1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 if (clean) 196 truncate_inode_pages_final(inode->i_mapping); 197 198 release_atomic_write_cnt(inode); 199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 200 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 201 clear_inode_flag(inode, FI_ATOMIC_FILE); 202 stat_dec_atomic_inode(inode); 203 204 F2FS_I(inode)->atomic_write_task = NULL; 205 206 if (clean) { 207 f2fs_i_size_write(inode, fi->original_i_size); 208 fi->original_i_size = 0; 209 } 210 /* avoid stale dirty inode during eviction */ 211 sync_inode_metadata(inode, 0); 212 } 213 214 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 215 block_t new_addr, block_t *old_addr, bool recover) 216 { 217 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 218 struct dnode_of_data dn; 219 struct node_info ni; 220 int err; 221 222 retry: 223 set_new_dnode(&dn, inode, NULL, NULL, 0); 224 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 225 if (err) { 226 if (err == -ENOMEM) { 227 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 228 goto retry; 229 } 230 return err; 231 } 232 233 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 234 if (err) { 235 f2fs_put_dnode(&dn); 236 return err; 237 } 238 239 if (recover) { 240 /* dn.data_blkaddr is always valid */ 241 if (!__is_valid_data_blkaddr(new_addr)) { 242 if (new_addr == NULL_ADDR) 243 dec_valid_block_count(sbi, inode, 1); 244 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 245 f2fs_update_data_blkaddr(&dn, new_addr); 246 } else { 247 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 248 new_addr, ni.version, true, true); 249 } 250 } else { 251 blkcnt_t count = 1; 252 253 err = inc_valid_block_count(sbi, inode, &count, true); 254 if (err) { 255 f2fs_put_dnode(&dn); 256 return err; 257 } 258 259 *old_addr = dn.data_blkaddr; 260 f2fs_truncate_data_blocks_range(&dn, 1); 261 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 262 263 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 264 ni.version, true, false); 265 } 266 267 f2fs_put_dnode(&dn); 268 269 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode, 270 index, old_addr ? *old_addr : 0, new_addr, recover); 271 return 0; 272 } 273 274 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 275 bool revoke) 276 { 277 struct revoke_entry *cur, *tmp; 278 pgoff_t start_index = 0; 279 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 280 281 list_for_each_entry_safe(cur, tmp, head, list) { 282 if (revoke) { 283 __replace_atomic_write_block(inode, cur->index, 284 cur->old_addr, NULL, true); 285 } else if (truncate) { 286 f2fs_truncate_hole(inode, start_index, cur->index); 287 start_index = cur->index + 1; 288 } 289 290 list_del(&cur->list); 291 kmem_cache_free(revoke_entry_slab, cur); 292 } 293 294 if (!revoke && truncate) 295 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false); 296 } 297 298 static int __f2fs_commit_atomic_write(struct inode *inode) 299 { 300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 301 struct f2fs_inode_info *fi = F2FS_I(inode); 302 struct inode *cow_inode = fi->cow_inode; 303 struct revoke_entry *new; 304 struct list_head revoke_list; 305 block_t blkaddr; 306 struct dnode_of_data dn; 307 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 308 pgoff_t off = 0, blen, index; 309 int ret = 0, i; 310 311 INIT_LIST_HEAD(&revoke_list); 312 313 while (len) { 314 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 315 316 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 317 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 318 if (ret && ret != -ENOENT) { 319 goto out; 320 } else if (ret == -ENOENT) { 321 ret = 0; 322 if (dn.max_level == 0) 323 goto out; 324 goto next; 325 } 326 327 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 328 len); 329 index = off; 330 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 331 blkaddr = f2fs_data_blkaddr(&dn); 332 333 if (!__is_valid_data_blkaddr(blkaddr)) { 334 continue; 335 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 336 DATA_GENERIC_ENHANCE)) { 337 f2fs_put_dnode(&dn); 338 ret = -EFSCORRUPTED; 339 f2fs_handle_error(sbi, 340 ERROR_INVALID_BLKADDR); 341 goto out; 342 } 343 344 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 345 true, NULL); 346 347 ret = __replace_atomic_write_block(inode, index, blkaddr, 348 &new->old_addr, false); 349 if (ret) { 350 f2fs_put_dnode(&dn); 351 kmem_cache_free(revoke_entry_slab, new); 352 goto out; 353 } 354 355 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 356 new->index = index; 357 list_add_tail(&new->list, &revoke_list); 358 } 359 f2fs_put_dnode(&dn); 360 next: 361 off += blen; 362 len -= blen; 363 } 364 365 out: 366 if (ret) { 367 sbi->revoked_atomic_block += fi->atomic_write_cnt; 368 } else { 369 sbi->committed_atomic_block += fi->atomic_write_cnt; 370 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 371 } 372 373 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 374 375 return ret; 376 } 377 378 int f2fs_commit_atomic_write(struct inode *inode) 379 { 380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 381 struct f2fs_inode_info *fi = F2FS_I(inode); 382 int err; 383 384 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 385 if (err) 386 return err; 387 388 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 389 f2fs_lock_op(sbi); 390 391 err = __f2fs_commit_atomic_write(inode); 392 393 f2fs_unlock_op(sbi); 394 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 395 396 return err; 397 } 398 399 /* 400 * This function balances dirty node and dentry pages. 401 * In addition, it controls garbage collection. 402 */ 403 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 404 { 405 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 406 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 407 408 /* balance_fs_bg is able to be pending */ 409 if (need && excess_cached_nats(sbi)) 410 f2fs_balance_fs_bg(sbi, false); 411 412 if (!f2fs_is_checkpoint_ready(sbi)) 413 return; 414 415 /* 416 * We should do GC or end up with checkpoint, if there are so many dirty 417 * dir/node pages without enough free segments. 418 */ 419 if (has_enough_free_secs(sbi, 0, 0)) 420 return; 421 422 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 423 sbi->gc_thread->f2fs_gc_task) { 424 DEFINE_WAIT(wait); 425 426 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 427 TASK_UNINTERRUPTIBLE); 428 wake_up(&sbi->gc_thread->gc_wait_queue_head); 429 io_schedule(); 430 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 431 } else { 432 struct f2fs_gc_control gc_control = { 433 .victim_segno = NULL_SEGNO, 434 .init_gc_type = BG_GC, 435 .no_bg_gc = true, 436 .should_migrate_blocks = false, 437 .err_gc_skipped = false, 438 .nr_free_secs = 1 }; 439 f2fs_down_write(&sbi->gc_lock); 440 stat_inc_gc_call_count(sbi, FOREGROUND); 441 f2fs_gc(sbi, &gc_control); 442 } 443 } 444 445 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 446 { 447 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 448 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 449 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 450 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 451 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 452 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 453 unsigned int threshold = (factor * DEFAULT_DIRTY_THRESHOLD) << 454 sbi->log_blocks_per_seg; 455 unsigned int global_threshold = threshold * 3 / 2; 456 457 if (dents >= threshold || qdata >= threshold || 458 nodes >= threshold || meta >= threshold || 459 imeta >= threshold) 460 return true; 461 return dents + qdata + nodes + meta + imeta > global_threshold; 462 } 463 464 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 465 { 466 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 467 return; 468 469 /* try to shrink extent cache when there is no enough memory */ 470 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 471 f2fs_shrink_read_extent_tree(sbi, 472 READ_EXTENT_CACHE_SHRINK_NUMBER); 473 474 /* try to shrink age extent cache when there is no enough memory */ 475 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 476 f2fs_shrink_age_extent_tree(sbi, 477 AGE_EXTENT_CACHE_SHRINK_NUMBER); 478 479 /* check the # of cached NAT entries */ 480 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 481 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 482 483 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 484 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 485 else 486 f2fs_build_free_nids(sbi, false, false); 487 488 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 489 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 490 goto do_sync; 491 492 /* there is background inflight IO or foreground operation recently */ 493 if (is_inflight_io(sbi, REQ_TIME) || 494 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 495 return; 496 497 /* exceed periodical checkpoint timeout threshold */ 498 if (f2fs_time_over(sbi, CP_TIME)) 499 goto do_sync; 500 501 /* checkpoint is the only way to shrink partial cached entries */ 502 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 503 f2fs_available_free_memory(sbi, INO_ENTRIES)) 504 return; 505 506 do_sync: 507 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 508 struct blk_plug plug; 509 510 mutex_lock(&sbi->flush_lock); 511 512 blk_start_plug(&plug); 513 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 514 blk_finish_plug(&plug); 515 516 mutex_unlock(&sbi->flush_lock); 517 } 518 stat_inc_cp_call_count(sbi, BACKGROUND); 519 f2fs_sync_fs(sbi->sb, 1); 520 } 521 522 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 523 struct block_device *bdev) 524 { 525 int ret = blkdev_issue_flush(bdev); 526 527 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 528 test_opt(sbi, FLUSH_MERGE), ret); 529 if (!ret) 530 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0); 531 return ret; 532 } 533 534 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 535 { 536 int ret = 0; 537 int i; 538 539 if (!f2fs_is_multi_device(sbi)) 540 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 541 542 for (i = 0; i < sbi->s_ndevs; i++) { 543 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 544 continue; 545 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 546 if (ret) 547 break; 548 } 549 return ret; 550 } 551 552 static int issue_flush_thread(void *data) 553 { 554 struct f2fs_sb_info *sbi = data; 555 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 556 wait_queue_head_t *q = &fcc->flush_wait_queue; 557 repeat: 558 if (kthread_should_stop()) 559 return 0; 560 561 if (!llist_empty(&fcc->issue_list)) { 562 struct flush_cmd *cmd, *next; 563 int ret; 564 565 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 566 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 567 568 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 569 570 ret = submit_flush_wait(sbi, cmd->ino); 571 atomic_inc(&fcc->issued_flush); 572 573 llist_for_each_entry_safe(cmd, next, 574 fcc->dispatch_list, llnode) { 575 cmd->ret = ret; 576 complete(&cmd->wait); 577 } 578 fcc->dispatch_list = NULL; 579 } 580 581 wait_event_interruptible(*q, 582 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 583 goto repeat; 584 } 585 586 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 587 { 588 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 589 struct flush_cmd cmd; 590 int ret; 591 592 if (test_opt(sbi, NOBARRIER)) 593 return 0; 594 595 if (!test_opt(sbi, FLUSH_MERGE)) { 596 atomic_inc(&fcc->queued_flush); 597 ret = submit_flush_wait(sbi, ino); 598 atomic_dec(&fcc->queued_flush); 599 atomic_inc(&fcc->issued_flush); 600 return ret; 601 } 602 603 if (atomic_inc_return(&fcc->queued_flush) == 1 || 604 f2fs_is_multi_device(sbi)) { 605 ret = submit_flush_wait(sbi, ino); 606 atomic_dec(&fcc->queued_flush); 607 608 atomic_inc(&fcc->issued_flush); 609 return ret; 610 } 611 612 cmd.ino = ino; 613 init_completion(&cmd.wait); 614 615 llist_add(&cmd.llnode, &fcc->issue_list); 616 617 /* 618 * update issue_list before we wake up issue_flush thread, this 619 * smp_mb() pairs with another barrier in ___wait_event(), see 620 * more details in comments of waitqueue_active(). 621 */ 622 smp_mb(); 623 624 if (waitqueue_active(&fcc->flush_wait_queue)) 625 wake_up(&fcc->flush_wait_queue); 626 627 if (fcc->f2fs_issue_flush) { 628 wait_for_completion(&cmd.wait); 629 atomic_dec(&fcc->queued_flush); 630 } else { 631 struct llist_node *list; 632 633 list = llist_del_all(&fcc->issue_list); 634 if (!list) { 635 wait_for_completion(&cmd.wait); 636 atomic_dec(&fcc->queued_flush); 637 } else { 638 struct flush_cmd *tmp, *next; 639 640 ret = submit_flush_wait(sbi, ino); 641 642 llist_for_each_entry_safe(tmp, next, list, llnode) { 643 if (tmp == &cmd) { 644 cmd.ret = ret; 645 atomic_dec(&fcc->queued_flush); 646 continue; 647 } 648 tmp->ret = ret; 649 complete(&tmp->wait); 650 } 651 } 652 } 653 654 return cmd.ret; 655 } 656 657 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 658 { 659 dev_t dev = sbi->sb->s_bdev->bd_dev; 660 struct flush_cmd_control *fcc; 661 662 if (SM_I(sbi)->fcc_info) { 663 fcc = SM_I(sbi)->fcc_info; 664 if (fcc->f2fs_issue_flush) 665 return 0; 666 goto init_thread; 667 } 668 669 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 670 if (!fcc) 671 return -ENOMEM; 672 atomic_set(&fcc->issued_flush, 0); 673 atomic_set(&fcc->queued_flush, 0); 674 init_waitqueue_head(&fcc->flush_wait_queue); 675 init_llist_head(&fcc->issue_list); 676 SM_I(sbi)->fcc_info = fcc; 677 if (!test_opt(sbi, FLUSH_MERGE)) 678 return 0; 679 680 init_thread: 681 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 682 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 683 if (IS_ERR(fcc->f2fs_issue_flush)) { 684 int err = PTR_ERR(fcc->f2fs_issue_flush); 685 686 fcc->f2fs_issue_flush = NULL; 687 return err; 688 } 689 690 return 0; 691 } 692 693 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 694 { 695 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 696 697 if (fcc && fcc->f2fs_issue_flush) { 698 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 699 700 fcc->f2fs_issue_flush = NULL; 701 kthread_stop(flush_thread); 702 } 703 if (free) { 704 kfree(fcc); 705 SM_I(sbi)->fcc_info = NULL; 706 } 707 } 708 709 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 710 { 711 int ret = 0, i; 712 713 if (!f2fs_is_multi_device(sbi)) 714 return 0; 715 716 if (test_opt(sbi, NOBARRIER)) 717 return 0; 718 719 for (i = 1; i < sbi->s_ndevs; i++) { 720 int count = DEFAULT_RETRY_IO_COUNT; 721 722 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 723 continue; 724 725 do { 726 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 727 if (ret) 728 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 729 } while (ret && --count); 730 731 if (ret) { 732 f2fs_stop_checkpoint(sbi, false, 733 STOP_CP_REASON_FLUSH_FAIL); 734 break; 735 } 736 737 spin_lock(&sbi->dev_lock); 738 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 739 spin_unlock(&sbi->dev_lock); 740 } 741 742 return ret; 743 } 744 745 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 746 enum dirty_type dirty_type) 747 { 748 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 749 750 /* need not be added */ 751 if (IS_CURSEG(sbi, segno)) 752 return; 753 754 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 755 dirty_i->nr_dirty[dirty_type]++; 756 757 if (dirty_type == DIRTY) { 758 struct seg_entry *sentry = get_seg_entry(sbi, segno); 759 enum dirty_type t = sentry->type; 760 761 if (unlikely(t >= DIRTY)) { 762 f2fs_bug_on(sbi, 1); 763 return; 764 } 765 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 766 dirty_i->nr_dirty[t]++; 767 768 if (__is_large_section(sbi)) { 769 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 770 block_t valid_blocks = 771 get_valid_blocks(sbi, segno, true); 772 773 f2fs_bug_on(sbi, unlikely(!valid_blocks || 774 valid_blocks == CAP_BLKS_PER_SEC(sbi))); 775 776 if (!IS_CURSEC(sbi, secno)) 777 set_bit(secno, dirty_i->dirty_secmap); 778 } 779 } 780 } 781 782 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 783 enum dirty_type dirty_type) 784 { 785 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 786 block_t valid_blocks; 787 788 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 789 dirty_i->nr_dirty[dirty_type]--; 790 791 if (dirty_type == DIRTY) { 792 struct seg_entry *sentry = get_seg_entry(sbi, segno); 793 enum dirty_type t = sentry->type; 794 795 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 796 dirty_i->nr_dirty[t]--; 797 798 valid_blocks = get_valid_blocks(sbi, segno, true); 799 if (valid_blocks == 0) { 800 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 801 dirty_i->victim_secmap); 802 #ifdef CONFIG_F2FS_CHECK_FS 803 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 804 #endif 805 } 806 if (__is_large_section(sbi)) { 807 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 808 809 if (!valid_blocks || 810 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 811 clear_bit(secno, dirty_i->dirty_secmap); 812 return; 813 } 814 815 if (!IS_CURSEC(sbi, secno)) 816 set_bit(secno, dirty_i->dirty_secmap); 817 } 818 } 819 } 820 821 /* 822 * Should not occur error such as -ENOMEM. 823 * Adding dirty entry into seglist is not critical operation. 824 * If a given segment is one of current working segments, it won't be added. 825 */ 826 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 827 { 828 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 829 unsigned short valid_blocks, ckpt_valid_blocks; 830 unsigned int usable_blocks; 831 832 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 833 return; 834 835 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 836 mutex_lock(&dirty_i->seglist_lock); 837 838 valid_blocks = get_valid_blocks(sbi, segno, false); 839 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 840 841 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 842 ckpt_valid_blocks == usable_blocks)) { 843 __locate_dirty_segment(sbi, segno, PRE); 844 __remove_dirty_segment(sbi, segno, DIRTY); 845 } else if (valid_blocks < usable_blocks) { 846 __locate_dirty_segment(sbi, segno, DIRTY); 847 } else { 848 /* Recovery routine with SSR needs this */ 849 __remove_dirty_segment(sbi, segno, DIRTY); 850 } 851 852 mutex_unlock(&dirty_i->seglist_lock); 853 } 854 855 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 856 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 857 { 858 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 859 unsigned int segno; 860 861 mutex_lock(&dirty_i->seglist_lock); 862 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 863 if (get_valid_blocks(sbi, segno, false)) 864 continue; 865 if (IS_CURSEG(sbi, segno)) 866 continue; 867 __locate_dirty_segment(sbi, segno, PRE); 868 __remove_dirty_segment(sbi, segno, DIRTY); 869 } 870 mutex_unlock(&dirty_i->seglist_lock); 871 } 872 873 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 874 { 875 int ovp_hole_segs = 876 (overprovision_segments(sbi) - reserved_segments(sbi)); 877 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 878 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 879 block_t holes[2] = {0, 0}; /* DATA and NODE */ 880 block_t unusable; 881 struct seg_entry *se; 882 unsigned int segno; 883 884 mutex_lock(&dirty_i->seglist_lock); 885 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 886 se = get_seg_entry(sbi, segno); 887 if (IS_NODESEG(se->type)) 888 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 889 se->valid_blocks; 890 else 891 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 892 se->valid_blocks; 893 } 894 mutex_unlock(&dirty_i->seglist_lock); 895 896 unusable = max(holes[DATA], holes[NODE]); 897 if (unusable > ovp_holes) 898 return unusable - ovp_holes; 899 return 0; 900 } 901 902 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 903 { 904 int ovp_hole_segs = 905 (overprovision_segments(sbi) - reserved_segments(sbi)); 906 if (unusable > F2FS_OPTION(sbi).unusable_cap) 907 return -EAGAIN; 908 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 909 dirty_segments(sbi) > ovp_hole_segs) 910 return -EAGAIN; 911 return 0; 912 } 913 914 /* This is only used by SBI_CP_DISABLED */ 915 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 916 { 917 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 918 unsigned int segno = 0; 919 920 mutex_lock(&dirty_i->seglist_lock); 921 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 922 if (get_valid_blocks(sbi, segno, false)) 923 continue; 924 if (get_ckpt_valid_blocks(sbi, segno, false)) 925 continue; 926 mutex_unlock(&dirty_i->seglist_lock); 927 return segno; 928 } 929 mutex_unlock(&dirty_i->seglist_lock); 930 return NULL_SEGNO; 931 } 932 933 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 934 struct block_device *bdev, block_t lstart, 935 block_t start, block_t len) 936 { 937 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 938 struct list_head *pend_list; 939 struct discard_cmd *dc; 940 941 f2fs_bug_on(sbi, !len); 942 943 pend_list = &dcc->pend_list[plist_idx(len)]; 944 945 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 946 INIT_LIST_HEAD(&dc->list); 947 dc->bdev = bdev; 948 dc->di.lstart = lstart; 949 dc->di.start = start; 950 dc->di.len = len; 951 dc->ref = 0; 952 dc->state = D_PREP; 953 dc->queued = 0; 954 dc->error = 0; 955 init_completion(&dc->wait); 956 list_add_tail(&dc->list, pend_list); 957 spin_lock_init(&dc->lock); 958 dc->bio_ref = 0; 959 atomic_inc(&dcc->discard_cmd_cnt); 960 dcc->undiscard_blks += len; 961 962 return dc; 963 } 964 965 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi) 966 { 967 #ifdef CONFIG_F2FS_CHECK_FS 968 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 969 struct rb_node *cur = rb_first_cached(&dcc->root), *next; 970 struct discard_cmd *cur_dc, *next_dc; 971 972 while (cur) { 973 next = rb_next(cur); 974 if (!next) 975 return true; 976 977 cur_dc = rb_entry(cur, struct discard_cmd, rb_node); 978 next_dc = rb_entry(next, struct discard_cmd, rb_node); 979 980 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) { 981 f2fs_info(sbi, "broken discard_rbtree, " 982 "cur(%u, %u) next(%u, %u)", 983 cur_dc->di.lstart, cur_dc->di.len, 984 next_dc->di.lstart, next_dc->di.len); 985 return false; 986 } 987 cur = next; 988 } 989 #endif 990 return true; 991 } 992 993 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi, 994 block_t blkaddr) 995 { 996 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 997 struct rb_node *node = dcc->root.rb_root.rb_node; 998 struct discard_cmd *dc; 999 1000 while (node) { 1001 dc = rb_entry(node, struct discard_cmd, rb_node); 1002 1003 if (blkaddr < dc->di.lstart) 1004 node = node->rb_left; 1005 else if (blkaddr >= dc->di.lstart + dc->di.len) 1006 node = node->rb_right; 1007 else 1008 return dc; 1009 } 1010 return NULL; 1011 } 1012 1013 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root, 1014 block_t blkaddr, 1015 struct discard_cmd **prev_entry, 1016 struct discard_cmd **next_entry, 1017 struct rb_node ***insert_p, 1018 struct rb_node **insert_parent) 1019 { 1020 struct rb_node **pnode = &root->rb_root.rb_node; 1021 struct rb_node *parent = NULL, *tmp_node; 1022 struct discard_cmd *dc; 1023 1024 *insert_p = NULL; 1025 *insert_parent = NULL; 1026 *prev_entry = NULL; 1027 *next_entry = NULL; 1028 1029 if (RB_EMPTY_ROOT(&root->rb_root)) 1030 return NULL; 1031 1032 while (*pnode) { 1033 parent = *pnode; 1034 dc = rb_entry(*pnode, struct discard_cmd, rb_node); 1035 1036 if (blkaddr < dc->di.lstart) 1037 pnode = &(*pnode)->rb_left; 1038 else if (blkaddr >= dc->di.lstart + dc->di.len) 1039 pnode = &(*pnode)->rb_right; 1040 else 1041 goto lookup_neighbors; 1042 } 1043 1044 *insert_p = pnode; 1045 *insert_parent = parent; 1046 1047 dc = rb_entry(parent, struct discard_cmd, rb_node); 1048 tmp_node = parent; 1049 if (parent && blkaddr > dc->di.lstart) 1050 tmp_node = rb_next(parent); 1051 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1052 1053 tmp_node = parent; 1054 if (parent && blkaddr < dc->di.lstart) 1055 tmp_node = rb_prev(parent); 1056 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1057 return NULL; 1058 1059 lookup_neighbors: 1060 /* lookup prev node for merging backward later */ 1061 tmp_node = rb_prev(&dc->rb_node); 1062 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1063 1064 /* lookup next node for merging frontward later */ 1065 tmp_node = rb_next(&dc->rb_node); 1066 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1067 return dc; 1068 } 1069 1070 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1071 struct discard_cmd *dc) 1072 { 1073 if (dc->state == D_DONE) 1074 atomic_sub(dc->queued, &dcc->queued_discard); 1075 1076 list_del(&dc->list); 1077 rb_erase_cached(&dc->rb_node, &dcc->root); 1078 dcc->undiscard_blks -= dc->di.len; 1079 1080 kmem_cache_free(discard_cmd_slab, dc); 1081 1082 atomic_dec(&dcc->discard_cmd_cnt); 1083 } 1084 1085 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1086 struct discard_cmd *dc) 1087 { 1088 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1089 unsigned long flags; 1090 1091 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len); 1092 1093 spin_lock_irqsave(&dc->lock, flags); 1094 if (dc->bio_ref) { 1095 spin_unlock_irqrestore(&dc->lock, flags); 1096 return; 1097 } 1098 spin_unlock_irqrestore(&dc->lock, flags); 1099 1100 f2fs_bug_on(sbi, dc->ref); 1101 1102 if (dc->error == -EOPNOTSUPP) 1103 dc->error = 0; 1104 1105 if (dc->error) 1106 f2fs_info_ratelimited(sbi, 1107 "Issue discard(%u, %u, %u) failed, ret: %d", 1108 dc->di.lstart, dc->di.start, dc->di.len, dc->error); 1109 __detach_discard_cmd(dcc, dc); 1110 } 1111 1112 static void f2fs_submit_discard_endio(struct bio *bio) 1113 { 1114 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1115 unsigned long flags; 1116 1117 spin_lock_irqsave(&dc->lock, flags); 1118 if (!dc->error) 1119 dc->error = blk_status_to_errno(bio->bi_status); 1120 dc->bio_ref--; 1121 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1122 dc->state = D_DONE; 1123 complete_all(&dc->wait); 1124 } 1125 spin_unlock_irqrestore(&dc->lock, flags); 1126 bio_put(bio); 1127 } 1128 1129 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1130 block_t start, block_t end) 1131 { 1132 #ifdef CONFIG_F2FS_CHECK_FS 1133 struct seg_entry *sentry; 1134 unsigned int segno; 1135 block_t blk = start; 1136 unsigned long offset, size, *map; 1137 1138 while (blk < end) { 1139 segno = GET_SEGNO(sbi, blk); 1140 sentry = get_seg_entry(sbi, segno); 1141 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1142 1143 if (end < START_BLOCK(sbi, segno + 1)) 1144 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1145 else 1146 size = BLKS_PER_SEG(sbi); 1147 map = (unsigned long *)(sentry->cur_valid_map); 1148 offset = __find_rev_next_bit(map, size, offset); 1149 f2fs_bug_on(sbi, offset != size); 1150 blk = START_BLOCK(sbi, segno + 1); 1151 } 1152 #endif 1153 } 1154 1155 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1156 struct discard_policy *dpolicy, 1157 int discard_type, unsigned int granularity) 1158 { 1159 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1160 1161 /* common policy */ 1162 dpolicy->type = discard_type; 1163 dpolicy->sync = true; 1164 dpolicy->ordered = false; 1165 dpolicy->granularity = granularity; 1166 1167 dpolicy->max_requests = dcc->max_discard_request; 1168 dpolicy->io_aware_gran = dcc->discard_io_aware_gran; 1169 dpolicy->timeout = false; 1170 1171 if (discard_type == DPOLICY_BG) { 1172 dpolicy->min_interval = dcc->min_discard_issue_time; 1173 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1174 dpolicy->max_interval = dcc->max_discard_issue_time; 1175 dpolicy->io_aware = true; 1176 dpolicy->sync = false; 1177 dpolicy->ordered = true; 1178 if (utilization(sbi) > dcc->discard_urgent_util) { 1179 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1180 if (atomic_read(&dcc->discard_cmd_cnt)) 1181 dpolicy->max_interval = 1182 dcc->min_discard_issue_time; 1183 } 1184 } else if (discard_type == DPOLICY_FORCE) { 1185 dpolicy->min_interval = dcc->min_discard_issue_time; 1186 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1187 dpolicy->max_interval = dcc->max_discard_issue_time; 1188 dpolicy->io_aware = false; 1189 } else if (discard_type == DPOLICY_FSTRIM) { 1190 dpolicy->io_aware = false; 1191 } else if (discard_type == DPOLICY_UMOUNT) { 1192 dpolicy->io_aware = false; 1193 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1194 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1195 dpolicy->timeout = true; 1196 } 1197 } 1198 1199 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1200 struct block_device *bdev, block_t lstart, 1201 block_t start, block_t len); 1202 1203 #ifdef CONFIG_BLK_DEV_ZONED 1204 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi, 1205 struct discard_cmd *dc, blk_opf_t flag, 1206 struct list_head *wait_list, 1207 unsigned int *issued) 1208 { 1209 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1210 struct block_device *bdev = dc->bdev; 1211 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS); 1212 unsigned long flags; 1213 1214 trace_f2fs_issue_reset_zone(bdev, dc->di.start); 1215 1216 spin_lock_irqsave(&dc->lock, flags); 1217 dc->state = D_SUBMIT; 1218 dc->bio_ref++; 1219 spin_unlock_irqrestore(&dc->lock, flags); 1220 1221 if (issued) 1222 (*issued)++; 1223 1224 atomic_inc(&dcc->queued_discard); 1225 dc->queued++; 1226 list_move_tail(&dc->list, wait_list); 1227 1228 /* sanity check on discard range */ 1229 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len); 1230 1231 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start); 1232 bio->bi_private = dc; 1233 bio->bi_end_io = f2fs_submit_discard_endio; 1234 submit_bio(bio); 1235 1236 atomic_inc(&dcc->issued_discard); 1237 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE); 1238 } 1239 #endif 1240 1241 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1242 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1243 struct discard_policy *dpolicy, 1244 struct discard_cmd *dc, int *issued) 1245 { 1246 struct block_device *bdev = dc->bdev; 1247 unsigned int max_discard_blocks = 1248 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1249 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1250 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1251 &(dcc->fstrim_list) : &(dcc->wait_list); 1252 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1253 block_t lstart, start, len, total_len; 1254 int err = 0; 1255 1256 if (dc->state != D_PREP) 1257 return 0; 1258 1259 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1260 return 0; 1261 1262 #ifdef CONFIG_BLK_DEV_ZONED 1263 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) { 1264 int devi = f2fs_bdev_index(sbi, bdev); 1265 1266 if (devi < 0) 1267 return -EINVAL; 1268 1269 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1270 __submit_zone_reset_cmd(sbi, dc, flag, 1271 wait_list, issued); 1272 return 0; 1273 } 1274 } 1275 #endif 1276 1277 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len); 1278 1279 lstart = dc->di.lstart; 1280 start = dc->di.start; 1281 len = dc->di.len; 1282 total_len = len; 1283 1284 dc->di.len = 0; 1285 1286 while (total_len && *issued < dpolicy->max_requests && !err) { 1287 struct bio *bio = NULL; 1288 unsigned long flags; 1289 bool last = true; 1290 1291 if (len > max_discard_blocks) { 1292 len = max_discard_blocks; 1293 last = false; 1294 } 1295 1296 (*issued)++; 1297 if (*issued == dpolicy->max_requests) 1298 last = true; 1299 1300 dc->di.len += len; 1301 1302 if (time_to_inject(sbi, FAULT_DISCARD)) { 1303 err = -EIO; 1304 } else { 1305 err = __blkdev_issue_discard(bdev, 1306 SECTOR_FROM_BLOCK(start), 1307 SECTOR_FROM_BLOCK(len), 1308 GFP_NOFS, &bio); 1309 } 1310 if (err) { 1311 spin_lock_irqsave(&dc->lock, flags); 1312 if (dc->state == D_PARTIAL) 1313 dc->state = D_SUBMIT; 1314 spin_unlock_irqrestore(&dc->lock, flags); 1315 1316 break; 1317 } 1318 1319 f2fs_bug_on(sbi, !bio); 1320 1321 /* 1322 * should keep before submission to avoid D_DONE 1323 * right away 1324 */ 1325 spin_lock_irqsave(&dc->lock, flags); 1326 if (last) 1327 dc->state = D_SUBMIT; 1328 else 1329 dc->state = D_PARTIAL; 1330 dc->bio_ref++; 1331 spin_unlock_irqrestore(&dc->lock, flags); 1332 1333 atomic_inc(&dcc->queued_discard); 1334 dc->queued++; 1335 list_move_tail(&dc->list, wait_list); 1336 1337 /* sanity check on discard range */ 1338 __check_sit_bitmap(sbi, lstart, lstart + len); 1339 1340 bio->bi_private = dc; 1341 bio->bi_end_io = f2fs_submit_discard_endio; 1342 bio->bi_opf |= flag; 1343 submit_bio(bio); 1344 1345 atomic_inc(&dcc->issued_discard); 1346 1347 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE); 1348 1349 lstart += len; 1350 start += len; 1351 total_len -= len; 1352 len = total_len; 1353 } 1354 1355 if (!err && len) { 1356 dcc->undiscard_blks -= len; 1357 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1358 } 1359 return err; 1360 } 1361 1362 static void __insert_discard_cmd(struct f2fs_sb_info *sbi, 1363 struct block_device *bdev, block_t lstart, 1364 block_t start, block_t len) 1365 { 1366 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1367 struct rb_node **p = &dcc->root.rb_root.rb_node; 1368 struct rb_node *parent = NULL; 1369 struct discard_cmd *dc; 1370 bool leftmost = true; 1371 1372 /* look up rb tree to find parent node */ 1373 while (*p) { 1374 parent = *p; 1375 dc = rb_entry(parent, struct discard_cmd, rb_node); 1376 1377 if (lstart < dc->di.lstart) { 1378 p = &(*p)->rb_left; 1379 } else if (lstart >= dc->di.lstart + dc->di.len) { 1380 p = &(*p)->rb_right; 1381 leftmost = false; 1382 } else { 1383 f2fs_bug_on(sbi, 1); 1384 } 1385 } 1386 1387 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1388 1389 rb_link_node(&dc->rb_node, parent, p); 1390 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1391 } 1392 1393 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1394 struct discard_cmd *dc) 1395 { 1396 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]); 1397 } 1398 1399 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1400 struct discard_cmd *dc, block_t blkaddr) 1401 { 1402 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1403 struct discard_info di = dc->di; 1404 bool modified = false; 1405 1406 if (dc->state == D_DONE || dc->di.len == 1) { 1407 __remove_discard_cmd(sbi, dc); 1408 return; 1409 } 1410 1411 dcc->undiscard_blks -= di.len; 1412 1413 if (blkaddr > di.lstart) { 1414 dc->di.len = blkaddr - dc->di.lstart; 1415 dcc->undiscard_blks += dc->di.len; 1416 __relocate_discard_cmd(dcc, dc); 1417 modified = true; 1418 } 1419 1420 if (blkaddr < di.lstart + di.len - 1) { 1421 if (modified) { 1422 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1, 1423 di.start + blkaddr + 1 - di.lstart, 1424 di.lstart + di.len - 1 - blkaddr); 1425 } else { 1426 dc->di.lstart++; 1427 dc->di.len--; 1428 dc->di.start++; 1429 dcc->undiscard_blks += dc->di.len; 1430 __relocate_discard_cmd(dcc, dc); 1431 } 1432 } 1433 } 1434 1435 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1436 struct block_device *bdev, block_t lstart, 1437 block_t start, block_t len) 1438 { 1439 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1440 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1441 struct discard_cmd *dc; 1442 struct discard_info di = {0}; 1443 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1444 unsigned int max_discard_blocks = 1445 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1446 block_t end = lstart + len; 1447 1448 dc = __lookup_discard_cmd_ret(&dcc->root, lstart, 1449 &prev_dc, &next_dc, &insert_p, &insert_parent); 1450 if (dc) 1451 prev_dc = dc; 1452 1453 if (!prev_dc) { 1454 di.lstart = lstart; 1455 di.len = next_dc ? next_dc->di.lstart - lstart : len; 1456 di.len = min(di.len, len); 1457 di.start = start; 1458 } 1459 1460 while (1) { 1461 struct rb_node *node; 1462 bool merged = false; 1463 struct discard_cmd *tdc = NULL; 1464 1465 if (prev_dc) { 1466 di.lstart = prev_dc->di.lstart + prev_dc->di.len; 1467 if (di.lstart < lstart) 1468 di.lstart = lstart; 1469 if (di.lstart >= end) 1470 break; 1471 1472 if (!next_dc || next_dc->di.lstart > end) 1473 di.len = end - di.lstart; 1474 else 1475 di.len = next_dc->di.lstart - di.lstart; 1476 di.start = start + di.lstart - lstart; 1477 } 1478 1479 if (!di.len) 1480 goto next; 1481 1482 if (prev_dc && prev_dc->state == D_PREP && 1483 prev_dc->bdev == bdev && 1484 __is_discard_back_mergeable(&di, &prev_dc->di, 1485 max_discard_blocks)) { 1486 prev_dc->di.len += di.len; 1487 dcc->undiscard_blks += di.len; 1488 __relocate_discard_cmd(dcc, prev_dc); 1489 di = prev_dc->di; 1490 tdc = prev_dc; 1491 merged = true; 1492 } 1493 1494 if (next_dc && next_dc->state == D_PREP && 1495 next_dc->bdev == bdev && 1496 __is_discard_front_mergeable(&di, &next_dc->di, 1497 max_discard_blocks)) { 1498 next_dc->di.lstart = di.lstart; 1499 next_dc->di.len += di.len; 1500 next_dc->di.start = di.start; 1501 dcc->undiscard_blks += di.len; 1502 __relocate_discard_cmd(dcc, next_dc); 1503 if (tdc) 1504 __remove_discard_cmd(sbi, tdc); 1505 merged = true; 1506 } 1507 1508 if (!merged) 1509 __insert_discard_cmd(sbi, bdev, 1510 di.lstart, di.start, di.len); 1511 next: 1512 prev_dc = next_dc; 1513 if (!prev_dc) 1514 break; 1515 1516 node = rb_next(&prev_dc->rb_node); 1517 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1518 } 1519 } 1520 1521 #ifdef CONFIG_BLK_DEV_ZONED 1522 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi, 1523 struct block_device *bdev, block_t blkstart, block_t lblkstart, 1524 block_t blklen) 1525 { 1526 trace_f2fs_queue_reset_zone(bdev, blkstart); 1527 1528 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1529 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen); 1530 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1531 } 1532 #endif 1533 1534 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1535 struct block_device *bdev, block_t blkstart, block_t blklen) 1536 { 1537 block_t lblkstart = blkstart; 1538 1539 if (!f2fs_bdev_support_discard(bdev)) 1540 return; 1541 1542 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1543 1544 if (f2fs_is_multi_device(sbi)) { 1545 int devi = f2fs_target_device_index(sbi, blkstart); 1546 1547 blkstart -= FDEV(devi).start_blk; 1548 } 1549 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1550 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1551 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1552 } 1553 1554 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1555 struct discard_policy *dpolicy, int *issued) 1556 { 1557 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1558 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1559 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1560 struct discard_cmd *dc; 1561 struct blk_plug plug; 1562 bool io_interrupted = false; 1563 1564 mutex_lock(&dcc->cmd_lock); 1565 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos, 1566 &prev_dc, &next_dc, &insert_p, &insert_parent); 1567 if (!dc) 1568 dc = next_dc; 1569 1570 blk_start_plug(&plug); 1571 1572 while (dc) { 1573 struct rb_node *node; 1574 int err = 0; 1575 1576 if (dc->state != D_PREP) 1577 goto next; 1578 1579 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1580 io_interrupted = true; 1581 break; 1582 } 1583 1584 dcc->next_pos = dc->di.lstart + dc->di.len; 1585 err = __submit_discard_cmd(sbi, dpolicy, dc, issued); 1586 1587 if (*issued >= dpolicy->max_requests) 1588 break; 1589 next: 1590 node = rb_next(&dc->rb_node); 1591 if (err) 1592 __remove_discard_cmd(sbi, dc); 1593 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1594 } 1595 1596 blk_finish_plug(&plug); 1597 1598 if (!dc) 1599 dcc->next_pos = 0; 1600 1601 mutex_unlock(&dcc->cmd_lock); 1602 1603 if (!(*issued) && io_interrupted) 1604 *issued = -1; 1605 } 1606 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1607 struct discard_policy *dpolicy); 1608 1609 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1610 struct discard_policy *dpolicy) 1611 { 1612 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1613 struct list_head *pend_list; 1614 struct discard_cmd *dc, *tmp; 1615 struct blk_plug plug; 1616 int i, issued; 1617 bool io_interrupted = false; 1618 1619 if (dpolicy->timeout) 1620 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1621 1622 retry: 1623 issued = 0; 1624 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1625 if (dpolicy->timeout && 1626 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1627 break; 1628 1629 if (i + 1 < dpolicy->granularity) 1630 break; 1631 1632 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) { 1633 __issue_discard_cmd_orderly(sbi, dpolicy, &issued); 1634 return issued; 1635 } 1636 1637 pend_list = &dcc->pend_list[i]; 1638 1639 mutex_lock(&dcc->cmd_lock); 1640 if (list_empty(pend_list)) 1641 goto next; 1642 if (unlikely(dcc->rbtree_check)) 1643 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 1644 blk_start_plug(&plug); 1645 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1646 f2fs_bug_on(sbi, dc->state != D_PREP); 1647 1648 if (dpolicy->timeout && 1649 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1650 break; 1651 1652 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1653 !is_idle(sbi, DISCARD_TIME)) { 1654 io_interrupted = true; 1655 break; 1656 } 1657 1658 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1659 1660 if (issued >= dpolicy->max_requests) 1661 break; 1662 } 1663 blk_finish_plug(&plug); 1664 next: 1665 mutex_unlock(&dcc->cmd_lock); 1666 1667 if (issued >= dpolicy->max_requests || io_interrupted) 1668 break; 1669 } 1670 1671 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1672 __wait_all_discard_cmd(sbi, dpolicy); 1673 goto retry; 1674 } 1675 1676 if (!issued && io_interrupted) 1677 issued = -1; 1678 1679 return issued; 1680 } 1681 1682 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1683 { 1684 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1685 struct list_head *pend_list; 1686 struct discard_cmd *dc, *tmp; 1687 int i; 1688 bool dropped = false; 1689 1690 mutex_lock(&dcc->cmd_lock); 1691 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1692 pend_list = &dcc->pend_list[i]; 1693 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1694 f2fs_bug_on(sbi, dc->state != D_PREP); 1695 __remove_discard_cmd(sbi, dc); 1696 dropped = true; 1697 } 1698 } 1699 mutex_unlock(&dcc->cmd_lock); 1700 1701 return dropped; 1702 } 1703 1704 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1705 { 1706 __drop_discard_cmd(sbi); 1707 } 1708 1709 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1710 struct discard_cmd *dc) 1711 { 1712 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1713 unsigned int len = 0; 1714 1715 wait_for_completion_io(&dc->wait); 1716 mutex_lock(&dcc->cmd_lock); 1717 f2fs_bug_on(sbi, dc->state != D_DONE); 1718 dc->ref--; 1719 if (!dc->ref) { 1720 if (!dc->error) 1721 len = dc->di.len; 1722 __remove_discard_cmd(sbi, dc); 1723 } 1724 mutex_unlock(&dcc->cmd_lock); 1725 1726 return len; 1727 } 1728 1729 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1730 struct discard_policy *dpolicy, 1731 block_t start, block_t end) 1732 { 1733 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1734 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1735 &(dcc->fstrim_list) : &(dcc->wait_list); 1736 struct discard_cmd *dc = NULL, *iter, *tmp; 1737 unsigned int trimmed = 0; 1738 1739 next: 1740 dc = NULL; 1741 1742 mutex_lock(&dcc->cmd_lock); 1743 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1744 if (iter->di.lstart + iter->di.len <= start || 1745 end <= iter->di.lstart) 1746 continue; 1747 if (iter->di.len < dpolicy->granularity) 1748 continue; 1749 if (iter->state == D_DONE && !iter->ref) { 1750 wait_for_completion_io(&iter->wait); 1751 if (!iter->error) 1752 trimmed += iter->di.len; 1753 __remove_discard_cmd(sbi, iter); 1754 } else { 1755 iter->ref++; 1756 dc = iter; 1757 break; 1758 } 1759 } 1760 mutex_unlock(&dcc->cmd_lock); 1761 1762 if (dc) { 1763 trimmed += __wait_one_discard_bio(sbi, dc); 1764 goto next; 1765 } 1766 1767 return trimmed; 1768 } 1769 1770 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1771 struct discard_policy *dpolicy) 1772 { 1773 struct discard_policy dp; 1774 unsigned int discard_blks; 1775 1776 if (dpolicy) 1777 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1778 1779 /* wait all */ 1780 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY); 1781 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1782 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY); 1783 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1784 1785 return discard_blks; 1786 } 1787 1788 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1789 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1790 { 1791 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1792 struct discard_cmd *dc; 1793 bool need_wait = false; 1794 1795 mutex_lock(&dcc->cmd_lock); 1796 dc = __lookup_discard_cmd(sbi, blkaddr); 1797 #ifdef CONFIG_BLK_DEV_ZONED 1798 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) { 1799 int devi = f2fs_bdev_index(sbi, dc->bdev); 1800 1801 if (devi < 0) { 1802 mutex_unlock(&dcc->cmd_lock); 1803 return; 1804 } 1805 1806 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1807 /* force submit zone reset */ 1808 if (dc->state == D_PREP) 1809 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC, 1810 &dcc->wait_list, NULL); 1811 dc->ref++; 1812 mutex_unlock(&dcc->cmd_lock); 1813 /* wait zone reset */ 1814 __wait_one_discard_bio(sbi, dc); 1815 return; 1816 } 1817 } 1818 #endif 1819 if (dc) { 1820 if (dc->state == D_PREP) { 1821 __punch_discard_cmd(sbi, dc, blkaddr); 1822 } else { 1823 dc->ref++; 1824 need_wait = true; 1825 } 1826 } 1827 mutex_unlock(&dcc->cmd_lock); 1828 1829 if (need_wait) 1830 __wait_one_discard_bio(sbi, dc); 1831 } 1832 1833 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1834 { 1835 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1836 1837 if (dcc && dcc->f2fs_issue_discard) { 1838 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1839 1840 dcc->f2fs_issue_discard = NULL; 1841 kthread_stop(discard_thread); 1842 } 1843 } 1844 1845 /** 1846 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT 1847 * @sbi: the f2fs_sb_info data for discard cmd to issue 1848 * 1849 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped 1850 * 1851 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false. 1852 */ 1853 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1854 { 1855 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1856 struct discard_policy dpolicy; 1857 bool dropped; 1858 1859 if (!atomic_read(&dcc->discard_cmd_cnt)) 1860 return true; 1861 1862 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1863 dcc->discard_granularity); 1864 __issue_discard_cmd(sbi, &dpolicy); 1865 dropped = __drop_discard_cmd(sbi); 1866 1867 /* just to make sure there is no pending discard commands */ 1868 __wait_all_discard_cmd(sbi, NULL); 1869 1870 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1871 return !dropped; 1872 } 1873 1874 static int issue_discard_thread(void *data) 1875 { 1876 struct f2fs_sb_info *sbi = data; 1877 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1878 wait_queue_head_t *q = &dcc->discard_wait_queue; 1879 struct discard_policy dpolicy; 1880 unsigned int wait_ms = dcc->min_discard_issue_time; 1881 int issued; 1882 1883 set_freezable(); 1884 1885 do { 1886 wait_event_interruptible_timeout(*q, 1887 kthread_should_stop() || freezing(current) || 1888 dcc->discard_wake, 1889 msecs_to_jiffies(wait_ms)); 1890 1891 if (sbi->gc_mode == GC_URGENT_HIGH || 1892 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1893 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1894 MIN_DISCARD_GRANULARITY); 1895 else 1896 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1897 dcc->discard_granularity); 1898 1899 if (dcc->discard_wake) 1900 dcc->discard_wake = false; 1901 1902 /* clean up pending candidates before going to sleep */ 1903 if (atomic_read(&dcc->queued_discard)) 1904 __wait_all_discard_cmd(sbi, NULL); 1905 1906 if (try_to_freeze()) 1907 continue; 1908 if (f2fs_readonly(sbi->sb)) 1909 continue; 1910 if (kthread_should_stop()) 1911 return 0; 1912 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1913 !atomic_read(&dcc->discard_cmd_cnt)) { 1914 wait_ms = dpolicy.max_interval; 1915 continue; 1916 } 1917 1918 sb_start_intwrite(sbi->sb); 1919 1920 issued = __issue_discard_cmd(sbi, &dpolicy); 1921 if (issued > 0) { 1922 __wait_all_discard_cmd(sbi, &dpolicy); 1923 wait_ms = dpolicy.min_interval; 1924 } else if (issued == -1) { 1925 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1926 if (!wait_ms) 1927 wait_ms = dpolicy.mid_interval; 1928 } else { 1929 wait_ms = dpolicy.max_interval; 1930 } 1931 if (!atomic_read(&dcc->discard_cmd_cnt)) 1932 wait_ms = dpolicy.max_interval; 1933 1934 sb_end_intwrite(sbi->sb); 1935 1936 } while (!kthread_should_stop()); 1937 return 0; 1938 } 1939 1940 #ifdef CONFIG_BLK_DEV_ZONED 1941 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1942 struct block_device *bdev, block_t blkstart, block_t blklen) 1943 { 1944 sector_t sector, nr_sects; 1945 block_t lblkstart = blkstart; 1946 int devi = 0; 1947 u64 remainder = 0; 1948 1949 if (f2fs_is_multi_device(sbi)) { 1950 devi = f2fs_target_device_index(sbi, blkstart); 1951 if (blkstart < FDEV(devi).start_blk || 1952 blkstart > FDEV(devi).end_blk) { 1953 f2fs_err(sbi, "Invalid block %x", blkstart); 1954 return -EIO; 1955 } 1956 blkstart -= FDEV(devi).start_blk; 1957 } 1958 1959 /* For sequential zones, reset the zone write pointer */ 1960 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1961 sector = SECTOR_FROM_BLOCK(blkstart); 1962 nr_sects = SECTOR_FROM_BLOCK(blklen); 1963 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder); 1964 1965 if (remainder || nr_sects != bdev_zone_sectors(bdev)) { 1966 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1967 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1968 blkstart, blklen); 1969 return -EIO; 1970 } 1971 1972 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) { 1973 trace_f2fs_issue_reset_zone(bdev, blkstart); 1974 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1975 sector, nr_sects, GFP_NOFS); 1976 } 1977 1978 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen); 1979 return 0; 1980 } 1981 1982 /* For conventional zones, use regular discard if supported */ 1983 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1984 return 0; 1985 } 1986 #endif 1987 1988 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1989 struct block_device *bdev, block_t blkstart, block_t blklen) 1990 { 1991 #ifdef CONFIG_BLK_DEV_ZONED 1992 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1993 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1994 #endif 1995 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1996 return 0; 1997 } 1998 1999 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 2000 block_t blkstart, block_t blklen) 2001 { 2002 sector_t start = blkstart, len = 0; 2003 struct block_device *bdev; 2004 struct seg_entry *se; 2005 unsigned int offset; 2006 block_t i; 2007 int err = 0; 2008 2009 bdev = f2fs_target_device(sbi, blkstart, NULL); 2010 2011 for (i = blkstart; i < blkstart + blklen; i++, len++) { 2012 if (i != start) { 2013 struct block_device *bdev2 = 2014 f2fs_target_device(sbi, i, NULL); 2015 2016 if (bdev2 != bdev) { 2017 err = __issue_discard_async(sbi, bdev, 2018 start, len); 2019 if (err) 2020 return err; 2021 bdev = bdev2; 2022 start = i; 2023 len = 0; 2024 } 2025 } 2026 2027 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 2028 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 2029 2030 if (f2fs_block_unit_discard(sbi) && 2031 !f2fs_test_and_set_bit(offset, se->discard_map)) 2032 sbi->discard_blks--; 2033 } 2034 2035 if (len) 2036 err = __issue_discard_async(sbi, bdev, start, len); 2037 return err; 2038 } 2039 2040 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 2041 bool check_only) 2042 { 2043 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2044 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 2045 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2046 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2047 unsigned long *discard_map = (unsigned long *)se->discard_map; 2048 unsigned long *dmap = SIT_I(sbi)->tmp_map; 2049 unsigned int start = 0, end = -1; 2050 bool force = (cpc->reason & CP_DISCARD); 2051 struct discard_entry *de = NULL; 2052 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 2053 int i; 2054 2055 if (se->valid_blocks == BLKS_PER_SEG(sbi) || 2056 !f2fs_hw_support_discard(sbi) || 2057 !f2fs_block_unit_discard(sbi)) 2058 return false; 2059 2060 if (!force) { 2061 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 2062 SM_I(sbi)->dcc_info->nr_discards >= 2063 SM_I(sbi)->dcc_info->max_discards) 2064 return false; 2065 } 2066 2067 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 2068 for (i = 0; i < entries; i++) 2069 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 2070 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 2071 2072 while (force || SM_I(sbi)->dcc_info->nr_discards <= 2073 SM_I(sbi)->dcc_info->max_discards) { 2074 start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1); 2075 if (start >= BLKS_PER_SEG(sbi)) 2076 break; 2077 2078 end = __find_rev_next_zero_bit(dmap, 2079 BLKS_PER_SEG(sbi), start + 1); 2080 if (force && start && end != BLKS_PER_SEG(sbi) && 2081 (end - start) < cpc->trim_minlen) 2082 continue; 2083 2084 if (check_only) 2085 return true; 2086 2087 if (!de) { 2088 de = f2fs_kmem_cache_alloc(discard_entry_slab, 2089 GFP_F2FS_ZERO, true, NULL); 2090 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 2091 list_add_tail(&de->list, head); 2092 } 2093 2094 for (i = start; i < end; i++) 2095 __set_bit_le(i, (void *)de->discard_map); 2096 2097 SM_I(sbi)->dcc_info->nr_discards += end - start; 2098 } 2099 return false; 2100 } 2101 2102 static void release_discard_addr(struct discard_entry *entry) 2103 { 2104 list_del(&entry->list); 2105 kmem_cache_free(discard_entry_slab, entry); 2106 } 2107 2108 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2109 { 2110 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2111 struct discard_entry *entry, *this; 2112 2113 /* drop caches */ 2114 list_for_each_entry_safe(entry, this, head, list) 2115 release_discard_addr(entry); 2116 } 2117 2118 /* 2119 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2120 */ 2121 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2122 { 2123 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2124 unsigned int segno; 2125 2126 mutex_lock(&dirty_i->seglist_lock); 2127 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2128 __set_test_and_free(sbi, segno, false); 2129 mutex_unlock(&dirty_i->seglist_lock); 2130 } 2131 2132 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2133 struct cp_control *cpc) 2134 { 2135 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2136 struct list_head *head = &dcc->entry_list; 2137 struct discard_entry *entry, *this; 2138 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2139 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2140 unsigned int start = 0, end = -1; 2141 unsigned int secno, start_segno; 2142 bool force = (cpc->reason & CP_DISCARD); 2143 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2144 DISCARD_UNIT_SECTION; 2145 2146 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2147 section_alignment = true; 2148 2149 mutex_lock(&dirty_i->seglist_lock); 2150 2151 while (1) { 2152 int i; 2153 2154 if (section_alignment && end != -1) 2155 end--; 2156 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2157 if (start >= MAIN_SEGS(sbi)) 2158 break; 2159 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2160 start + 1); 2161 2162 if (section_alignment) { 2163 start = rounddown(start, SEGS_PER_SEC(sbi)); 2164 end = roundup(end, SEGS_PER_SEC(sbi)); 2165 } 2166 2167 for (i = start; i < end; i++) { 2168 if (test_and_clear_bit(i, prefree_map)) 2169 dirty_i->nr_dirty[PRE]--; 2170 } 2171 2172 if (!f2fs_realtime_discard_enable(sbi)) 2173 continue; 2174 2175 if (force && start >= cpc->trim_start && 2176 (end - 1) <= cpc->trim_end) 2177 continue; 2178 2179 /* Should cover 2MB zoned device for zone-based reset */ 2180 if (!f2fs_sb_has_blkzoned(sbi) && 2181 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) { 2182 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2183 (end - start) << sbi->log_blocks_per_seg); 2184 continue; 2185 } 2186 next: 2187 secno = GET_SEC_FROM_SEG(sbi, start); 2188 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2189 if (!IS_CURSEC(sbi, secno) && 2190 !get_valid_blocks(sbi, start, true)) 2191 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2192 BLKS_PER_SEC(sbi)); 2193 2194 start = start_segno + SEGS_PER_SEC(sbi); 2195 if (start < end) 2196 goto next; 2197 else 2198 end = start - 1; 2199 } 2200 mutex_unlock(&dirty_i->seglist_lock); 2201 2202 if (!f2fs_block_unit_discard(sbi)) 2203 goto wakeup; 2204 2205 /* send small discards */ 2206 list_for_each_entry_safe(entry, this, head, list) { 2207 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2208 bool is_valid = test_bit_le(0, entry->discard_map); 2209 2210 find_next: 2211 if (is_valid) { 2212 next_pos = find_next_zero_bit_le(entry->discard_map, 2213 BLKS_PER_SEG(sbi), cur_pos); 2214 len = next_pos - cur_pos; 2215 2216 if (f2fs_sb_has_blkzoned(sbi) || 2217 (force && len < cpc->trim_minlen)) 2218 goto skip; 2219 2220 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2221 len); 2222 total_len += len; 2223 } else { 2224 next_pos = find_next_bit_le(entry->discard_map, 2225 BLKS_PER_SEG(sbi), cur_pos); 2226 } 2227 skip: 2228 cur_pos = next_pos; 2229 is_valid = !is_valid; 2230 2231 if (cur_pos < BLKS_PER_SEG(sbi)) 2232 goto find_next; 2233 2234 release_discard_addr(entry); 2235 dcc->nr_discards -= total_len; 2236 } 2237 2238 wakeup: 2239 wake_up_discard_thread(sbi, false); 2240 } 2241 2242 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2243 { 2244 dev_t dev = sbi->sb->s_bdev->bd_dev; 2245 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2246 int err = 0; 2247 2248 if (!f2fs_realtime_discard_enable(sbi)) 2249 return 0; 2250 2251 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2252 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2253 if (IS_ERR(dcc->f2fs_issue_discard)) { 2254 err = PTR_ERR(dcc->f2fs_issue_discard); 2255 dcc->f2fs_issue_discard = NULL; 2256 } 2257 2258 return err; 2259 } 2260 2261 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2262 { 2263 struct discard_cmd_control *dcc; 2264 int err = 0, i; 2265 2266 if (SM_I(sbi)->dcc_info) { 2267 dcc = SM_I(sbi)->dcc_info; 2268 goto init_thread; 2269 } 2270 2271 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2272 if (!dcc) 2273 return -ENOMEM; 2274 2275 dcc->discard_io_aware_gran = MAX_PLIST_NUM; 2276 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2277 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2278 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2279 dcc->discard_granularity = BLKS_PER_SEG(sbi); 2280 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2281 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2282 2283 INIT_LIST_HEAD(&dcc->entry_list); 2284 for (i = 0; i < MAX_PLIST_NUM; i++) 2285 INIT_LIST_HEAD(&dcc->pend_list[i]); 2286 INIT_LIST_HEAD(&dcc->wait_list); 2287 INIT_LIST_HEAD(&dcc->fstrim_list); 2288 mutex_init(&dcc->cmd_lock); 2289 atomic_set(&dcc->issued_discard, 0); 2290 atomic_set(&dcc->queued_discard, 0); 2291 atomic_set(&dcc->discard_cmd_cnt, 0); 2292 dcc->nr_discards = 0; 2293 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2294 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2295 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2296 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2297 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2298 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2299 dcc->undiscard_blks = 0; 2300 dcc->next_pos = 0; 2301 dcc->root = RB_ROOT_CACHED; 2302 dcc->rbtree_check = false; 2303 2304 init_waitqueue_head(&dcc->discard_wait_queue); 2305 SM_I(sbi)->dcc_info = dcc; 2306 init_thread: 2307 err = f2fs_start_discard_thread(sbi); 2308 if (err) { 2309 kfree(dcc); 2310 SM_I(sbi)->dcc_info = NULL; 2311 } 2312 2313 return err; 2314 } 2315 2316 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2317 { 2318 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2319 2320 if (!dcc) 2321 return; 2322 2323 f2fs_stop_discard_thread(sbi); 2324 2325 /* 2326 * Recovery can cache discard commands, so in error path of 2327 * fill_super(), it needs to give a chance to handle them. 2328 */ 2329 f2fs_issue_discard_timeout(sbi); 2330 2331 kfree(dcc); 2332 SM_I(sbi)->dcc_info = NULL; 2333 } 2334 2335 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2336 { 2337 struct sit_info *sit_i = SIT_I(sbi); 2338 2339 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2340 sit_i->dirty_sentries++; 2341 return false; 2342 } 2343 2344 return true; 2345 } 2346 2347 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2348 unsigned int segno, int modified) 2349 { 2350 struct seg_entry *se = get_seg_entry(sbi, segno); 2351 2352 se->type = type; 2353 if (modified) 2354 __mark_sit_entry_dirty(sbi, segno); 2355 } 2356 2357 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2358 block_t blkaddr) 2359 { 2360 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2361 2362 if (segno == NULL_SEGNO) 2363 return 0; 2364 return get_seg_entry(sbi, segno)->mtime; 2365 } 2366 2367 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2368 unsigned long long old_mtime) 2369 { 2370 struct seg_entry *se; 2371 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2372 unsigned long long ctime = get_mtime(sbi, false); 2373 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2374 2375 if (segno == NULL_SEGNO) 2376 return; 2377 2378 se = get_seg_entry(sbi, segno); 2379 2380 if (!se->mtime) 2381 se->mtime = mtime; 2382 else 2383 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2384 se->valid_blocks + 1); 2385 2386 if (ctime > SIT_I(sbi)->max_mtime) 2387 SIT_I(sbi)->max_mtime = ctime; 2388 } 2389 2390 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2391 { 2392 struct seg_entry *se; 2393 unsigned int segno, offset; 2394 long int new_vblocks; 2395 bool exist; 2396 #ifdef CONFIG_F2FS_CHECK_FS 2397 bool mir_exist; 2398 #endif 2399 2400 segno = GET_SEGNO(sbi, blkaddr); 2401 2402 se = get_seg_entry(sbi, segno); 2403 new_vblocks = se->valid_blocks + del; 2404 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2405 2406 f2fs_bug_on(sbi, (new_vblocks < 0 || 2407 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2408 2409 se->valid_blocks = new_vblocks; 2410 2411 /* Update valid block bitmap */ 2412 if (del > 0) { 2413 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2414 #ifdef CONFIG_F2FS_CHECK_FS 2415 mir_exist = f2fs_test_and_set_bit(offset, 2416 se->cur_valid_map_mir); 2417 if (unlikely(exist != mir_exist)) { 2418 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2419 blkaddr, exist); 2420 f2fs_bug_on(sbi, 1); 2421 } 2422 #endif 2423 if (unlikely(exist)) { 2424 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2425 blkaddr); 2426 f2fs_bug_on(sbi, 1); 2427 se->valid_blocks--; 2428 del = 0; 2429 } 2430 2431 if (f2fs_block_unit_discard(sbi) && 2432 !f2fs_test_and_set_bit(offset, se->discard_map)) 2433 sbi->discard_blks--; 2434 2435 /* 2436 * SSR should never reuse block which is checkpointed 2437 * or newly invalidated. 2438 */ 2439 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2440 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2441 se->ckpt_valid_blocks++; 2442 } 2443 } else { 2444 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2445 #ifdef CONFIG_F2FS_CHECK_FS 2446 mir_exist = f2fs_test_and_clear_bit(offset, 2447 se->cur_valid_map_mir); 2448 if (unlikely(exist != mir_exist)) { 2449 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2450 blkaddr, exist); 2451 f2fs_bug_on(sbi, 1); 2452 } 2453 #endif 2454 if (unlikely(!exist)) { 2455 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2456 blkaddr); 2457 f2fs_bug_on(sbi, 1); 2458 se->valid_blocks++; 2459 del = 0; 2460 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2461 /* 2462 * If checkpoints are off, we must not reuse data that 2463 * was used in the previous checkpoint. If it was used 2464 * before, we must track that to know how much space we 2465 * really have. 2466 */ 2467 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2468 spin_lock(&sbi->stat_lock); 2469 sbi->unusable_block_count++; 2470 spin_unlock(&sbi->stat_lock); 2471 } 2472 } 2473 2474 if (f2fs_block_unit_discard(sbi) && 2475 f2fs_test_and_clear_bit(offset, se->discard_map)) 2476 sbi->discard_blks++; 2477 } 2478 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2479 se->ckpt_valid_blocks += del; 2480 2481 __mark_sit_entry_dirty(sbi, segno); 2482 2483 /* update total number of valid blocks to be written in ckpt area */ 2484 SIT_I(sbi)->written_valid_blocks += del; 2485 2486 if (__is_large_section(sbi)) 2487 get_sec_entry(sbi, segno)->valid_blocks += del; 2488 } 2489 2490 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2491 { 2492 unsigned int segno = GET_SEGNO(sbi, addr); 2493 struct sit_info *sit_i = SIT_I(sbi); 2494 2495 f2fs_bug_on(sbi, addr == NULL_ADDR); 2496 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2497 return; 2498 2499 f2fs_invalidate_internal_cache(sbi, addr); 2500 2501 /* add it into sit main buffer */ 2502 down_write(&sit_i->sentry_lock); 2503 2504 update_segment_mtime(sbi, addr, 0); 2505 update_sit_entry(sbi, addr, -1); 2506 2507 /* add it into dirty seglist */ 2508 locate_dirty_segment(sbi, segno); 2509 2510 up_write(&sit_i->sentry_lock); 2511 } 2512 2513 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2514 { 2515 struct sit_info *sit_i = SIT_I(sbi); 2516 unsigned int segno, offset; 2517 struct seg_entry *se; 2518 bool is_cp = false; 2519 2520 if (!__is_valid_data_blkaddr(blkaddr)) 2521 return true; 2522 2523 down_read(&sit_i->sentry_lock); 2524 2525 segno = GET_SEGNO(sbi, blkaddr); 2526 se = get_seg_entry(sbi, segno); 2527 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2528 2529 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2530 is_cp = true; 2531 2532 up_read(&sit_i->sentry_lock); 2533 2534 return is_cp; 2535 } 2536 2537 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type) 2538 { 2539 struct curseg_info *curseg = CURSEG_I(sbi, type); 2540 2541 if (sbi->ckpt->alloc_type[type] == SSR) 2542 return BLKS_PER_SEG(sbi); 2543 return curseg->next_blkoff; 2544 } 2545 2546 /* 2547 * Calculate the number of current summary pages for writing 2548 */ 2549 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2550 { 2551 int valid_sum_count = 0; 2552 int i, sum_in_page; 2553 2554 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2555 if (sbi->ckpt->alloc_type[i] != SSR && for_ra) 2556 valid_sum_count += 2557 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2558 else 2559 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i); 2560 } 2561 2562 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2563 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2564 if (valid_sum_count <= sum_in_page) 2565 return 1; 2566 else if ((valid_sum_count - sum_in_page) <= 2567 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2568 return 2; 2569 return 3; 2570 } 2571 2572 /* 2573 * Caller should put this summary page 2574 */ 2575 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2576 { 2577 if (unlikely(f2fs_cp_error(sbi))) 2578 return ERR_PTR(-EIO); 2579 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2580 } 2581 2582 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2583 void *src, block_t blk_addr) 2584 { 2585 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2586 2587 memcpy(page_address(page), src, PAGE_SIZE); 2588 set_page_dirty(page); 2589 f2fs_put_page(page, 1); 2590 } 2591 2592 static void write_sum_page(struct f2fs_sb_info *sbi, 2593 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2594 { 2595 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2596 } 2597 2598 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2599 int type, block_t blk_addr) 2600 { 2601 struct curseg_info *curseg = CURSEG_I(sbi, type); 2602 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2603 struct f2fs_summary_block *src = curseg->sum_blk; 2604 struct f2fs_summary_block *dst; 2605 2606 dst = (struct f2fs_summary_block *)page_address(page); 2607 memset(dst, 0, PAGE_SIZE); 2608 2609 mutex_lock(&curseg->curseg_mutex); 2610 2611 down_read(&curseg->journal_rwsem); 2612 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2613 up_read(&curseg->journal_rwsem); 2614 2615 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2616 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2617 2618 mutex_unlock(&curseg->curseg_mutex); 2619 2620 set_page_dirty(page); 2621 f2fs_put_page(page, 1); 2622 } 2623 2624 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2625 struct curseg_info *curseg, int type) 2626 { 2627 unsigned int segno = curseg->segno + 1; 2628 struct free_segmap_info *free_i = FREE_I(sbi); 2629 2630 if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi)) 2631 return !test_bit(segno, free_i->free_segmap); 2632 return 0; 2633 } 2634 2635 /* 2636 * Find a new segment from the free segments bitmap to right order 2637 * This function should be returned with success, otherwise BUG 2638 */ 2639 static void get_new_segment(struct f2fs_sb_info *sbi, 2640 unsigned int *newseg, bool new_sec, bool pinning) 2641 { 2642 struct free_segmap_info *free_i = FREE_I(sbi); 2643 unsigned int segno, secno, zoneno; 2644 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2645 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2646 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2647 bool init = true; 2648 int i; 2649 2650 spin_lock(&free_i->segmap_lock); 2651 2652 if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) { 2653 segno = find_next_zero_bit(free_i->free_segmap, 2654 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2655 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2656 goto got_it; 2657 } 2658 2659 /* 2660 * If we format f2fs on zoned storage, let's try to get pinned sections 2661 * from beginning of the storage, which should be a conventional one. 2662 */ 2663 if (f2fs_sb_has_blkzoned(sbi)) { 2664 segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg); 2665 hint = GET_SEC_FROM_SEG(sbi, segno); 2666 } 2667 2668 find_other_zone: 2669 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2670 if (secno >= MAIN_SECS(sbi)) { 2671 secno = find_first_zero_bit(free_i->free_secmap, 2672 MAIN_SECS(sbi)); 2673 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2674 } 2675 segno = GET_SEG_FROM_SEC(sbi, secno); 2676 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2677 2678 /* give up on finding another zone */ 2679 if (!init) 2680 goto got_it; 2681 if (sbi->secs_per_zone == 1) 2682 goto got_it; 2683 if (zoneno == old_zoneno) 2684 goto got_it; 2685 for (i = 0; i < NR_CURSEG_TYPE; i++) 2686 if (CURSEG_I(sbi, i)->zone == zoneno) 2687 break; 2688 2689 if (i < NR_CURSEG_TYPE) { 2690 /* zone is in user, try another */ 2691 if (zoneno + 1 >= total_zones) 2692 hint = 0; 2693 else 2694 hint = (zoneno + 1) * sbi->secs_per_zone; 2695 init = false; 2696 goto find_other_zone; 2697 } 2698 got_it: 2699 /* set it as dirty segment in free segmap */ 2700 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2701 __set_inuse(sbi, segno); 2702 *newseg = segno; 2703 spin_unlock(&free_i->segmap_lock); 2704 } 2705 2706 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2707 { 2708 struct curseg_info *curseg = CURSEG_I(sbi, type); 2709 struct summary_footer *sum_footer; 2710 unsigned short seg_type = curseg->seg_type; 2711 2712 curseg->inited = true; 2713 curseg->segno = curseg->next_segno; 2714 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2715 curseg->next_blkoff = 0; 2716 curseg->next_segno = NULL_SEGNO; 2717 2718 sum_footer = &(curseg->sum_blk->footer); 2719 memset(sum_footer, 0, sizeof(struct summary_footer)); 2720 2721 sanity_check_seg_type(sbi, seg_type); 2722 2723 if (IS_DATASEG(seg_type)) 2724 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2725 if (IS_NODESEG(seg_type)) 2726 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2727 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2728 } 2729 2730 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2731 { 2732 struct curseg_info *curseg = CURSEG_I(sbi, type); 2733 unsigned short seg_type = curseg->seg_type; 2734 2735 sanity_check_seg_type(sbi, seg_type); 2736 if (f2fs_need_rand_seg(sbi)) 2737 return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi)); 2738 2739 if (__is_large_section(sbi)) 2740 return curseg->segno; 2741 2742 /* inmem log may not locate on any segment after mount */ 2743 if (!curseg->inited) 2744 return 0; 2745 2746 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2747 return 0; 2748 2749 if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)) 2750 return 0; 2751 2752 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2753 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2754 2755 /* find segments from 0 to reuse freed segments */ 2756 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2757 return 0; 2758 2759 return curseg->segno; 2760 } 2761 2762 /* 2763 * Allocate a current working segment. 2764 * This function always allocates a free segment in LFS manner. 2765 */ 2766 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2767 { 2768 struct curseg_info *curseg = CURSEG_I(sbi, type); 2769 unsigned int segno = curseg->segno; 2770 bool pinning = type == CURSEG_COLD_DATA_PINNED; 2771 2772 if (curseg->inited) 2773 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno)); 2774 2775 segno = __get_next_segno(sbi, type); 2776 get_new_segment(sbi, &segno, new_sec, pinning); 2777 if (new_sec && pinning && 2778 !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) { 2779 __set_free(sbi, segno); 2780 return -EAGAIN; 2781 } 2782 2783 curseg->next_segno = segno; 2784 reset_curseg(sbi, type, 1); 2785 curseg->alloc_type = LFS; 2786 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2787 curseg->fragment_remained_chunk = 2788 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2789 return 0; 2790 } 2791 2792 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2793 int segno, block_t start) 2794 { 2795 struct seg_entry *se = get_seg_entry(sbi, segno); 2796 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2797 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2798 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2799 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2800 int i; 2801 2802 for (i = 0; i < entries; i++) 2803 target_map[i] = ckpt_map[i] | cur_map[i]; 2804 2805 return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start); 2806 } 2807 2808 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi, 2809 struct curseg_info *seg) 2810 { 2811 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); 2812 } 2813 2814 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2815 { 2816 return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi); 2817 } 2818 2819 /* 2820 * This function always allocates a used segment(from dirty seglist) by SSR 2821 * manner, so it should recover the existing segment information of valid blocks 2822 */ 2823 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2824 { 2825 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2826 struct curseg_info *curseg = CURSEG_I(sbi, type); 2827 unsigned int new_segno = curseg->next_segno; 2828 struct f2fs_summary_block *sum_node; 2829 struct page *sum_page; 2830 2831 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2832 2833 __set_test_and_inuse(sbi, new_segno); 2834 2835 mutex_lock(&dirty_i->seglist_lock); 2836 __remove_dirty_segment(sbi, new_segno, PRE); 2837 __remove_dirty_segment(sbi, new_segno, DIRTY); 2838 mutex_unlock(&dirty_i->seglist_lock); 2839 2840 reset_curseg(sbi, type, 1); 2841 curseg->alloc_type = SSR; 2842 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2843 2844 sum_page = f2fs_get_sum_page(sbi, new_segno); 2845 if (IS_ERR(sum_page)) { 2846 /* GC won't be able to use stale summary pages by cp_error */ 2847 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2848 return; 2849 } 2850 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2851 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2852 f2fs_put_page(sum_page, 1); 2853 } 2854 2855 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2856 int alloc_mode, unsigned long long age); 2857 2858 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2859 int target_type, int alloc_mode, 2860 unsigned long long age) 2861 { 2862 struct curseg_info *curseg = CURSEG_I(sbi, type); 2863 2864 curseg->seg_type = target_type; 2865 2866 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2867 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2868 2869 curseg->seg_type = se->type; 2870 change_curseg(sbi, type); 2871 } else { 2872 /* allocate cold segment by default */ 2873 curseg->seg_type = CURSEG_COLD_DATA; 2874 new_curseg(sbi, type, true); 2875 } 2876 stat_inc_seg_type(sbi, curseg); 2877 } 2878 2879 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2880 { 2881 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2882 2883 if (!sbi->am.atgc_enabled) 2884 return; 2885 2886 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2887 2888 mutex_lock(&curseg->curseg_mutex); 2889 down_write(&SIT_I(sbi)->sentry_lock); 2890 2891 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2892 2893 up_write(&SIT_I(sbi)->sentry_lock); 2894 mutex_unlock(&curseg->curseg_mutex); 2895 2896 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2897 2898 } 2899 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2900 { 2901 __f2fs_init_atgc_curseg(sbi); 2902 } 2903 2904 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2905 { 2906 struct curseg_info *curseg = CURSEG_I(sbi, type); 2907 2908 mutex_lock(&curseg->curseg_mutex); 2909 if (!curseg->inited) 2910 goto out; 2911 2912 if (get_valid_blocks(sbi, curseg->segno, false)) { 2913 write_sum_page(sbi, curseg->sum_blk, 2914 GET_SUM_BLOCK(sbi, curseg->segno)); 2915 } else { 2916 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2917 __set_test_and_free(sbi, curseg->segno, true); 2918 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2919 } 2920 out: 2921 mutex_unlock(&curseg->curseg_mutex); 2922 } 2923 2924 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2925 { 2926 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2927 2928 if (sbi->am.atgc_enabled) 2929 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2930 } 2931 2932 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2933 { 2934 struct curseg_info *curseg = CURSEG_I(sbi, type); 2935 2936 mutex_lock(&curseg->curseg_mutex); 2937 if (!curseg->inited) 2938 goto out; 2939 if (get_valid_blocks(sbi, curseg->segno, false)) 2940 goto out; 2941 2942 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2943 __set_test_and_inuse(sbi, curseg->segno); 2944 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2945 out: 2946 mutex_unlock(&curseg->curseg_mutex); 2947 } 2948 2949 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2950 { 2951 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2952 2953 if (sbi->am.atgc_enabled) 2954 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2955 } 2956 2957 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2958 int alloc_mode, unsigned long long age) 2959 { 2960 struct curseg_info *curseg = CURSEG_I(sbi, type); 2961 unsigned segno = NULL_SEGNO; 2962 unsigned short seg_type = curseg->seg_type; 2963 int i, cnt; 2964 bool reversed = false; 2965 2966 sanity_check_seg_type(sbi, seg_type); 2967 2968 /* f2fs_need_SSR() already forces to do this */ 2969 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2970 curseg->next_segno = segno; 2971 return 1; 2972 } 2973 2974 /* For node segments, let's do SSR more intensively */ 2975 if (IS_NODESEG(seg_type)) { 2976 if (seg_type >= CURSEG_WARM_NODE) { 2977 reversed = true; 2978 i = CURSEG_COLD_NODE; 2979 } else { 2980 i = CURSEG_HOT_NODE; 2981 } 2982 cnt = NR_CURSEG_NODE_TYPE; 2983 } else { 2984 if (seg_type >= CURSEG_WARM_DATA) { 2985 reversed = true; 2986 i = CURSEG_COLD_DATA; 2987 } else { 2988 i = CURSEG_HOT_DATA; 2989 } 2990 cnt = NR_CURSEG_DATA_TYPE; 2991 } 2992 2993 for (; cnt-- > 0; reversed ? i-- : i++) { 2994 if (i == seg_type) 2995 continue; 2996 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2997 curseg->next_segno = segno; 2998 return 1; 2999 } 3000 } 3001 3002 /* find valid_blocks=0 in dirty list */ 3003 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 3004 segno = get_free_segment(sbi); 3005 if (segno != NULL_SEGNO) { 3006 curseg->next_segno = segno; 3007 return 1; 3008 } 3009 } 3010 return 0; 3011 } 3012 3013 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 3014 { 3015 struct curseg_info *curseg = CURSEG_I(sbi, type); 3016 3017 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 3018 curseg->seg_type == CURSEG_WARM_NODE) 3019 return true; 3020 if (curseg->alloc_type == LFS && 3021 is_next_segment_free(sbi, curseg, type) && 3022 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3023 return true; 3024 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 3025 return true; 3026 return false; 3027 } 3028 3029 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3030 unsigned int start, unsigned int end) 3031 { 3032 struct curseg_info *curseg = CURSEG_I(sbi, type); 3033 unsigned int segno; 3034 3035 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3036 mutex_lock(&curseg->curseg_mutex); 3037 down_write(&SIT_I(sbi)->sentry_lock); 3038 3039 segno = CURSEG_I(sbi, type)->segno; 3040 if (segno < start || segno > end) 3041 goto unlock; 3042 3043 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 3044 change_curseg(sbi, type); 3045 else 3046 new_curseg(sbi, type, true); 3047 3048 stat_inc_seg_type(sbi, curseg); 3049 3050 locate_dirty_segment(sbi, segno); 3051 unlock: 3052 up_write(&SIT_I(sbi)->sentry_lock); 3053 3054 if (segno != curseg->segno) 3055 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 3056 type, segno, curseg->segno); 3057 3058 mutex_unlock(&curseg->curseg_mutex); 3059 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3060 } 3061 3062 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 3063 bool new_sec, bool force) 3064 { 3065 struct curseg_info *curseg = CURSEG_I(sbi, type); 3066 unsigned int old_segno; 3067 3068 if (!force && curseg->inited && 3069 !curseg->next_blkoff && 3070 !get_valid_blocks(sbi, curseg->segno, new_sec) && 3071 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 3072 return 0; 3073 3074 old_segno = curseg->segno; 3075 if (new_curseg(sbi, type, true)) 3076 return -EAGAIN; 3077 stat_inc_seg_type(sbi, curseg); 3078 locate_dirty_segment(sbi, old_segno); 3079 return 0; 3080 } 3081 3082 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3083 { 3084 int ret; 3085 3086 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3087 down_write(&SIT_I(sbi)->sentry_lock); 3088 ret = __allocate_new_segment(sbi, type, true, force); 3089 up_write(&SIT_I(sbi)->sentry_lock); 3090 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3091 3092 return ret; 3093 } 3094 3095 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi) 3096 { 3097 int err; 3098 bool gc_required = true; 3099 3100 retry: 3101 f2fs_lock_op(sbi); 3102 err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false); 3103 f2fs_unlock_op(sbi); 3104 3105 if (f2fs_sb_has_blkzoned(sbi) && err && gc_required) { 3106 f2fs_down_write(&sbi->gc_lock); 3107 f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1); 3108 f2fs_up_write(&sbi->gc_lock); 3109 3110 gc_required = false; 3111 goto retry; 3112 } 3113 3114 return err; 3115 } 3116 3117 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3118 { 3119 int i; 3120 3121 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3122 down_write(&SIT_I(sbi)->sentry_lock); 3123 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3124 __allocate_new_segment(sbi, i, false, false); 3125 up_write(&SIT_I(sbi)->sentry_lock); 3126 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3127 } 3128 3129 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3130 struct cp_control *cpc) 3131 { 3132 __u64 trim_start = cpc->trim_start; 3133 bool has_candidate = false; 3134 3135 down_write(&SIT_I(sbi)->sentry_lock); 3136 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3137 if (add_discard_addrs(sbi, cpc, true)) { 3138 has_candidate = true; 3139 break; 3140 } 3141 } 3142 up_write(&SIT_I(sbi)->sentry_lock); 3143 3144 cpc->trim_start = trim_start; 3145 return has_candidate; 3146 } 3147 3148 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3149 struct discard_policy *dpolicy, 3150 unsigned int start, unsigned int end) 3151 { 3152 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3153 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3154 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3155 struct discard_cmd *dc; 3156 struct blk_plug plug; 3157 int issued; 3158 unsigned int trimmed = 0; 3159 3160 next: 3161 issued = 0; 3162 3163 mutex_lock(&dcc->cmd_lock); 3164 if (unlikely(dcc->rbtree_check)) 3165 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 3166 3167 dc = __lookup_discard_cmd_ret(&dcc->root, start, 3168 &prev_dc, &next_dc, &insert_p, &insert_parent); 3169 if (!dc) 3170 dc = next_dc; 3171 3172 blk_start_plug(&plug); 3173 3174 while (dc && dc->di.lstart <= end) { 3175 struct rb_node *node; 3176 int err = 0; 3177 3178 if (dc->di.len < dpolicy->granularity) 3179 goto skip; 3180 3181 if (dc->state != D_PREP) { 3182 list_move_tail(&dc->list, &dcc->fstrim_list); 3183 goto skip; 3184 } 3185 3186 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3187 3188 if (issued >= dpolicy->max_requests) { 3189 start = dc->di.lstart + dc->di.len; 3190 3191 if (err) 3192 __remove_discard_cmd(sbi, dc); 3193 3194 blk_finish_plug(&plug); 3195 mutex_unlock(&dcc->cmd_lock); 3196 trimmed += __wait_all_discard_cmd(sbi, NULL); 3197 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3198 goto next; 3199 } 3200 skip: 3201 node = rb_next(&dc->rb_node); 3202 if (err) 3203 __remove_discard_cmd(sbi, dc); 3204 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3205 3206 if (fatal_signal_pending(current)) 3207 break; 3208 } 3209 3210 blk_finish_plug(&plug); 3211 mutex_unlock(&dcc->cmd_lock); 3212 3213 return trimmed; 3214 } 3215 3216 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3217 { 3218 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3219 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3220 unsigned int start_segno, end_segno; 3221 block_t start_block, end_block; 3222 struct cp_control cpc; 3223 struct discard_policy dpolicy; 3224 unsigned long long trimmed = 0; 3225 int err = 0; 3226 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3227 3228 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3229 return -EINVAL; 3230 3231 if (end < MAIN_BLKADDR(sbi)) 3232 goto out; 3233 3234 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3235 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3236 return -EFSCORRUPTED; 3237 } 3238 3239 /* start/end segment number in main_area */ 3240 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3241 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3242 GET_SEGNO(sbi, end); 3243 if (need_align) { 3244 start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi)); 3245 end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1; 3246 } 3247 3248 cpc.reason = CP_DISCARD; 3249 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3250 cpc.trim_start = start_segno; 3251 cpc.trim_end = end_segno; 3252 3253 if (sbi->discard_blks == 0) 3254 goto out; 3255 3256 f2fs_down_write(&sbi->gc_lock); 3257 stat_inc_cp_call_count(sbi, TOTAL_CALL); 3258 err = f2fs_write_checkpoint(sbi, &cpc); 3259 f2fs_up_write(&sbi->gc_lock); 3260 if (err) 3261 goto out; 3262 3263 /* 3264 * We filed discard candidates, but actually we don't need to wait for 3265 * all of them, since they'll be issued in idle time along with runtime 3266 * discard option. User configuration looks like using runtime discard 3267 * or periodic fstrim instead of it. 3268 */ 3269 if (f2fs_realtime_discard_enable(sbi)) 3270 goto out; 3271 3272 start_block = START_BLOCK(sbi, start_segno); 3273 end_block = START_BLOCK(sbi, end_segno + 1); 3274 3275 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3276 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3277 start_block, end_block); 3278 3279 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3280 start_block, end_block); 3281 out: 3282 if (!err) 3283 range->len = F2FS_BLK_TO_BYTES(trimmed); 3284 return err; 3285 } 3286 3287 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3288 { 3289 switch (hint) { 3290 case WRITE_LIFE_SHORT: 3291 return CURSEG_HOT_DATA; 3292 case WRITE_LIFE_EXTREME: 3293 return CURSEG_COLD_DATA; 3294 default: 3295 return CURSEG_WARM_DATA; 3296 } 3297 } 3298 3299 static int __get_segment_type_2(struct f2fs_io_info *fio) 3300 { 3301 if (fio->type == DATA) 3302 return CURSEG_HOT_DATA; 3303 else 3304 return CURSEG_HOT_NODE; 3305 } 3306 3307 static int __get_segment_type_4(struct f2fs_io_info *fio) 3308 { 3309 if (fio->type == DATA) { 3310 struct inode *inode = fio->page->mapping->host; 3311 3312 if (S_ISDIR(inode->i_mode)) 3313 return CURSEG_HOT_DATA; 3314 else 3315 return CURSEG_COLD_DATA; 3316 } else { 3317 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3318 return CURSEG_WARM_NODE; 3319 else 3320 return CURSEG_COLD_NODE; 3321 } 3322 } 3323 3324 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3325 { 3326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3327 struct extent_info ei = {}; 3328 3329 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3330 if (!ei.age) 3331 return NO_CHECK_TYPE; 3332 if (ei.age <= sbi->hot_data_age_threshold) 3333 return CURSEG_HOT_DATA; 3334 if (ei.age <= sbi->warm_data_age_threshold) 3335 return CURSEG_WARM_DATA; 3336 return CURSEG_COLD_DATA; 3337 } 3338 return NO_CHECK_TYPE; 3339 } 3340 3341 static int __get_segment_type_6(struct f2fs_io_info *fio) 3342 { 3343 if (fio->type == DATA) { 3344 struct inode *inode = fio->page->mapping->host; 3345 int type; 3346 3347 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3348 return CURSEG_COLD_DATA_PINNED; 3349 3350 if (page_private_gcing(fio->page)) { 3351 if (fio->sbi->am.atgc_enabled && 3352 (fio->io_type == FS_DATA_IO) && 3353 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3354 return CURSEG_ALL_DATA_ATGC; 3355 else 3356 return CURSEG_COLD_DATA; 3357 } 3358 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3359 return CURSEG_COLD_DATA; 3360 3361 type = __get_age_segment_type(inode, fio->page->index); 3362 if (type != NO_CHECK_TYPE) 3363 return type; 3364 3365 if (file_is_hot(inode) || 3366 is_inode_flag_set(inode, FI_HOT_DATA) || 3367 f2fs_is_cow_file(inode)) 3368 return CURSEG_HOT_DATA; 3369 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3370 } else { 3371 if (IS_DNODE(fio->page)) 3372 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3373 CURSEG_HOT_NODE; 3374 return CURSEG_COLD_NODE; 3375 } 3376 } 3377 3378 static int __get_segment_type(struct f2fs_io_info *fio) 3379 { 3380 int type = 0; 3381 3382 switch (F2FS_OPTION(fio->sbi).active_logs) { 3383 case 2: 3384 type = __get_segment_type_2(fio); 3385 break; 3386 case 4: 3387 type = __get_segment_type_4(fio); 3388 break; 3389 case 6: 3390 type = __get_segment_type_6(fio); 3391 break; 3392 default: 3393 f2fs_bug_on(fio->sbi, true); 3394 } 3395 3396 if (IS_HOT(type)) 3397 fio->temp = HOT; 3398 else if (IS_WARM(type)) 3399 fio->temp = WARM; 3400 else 3401 fio->temp = COLD; 3402 return type; 3403 } 3404 3405 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi, 3406 struct curseg_info *seg) 3407 { 3408 /* To allocate block chunks in different sizes, use random number */ 3409 if (--seg->fragment_remained_chunk > 0) 3410 return; 3411 3412 seg->fragment_remained_chunk = 3413 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 3414 seg->next_blkoff += 3415 get_random_u32_inclusive(1, sbi->max_fragment_hole); 3416 } 3417 3418 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3419 block_t old_blkaddr, block_t *new_blkaddr, 3420 struct f2fs_summary *sum, int type, 3421 struct f2fs_io_info *fio) 3422 { 3423 struct sit_info *sit_i = SIT_I(sbi); 3424 struct curseg_info *curseg = CURSEG_I(sbi, type); 3425 unsigned long long old_mtime; 3426 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3427 struct seg_entry *se = NULL; 3428 bool segment_full = false; 3429 3430 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3431 3432 mutex_lock(&curseg->curseg_mutex); 3433 down_write(&sit_i->sentry_lock); 3434 3435 if (from_gc) { 3436 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3437 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3438 sanity_check_seg_type(sbi, se->type); 3439 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3440 } 3441 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3442 3443 f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi)); 3444 3445 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3446 3447 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3448 if (curseg->alloc_type == SSR) { 3449 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg); 3450 } else { 3451 curseg->next_blkoff++; 3452 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 3453 f2fs_randomize_chunk(sbi, curseg); 3454 } 3455 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno)) 3456 segment_full = true; 3457 stat_inc_block_count(sbi, curseg); 3458 3459 if (from_gc) { 3460 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3461 } else { 3462 update_segment_mtime(sbi, old_blkaddr, 0); 3463 old_mtime = 0; 3464 } 3465 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3466 3467 /* 3468 * SIT information should be updated before segment allocation, 3469 * since SSR needs latest valid block information. 3470 */ 3471 update_sit_entry(sbi, *new_blkaddr, 1); 3472 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3473 update_sit_entry(sbi, old_blkaddr, -1); 3474 3475 /* 3476 * If the current segment is full, flush it out and replace it with a 3477 * new segment. 3478 */ 3479 if (segment_full) { 3480 if (type == CURSEG_COLD_DATA_PINNED && 3481 !((curseg->segno + 1) % sbi->segs_per_sec)) { 3482 write_sum_page(sbi, curseg->sum_blk, 3483 GET_SUM_BLOCK(sbi, curseg->segno)); 3484 goto skip_new_segment; 3485 } 3486 3487 if (from_gc) { 3488 get_atssr_segment(sbi, type, se->type, 3489 AT_SSR, se->mtime); 3490 } else { 3491 if (need_new_seg(sbi, type)) 3492 new_curseg(sbi, type, false); 3493 else 3494 change_curseg(sbi, type); 3495 stat_inc_seg_type(sbi, curseg); 3496 } 3497 } 3498 3499 skip_new_segment: 3500 /* 3501 * segment dirty status should be updated after segment allocation, 3502 * so we just need to update status only one time after previous 3503 * segment being closed. 3504 */ 3505 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3506 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3507 3508 if (IS_DATASEG(curseg->seg_type)) 3509 atomic64_inc(&sbi->allocated_data_blocks); 3510 3511 up_write(&sit_i->sentry_lock); 3512 3513 if (page && IS_NODESEG(curseg->seg_type)) { 3514 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3515 3516 f2fs_inode_chksum_set(sbi, page); 3517 } 3518 3519 if (fio) { 3520 struct f2fs_bio_info *io; 3521 3522 INIT_LIST_HEAD(&fio->list); 3523 fio->in_list = 1; 3524 io = sbi->write_io[fio->type] + fio->temp; 3525 spin_lock(&io->io_lock); 3526 list_add_tail(&fio->list, &io->io_list); 3527 spin_unlock(&io->io_lock); 3528 } 3529 3530 mutex_unlock(&curseg->curseg_mutex); 3531 3532 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3533 } 3534 3535 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3536 block_t blkaddr, unsigned int blkcnt) 3537 { 3538 if (!f2fs_is_multi_device(sbi)) 3539 return; 3540 3541 while (1) { 3542 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3543 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3544 3545 /* update device state for fsync */ 3546 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3547 3548 /* update device state for checkpoint */ 3549 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3550 spin_lock(&sbi->dev_lock); 3551 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3552 spin_unlock(&sbi->dev_lock); 3553 } 3554 3555 if (blkcnt <= blks) 3556 break; 3557 blkcnt -= blks; 3558 blkaddr += blks; 3559 } 3560 } 3561 3562 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3563 { 3564 int type = __get_segment_type(fio); 3565 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3566 3567 if (keep_order) 3568 f2fs_down_read(&fio->sbi->io_order_lock); 3569 3570 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3571 &fio->new_blkaddr, sum, type, fio); 3572 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3573 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr); 3574 3575 /* writeout dirty page into bdev */ 3576 f2fs_submit_page_write(fio); 3577 3578 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3579 3580 if (keep_order) 3581 f2fs_up_read(&fio->sbi->io_order_lock); 3582 } 3583 3584 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3585 enum iostat_type io_type) 3586 { 3587 struct f2fs_io_info fio = { 3588 .sbi = sbi, 3589 .type = META, 3590 .temp = HOT, 3591 .op = REQ_OP_WRITE, 3592 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3593 .old_blkaddr = page->index, 3594 .new_blkaddr = page->index, 3595 .page = page, 3596 .encrypted_page = NULL, 3597 .in_list = 0, 3598 }; 3599 3600 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3601 fio.op_flags &= ~REQ_META; 3602 3603 set_page_writeback(page); 3604 f2fs_submit_page_write(&fio); 3605 3606 stat_inc_meta_count(sbi, page->index); 3607 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3608 } 3609 3610 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3611 { 3612 struct f2fs_summary sum; 3613 3614 set_summary(&sum, nid, 0, 0); 3615 do_write_page(&sum, fio); 3616 3617 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3618 } 3619 3620 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3621 struct f2fs_io_info *fio) 3622 { 3623 struct f2fs_sb_info *sbi = fio->sbi; 3624 struct f2fs_summary sum; 3625 3626 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3627 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3628 f2fs_update_age_extent_cache(dn); 3629 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3630 do_write_page(&sum, fio); 3631 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3632 3633 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3634 } 3635 3636 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3637 { 3638 int err; 3639 struct f2fs_sb_info *sbi = fio->sbi; 3640 unsigned int segno; 3641 3642 fio->new_blkaddr = fio->old_blkaddr; 3643 /* i/o temperature is needed for passing down write hints */ 3644 __get_segment_type(fio); 3645 3646 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3647 3648 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3649 set_sbi_flag(sbi, SBI_NEED_FSCK); 3650 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3651 __func__, segno); 3652 err = -EFSCORRUPTED; 3653 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 3654 goto drop_bio; 3655 } 3656 3657 if (f2fs_cp_error(sbi)) { 3658 err = -EIO; 3659 goto drop_bio; 3660 } 3661 3662 if (fio->meta_gc) 3663 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1); 3664 3665 stat_inc_inplace_blocks(fio->sbi); 3666 3667 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi)) 3668 err = f2fs_merge_page_bio(fio); 3669 else 3670 err = f2fs_submit_page_bio(fio); 3671 if (!err) { 3672 f2fs_update_device_state(fio->sbi, fio->ino, 3673 fio->new_blkaddr, 1); 3674 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 3675 fio->io_type, F2FS_BLKSIZE); 3676 } 3677 3678 return err; 3679 drop_bio: 3680 if (fio->bio && *(fio->bio)) { 3681 struct bio *bio = *(fio->bio); 3682 3683 bio->bi_status = BLK_STS_IOERR; 3684 bio_endio(bio); 3685 *(fio->bio) = NULL; 3686 } 3687 return err; 3688 } 3689 3690 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3691 unsigned int segno) 3692 { 3693 int i; 3694 3695 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3696 if (CURSEG_I(sbi, i)->segno == segno) 3697 break; 3698 } 3699 return i; 3700 } 3701 3702 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3703 block_t old_blkaddr, block_t new_blkaddr, 3704 bool recover_curseg, bool recover_newaddr, 3705 bool from_gc) 3706 { 3707 struct sit_info *sit_i = SIT_I(sbi); 3708 struct curseg_info *curseg; 3709 unsigned int segno, old_cursegno; 3710 struct seg_entry *se; 3711 int type; 3712 unsigned short old_blkoff; 3713 unsigned char old_alloc_type; 3714 3715 segno = GET_SEGNO(sbi, new_blkaddr); 3716 se = get_seg_entry(sbi, segno); 3717 type = se->type; 3718 3719 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3720 3721 if (!recover_curseg) { 3722 /* for recovery flow */ 3723 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3724 if (old_blkaddr == NULL_ADDR) 3725 type = CURSEG_COLD_DATA; 3726 else 3727 type = CURSEG_WARM_DATA; 3728 } 3729 } else { 3730 if (IS_CURSEG(sbi, segno)) { 3731 /* se->type is volatile as SSR allocation */ 3732 type = __f2fs_get_curseg(sbi, segno); 3733 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3734 } else { 3735 type = CURSEG_WARM_DATA; 3736 } 3737 } 3738 3739 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3740 curseg = CURSEG_I(sbi, type); 3741 3742 mutex_lock(&curseg->curseg_mutex); 3743 down_write(&sit_i->sentry_lock); 3744 3745 old_cursegno = curseg->segno; 3746 old_blkoff = curseg->next_blkoff; 3747 old_alloc_type = curseg->alloc_type; 3748 3749 /* change the current segment */ 3750 if (segno != curseg->segno) { 3751 curseg->next_segno = segno; 3752 change_curseg(sbi, type); 3753 } 3754 3755 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3756 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3757 3758 if (!recover_curseg || recover_newaddr) { 3759 if (!from_gc) 3760 update_segment_mtime(sbi, new_blkaddr, 0); 3761 update_sit_entry(sbi, new_blkaddr, 1); 3762 } 3763 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3764 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 3765 if (!from_gc) 3766 update_segment_mtime(sbi, old_blkaddr, 0); 3767 update_sit_entry(sbi, old_blkaddr, -1); 3768 } 3769 3770 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3771 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3772 3773 locate_dirty_segment(sbi, old_cursegno); 3774 3775 if (recover_curseg) { 3776 if (old_cursegno != curseg->segno) { 3777 curseg->next_segno = old_cursegno; 3778 change_curseg(sbi, type); 3779 } 3780 curseg->next_blkoff = old_blkoff; 3781 curseg->alloc_type = old_alloc_type; 3782 } 3783 3784 up_write(&sit_i->sentry_lock); 3785 mutex_unlock(&curseg->curseg_mutex); 3786 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3787 } 3788 3789 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3790 block_t old_addr, block_t new_addr, 3791 unsigned char version, bool recover_curseg, 3792 bool recover_newaddr) 3793 { 3794 struct f2fs_summary sum; 3795 3796 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3797 3798 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3799 recover_curseg, recover_newaddr, false); 3800 3801 f2fs_update_data_blkaddr(dn, new_addr); 3802 } 3803 3804 void f2fs_wait_on_page_writeback(struct page *page, 3805 enum page_type type, bool ordered, bool locked) 3806 { 3807 if (PageWriteback(page)) { 3808 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3809 3810 /* submit cached LFS IO */ 3811 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3812 /* submit cached IPU IO */ 3813 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3814 if (ordered) { 3815 wait_on_page_writeback(page); 3816 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3817 } else { 3818 wait_for_stable_page(page); 3819 } 3820 } 3821 } 3822 3823 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3824 { 3825 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3826 struct page *cpage; 3827 3828 if (!f2fs_meta_inode_gc_required(inode)) 3829 return; 3830 3831 if (!__is_valid_data_blkaddr(blkaddr)) 3832 return; 3833 3834 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3835 if (cpage) { 3836 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3837 f2fs_put_page(cpage, 1); 3838 } 3839 } 3840 3841 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3842 block_t len) 3843 { 3844 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3845 block_t i; 3846 3847 if (!f2fs_meta_inode_gc_required(inode)) 3848 return; 3849 3850 for (i = 0; i < len; i++) 3851 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3852 3853 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len); 3854 } 3855 3856 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3857 { 3858 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3859 struct curseg_info *seg_i; 3860 unsigned char *kaddr; 3861 struct page *page; 3862 block_t start; 3863 int i, j, offset; 3864 3865 start = start_sum_block(sbi); 3866 3867 page = f2fs_get_meta_page(sbi, start++); 3868 if (IS_ERR(page)) 3869 return PTR_ERR(page); 3870 kaddr = (unsigned char *)page_address(page); 3871 3872 /* Step 1: restore nat cache */ 3873 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3874 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3875 3876 /* Step 2: restore sit cache */ 3877 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3878 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3879 offset = 2 * SUM_JOURNAL_SIZE; 3880 3881 /* Step 3: restore summary entries */ 3882 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3883 unsigned short blk_off; 3884 unsigned int segno; 3885 3886 seg_i = CURSEG_I(sbi, i); 3887 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3888 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3889 seg_i->next_segno = segno; 3890 reset_curseg(sbi, i, 0); 3891 seg_i->alloc_type = ckpt->alloc_type[i]; 3892 seg_i->next_blkoff = blk_off; 3893 3894 if (seg_i->alloc_type == SSR) 3895 blk_off = BLKS_PER_SEG(sbi); 3896 3897 for (j = 0; j < blk_off; j++) { 3898 struct f2fs_summary *s; 3899 3900 s = (struct f2fs_summary *)(kaddr + offset); 3901 seg_i->sum_blk->entries[j] = *s; 3902 offset += SUMMARY_SIZE; 3903 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3904 SUM_FOOTER_SIZE) 3905 continue; 3906 3907 f2fs_put_page(page, 1); 3908 page = NULL; 3909 3910 page = f2fs_get_meta_page(sbi, start++); 3911 if (IS_ERR(page)) 3912 return PTR_ERR(page); 3913 kaddr = (unsigned char *)page_address(page); 3914 offset = 0; 3915 } 3916 } 3917 f2fs_put_page(page, 1); 3918 return 0; 3919 } 3920 3921 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3922 { 3923 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3924 struct f2fs_summary_block *sum; 3925 struct curseg_info *curseg; 3926 struct page *new; 3927 unsigned short blk_off; 3928 unsigned int segno = 0; 3929 block_t blk_addr = 0; 3930 int err = 0; 3931 3932 /* get segment number and block addr */ 3933 if (IS_DATASEG(type)) { 3934 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3935 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3936 CURSEG_HOT_DATA]); 3937 if (__exist_node_summaries(sbi)) 3938 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3939 else 3940 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3941 } else { 3942 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3943 CURSEG_HOT_NODE]); 3944 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3945 CURSEG_HOT_NODE]); 3946 if (__exist_node_summaries(sbi)) 3947 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3948 type - CURSEG_HOT_NODE); 3949 else 3950 blk_addr = GET_SUM_BLOCK(sbi, segno); 3951 } 3952 3953 new = f2fs_get_meta_page(sbi, blk_addr); 3954 if (IS_ERR(new)) 3955 return PTR_ERR(new); 3956 sum = (struct f2fs_summary_block *)page_address(new); 3957 3958 if (IS_NODESEG(type)) { 3959 if (__exist_node_summaries(sbi)) { 3960 struct f2fs_summary *ns = &sum->entries[0]; 3961 int i; 3962 3963 for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) { 3964 ns->version = 0; 3965 ns->ofs_in_node = 0; 3966 } 3967 } else { 3968 err = f2fs_restore_node_summary(sbi, segno, sum); 3969 if (err) 3970 goto out; 3971 } 3972 } 3973 3974 /* set uncompleted segment to curseg */ 3975 curseg = CURSEG_I(sbi, type); 3976 mutex_lock(&curseg->curseg_mutex); 3977 3978 /* update journal info */ 3979 down_write(&curseg->journal_rwsem); 3980 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3981 up_write(&curseg->journal_rwsem); 3982 3983 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3984 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3985 curseg->next_segno = segno; 3986 reset_curseg(sbi, type, 0); 3987 curseg->alloc_type = ckpt->alloc_type[type]; 3988 curseg->next_blkoff = blk_off; 3989 mutex_unlock(&curseg->curseg_mutex); 3990 out: 3991 f2fs_put_page(new, 1); 3992 return err; 3993 } 3994 3995 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3996 { 3997 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3998 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3999 int type = CURSEG_HOT_DATA; 4000 int err; 4001 4002 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 4003 int npages = f2fs_npages_for_summary_flush(sbi, true); 4004 4005 if (npages >= 2) 4006 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 4007 META_CP, true); 4008 4009 /* restore for compacted data summary */ 4010 err = read_compacted_summaries(sbi); 4011 if (err) 4012 return err; 4013 type = CURSEG_HOT_NODE; 4014 } 4015 4016 if (__exist_node_summaries(sbi)) 4017 f2fs_ra_meta_pages(sbi, 4018 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 4019 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 4020 4021 for (; type <= CURSEG_COLD_NODE; type++) { 4022 err = read_normal_summaries(sbi, type); 4023 if (err) 4024 return err; 4025 } 4026 4027 /* sanity check for summary blocks */ 4028 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 4029 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 4030 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 4031 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 4032 return -EINVAL; 4033 } 4034 4035 return 0; 4036 } 4037 4038 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 4039 { 4040 struct page *page; 4041 unsigned char *kaddr; 4042 struct f2fs_summary *summary; 4043 struct curseg_info *seg_i; 4044 int written_size = 0; 4045 int i, j; 4046 4047 page = f2fs_grab_meta_page(sbi, blkaddr++); 4048 kaddr = (unsigned char *)page_address(page); 4049 memset(kaddr, 0, PAGE_SIZE); 4050 4051 /* Step 1: write nat cache */ 4052 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4053 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 4054 written_size += SUM_JOURNAL_SIZE; 4055 4056 /* Step 2: write sit cache */ 4057 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4058 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 4059 written_size += SUM_JOURNAL_SIZE; 4060 4061 /* Step 3: write summary entries */ 4062 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4063 seg_i = CURSEG_I(sbi, i); 4064 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) { 4065 if (!page) { 4066 page = f2fs_grab_meta_page(sbi, blkaddr++); 4067 kaddr = (unsigned char *)page_address(page); 4068 memset(kaddr, 0, PAGE_SIZE); 4069 written_size = 0; 4070 } 4071 summary = (struct f2fs_summary *)(kaddr + written_size); 4072 *summary = seg_i->sum_blk->entries[j]; 4073 written_size += SUMMARY_SIZE; 4074 4075 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 4076 SUM_FOOTER_SIZE) 4077 continue; 4078 4079 set_page_dirty(page); 4080 f2fs_put_page(page, 1); 4081 page = NULL; 4082 } 4083 } 4084 if (page) { 4085 set_page_dirty(page); 4086 f2fs_put_page(page, 1); 4087 } 4088 } 4089 4090 static void write_normal_summaries(struct f2fs_sb_info *sbi, 4091 block_t blkaddr, int type) 4092 { 4093 int i, end; 4094 4095 if (IS_DATASEG(type)) 4096 end = type + NR_CURSEG_DATA_TYPE; 4097 else 4098 end = type + NR_CURSEG_NODE_TYPE; 4099 4100 for (i = type; i < end; i++) 4101 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4102 } 4103 4104 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4105 { 4106 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4107 write_compacted_summaries(sbi, start_blk); 4108 else 4109 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4110 } 4111 4112 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4113 { 4114 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4115 } 4116 4117 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4118 unsigned int val, int alloc) 4119 { 4120 int i; 4121 4122 if (type == NAT_JOURNAL) { 4123 for (i = 0; i < nats_in_cursum(journal); i++) { 4124 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4125 return i; 4126 } 4127 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4128 return update_nats_in_cursum(journal, 1); 4129 } else if (type == SIT_JOURNAL) { 4130 for (i = 0; i < sits_in_cursum(journal); i++) 4131 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4132 return i; 4133 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4134 return update_sits_in_cursum(journal, 1); 4135 } 4136 return -1; 4137 } 4138 4139 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4140 unsigned int segno) 4141 { 4142 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4143 } 4144 4145 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4146 unsigned int start) 4147 { 4148 struct sit_info *sit_i = SIT_I(sbi); 4149 struct page *page; 4150 pgoff_t src_off, dst_off; 4151 4152 src_off = current_sit_addr(sbi, start); 4153 dst_off = next_sit_addr(sbi, src_off); 4154 4155 page = f2fs_grab_meta_page(sbi, dst_off); 4156 seg_info_to_sit_page(sbi, page, start); 4157 4158 set_page_dirty(page); 4159 set_to_next_sit(sit_i, start); 4160 4161 return page; 4162 } 4163 4164 static struct sit_entry_set *grab_sit_entry_set(void) 4165 { 4166 struct sit_entry_set *ses = 4167 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4168 GFP_NOFS, true, NULL); 4169 4170 ses->entry_cnt = 0; 4171 INIT_LIST_HEAD(&ses->set_list); 4172 return ses; 4173 } 4174 4175 static void release_sit_entry_set(struct sit_entry_set *ses) 4176 { 4177 list_del(&ses->set_list); 4178 kmem_cache_free(sit_entry_set_slab, ses); 4179 } 4180 4181 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4182 struct list_head *head) 4183 { 4184 struct sit_entry_set *next = ses; 4185 4186 if (list_is_last(&ses->set_list, head)) 4187 return; 4188 4189 list_for_each_entry_continue(next, head, set_list) 4190 if (ses->entry_cnt <= next->entry_cnt) { 4191 list_move_tail(&ses->set_list, &next->set_list); 4192 return; 4193 } 4194 4195 list_move_tail(&ses->set_list, head); 4196 } 4197 4198 static void add_sit_entry(unsigned int segno, struct list_head *head) 4199 { 4200 struct sit_entry_set *ses; 4201 unsigned int start_segno = START_SEGNO(segno); 4202 4203 list_for_each_entry(ses, head, set_list) { 4204 if (ses->start_segno == start_segno) { 4205 ses->entry_cnt++; 4206 adjust_sit_entry_set(ses, head); 4207 return; 4208 } 4209 } 4210 4211 ses = grab_sit_entry_set(); 4212 4213 ses->start_segno = start_segno; 4214 ses->entry_cnt++; 4215 list_add(&ses->set_list, head); 4216 } 4217 4218 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4219 { 4220 struct f2fs_sm_info *sm_info = SM_I(sbi); 4221 struct list_head *set_list = &sm_info->sit_entry_set; 4222 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4223 unsigned int segno; 4224 4225 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4226 add_sit_entry(segno, set_list); 4227 } 4228 4229 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4230 { 4231 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4232 struct f2fs_journal *journal = curseg->journal; 4233 int i; 4234 4235 down_write(&curseg->journal_rwsem); 4236 for (i = 0; i < sits_in_cursum(journal); i++) { 4237 unsigned int segno; 4238 bool dirtied; 4239 4240 segno = le32_to_cpu(segno_in_journal(journal, i)); 4241 dirtied = __mark_sit_entry_dirty(sbi, segno); 4242 4243 if (!dirtied) 4244 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4245 } 4246 update_sits_in_cursum(journal, -i); 4247 up_write(&curseg->journal_rwsem); 4248 } 4249 4250 /* 4251 * CP calls this function, which flushes SIT entries including sit_journal, 4252 * and moves prefree segs to free segs. 4253 */ 4254 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4255 { 4256 struct sit_info *sit_i = SIT_I(sbi); 4257 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4258 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4259 struct f2fs_journal *journal = curseg->journal; 4260 struct sit_entry_set *ses, *tmp; 4261 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4262 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4263 struct seg_entry *se; 4264 4265 down_write(&sit_i->sentry_lock); 4266 4267 if (!sit_i->dirty_sentries) 4268 goto out; 4269 4270 /* 4271 * add and account sit entries of dirty bitmap in sit entry 4272 * set temporarily 4273 */ 4274 add_sits_in_set(sbi); 4275 4276 /* 4277 * if there are no enough space in journal to store dirty sit 4278 * entries, remove all entries from journal and add and account 4279 * them in sit entry set. 4280 */ 4281 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4282 !to_journal) 4283 remove_sits_in_journal(sbi); 4284 4285 /* 4286 * there are two steps to flush sit entries: 4287 * #1, flush sit entries to journal in current cold data summary block. 4288 * #2, flush sit entries to sit page. 4289 */ 4290 list_for_each_entry_safe(ses, tmp, head, set_list) { 4291 struct page *page = NULL; 4292 struct f2fs_sit_block *raw_sit = NULL; 4293 unsigned int start_segno = ses->start_segno; 4294 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4295 (unsigned long)MAIN_SEGS(sbi)); 4296 unsigned int segno = start_segno; 4297 4298 if (to_journal && 4299 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4300 to_journal = false; 4301 4302 if (to_journal) { 4303 down_write(&curseg->journal_rwsem); 4304 } else { 4305 page = get_next_sit_page(sbi, start_segno); 4306 raw_sit = page_address(page); 4307 } 4308 4309 /* flush dirty sit entries in region of current sit set */ 4310 for_each_set_bit_from(segno, bitmap, end) { 4311 int offset, sit_offset; 4312 4313 se = get_seg_entry(sbi, segno); 4314 #ifdef CONFIG_F2FS_CHECK_FS 4315 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4316 SIT_VBLOCK_MAP_SIZE)) 4317 f2fs_bug_on(sbi, 1); 4318 #endif 4319 4320 /* add discard candidates */ 4321 if (!(cpc->reason & CP_DISCARD)) { 4322 cpc->trim_start = segno; 4323 add_discard_addrs(sbi, cpc, false); 4324 } 4325 4326 if (to_journal) { 4327 offset = f2fs_lookup_journal_in_cursum(journal, 4328 SIT_JOURNAL, segno, 1); 4329 f2fs_bug_on(sbi, offset < 0); 4330 segno_in_journal(journal, offset) = 4331 cpu_to_le32(segno); 4332 seg_info_to_raw_sit(se, 4333 &sit_in_journal(journal, offset)); 4334 check_block_count(sbi, segno, 4335 &sit_in_journal(journal, offset)); 4336 } else { 4337 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4338 seg_info_to_raw_sit(se, 4339 &raw_sit->entries[sit_offset]); 4340 check_block_count(sbi, segno, 4341 &raw_sit->entries[sit_offset]); 4342 } 4343 4344 __clear_bit(segno, bitmap); 4345 sit_i->dirty_sentries--; 4346 ses->entry_cnt--; 4347 } 4348 4349 if (to_journal) 4350 up_write(&curseg->journal_rwsem); 4351 else 4352 f2fs_put_page(page, 1); 4353 4354 f2fs_bug_on(sbi, ses->entry_cnt); 4355 release_sit_entry_set(ses); 4356 } 4357 4358 f2fs_bug_on(sbi, !list_empty(head)); 4359 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4360 out: 4361 if (cpc->reason & CP_DISCARD) { 4362 __u64 trim_start = cpc->trim_start; 4363 4364 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4365 add_discard_addrs(sbi, cpc, false); 4366 4367 cpc->trim_start = trim_start; 4368 } 4369 up_write(&sit_i->sentry_lock); 4370 4371 set_prefree_as_free_segments(sbi); 4372 } 4373 4374 static int build_sit_info(struct f2fs_sb_info *sbi) 4375 { 4376 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4377 struct sit_info *sit_i; 4378 unsigned int sit_segs, start; 4379 char *src_bitmap, *bitmap; 4380 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4381 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4382 4383 /* allocate memory for SIT information */ 4384 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4385 if (!sit_i) 4386 return -ENOMEM; 4387 4388 SM_I(sbi)->sit_info = sit_i; 4389 4390 sit_i->sentries = 4391 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4392 MAIN_SEGS(sbi)), 4393 GFP_KERNEL); 4394 if (!sit_i->sentries) 4395 return -ENOMEM; 4396 4397 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4398 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4399 GFP_KERNEL); 4400 if (!sit_i->dirty_sentries_bitmap) 4401 return -ENOMEM; 4402 4403 #ifdef CONFIG_F2FS_CHECK_FS 4404 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4405 #else 4406 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4407 #endif 4408 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4409 if (!sit_i->bitmap) 4410 return -ENOMEM; 4411 4412 bitmap = sit_i->bitmap; 4413 4414 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4415 sit_i->sentries[start].cur_valid_map = bitmap; 4416 bitmap += SIT_VBLOCK_MAP_SIZE; 4417 4418 sit_i->sentries[start].ckpt_valid_map = bitmap; 4419 bitmap += SIT_VBLOCK_MAP_SIZE; 4420 4421 #ifdef CONFIG_F2FS_CHECK_FS 4422 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4423 bitmap += SIT_VBLOCK_MAP_SIZE; 4424 #endif 4425 4426 if (discard_map) { 4427 sit_i->sentries[start].discard_map = bitmap; 4428 bitmap += SIT_VBLOCK_MAP_SIZE; 4429 } 4430 } 4431 4432 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4433 if (!sit_i->tmp_map) 4434 return -ENOMEM; 4435 4436 if (__is_large_section(sbi)) { 4437 sit_i->sec_entries = 4438 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4439 MAIN_SECS(sbi)), 4440 GFP_KERNEL); 4441 if (!sit_i->sec_entries) 4442 return -ENOMEM; 4443 } 4444 4445 /* get information related with SIT */ 4446 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4447 4448 /* setup SIT bitmap from ckeckpoint pack */ 4449 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4450 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4451 4452 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4453 if (!sit_i->sit_bitmap) 4454 return -ENOMEM; 4455 4456 #ifdef CONFIG_F2FS_CHECK_FS 4457 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4458 sit_bitmap_size, GFP_KERNEL); 4459 if (!sit_i->sit_bitmap_mir) 4460 return -ENOMEM; 4461 4462 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4463 main_bitmap_size, GFP_KERNEL); 4464 if (!sit_i->invalid_segmap) 4465 return -ENOMEM; 4466 #endif 4467 4468 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4469 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4470 sit_i->written_valid_blocks = 0; 4471 sit_i->bitmap_size = sit_bitmap_size; 4472 sit_i->dirty_sentries = 0; 4473 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4474 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4475 sit_i->mounted_time = ktime_get_boottime_seconds(); 4476 init_rwsem(&sit_i->sentry_lock); 4477 return 0; 4478 } 4479 4480 static int build_free_segmap(struct f2fs_sb_info *sbi) 4481 { 4482 struct free_segmap_info *free_i; 4483 unsigned int bitmap_size, sec_bitmap_size; 4484 4485 /* allocate memory for free segmap information */ 4486 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4487 if (!free_i) 4488 return -ENOMEM; 4489 4490 SM_I(sbi)->free_info = free_i; 4491 4492 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4493 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4494 if (!free_i->free_segmap) 4495 return -ENOMEM; 4496 4497 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4498 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4499 if (!free_i->free_secmap) 4500 return -ENOMEM; 4501 4502 /* set all segments as dirty temporarily */ 4503 memset(free_i->free_segmap, 0xff, bitmap_size); 4504 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4505 4506 /* init free segmap information */ 4507 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4508 free_i->free_segments = 0; 4509 free_i->free_sections = 0; 4510 spin_lock_init(&free_i->segmap_lock); 4511 return 0; 4512 } 4513 4514 static int build_curseg(struct f2fs_sb_info *sbi) 4515 { 4516 struct curseg_info *array; 4517 int i; 4518 4519 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4520 sizeof(*array)), GFP_KERNEL); 4521 if (!array) 4522 return -ENOMEM; 4523 4524 SM_I(sbi)->curseg_array = array; 4525 4526 for (i = 0; i < NO_CHECK_TYPE; i++) { 4527 mutex_init(&array[i].curseg_mutex); 4528 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4529 if (!array[i].sum_blk) 4530 return -ENOMEM; 4531 init_rwsem(&array[i].journal_rwsem); 4532 array[i].journal = f2fs_kzalloc(sbi, 4533 sizeof(struct f2fs_journal), GFP_KERNEL); 4534 if (!array[i].journal) 4535 return -ENOMEM; 4536 if (i < NR_PERSISTENT_LOG) 4537 array[i].seg_type = CURSEG_HOT_DATA + i; 4538 else if (i == CURSEG_COLD_DATA_PINNED) 4539 array[i].seg_type = CURSEG_COLD_DATA; 4540 else if (i == CURSEG_ALL_DATA_ATGC) 4541 array[i].seg_type = CURSEG_COLD_DATA; 4542 array[i].segno = NULL_SEGNO; 4543 array[i].next_blkoff = 0; 4544 array[i].inited = false; 4545 } 4546 return restore_curseg_summaries(sbi); 4547 } 4548 4549 static int build_sit_entries(struct f2fs_sb_info *sbi) 4550 { 4551 struct sit_info *sit_i = SIT_I(sbi); 4552 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4553 struct f2fs_journal *journal = curseg->journal; 4554 struct seg_entry *se; 4555 struct f2fs_sit_entry sit; 4556 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4557 unsigned int i, start, end; 4558 unsigned int readed, start_blk = 0; 4559 int err = 0; 4560 block_t sit_valid_blocks[2] = {0, 0}; 4561 4562 do { 4563 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4564 META_SIT, true); 4565 4566 start = start_blk * sit_i->sents_per_block; 4567 end = (start_blk + readed) * sit_i->sents_per_block; 4568 4569 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4570 struct f2fs_sit_block *sit_blk; 4571 struct page *page; 4572 4573 se = &sit_i->sentries[start]; 4574 page = get_current_sit_page(sbi, start); 4575 if (IS_ERR(page)) 4576 return PTR_ERR(page); 4577 sit_blk = (struct f2fs_sit_block *)page_address(page); 4578 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4579 f2fs_put_page(page, 1); 4580 4581 err = check_block_count(sbi, start, &sit); 4582 if (err) 4583 return err; 4584 seg_info_from_raw_sit(se, &sit); 4585 4586 if (se->type >= NR_PERSISTENT_LOG) { 4587 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4588 se->type, start); 4589 f2fs_handle_error(sbi, 4590 ERROR_INCONSISTENT_SUM_TYPE); 4591 return -EFSCORRUPTED; 4592 } 4593 4594 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4595 4596 if (!f2fs_block_unit_discard(sbi)) 4597 goto init_discard_map_done; 4598 4599 /* build discard map only one time */ 4600 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4601 memset(se->discard_map, 0xff, 4602 SIT_VBLOCK_MAP_SIZE); 4603 goto init_discard_map_done; 4604 } 4605 memcpy(se->discard_map, se->cur_valid_map, 4606 SIT_VBLOCK_MAP_SIZE); 4607 sbi->discard_blks += BLKS_PER_SEG(sbi) - 4608 se->valid_blocks; 4609 init_discard_map_done: 4610 if (__is_large_section(sbi)) 4611 get_sec_entry(sbi, start)->valid_blocks += 4612 se->valid_blocks; 4613 } 4614 start_blk += readed; 4615 } while (start_blk < sit_blk_cnt); 4616 4617 down_read(&curseg->journal_rwsem); 4618 for (i = 0; i < sits_in_cursum(journal); i++) { 4619 unsigned int old_valid_blocks; 4620 4621 start = le32_to_cpu(segno_in_journal(journal, i)); 4622 if (start >= MAIN_SEGS(sbi)) { 4623 f2fs_err(sbi, "Wrong journal entry on segno %u", 4624 start); 4625 err = -EFSCORRUPTED; 4626 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4627 break; 4628 } 4629 4630 se = &sit_i->sentries[start]; 4631 sit = sit_in_journal(journal, i); 4632 4633 old_valid_blocks = se->valid_blocks; 4634 4635 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4636 4637 err = check_block_count(sbi, start, &sit); 4638 if (err) 4639 break; 4640 seg_info_from_raw_sit(se, &sit); 4641 4642 if (se->type >= NR_PERSISTENT_LOG) { 4643 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4644 se->type, start); 4645 err = -EFSCORRUPTED; 4646 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4647 break; 4648 } 4649 4650 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4651 4652 if (f2fs_block_unit_discard(sbi)) { 4653 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4654 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4655 } else { 4656 memcpy(se->discard_map, se->cur_valid_map, 4657 SIT_VBLOCK_MAP_SIZE); 4658 sbi->discard_blks += old_valid_blocks; 4659 sbi->discard_blks -= se->valid_blocks; 4660 } 4661 } 4662 4663 if (__is_large_section(sbi)) { 4664 get_sec_entry(sbi, start)->valid_blocks += 4665 se->valid_blocks; 4666 get_sec_entry(sbi, start)->valid_blocks -= 4667 old_valid_blocks; 4668 } 4669 } 4670 up_read(&curseg->journal_rwsem); 4671 4672 if (err) 4673 return err; 4674 4675 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4676 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4677 sit_valid_blocks[NODE], valid_node_count(sbi)); 4678 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 4679 return -EFSCORRUPTED; 4680 } 4681 4682 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4683 valid_user_blocks(sbi)) { 4684 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4685 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4686 valid_user_blocks(sbi)); 4687 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 4688 return -EFSCORRUPTED; 4689 } 4690 4691 return 0; 4692 } 4693 4694 static void init_free_segmap(struct f2fs_sb_info *sbi) 4695 { 4696 unsigned int start; 4697 int type; 4698 struct seg_entry *sentry; 4699 4700 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4701 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4702 continue; 4703 sentry = get_seg_entry(sbi, start); 4704 if (!sentry->valid_blocks) 4705 __set_free(sbi, start); 4706 else 4707 SIT_I(sbi)->written_valid_blocks += 4708 sentry->valid_blocks; 4709 } 4710 4711 /* set use the current segments */ 4712 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4713 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4714 4715 __set_test_and_inuse(sbi, curseg_t->segno); 4716 } 4717 } 4718 4719 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4720 { 4721 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4722 struct free_segmap_info *free_i = FREE_I(sbi); 4723 unsigned int segno = 0, offset = 0, secno; 4724 block_t valid_blocks, usable_blks_in_seg; 4725 4726 while (1) { 4727 /* find dirty segment based on free segmap */ 4728 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4729 if (segno >= MAIN_SEGS(sbi)) 4730 break; 4731 offset = segno + 1; 4732 valid_blocks = get_valid_blocks(sbi, segno, false); 4733 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4734 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4735 continue; 4736 if (valid_blocks > usable_blks_in_seg) { 4737 f2fs_bug_on(sbi, 1); 4738 continue; 4739 } 4740 mutex_lock(&dirty_i->seglist_lock); 4741 __locate_dirty_segment(sbi, segno, DIRTY); 4742 mutex_unlock(&dirty_i->seglist_lock); 4743 } 4744 4745 if (!__is_large_section(sbi)) 4746 return; 4747 4748 mutex_lock(&dirty_i->seglist_lock); 4749 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 4750 valid_blocks = get_valid_blocks(sbi, segno, true); 4751 secno = GET_SEC_FROM_SEG(sbi, segno); 4752 4753 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 4754 continue; 4755 if (IS_CURSEC(sbi, secno)) 4756 continue; 4757 set_bit(secno, dirty_i->dirty_secmap); 4758 } 4759 mutex_unlock(&dirty_i->seglist_lock); 4760 } 4761 4762 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4763 { 4764 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4765 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4766 4767 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4768 if (!dirty_i->victim_secmap) 4769 return -ENOMEM; 4770 4771 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4772 if (!dirty_i->pinned_secmap) 4773 return -ENOMEM; 4774 4775 dirty_i->pinned_secmap_cnt = 0; 4776 dirty_i->enable_pin_section = true; 4777 return 0; 4778 } 4779 4780 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4781 { 4782 struct dirty_seglist_info *dirty_i; 4783 unsigned int bitmap_size, i; 4784 4785 /* allocate memory for dirty segments list information */ 4786 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4787 GFP_KERNEL); 4788 if (!dirty_i) 4789 return -ENOMEM; 4790 4791 SM_I(sbi)->dirty_info = dirty_i; 4792 mutex_init(&dirty_i->seglist_lock); 4793 4794 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4795 4796 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4797 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4798 GFP_KERNEL); 4799 if (!dirty_i->dirty_segmap[i]) 4800 return -ENOMEM; 4801 } 4802 4803 if (__is_large_section(sbi)) { 4804 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4805 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4806 bitmap_size, GFP_KERNEL); 4807 if (!dirty_i->dirty_secmap) 4808 return -ENOMEM; 4809 } 4810 4811 init_dirty_segmap(sbi); 4812 return init_victim_secmap(sbi); 4813 } 4814 4815 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4816 { 4817 int i; 4818 4819 /* 4820 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4821 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4822 */ 4823 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4824 struct curseg_info *curseg = CURSEG_I(sbi, i); 4825 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4826 unsigned int blkofs = curseg->next_blkoff; 4827 4828 if (f2fs_sb_has_readonly(sbi) && 4829 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4830 continue; 4831 4832 sanity_check_seg_type(sbi, curseg->seg_type); 4833 4834 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 4835 f2fs_err(sbi, 4836 "Current segment has invalid alloc_type:%d", 4837 curseg->alloc_type); 4838 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4839 return -EFSCORRUPTED; 4840 } 4841 4842 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4843 goto out; 4844 4845 if (curseg->alloc_type == SSR) 4846 continue; 4847 4848 for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) { 4849 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4850 continue; 4851 out: 4852 f2fs_err(sbi, 4853 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4854 i, curseg->segno, curseg->alloc_type, 4855 curseg->next_blkoff, blkofs); 4856 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4857 return -EFSCORRUPTED; 4858 } 4859 } 4860 return 0; 4861 } 4862 4863 #ifdef CONFIG_BLK_DEV_ZONED 4864 4865 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4866 struct f2fs_dev_info *fdev, 4867 struct blk_zone *zone) 4868 { 4869 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4870 block_t zone_block, wp_block, last_valid_block; 4871 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4872 int i, s, b, ret; 4873 struct seg_entry *se; 4874 4875 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4876 return 0; 4877 4878 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4879 wp_segno = GET_SEGNO(sbi, wp_block); 4880 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4881 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4882 zone_segno = GET_SEGNO(sbi, zone_block); 4883 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4884 4885 if (zone_segno >= MAIN_SEGS(sbi)) 4886 return 0; 4887 4888 /* 4889 * Skip check of zones cursegs point to, since 4890 * fix_curseg_write_pointer() checks them. 4891 */ 4892 for (i = 0; i < NO_CHECK_TYPE; i++) 4893 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4894 CURSEG_I(sbi, i)->segno)) 4895 return 0; 4896 4897 /* 4898 * Get last valid block of the zone. 4899 */ 4900 last_valid_block = zone_block - 1; 4901 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4902 segno = zone_segno + s; 4903 se = get_seg_entry(sbi, segno); 4904 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4905 if (f2fs_test_bit(b, se->cur_valid_map)) { 4906 last_valid_block = START_BLOCK(sbi, segno) + b; 4907 break; 4908 } 4909 if (last_valid_block >= zone_block) 4910 break; 4911 } 4912 4913 /* 4914 * The write pointer matches with the valid blocks or 4915 * already points to the end of the zone. 4916 */ 4917 if ((last_valid_block + 1 == wp_block) || 4918 (zone->wp == zone->start + zone->len)) 4919 return 0; 4920 4921 if (last_valid_block + 1 == zone_block) { 4922 /* 4923 * If there is no valid block in the zone and if write pointer 4924 * is not at zone start, reset the write pointer. 4925 */ 4926 f2fs_notice(sbi, 4927 "Zone without valid block has non-zero write " 4928 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4929 wp_segno, wp_blkoff); 4930 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4931 zone->len >> log_sectors_per_block); 4932 if (ret) 4933 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4934 fdev->path, ret); 4935 4936 return ret; 4937 } 4938 4939 /* 4940 * If there are valid blocks and the write pointer doesn't 4941 * match with them, we need to report the inconsistency and 4942 * fill the zone till the end to close the zone. This inconsistency 4943 * does not cause write error because the zone will not be selected 4944 * for write operation until it get discarded. 4945 */ 4946 f2fs_notice(sbi, "Valid blocks are not aligned with write pointer: " 4947 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4948 GET_SEGNO(sbi, last_valid_block), 4949 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4950 wp_segno, wp_blkoff); 4951 4952 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH, 4953 zone->start, zone->len, GFP_NOFS); 4954 if (ret == -EOPNOTSUPP) { 4955 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp, 4956 zone->len - (zone->wp - zone->start), 4957 GFP_NOFS, 0); 4958 if (ret) 4959 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)", 4960 fdev->path, ret); 4961 } else if (ret) { 4962 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)", 4963 fdev->path, ret); 4964 } 4965 4966 return ret; 4967 } 4968 4969 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4970 block_t zone_blkaddr) 4971 { 4972 int i; 4973 4974 for (i = 0; i < sbi->s_ndevs; i++) { 4975 if (!bdev_is_zoned(FDEV(i).bdev)) 4976 continue; 4977 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4978 zone_blkaddr <= FDEV(i).end_blk)) 4979 return &FDEV(i); 4980 } 4981 4982 return NULL; 4983 } 4984 4985 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4986 void *data) 4987 { 4988 memcpy(data, zone, sizeof(struct blk_zone)); 4989 return 0; 4990 } 4991 4992 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4993 { 4994 struct curseg_info *cs = CURSEG_I(sbi, type); 4995 struct f2fs_dev_info *zbd; 4996 struct blk_zone zone; 4997 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4998 block_t cs_zone_block, wp_block; 4999 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 5000 sector_t zone_sector; 5001 int err; 5002 5003 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5004 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5005 5006 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5007 if (!zbd) 5008 return 0; 5009 5010 /* report zone for the sector the curseg points to */ 5011 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5012 << log_sectors_per_block; 5013 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5014 report_one_zone_cb, &zone); 5015 if (err != 1) { 5016 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5017 zbd->path, err); 5018 return err; 5019 } 5020 5021 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5022 return 0; 5023 5024 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 5025 wp_segno = GET_SEGNO(sbi, wp_block); 5026 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 5027 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 5028 5029 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 5030 wp_sector_off == 0) 5031 return 0; 5032 5033 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 5034 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 5035 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 5036 5037 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 5038 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 5039 5040 f2fs_allocate_new_section(sbi, type, true); 5041 5042 /* check consistency of the zone curseg pointed to */ 5043 if (check_zone_write_pointer(sbi, zbd, &zone)) 5044 return -EIO; 5045 5046 /* check newly assigned zone */ 5047 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5048 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5049 5050 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5051 if (!zbd) 5052 return 0; 5053 5054 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5055 << log_sectors_per_block; 5056 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5057 report_one_zone_cb, &zone); 5058 if (err != 1) { 5059 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5060 zbd->path, err); 5061 return err; 5062 } 5063 5064 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5065 return 0; 5066 5067 if (zone.wp != zone.start) { 5068 f2fs_notice(sbi, 5069 "New zone for curseg[%d] is not yet discarded. " 5070 "Reset the zone: curseg[0x%x,0x%x]", 5071 type, cs->segno, cs->next_blkoff); 5072 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block, 5073 zone.len >> log_sectors_per_block); 5074 if (err) { 5075 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5076 zbd->path, err); 5077 return err; 5078 } 5079 } 5080 5081 return 0; 5082 } 5083 5084 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5085 { 5086 int i, ret; 5087 5088 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5089 ret = fix_curseg_write_pointer(sbi, i); 5090 if (ret) 5091 return ret; 5092 } 5093 5094 return 0; 5095 } 5096 5097 struct check_zone_write_pointer_args { 5098 struct f2fs_sb_info *sbi; 5099 struct f2fs_dev_info *fdev; 5100 }; 5101 5102 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 5103 void *data) 5104 { 5105 struct check_zone_write_pointer_args *args; 5106 5107 args = (struct check_zone_write_pointer_args *)data; 5108 5109 return check_zone_write_pointer(args->sbi, args->fdev, zone); 5110 } 5111 5112 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5113 { 5114 int i, ret; 5115 struct check_zone_write_pointer_args args; 5116 5117 for (i = 0; i < sbi->s_ndevs; i++) { 5118 if (!bdev_is_zoned(FDEV(i).bdev)) 5119 continue; 5120 5121 args.sbi = sbi; 5122 args.fdev = &FDEV(i); 5123 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5124 check_zone_write_pointer_cb, &args); 5125 if (ret < 0) 5126 return ret; 5127 } 5128 5129 return 0; 5130 } 5131 5132 /* 5133 * Return the number of usable blocks in a segment. The number of blocks 5134 * returned is always equal to the number of blocks in a segment for 5135 * segments fully contained within a sequential zone capacity or a 5136 * conventional zone. For segments partially contained in a sequential 5137 * zone capacity, the number of usable blocks up to the zone capacity 5138 * is returned. 0 is returned in all other cases. 5139 */ 5140 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5141 struct f2fs_sb_info *sbi, unsigned int segno) 5142 { 5143 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5144 unsigned int secno; 5145 5146 if (!sbi->unusable_blocks_per_sec) 5147 return BLKS_PER_SEG(sbi); 5148 5149 secno = GET_SEC_FROM_SEG(sbi, segno); 5150 seg_start = START_BLOCK(sbi, segno); 5151 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5152 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5153 5154 /* 5155 * If segment starts before zone capacity and spans beyond 5156 * zone capacity, then usable blocks are from seg start to 5157 * zone capacity. If the segment starts after the zone capacity, 5158 * then there are no usable blocks. 5159 */ 5160 if (seg_start >= sec_cap_blkaddr) 5161 return 0; 5162 if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr) 5163 return sec_cap_blkaddr - seg_start; 5164 5165 return BLKS_PER_SEG(sbi); 5166 } 5167 #else 5168 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5169 { 5170 return 0; 5171 } 5172 5173 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5174 { 5175 return 0; 5176 } 5177 5178 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5179 unsigned int segno) 5180 { 5181 return 0; 5182 } 5183 5184 #endif 5185 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5186 unsigned int segno) 5187 { 5188 if (f2fs_sb_has_blkzoned(sbi)) 5189 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5190 5191 return BLKS_PER_SEG(sbi); 5192 } 5193 5194 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5195 unsigned int segno) 5196 { 5197 if (f2fs_sb_has_blkzoned(sbi)) 5198 return CAP_SEGS_PER_SEC(sbi); 5199 5200 return SEGS_PER_SEC(sbi); 5201 } 5202 5203 /* 5204 * Update min, max modified time for cost-benefit GC algorithm 5205 */ 5206 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5207 { 5208 struct sit_info *sit_i = SIT_I(sbi); 5209 unsigned int segno; 5210 5211 down_write(&sit_i->sentry_lock); 5212 5213 sit_i->min_mtime = ULLONG_MAX; 5214 5215 for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) { 5216 unsigned int i; 5217 unsigned long long mtime = 0; 5218 5219 for (i = 0; i < SEGS_PER_SEC(sbi); i++) 5220 mtime += get_seg_entry(sbi, segno + i)->mtime; 5221 5222 mtime = div_u64(mtime, SEGS_PER_SEC(sbi)); 5223 5224 if (sit_i->min_mtime > mtime) 5225 sit_i->min_mtime = mtime; 5226 } 5227 sit_i->max_mtime = get_mtime(sbi, false); 5228 sit_i->dirty_max_mtime = 0; 5229 up_write(&sit_i->sentry_lock); 5230 } 5231 5232 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5233 { 5234 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5235 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5236 struct f2fs_sm_info *sm_info; 5237 int err; 5238 5239 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5240 if (!sm_info) 5241 return -ENOMEM; 5242 5243 /* init sm info */ 5244 sbi->sm_info = sm_info; 5245 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5246 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5247 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5248 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5249 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5250 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5251 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5252 sm_info->rec_prefree_segments = sm_info->main_segments * 5253 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5254 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5255 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5256 5257 if (!f2fs_lfs_mode(sbi)) 5258 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC); 5259 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5260 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5261 sm_info->min_seq_blocks = BLKS_PER_SEG(sbi); 5262 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5263 sm_info->min_ssr_sections = reserved_sections(sbi); 5264 5265 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5266 5267 init_f2fs_rwsem(&sm_info->curseg_lock); 5268 5269 err = f2fs_create_flush_cmd_control(sbi); 5270 if (err) 5271 return err; 5272 5273 err = create_discard_cmd_control(sbi); 5274 if (err) 5275 return err; 5276 5277 err = build_sit_info(sbi); 5278 if (err) 5279 return err; 5280 err = build_free_segmap(sbi); 5281 if (err) 5282 return err; 5283 err = build_curseg(sbi); 5284 if (err) 5285 return err; 5286 5287 /* reinit free segmap based on SIT */ 5288 err = build_sit_entries(sbi); 5289 if (err) 5290 return err; 5291 5292 init_free_segmap(sbi); 5293 err = build_dirty_segmap(sbi); 5294 if (err) 5295 return err; 5296 5297 err = sanity_check_curseg(sbi); 5298 if (err) 5299 return err; 5300 5301 init_min_max_mtime(sbi); 5302 return 0; 5303 } 5304 5305 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5306 enum dirty_type dirty_type) 5307 { 5308 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5309 5310 mutex_lock(&dirty_i->seglist_lock); 5311 kvfree(dirty_i->dirty_segmap[dirty_type]); 5312 dirty_i->nr_dirty[dirty_type] = 0; 5313 mutex_unlock(&dirty_i->seglist_lock); 5314 } 5315 5316 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5317 { 5318 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5319 5320 kvfree(dirty_i->pinned_secmap); 5321 kvfree(dirty_i->victim_secmap); 5322 } 5323 5324 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5325 { 5326 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5327 int i; 5328 5329 if (!dirty_i) 5330 return; 5331 5332 /* discard pre-free/dirty segments list */ 5333 for (i = 0; i < NR_DIRTY_TYPE; i++) 5334 discard_dirty_segmap(sbi, i); 5335 5336 if (__is_large_section(sbi)) { 5337 mutex_lock(&dirty_i->seglist_lock); 5338 kvfree(dirty_i->dirty_secmap); 5339 mutex_unlock(&dirty_i->seglist_lock); 5340 } 5341 5342 destroy_victim_secmap(sbi); 5343 SM_I(sbi)->dirty_info = NULL; 5344 kfree(dirty_i); 5345 } 5346 5347 static void destroy_curseg(struct f2fs_sb_info *sbi) 5348 { 5349 struct curseg_info *array = SM_I(sbi)->curseg_array; 5350 int i; 5351 5352 if (!array) 5353 return; 5354 SM_I(sbi)->curseg_array = NULL; 5355 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5356 kfree(array[i].sum_blk); 5357 kfree(array[i].journal); 5358 } 5359 kfree(array); 5360 } 5361 5362 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5363 { 5364 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5365 5366 if (!free_i) 5367 return; 5368 SM_I(sbi)->free_info = NULL; 5369 kvfree(free_i->free_segmap); 5370 kvfree(free_i->free_secmap); 5371 kfree(free_i); 5372 } 5373 5374 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5375 { 5376 struct sit_info *sit_i = SIT_I(sbi); 5377 5378 if (!sit_i) 5379 return; 5380 5381 if (sit_i->sentries) 5382 kvfree(sit_i->bitmap); 5383 kfree(sit_i->tmp_map); 5384 5385 kvfree(sit_i->sentries); 5386 kvfree(sit_i->sec_entries); 5387 kvfree(sit_i->dirty_sentries_bitmap); 5388 5389 SM_I(sbi)->sit_info = NULL; 5390 kvfree(sit_i->sit_bitmap); 5391 #ifdef CONFIG_F2FS_CHECK_FS 5392 kvfree(sit_i->sit_bitmap_mir); 5393 kvfree(sit_i->invalid_segmap); 5394 #endif 5395 kfree(sit_i); 5396 } 5397 5398 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5399 { 5400 struct f2fs_sm_info *sm_info = SM_I(sbi); 5401 5402 if (!sm_info) 5403 return; 5404 f2fs_destroy_flush_cmd_control(sbi, true); 5405 destroy_discard_cmd_control(sbi); 5406 destroy_dirty_segmap(sbi); 5407 destroy_curseg(sbi); 5408 destroy_free_segmap(sbi); 5409 destroy_sit_info(sbi); 5410 sbi->sm_info = NULL; 5411 kfree(sm_info); 5412 } 5413 5414 int __init f2fs_create_segment_manager_caches(void) 5415 { 5416 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5417 sizeof(struct discard_entry)); 5418 if (!discard_entry_slab) 5419 goto fail; 5420 5421 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5422 sizeof(struct discard_cmd)); 5423 if (!discard_cmd_slab) 5424 goto destroy_discard_entry; 5425 5426 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5427 sizeof(struct sit_entry_set)); 5428 if (!sit_entry_set_slab) 5429 goto destroy_discard_cmd; 5430 5431 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5432 sizeof(struct revoke_entry)); 5433 if (!revoke_entry_slab) 5434 goto destroy_sit_entry_set; 5435 return 0; 5436 5437 destroy_sit_entry_set: 5438 kmem_cache_destroy(sit_entry_set_slab); 5439 destroy_discard_cmd: 5440 kmem_cache_destroy(discard_cmd_slab); 5441 destroy_discard_entry: 5442 kmem_cache_destroy(discard_entry_slab); 5443 fail: 5444 return -ENOMEM; 5445 } 5446 5447 void f2fs_destroy_segment_manager_caches(void) 5448 { 5449 kmem_cache_destroy(sit_entry_set_slab); 5450 kmem_cache_destroy(discard_cmd_slab); 5451 kmem_cache_destroy(discard_entry_slab); 5452 kmem_cache_destroy(revoke_entry_slab); 5453 } 5454