xref: /openbmc/linux/fs/f2fs/segment.c (revision f3a8b664)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *bio_entry_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 	unsigned long tmp = 0;
36 	int shift = 24, idx = 0;
37 
38 #if BITS_PER_LONG == 64
39 	shift = 56;
40 #endif
41 	while (shift >= 0) {
42 		tmp |= (unsigned long)str[idx++] << shift;
43 		shift -= BITS_PER_BYTE;
44 	}
45 	return tmp;
46 }
47 
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 	int num = 0;
55 
56 #if BITS_PER_LONG == 64
57 	if ((word & 0xffffffff00000000UL) == 0)
58 		num += 32;
59 	else
60 		word >>= 32;
61 #endif
62 	if ((word & 0xffff0000) == 0)
63 		num += 16;
64 	else
65 		word >>= 16;
66 
67 	if ((word & 0xff00) == 0)
68 		num += 8;
69 	else
70 		word >>= 8;
71 
72 	if ((word & 0xf0) == 0)
73 		num += 4;
74 	else
75 		word >>= 4;
76 
77 	if ((word & 0xc) == 0)
78 		num += 2;
79 	else
80 		word >>= 2;
81 
82 	if ((word & 0x2) == 0)
83 		num += 1;
84 	return num;
85 }
86 
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 			unsigned long size, unsigned long offset)
98 {
99 	const unsigned long *p = addr + BIT_WORD(offset);
100 	unsigned long result = size;
101 	unsigned long tmp;
102 
103 	if (offset >= size)
104 		return size;
105 
106 	size -= (offset & ~(BITS_PER_LONG - 1));
107 	offset %= BITS_PER_LONG;
108 
109 	while (1) {
110 		if (*p == 0)
111 			goto pass;
112 
113 		tmp = __reverse_ulong((unsigned char *)p);
114 
115 		tmp &= ~0UL >> offset;
116 		if (size < BITS_PER_LONG)
117 			tmp &= (~0UL << (BITS_PER_LONG - size));
118 		if (tmp)
119 			goto found;
120 pass:
121 		if (size <= BITS_PER_LONG)
122 			break;
123 		size -= BITS_PER_LONG;
124 		offset = 0;
125 		p++;
126 	}
127 	return result;
128 found:
129 	return result - size + __reverse_ffs(tmp);
130 }
131 
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 			unsigned long size, unsigned long offset)
134 {
135 	const unsigned long *p = addr + BIT_WORD(offset);
136 	unsigned long result = size;
137 	unsigned long tmp;
138 
139 	if (offset >= size)
140 		return size;
141 
142 	size -= (offset & ~(BITS_PER_LONG - 1));
143 	offset %= BITS_PER_LONG;
144 
145 	while (1) {
146 		if (*p == ~0UL)
147 			goto pass;
148 
149 		tmp = __reverse_ulong((unsigned char *)p);
150 
151 		if (offset)
152 			tmp |= ~0UL << (BITS_PER_LONG - offset);
153 		if (size < BITS_PER_LONG)
154 			tmp |= ~0UL >> size;
155 		if (tmp != ~0UL)
156 			goto found;
157 pass:
158 		if (size <= BITS_PER_LONG)
159 			break;
160 		size -= BITS_PER_LONG;
161 		offset = 0;
162 		p++;
163 	}
164 	return result;
165 found:
166 	return result - size + __reverse_ffz(tmp);
167 }
168 
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171 	struct f2fs_inode_info *fi = F2FS_I(inode);
172 	struct inmem_pages *new;
173 
174 	f2fs_trace_pid(page);
175 
176 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177 	SetPagePrivate(page);
178 
179 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180 
181 	/* add atomic page indices to the list */
182 	new->page = page;
183 	INIT_LIST_HEAD(&new->list);
184 
185 	/* increase reference count with clean state */
186 	mutex_lock(&fi->inmem_lock);
187 	get_page(page);
188 	list_add_tail(&new->list, &fi->inmem_pages);
189 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190 	mutex_unlock(&fi->inmem_lock);
191 
192 	trace_f2fs_register_inmem_page(page, INMEM);
193 }
194 
195 static int __revoke_inmem_pages(struct inode *inode,
196 				struct list_head *head, bool drop, bool recover)
197 {
198 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199 	struct inmem_pages *cur, *tmp;
200 	int err = 0;
201 
202 	list_for_each_entry_safe(cur, tmp, head, list) {
203 		struct page *page = cur->page;
204 
205 		if (drop)
206 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207 
208 		lock_page(page);
209 
210 		if (recover) {
211 			struct dnode_of_data dn;
212 			struct node_info ni;
213 
214 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215 
216 			set_new_dnode(&dn, inode, NULL, NULL, 0);
217 			if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218 				err = -EAGAIN;
219 				goto next;
220 			}
221 			get_node_info(sbi, dn.nid, &ni);
222 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223 					cur->old_addr, ni.version, true, true);
224 			f2fs_put_dnode(&dn);
225 		}
226 next:
227 		/* we don't need to invalidate this in the sccessful status */
228 		if (drop || recover)
229 			ClearPageUptodate(page);
230 		set_page_private(page, 0);
231 		ClearPagePrivate(page);
232 		f2fs_put_page(page, 1);
233 
234 		list_del(&cur->list);
235 		kmem_cache_free(inmem_entry_slab, cur);
236 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237 	}
238 	return err;
239 }
240 
241 void drop_inmem_pages(struct inode *inode)
242 {
243 	struct f2fs_inode_info *fi = F2FS_I(inode);
244 
245 	clear_inode_flag(inode, FI_ATOMIC_FILE);
246 
247 	mutex_lock(&fi->inmem_lock);
248 	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
249 	mutex_unlock(&fi->inmem_lock);
250 }
251 
252 static int __commit_inmem_pages(struct inode *inode,
253 					struct list_head *revoke_list)
254 {
255 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
256 	struct f2fs_inode_info *fi = F2FS_I(inode);
257 	struct inmem_pages *cur, *tmp;
258 	struct f2fs_io_info fio = {
259 		.sbi = sbi,
260 		.type = DATA,
261 		.op = REQ_OP_WRITE,
262 		.op_flags = WRITE_SYNC | REQ_PRIO,
263 		.encrypted_page = NULL,
264 	};
265 	bool submit_bio = false;
266 	int err = 0;
267 
268 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
269 		struct page *page = cur->page;
270 
271 		lock_page(page);
272 		if (page->mapping == inode->i_mapping) {
273 			trace_f2fs_commit_inmem_page(page, INMEM);
274 
275 			set_page_dirty(page);
276 			f2fs_wait_on_page_writeback(page, DATA, true);
277 			if (clear_page_dirty_for_io(page))
278 				inode_dec_dirty_pages(inode);
279 
280 			fio.page = page;
281 			err = do_write_data_page(&fio);
282 			if (err) {
283 				unlock_page(page);
284 				break;
285 			}
286 
287 			/* record old blkaddr for revoking */
288 			cur->old_addr = fio.old_blkaddr;
289 
290 			clear_cold_data(page);
291 			submit_bio = true;
292 		}
293 		unlock_page(page);
294 		list_move_tail(&cur->list, revoke_list);
295 	}
296 
297 	if (submit_bio)
298 		f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
299 
300 	if (!err)
301 		__revoke_inmem_pages(inode, revoke_list, false, false);
302 
303 	return err;
304 }
305 
306 int commit_inmem_pages(struct inode *inode)
307 {
308 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
309 	struct f2fs_inode_info *fi = F2FS_I(inode);
310 	struct list_head revoke_list;
311 	int err;
312 
313 	INIT_LIST_HEAD(&revoke_list);
314 	f2fs_balance_fs(sbi, true);
315 	f2fs_lock_op(sbi);
316 
317 	mutex_lock(&fi->inmem_lock);
318 	err = __commit_inmem_pages(inode, &revoke_list);
319 	if (err) {
320 		int ret;
321 		/*
322 		 * try to revoke all committed pages, but still we could fail
323 		 * due to no memory or other reason, if that happened, EAGAIN
324 		 * will be returned, which means in such case, transaction is
325 		 * already not integrity, caller should use journal to do the
326 		 * recovery or rewrite & commit last transaction. For other
327 		 * error number, revoking was done by filesystem itself.
328 		 */
329 		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
330 		if (ret)
331 			err = ret;
332 
333 		/* drop all uncommitted pages */
334 		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
335 	}
336 	mutex_unlock(&fi->inmem_lock);
337 
338 	f2fs_unlock_op(sbi);
339 	return err;
340 }
341 
342 /*
343  * This function balances dirty node and dentry pages.
344  * In addition, it controls garbage collection.
345  */
346 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
347 {
348 #ifdef CONFIG_F2FS_FAULT_INJECTION
349 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
350 		f2fs_stop_checkpoint(sbi, false);
351 #endif
352 
353 	if (!need)
354 		return;
355 
356 	/* balance_fs_bg is able to be pending */
357 	if (excess_cached_nats(sbi))
358 		f2fs_balance_fs_bg(sbi);
359 
360 	/*
361 	 * We should do GC or end up with checkpoint, if there are so many dirty
362 	 * dir/node pages without enough free segments.
363 	 */
364 	if (has_not_enough_free_secs(sbi, 0, 0)) {
365 		mutex_lock(&sbi->gc_mutex);
366 		f2fs_gc(sbi, false);
367 	}
368 }
369 
370 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
371 {
372 	/* try to shrink extent cache when there is no enough memory */
373 	if (!available_free_memory(sbi, EXTENT_CACHE))
374 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
375 
376 	/* check the # of cached NAT entries */
377 	if (!available_free_memory(sbi, NAT_ENTRIES))
378 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
379 
380 	if (!available_free_memory(sbi, FREE_NIDS))
381 		try_to_free_nids(sbi, MAX_FREE_NIDS);
382 	else
383 		build_free_nids(sbi);
384 
385 	/* checkpoint is the only way to shrink partial cached entries */
386 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
387 			!available_free_memory(sbi, INO_ENTRIES) ||
388 			excess_prefree_segs(sbi) ||
389 			excess_dirty_nats(sbi) ||
390 			(is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
391 		if (test_opt(sbi, DATA_FLUSH)) {
392 			struct blk_plug plug;
393 
394 			blk_start_plug(&plug);
395 			sync_dirty_inodes(sbi, FILE_INODE);
396 			blk_finish_plug(&plug);
397 		}
398 		f2fs_sync_fs(sbi->sb, true);
399 		stat_inc_bg_cp_count(sbi->stat_info);
400 	}
401 }
402 
403 static int issue_flush_thread(void *data)
404 {
405 	struct f2fs_sb_info *sbi = data;
406 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
407 	wait_queue_head_t *q = &fcc->flush_wait_queue;
408 repeat:
409 	if (kthread_should_stop())
410 		return 0;
411 
412 	if (!llist_empty(&fcc->issue_list)) {
413 		struct bio *bio;
414 		struct flush_cmd *cmd, *next;
415 		int ret;
416 
417 		bio = f2fs_bio_alloc(0);
418 
419 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
420 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
421 
422 		bio->bi_bdev = sbi->sb->s_bdev;
423 		bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
424 		ret = submit_bio_wait(bio);
425 
426 		llist_for_each_entry_safe(cmd, next,
427 					  fcc->dispatch_list, llnode) {
428 			cmd->ret = ret;
429 			complete(&cmd->wait);
430 		}
431 		bio_put(bio);
432 		fcc->dispatch_list = NULL;
433 	}
434 
435 	wait_event_interruptible(*q,
436 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
437 	goto repeat;
438 }
439 
440 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
441 {
442 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
443 	struct flush_cmd cmd;
444 
445 	trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
446 					test_opt(sbi, FLUSH_MERGE));
447 
448 	if (test_opt(sbi, NOBARRIER))
449 		return 0;
450 
451 	if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
452 		struct bio *bio = f2fs_bio_alloc(0);
453 		int ret;
454 
455 		atomic_inc(&fcc->submit_flush);
456 		bio->bi_bdev = sbi->sb->s_bdev;
457 		bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
458 		ret = submit_bio_wait(bio);
459 		atomic_dec(&fcc->submit_flush);
460 		bio_put(bio);
461 		return ret;
462 	}
463 
464 	init_completion(&cmd.wait);
465 
466 	atomic_inc(&fcc->submit_flush);
467 	llist_add(&cmd.llnode, &fcc->issue_list);
468 
469 	if (!fcc->dispatch_list)
470 		wake_up(&fcc->flush_wait_queue);
471 
472 	wait_for_completion(&cmd.wait);
473 	atomic_dec(&fcc->submit_flush);
474 
475 	return cmd.ret;
476 }
477 
478 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
479 {
480 	dev_t dev = sbi->sb->s_bdev->bd_dev;
481 	struct flush_cmd_control *fcc;
482 	int err = 0;
483 
484 	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
485 	if (!fcc)
486 		return -ENOMEM;
487 	atomic_set(&fcc->submit_flush, 0);
488 	init_waitqueue_head(&fcc->flush_wait_queue);
489 	init_llist_head(&fcc->issue_list);
490 	SM_I(sbi)->cmd_control_info = fcc;
491 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
492 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
493 	if (IS_ERR(fcc->f2fs_issue_flush)) {
494 		err = PTR_ERR(fcc->f2fs_issue_flush);
495 		kfree(fcc);
496 		SM_I(sbi)->cmd_control_info = NULL;
497 		return err;
498 	}
499 
500 	return err;
501 }
502 
503 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
504 {
505 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
506 
507 	if (fcc && fcc->f2fs_issue_flush)
508 		kthread_stop(fcc->f2fs_issue_flush);
509 	kfree(fcc);
510 	SM_I(sbi)->cmd_control_info = NULL;
511 }
512 
513 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
514 		enum dirty_type dirty_type)
515 {
516 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
517 
518 	/* need not be added */
519 	if (IS_CURSEG(sbi, segno))
520 		return;
521 
522 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
523 		dirty_i->nr_dirty[dirty_type]++;
524 
525 	if (dirty_type == DIRTY) {
526 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
527 		enum dirty_type t = sentry->type;
528 
529 		if (unlikely(t >= DIRTY)) {
530 			f2fs_bug_on(sbi, 1);
531 			return;
532 		}
533 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
534 			dirty_i->nr_dirty[t]++;
535 	}
536 }
537 
538 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
539 		enum dirty_type dirty_type)
540 {
541 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
542 
543 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
544 		dirty_i->nr_dirty[dirty_type]--;
545 
546 	if (dirty_type == DIRTY) {
547 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
548 		enum dirty_type t = sentry->type;
549 
550 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
551 			dirty_i->nr_dirty[t]--;
552 
553 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
554 			clear_bit(GET_SECNO(sbi, segno),
555 						dirty_i->victim_secmap);
556 	}
557 }
558 
559 /*
560  * Should not occur error such as -ENOMEM.
561  * Adding dirty entry into seglist is not critical operation.
562  * If a given segment is one of current working segments, it won't be added.
563  */
564 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
565 {
566 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
567 	unsigned short valid_blocks;
568 
569 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
570 		return;
571 
572 	mutex_lock(&dirty_i->seglist_lock);
573 
574 	valid_blocks = get_valid_blocks(sbi, segno, 0);
575 
576 	if (valid_blocks == 0) {
577 		__locate_dirty_segment(sbi, segno, PRE);
578 		__remove_dirty_segment(sbi, segno, DIRTY);
579 	} else if (valid_blocks < sbi->blocks_per_seg) {
580 		__locate_dirty_segment(sbi, segno, DIRTY);
581 	} else {
582 		/* Recovery routine with SSR needs this */
583 		__remove_dirty_segment(sbi, segno, DIRTY);
584 	}
585 
586 	mutex_unlock(&dirty_i->seglist_lock);
587 }
588 
589 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi,
590 							struct bio *bio)
591 {
592 	struct list_head *wait_list = &(SM_I(sbi)->wait_list);
593 	struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS);
594 
595 	INIT_LIST_HEAD(&be->list);
596 	be->bio = bio;
597 	init_completion(&be->event);
598 	list_add_tail(&be->list, wait_list);
599 
600 	return be;
601 }
602 
603 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi)
604 {
605 	struct list_head *wait_list = &(SM_I(sbi)->wait_list);
606 	struct bio_entry *be, *tmp;
607 
608 	list_for_each_entry_safe(be, tmp, wait_list, list) {
609 		struct bio *bio = be->bio;
610 		int err;
611 
612 		wait_for_completion_io(&be->event);
613 		err = be->error;
614 		if (err == -EOPNOTSUPP)
615 			err = 0;
616 
617 		if (err)
618 			f2fs_msg(sbi->sb, KERN_INFO,
619 				"Issue discard failed, ret: %d", err);
620 
621 		bio_put(bio);
622 		list_del(&be->list);
623 		kmem_cache_free(bio_entry_slab, be);
624 	}
625 }
626 
627 static void f2fs_submit_bio_wait_endio(struct bio *bio)
628 {
629 	struct bio_entry *be = (struct bio_entry *)bio->bi_private;
630 
631 	be->error = bio->bi_error;
632 	complete(&be->event);
633 }
634 
635 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
636 int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, sector_t sector,
637 		sector_t nr_sects, gfp_t gfp_mask, unsigned long flags)
638 {
639 	struct block_device *bdev = sbi->sb->s_bdev;
640 	struct bio *bio = NULL;
641 	int err;
642 
643 	err = __blkdev_issue_discard(bdev, sector, nr_sects, gfp_mask, flags,
644 			&bio);
645 	if (!err && bio) {
646 		struct bio_entry *be = __add_bio_entry(sbi, bio);
647 
648 		bio->bi_private = be;
649 		bio->bi_end_io = f2fs_submit_bio_wait_endio;
650 		bio->bi_opf |= REQ_SYNC;
651 		submit_bio(bio);
652 	}
653 
654 	return err;
655 }
656 
657 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
658 				block_t blkstart, block_t blklen)
659 {
660 	sector_t start = SECTOR_FROM_BLOCK(blkstart);
661 	sector_t len = SECTOR_FROM_BLOCK(blklen);
662 	struct seg_entry *se;
663 	unsigned int offset;
664 	block_t i;
665 
666 	for (i = blkstart; i < blkstart + blklen; i++) {
667 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
668 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
669 
670 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
671 			sbi->discard_blks--;
672 	}
673 	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
674 	return __f2fs_issue_discard_async(sbi, start, len, GFP_NOFS, 0);
675 }
676 
677 static void __add_discard_entry(struct f2fs_sb_info *sbi,
678 		struct cp_control *cpc, struct seg_entry *se,
679 		unsigned int start, unsigned int end)
680 {
681 	struct list_head *head = &SM_I(sbi)->discard_list;
682 	struct discard_entry *new, *last;
683 
684 	if (!list_empty(head)) {
685 		last = list_last_entry(head, struct discard_entry, list);
686 		if (START_BLOCK(sbi, cpc->trim_start) + start ==
687 						last->blkaddr + last->len) {
688 			last->len += end - start;
689 			goto done;
690 		}
691 	}
692 
693 	new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
694 	INIT_LIST_HEAD(&new->list);
695 	new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
696 	new->len = end - start;
697 	list_add_tail(&new->list, head);
698 done:
699 	SM_I(sbi)->nr_discards += end - start;
700 }
701 
702 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
703 {
704 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
705 	int max_blocks = sbi->blocks_per_seg;
706 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
707 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
708 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
709 	unsigned long *discard_map = (unsigned long *)se->discard_map;
710 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
711 	unsigned int start = 0, end = -1;
712 	bool force = (cpc->reason == CP_DISCARD);
713 	int i;
714 
715 	if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
716 		return;
717 
718 	if (!force) {
719 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
720 		    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
721 			return;
722 	}
723 
724 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
725 	for (i = 0; i < entries; i++)
726 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
727 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
728 
729 	while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
730 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
731 		if (start >= max_blocks)
732 			break;
733 
734 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
735 		if (force && start && end != max_blocks
736 					&& (end - start) < cpc->trim_minlen)
737 			continue;
738 
739 		__add_discard_entry(sbi, cpc, se, start, end);
740 	}
741 }
742 
743 void release_discard_addrs(struct f2fs_sb_info *sbi)
744 {
745 	struct list_head *head = &(SM_I(sbi)->discard_list);
746 	struct discard_entry *entry, *this;
747 
748 	/* drop caches */
749 	list_for_each_entry_safe(entry, this, head, list) {
750 		list_del(&entry->list);
751 		kmem_cache_free(discard_entry_slab, entry);
752 	}
753 }
754 
755 /*
756  * Should call clear_prefree_segments after checkpoint is done.
757  */
758 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
759 {
760 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
761 	unsigned int segno;
762 
763 	mutex_lock(&dirty_i->seglist_lock);
764 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
765 		__set_test_and_free(sbi, segno);
766 	mutex_unlock(&dirty_i->seglist_lock);
767 }
768 
769 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
770 {
771 	struct list_head *head = &(SM_I(sbi)->discard_list);
772 	struct discard_entry *entry, *this;
773 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
774 	struct blk_plug plug;
775 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
776 	unsigned int start = 0, end = -1;
777 	unsigned int secno, start_segno;
778 	bool force = (cpc->reason == CP_DISCARD);
779 
780 	blk_start_plug(&plug);
781 
782 	mutex_lock(&dirty_i->seglist_lock);
783 
784 	while (1) {
785 		int i;
786 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
787 		if (start >= MAIN_SEGS(sbi))
788 			break;
789 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
790 								start + 1);
791 
792 		for (i = start; i < end; i++)
793 			clear_bit(i, prefree_map);
794 
795 		dirty_i->nr_dirty[PRE] -= end - start;
796 
797 		if (force || !test_opt(sbi, DISCARD))
798 			continue;
799 
800 		if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
801 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
802 				(end - start) << sbi->log_blocks_per_seg);
803 			continue;
804 		}
805 next:
806 		secno = GET_SECNO(sbi, start);
807 		start_segno = secno * sbi->segs_per_sec;
808 		if (!IS_CURSEC(sbi, secno) &&
809 			!get_valid_blocks(sbi, start, sbi->segs_per_sec))
810 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
811 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
812 
813 		start = start_segno + sbi->segs_per_sec;
814 		if (start < end)
815 			goto next;
816 	}
817 	mutex_unlock(&dirty_i->seglist_lock);
818 
819 	/* send small discards */
820 	list_for_each_entry_safe(entry, this, head, list) {
821 		if (force && entry->len < cpc->trim_minlen)
822 			goto skip;
823 		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
824 		cpc->trimmed += entry->len;
825 skip:
826 		list_del(&entry->list);
827 		SM_I(sbi)->nr_discards -= entry->len;
828 		kmem_cache_free(discard_entry_slab, entry);
829 	}
830 
831 	blk_finish_plug(&plug);
832 }
833 
834 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
835 {
836 	struct sit_info *sit_i = SIT_I(sbi);
837 
838 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
839 		sit_i->dirty_sentries++;
840 		return false;
841 	}
842 
843 	return true;
844 }
845 
846 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
847 					unsigned int segno, int modified)
848 {
849 	struct seg_entry *se = get_seg_entry(sbi, segno);
850 	se->type = type;
851 	if (modified)
852 		__mark_sit_entry_dirty(sbi, segno);
853 }
854 
855 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
856 {
857 	struct seg_entry *se;
858 	unsigned int segno, offset;
859 	long int new_vblocks;
860 
861 	segno = GET_SEGNO(sbi, blkaddr);
862 
863 	se = get_seg_entry(sbi, segno);
864 	new_vblocks = se->valid_blocks + del;
865 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
866 
867 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
868 				(new_vblocks > sbi->blocks_per_seg)));
869 
870 	se->valid_blocks = new_vblocks;
871 	se->mtime = get_mtime(sbi);
872 	SIT_I(sbi)->max_mtime = se->mtime;
873 
874 	/* Update valid block bitmap */
875 	if (del > 0) {
876 		if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
877 			f2fs_bug_on(sbi, 1);
878 		if (f2fs_discard_en(sbi) &&
879 			!f2fs_test_and_set_bit(offset, se->discard_map))
880 			sbi->discard_blks--;
881 	} else {
882 		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
883 			f2fs_bug_on(sbi, 1);
884 		if (f2fs_discard_en(sbi) &&
885 			f2fs_test_and_clear_bit(offset, se->discard_map))
886 			sbi->discard_blks++;
887 	}
888 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
889 		se->ckpt_valid_blocks += del;
890 
891 	__mark_sit_entry_dirty(sbi, segno);
892 
893 	/* update total number of valid blocks to be written in ckpt area */
894 	SIT_I(sbi)->written_valid_blocks += del;
895 
896 	if (sbi->segs_per_sec > 1)
897 		get_sec_entry(sbi, segno)->valid_blocks += del;
898 }
899 
900 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
901 {
902 	update_sit_entry(sbi, new, 1);
903 	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
904 		update_sit_entry(sbi, old, -1);
905 
906 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
907 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
908 }
909 
910 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
911 {
912 	unsigned int segno = GET_SEGNO(sbi, addr);
913 	struct sit_info *sit_i = SIT_I(sbi);
914 
915 	f2fs_bug_on(sbi, addr == NULL_ADDR);
916 	if (addr == NEW_ADDR)
917 		return;
918 
919 	/* add it into sit main buffer */
920 	mutex_lock(&sit_i->sentry_lock);
921 
922 	update_sit_entry(sbi, addr, -1);
923 
924 	/* add it into dirty seglist */
925 	locate_dirty_segment(sbi, segno);
926 
927 	mutex_unlock(&sit_i->sentry_lock);
928 }
929 
930 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
931 {
932 	struct sit_info *sit_i = SIT_I(sbi);
933 	unsigned int segno, offset;
934 	struct seg_entry *se;
935 	bool is_cp = false;
936 
937 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
938 		return true;
939 
940 	mutex_lock(&sit_i->sentry_lock);
941 
942 	segno = GET_SEGNO(sbi, blkaddr);
943 	se = get_seg_entry(sbi, segno);
944 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
945 
946 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
947 		is_cp = true;
948 
949 	mutex_unlock(&sit_i->sentry_lock);
950 
951 	return is_cp;
952 }
953 
954 /*
955  * This function should be resided under the curseg_mutex lock
956  */
957 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
958 					struct f2fs_summary *sum)
959 {
960 	struct curseg_info *curseg = CURSEG_I(sbi, type);
961 	void *addr = curseg->sum_blk;
962 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
963 	memcpy(addr, sum, sizeof(struct f2fs_summary));
964 }
965 
966 /*
967  * Calculate the number of current summary pages for writing
968  */
969 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
970 {
971 	int valid_sum_count = 0;
972 	int i, sum_in_page;
973 
974 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
975 		if (sbi->ckpt->alloc_type[i] == SSR)
976 			valid_sum_count += sbi->blocks_per_seg;
977 		else {
978 			if (for_ra)
979 				valid_sum_count += le16_to_cpu(
980 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
981 			else
982 				valid_sum_count += curseg_blkoff(sbi, i);
983 		}
984 	}
985 
986 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
987 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
988 	if (valid_sum_count <= sum_in_page)
989 		return 1;
990 	else if ((valid_sum_count - sum_in_page) <=
991 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
992 		return 2;
993 	return 3;
994 }
995 
996 /*
997  * Caller should put this summary page
998  */
999 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1000 {
1001 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1002 }
1003 
1004 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1005 {
1006 	struct page *page = grab_meta_page(sbi, blk_addr);
1007 	void *dst = page_address(page);
1008 
1009 	if (src)
1010 		memcpy(dst, src, PAGE_SIZE);
1011 	else
1012 		memset(dst, 0, PAGE_SIZE);
1013 	set_page_dirty(page);
1014 	f2fs_put_page(page, 1);
1015 }
1016 
1017 static void write_sum_page(struct f2fs_sb_info *sbi,
1018 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
1019 {
1020 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
1021 }
1022 
1023 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1024 						int type, block_t blk_addr)
1025 {
1026 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1027 	struct page *page = grab_meta_page(sbi, blk_addr);
1028 	struct f2fs_summary_block *src = curseg->sum_blk;
1029 	struct f2fs_summary_block *dst;
1030 
1031 	dst = (struct f2fs_summary_block *)page_address(page);
1032 
1033 	mutex_lock(&curseg->curseg_mutex);
1034 
1035 	down_read(&curseg->journal_rwsem);
1036 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1037 	up_read(&curseg->journal_rwsem);
1038 
1039 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1040 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1041 
1042 	mutex_unlock(&curseg->curseg_mutex);
1043 
1044 	set_page_dirty(page);
1045 	f2fs_put_page(page, 1);
1046 }
1047 
1048 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1049 {
1050 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1051 	unsigned int segno = curseg->segno + 1;
1052 	struct free_segmap_info *free_i = FREE_I(sbi);
1053 
1054 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1055 		return !test_bit(segno, free_i->free_segmap);
1056 	return 0;
1057 }
1058 
1059 /*
1060  * Find a new segment from the free segments bitmap to right order
1061  * This function should be returned with success, otherwise BUG
1062  */
1063 static void get_new_segment(struct f2fs_sb_info *sbi,
1064 			unsigned int *newseg, bool new_sec, int dir)
1065 {
1066 	struct free_segmap_info *free_i = FREE_I(sbi);
1067 	unsigned int segno, secno, zoneno;
1068 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1069 	unsigned int hint = *newseg / sbi->segs_per_sec;
1070 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1071 	unsigned int left_start = hint;
1072 	bool init = true;
1073 	int go_left = 0;
1074 	int i;
1075 
1076 	spin_lock(&free_i->segmap_lock);
1077 
1078 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1079 		segno = find_next_zero_bit(free_i->free_segmap,
1080 				(hint + 1) * sbi->segs_per_sec, *newseg + 1);
1081 		if (segno < (hint + 1) * sbi->segs_per_sec)
1082 			goto got_it;
1083 	}
1084 find_other_zone:
1085 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1086 	if (secno >= MAIN_SECS(sbi)) {
1087 		if (dir == ALLOC_RIGHT) {
1088 			secno = find_next_zero_bit(free_i->free_secmap,
1089 							MAIN_SECS(sbi), 0);
1090 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1091 		} else {
1092 			go_left = 1;
1093 			left_start = hint - 1;
1094 		}
1095 	}
1096 	if (go_left == 0)
1097 		goto skip_left;
1098 
1099 	while (test_bit(left_start, free_i->free_secmap)) {
1100 		if (left_start > 0) {
1101 			left_start--;
1102 			continue;
1103 		}
1104 		left_start = find_next_zero_bit(free_i->free_secmap,
1105 							MAIN_SECS(sbi), 0);
1106 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1107 		break;
1108 	}
1109 	secno = left_start;
1110 skip_left:
1111 	hint = secno;
1112 	segno = secno * sbi->segs_per_sec;
1113 	zoneno = secno / sbi->secs_per_zone;
1114 
1115 	/* give up on finding another zone */
1116 	if (!init)
1117 		goto got_it;
1118 	if (sbi->secs_per_zone == 1)
1119 		goto got_it;
1120 	if (zoneno == old_zoneno)
1121 		goto got_it;
1122 	if (dir == ALLOC_LEFT) {
1123 		if (!go_left && zoneno + 1 >= total_zones)
1124 			goto got_it;
1125 		if (go_left && zoneno == 0)
1126 			goto got_it;
1127 	}
1128 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1129 		if (CURSEG_I(sbi, i)->zone == zoneno)
1130 			break;
1131 
1132 	if (i < NR_CURSEG_TYPE) {
1133 		/* zone is in user, try another */
1134 		if (go_left)
1135 			hint = zoneno * sbi->secs_per_zone - 1;
1136 		else if (zoneno + 1 >= total_zones)
1137 			hint = 0;
1138 		else
1139 			hint = (zoneno + 1) * sbi->secs_per_zone;
1140 		init = false;
1141 		goto find_other_zone;
1142 	}
1143 got_it:
1144 	/* set it as dirty segment in free segmap */
1145 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1146 	__set_inuse(sbi, segno);
1147 	*newseg = segno;
1148 	spin_unlock(&free_i->segmap_lock);
1149 }
1150 
1151 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1152 {
1153 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1154 	struct summary_footer *sum_footer;
1155 
1156 	curseg->segno = curseg->next_segno;
1157 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1158 	curseg->next_blkoff = 0;
1159 	curseg->next_segno = NULL_SEGNO;
1160 
1161 	sum_footer = &(curseg->sum_blk->footer);
1162 	memset(sum_footer, 0, sizeof(struct summary_footer));
1163 	if (IS_DATASEG(type))
1164 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1165 	if (IS_NODESEG(type))
1166 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1167 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
1168 }
1169 
1170 /*
1171  * Allocate a current working segment.
1172  * This function always allocates a free segment in LFS manner.
1173  */
1174 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1175 {
1176 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1177 	unsigned int segno = curseg->segno;
1178 	int dir = ALLOC_LEFT;
1179 
1180 	write_sum_page(sbi, curseg->sum_blk,
1181 				GET_SUM_BLOCK(sbi, segno));
1182 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1183 		dir = ALLOC_RIGHT;
1184 
1185 	if (test_opt(sbi, NOHEAP))
1186 		dir = ALLOC_RIGHT;
1187 
1188 	get_new_segment(sbi, &segno, new_sec, dir);
1189 	curseg->next_segno = segno;
1190 	reset_curseg(sbi, type, 1);
1191 	curseg->alloc_type = LFS;
1192 }
1193 
1194 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1195 			struct curseg_info *seg, block_t start)
1196 {
1197 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1198 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1199 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
1200 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1201 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1202 	int i, pos;
1203 
1204 	for (i = 0; i < entries; i++)
1205 		target_map[i] = ckpt_map[i] | cur_map[i];
1206 
1207 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1208 
1209 	seg->next_blkoff = pos;
1210 }
1211 
1212 /*
1213  * If a segment is written by LFS manner, next block offset is just obtained
1214  * by increasing the current block offset. However, if a segment is written by
1215  * SSR manner, next block offset obtained by calling __next_free_blkoff
1216  */
1217 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1218 				struct curseg_info *seg)
1219 {
1220 	if (seg->alloc_type == SSR)
1221 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1222 	else
1223 		seg->next_blkoff++;
1224 }
1225 
1226 /*
1227  * This function always allocates a used segment(from dirty seglist) by SSR
1228  * manner, so it should recover the existing segment information of valid blocks
1229  */
1230 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1231 {
1232 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1233 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1234 	unsigned int new_segno = curseg->next_segno;
1235 	struct f2fs_summary_block *sum_node;
1236 	struct page *sum_page;
1237 
1238 	write_sum_page(sbi, curseg->sum_blk,
1239 				GET_SUM_BLOCK(sbi, curseg->segno));
1240 	__set_test_and_inuse(sbi, new_segno);
1241 
1242 	mutex_lock(&dirty_i->seglist_lock);
1243 	__remove_dirty_segment(sbi, new_segno, PRE);
1244 	__remove_dirty_segment(sbi, new_segno, DIRTY);
1245 	mutex_unlock(&dirty_i->seglist_lock);
1246 
1247 	reset_curseg(sbi, type, 1);
1248 	curseg->alloc_type = SSR;
1249 	__next_free_blkoff(sbi, curseg, 0);
1250 
1251 	if (reuse) {
1252 		sum_page = get_sum_page(sbi, new_segno);
1253 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1254 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1255 		f2fs_put_page(sum_page, 1);
1256 	}
1257 }
1258 
1259 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1260 {
1261 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1262 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1263 
1264 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0))
1265 		return v_ops->get_victim(sbi,
1266 				&(curseg)->next_segno, BG_GC, type, SSR);
1267 
1268 	/* For data segments, let's do SSR more intensively */
1269 	for (; type >= CURSEG_HOT_DATA; type--)
1270 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1271 						BG_GC, type, SSR))
1272 			return 1;
1273 	return 0;
1274 }
1275 
1276 /*
1277  * flush out current segment and replace it with new segment
1278  * This function should be returned with success, otherwise BUG
1279  */
1280 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1281 						int type, bool force)
1282 {
1283 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1284 
1285 	if (force)
1286 		new_curseg(sbi, type, true);
1287 	else if (type == CURSEG_WARM_NODE)
1288 		new_curseg(sbi, type, false);
1289 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1290 		new_curseg(sbi, type, false);
1291 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1292 		change_curseg(sbi, type, true);
1293 	else
1294 		new_curseg(sbi, type, false);
1295 
1296 	stat_inc_seg_type(sbi, curseg);
1297 }
1298 
1299 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1300 {
1301 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1302 	unsigned int old_segno;
1303 
1304 	old_segno = curseg->segno;
1305 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1306 	locate_dirty_segment(sbi, old_segno);
1307 }
1308 
1309 void allocate_new_segments(struct f2fs_sb_info *sbi)
1310 {
1311 	int i;
1312 
1313 	if (test_opt(sbi, LFS))
1314 		return;
1315 
1316 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1317 		__allocate_new_segments(sbi, i);
1318 }
1319 
1320 static const struct segment_allocation default_salloc_ops = {
1321 	.allocate_segment = allocate_segment_by_default,
1322 };
1323 
1324 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1325 {
1326 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
1327 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1328 	unsigned int start_segno, end_segno;
1329 	struct cp_control cpc;
1330 	int err = 0;
1331 
1332 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1333 		return -EINVAL;
1334 
1335 	cpc.trimmed = 0;
1336 	if (end <= MAIN_BLKADDR(sbi))
1337 		goto out;
1338 
1339 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1340 		f2fs_msg(sbi->sb, KERN_WARNING,
1341 			"Found FS corruption, run fsck to fix.");
1342 		goto out;
1343 	}
1344 
1345 	/* start/end segment number in main_area */
1346 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1347 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1348 						GET_SEGNO(sbi, end);
1349 	cpc.reason = CP_DISCARD;
1350 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1351 
1352 	/* do checkpoint to issue discard commands safely */
1353 	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1354 		cpc.trim_start = start_segno;
1355 
1356 		if (sbi->discard_blks == 0)
1357 			break;
1358 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1359 			cpc.trim_end = end_segno;
1360 		else
1361 			cpc.trim_end = min_t(unsigned int,
1362 				rounddown(start_segno +
1363 				BATCHED_TRIM_SEGMENTS(sbi),
1364 				sbi->segs_per_sec) - 1, end_segno);
1365 
1366 		mutex_lock(&sbi->gc_mutex);
1367 		err = write_checkpoint(sbi, &cpc);
1368 		mutex_unlock(&sbi->gc_mutex);
1369 		if (err)
1370 			break;
1371 
1372 		schedule();
1373 	}
1374 out:
1375 	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1376 	return err;
1377 }
1378 
1379 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1380 {
1381 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1382 	if (curseg->next_blkoff < sbi->blocks_per_seg)
1383 		return true;
1384 	return false;
1385 }
1386 
1387 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1388 {
1389 	if (p_type == DATA)
1390 		return CURSEG_HOT_DATA;
1391 	else
1392 		return CURSEG_HOT_NODE;
1393 }
1394 
1395 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1396 {
1397 	if (p_type == DATA) {
1398 		struct inode *inode = page->mapping->host;
1399 
1400 		if (S_ISDIR(inode->i_mode))
1401 			return CURSEG_HOT_DATA;
1402 		else
1403 			return CURSEG_COLD_DATA;
1404 	} else {
1405 		if (IS_DNODE(page) && is_cold_node(page))
1406 			return CURSEG_WARM_NODE;
1407 		else
1408 			return CURSEG_COLD_NODE;
1409 	}
1410 }
1411 
1412 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1413 {
1414 	if (p_type == DATA) {
1415 		struct inode *inode = page->mapping->host;
1416 
1417 		if (S_ISDIR(inode->i_mode))
1418 			return CURSEG_HOT_DATA;
1419 		else if (is_cold_data(page) || file_is_cold(inode))
1420 			return CURSEG_COLD_DATA;
1421 		else
1422 			return CURSEG_WARM_DATA;
1423 	} else {
1424 		if (IS_DNODE(page))
1425 			return is_cold_node(page) ? CURSEG_WARM_NODE :
1426 						CURSEG_HOT_NODE;
1427 		else
1428 			return CURSEG_COLD_NODE;
1429 	}
1430 }
1431 
1432 static int __get_segment_type(struct page *page, enum page_type p_type)
1433 {
1434 	switch (F2FS_P_SB(page)->active_logs) {
1435 	case 2:
1436 		return __get_segment_type_2(page, p_type);
1437 	case 4:
1438 		return __get_segment_type_4(page, p_type);
1439 	}
1440 	/* NR_CURSEG_TYPE(6) logs by default */
1441 	f2fs_bug_on(F2FS_P_SB(page),
1442 		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1443 	return __get_segment_type_6(page, p_type);
1444 }
1445 
1446 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1447 		block_t old_blkaddr, block_t *new_blkaddr,
1448 		struct f2fs_summary *sum, int type)
1449 {
1450 	struct sit_info *sit_i = SIT_I(sbi);
1451 	struct curseg_info *curseg;
1452 	bool direct_io = (type == CURSEG_DIRECT_IO);
1453 
1454 	type = direct_io ? CURSEG_WARM_DATA : type;
1455 
1456 	curseg = CURSEG_I(sbi, type);
1457 
1458 	mutex_lock(&curseg->curseg_mutex);
1459 	mutex_lock(&sit_i->sentry_lock);
1460 
1461 	/* direct_io'ed data is aligned to the segment for better performance */
1462 	if (direct_io && curseg->next_blkoff &&
1463 				!has_not_enough_free_secs(sbi, 0, 0))
1464 		__allocate_new_segments(sbi, type);
1465 
1466 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1467 
1468 	/*
1469 	 * __add_sum_entry should be resided under the curseg_mutex
1470 	 * because, this function updates a summary entry in the
1471 	 * current summary block.
1472 	 */
1473 	__add_sum_entry(sbi, type, sum);
1474 
1475 	__refresh_next_blkoff(sbi, curseg);
1476 
1477 	stat_inc_block_count(sbi, curseg);
1478 
1479 	if (!__has_curseg_space(sbi, type))
1480 		sit_i->s_ops->allocate_segment(sbi, type, false);
1481 	/*
1482 	 * SIT information should be updated before segment allocation,
1483 	 * since SSR needs latest valid block information.
1484 	 */
1485 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1486 
1487 	mutex_unlock(&sit_i->sentry_lock);
1488 
1489 	if (page && IS_NODESEG(type))
1490 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1491 
1492 	mutex_unlock(&curseg->curseg_mutex);
1493 }
1494 
1495 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1496 {
1497 	int type = __get_segment_type(fio->page, fio->type);
1498 
1499 	if (fio->type == NODE || fio->type == DATA)
1500 		mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1501 
1502 	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1503 					&fio->new_blkaddr, sum, type);
1504 
1505 	/* writeout dirty page into bdev */
1506 	f2fs_submit_page_mbio(fio);
1507 
1508 	if (fio->type == NODE || fio->type == DATA)
1509 		mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1510 }
1511 
1512 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1513 {
1514 	struct f2fs_io_info fio = {
1515 		.sbi = sbi,
1516 		.type = META,
1517 		.op = REQ_OP_WRITE,
1518 		.op_flags = WRITE_SYNC | REQ_META | REQ_PRIO,
1519 		.old_blkaddr = page->index,
1520 		.new_blkaddr = page->index,
1521 		.page = page,
1522 		.encrypted_page = NULL,
1523 	};
1524 
1525 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1526 		fio.op_flags &= ~REQ_META;
1527 
1528 	set_page_writeback(page);
1529 	f2fs_submit_page_mbio(&fio);
1530 }
1531 
1532 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1533 {
1534 	struct f2fs_summary sum;
1535 
1536 	set_summary(&sum, nid, 0, 0);
1537 	do_write_page(&sum, fio);
1538 }
1539 
1540 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1541 {
1542 	struct f2fs_sb_info *sbi = fio->sbi;
1543 	struct f2fs_summary sum;
1544 	struct node_info ni;
1545 
1546 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1547 	get_node_info(sbi, dn->nid, &ni);
1548 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1549 	do_write_page(&sum, fio);
1550 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1551 }
1552 
1553 void rewrite_data_page(struct f2fs_io_info *fio)
1554 {
1555 	fio->new_blkaddr = fio->old_blkaddr;
1556 	stat_inc_inplace_blocks(fio->sbi);
1557 	f2fs_submit_page_mbio(fio);
1558 }
1559 
1560 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1561 				block_t old_blkaddr, block_t new_blkaddr,
1562 				bool recover_curseg, bool recover_newaddr)
1563 {
1564 	struct sit_info *sit_i = SIT_I(sbi);
1565 	struct curseg_info *curseg;
1566 	unsigned int segno, old_cursegno;
1567 	struct seg_entry *se;
1568 	int type;
1569 	unsigned short old_blkoff;
1570 
1571 	segno = GET_SEGNO(sbi, new_blkaddr);
1572 	se = get_seg_entry(sbi, segno);
1573 	type = se->type;
1574 
1575 	if (!recover_curseg) {
1576 		/* for recovery flow */
1577 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1578 			if (old_blkaddr == NULL_ADDR)
1579 				type = CURSEG_COLD_DATA;
1580 			else
1581 				type = CURSEG_WARM_DATA;
1582 		}
1583 	} else {
1584 		if (!IS_CURSEG(sbi, segno))
1585 			type = CURSEG_WARM_DATA;
1586 	}
1587 
1588 	curseg = CURSEG_I(sbi, type);
1589 
1590 	mutex_lock(&curseg->curseg_mutex);
1591 	mutex_lock(&sit_i->sentry_lock);
1592 
1593 	old_cursegno = curseg->segno;
1594 	old_blkoff = curseg->next_blkoff;
1595 
1596 	/* change the current segment */
1597 	if (segno != curseg->segno) {
1598 		curseg->next_segno = segno;
1599 		change_curseg(sbi, type, true);
1600 	}
1601 
1602 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1603 	__add_sum_entry(sbi, type, sum);
1604 
1605 	if (!recover_curseg || recover_newaddr)
1606 		update_sit_entry(sbi, new_blkaddr, 1);
1607 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1608 		update_sit_entry(sbi, old_blkaddr, -1);
1609 
1610 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1611 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1612 
1613 	locate_dirty_segment(sbi, old_cursegno);
1614 
1615 	if (recover_curseg) {
1616 		if (old_cursegno != curseg->segno) {
1617 			curseg->next_segno = old_cursegno;
1618 			change_curseg(sbi, type, true);
1619 		}
1620 		curseg->next_blkoff = old_blkoff;
1621 	}
1622 
1623 	mutex_unlock(&sit_i->sentry_lock);
1624 	mutex_unlock(&curseg->curseg_mutex);
1625 }
1626 
1627 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1628 				block_t old_addr, block_t new_addr,
1629 				unsigned char version, bool recover_curseg,
1630 				bool recover_newaddr)
1631 {
1632 	struct f2fs_summary sum;
1633 
1634 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1635 
1636 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1637 					recover_curseg, recover_newaddr);
1638 
1639 	f2fs_update_data_blkaddr(dn, new_addr);
1640 }
1641 
1642 void f2fs_wait_on_page_writeback(struct page *page,
1643 				enum page_type type, bool ordered)
1644 {
1645 	if (PageWriteback(page)) {
1646 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1647 
1648 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1649 		if (ordered)
1650 			wait_on_page_writeback(page);
1651 		else
1652 			wait_for_stable_page(page);
1653 	}
1654 }
1655 
1656 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1657 							block_t blkaddr)
1658 {
1659 	struct page *cpage;
1660 
1661 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1662 		return;
1663 
1664 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1665 	if (cpage) {
1666 		f2fs_wait_on_page_writeback(cpage, DATA, true);
1667 		f2fs_put_page(cpage, 1);
1668 	}
1669 }
1670 
1671 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1672 {
1673 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1674 	struct curseg_info *seg_i;
1675 	unsigned char *kaddr;
1676 	struct page *page;
1677 	block_t start;
1678 	int i, j, offset;
1679 
1680 	start = start_sum_block(sbi);
1681 
1682 	page = get_meta_page(sbi, start++);
1683 	kaddr = (unsigned char *)page_address(page);
1684 
1685 	/* Step 1: restore nat cache */
1686 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1687 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1688 
1689 	/* Step 2: restore sit cache */
1690 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1691 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1692 	offset = 2 * SUM_JOURNAL_SIZE;
1693 
1694 	/* Step 3: restore summary entries */
1695 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1696 		unsigned short blk_off;
1697 		unsigned int segno;
1698 
1699 		seg_i = CURSEG_I(sbi, i);
1700 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1701 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1702 		seg_i->next_segno = segno;
1703 		reset_curseg(sbi, i, 0);
1704 		seg_i->alloc_type = ckpt->alloc_type[i];
1705 		seg_i->next_blkoff = blk_off;
1706 
1707 		if (seg_i->alloc_type == SSR)
1708 			blk_off = sbi->blocks_per_seg;
1709 
1710 		for (j = 0; j < blk_off; j++) {
1711 			struct f2fs_summary *s;
1712 			s = (struct f2fs_summary *)(kaddr + offset);
1713 			seg_i->sum_blk->entries[j] = *s;
1714 			offset += SUMMARY_SIZE;
1715 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1716 						SUM_FOOTER_SIZE)
1717 				continue;
1718 
1719 			f2fs_put_page(page, 1);
1720 			page = NULL;
1721 
1722 			page = get_meta_page(sbi, start++);
1723 			kaddr = (unsigned char *)page_address(page);
1724 			offset = 0;
1725 		}
1726 	}
1727 	f2fs_put_page(page, 1);
1728 	return 0;
1729 }
1730 
1731 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1732 {
1733 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1734 	struct f2fs_summary_block *sum;
1735 	struct curseg_info *curseg;
1736 	struct page *new;
1737 	unsigned short blk_off;
1738 	unsigned int segno = 0;
1739 	block_t blk_addr = 0;
1740 
1741 	/* get segment number and block addr */
1742 	if (IS_DATASEG(type)) {
1743 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1744 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1745 							CURSEG_HOT_DATA]);
1746 		if (__exist_node_summaries(sbi))
1747 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1748 		else
1749 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1750 	} else {
1751 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1752 							CURSEG_HOT_NODE]);
1753 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1754 							CURSEG_HOT_NODE]);
1755 		if (__exist_node_summaries(sbi))
1756 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1757 							type - CURSEG_HOT_NODE);
1758 		else
1759 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1760 	}
1761 
1762 	new = get_meta_page(sbi, blk_addr);
1763 	sum = (struct f2fs_summary_block *)page_address(new);
1764 
1765 	if (IS_NODESEG(type)) {
1766 		if (__exist_node_summaries(sbi)) {
1767 			struct f2fs_summary *ns = &sum->entries[0];
1768 			int i;
1769 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1770 				ns->version = 0;
1771 				ns->ofs_in_node = 0;
1772 			}
1773 		} else {
1774 			int err;
1775 
1776 			err = restore_node_summary(sbi, segno, sum);
1777 			if (err) {
1778 				f2fs_put_page(new, 1);
1779 				return err;
1780 			}
1781 		}
1782 	}
1783 
1784 	/* set uncompleted segment to curseg */
1785 	curseg = CURSEG_I(sbi, type);
1786 	mutex_lock(&curseg->curseg_mutex);
1787 
1788 	/* update journal info */
1789 	down_write(&curseg->journal_rwsem);
1790 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1791 	up_write(&curseg->journal_rwsem);
1792 
1793 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1794 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1795 	curseg->next_segno = segno;
1796 	reset_curseg(sbi, type, 0);
1797 	curseg->alloc_type = ckpt->alloc_type[type];
1798 	curseg->next_blkoff = blk_off;
1799 	mutex_unlock(&curseg->curseg_mutex);
1800 	f2fs_put_page(new, 1);
1801 	return 0;
1802 }
1803 
1804 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1805 {
1806 	int type = CURSEG_HOT_DATA;
1807 	int err;
1808 
1809 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
1810 		int npages = npages_for_summary_flush(sbi, true);
1811 
1812 		if (npages >= 2)
1813 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
1814 							META_CP, true);
1815 
1816 		/* restore for compacted data summary */
1817 		if (read_compacted_summaries(sbi))
1818 			return -EINVAL;
1819 		type = CURSEG_HOT_NODE;
1820 	}
1821 
1822 	if (__exist_node_summaries(sbi))
1823 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1824 					NR_CURSEG_TYPE - type, META_CP, true);
1825 
1826 	for (; type <= CURSEG_COLD_NODE; type++) {
1827 		err = read_normal_summaries(sbi, type);
1828 		if (err)
1829 			return err;
1830 	}
1831 
1832 	return 0;
1833 }
1834 
1835 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1836 {
1837 	struct page *page;
1838 	unsigned char *kaddr;
1839 	struct f2fs_summary *summary;
1840 	struct curseg_info *seg_i;
1841 	int written_size = 0;
1842 	int i, j;
1843 
1844 	page = grab_meta_page(sbi, blkaddr++);
1845 	kaddr = (unsigned char *)page_address(page);
1846 
1847 	/* Step 1: write nat cache */
1848 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1849 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1850 	written_size += SUM_JOURNAL_SIZE;
1851 
1852 	/* Step 2: write sit cache */
1853 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1854 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1855 	written_size += SUM_JOURNAL_SIZE;
1856 
1857 	/* Step 3: write summary entries */
1858 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1859 		unsigned short blkoff;
1860 		seg_i = CURSEG_I(sbi, i);
1861 		if (sbi->ckpt->alloc_type[i] == SSR)
1862 			blkoff = sbi->blocks_per_seg;
1863 		else
1864 			blkoff = curseg_blkoff(sbi, i);
1865 
1866 		for (j = 0; j < blkoff; j++) {
1867 			if (!page) {
1868 				page = grab_meta_page(sbi, blkaddr++);
1869 				kaddr = (unsigned char *)page_address(page);
1870 				written_size = 0;
1871 			}
1872 			summary = (struct f2fs_summary *)(kaddr + written_size);
1873 			*summary = seg_i->sum_blk->entries[j];
1874 			written_size += SUMMARY_SIZE;
1875 
1876 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1877 							SUM_FOOTER_SIZE)
1878 				continue;
1879 
1880 			set_page_dirty(page);
1881 			f2fs_put_page(page, 1);
1882 			page = NULL;
1883 		}
1884 	}
1885 	if (page) {
1886 		set_page_dirty(page);
1887 		f2fs_put_page(page, 1);
1888 	}
1889 }
1890 
1891 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1892 					block_t blkaddr, int type)
1893 {
1894 	int i, end;
1895 	if (IS_DATASEG(type))
1896 		end = type + NR_CURSEG_DATA_TYPE;
1897 	else
1898 		end = type + NR_CURSEG_NODE_TYPE;
1899 
1900 	for (i = type; i < end; i++)
1901 		write_current_sum_page(sbi, i, blkaddr + (i - type));
1902 }
1903 
1904 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1905 {
1906 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
1907 		write_compacted_summaries(sbi, start_blk);
1908 	else
1909 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1910 }
1911 
1912 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1913 {
1914 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1915 }
1916 
1917 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1918 					unsigned int val, int alloc)
1919 {
1920 	int i;
1921 
1922 	if (type == NAT_JOURNAL) {
1923 		for (i = 0; i < nats_in_cursum(journal); i++) {
1924 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1925 				return i;
1926 		}
1927 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1928 			return update_nats_in_cursum(journal, 1);
1929 	} else if (type == SIT_JOURNAL) {
1930 		for (i = 0; i < sits_in_cursum(journal); i++)
1931 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1932 				return i;
1933 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1934 			return update_sits_in_cursum(journal, 1);
1935 	}
1936 	return -1;
1937 }
1938 
1939 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1940 					unsigned int segno)
1941 {
1942 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
1943 }
1944 
1945 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1946 					unsigned int start)
1947 {
1948 	struct sit_info *sit_i = SIT_I(sbi);
1949 	struct page *src_page, *dst_page;
1950 	pgoff_t src_off, dst_off;
1951 	void *src_addr, *dst_addr;
1952 
1953 	src_off = current_sit_addr(sbi, start);
1954 	dst_off = next_sit_addr(sbi, src_off);
1955 
1956 	/* get current sit block page without lock */
1957 	src_page = get_meta_page(sbi, src_off);
1958 	dst_page = grab_meta_page(sbi, dst_off);
1959 	f2fs_bug_on(sbi, PageDirty(src_page));
1960 
1961 	src_addr = page_address(src_page);
1962 	dst_addr = page_address(dst_page);
1963 	memcpy(dst_addr, src_addr, PAGE_SIZE);
1964 
1965 	set_page_dirty(dst_page);
1966 	f2fs_put_page(src_page, 1);
1967 
1968 	set_to_next_sit(sit_i, start);
1969 
1970 	return dst_page;
1971 }
1972 
1973 static struct sit_entry_set *grab_sit_entry_set(void)
1974 {
1975 	struct sit_entry_set *ses =
1976 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1977 
1978 	ses->entry_cnt = 0;
1979 	INIT_LIST_HEAD(&ses->set_list);
1980 	return ses;
1981 }
1982 
1983 static void release_sit_entry_set(struct sit_entry_set *ses)
1984 {
1985 	list_del(&ses->set_list);
1986 	kmem_cache_free(sit_entry_set_slab, ses);
1987 }
1988 
1989 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1990 						struct list_head *head)
1991 {
1992 	struct sit_entry_set *next = ses;
1993 
1994 	if (list_is_last(&ses->set_list, head))
1995 		return;
1996 
1997 	list_for_each_entry_continue(next, head, set_list)
1998 		if (ses->entry_cnt <= next->entry_cnt)
1999 			break;
2000 
2001 	list_move_tail(&ses->set_list, &next->set_list);
2002 }
2003 
2004 static void add_sit_entry(unsigned int segno, struct list_head *head)
2005 {
2006 	struct sit_entry_set *ses;
2007 	unsigned int start_segno = START_SEGNO(segno);
2008 
2009 	list_for_each_entry(ses, head, set_list) {
2010 		if (ses->start_segno == start_segno) {
2011 			ses->entry_cnt++;
2012 			adjust_sit_entry_set(ses, head);
2013 			return;
2014 		}
2015 	}
2016 
2017 	ses = grab_sit_entry_set();
2018 
2019 	ses->start_segno = start_segno;
2020 	ses->entry_cnt++;
2021 	list_add(&ses->set_list, head);
2022 }
2023 
2024 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2025 {
2026 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2027 	struct list_head *set_list = &sm_info->sit_entry_set;
2028 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2029 	unsigned int segno;
2030 
2031 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2032 		add_sit_entry(segno, set_list);
2033 }
2034 
2035 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2036 {
2037 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2038 	struct f2fs_journal *journal = curseg->journal;
2039 	int i;
2040 
2041 	down_write(&curseg->journal_rwsem);
2042 	for (i = 0; i < sits_in_cursum(journal); i++) {
2043 		unsigned int segno;
2044 		bool dirtied;
2045 
2046 		segno = le32_to_cpu(segno_in_journal(journal, i));
2047 		dirtied = __mark_sit_entry_dirty(sbi, segno);
2048 
2049 		if (!dirtied)
2050 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2051 	}
2052 	update_sits_in_cursum(journal, -i);
2053 	up_write(&curseg->journal_rwsem);
2054 }
2055 
2056 /*
2057  * CP calls this function, which flushes SIT entries including sit_journal,
2058  * and moves prefree segs to free segs.
2059  */
2060 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2061 {
2062 	struct sit_info *sit_i = SIT_I(sbi);
2063 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2064 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2065 	struct f2fs_journal *journal = curseg->journal;
2066 	struct sit_entry_set *ses, *tmp;
2067 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
2068 	bool to_journal = true;
2069 	struct seg_entry *se;
2070 
2071 	mutex_lock(&sit_i->sentry_lock);
2072 
2073 	if (!sit_i->dirty_sentries)
2074 		goto out;
2075 
2076 	/*
2077 	 * add and account sit entries of dirty bitmap in sit entry
2078 	 * set temporarily
2079 	 */
2080 	add_sits_in_set(sbi);
2081 
2082 	/*
2083 	 * if there are no enough space in journal to store dirty sit
2084 	 * entries, remove all entries from journal and add and account
2085 	 * them in sit entry set.
2086 	 */
2087 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2088 		remove_sits_in_journal(sbi);
2089 
2090 	/*
2091 	 * there are two steps to flush sit entries:
2092 	 * #1, flush sit entries to journal in current cold data summary block.
2093 	 * #2, flush sit entries to sit page.
2094 	 */
2095 	list_for_each_entry_safe(ses, tmp, head, set_list) {
2096 		struct page *page = NULL;
2097 		struct f2fs_sit_block *raw_sit = NULL;
2098 		unsigned int start_segno = ses->start_segno;
2099 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2100 						(unsigned long)MAIN_SEGS(sbi));
2101 		unsigned int segno = start_segno;
2102 
2103 		if (to_journal &&
2104 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2105 			to_journal = false;
2106 
2107 		if (to_journal) {
2108 			down_write(&curseg->journal_rwsem);
2109 		} else {
2110 			page = get_next_sit_page(sbi, start_segno);
2111 			raw_sit = page_address(page);
2112 		}
2113 
2114 		/* flush dirty sit entries in region of current sit set */
2115 		for_each_set_bit_from(segno, bitmap, end) {
2116 			int offset, sit_offset;
2117 
2118 			se = get_seg_entry(sbi, segno);
2119 
2120 			/* add discard candidates */
2121 			if (cpc->reason != CP_DISCARD) {
2122 				cpc->trim_start = segno;
2123 				add_discard_addrs(sbi, cpc);
2124 			}
2125 
2126 			if (to_journal) {
2127 				offset = lookup_journal_in_cursum(journal,
2128 							SIT_JOURNAL, segno, 1);
2129 				f2fs_bug_on(sbi, offset < 0);
2130 				segno_in_journal(journal, offset) =
2131 							cpu_to_le32(segno);
2132 				seg_info_to_raw_sit(se,
2133 					&sit_in_journal(journal, offset));
2134 			} else {
2135 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2136 				seg_info_to_raw_sit(se,
2137 						&raw_sit->entries[sit_offset]);
2138 			}
2139 
2140 			__clear_bit(segno, bitmap);
2141 			sit_i->dirty_sentries--;
2142 			ses->entry_cnt--;
2143 		}
2144 
2145 		if (to_journal)
2146 			up_write(&curseg->journal_rwsem);
2147 		else
2148 			f2fs_put_page(page, 1);
2149 
2150 		f2fs_bug_on(sbi, ses->entry_cnt);
2151 		release_sit_entry_set(ses);
2152 	}
2153 
2154 	f2fs_bug_on(sbi, !list_empty(head));
2155 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
2156 out:
2157 	if (cpc->reason == CP_DISCARD) {
2158 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2159 			add_discard_addrs(sbi, cpc);
2160 	}
2161 	mutex_unlock(&sit_i->sentry_lock);
2162 
2163 	set_prefree_as_free_segments(sbi);
2164 }
2165 
2166 static int build_sit_info(struct f2fs_sb_info *sbi)
2167 {
2168 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2169 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2170 	struct sit_info *sit_i;
2171 	unsigned int sit_segs, start;
2172 	char *src_bitmap, *dst_bitmap;
2173 	unsigned int bitmap_size;
2174 
2175 	/* allocate memory for SIT information */
2176 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2177 	if (!sit_i)
2178 		return -ENOMEM;
2179 
2180 	SM_I(sbi)->sit_info = sit_i;
2181 
2182 	sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2183 					sizeof(struct seg_entry), GFP_KERNEL);
2184 	if (!sit_i->sentries)
2185 		return -ENOMEM;
2186 
2187 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2188 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2189 	if (!sit_i->dirty_sentries_bitmap)
2190 		return -ENOMEM;
2191 
2192 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2193 		sit_i->sentries[start].cur_valid_map
2194 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2195 		sit_i->sentries[start].ckpt_valid_map
2196 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2197 		if (!sit_i->sentries[start].cur_valid_map ||
2198 				!sit_i->sentries[start].ckpt_valid_map)
2199 			return -ENOMEM;
2200 
2201 		if (f2fs_discard_en(sbi)) {
2202 			sit_i->sentries[start].discard_map
2203 				= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2204 			if (!sit_i->sentries[start].discard_map)
2205 				return -ENOMEM;
2206 		}
2207 	}
2208 
2209 	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2210 	if (!sit_i->tmp_map)
2211 		return -ENOMEM;
2212 
2213 	if (sbi->segs_per_sec > 1) {
2214 		sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2215 					sizeof(struct sec_entry), GFP_KERNEL);
2216 		if (!sit_i->sec_entries)
2217 			return -ENOMEM;
2218 	}
2219 
2220 	/* get information related with SIT */
2221 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2222 
2223 	/* setup SIT bitmap from ckeckpoint pack */
2224 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2225 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2226 
2227 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2228 	if (!dst_bitmap)
2229 		return -ENOMEM;
2230 
2231 	/* init SIT information */
2232 	sit_i->s_ops = &default_salloc_ops;
2233 
2234 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2235 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2236 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2237 	sit_i->sit_bitmap = dst_bitmap;
2238 	sit_i->bitmap_size = bitmap_size;
2239 	sit_i->dirty_sentries = 0;
2240 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2241 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2242 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2243 	mutex_init(&sit_i->sentry_lock);
2244 	return 0;
2245 }
2246 
2247 static int build_free_segmap(struct f2fs_sb_info *sbi)
2248 {
2249 	struct free_segmap_info *free_i;
2250 	unsigned int bitmap_size, sec_bitmap_size;
2251 
2252 	/* allocate memory for free segmap information */
2253 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2254 	if (!free_i)
2255 		return -ENOMEM;
2256 
2257 	SM_I(sbi)->free_info = free_i;
2258 
2259 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2260 	free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2261 	if (!free_i->free_segmap)
2262 		return -ENOMEM;
2263 
2264 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2265 	free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2266 	if (!free_i->free_secmap)
2267 		return -ENOMEM;
2268 
2269 	/* set all segments as dirty temporarily */
2270 	memset(free_i->free_segmap, 0xff, bitmap_size);
2271 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2272 
2273 	/* init free segmap information */
2274 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2275 	free_i->free_segments = 0;
2276 	free_i->free_sections = 0;
2277 	spin_lock_init(&free_i->segmap_lock);
2278 	return 0;
2279 }
2280 
2281 static int build_curseg(struct f2fs_sb_info *sbi)
2282 {
2283 	struct curseg_info *array;
2284 	int i;
2285 
2286 	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2287 	if (!array)
2288 		return -ENOMEM;
2289 
2290 	SM_I(sbi)->curseg_array = array;
2291 
2292 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2293 		mutex_init(&array[i].curseg_mutex);
2294 		array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2295 		if (!array[i].sum_blk)
2296 			return -ENOMEM;
2297 		init_rwsem(&array[i].journal_rwsem);
2298 		array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2299 							GFP_KERNEL);
2300 		if (!array[i].journal)
2301 			return -ENOMEM;
2302 		array[i].segno = NULL_SEGNO;
2303 		array[i].next_blkoff = 0;
2304 	}
2305 	return restore_curseg_summaries(sbi);
2306 }
2307 
2308 static void build_sit_entries(struct f2fs_sb_info *sbi)
2309 {
2310 	struct sit_info *sit_i = SIT_I(sbi);
2311 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2312 	struct f2fs_journal *journal = curseg->journal;
2313 	struct seg_entry *se;
2314 	struct f2fs_sit_entry sit;
2315 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2316 	unsigned int i, start, end;
2317 	unsigned int readed, start_blk = 0;
2318 	int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2319 
2320 	do {
2321 		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2322 
2323 		start = start_blk * sit_i->sents_per_block;
2324 		end = (start_blk + readed) * sit_i->sents_per_block;
2325 
2326 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
2327 			struct f2fs_sit_block *sit_blk;
2328 			struct page *page;
2329 
2330 			se = &sit_i->sentries[start];
2331 			page = get_current_sit_page(sbi, start);
2332 			sit_blk = (struct f2fs_sit_block *)page_address(page);
2333 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2334 			f2fs_put_page(page, 1);
2335 
2336 			check_block_count(sbi, start, &sit);
2337 			seg_info_from_raw_sit(se, &sit);
2338 
2339 			/* build discard map only one time */
2340 			if (f2fs_discard_en(sbi)) {
2341 				memcpy(se->discard_map, se->cur_valid_map,
2342 							SIT_VBLOCK_MAP_SIZE);
2343 				sbi->discard_blks += sbi->blocks_per_seg -
2344 							se->valid_blocks;
2345 			}
2346 
2347 			if (sbi->segs_per_sec > 1)
2348 				get_sec_entry(sbi, start)->valid_blocks +=
2349 							se->valid_blocks;
2350 		}
2351 		start_blk += readed;
2352 	} while (start_blk < sit_blk_cnt);
2353 
2354 	down_read(&curseg->journal_rwsem);
2355 	for (i = 0; i < sits_in_cursum(journal); i++) {
2356 		unsigned int old_valid_blocks;
2357 
2358 		start = le32_to_cpu(segno_in_journal(journal, i));
2359 		se = &sit_i->sentries[start];
2360 		sit = sit_in_journal(journal, i);
2361 
2362 		old_valid_blocks = se->valid_blocks;
2363 
2364 		check_block_count(sbi, start, &sit);
2365 		seg_info_from_raw_sit(se, &sit);
2366 
2367 		if (f2fs_discard_en(sbi)) {
2368 			memcpy(se->discard_map, se->cur_valid_map,
2369 						SIT_VBLOCK_MAP_SIZE);
2370 			sbi->discard_blks += old_valid_blocks -
2371 						se->valid_blocks;
2372 		}
2373 
2374 		if (sbi->segs_per_sec > 1)
2375 			get_sec_entry(sbi, start)->valid_blocks +=
2376 				se->valid_blocks - old_valid_blocks;
2377 	}
2378 	up_read(&curseg->journal_rwsem);
2379 }
2380 
2381 static void init_free_segmap(struct f2fs_sb_info *sbi)
2382 {
2383 	unsigned int start;
2384 	int type;
2385 
2386 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2387 		struct seg_entry *sentry = get_seg_entry(sbi, start);
2388 		if (!sentry->valid_blocks)
2389 			__set_free(sbi, start);
2390 	}
2391 
2392 	/* set use the current segments */
2393 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2394 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2395 		__set_test_and_inuse(sbi, curseg_t->segno);
2396 	}
2397 }
2398 
2399 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2400 {
2401 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2402 	struct free_segmap_info *free_i = FREE_I(sbi);
2403 	unsigned int segno = 0, offset = 0;
2404 	unsigned short valid_blocks;
2405 
2406 	while (1) {
2407 		/* find dirty segment based on free segmap */
2408 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2409 		if (segno >= MAIN_SEGS(sbi))
2410 			break;
2411 		offset = segno + 1;
2412 		valid_blocks = get_valid_blocks(sbi, segno, 0);
2413 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2414 			continue;
2415 		if (valid_blocks > sbi->blocks_per_seg) {
2416 			f2fs_bug_on(sbi, 1);
2417 			continue;
2418 		}
2419 		mutex_lock(&dirty_i->seglist_lock);
2420 		__locate_dirty_segment(sbi, segno, DIRTY);
2421 		mutex_unlock(&dirty_i->seglist_lock);
2422 	}
2423 }
2424 
2425 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2426 {
2427 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2428 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2429 
2430 	dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2431 	if (!dirty_i->victim_secmap)
2432 		return -ENOMEM;
2433 	return 0;
2434 }
2435 
2436 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2437 {
2438 	struct dirty_seglist_info *dirty_i;
2439 	unsigned int bitmap_size, i;
2440 
2441 	/* allocate memory for dirty segments list information */
2442 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2443 	if (!dirty_i)
2444 		return -ENOMEM;
2445 
2446 	SM_I(sbi)->dirty_info = dirty_i;
2447 	mutex_init(&dirty_i->seglist_lock);
2448 
2449 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2450 
2451 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
2452 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2453 		if (!dirty_i->dirty_segmap[i])
2454 			return -ENOMEM;
2455 	}
2456 
2457 	init_dirty_segmap(sbi);
2458 	return init_victim_secmap(sbi);
2459 }
2460 
2461 /*
2462  * Update min, max modified time for cost-benefit GC algorithm
2463  */
2464 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2465 {
2466 	struct sit_info *sit_i = SIT_I(sbi);
2467 	unsigned int segno;
2468 
2469 	mutex_lock(&sit_i->sentry_lock);
2470 
2471 	sit_i->min_mtime = LLONG_MAX;
2472 
2473 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2474 		unsigned int i;
2475 		unsigned long long mtime = 0;
2476 
2477 		for (i = 0; i < sbi->segs_per_sec; i++)
2478 			mtime += get_seg_entry(sbi, segno + i)->mtime;
2479 
2480 		mtime = div_u64(mtime, sbi->segs_per_sec);
2481 
2482 		if (sit_i->min_mtime > mtime)
2483 			sit_i->min_mtime = mtime;
2484 	}
2485 	sit_i->max_mtime = get_mtime(sbi);
2486 	mutex_unlock(&sit_i->sentry_lock);
2487 }
2488 
2489 int build_segment_manager(struct f2fs_sb_info *sbi)
2490 {
2491 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2492 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2493 	struct f2fs_sm_info *sm_info;
2494 	int err;
2495 
2496 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2497 	if (!sm_info)
2498 		return -ENOMEM;
2499 
2500 	/* init sm info */
2501 	sbi->sm_info = sm_info;
2502 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2503 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2504 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2505 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2506 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2507 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2508 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2509 	sm_info->rec_prefree_segments = sm_info->main_segments *
2510 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2511 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2512 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2513 
2514 	if (!test_opt(sbi, LFS))
2515 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2516 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2517 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2518 
2519 	INIT_LIST_HEAD(&sm_info->discard_list);
2520 	INIT_LIST_HEAD(&sm_info->wait_list);
2521 	sm_info->nr_discards = 0;
2522 	sm_info->max_discards = 0;
2523 
2524 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2525 
2526 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
2527 
2528 	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2529 		err = create_flush_cmd_control(sbi);
2530 		if (err)
2531 			return err;
2532 	}
2533 
2534 	err = build_sit_info(sbi);
2535 	if (err)
2536 		return err;
2537 	err = build_free_segmap(sbi);
2538 	if (err)
2539 		return err;
2540 	err = build_curseg(sbi);
2541 	if (err)
2542 		return err;
2543 
2544 	/* reinit free segmap based on SIT */
2545 	build_sit_entries(sbi);
2546 
2547 	init_free_segmap(sbi);
2548 	err = build_dirty_segmap(sbi);
2549 	if (err)
2550 		return err;
2551 
2552 	init_min_max_mtime(sbi);
2553 	return 0;
2554 }
2555 
2556 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2557 		enum dirty_type dirty_type)
2558 {
2559 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2560 
2561 	mutex_lock(&dirty_i->seglist_lock);
2562 	kvfree(dirty_i->dirty_segmap[dirty_type]);
2563 	dirty_i->nr_dirty[dirty_type] = 0;
2564 	mutex_unlock(&dirty_i->seglist_lock);
2565 }
2566 
2567 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2568 {
2569 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2570 	kvfree(dirty_i->victim_secmap);
2571 }
2572 
2573 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2574 {
2575 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2576 	int i;
2577 
2578 	if (!dirty_i)
2579 		return;
2580 
2581 	/* discard pre-free/dirty segments list */
2582 	for (i = 0; i < NR_DIRTY_TYPE; i++)
2583 		discard_dirty_segmap(sbi, i);
2584 
2585 	destroy_victim_secmap(sbi);
2586 	SM_I(sbi)->dirty_info = NULL;
2587 	kfree(dirty_i);
2588 }
2589 
2590 static void destroy_curseg(struct f2fs_sb_info *sbi)
2591 {
2592 	struct curseg_info *array = SM_I(sbi)->curseg_array;
2593 	int i;
2594 
2595 	if (!array)
2596 		return;
2597 	SM_I(sbi)->curseg_array = NULL;
2598 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2599 		kfree(array[i].sum_blk);
2600 		kfree(array[i].journal);
2601 	}
2602 	kfree(array);
2603 }
2604 
2605 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2606 {
2607 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2608 	if (!free_i)
2609 		return;
2610 	SM_I(sbi)->free_info = NULL;
2611 	kvfree(free_i->free_segmap);
2612 	kvfree(free_i->free_secmap);
2613 	kfree(free_i);
2614 }
2615 
2616 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2617 {
2618 	struct sit_info *sit_i = SIT_I(sbi);
2619 	unsigned int start;
2620 
2621 	if (!sit_i)
2622 		return;
2623 
2624 	if (sit_i->sentries) {
2625 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
2626 			kfree(sit_i->sentries[start].cur_valid_map);
2627 			kfree(sit_i->sentries[start].ckpt_valid_map);
2628 			kfree(sit_i->sentries[start].discard_map);
2629 		}
2630 	}
2631 	kfree(sit_i->tmp_map);
2632 
2633 	kvfree(sit_i->sentries);
2634 	kvfree(sit_i->sec_entries);
2635 	kvfree(sit_i->dirty_sentries_bitmap);
2636 
2637 	SM_I(sbi)->sit_info = NULL;
2638 	kfree(sit_i->sit_bitmap);
2639 	kfree(sit_i);
2640 }
2641 
2642 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2643 {
2644 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2645 
2646 	if (!sm_info)
2647 		return;
2648 	destroy_flush_cmd_control(sbi);
2649 	destroy_dirty_segmap(sbi);
2650 	destroy_curseg(sbi);
2651 	destroy_free_segmap(sbi);
2652 	destroy_sit_info(sbi);
2653 	sbi->sm_info = NULL;
2654 	kfree(sm_info);
2655 }
2656 
2657 int __init create_segment_manager_caches(void)
2658 {
2659 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2660 			sizeof(struct discard_entry));
2661 	if (!discard_entry_slab)
2662 		goto fail;
2663 
2664 	bio_entry_slab = f2fs_kmem_cache_create("bio_entry",
2665 			sizeof(struct bio_entry));
2666 	if (!bio_entry_slab)
2667 		goto destroy_discard_entry;
2668 
2669 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2670 			sizeof(struct sit_entry_set));
2671 	if (!sit_entry_set_slab)
2672 		goto destroy_bio_entry;
2673 
2674 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2675 			sizeof(struct inmem_pages));
2676 	if (!inmem_entry_slab)
2677 		goto destroy_sit_entry_set;
2678 	return 0;
2679 
2680 destroy_sit_entry_set:
2681 	kmem_cache_destroy(sit_entry_set_slab);
2682 destroy_bio_entry:
2683 	kmem_cache_destroy(bio_entry_slab);
2684 destroy_discard_entry:
2685 	kmem_cache_destroy(discard_entry_slab);
2686 fail:
2687 	return -ENOMEM;
2688 }
2689 
2690 void destroy_segment_manager_caches(void)
2691 {
2692 	kmem_cache_destroy(sit_entry_set_slab);
2693 	kmem_cache_destroy(bio_entry_slab);
2694 	kmem_cache_destroy(discard_entry_slab);
2695 	kmem_cache_destroy(inmem_entry_slab);
2696 }
2697