto submit; 1146 } 1147 err = __blkdev_issue_discard(bdev, 1148 SECTOR_FROM_BLOCK(start), 1149 SECTOR_FROM_BLOCK(len), 1150 GFP_NOFS, 0, &bio); 1151 submit: 1152 if (err) { 1153 spin_lock_irqsave(&dc->lock, flags); 1154 if (dc->state == D_PARTIAL) 1155 dc->state = D_SUBMIT; 1156 spin_unlock_irqrestore(&dc->lock, flags); 1157 1158 break; 1159 } 1160 1161 f2fs_bug_on(sbi, !bio); 1162 1163 /* 1164 * should keep before submission to avoid D_DONE 1165 * right away 1166 */ 1167 spin_lock_irqsave(&dc->lock, flags); 1168 if (last) 1169 dc->state = D_SUBMIT; 1170 else 1171 dc->state = D_PARTIAL; 1172 dc->bio_ref++; 1173 spin_unlock_irqrestore(&dc->lock, flags); 1174 1175 atomic_inc(&dcc->queued_discard); 1176 dc->queued++; 1177 list_move_tail(&dc->list, wait_list); 1178 1179 /* sanity check on discard range */ 1180 __check_sit_bitmap(sbi, lstart, lstart + len); 1181 1182 bio->bi_private = dc; 1183 bio->bi_end_io = f2fs_submit_discard_endio; 1184 bio->bi_opf |= flag; 1185 submit_bio(bio); 1186 1187 atomic_inc(&dcc->issued_discard); 1188 1189 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1190 1191 lstart += len; 1192 start += len; 1193 total_len -= len; 1194 len = total_len; 1195 } 1196 1197 if (!err && len) 1198 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1199 return err; 1200 } 1201 1202 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 1203 struct block_device *bdev, block_t lstart, 1204 block_t start, block_t len, 1205 struct rb_node **insert_p, 1206 struct rb_node *insert_parent) 1207 { 1208 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1209 struct rb_node **p; 1210 struct rb_node *parent = NULL; 1211 struct discard_cmd *dc = NULL; 1212 bool leftmost = true; 1213 1214 if (insert_p && insert_parent) { 1215 parent = insert_parent; 1216 p = insert_p; 1217 goto do_insert; 1218 } 1219 1220 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1221 lstart, &leftmost); 1222 do_insert: 1223 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1224 p, leftmost); 1225 if (!dc) 1226 return NULL; 1227 1228 return dc; 1229 } 1230 1231 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1232 struct discard_cmd *dc) 1233 { 1234 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1235 } 1236 1237 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1238 struct discard_cmd *dc, block_t blkaddr) 1239 { 1240 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1241 struct discard_info di = dc->di; 1242 bool modified = false; 1243 1244 if (dc->state == D_DONE || dc->len == 1) { 1245 __remove_discard_cmd(sbi, dc); 1246 return; 1247 } 1248 1249 dcc->undiscard_blks -= di.len; 1250 1251 if (blkaddr > di.lstart) { 1252 dc->len = blkaddr - dc->lstart; 1253 dcc->undiscard_blks += dc->len; 1254 __relocate_discard_cmd(dcc, dc); 1255 modified = true; 1256 } 1257 1258 if (blkaddr < di.lstart + di.len - 1) { 1259 if (modified) { 1260 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1261 di.start + blkaddr + 1 - di.lstart, 1262 di.lstart + di.len - 1 - blkaddr, 1263 NULL, NULL); 1264 } else { 1265 dc->lstart++; 1266 dc->len--; 1267 dc->start++; 1268 dcc->undiscard_blks += dc->len; 1269 __relocate_discard_cmd(dcc, dc); 1270 } 1271 } 1272 } 1273 1274 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1275 struct block_device *bdev, block_t lstart, 1276 block_t start, block_t len) 1277 { 1278 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1279 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1280 struct discard_cmd *dc; 1281 struct discard_info di = {0}; 1282 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1283 struct request_queue *q = bdev_get_queue(bdev); 1284 unsigned int max_discard_blocks = 1285 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1286 block_t end = lstart + len; 1287 1288 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1289 NULL, lstart, 1290 (struct rb_entry **)&prev_dc, 1291 (struct rb_entry **)&next_dc, 1292 &insert_p, &insert_parent, true, NULL); 1293 if (dc) 1294 prev_dc = dc; 1295 1296 if (!prev_dc) { 1297 di.lstart = lstart; 1298 di.len = next_dc ? next_dc->lstart - lstart : len; 1299 di.len = min(di.len, len); 1300 di.start = start; 1301 } 1302 1303 while (1) { 1304 struct rb_node *node; 1305 bool merged = false; 1306 struct discard_cmd *tdc = NULL; 1307 1308 if (prev_dc) { 1309 di.lstart = prev_dc->lstart + prev_dc->len; 1310 if (di.lstart < lstart) 1311 di.lstart = lstart; 1312 if (di.lstart >= end) 1313 break; 1314 1315 if (!next_dc || next_dc->lstart > end) 1316 di.len = end - di.lstart; 1317 else 1318 di.len = next_dc->lstart - di.lstart; 1319 di.start = start + di.lstart - lstart; 1320 } 1321 1322 if (!di.len) 1323 goto next; 1324 1325 if (prev_dc && prev_dc->state == D_PREP && 1326 prev_dc->bdev == bdev && 1327 __is_discard_back_mergeable(&di, &prev_dc->di, 1328 max_discard_blocks)) { 1329 prev_dc->di.len += di.len; 1330 dcc->undiscard_blks += di.len; 1331 __relocate_discard_cmd(dcc, prev_dc); 1332 di = prev_dc->di; 1333 tdc = prev_dc; 1334 merged = true; 1335 } 1336 1337 if (next_dc && next_dc->state == D_PREP && 1338 next_dc->bdev == bdev && 1339 __is_discard_front_mergeable(&di, &next_dc->di, 1340 max_discard_blocks)) { 1341 next_dc->di.lstart = di.lstart; 1342 next_dc->di.len += di.len; 1343 next_dc->di.start = di.start; 1344 dcc->undiscard_blks += di.len; 1345 __relocate_discard_cmd(dcc, next_dc); 1346 if (tdc) 1347 __remove_discard_cmd(sbi, tdc); 1348 merged = true; 1349 } 1350 1351 if (!merged) { 1352 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1353 di.len, NULL, NULL); 1354 } 1355 next: 1356 prev_dc = next_dc; 1357 if (!prev_dc) 1358 break; 1359 1360 node = rb_next(&prev_dc->rb_node); 1361 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1362 } 1363 } 1364 1365 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1366 struct block_device *bdev, block_t blkstart, block_t blklen) 1367 { 1368 block_t lblkstart = blkstart; 1369 1370 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1371 1372 if (sbi->s_ndevs) { 1373 int devi = f2fs_target_device_index(sbi, blkstart); 1374 1375 blkstart -= FDEV(devi).start_blk; 1376 } 1377 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1378 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1379 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1380 return 0; 1381 } 1382 1383 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1384 struct discard_policy *dpolicy) 1385 { 1386 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1387 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1388 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1389 struct discard_cmd *dc; 1390 struct blk_plug plug; 1391 unsigned int pos = dcc->next_pos; 1392 unsigned int issued = 0; 1393 bool io_interrupted = false; 1394 1395 mutex_lock(&dcc->cmd_lock); 1396 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1397 NULL, pos, 1398 (struct rb_entry **)&prev_dc, 1399 (struct rb_entry **)&next_dc, 1400 &insert_p, &insert_parent, true, NULL); 1401 if (!dc) 1402 dc = next_dc; 1403 1404 blk_start_plug(&plug); 1405 1406 while (dc) { 1407 struct rb_node *node; 1408 int err = 0; 1409 1410 if (dc->state != D_PREP) 1411 goto next; 1412 1413 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1414 io_interrupted = true; 1415 break; 1416 } 1417 1418 dcc->next_pos = dc->lstart + dc->len; 1419 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1420 1421 if (issued >= dpolicy->max_requests) 1422 break; 1423 next: 1424 node = rb_next(&dc->rb_node); 1425 if (err) 1426 __remove_discard_cmd(sbi, dc); 1427 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1428 } 1429 1430 blk_finish_plug(&plug); 1431 1432 if (!dc) 1433 dcc->next_pos = 0; 1434 1435 mutex_unlock(&dcc->cmd_lock); 1436 1437 if (!issued && io_interrupted) 1438 issued = -1; 1439 1440 return issued; 1441 } 1442 1443 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1444 struct discard_policy *dpolicy) 1445 { 1446 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1447 struct list_head *pend_list; 1448 struct discard_cmd *dc, *tmp; 1449 struct blk_plug plug; 1450 int i, issued = 0; 1451 bool io_interrupted = false; 1452 1453 if (dpolicy->timeout != 0) 1454 f2fs_update_time(sbi, dpolicy->timeout); 1455 1456 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1457 if (dpolicy->timeout != 0 && 1458 f2fs_time_over(sbi, dpolicy->timeout)) 1459 break; 1460 1461 if (i + 1 < dpolicy->granularity) 1462 break; 1463 1464 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1465 return __issue_discard_cmd_orderly(sbi, dpolicy); 1466 1467 pend_list = &dcc->pend_list[i]; 1468 1469 mutex_lock(&dcc->cmd_lock); 1470 if (list_empty(pend_list)) 1471 goto next; 1472 if (unlikely(dcc->rbtree_check)) 1473 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1474 &dcc->root)); 1475 blk_start_plug(&plug); 1476 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1477 f2fs_bug_on(sbi, dc->state != D_PREP); 1478 1479 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1480 !is_idle(sbi, DISCARD_TIME)) { 1481 io_interrupted = true; 1482 break; 1483 } 1484 1485 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1486 1487 if (issued >= dpolicy->max_requests) 1488 break; 1489 } 1490 blk_finish_plug(&plug); 1491 next: 1492 mutex_unlock(&dcc->cmd_lock); 1493 1494 if (issued >= dpolicy->max_requests || io_interrupted) 1495 break; 1496 } 1497 1498 if (!issued && io_interrupted) 1499 issued = -1; 1500 1501 return issued; 1502 } 1503 1504 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1505 { 1506 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1507 struct list_head *pend_list; 1508 struct discard_cmd *dc, *tmp; 1509 int i; 1510 bool dropped = false; 1511 1512 mutex_lock(&dcc->cmd_lock); 1513 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1514 pend_list = &dcc->pend_list[i]; 1515 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1516 f2fs_bug_on(sbi, dc->state != D_PREP); 1517 __remove_discard_cmd(sbi, dc); 1518 dropped = true; 1519 } 1520 } 1521 mutex_unlock(&dcc->cmd_lock); 1522 1523 return dropped; 1524 } 1525 1526 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1527 { 1528 __drop_discard_cmd(sbi); 1529 } 1530 1531 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1532 struct discard_cmd *dc) 1533 { 1534 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1535 unsigned int len = 0; 1536 1537 wait_for_completion_io(&dc->wait); 1538 mutex_lock(&dcc->cmd_lock); 1539 f2fs_bug_on(sbi, dc->state != D_DONE); 1540 dc->ref--; 1541 if (!dc->ref) { 1542 if (!dc->error) 1543 len = dc->len; 1544 __remove_discard_cmd(sbi, dc); 1545 } 1546 mutex_unlock(&dcc->cmd_lock); 1547 1548 return len; 1549 } 1550 1551 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1552 struct discard_policy *dpolicy, 1553 block_t start, block_t end) 1554 { 1555 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1556 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1557 &(dcc->fstrim_list) : &(dcc->wait_list); 1558 struct discard_cmd *dc, *tmp; 1559 bool need_wait; 1560 unsigned int trimmed = 0; 1561 1562 next: 1563 need_wait = false; 1564 1565 mutex_lock(&dcc->cmd_lock); 1566 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1567 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1568 continue; 1569 if (dc->len < dpolicy->granularity) 1570 continue; 1571 if (dc->state == D_DONE && !dc->ref) { 1572 wait_for_completion_io(&dc->wait); 1573 if (!dc->error) 1574 trimmed += dc->len; 1575 __remove_discard_cmd(sbi, dc); 1576 } else { 1577 dc->ref++; 1578 need_wait = true; 1579 break; 1580 } 1581 } 1582 mutex_unlock(&dcc->cmd_lock); 1583 1584 if (need_wait) { 1585 trimmed += __wait_one_discard_bio(sbi, dc); 1586 goto next; 1587 } 1588 1589 return trimmed; 1590 } 1591 1592 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1593 struct discard_policy *dpolicy) 1594 { 1595 struct discard_policy dp; 1596 unsigned int discard_blks; 1597 1598 if (dpolicy) 1599 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1600 1601 /* wait all */ 1602 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1603 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1604 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1605 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1606 1607 return discard_blks; 1608 } 1609 1610 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1611 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1612 { 1613 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1614 struct discard_cmd *dc; 1615 bool need_wait = false; 1616 1617 mutex_lock(&dcc->cmd_lock); 1618 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1619 NULL, blkaddr); 1620 if (dc) { 1621 if (dc->state == D_PREP) { 1622 __punch_discard_cmd(sbi, dc, blkaddr); 1623 } else { 1624 dc->ref++; 1625 need_wait = true; 1626 } 1627 } 1628 mutex_unlock(&dcc->cmd_lock); 1629 1630 if (need_wait) 1631 __wait_one_discard_bio(sbi, dc); 1632 } 1633 1634 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1635 { 1636 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1637 1638 if (dcc && dcc->f2fs_issue_discard) { 1639 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1640 1641 dcc->f2fs_issue_discard = NULL; 1642 kthread_stop(discard_thread); 1643 } 1644 } 1645 1646 /* This comes from f2fs_put_super */ 1647 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1648 { 1649 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1650 struct discard_policy dpolicy; 1651 bool dropped; 1652 1653 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1654 dcc->discard_granularity); 1655 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT; 1656 __issue_discard_cmd(sbi, &dpolicy); 1657 dropped = __drop_discard_cmd(sbi); 1658 1659 /* just to make sure there is no pending discard commands */ 1660 __wait_all_discard_cmd(sbi, NULL); 1661 1662 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1663 return dropped; 1664 } 1665 1666 static int issue_discard_thread(void *data) 1667 { 1668 struct f2fs_sb_info *sbi = data; 1669 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1670 wait_queue_head_t *q = &dcc->discard_wait_queue; 1671 struct discard_policy dpolicy; 1672 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1673 int issued; 1674 1675 set_freezable(); 1676 1677 do { 1678 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1679 dcc->discard_granularity); 1680 1681 wait_event_interruptible_timeout(*q, 1682 kthread_should_stop() || freezing(current) || 1683 dcc->discard_wake, 1684 msecs_to_jiffies(wait_ms)); 1685 1686 if (dcc->discard_wake) 1687 dcc->discard_wake = 0; 1688 1689 /* clean up pending candidates before going to sleep */ 1690 if (atomic_read(&dcc->queued_discard)) 1691 __wait_all_discard_cmd(sbi, NULL); 1692 1693 if (try_to_freeze()) 1694 continue; 1695 if (f2fs_readonly(sbi->sb)) 1696 continue; 1697 if (kthread_should_stop()) 1698 return 0; 1699 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1700 wait_ms = dpolicy.max_interval; 1701 continue; 1702 } 1703 1704 if (sbi->gc_mode == GC_URGENT) 1705 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1706 1707 sb_start_intwrite(sbi->sb); 1708 1709 issued = __issue_discard_cmd(sbi, &dpolicy); 1710 if (issued > 0) { 1711 __wait_all_discard_cmd(sbi, &dpolicy); 1712 wait_ms = dpolicy.min_interval; 1713 } else if (issued == -1){ 1714 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1715 if (!wait_ms) 1716 wait_ms = dpolicy.mid_interval; 1717 } else { 1718 wait_ms = dpolicy.max_interval; 1719 } 1720 1721 sb_end_intwrite(sbi->sb); 1722 1723 } while (!kthread_should_stop()); 1724 return 0; 1725 } 1726 1727 #ifdef CONFIG_BLK_DEV_ZONED 1728 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1729 struct block_device *bdev, block_t blkstart, block_t blklen) 1730 { 1731 sector_t sector, nr_sects; 1732 block_t lblkstart = blkstart; 1733 int devi = 0; 1734 1735 if (sbi->s_ndevs) { 1736 devi = f2fs_target_device_index(sbi, blkstart); 1737 blkstart -= FDEV(devi).start_blk; 1738 } 1739 1740 /* 1741 * We need to know the type of the zone: for conventional zones, 1742 * use regular discard if the drive supports it. For sequential 1743 * zones, reset the zone write pointer. 1744 */ 1745 switch (get_blkz_type(sbi, bdev, blkstart)) { 1746 1747 case BLK_ZONE_TYPE_CONVENTIONAL: 1748 if (!blk_queue_discard(bdev_get_queue(bdev))) 1749 return 0; 1750 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1751 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1752 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1753 sector = SECTOR_FROM_BLOCK(blkstart); 1754 nr_sects = SECTOR_FROM_BLOCK(blklen); 1755 1756 if (sector & (bdev_zone_sectors(bdev) - 1) || 1757 nr_sects != bdev_zone_sectors(bdev)) { 1758 f2fs_msg(sbi->sb, KERN_INFO, 1759 "(%d) %s: Unaligned discard attempted (block %x + %x)", 1760 devi, sbi->s_ndevs ? FDEV(devi).path: "", 1761 blkstart, blklen); 1762 return -EIO; 1763 } 1764 trace_f2fs_issue_reset_zone(bdev, blkstart); 1765 return blkdev_reset_zones(bdev, sector, 1766 nr_sects, GFP_NOFS); 1767 default: 1768 /* Unknown zone type: broken device ? */ 1769 return -EIO; 1770 } 1771 } 1772 #endif 1773 1774 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1775 struct block_device *bdev, block_t blkstart, block_t blklen) 1776 { 1777 #ifdef CONFIG_BLK_DEV_ZONED 1778 if (f2fs_sb_has_blkzoned(sbi) && 1779 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 1780 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1781 #endif 1782 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1783 } 1784 1785 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1786 block_t blkstart, block_t blklen) 1787 { 1788 sector_t start = blkstart, len = 0; 1789 struct block_device *bdev; 1790 struct seg_entry *se; 1791 unsigned int offset; 1792 block_t i; 1793 int err = 0; 1794 1795 bdev = f2fs_target_device(sbi, blkstart, NULL); 1796 1797 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1798 if (i != start) { 1799 struct block_device *bdev2 = 1800 f2fs_target_device(sbi, i, NULL); 1801 1802 if (bdev2 != bdev) { 1803 err = __issue_discard_async(sbi, bdev, 1804 start, len); 1805 if (err) 1806 return err; 1807 bdev = bdev2; 1808 start = i; 1809 len = 0; 1810 } 1811 } 1812 1813 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1814 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1815 1816 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1817 sbi->discard_blks--; 1818 } 1819 1820 if (len) 1821 err = __issue_discard_async(sbi, bdev, start, len); 1822 return err; 1823 } 1824 1825 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1826 bool check_only) 1827 { 1828 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1829 int max_blocks = sbi->blocks_per_seg; 1830 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1831 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1832 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1833 unsigned long *discard_map = (unsigned long *)se->discard_map; 1834 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1835 unsigned int start = 0, end = -1; 1836 bool force = (cpc->reason & CP_DISCARD); 1837 struct discard_entry *de = NULL; 1838 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1839 int i; 1840 1841 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1842 return false; 1843 1844 if (!force) { 1845 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1846 SM_I(sbi)->dcc_info->nr_discards >= 1847 SM_I(sbi)->dcc_info->max_discards) 1848 return false; 1849 } 1850 1851 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1852 for (i = 0; i < entries; i++) 1853 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1854 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1855 1856 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1857 SM_I(sbi)->dcc_info->max_discards) { 1858 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1859 if (start >= max_blocks) 1860 break; 1861 1862 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1863 if (force && start && end != max_blocks 1864 && (end - start) < cpc->trim_minlen) 1865 continue; 1866 1867 if (check_only) 1868 return true; 1869 1870 if (!de) { 1871 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1872 GFP_F2FS_ZERO); 1873 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1874 list_add_tail(&de->list, head); 1875 } 1876 1877 for (i = start; i < end; i++) 1878 __set_bit_le(i, (void *)de->discard_map); 1879 1880 SM_I(sbi)->dcc_info->nr_discards += end - start; 1881 } 1882 return false; 1883 } 1884 1885 static void release_discard_addr(struct discard_entry *entry) 1886 { 1887 list_del(&entry->list); 1888 kmem_cache_free(discard_entry_slab, entry); 1889 } 1890 1891 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1892 { 1893 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1894 struct discard_entry *entry, *this; 1895 1896 /* drop caches */ 1897 list_for_each_entry_safe(entry, this, head, list) 1898 release_discard_addr(entry); 1899 } 1900 1901 /* 1902 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1903 */ 1904 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1905 { 1906 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1907 unsigned int segno; 1908 1909 mutex_lock(&dirty_i->seglist_lock); 1910 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1911 __set_test_and_free(sbi, segno); 1912 mutex_unlock(&dirty_i->seglist_lock); 1913 } 1914 1915 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1916 struct cp_control *cpc) 1917 { 1918 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1919 struct list_head *head = &dcc->entry_list; 1920 struct discard_entry *entry, *this; 1921 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1922 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1923 unsigned int start = 0, end = -1; 1924 unsigned int secno, start_segno; 1925 bool force = (cpc->reason & CP_DISCARD); 1926 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 1927 1928 mutex_lock(&dirty_i->seglist_lock); 1929 1930 while (1) { 1931 int i; 1932 1933 if (need_align && end != -1) 1934 end--; 1935 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1936 if (start >= MAIN_SEGS(sbi)) 1937 break; 1938 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1939 start + 1); 1940 1941 if (need_align) { 1942 start = rounddown(start, sbi->segs_per_sec); 1943 end = roundup(end, sbi->segs_per_sec); 1944 } 1945 1946 for (i = start; i < end; i++) { 1947 if (test_and_clear_bit(i, prefree_map)) 1948 dirty_i->nr_dirty[PRE]--; 1949 } 1950 1951 if (!f2fs_realtime_discard_enable(sbi)) 1952 continue; 1953 1954 if (force && start >= cpc->trim_start && 1955 (end - 1) <= cpc->trim_end) 1956 continue; 1957 1958 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) { 1959 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1960 (end - start) << sbi->log_blocks_per_seg); 1961 continue; 1962 } 1963 next: 1964 secno = GET_SEC_FROM_SEG(sbi, start); 1965 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1966 if (!IS_CURSEC(sbi, secno) && 1967 !get_valid_blocks(sbi, start, true)) 1968 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1969 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1970 1971 start = start_segno + sbi->segs_per_sec; 1972 if (start < end) 1973 goto next; 1974 else 1975 end = start - 1; 1976 } 1977 mutex_unlock(&dirty_i->seglist_lock); 1978 1979 /* send small discards */ 1980 list_for_each_entry_safe(entry, this, head, list) { 1981 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1982 bool is_valid = test_bit_le(0, entry->discard_map); 1983 1984 find_next: 1985 if (is_valid) { 1986 next_pos = find_next_zero_bit_le(entry->discard_map, 1987 sbi->blocks_per_seg, cur_pos); 1988 len = next_pos - cur_pos; 1989 1990 if (f2fs_sb_has_blkzoned(sbi) || 1991 (force && len < cpc->trim_minlen)) 1992 goto skip; 1993 1994 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 1995 len); 1996 total_len += len; 1997 } else { 1998 next_pos = find_next_bit_le(entry->discard_map, 1999 sbi->blocks_per_seg, cur_pos); 2000 } 2001 skip: 2002 cur_pos = next_pos; 2003 is_valid = !is_valid; 2004 2005 if (cur_pos < sbi->blocks_per_seg) 2006 goto find_next; 2007 2008 release_discard_addr(entry); 2009 dcc->nr_discards -= total_len; 2010 } 2011 2012 wake_up_discard_thread(sbi, false); 2013 } 2014 2015 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2016 { 2017 dev_t dev = sbi->sb->s_bdev->bd_dev; 2018 struct discard_cmd_control *dcc; 2019 int err = 0, i; 2020 2021 if (SM_I(sbi)->dcc_info) { 2022 dcc = SM_I(sbi)->dcc_info; 2023 goto init_thread; 2024 } 2025 2026 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2027 if (!dcc) 2028 return -ENOMEM; 2029 2030 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2031 INIT_LIST_HEAD(&dcc->entry_list); 2032 for (i = 0; i < MAX_PLIST_NUM; i++) 2033 INIT_LIST_HEAD(&dcc->pend_list[i]); 2034 INIT_LIST_HEAD(&dcc->wait_list); 2035 INIT_LIST_HEAD(&dcc->fstrim_list); 2036 mutex_init(&dcc->cmd_lock); 2037 atomic_set(&dcc->issued_discard, 0); 2038 atomic_set(&dcc->queued_discard, 0); 2039 atomic_set(&dcc->discard_cmd_cnt, 0); 2040 dcc->nr_discards = 0; 2041 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2042 dcc->undiscard_blks = 0; 2043 dcc->next_pos = 0; 2044 dcc->root = RB_ROOT_CACHED; 2045 dcc->rbtree_check = false; 2046 2047 init_waitqueue_head(&dcc->discard_wait_queue); 2048 SM_I(sbi)->dcc_info = dcc; 2049 init_thread: 2050 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2051 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2052 if (IS_ERR(dcc->f2fs_issue_discard)) { 2053 err = PTR_ERR(dcc->f2fs_issue_discard); 2054 kvfree(dcc); 2055 SM_I(sbi)->dcc_info = NULL; 2056 return err; 2057 } 2058 2059 return err; 2060 } 2061 2062 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2063 { 2064 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2065 2066 if (!dcc) 2067 return; 2068 2069 f2fs_stop_discard_thread(sbi); 2070 2071 kvfree(dcc); 2072 SM_I(sbi)->dcc_info = NULL; 2073 } 2074 2075 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2076 { 2077 struct sit_info *sit_i = SIT_I(sbi); 2078 2079 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2080 sit_i->dirty_sentries++; 2081 return false; 2082 } 2083 2084 return true; 2085 } 2086 2087 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2088 unsigned int segno, int modified) 2089 { 2090 struct seg_entry *se = get_seg_entry(sbi, segno); 2091 se->type = type; 2092 if (modified) 2093 __mark_sit_entry_dirty(sbi, segno); 2094 } 2095 2096 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2097 { 2098 struct seg_entry *se; 2099 unsigned int segno, offset; 2100 long int new_vblocks; 2101 bool exist; 2102 #ifdef CONFIG_F2FS_CHECK_FS 2103 bool mir_exist; 2104 #endif 2105 2106 segno = GET_SEGNO(sbi, blkaddr); 2107 2108 se = get_seg_entry(sbi, segno); 2109 new_vblocks = se->valid_blocks + del; 2110 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2111 2112 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 2113 (new_vblocks > sbi->blocks_per_seg))); 2114 2115 se->valid_blocks = new_vblocks; 2116 se->mtime = get_mtime(sbi, false); 2117 if (se->mtime > SIT_I(sbi)->max_mtime) 2118 SIT_I(sbi)->max_mtime = se->mtime; 2119 2120 /* Update valid block bitmap */ 2121 if (del > 0) { 2122 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2123 #ifdef CONFIG_F2FS_CHECK_FS 2124 mir_exist = f2fs_test_and_set_bit(offset, 2125 se->cur_valid_map_mir); 2126 if (unlikely(exist != mir_exist)) { 2127 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 2128 "when setting bitmap, blk:%u, old bit:%d", 2129 blkaddr, exist); 2130 f2fs_bug_on(sbi, 1); 2131 } 2132 #endif 2133 if (unlikely(exist)) { 2134 f2fs_msg(sbi->sb, KERN_ERR, 2135 "Bitmap was wrongly set, blk:%u", blkaddr); 2136 f2fs_bug_on(sbi, 1); 2137 se->valid_blocks--; 2138 del = 0; 2139 } 2140 2141 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2142 sbi->discard_blks--; 2143 2144 /* don't overwrite by SSR to keep node chain */ 2145 if (IS_NODESEG(se->type) && 2146 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2147 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2148 se->ckpt_valid_blocks++; 2149 } 2150 } else { 2151 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2152 #ifdef CONFIG_F2FS_CHECK_FS 2153 mir_exist = f2fs_test_and_clear_bit(offset, 2154 se->cur_valid_map_mir); 2155 if (unlikely(exist != mir_exist)) { 2156 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 2157 "when clearing bitmap, blk:%u, old bit:%d", 2158 blkaddr, exist); 2159 f2fs_bug_on(sbi, 1); 2160 } 2161 #endif 2162 if (unlikely(!exist)) { 2163 f2fs_msg(sbi->sb, KERN_ERR, 2164 "Bitmap was wrongly cleared, blk:%u", blkaddr); 2165 f2fs_bug_on(sbi, 1); 2166 se->valid_blocks++; 2167 del = 0; 2168 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2169 /* 2170 * If checkpoints are off, we must not reuse data that 2171 * was used in the previous checkpoint. If it was used 2172 * before, we must track that to know how much space we 2173 * really have. 2174 */ 2175 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2176 sbi->unusable_block_count++; 2177 } 2178 2179 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2180 sbi->discard_blks++; 2181 } 2182 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2183 se->ckpt_valid_blocks += del; 2184 2185 __mark_sit_entry_dirty(sbi, segno); 2186 2187 /* update total number of valid blocks to be written in ckpt area */ 2188 SIT_I(sbi)->written_valid_blocks += del; 2189 2190 if (__is_large_section(sbi)) 2191 get_sec_entry(sbi, segno)->valid_blocks += del; 2192 } 2193 2194 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2195 { 2196 unsigned int segno = GET_SEGNO(sbi, addr); 2197 struct sit_info *sit_i = SIT_I(sbi); 2198 2199 f2fs_bug_on(sbi, addr == NULL_ADDR); 2200 if (addr == NEW_ADDR) 2201 return; 2202 2203 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2204 2205 /* add it into sit main buffer */ 2206 down_write(&sit_i->sentry_lock); 2207 2208 update_sit_entry(sbi, addr, -1); 2209 2210 /* add it into dirty seglist */ 2211 locate_dirty_segment(sbi, segno); 2212 2213 up_write(&sit_i->sentry_lock); 2214 } 2215 2216 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2217 { 2218 struct sit_info *sit_i = SIT_I(sbi); 2219 unsigned int segno, offset; 2220 struct seg_entry *se; 2221 bool is_cp = false; 2222 2223 if (!is_valid_data_blkaddr(sbi, blkaddr)) 2224 return true; 2225 2226 down_read(&sit_i->sentry_lock); 2227 2228 segno = GET_SEGNO(sbi, blkaddr); 2229 se = get_seg_entry(sbi, segno); 2230 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2231 2232 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2233 is_cp = true; 2234 2235 up_read(&sit_i->sentry_lock); 2236 2237 return is_cp; 2238 } 2239 2240 /* 2241 * This function should be resided under the curseg_mutex lock 2242 */ 2243 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2244 struct f2fs_summary *sum) 2245 { 2246 struct curseg_info *curseg = CURSEG_I(sbi, type); 2247 void *addr = curseg->sum_blk; 2248 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2249 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2250 } 2251 2252 /* 2253 * Calculate the number of current summary pages for writing 2254 */ 2255 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2256 { 2257 int valid_sum_count = 0; 2258 int i, sum_in_page; 2259 2260 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2261 if (sbi->ckpt->alloc_type[i] == SSR) 2262 valid_sum_count += sbi->blocks_per_seg; 2263 else { 2264 if (for_ra) 2265 valid_sum_count += le16_to_cpu( 2266 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2267 else 2268 valid_sum_count += curseg_blkoff(sbi, i); 2269 } 2270 } 2271 2272 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2273 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2274 if (valid_sum_count <= sum_in_page) 2275 return 1; 2276 else if ((valid_sum_count - sum_in_page) <= 2277 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2278 return 2; 2279 return 3; 2280 } 2281 2282 /* 2283 * Caller should put this summary page 2284 */ 2285 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2286 { 2287 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); 2288 } 2289 2290 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2291 void *src, block_t blk_addr) 2292 { 2293 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2294 2295 memcpy(page_address(page), src, PAGE_SIZE); 2296 set_page_dirty(page); 2297 f2fs_put_page(page, 1); 2298 } 2299 2300 static void write_sum_page(struct f2fs_sb_info *sbi, 2301 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2302 { 2303 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2304 } 2305 2306 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2307 int type, block_t blk_addr) 2308 { 2309 struct curseg_info *curseg = CURSEG_I(sbi, type); 2310 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2311 struct f2fs_summary_block *src = curseg->sum_blk; 2312 struct f2fs_summary_block *dst; 2313 2314 dst = (struct f2fs_summary_block *)page_address(page); 2315 memset(dst, 0, PAGE_SIZE); 2316 2317 mutex_lock(&curseg->curseg_mutex); 2318 2319 down_read(&curseg->journal_rwsem); 2320 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2321 up_read(&curseg->journal_rwsem); 2322 2323 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2324 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2325 2326 mutex_unlock(&curseg->curseg_mutex); 2327 2328 set_page_dirty(page); 2329 f2fs_put_page(page, 1); 2330 } 2331 2332 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2333 { 2334 struct curseg_info *curseg = CURSEG_I(sbi, type); 2335 unsigned int segno = curseg->segno + 1; 2336 struct free_segmap_info *free_i = FREE_I(sbi); 2337 2338 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2339 return !test_bit(segno, free_i->free_segmap); 2340 return 0; 2341 } 2342 2343 /* 2344 * Find a new segment from the free segments bitmap to right order 2345 * This function should be returned with success, otherwise BUG 2346 */ 2347 static void get_new_segment(struct f2fs_sb_info *sbi, 2348 unsigned int *newseg, bool new_sec, int dir) 2349 { 2350 struct free_segmap_info *free_i = FREE_I(sbi); 2351 unsigned int segno, secno, zoneno; 2352 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2353 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2354 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2355 unsigned int left_start = hint; 2356 bool init = true; 2357 int go_left = 0; 2358 int i; 2359 2360 spin_lock(&free_i->segmap_lock); 2361 2362 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2363 segno = find_next_zero_bit(free_i->free_segmap, 2364 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2365 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2366 goto got_it; 2367 } 2368 find_other_zone: 2369 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2370 if (secno >= MAIN_SECS(sbi)) { 2371 if (dir == ALLOC_RIGHT) { 2372 secno = find_next_zero_bit(free_i->free_secmap, 2373 MAIN_SECS(sbi), 0); 2374 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2375 } else { 2376 go_left = 1; 2377 left_start = hint - 1; 2378 } 2379 } 2380 if (go_left == 0) 2381 goto skip_left; 2382 2383 while (test_bit(left_start, free_i->free_secmap)) { 2384 if (left_start > 0) { 2385 left_start--; 2386 continue; 2387 } 2388 left_start = find_next_zero_bit(free_i->free_secmap, 2389 MAIN_SECS(sbi), 0); 2390 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2391 break; 2392 } 2393 secno = left_start; 2394 skip_left: 2395 segno = GET_SEG_FROM_SEC(sbi, secno); 2396 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2397 2398 /* give up on finding another zone */ 2399 if (!init) 2400 goto got_it; 2401 if (sbi->secs_per_zone == 1) 2402 goto got_it; 2403 if (zoneno == old_zoneno) 2404 goto got_it; 2405 if (dir == ALLOC_LEFT) { 2406 if (!go_left && zoneno + 1 >= total_zones) 2407 goto got_it; 2408 if (go_left && zoneno == 0) 2409 goto got_it; 2410 } 2411 for (i = 0; i < NR_CURSEG_TYPE; i++) 2412 if (CURSEG_I(sbi, i)->zone == zoneno) 2413 break; 2414 2415 if (i < NR_CURSEG_TYPE) { 2416 /* zone is in user, try another */ 2417 if (go_left) 2418 hint = zoneno * sbi->secs_per_zone - 1; 2419 else if (zoneno + 1 >= total_zones) 2420 hint = 0; 2421 else 2422 hint = (zoneno + 1) * sbi->secs_per_zone; 2423 init = false; 2424 goto find_other_zone; 2425 } 2426 got_it: 2427 /* set it as dirty segment in free segmap */ 2428 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2429 __set_inuse(sbi, segno); 2430 *newseg = segno; 2431 spin_unlock(&free_i->segmap_lock); 2432 } 2433 2434 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2435 { 2436 struct curseg_info *curseg = CURSEG_I(sbi, type); 2437 struct summary_footer *sum_footer; 2438 2439 curseg->segno = curseg->next_segno; 2440 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2441 curseg->next_blkoff = 0; 2442 curseg->next_segno = NULL_SEGNO; 2443 2444 sum_footer = &(curseg->sum_blk->footer); 2445 memset(sum_footer, 0, sizeof(struct summary_footer)); 2446 if (IS_DATASEG(type)) 2447 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2448 if (IS_NODESEG(type)) 2449 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2450 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2451 } 2452 2453 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2454 { 2455 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2456 if (__is_large_section(sbi)) 2457 return CURSEG_I(sbi, type)->segno; 2458 2459 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2460 return 0; 2461 2462 if (test_opt(sbi, NOHEAP) && 2463 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2464 return 0; 2465 2466 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2467 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2468 2469 /* find segments from 0 to reuse freed segments */ 2470 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2471 return 0; 2472 2473 return CURSEG_I(sbi, type)->segno; 2474 } 2475 2476 /* 2477 * Allocate a current working segment. 2478 * This function always allocates a free segment in LFS manner. 2479 */ 2480 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2481 { 2482 struct curseg_info *curseg = CURSEG_I(sbi, type); 2483 unsigned int segno = curseg->segno; 2484 int dir = ALLOC_LEFT; 2485 2486 write_sum_page(sbi, curseg->sum_blk, 2487 GET_SUM_BLOCK(sbi, segno)); 2488 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2489 dir = ALLOC_RIGHT; 2490 2491 if (test_opt(sbi, NOHEAP)) 2492 dir = ALLOC_RIGHT; 2493 2494 segno = __get_next_segno(sbi, type); 2495 get_new_segment(sbi, &segno, new_sec, dir); 2496 curseg->next_segno = segno; 2497 reset_curseg(sbi, type, 1); 2498 curseg->alloc_type = LFS; 2499 } 2500 2501 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2502 struct curseg_info *seg, block_t start) 2503 { 2504 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2505 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2506 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2507 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2508 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2509 int i, pos; 2510 2511 for (i = 0; i < entries; i++) 2512 target_map[i] = ckpt_map[i] | cur_map[i]; 2513 2514 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2515 2516 seg->next_blkoff = pos; 2517 } 2518 2519 /* 2520 * If a segment is written by LFS manner, next block offset is just obtained 2521 * by increasing the current block offset. However, if a segment is written by 2522 * SSR manner, next block offset obtained by calling __next_free_blkoff 2523 */ 2524 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2525 struct curseg_info *seg) 2526 { 2527 if (seg->alloc_type == SSR) 2528 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2529 else 2530 seg->next_blkoff++; 2531 } 2532 2533 /* 2534 * This function always allocates a used segment(from dirty seglist) by SSR 2535 * manner, so it should recover the existing segment information of valid blocks 2536 */ 2537 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2538 { 2539 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2540 struct curseg_info *curseg = CURSEG_I(sbi, type); 2541 unsigned int new_segno = curseg->next_segno; 2542 struct f2fs_summary_block *sum_node; 2543 struct page *sum_page; 2544 2545 write_sum_page(sbi, curseg->sum_blk, 2546 GET_SUM_BLOCK(sbi, curseg->segno)); 2547 __set_test_and_inuse(sbi, new_segno); 2548 2549 mutex_lock(&dirty_i->seglist_lock); 2550 __remove_dirty_segment(sbi, new_segno, PRE); 2551 __remove_dirty_segment(sbi, new_segno, DIRTY); 2552 mutex_unlock(&dirty_i->seglist_lock); 2553 2554 reset_curseg(sbi, type, 1); 2555 curseg->alloc_type = SSR; 2556 __next_free_blkoff(sbi, curseg, 0); 2557 2558 sum_page = f2fs_get_sum_page(sbi, new_segno); 2559 f2fs_bug_on(sbi, IS_ERR(sum_page)); 2560 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2561 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2562 f2fs_put_page(sum_page, 1); 2563 } 2564 2565 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2566 { 2567 struct curseg_info *curseg = CURSEG_I(sbi, type); 2568 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2569 unsigned segno = NULL_SEGNO; 2570 int i, cnt; 2571 bool reversed = false; 2572 2573 /* f2fs_need_SSR() already forces to do this */ 2574 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2575 curseg->next_segno = segno; 2576 return 1; 2577 } 2578 2579 /* For node segments, let's do SSR more intensively */ 2580 if (IS_NODESEG(type)) { 2581 if (type >= CURSEG_WARM_NODE) { 2582 reversed = true; 2583 i = CURSEG_COLD_NODE; 2584 } else { 2585 i = CURSEG_HOT_NODE; 2586 } 2587 cnt = NR_CURSEG_NODE_TYPE; 2588 } else { 2589 if (type >= CURSEG_WARM_DATA) { 2590 reversed = true; 2591 i = CURSEG_COLD_DATA; 2592 } else { 2593 i = CURSEG_HOT_DATA; 2594 } 2595 cnt = NR_CURSEG_DATA_TYPE; 2596 } 2597 2598 for (; cnt-- > 0; reversed ? i-- : i++) { 2599 if (i == type) 2600 continue; 2601 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2602 curseg->next_segno = segno; 2603 return 1; 2604 } 2605 } 2606 2607 /* find valid_blocks=0 in dirty list */ 2608 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2609 segno = get_free_segment(sbi); 2610 if (segno != NULL_SEGNO) { 2611 curseg->next_segno = segno; 2612 return 1; 2613 } 2614 } 2615 return 0; 2616 } 2617 2618 /* 2619 * flush out current segment and replace it with new segment 2620 * This function should be returned with success, otherwise BUG 2621 */ 2622 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2623 int type, bool force) 2624 { 2625 struct curseg_info *curseg = CURSEG_I(sbi, type); 2626 2627 if (force) 2628 new_curseg(sbi, type, true); 2629 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2630 type == CURSEG_WARM_NODE) 2631 new_curseg(sbi, type, false); 2632 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && 2633 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2634 new_curseg(sbi, type, false); 2635 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2636 change_curseg(sbi, type); 2637 else 2638 new_curseg(sbi, type, false); 2639 2640 stat_inc_seg_type(sbi, curseg); 2641 } 2642 2643 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2644 { 2645 struct curseg_info *curseg; 2646 unsigned int old_segno; 2647 int i; 2648 2649 down_write(&SIT_I(sbi)->sentry_lock); 2650 2651 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2652 curseg = CURSEG_I(sbi, i); 2653 old_segno = curseg->segno; 2654 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2655 locate_dirty_segment(sbi, old_segno); 2656 } 2657 2658 up_write(&SIT_I(sbi)->sentry_lock); 2659 } 2660 2661 static const struct segment_allocation default_salloc_ops = { 2662 .allocate_segment = allocate_segment_by_default, 2663 }; 2664 2665 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2666 struct cp_control *cpc) 2667 { 2668 __u64 trim_start = cpc->trim_start; 2669 bool has_candidate = false; 2670 2671 down_write(&SIT_I(sbi)->sentry_lock); 2672 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2673 if (add_discard_addrs(sbi, cpc, true)) { 2674 has_candidate = true; 2675 break; 2676 } 2677 } 2678 up_write(&SIT_I(sbi)->sentry_lock); 2679 2680 cpc->trim_start = trim_start; 2681 return has_candidate; 2682 } 2683 2684 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2685 struct discard_policy *dpolicy, 2686 unsigned int start, unsigned int end) 2687 { 2688 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2689 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2690 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2691 struct discard_cmd *dc; 2692 struct blk_plug plug; 2693 int issued; 2694 unsigned int trimmed = 0; 2695 2696 next: 2697 issued = 0; 2698 2699 mutex_lock(&dcc->cmd_lock); 2700 if (unlikely(dcc->rbtree_check)) 2701 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2702 &dcc->root)); 2703 2704 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2705 NULL, start, 2706 (struct rb_entry **)&prev_dc, 2707 (struct rb_entry **)&next_dc, 2708 &insert_p, &insert_parent, true, NULL); 2709 if (!dc) 2710 dc = next_dc; 2711 2712 blk_start_plug(&plug); 2713 2714 while (dc && dc->lstart <= end) { 2715 struct rb_node *node; 2716 int err = 0; 2717 2718 if (dc->len < dpolicy->granularity) 2719 goto skip; 2720 2721 if (dc->state != D_PREP) { 2722 list_move_tail(&dc->list, &dcc->fstrim_list); 2723 goto skip; 2724 } 2725 2726 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2727 2728 if (issued >= dpolicy->max_requests) { 2729 start = dc->lstart + dc->len; 2730 2731 if (err) 2732 __remove_discard_cmd(sbi, dc); 2733 2734 blk_finish_plug(&plug); 2735 mutex_unlock(&dcc->cmd_lock); 2736 trimmed += __wait_all_discard_cmd(sbi, NULL); 2737 congestion_wait(BLK_RW_ASYNC, HZ/50); 2738 goto next; 2739 } 2740 skip: 2741 node = rb_next(&dc->rb_node); 2742 if (err) 2743 __remove_discard_cmd(sbi, dc); 2744 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2745 2746 if (fatal_signal_pending(current)) 2747 break; 2748 } 2749 2750 blk_finish_plug(&plug); 2751 mutex_unlock(&dcc->cmd_lock); 2752 2753 return trimmed; 2754 } 2755 2756 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2757 { 2758 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2759 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2760 unsigned int start_segno, end_segno; 2761 block_t start_block, end_block; 2762 struct cp_control cpc; 2763 struct discard_policy dpolicy; 2764 unsigned long long trimmed = 0; 2765 int err = 0; 2766 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 2767 2768 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2769 return -EINVAL; 2770 2771 if (end < MAIN_BLKADDR(sbi)) 2772 goto out; 2773 2774 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2775 f2fs_msg(sbi->sb, KERN_WARNING, 2776 "Found FS corruption, run fsck to fix."); 2777 return -EIO; 2778 } 2779 2780 /* start/end segment number in main_area */ 2781 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2782 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2783 GET_SEGNO(sbi, end); 2784 if (need_align) { 2785 start_segno = rounddown(start_segno, sbi->segs_per_sec); 2786 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 2787 } 2788 2789 cpc.reason = CP_DISCARD; 2790 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2791 cpc.trim_start = start_segno; 2792 cpc.trim_end = end_segno; 2793 2794 if (sbi->discard_blks == 0) 2795 goto out; 2796 2797 mutex_lock(&sbi->gc_mutex); 2798 err = f2fs_write_checkpoint(sbi, &cpc); 2799 mutex_unlock(&sbi->gc_mutex); 2800 if (err) 2801 goto out; 2802 2803 /* 2804 * We filed discard candidates, but actually we don't need to wait for 2805 * all of them, since they'll be issued in idle time along with runtime 2806 * discard option. User configuration looks like using runtime discard 2807 * or periodic fstrim instead of it. 2808 */ 2809 if (f2fs_realtime_discard_enable(sbi)) 2810 goto out; 2811 2812 start_block = START_BLOCK(sbi, start_segno); 2813 end_block = START_BLOCK(sbi, end_segno + 1); 2814 2815 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2816 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 2817 start_block, end_block); 2818 2819 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 2820 start_block, end_block); 2821 out: 2822 if (!err) 2823 range->len = F2FS_BLK_TO_BYTES(trimmed); 2824 return err; 2825 } 2826 2827 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2828 { 2829 struct curseg_info *curseg = CURSEG_I(sbi, type); 2830 if (curseg->next_blkoff < sbi->blocks_per_seg) 2831 return true; 2832 return false; 2833 } 2834 2835 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2836 { 2837 switch (hint) { 2838 case WRITE_LIFE_SHORT: 2839 return CURSEG_HOT_DATA; 2840 case WRITE_LIFE_EXTREME: 2841 return CURSEG_COLD_DATA; 2842 default: 2843 return CURSEG_WARM_DATA; 2844 } 2845 } 2846 2847 /* This returns write hints for each segment type. This hints will be 2848 * passed down to block layer. There are mapping tables which depend on 2849 * the mount option 'whint_mode'. 2850 * 2851 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2852 * 2853 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2854 * 2855 * User F2FS Block 2856 * ---- ---- ----- 2857 * META WRITE_LIFE_NOT_SET 2858 * HOT_NODE " 2859 * WARM_NODE " 2860 * COLD_NODE " 2861 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2862 * extension list " " 2863 * 2864 * -- buffered io 2865 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2866 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2867 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2868 * WRITE_LIFE_NONE " " 2869 * WRITE_LIFE_MEDIUM " " 2870 * WRITE_LIFE_LONG " " 2871 * 2872 * -- direct io 2873 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2874 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2875 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2876 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2877 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2878 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2879 * 2880 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2881 * 2882 * User F2FS Block 2883 * ---- ---- ----- 2884 * META WRITE_LIFE_MEDIUM; 2885 * HOT_NODE WRITE_LIFE_NOT_SET 2886 * WARM_NODE " 2887 * COLD_NODE WRITE_LIFE_NONE 2888 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2889 * extension list " " 2890 * 2891 * -- buffered io 2892 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2893 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2894 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2895 * WRITE_LIFE_NONE " " 2896 * WRITE_LIFE_MEDIUM " " 2897 * WRITE_LIFE_LONG " " 2898 * 2899 * -- direct io 2900 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2901 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2902 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2903 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2904 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2905 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2906 */ 2907 2908 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2909 enum page_type type, enum temp_type temp) 2910 { 2911 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 2912 if (type == DATA) { 2913 if (temp == WARM) 2914 return WRITE_LIFE_NOT_SET; 2915 else if (temp == HOT) 2916 return WRITE_LIFE_SHORT; 2917 else if (temp == COLD) 2918 return WRITE_LIFE_EXTREME; 2919 } else { 2920 return WRITE_LIFE_NOT_SET; 2921 } 2922 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 2923 if (type == DATA) { 2924 if (temp == WARM) 2925 return WRITE_LIFE_LONG; 2926 else if (temp == HOT) 2927 return WRITE_LIFE_SHORT; 2928 else if (temp == COLD) 2929 return WRITE_LIFE_EXTREME; 2930 } else if (type == NODE) { 2931 if (temp == WARM || temp == HOT) 2932 return WRITE_LIFE_NOT_SET; 2933 else if (temp == COLD) 2934 return WRITE_LIFE_NONE; 2935 } else if (type == META) { 2936 return WRITE_LIFE_MEDIUM; 2937 } 2938 } 2939 return WRITE_LIFE_NOT_SET; 2940 } 2941 2942 static int __get_segment_type_2(struct f2fs_io_info *fio) 2943 { 2944 if (fio->type == DATA) 2945 return CURSEG_HOT_DATA; 2946 else 2947 return CURSEG_HOT_NODE; 2948 } 2949 2950 static int __get_segment_type_4(struct f2fs_io_info *fio) 2951 { 2952 if (fio->type == DATA) { 2953 struct inode *inode = fio->page->mapping->host; 2954 2955 if (S_ISDIR(inode->i_mode)) 2956 return CURSEG_HOT_DATA; 2957 else 2958 return CURSEG_COLD_DATA; 2959 } else { 2960 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 2961 return CURSEG_WARM_NODE; 2962 else 2963 return CURSEG_COLD_NODE; 2964 } 2965 } 2966 2967 static int __get_segment_type_6(struct f2fs_io_info *fio) 2968 { 2969 if (fio->type == DATA) { 2970 struct inode *inode = fio->page->mapping->host; 2971 2972 if (is_cold_data(fio->page) || file_is_cold(inode)) 2973 return CURSEG_COLD_DATA; 2974 if (file_is_hot(inode) || 2975 is_inode_flag_set(inode, FI_HOT_DATA) || 2976 f2fs_is_atomic_file(inode) || 2977 f2fs_is_volatile_file(inode)) 2978 return CURSEG_HOT_DATA; 2979 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 2980 } else { 2981 if (IS_DNODE(fio->page)) 2982 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 2983 CURSEG_HOT_NODE; 2984 return CURSEG_COLD_NODE; 2985 } 2986 } 2987 2988 static int __get_segment_type(struct f2fs_io_info *fio) 2989 { 2990 int type = 0; 2991 2992 switch (F2FS_OPTION(fio->sbi).active_logs) { 2993 case 2: 2994 type = __get_segment_type_2(fio); 2995 break; 2996 case 4: 2997 type = __get_segment_type_4(fio); 2998 break; 2999 case 6: 3000 type = __get_segment_type_6(fio); 3001 break; 3002 default: 3003 f2fs_bug_on(fio->sbi, true); 3004 } 3005 3006 if (IS_HOT(type)) 3007 fio->temp = HOT; 3008 else if (IS_WARM(type)) 3009 fio->temp = WARM; 3010 else 3011 fio->temp = COLD; 3012 return type; 3013 } 3014 3015 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3016 block_t old_blkaddr, block_t *new_blkaddr, 3017 struct f2fs_summary *sum, int type, 3018 struct f2fs_io_info *fio, bool add_list) 3019 { 3020 struct sit_info *sit_i = SIT_I(sbi); 3021 struct curseg_info *curseg = CURSEG_I(sbi, type); 3022 3023 down_read(&SM_I(sbi)->curseg_lock); 3024 3025 mutex_lock(&curseg->curseg_mutex); 3026 down_write(&sit_i->sentry_lock); 3027 3028 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3029 3030 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3031 3032 /* 3033 * __add_sum_entry should be resided under the curseg_mutex 3034 * because, this function updates a summary entry in the 3035 * current summary block. 3036 */ 3037 __add_sum_entry(sbi, type, sum); 3038 3039 __refresh_next_blkoff(sbi, curseg); 3040 3041 stat_inc_block_count(sbi, curseg); 3042 3043 /* 3044 * SIT information should be updated before segment allocation, 3045 * since SSR needs latest valid block information. 3046 */ 3047 update_sit_entry(sbi, *new_blkaddr, 1); 3048 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3049 update_sit_entry(sbi, old_blkaddr, -1); 3050 3051 if (!__has_curseg_space(sbi, type)) 3052 sit_i->s_ops->allocate_segment(sbi, type, false); 3053 3054 /* 3055 * segment dirty status should be updated after segment allocation, 3056 * so we just need to update status only one time after previous 3057 * segment being closed. 3058 */ 3059 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3060 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3061 3062 up_write(&sit_i->sentry_lock); 3063 3064 if (page && IS_NODESEG(type)) { 3065 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3066 3067 f2fs_inode_chksum_set(sbi, page); 3068 } 3069 3070 if (add_list) { 3071 struct f2fs_bio_info *io; 3072 3073 INIT_LIST_HEAD(&fio->list); 3074 fio->in_list = true; 3075 fio->retry = false; 3076 io = sbi->write_io[fio->type] + fio->temp; 3077 spin_lock(&io->io_lock); 3078 list_add_tail(&fio->list, &io->io_list); 3079 spin_unlock(&io->io_lock); 3080 } 3081 3082 mutex_unlock(&curseg->curseg_mutex); 3083 3084 up_read(&SM_I(sbi)->curseg_lock); 3085 } 3086 3087 static void update_device_state(struct f2fs_io_info *fio) 3088 { 3089 struct f2fs_sb_info *sbi = fio->sbi; 3090 unsigned int devidx; 3091 3092 if (!sbi->s_ndevs) 3093 return; 3094 3095 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3096 3097 /* update device state for fsync */ 3098 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3099 3100 /* update device state for checkpoint */ 3101 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3102 spin_lock(&sbi->dev_lock); 3103 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3104 spin_unlock(&sbi->dev_lock); 3105 } 3106 } 3107 3108 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3109 { 3110 int type = __get_segment_type(fio); 3111 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA); 3112 3113 if (keep_order) 3114 down_read(&fio->sbi->io_order_lock); 3115 reallocate: 3116 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3117 &fio->new_blkaddr, sum, type, fio, true); 3118 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3119 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3120 fio->old_blkaddr, fio->old_blkaddr); 3121 3122 /* writeout dirty page into bdev */ 3123 f2fs_submit_page_write(fio); 3124 if (fio->retry) { 3125 fio->old_blkaddr = fio->new_blkaddr; 3126 goto reallocate; 3127 } 3128 3129 update_device_state(fio); 3130 3131 if (keep_order) 3132 up_read(&fio->sbi->io_order_lock); 3133 } 3134 3135 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3136 enum iostat_type io_type) 3137 { 3138 struct f2fs_io_info fio = { 3139 .sbi = sbi, 3140 .type = META, 3141 .temp = HOT, 3142 .op = REQ_OP_WRITE, 3143 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3144 .old_blkaddr = page->index, 3145 .new_blkaddr = page->index, 3146 .page = page, 3147 .encrypted_page = NULL, 3148 .in_list = false, 3149 }; 3150 3151 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3152 fio.op_flags &= ~REQ_META; 3153 3154 set_page_writeback(page); 3155 ClearPageError(page); 3156 f2fs_submit_page_write(&fio); 3157 3158 stat_inc_meta_count(sbi, page->index); 3159 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3160 } 3161 3162 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3163 { 3164 struct f2fs_summary sum; 3165 3166 set_summary(&sum, nid, 0, 0); 3167 do_write_page(&sum, fio); 3168 3169 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3170 } 3171 3172 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3173 struct f2fs_io_info *fio) 3174 { 3175 struct f2fs_sb_info *sbi = fio->sbi; 3176 struct f2fs_summary sum; 3177 3178 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3179 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3180 do_write_page(&sum, fio); 3181 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3182 3183 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3184 } 3185 3186 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3187 { 3188 int err; 3189 struct f2fs_sb_info *sbi = fio->sbi; 3190 3191 fio->new_blkaddr = fio->old_blkaddr; 3192 /* i/o temperature is needed for passing down write hints */ 3193 __get_segment_type(fio); 3194 3195 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi, 3196 GET_SEGNO(sbi, fio->new_blkaddr))->type)); 3197 3198 stat_inc_inplace_blocks(fio->sbi); 3199 3200 err = f2fs_submit_page_bio(fio); 3201 if (!err) { 3202 update_device_state(fio); 3203 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3204 } 3205 3206 return err; 3207 } 3208 3209 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3210 unsigned int segno) 3211 { 3212 int i; 3213 3214 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3215 if (CURSEG_I(sbi, i)->segno == segno) 3216 break; 3217 } 3218 return i; 3219 } 3220 3221 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3222 block_t old_blkaddr, block_t new_blkaddr, 3223 bool recover_curseg, bool recover_newaddr) 3224 { 3225 struct sit_info *sit_i = SIT_I(sbi); 3226 struct curseg_info *curseg; 3227 unsigned int segno, old_cursegno; 3228 struct seg_entry *se; 3229 int type; 3230 unsigned short old_blkoff; 3231 3232 segno = GET_SEGNO(sbi, new_blkaddr); 3233 se = get_seg_entry(sbi, segno); 3234 type = se->type; 3235 3236 down_write(&SM_I(sbi)->curseg_lock); 3237 3238 if (!recover_curseg) { 3239 /* for recovery flow */ 3240 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3241 if (old_blkaddr == NULL_ADDR) 3242 type = CURSEG_COLD_DATA; 3243 else 3244 type = CURSEG_WARM_DATA; 3245 } 3246 } else { 3247 if (IS_CURSEG(sbi, segno)) { 3248 /* se->type is volatile as SSR allocation */ 3249 type = __f2fs_get_curseg(sbi, segno); 3250 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3251 } else { 3252 type = CURSEG_WARM_DATA; 3253 } 3254 } 3255 3256 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3257 curseg = CURSEG_I(sbi, type); 3258 3259 mutex_lock(&curseg->curseg_mutex); 3260 down_write(&sit_i->sentry_lock); 3261 3262 old_cursegno = curseg->segno; 3263 old_blkoff = curseg->next_blkoff; 3264 3265 /* change the current segment */ 3266 if (segno != curseg->segno) { 3267 curseg->next_segno = segno; 3268 change_curseg(sbi, type); 3269 } 3270 3271 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3272 __add_sum_entry(sbi, type, sum); 3273 3274 if (!recover_curseg || recover_newaddr) 3275 update_sit_entry(sbi, new_blkaddr, 1); 3276 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3277 invalidate_mapping_pages(META_MAPPING(sbi), 3278 old_blkaddr, old_blkaddr); 3279 update_sit_entry(sbi, old_blkaddr, -1); 3280 } 3281 3282 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3283 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3284 3285 locate_dirty_segment(sbi, old_cursegno); 3286 3287 if (recover_curseg) { 3288 if (old_cursegno != curseg->segno) { 3289 curseg->next_segno = old_cursegno; 3290 change_curseg(sbi, type); 3291 } 3292 curseg->next_blkoff = old_blkoff; 3293 } 3294 3295 up_write(&sit_i->sentry_lock); 3296 mutex_unlock(&curseg->curseg_mutex); 3297 up_write(&SM_I(sbi)->curseg_lock); 3298 } 3299 3300 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3301 block_t old_addr, block_t new_addr, 3302 unsigned char version, bool recover_curseg, 3303 bool recover_newaddr) 3304 { 3305 struct f2fs_summary sum; 3306 3307 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3308 3309 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3310 recover_curseg, recover_newaddr); 3311 3312 f2fs_update_data_blkaddr(dn, new_addr); 3313 } 3314 3315 void f2fs_wait_on_page_writeback(struct page *page, 3316 enum page_type type, bool ordered, bool locked) 3317 { 3318 if (PageWriteback(page)) { 3319 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3320 3321 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3322 if (ordered) { 3323 wait_on_page_writeback(page); 3324 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3325 } else { 3326 wait_for_stable_page(page); 3327 } 3328 } 3329 } 3330 3331 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3332 { 3333 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3334 struct page *cpage; 3335 3336 if (!f2fs_post_read_required(inode)) 3337 return; 3338 3339 if (!is_valid_data_blkaddr(sbi, blkaddr)) 3340 return; 3341 3342 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3343 if (cpage) { 3344 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3345 f2fs_put_page(cpage, 1); 3346 } 3347 } 3348 3349 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3350 block_t len) 3351 { 3352 block_t i; 3353 3354 for (i = 0; i < len; i++) 3355 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3356 } 3357 3358 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3359 { 3360 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3361 struct curseg_info *seg_i; 3362 unsigned char *kaddr; 3363 struct page *page; 3364 block_t start; 3365 int i, j, offset; 3366 3367 start = start_sum_block(sbi); 3368 3369 page = f2fs_get_meta_page(sbi, start++); 3370 if (IS_ERR(page)) 3371 return PTR_ERR(page); 3372 kaddr = (unsigned char *)page_address(page); 3373 3374 /* Step 1: restore nat cache */ 3375 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3376 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3377 3378 /* Step 2: restore sit cache */ 3379 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3380 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3381 offset = 2 * SUM_JOURNAL_SIZE; 3382 3383 /* Step 3: restore summary entries */ 3384 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3385 unsigned short blk_off; 3386 unsigned int segno; 3387 3388 seg_i = CURSEG_I(sbi, i); 3389 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3390 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3391 seg_i->next_segno = segno; 3392 reset_curseg(sbi, i, 0); 3393 seg_i->alloc_type = ckpt->alloc_type[i]; 3394 seg_i->next_blkoff = blk_off; 3395 3396 if (seg_i->alloc_type == SSR) 3397 blk_off = sbi->blocks_per_seg; 3398 3399 for (j = 0; j < blk_off; j++) { 3400 struct f2fs_summary *s; 3401 s = (struct f2fs_summary *)(kaddr + offset); 3402 seg_i->sum_blk->entries[j] = *s; 3403 offset += SUMMARY_SIZE; 3404 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3405 SUM_FOOTER_SIZE) 3406 continue; 3407 3408 f2fs_put_page(page, 1); 3409 page = NULL; 3410 3411 page = f2fs_get_meta_page(sbi, start++); 3412 if (IS_ERR(page)) 3413 return PTR_ERR(page); 3414 kaddr = (unsigned char *)page_address(page); 3415 offset = 0; 3416 } 3417 } 3418 f2fs_put_page(page, 1); 3419 return 0; 3420 } 3421 3422 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3423 { 3424 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3425 struct f2fs_summary_block *sum; 3426 struct curseg_info *curseg; 3427 struct page *new; 3428 unsigned short blk_off; 3429 unsigned int segno = 0; 3430 block_t blk_addr = 0; 3431 int err = 0; 3432 3433 /* get segment number and block addr */ 3434 if (IS_DATASEG(type)) { 3435 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3436 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3437 CURSEG_HOT_DATA]); 3438 if (__exist_node_summaries(sbi)) 3439 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3440 else 3441 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3442 } else { 3443 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3444 CURSEG_HOT_NODE]); 3445 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3446 CURSEG_HOT_NODE]); 3447 if (__exist_node_summaries(sbi)) 3448 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3449 type - CURSEG_HOT_NODE); 3450 else 3451 blk_addr = GET_SUM_BLOCK(sbi, segno); 3452 } 3453 3454 new = f2fs_get_meta_page(sbi, blk_addr); 3455 if (IS_ERR(new)) 3456 return PTR_ERR(new); 3457 sum = (struct f2fs_summary_block *)page_address(new); 3458 3459 if (IS_NODESEG(type)) { 3460 if (__exist_node_summaries(sbi)) { 3461 struct f2fs_summary *ns = &sum->entries[0]; 3462 int i; 3463 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3464 ns->version = 0; 3465 ns->ofs_in_node = 0; 3466 } 3467 } else { 3468 err = f2fs_restore_node_summary(sbi, segno, sum); 3469 if (err) 3470 goto out; 3471 } 3472 } 3473 3474 /* set uncompleted segment to curseg */ 3475 curseg = CURSEG_I(sbi, type); 3476 mutex_lock(&curseg->curseg_mutex); 3477 3478 /* update journal info */ 3479 down_write(&curseg->journal_rwsem); 3480 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3481 up_write(&curseg->journal_rwsem); 3482 3483 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3484 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3485 curseg->next_segno = segno; 3486 reset_curseg(sbi, type, 0); 3487 curseg->alloc_type = ckpt->alloc_type[type]; 3488 curseg->next_blkoff = blk_off; 3489 mutex_unlock(&curseg->curseg_mutex); 3490 out: 3491 f2fs_put_page(new, 1); 3492 return err; 3493 } 3494 3495 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3496 { 3497 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3498 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3499 int type = CURSEG_HOT_DATA; 3500 int err; 3501 3502 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3503 int npages = f2fs_npages_for_summary_flush(sbi, true); 3504 3505 if (npages >= 2) 3506 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3507 META_CP, true); 3508 3509 /* restore for compacted data summary */ 3510 err = read_compacted_summaries(sbi); 3511 if (err) 3512 return err; 3513 type = CURSEG_HOT_NODE; 3514 } 3515 3516 if (__exist_node_summaries(sbi)) 3517 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3518 NR_CURSEG_TYPE - type, META_CP, true); 3519 3520 for (; type <= CURSEG_COLD_NODE; type++) { 3521 err = read_normal_summaries(sbi, type); 3522 if (err) 3523 return err; 3524 } 3525 3526 /* sanity check for summary blocks */ 3527 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3528 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) 3529 return -EINVAL; 3530 3531 return 0; 3532 } 3533 3534 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3535 { 3536 struct page *page; 3537 unsigned char *kaddr; 3538 struct f2fs_summary *summary; 3539 struct curseg_info *seg_i; 3540 int written_size = 0; 3541 int i, j; 3542 3543 page = f2fs_grab_meta_page(sbi, blkaddr++); 3544 kaddr = (unsigned char *)page_address(page); 3545 memset(kaddr, 0, PAGE_SIZE); 3546 3547 /* Step 1: write nat cache */ 3548 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3549 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3550 written_size += SUM_JOURNAL_SIZE; 3551 3552 /* Step 2: write sit cache */ 3553 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3554 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3555 written_size += SUM_JOURNAL_SIZE; 3556 3557 /* Step 3: write summary entries */ 3558 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3559 unsigned short blkoff; 3560 seg_i = CURSEG_I(sbi, i); 3561 if (sbi->ckpt->alloc_type[i] == SSR) 3562 blkoff = sbi->blocks_per_seg; 3563 else 3564 blkoff = curseg_blkoff(sbi, i); 3565 3566 for (j = 0; j < blkoff; j++) { 3567 if (!page) { 3568 page = f2fs_grab_meta_page(sbi, blkaddr++); 3569 kaddr = (unsigned char *)page_address(page); 3570 memset(kaddr, 0, PAGE_SIZE); 3571 written_size = 0; 3572 } 3573 summary = (struct f2fs_summary *)(kaddr + written_size); 3574 *summary = seg_i->sum_blk->entries[j]; 3575 written_size += SUMMARY_SIZE; 3576 3577 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3578 SUM_FOOTER_SIZE) 3579 continue; 3580 3581 set_page_dirty(page); 3582 f2fs_put_page(page, 1); 3583 page = NULL; 3584 } 3585 } 3586 if (page) { 3587 set_page_dirty(page); 3588 f2fs_put_page(page, 1); 3589 } 3590 } 3591 3592 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3593 block_t blkaddr, int type) 3594 { 3595 int i, end; 3596 if (IS_DATASEG(type)) 3597 end = type + NR_CURSEG_DATA_TYPE; 3598 else 3599 end = type + NR_CURSEG_NODE_TYPE; 3600 3601 for (i = type; i < end; i++) 3602 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3603 } 3604 3605 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3606 { 3607 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3608 write_compacted_summaries(sbi, start_blk); 3609 else 3610 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3611 } 3612 3613 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3614 { 3615 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3616 } 3617 3618 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3619 unsigned int val, int alloc) 3620 { 3621 int i; 3622 3623 if (type == NAT_JOURNAL) { 3624 for (i = 0; i < nats_in_cursum(journal); i++) { 3625 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3626 return i; 3627 } 3628 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3629 return update_nats_in_cursum(journal, 1); 3630 } else if (type == SIT_JOURNAL) { 3631 for (i = 0; i < sits_in_cursum(journal); i++) 3632 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3633 return i; 3634 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3635 return update_sits_in_cursum(journal, 1); 3636 } 3637 return -1; 3638 } 3639 3640 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3641 unsigned int segno) 3642 { 3643 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); 3644 } 3645 3646 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3647 unsigned int start) 3648 { 3649 struct sit_info *sit_i = SIT_I(sbi); 3650 struct page *page; 3651 pgoff_t src_off, dst_off; 3652 3653 src_off = current_sit_addr(sbi, start); 3654 dst_off = next_sit_addr(sbi, src_off); 3655 3656 page = f2fs_grab_meta_page(sbi, dst_off); 3657 seg_info_to_sit_page(sbi, page, start); 3658 3659 set_page_dirty(page); 3660 set_to_next_sit(sit_i, start); 3661 3662 return page; 3663 } 3664 3665 static struct sit_entry_set *grab_sit_entry_set(void) 3666 { 3667 struct sit_entry_set *ses = 3668 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3669 3670 ses->entry_cnt = 0; 3671 INIT_LIST_HEAD(&ses->set_list); 3672 return ses; 3673 } 3674 3675 static void release_sit_entry_set(struct sit_entry_set *ses) 3676 { 3677 list_del(&ses->set_list); 3678 kmem_cache_free(sit_entry_set_slab, ses); 3679 } 3680 3681 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3682 struct list_head *head) 3683 { 3684 struct sit_entry_set *next = ses; 3685 3686 if (list_is_last(&ses->set_list, head)) 3687 return; 3688 3689 list_for_each_entry_continue(next, head, set_list) 3690 if (ses->entry_cnt <= next->entry_cnt) 3691 break; 3692 3693 list_move_tail(&ses->set_list, &next->set_list); 3694 } 3695 3696 static void add_sit_entry(unsigned int segno, struct list_head *head) 3697 { 3698 struct sit_entry_set *ses; 3699 unsigned int start_segno = START_SEGNO(segno); 3700 3701 list_for_each_entry(ses, head, set_list) { 3702 if (ses->start_segno == start_segno) { 3703 ses->entry_cnt++; 3704 adjust_sit_entry_set(ses, head); 3705 return; 3706 } 3707 } 3708 3709 ses = grab_sit_entry_set(); 3710 3711 ses->start_segno = start_segno; 3712 ses->entry_cnt++; 3713 list_add(&ses->set_list, head); 3714 } 3715 3716 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3717 { 3718 struct f2fs_sm_info *sm_info = SM_I(sbi); 3719 struct list_head *set_list = &sm_info->sit_entry_set; 3720 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3721 unsigned int segno; 3722 3723 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3724 add_sit_entry(segno, set_list); 3725 } 3726 3727 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3728 { 3729 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3730 struct f2fs_journal *journal = curseg->journal; 3731 int i; 3732 3733 down_write(&curseg->journal_rwsem); 3734 for (i = 0; i < sits_in_cursum(journal); i++) { 3735 unsigned int segno; 3736 bool dirtied; 3737 3738 segno = le32_to_cpu(segno_in_journal(journal, i)); 3739 dirtied = __mark_sit_entry_dirty(sbi, segno); 3740 3741 if (!dirtied) 3742 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3743 } 3744 update_sits_in_cursum(journal, -i); 3745 up_write(&curseg->journal_rwsem); 3746 } 3747 3748 /* 3749 * CP calls this function, which flushes SIT entries including sit_journal, 3750 * and moves prefree segs to free segs. 3751 */ 3752 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3753 { 3754 struct sit_info *sit_i = SIT_I(sbi); 3755 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3756 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3757 struct f2fs_journal *journal = curseg->journal; 3758 struct sit_entry_set *ses, *tmp; 3759 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3760 bool to_journal = true; 3761 struct seg_entry *se; 3762 3763 down_write(&sit_i->sentry_lock); 3764 3765 if (!sit_i->dirty_sentries) 3766 goto out; 3767 3768 /* 3769 * add and account sit entries of dirty bitmap in sit entry 3770 * set temporarily 3771 */ 3772 add_sits_in_set(sbi); 3773 3774 /* 3775 * if there are no enough space in journal to store dirty sit 3776 * entries, remove all entries from journal and add and account 3777 * them in sit entry set. 3778 */ 3779 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 3780 remove_sits_in_journal(sbi); 3781 3782 /* 3783 * there are two steps to flush sit entries: 3784 * #1, flush sit entries to journal in current cold data summary block. 3785 * #2, flush sit entries to sit page. 3786 */ 3787 list_for_each_entry_safe(ses, tmp, head, set_list) { 3788 struct page *page = NULL; 3789 struct f2fs_sit_block *raw_sit = NULL; 3790 unsigned int start_segno = ses->start_segno; 3791 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3792 (unsigned long)MAIN_SEGS(sbi)); 3793 unsigned int segno = start_segno; 3794 3795 if (to_journal && 3796 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3797 to_journal = false; 3798 3799 if (to_journal) { 3800 down_write(&curseg->journal_rwsem); 3801 } else { 3802 page = get_next_sit_page(sbi, start_segno); 3803 raw_sit = page_address(page); 3804 } 3805 3806 /* flush dirty sit entries in region of current sit set */ 3807 for_each_set_bit_from(segno, bitmap, end) { 3808 int offset, sit_offset; 3809 3810 se = get_seg_entry(sbi, segno); 3811 #ifdef CONFIG_F2FS_CHECK_FS 3812 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3813 SIT_VBLOCK_MAP_SIZE)) 3814 f2fs_bug_on(sbi, 1); 3815 #endif 3816 3817 /* add discard candidates */ 3818 if (!(cpc->reason & CP_DISCARD)) { 3819 cpc->trim_start = segno; 3820 add_discard_addrs(sbi, cpc, false); 3821 } 3822 3823 if (to_journal) { 3824 offset = f2fs_lookup_journal_in_cursum(journal, 3825 SIT_JOURNAL, segno, 1); 3826 f2fs_bug_on(sbi, offset < 0); 3827 segno_in_journal(journal, offset) = 3828 cpu_to_le32(segno); 3829 seg_info_to_raw_sit(se, 3830 &sit_in_journal(journal, offset)); 3831 check_block_count(sbi, segno, 3832 &sit_in_journal(journal, offset)); 3833 } else { 3834 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3835 seg_info_to_raw_sit(se, 3836 &raw_sit->entries[sit_offset]); 3837 check_block_count(sbi, segno, 3838 &raw_sit->entries[sit_offset]); 3839 } 3840 3841 __clear_bit(segno, bitmap); 3842 sit_i->dirty_sentries--; 3843 ses->entry_cnt--; 3844 } 3845 3846 if (to_journal) 3847 up_write(&curseg->journal_rwsem); 3848 else 3849 f2fs_put_page(page, 1); 3850 3851 f2fs_bug_on(sbi, ses->entry_cnt); 3852 release_sit_entry_set(ses); 3853 } 3854 3855 f2fs_bug_on(sbi, !list_empty(head)); 3856 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3857 out: 3858 if (cpc->reason & CP_DISCARD) { 3859 __u64 trim_start = cpc->trim_start; 3860 3861 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3862 add_discard_addrs(sbi, cpc, false); 3863 3864 cpc->trim_start = trim_start; 3865 } 3866 up_write(&sit_i->sentry_lock); 3867 3868 set_prefree_as_free_segments(sbi); 3869 } 3870 3871 static int build_sit_info(struct f2fs_sb_info *sbi) 3872 { 3873 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3874 struct sit_info *sit_i; 3875 unsigned int sit_segs, start; 3876 char *src_bitmap; 3877 unsigned int bitmap_size; 3878 3879 /* allocate memory for SIT information */ 3880 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3881 if (!sit_i) 3882 return -ENOMEM; 3883 3884 SM_I(sbi)->sit_info = sit_i; 3885 3886 sit_i->sentries = 3887 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 3888 MAIN_SEGS(sbi)), 3889 GFP_KERNEL); 3890 if (!sit_i->sentries) 3891 return -ENOMEM; 3892 3893 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3894 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size, 3895 GFP_KERNEL); 3896 if (!sit_i->dirty_sentries_bitmap) 3897 return -ENOMEM; 3898 3899 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3900 sit_i->sentries[start].cur_valid_map 3901 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3902 sit_i->sentries[start].ckpt_valid_map 3903 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3904 if (!sit_i->sentries[start].cur_valid_map || 3905 !sit_i->sentries[start].ckpt_valid_map) 3906 return -ENOMEM; 3907 3908 #ifdef CONFIG_F2FS_CHECK_FS 3909 sit_i->sentries[start].cur_valid_map_mir 3910 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3911 if (!sit_i->sentries[start].cur_valid_map_mir) 3912 return -ENOMEM; 3913 #endif 3914 3915 sit_i->sentries[start].discard_map 3916 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, 3917 GFP_KERNEL); 3918 if (!sit_i->sentries[start].discard_map) 3919 return -ENOMEM; 3920 } 3921 3922 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3923 if (!sit_i->tmp_map) 3924 return -ENOMEM; 3925 3926 if (__is_large_section(sbi)) { 3927 sit_i->sec_entries = 3928 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 3929 MAIN_SECS(sbi)), 3930 GFP_KERNEL); 3931 if (!sit_i->sec_entries) 3932 return -ENOMEM; 3933 } 3934 3935 /* get information related with SIT */ 3936 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 3937 3938 /* setup SIT bitmap from ckeckpoint pack */ 3939 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 3940 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 3941 3942 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3943 if (!sit_i->sit_bitmap) 3944 return -ENOMEM; 3945 3946 #ifdef CONFIG_F2FS_CHECK_FS 3947 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3948 if (!sit_i->sit_bitmap_mir) 3949 return -ENOMEM; 3950 #endif 3951 3952 /* init SIT information */ 3953 sit_i->s_ops = &default_salloc_ops; 3954 3955 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 3956 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 3957 sit_i->written_valid_blocks = 0; 3958 sit_i->bitmap_size = bitmap_size; 3959 sit_i->dirty_sentries = 0; 3960 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 3961 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 3962 sit_i->mounted_time = ktime_get_real_seconds(); 3963 init_rwsem(&sit_i->sentry_lock); 3964 return 0; 3965 } 3966 3967 static int build_free_segmap(struct f2fs_sb_info *sbi) 3968 { 3969 struct free_segmap_info *free_i; 3970 unsigned int bitmap_size, sec_bitmap_size; 3971 3972 /* allocate memory for free segmap information */ 3973 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 3974 if (!free_i) 3975 return -ENOMEM; 3976 3977 SM_I(sbi)->free_info = free_i; 3978 3979 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3980 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 3981 if (!free_i->free_segmap) 3982 return -ENOMEM; 3983 3984 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3985 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 3986 if (!free_i->free_secmap) 3987 return -ENOMEM; 3988 3989 /* set all segments as dirty temporarily */ 3990 memset(free_i->free_segmap, 0xff, bitmap_size); 3991 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 3992 3993 /* init free segmap information */ 3994 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 3995 free_i->free_segments = 0; 3996 free_i->free_sections = 0; 3997 spin_lock_init(&free_i->segmap_lock); 3998 return 0; 3999 } 4000 4001 static int build_curseg(struct f2fs_sb_info *sbi) 4002 { 4003 struct curseg_info *array; 4004 int i; 4005 4006 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), 4007 GFP_KERNEL); 4008 if (!array) 4009 return -ENOMEM; 4010 4011 SM_I(sbi)->curseg_array = array; 4012 4013 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4014 mutex_init(&array[i].curseg_mutex); 4015 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4016 if (!array[i].sum_blk) 4017 return -ENOMEM; 4018 init_rwsem(&array[i].journal_rwsem); 4019 array[i].journal = f2fs_kzalloc(sbi, 4020 sizeof(struct f2fs_journal), GFP_KERNEL); 4021 if (!array[i].journal) 4022 return -ENOMEM; 4023 array[i].segno = NULL_SEGNO; 4024 array[i].next_blkoff = 0; 4025 } 4026 return restore_curseg_summaries(sbi); 4027 } 4028 4029 static int build_sit_entries(struct f2fs_sb_info *sbi) 4030 { 4031 struct sit_info *sit_i = SIT_I(sbi); 4032 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4033 struct f2fs_journal *journal = curseg->journal; 4034 struct seg_entry *se; 4035 struct f2fs_sit_entry sit; 4036 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4037 unsigned int i, start, end; 4038 unsigned int readed, start_blk = 0; 4039 int err = 0; 4040 block_t total_node_blocks = 0; 4041 4042 do { 4043 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4044 META_SIT, true); 4045 4046 start = start_blk * sit_i->sents_per_block; 4047 end = (start_blk + readed) * sit_i->sents_per_block; 4048 4049 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4050 struct f2fs_sit_block *sit_blk; 4051 struct page *page; 4052 4053 se = &sit_i->sentries[start]; 4054 page = get_current_sit_page(sbi, start); 4055 if (IS_ERR(page)) 4056 return PTR_ERR(page); 4057 sit_blk = (struct f2fs_sit_block *)page_address(page); 4058 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4059 f2fs_put_page(page, 1); 4060 4061 err = check_block_count(sbi, start, &sit); 4062 if (err) 4063 return err; 4064 seg_info_from_raw_sit(se, &sit); 4065 if (IS_NODESEG(se->type)) 4066 total_node_blocks += se->valid_blocks; 4067 4068 /* build discard map only one time */ 4069 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4070 memset(se->discard_map, 0xff, 4071 SIT_VBLOCK_MAP_SIZE); 4072 } else { 4073 memcpy(se->discard_map, 4074 se->cur_valid_map, 4075 SIT_VBLOCK_MAP_SIZE); 4076 sbi->discard_blks += 4077 sbi->blocks_per_seg - 4078 se->valid_blocks; 4079 } 4080 4081 if (__is_large_section(sbi)) 4082 get_sec_entry(sbi, start)->valid_blocks += 4083 se->valid_blocks; 4084 } 4085 start_blk += readed; 4086 } while (start_blk < sit_blk_cnt); 4087 4088 down_read(&curseg->journal_rwsem); 4089 for (i = 0; i < sits_in_cursum(journal); i++) { 4090 unsigned int old_valid_blocks; 4091 4092 start = le32_to_cpu(segno_in_journal(journal, i)); 4093 if (start >= MAIN_SEGS(sbi)) { 4094 f2fs_msg(sbi->sb, KERN_ERR, 4095 "Wrong journal entry on segno %u", 4096 start); 4097 set_sbi_flag(sbi, SBI_NEED_FSCK); 4098 err = -EINVAL; 4099 break; 4100 } 4101 4102 se = &sit_i->sentries[start]; 4103 sit = sit_in_journal(journal, i); 4104 4105 old_valid_blocks = se->valid_blocks; 4106 if (IS_NODESEG(se->type)) 4107 total_node_blocks -= old_valid_blocks; 4108 4109 err = check_block_count(sbi, start, &sit); 4110 if (err) 4111 break; 4112 seg_info_from_raw_sit(se, &sit); 4113 if (IS_NODESEG(se->type)) 4114 total_node_blocks += se->valid_blocks; 4115 4116 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4117 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4118 } else { 4119 memcpy(se->discard_map, se->cur_valid_map, 4120 SIT_VBLOCK_MAP_SIZE); 4121 sbi->discard_blks += old_valid_blocks; 4122 sbi->discard_blks -= se->valid_blocks; 4123 } 4124 4125 if (__is_large_section(sbi)) { 4126 get_sec_entry(sbi, start)->valid_blocks += 4127 se->valid_blocks; 4128 get_sec_entry(sbi, start)->valid_blocks -= 4129 old_valid_blocks; 4130 } 4131 } 4132 up_read(&curseg->journal_rwsem); 4133 4134 if (!err && total_node_blocks != valid_node_count(sbi)) { 4135 f2fs_msg(sbi->sb, KERN_ERR, 4136 "SIT is corrupted node# %u vs %u", 4137 total_node_blocks, valid_node_count(sbi)); 4138 set_sbi_flag(sbi, SBI_NEED_FSCK); 4139 err = -EINVAL; 4140 } 4141 4142 return err; 4143 } 4144 4145 static void init_free_segmap(struct f2fs_sb_info *sbi) 4146 { 4147 unsigned int start; 4148 int type; 4149 4150 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4151 struct seg_entry *sentry = get_seg_entry(sbi, start); 4152 if (!sentry->valid_blocks) 4153 __set_free(sbi, start); 4154 else 4155 SIT_I(sbi)->written_valid_blocks += 4156 sentry->valid_blocks; 4157 } 4158 4159 /* set use the current segments */ 4160 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4161 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4162 __set_test_and_inuse(sbi, curseg_t->segno); 4163 } 4164 } 4165 4166 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4167 { 4168 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4169 struct free_segmap_info *free_i = FREE_I(sbi); 4170 unsigned int segno = 0, offset = 0; 4171 unsigned short valid_blocks; 4172 4173 while (1) { 4174 /* find dirty segment based on free segmap */ 4175 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4176 if (segno >= MAIN_SEGS(sbi)) 4177 break; 4178 offset = segno + 1; 4179 valid_blocks = get_valid_blocks(sbi, segno, false); 4180 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 4181 continue; 4182 if (valid_blocks > sbi->blocks_per_seg) { 4183 f2fs_bug_on(sbi, 1); 4184 continue; 4185 } 4186 mutex_lock(&dirty_i->seglist_lock); 4187 __locate_dirty_segment(sbi, segno, DIRTY); 4188 mutex_unlock(&dirty_i->seglist_lock); 4189 } 4190 } 4191 4192 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4193 { 4194 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4195 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4196 4197 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4198 if (!dirty_i->victim_secmap) 4199 return -ENOMEM; 4200 return 0; 4201 } 4202 4203 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4204 { 4205 struct dirty_seglist_info *dirty_i; 4206 unsigned int bitmap_size, i; 4207 4208 /* allocate memory for dirty segments list information */ 4209 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4210 GFP_KERNEL); 4211 if (!dirty_i) 4212 return -ENOMEM; 4213 4214 SM_I(sbi)->dirty_info = dirty_i; 4215 mutex_init(&dirty_i->seglist_lock); 4216 4217 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4218 4219 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4220 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4221 GFP_KERNEL); 4222 if (!dirty_i->dirty_segmap[i]) 4223 return -ENOMEM; 4224 } 4225 4226 init_dirty_segmap(sbi); 4227 return init_victim_secmap(sbi); 4228 } 4229 4230 /* 4231 * Update min, max modified time for cost-benefit GC algorithm 4232 */ 4233 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 4234 { 4235 struct sit_info *sit_i = SIT_I(sbi); 4236 unsigned int segno; 4237 4238 down_write(&sit_i->sentry_lock); 4239 4240 sit_i->min_mtime = ULLONG_MAX; 4241 4242 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4243 unsigned int i; 4244 unsigned long long mtime = 0; 4245 4246 for (i = 0; i < sbi->segs_per_sec; i++) 4247 mtime += get_seg_entry(sbi, segno + i)->mtime; 4248 4249 mtime = div_u64(mtime, sbi->segs_per_sec); 4250 4251 if (sit_i->min_mtime > mtime) 4252 sit_i->min_mtime = mtime; 4253 } 4254 sit_i->max_mtime = get_mtime(sbi, false); 4255 up_write(&sit_i->sentry_lock); 4256 } 4257 4258 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 4259 { 4260 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4261 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4262 struct f2fs_sm_info *sm_info; 4263 int err; 4264 4265 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 4266 if (!sm_info) 4267 return -ENOMEM; 4268 4269 /* init sm info */ 4270 sbi->sm_info = sm_info; 4271 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 4272 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 4273 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 4274 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4275 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4276 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 4277 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 4278 sm_info->rec_prefree_segments = sm_info->main_segments * 4279 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 4280 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 4281 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 4282 4283 if (!test_opt(sbi, LFS)) 4284 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 4285 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 4286 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 4287 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 4288 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 4289 sm_info->min_ssr_sections = reserved_sections(sbi); 4290 4291 INIT_LIST_HEAD(&sm_info->sit_entry_set); 4292 4293 init_rwsem(&sm_info->curseg_lock); 4294 4295 if (!f2fs_readonly(sbi->sb)) { 4296 err = f2fs_create_flush_cmd_control(sbi); 4297 if (err) 4298 return err; 4299 } 4300 4301 err = create_discard_cmd_control(sbi); 4302 if (err) 4303 return err; 4304 4305 err = build_sit_info(sbi); 4306 if (err) 4307 return err; 4308 err = build_free_segmap(sbi); 4309 if (err) 4310 return err; 4311 err = build_curseg(sbi); 4312 if (err) 4313 return err; 4314 4315 /* reinit free segmap based on SIT */ 4316 err = build_sit_entries(sbi); 4317 if (err) 4318 return err; 4319 4320 init_free_segmap(sbi); 4321 err = build_dirty_segmap(sbi); 4322 if (err) 4323 return err; 4324 4325 init_min_max_mtime(sbi); 4326 return 0; 4327 } 4328 4329 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 4330 enum dirty_type dirty_type) 4331 { 4332 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4333 4334 mutex_lock(&dirty_i->seglist_lock); 4335 kvfree(dirty_i->dirty_segmap[dirty_type]); 4336 dirty_i->nr_dirty[dirty_type] = 0; 4337 mutex_unlock(&dirty_i->seglist_lock); 4338 } 4339 4340 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 4341 { 4342 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4343 kvfree(dirty_i->victim_secmap); 4344 } 4345 4346 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 4347 { 4348 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4349 int i; 4350 4351 if (!dirty_i) 4352 return; 4353 4354 /* discard pre-free/dirty segments list */ 4355 for (i = 0; i < NR_DIRTY_TYPE; i++) 4356 discard_dirty_segmap(sbi, i); 4357 4358 destroy_victim_secmap(sbi); 4359 SM_I(sbi)->dirty_info = NULL; 4360 kvfree(dirty_i); 4361 } 4362 4363 static void destroy_curseg(struct f2fs_sb_info *sbi) 4364 { 4365 struct curseg_info *array = SM_I(sbi)->curseg_array; 4366 int i; 4367 4368 if (!array) 4369 return; 4370 SM_I(sbi)->curseg_array = NULL; 4371 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4372 kvfree(array[i].sum_blk); 4373 kvfree(array[i].journal); 4374 } 4375 kvfree(array); 4376 } 4377 4378 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4379 { 4380 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4381 if (!free_i) 4382 return; 4383 SM_I(sbi)->free_info = NULL; 4384 kvfree(free_i->free_segmap); 4385 kvfree(free_i->free_secmap); 4386 kvfree(free_i); 4387 } 4388 4389 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4390 { 4391 struct sit_info *sit_i = SIT_I(sbi); 4392 unsigned int start; 4393 4394 if (!sit_i) 4395 return; 4396 4397 if (sit_i->sentries) { 4398 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4399 kvfree(sit_i->sentries[start].cur_valid_map); 4400 #ifdef CONFIG_F2FS_CHECK_FS 4401 kvfree(sit_i->sentries[start].cur_valid_map_mir); 4402 #endif 4403 kvfree(sit_i->sentries[start].ckpt_valid_map); 4404 kvfree(sit_i->sentries[start].discard_map); 4405 } 4406 } 4407 kvfree(sit_i->tmp_map); 4408 4409 kvfree(sit_i->sentries); 4410 kvfree(sit_i->sec_entries); 4411 kvfree(sit_i->dirty_sentries_bitmap); 4412 4413 SM_I(sbi)->sit_info = NULL; 4414 kvfree(sit_i->sit_bitmap); 4415 #ifdef CONFIG_F2FS_CHECK_FS 4416 kvfree(sit_i->sit_bitmap_mir); 4417 #endif 4418 kvfree(sit_i); 4419 } 4420 4421 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4422 { 4423 struct f2fs_sm_info *sm_info = SM_I(sbi); 4424 4425 if (!sm_info) 4426 return; 4427 f2fs_destroy_flush_cmd_control(sbi, true); 4428 destroy_discard_cmd_control(sbi); 4429 destroy_dirty_segmap(sbi); 4430 destroy_curseg(sbi); 4431 destroy_free_segmap(sbi); 4432 destroy_sit_info(sbi); 4433 sbi->sm_info = NULL; 4434 kvfree(sm_info); 4435 } 4436 4437 int __init f2fs_create_segment_manager_caches(void) 4438 { 4439 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 4440 sizeof(struct discard_entry)); 4441 if (!discard_entry_slab) 4442 goto fail; 4443 4444 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 4445 sizeof(struct discard_cmd)); 4446 if (!discard_cmd_slab) 4447 goto destroy_discard_entry; 4448 4449 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 4450 sizeof(struct sit_entry_set)); 4451 if (!sit_entry_set_slab) 4452 goto destroy_discard_cmd; 4453 4454 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 4455 sizeof(struct inmem_pages)); 4456 if (!inmem_entry_slab) 4457 goto destroy_sit_entry_set; 4458 return 0; 4459 4460 destroy_sit_entry_set: 4461 kmem_cache_destroy(sit_entry_set_slab); 4462 destroy_discard_cmd: 4463 kmem_cache_destroy(discard_cmd_slab); 4464 destroy_discard_entry: 4465 kmem_cache_destroy(discard_entry_slab); 4466 fail: 4467 return -ENOMEM; 4468 } 4469 4470 void f2fs_destroy_segment_manager_caches(void) 4471 { 4472 kmem_cache_destroy(sit_entry_set_slab); 4473 kmem_cache_destroy(discard_cmd_slab); 4474 kmem_cache_destroy(discard_entry_slab); 4475 kmem_cache_destroy(inmem_entry_slab); 4476 } 4477