xref: /openbmc/linux/fs/f2fs/segment.c (revision efe4a1ac)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 	unsigned long tmp = 0;
36 	int shift = 24, idx = 0;
37 
38 #if BITS_PER_LONG == 64
39 	shift = 56;
40 #endif
41 	while (shift >= 0) {
42 		tmp |= (unsigned long)str[idx++] << shift;
43 		shift -= BITS_PER_BYTE;
44 	}
45 	return tmp;
46 }
47 
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 	int num = 0;
55 
56 #if BITS_PER_LONG == 64
57 	if ((word & 0xffffffff00000000UL) == 0)
58 		num += 32;
59 	else
60 		word >>= 32;
61 #endif
62 	if ((word & 0xffff0000) == 0)
63 		num += 16;
64 	else
65 		word >>= 16;
66 
67 	if ((word & 0xff00) == 0)
68 		num += 8;
69 	else
70 		word >>= 8;
71 
72 	if ((word & 0xf0) == 0)
73 		num += 4;
74 	else
75 		word >>= 4;
76 
77 	if ((word & 0xc) == 0)
78 		num += 2;
79 	else
80 		word >>= 2;
81 
82 	if ((word & 0x2) == 0)
83 		num += 1;
84 	return num;
85 }
86 
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 			unsigned long size, unsigned long offset)
98 {
99 	const unsigned long *p = addr + BIT_WORD(offset);
100 	unsigned long result = size;
101 	unsigned long tmp;
102 
103 	if (offset >= size)
104 		return size;
105 
106 	size -= (offset & ~(BITS_PER_LONG - 1));
107 	offset %= BITS_PER_LONG;
108 
109 	while (1) {
110 		if (*p == 0)
111 			goto pass;
112 
113 		tmp = __reverse_ulong((unsigned char *)p);
114 
115 		tmp &= ~0UL >> offset;
116 		if (size < BITS_PER_LONG)
117 			tmp &= (~0UL << (BITS_PER_LONG - size));
118 		if (tmp)
119 			goto found;
120 pass:
121 		if (size <= BITS_PER_LONG)
122 			break;
123 		size -= BITS_PER_LONG;
124 		offset = 0;
125 		p++;
126 	}
127 	return result;
128 found:
129 	return result - size + __reverse_ffs(tmp);
130 }
131 
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 			unsigned long size, unsigned long offset)
134 {
135 	const unsigned long *p = addr + BIT_WORD(offset);
136 	unsigned long result = size;
137 	unsigned long tmp;
138 
139 	if (offset >= size)
140 		return size;
141 
142 	size -= (offset & ~(BITS_PER_LONG - 1));
143 	offset %= BITS_PER_LONG;
144 
145 	while (1) {
146 		if (*p == ~0UL)
147 			goto pass;
148 
149 		tmp = __reverse_ulong((unsigned char *)p);
150 
151 		if (offset)
152 			tmp |= ~0UL << (BITS_PER_LONG - offset);
153 		if (size < BITS_PER_LONG)
154 			tmp |= ~0UL >> size;
155 		if (tmp != ~0UL)
156 			goto found;
157 pass:
158 		if (size <= BITS_PER_LONG)
159 			break;
160 		size -= BITS_PER_LONG;
161 		offset = 0;
162 		p++;
163 	}
164 	return result;
165 found:
166 	return result - size + __reverse_ffz(tmp);
167 }
168 
169 void register_inmem_page(struct inode *inode, struct page *page)
170 {
171 	struct f2fs_inode_info *fi = F2FS_I(inode);
172 	struct inmem_pages *new;
173 
174 	f2fs_trace_pid(page);
175 
176 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
177 	SetPagePrivate(page);
178 
179 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
180 
181 	/* add atomic page indices to the list */
182 	new->page = page;
183 	INIT_LIST_HEAD(&new->list);
184 
185 	/* increase reference count with clean state */
186 	mutex_lock(&fi->inmem_lock);
187 	get_page(page);
188 	list_add_tail(&new->list, &fi->inmem_pages);
189 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
190 	mutex_unlock(&fi->inmem_lock);
191 
192 	trace_f2fs_register_inmem_page(page, INMEM);
193 }
194 
195 static int __revoke_inmem_pages(struct inode *inode,
196 				struct list_head *head, bool drop, bool recover)
197 {
198 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
199 	struct inmem_pages *cur, *tmp;
200 	int err = 0;
201 
202 	list_for_each_entry_safe(cur, tmp, head, list) {
203 		struct page *page = cur->page;
204 
205 		if (drop)
206 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
207 
208 		lock_page(page);
209 
210 		if (recover) {
211 			struct dnode_of_data dn;
212 			struct node_info ni;
213 
214 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
215 
216 			set_new_dnode(&dn, inode, NULL, NULL, 0);
217 			if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
218 				err = -EAGAIN;
219 				goto next;
220 			}
221 			get_node_info(sbi, dn.nid, &ni);
222 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
223 					cur->old_addr, ni.version, true, true);
224 			f2fs_put_dnode(&dn);
225 		}
226 next:
227 		/* we don't need to invalidate this in the sccessful status */
228 		if (drop || recover)
229 			ClearPageUptodate(page);
230 		set_page_private(page, 0);
231 		ClearPagePrivate(page);
232 		f2fs_put_page(page, 1);
233 
234 		list_del(&cur->list);
235 		kmem_cache_free(inmem_entry_slab, cur);
236 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
237 	}
238 	return err;
239 }
240 
241 void drop_inmem_pages(struct inode *inode)
242 {
243 	struct f2fs_inode_info *fi = F2FS_I(inode);
244 
245 	mutex_lock(&fi->inmem_lock);
246 	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
247 	mutex_unlock(&fi->inmem_lock);
248 
249 	clear_inode_flag(inode, FI_ATOMIC_FILE);
250 	stat_dec_atomic_write(inode);
251 }
252 
253 void drop_inmem_page(struct inode *inode, struct page *page)
254 {
255 	struct f2fs_inode_info *fi = F2FS_I(inode);
256 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
257 	struct list_head *head = &fi->inmem_pages;
258 	struct inmem_pages *cur = NULL;
259 
260 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
261 
262 	mutex_lock(&fi->inmem_lock);
263 	list_for_each_entry(cur, head, list) {
264 		if (cur->page == page)
265 			break;
266 	}
267 
268 	f2fs_bug_on(sbi, !cur || cur->page != page);
269 	list_del(&cur->list);
270 	mutex_unlock(&fi->inmem_lock);
271 
272 	dec_page_count(sbi, F2FS_INMEM_PAGES);
273 	kmem_cache_free(inmem_entry_slab, cur);
274 
275 	ClearPageUptodate(page);
276 	set_page_private(page, 0);
277 	ClearPagePrivate(page);
278 	f2fs_put_page(page, 0);
279 
280 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
281 }
282 
283 static int __commit_inmem_pages(struct inode *inode,
284 					struct list_head *revoke_list)
285 {
286 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
287 	struct f2fs_inode_info *fi = F2FS_I(inode);
288 	struct inmem_pages *cur, *tmp;
289 	struct f2fs_io_info fio = {
290 		.sbi = sbi,
291 		.type = DATA,
292 		.op = REQ_OP_WRITE,
293 		.op_flags = REQ_SYNC | REQ_PRIO,
294 	};
295 	pgoff_t last_idx = ULONG_MAX;
296 	int err = 0;
297 
298 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
299 		struct page *page = cur->page;
300 
301 		lock_page(page);
302 		if (page->mapping == inode->i_mapping) {
303 			trace_f2fs_commit_inmem_page(page, INMEM);
304 
305 			set_page_dirty(page);
306 			f2fs_wait_on_page_writeback(page, DATA, true);
307 			if (clear_page_dirty_for_io(page)) {
308 				inode_dec_dirty_pages(inode);
309 				remove_dirty_inode(inode);
310 			}
311 
312 			fio.page = page;
313 			fio.old_blkaddr = NULL_ADDR;
314 			fio.encrypted_page = NULL;
315 			fio.need_lock = false,
316 			err = do_write_data_page(&fio);
317 			if (err) {
318 				unlock_page(page);
319 				break;
320 			}
321 
322 			/* record old blkaddr for revoking */
323 			cur->old_addr = fio.old_blkaddr;
324 			last_idx = page->index;
325 		}
326 		unlock_page(page);
327 		list_move_tail(&cur->list, revoke_list);
328 	}
329 
330 	if (last_idx != ULONG_MAX)
331 		f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx,
332 							DATA, WRITE);
333 
334 	if (!err)
335 		__revoke_inmem_pages(inode, revoke_list, false, false);
336 
337 	return err;
338 }
339 
340 int commit_inmem_pages(struct inode *inode)
341 {
342 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
343 	struct f2fs_inode_info *fi = F2FS_I(inode);
344 	struct list_head revoke_list;
345 	int err;
346 
347 	INIT_LIST_HEAD(&revoke_list);
348 	f2fs_balance_fs(sbi, true);
349 	f2fs_lock_op(sbi);
350 
351 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
352 
353 	mutex_lock(&fi->inmem_lock);
354 	err = __commit_inmem_pages(inode, &revoke_list);
355 	if (err) {
356 		int ret;
357 		/*
358 		 * try to revoke all committed pages, but still we could fail
359 		 * due to no memory or other reason, if that happened, EAGAIN
360 		 * will be returned, which means in such case, transaction is
361 		 * already not integrity, caller should use journal to do the
362 		 * recovery or rewrite & commit last transaction. For other
363 		 * error number, revoking was done by filesystem itself.
364 		 */
365 		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
366 		if (ret)
367 			err = ret;
368 
369 		/* drop all uncommitted pages */
370 		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
371 	}
372 	mutex_unlock(&fi->inmem_lock);
373 
374 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
375 
376 	f2fs_unlock_op(sbi);
377 	return err;
378 }
379 
380 /*
381  * This function balances dirty node and dentry pages.
382  * In addition, it controls garbage collection.
383  */
384 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
385 {
386 #ifdef CONFIG_F2FS_FAULT_INJECTION
387 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
388 		f2fs_show_injection_info(FAULT_CHECKPOINT);
389 		f2fs_stop_checkpoint(sbi, false);
390 	}
391 #endif
392 
393 	/* balance_fs_bg is able to be pending */
394 	if (need && excess_cached_nats(sbi))
395 		f2fs_balance_fs_bg(sbi);
396 
397 	/*
398 	 * We should do GC or end up with checkpoint, if there are so many dirty
399 	 * dir/node pages without enough free segments.
400 	 */
401 	if (has_not_enough_free_secs(sbi, 0, 0)) {
402 		mutex_lock(&sbi->gc_mutex);
403 		f2fs_gc(sbi, false, false, NULL_SEGNO);
404 	}
405 }
406 
407 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
408 {
409 	/* try to shrink extent cache when there is no enough memory */
410 	if (!available_free_memory(sbi, EXTENT_CACHE))
411 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
412 
413 	/* check the # of cached NAT entries */
414 	if (!available_free_memory(sbi, NAT_ENTRIES))
415 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
416 
417 	if (!available_free_memory(sbi, FREE_NIDS))
418 		try_to_free_nids(sbi, MAX_FREE_NIDS);
419 	else
420 		build_free_nids(sbi, false, false);
421 
422 	if (!is_idle(sbi) && !excess_dirty_nats(sbi))
423 		return;
424 
425 	/* checkpoint is the only way to shrink partial cached entries */
426 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
427 			!available_free_memory(sbi, INO_ENTRIES) ||
428 			excess_prefree_segs(sbi) ||
429 			excess_dirty_nats(sbi) ||
430 			f2fs_time_over(sbi, CP_TIME)) {
431 		if (test_opt(sbi, DATA_FLUSH)) {
432 			struct blk_plug plug;
433 
434 			blk_start_plug(&plug);
435 			sync_dirty_inodes(sbi, FILE_INODE);
436 			blk_finish_plug(&plug);
437 		}
438 		f2fs_sync_fs(sbi->sb, true);
439 		stat_inc_bg_cp_count(sbi->stat_info);
440 	}
441 }
442 
443 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
444 				struct block_device *bdev)
445 {
446 	struct bio *bio = f2fs_bio_alloc(0);
447 	int ret;
448 
449 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
450 	bio->bi_bdev = bdev;
451 	ret = submit_bio_wait(bio);
452 	bio_put(bio);
453 
454 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
455 				test_opt(sbi, FLUSH_MERGE), ret);
456 	return ret;
457 }
458 
459 static int submit_flush_wait(struct f2fs_sb_info *sbi)
460 {
461 	int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
462 	int i;
463 
464 	if (!sbi->s_ndevs || ret)
465 		return ret;
466 
467 	for (i = 1; i < sbi->s_ndevs; i++) {
468 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
469 		if (ret)
470 			break;
471 	}
472 	return ret;
473 }
474 
475 static int issue_flush_thread(void *data)
476 {
477 	struct f2fs_sb_info *sbi = data;
478 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
479 	wait_queue_head_t *q = &fcc->flush_wait_queue;
480 repeat:
481 	if (kthread_should_stop())
482 		return 0;
483 
484 	if (!llist_empty(&fcc->issue_list)) {
485 		struct flush_cmd *cmd, *next;
486 		int ret;
487 
488 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
489 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
490 
491 		ret = submit_flush_wait(sbi);
492 		atomic_inc(&fcc->issued_flush);
493 
494 		llist_for_each_entry_safe(cmd, next,
495 					  fcc->dispatch_list, llnode) {
496 			cmd->ret = ret;
497 			complete(&cmd->wait);
498 		}
499 		fcc->dispatch_list = NULL;
500 	}
501 
502 	wait_event_interruptible(*q,
503 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
504 	goto repeat;
505 }
506 
507 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
508 {
509 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
510 	struct flush_cmd cmd;
511 	int ret;
512 
513 	if (test_opt(sbi, NOBARRIER))
514 		return 0;
515 
516 	if (!test_opt(sbi, FLUSH_MERGE)) {
517 		ret = submit_flush_wait(sbi);
518 		atomic_inc(&fcc->issued_flush);
519 		return ret;
520 	}
521 
522 	if (!atomic_read(&fcc->issing_flush)) {
523 		atomic_inc(&fcc->issing_flush);
524 		ret = submit_flush_wait(sbi);
525 		atomic_dec(&fcc->issing_flush);
526 
527 		atomic_inc(&fcc->issued_flush);
528 		return ret;
529 	}
530 
531 	init_completion(&cmd.wait);
532 
533 	atomic_inc(&fcc->issing_flush);
534 	llist_add(&cmd.llnode, &fcc->issue_list);
535 
536 	if (!fcc->dispatch_list)
537 		wake_up(&fcc->flush_wait_queue);
538 
539 	if (fcc->f2fs_issue_flush) {
540 		wait_for_completion(&cmd.wait);
541 		atomic_dec(&fcc->issing_flush);
542 	} else {
543 		llist_del_all(&fcc->issue_list);
544 		atomic_set(&fcc->issing_flush, 0);
545 	}
546 
547 	return cmd.ret;
548 }
549 
550 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
551 {
552 	dev_t dev = sbi->sb->s_bdev->bd_dev;
553 	struct flush_cmd_control *fcc;
554 	int err = 0;
555 
556 	if (SM_I(sbi)->fcc_info) {
557 		fcc = SM_I(sbi)->fcc_info;
558 		goto init_thread;
559 	}
560 
561 	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
562 	if (!fcc)
563 		return -ENOMEM;
564 	atomic_set(&fcc->issued_flush, 0);
565 	atomic_set(&fcc->issing_flush, 0);
566 	init_waitqueue_head(&fcc->flush_wait_queue);
567 	init_llist_head(&fcc->issue_list);
568 	SM_I(sbi)->fcc_info = fcc;
569 init_thread:
570 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
571 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
572 	if (IS_ERR(fcc->f2fs_issue_flush)) {
573 		err = PTR_ERR(fcc->f2fs_issue_flush);
574 		kfree(fcc);
575 		SM_I(sbi)->fcc_info = NULL;
576 		return err;
577 	}
578 
579 	return err;
580 }
581 
582 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
583 {
584 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
585 
586 	if (fcc && fcc->f2fs_issue_flush) {
587 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
588 
589 		fcc->f2fs_issue_flush = NULL;
590 		kthread_stop(flush_thread);
591 	}
592 	if (free) {
593 		kfree(fcc);
594 		SM_I(sbi)->fcc_info = NULL;
595 	}
596 }
597 
598 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
599 		enum dirty_type dirty_type)
600 {
601 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
602 
603 	/* need not be added */
604 	if (IS_CURSEG(sbi, segno))
605 		return;
606 
607 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
608 		dirty_i->nr_dirty[dirty_type]++;
609 
610 	if (dirty_type == DIRTY) {
611 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
612 		enum dirty_type t = sentry->type;
613 
614 		if (unlikely(t >= DIRTY)) {
615 			f2fs_bug_on(sbi, 1);
616 			return;
617 		}
618 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
619 			dirty_i->nr_dirty[t]++;
620 	}
621 }
622 
623 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
624 		enum dirty_type dirty_type)
625 {
626 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
627 
628 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
629 		dirty_i->nr_dirty[dirty_type]--;
630 
631 	if (dirty_type == DIRTY) {
632 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
633 		enum dirty_type t = sentry->type;
634 
635 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
636 			dirty_i->nr_dirty[t]--;
637 
638 		if (get_valid_blocks(sbi, segno, true) == 0)
639 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
640 						dirty_i->victim_secmap);
641 	}
642 }
643 
644 /*
645  * Should not occur error such as -ENOMEM.
646  * Adding dirty entry into seglist is not critical operation.
647  * If a given segment is one of current working segments, it won't be added.
648  */
649 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
650 {
651 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
652 	unsigned short valid_blocks;
653 
654 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
655 		return;
656 
657 	mutex_lock(&dirty_i->seglist_lock);
658 
659 	valid_blocks = get_valid_blocks(sbi, segno, false);
660 
661 	if (valid_blocks == 0) {
662 		__locate_dirty_segment(sbi, segno, PRE);
663 		__remove_dirty_segment(sbi, segno, DIRTY);
664 	} else if (valid_blocks < sbi->blocks_per_seg) {
665 		__locate_dirty_segment(sbi, segno, DIRTY);
666 	} else {
667 		/* Recovery routine with SSR needs this */
668 		__remove_dirty_segment(sbi, segno, DIRTY);
669 	}
670 
671 	mutex_unlock(&dirty_i->seglist_lock);
672 }
673 
674 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
675 		struct block_device *bdev, block_t lstart,
676 		block_t start, block_t len)
677 {
678 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
679 	struct list_head *pend_list;
680 	struct discard_cmd *dc;
681 
682 	f2fs_bug_on(sbi, !len);
683 
684 	pend_list = &dcc->pend_list[plist_idx(len)];
685 
686 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
687 	INIT_LIST_HEAD(&dc->list);
688 	dc->bdev = bdev;
689 	dc->lstart = lstart;
690 	dc->start = start;
691 	dc->len = len;
692 	dc->ref = 0;
693 	dc->state = D_PREP;
694 	dc->error = 0;
695 	init_completion(&dc->wait);
696 	list_add_tail(&dc->list, pend_list);
697 	atomic_inc(&dcc->discard_cmd_cnt);
698 	dcc->undiscard_blks += len;
699 
700 	return dc;
701 }
702 
703 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
704 				struct block_device *bdev, block_t lstart,
705 				block_t start, block_t len,
706 				struct rb_node *parent, struct rb_node **p)
707 {
708 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
709 	struct discard_cmd *dc;
710 
711 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
712 
713 	rb_link_node(&dc->rb_node, parent, p);
714 	rb_insert_color(&dc->rb_node, &dcc->root);
715 
716 	return dc;
717 }
718 
719 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
720 							struct discard_cmd *dc)
721 {
722 	if (dc->state == D_DONE)
723 		atomic_dec(&dcc->issing_discard);
724 
725 	list_del(&dc->list);
726 	rb_erase(&dc->rb_node, &dcc->root);
727 	dcc->undiscard_blks -= dc->len;
728 
729 	kmem_cache_free(discard_cmd_slab, dc);
730 
731 	atomic_dec(&dcc->discard_cmd_cnt);
732 }
733 
734 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
735 							struct discard_cmd *dc)
736 {
737 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
738 
739 	if (dc->error == -EOPNOTSUPP)
740 		dc->error = 0;
741 
742 	if (dc->error)
743 		f2fs_msg(sbi->sb, KERN_INFO,
744 				"Issue discard failed, ret: %d", dc->error);
745 	__detach_discard_cmd(dcc, dc);
746 }
747 
748 static void f2fs_submit_discard_endio(struct bio *bio)
749 {
750 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
751 
752 	dc->error = bio->bi_error;
753 	dc->state = D_DONE;
754 	complete(&dc->wait);
755 	bio_put(bio);
756 }
757 
758 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
759 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
760 				struct discard_cmd *dc)
761 {
762 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
763 	struct bio *bio = NULL;
764 
765 	if (dc->state != D_PREP)
766 		return;
767 
768 	trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
769 
770 	dc->error = __blkdev_issue_discard(dc->bdev,
771 				SECTOR_FROM_BLOCK(dc->start),
772 				SECTOR_FROM_BLOCK(dc->len),
773 				GFP_NOFS, 0, &bio);
774 	if (!dc->error) {
775 		/* should keep before submission to avoid D_DONE right away */
776 		dc->state = D_SUBMIT;
777 		atomic_inc(&dcc->issued_discard);
778 		atomic_inc(&dcc->issing_discard);
779 		if (bio) {
780 			bio->bi_private = dc;
781 			bio->bi_end_io = f2fs_submit_discard_endio;
782 			bio->bi_opf |= REQ_SYNC;
783 			submit_bio(bio);
784 			list_move_tail(&dc->list, &dcc->wait_list);
785 		}
786 	} else {
787 		__remove_discard_cmd(sbi, dc);
788 	}
789 }
790 
791 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
792 				struct block_device *bdev, block_t lstart,
793 				block_t start, block_t len,
794 				struct rb_node **insert_p,
795 				struct rb_node *insert_parent)
796 {
797 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
798 	struct rb_node **p = &dcc->root.rb_node;
799 	struct rb_node *parent = NULL;
800 	struct discard_cmd *dc = NULL;
801 
802 	if (insert_p && insert_parent) {
803 		parent = insert_parent;
804 		p = insert_p;
805 		goto do_insert;
806 	}
807 
808 	p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
809 do_insert:
810 	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
811 	if (!dc)
812 		return NULL;
813 
814 	return dc;
815 }
816 
817 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
818 						struct discard_cmd *dc)
819 {
820 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
821 }
822 
823 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
824 				struct discard_cmd *dc, block_t blkaddr)
825 {
826 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
827 	struct discard_info di = dc->di;
828 	bool modified = false;
829 
830 	if (dc->state == D_DONE || dc->len == 1) {
831 		__remove_discard_cmd(sbi, dc);
832 		return;
833 	}
834 
835 	dcc->undiscard_blks -= di.len;
836 
837 	if (blkaddr > di.lstart) {
838 		dc->len = blkaddr - dc->lstart;
839 		dcc->undiscard_blks += dc->len;
840 		__relocate_discard_cmd(dcc, dc);
841 		f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
842 		modified = true;
843 	}
844 
845 	if (blkaddr < di.lstart + di.len - 1) {
846 		if (modified) {
847 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
848 					di.start + blkaddr + 1 - di.lstart,
849 					di.lstart + di.len - 1 - blkaddr,
850 					NULL, NULL);
851 			f2fs_bug_on(sbi,
852 				!__check_rb_tree_consistence(sbi, &dcc->root));
853 		} else {
854 			dc->lstart++;
855 			dc->len--;
856 			dc->start++;
857 			dcc->undiscard_blks += dc->len;
858 			__relocate_discard_cmd(dcc, dc);
859 			f2fs_bug_on(sbi,
860 				!__check_rb_tree_consistence(sbi, &dcc->root));
861 		}
862 	}
863 }
864 
865 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
866 				struct block_device *bdev, block_t lstart,
867 				block_t start, block_t len)
868 {
869 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
870 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
871 	struct discard_cmd *dc;
872 	struct discard_info di = {0};
873 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
874 	block_t end = lstart + len;
875 
876 	mutex_lock(&dcc->cmd_lock);
877 
878 	dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
879 					NULL, lstart,
880 					(struct rb_entry **)&prev_dc,
881 					(struct rb_entry **)&next_dc,
882 					&insert_p, &insert_parent, true);
883 	if (dc)
884 		prev_dc = dc;
885 
886 	if (!prev_dc) {
887 		di.lstart = lstart;
888 		di.len = next_dc ? next_dc->lstart - lstart : len;
889 		di.len = min(di.len, len);
890 		di.start = start;
891 	}
892 
893 	while (1) {
894 		struct rb_node *node;
895 		bool merged = false;
896 		struct discard_cmd *tdc = NULL;
897 
898 		if (prev_dc) {
899 			di.lstart = prev_dc->lstart + prev_dc->len;
900 			if (di.lstart < lstart)
901 				di.lstart = lstart;
902 			if (di.lstart >= end)
903 				break;
904 
905 			if (!next_dc || next_dc->lstart > end)
906 				di.len = end - di.lstart;
907 			else
908 				di.len = next_dc->lstart - di.lstart;
909 			di.start = start + di.lstart - lstart;
910 		}
911 
912 		if (!di.len)
913 			goto next;
914 
915 		if (prev_dc && prev_dc->state == D_PREP &&
916 			prev_dc->bdev == bdev &&
917 			__is_discard_back_mergeable(&di, &prev_dc->di)) {
918 			prev_dc->di.len += di.len;
919 			dcc->undiscard_blks += di.len;
920 			__relocate_discard_cmd(dcc, prev_dc);
921 			f2fs_bug_on(sbi,
922 				!__check_rb_tree_consistence(sbi, &dcc->root));
923 			di = prev_dc->di;
924 			tdc = prev_dc;
925 			merged = true;
926 		}
927 
928 		if (next_dc && next_dc->state == D_PREP &&
929 			next_dc->bdev == bdev &&
930 			__is_discard_front_mergeable(&di, &next_dc->di)) {
931 			next_dc->di.lstart = di.lstart;
932 			next_dc->di.len += di.len;
933 			next_dc->di.start = di.start;
934 			dcc->undiscard_blks += di.len;
935 			__relocate_discard_cmd(dcc, next_dc);
936 			if (tdc)
937 				__remove_discard_cmd(sbi, tdc);
938 			f2fs_bug_on(sbi,
939 				!__check_rb_tree_consistence(sbi, &dcc->root));
940 			merged = true;
941 		}
942 
943 		if (!merged) {
944 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
945 							di.len, NULL, NULL);
946 			f2fs_bug_on(sbi,
947 				!__check_rb_tree_consistence(sbi, &dcc->root));
948 		}
949  next:
950 		prev_dc = next_dc;
951 		if (!prev_dc)
952 			break;
953 
954 		node = rb_next(&prev_dc->rb_node);
955 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
956 	}
957 
958 	mutex_unlock(&dcc->cmd_lock);
959 }
960 
961 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
962 		struct block_device *bdev, block_t blkstart, block_t blklen)
963 {
964 	block_t lblkstart = blkstart;
965 
966 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
967 
968 	if (sbi->s_ndevs) {
969 		int devi = f2fs_target_device_index(sbi, blkstart);
970 
971 		blkstart -= FDEV(devi).start_blk;
972 	}
973 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
974 	return 0;
975 }
976 
977 static void __issue_discard_cmd(struct f2fs_sb_info *sbi, bool issue_cond)
978 {
979 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
980 	struct list_head *pend_list;
981 	struct discard_cmd *dc, *tmp;
982 	struct blk_plug plug;
983 	int i, iter = 0;
984 
985 	mutex_lock(&dcc->cmd_lock);
986 	blk_start_plug(&plug);
987 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
988 		pend_list = &dcc->pend_list[i];
989 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
990 			f2fs_bug_on(sbi, dc->state != D_PREP);
991 
992 			if (!issue_cond || is_idle(sbi))
993 				__submit_discard_cmd(sbi, dc);
994 			if (issue_cond && iter++ > DISCARD_ISSUE_RATE)
995 				goto out;
996 		}
997 	}
998 out:
999 	blk_finish_plug(&plug);
1000 	mutex_unlock(&dcc->cmd_lock);
1001 }
1002 
1003 static void __wait_discard_cmd(struct f2fs_sb_info *sbi, bool wait_cond)
1004 {
1005 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1006 	struct list_head *wait_list = &(dcc->wait_list);
1007 	struct discard_cmd *dc, *tmp;
1008 
1009 	mutex_lock(&dcc->cmd_lock);
1010 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1011 		if (!wait_cond || dc->state == D_DONE) {
1012 			if (dc->ref)
1013 				continue;
1014 			wait_for_completion_io(&dc->wait);
1015 			__remove_discard_cmd(sbi, dc);
1016 		}
1017 	}
1018 	mutex_unlock(&dcc->cmd_lock);
1019 }
1020 
1021 /* This should be covered by global mutex, &sit_i->sentry_lock */
1022 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1023 {
1024 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1025 	struct discard_cmd *dc;
1026 	bool need_wait = false;
1027 
1028 	mutex_lock(&dcc->cmd_lock);
1029 	dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1030 	if (dc) {
1031 		if (dc->state == D_PREP) {
1032 			__punch_discard_cmd(sbi, dc, blkaddr);
1033 		} else {
1034 			dc->ref++;
1035 			need_wait = true;
1036 		}
1037 	}
1038 	mutex_unlock(&dcc->cmd_lock);
1039 
1040 	if (need_wait) {
1041 		wait_for_completion_io(&dc->wait);
1042 		mutex_lock(&dcc->cmd_lock);
1043 		f2fs_bug_on(sbi, dc->state != D_DONE);
1044 		dc->ref--;
1045 		if (!dc->ref)
1046 			__remove_discard_cmd(sbi, dc);
1047 		mutex_unlock(&dcc->cmd_lock);
1048 	}
1049 }
1050 
1051 /* This comes from f2fs_put_super */
1052 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1053 {
1054 	__issue_discard_cmd(sbi, false);
1055 	__wait_discard_cmd(sbi, false);
1056 }
1057 
1058 static int issue_discard_thread(void *data)
1059 {
1060 	struct f2fs_sb_info *sbi = data;
1061 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1062 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1063 repeat:
1064 	if (kthread_should_stop())
1065 		return 0;
1066 
1067 	__issue_discard_cmd(sbi, true);
1068 	__wait_discard_cmd(sbi, true);
1069 
1070 	congestion_wait(BLK_RW_SYNC, HZ/50);
1071 
1072 	wait_event_interruptible(*q, kthread_should_stop() ||
1073 				atomic_read(&dcc->discard_cmd_cnt));
1074 	goto repeat;
1075 }
1076 
1077 #ifdef CONFIG_BLK_DEV_ZONED
1078 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1079 		struct block_device *bdev, block_t blkstart, block_t blklen)
1080 {
1081 	sector_t sector, nr_sects;
1082 	block_t lblkstart = blkstart;
1083 	int devi = 0;
1084 
1085 	if (sbi->s_ndevs) {
1086 		devi = f2fs_target_device_index(sbi, blkstart);
1087 		blkstart -= FDEV(devi).start_blk;
1088 	}
1089 
1090 	/*
1091 	 * We need to know the type of the zone: for conventional zones,
1092 	 * use regular discard if the drive supports it. For sequential
1093 	 * zones, reset the zone write pointer.
1094 	 */
1095 	switch (get_blkz_type(sbi, bdev, blkstart)) {
1096 
1097 	case BLK_ZONE_TYPE_CONVENTIONAL:
1098 		if (!blk_queue_discard(bdev_get_queue(bdev)))
1099 			return 0;
1100 		return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1101 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1102 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1103 		sector = SECTOR_FROM_BLOCK(blkstart);
1104 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1105 
1106 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1107 				nr_sects != bdev_zone_sectors(bdev)) {
1108 			f2fs_msg(sbi->sb, KERN_INFO,
1109 				"(%d) %s: Unaligned discard attempted (block %x + %x)",
1110 				devi, sbi->s_ndevs ? FDEV(devi).path: "",
1111 				blkstart, blklen);
1112 			return -EIO;
1113 		}
1114 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1115 		return blkdev_reset_zones(bdev, sector,
1116 					  nr_sects, GFP_NOFS);
1117 	default:
1118 		/* Unknown zone type: broken device ? */
1119 		return -EIO;
1120 	}
1121 }
1122 #endif
1123 
1124 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1125 		struct block_device *bdev, block_t blkstart, block_t blklen)
1126 {
1127 #ifdef CONFIG_BLK_DEV_ZONED
1128 	if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
1129 				bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1130 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1131 #endif
1132 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1133 }
1134 
1135 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1136 				block_t blkstart, block_t blklen)
1137 {
1138 	sector_t start = blkstart, len = 0;
1139 	struct block_device *bdev;
1140 	struct seg_entry *se;
1141 	unsigned int offset;
1142 	block_t i;
1143 	int err = 0;
1144 
1145 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1146 
1147 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1148 		if (i != start) {
1149 			struct block_device *bdev2 =
1150 				f2fs_target_device(sbi, i, NULL);
1151 
1152 			if (bdev2 != bdev) {
1153 				err = __issue_discard_async(sbi, bdev,
1154 						start, len);
1155 				if (err)
1156 					return err;
1157 				bdev = bdev2;
1158 				start = i;
1159 				len = 0;
1160 			}
1161 		}
1162 
1163 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1164 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1165 
1166 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1167 			sbi->discard_blks--;
1168 	}
1169 
1170 	if (len)
1171 		err = __issue_discard_async(sbi, bdev, start, len);
1172 	return err;
1173 }
1174 
1175 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1176 							bool check_only)
1177 {
1178 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1179 	int max_blocks = sbi->blocks_per_seg;
1180 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1181 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1182 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1183 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1184 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1185 	unsigned int start = 0, end = -1;
1186 	bool force = (cpc->reason & CP_DISCARD);
1187 	struct discard_entry *de = NULL;
1188 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1189 	int i;
1190 
1191 	if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1192 		return false;
1193 
1194 	if (!force) {
1195 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1196 			SM_I(sbi)->dcc_info->nr_discards >=
1197 				SM_I(sbi)->dcc_info->max_discards)
1198 			return false;
1199 	}
1200 
1201 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1202 	for (i = 0; i < entries; i++)
1203 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1204 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1205 
1206 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1207 				SM_I(sbi)->dcc_info->max_discards) {
1208 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1209 		if (start >= max_blocks)
1210 			break;
1211 
1212 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1213 		if (force && start && end != max_blocks
1214 					&& (end - start) < cpc->trim_minlen)
1215 			continue;
1216 
1217 		if (check_only)
1218 			return true;
1219 
1220 		if (!de) {
1221 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1222 								GFP_F2FS_ZERO);
1223 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1224 			list_add_tail(&de->list, head);
1225 		}
1226 
1227 		for (i = start; i < end; i++)
1228 			__set_bit_le(i, (void *)de->discard_map);
1229 
1230 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1231 	}
1232 	return false;
1233 }
1234 
1235 void release_discard_addrs(struct f2fs_sb_info *sbi)
1236 {
1237 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1238 	struct discard_entry *entry, *this;
1239 
1240 	/* drop caches */
1241 	list_for_each_entry_safe(entry, this, head, list) {
1242 		list_del(&entry->list);
1243 		kmem_cache_free(discard_entry_slab, entry);
1244 	}
1245 }
1246 
1247 /*
1248  * Should call clear_prefree_segments after checkpoint is done.
1249  */
1250 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1251 {
1252 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1253 	unsigned int segno;
1254 
1255 	mutex_lock(&dirty_i->seglist_lock);
1256 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1257 		__set_test_and_free(sbi, segno);
1258 	mutex_unlock(&dirty_i->seglist_lock);
1259 }
1260 
1261 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1262 {
1263 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1264 	struct discard_entry *entry, *this;
1265 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1266 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1267 	unsigned int start = 0, end = -1;
1268 	unsigned int secno, start_segno;
1269 	bool force = (cpc->reason & CP_DISCARD);
1270 
1271 	mutex_lock(&dirty_i->seglist_lock);
1272 
1273 	while (1) {
1274 		int i;
1275 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1276 		if (start >= MAIN_SEGS(sbi))
1277 			break;
1278 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1279 								start + 1);
1280 
1281 		for (i = start; i < end; i++)
1282 			clear_bit(i, prefree_map);
1283 
1284 		dirty_i->nr_dirty[PRE] -= end - start;
1285 
1286 		if (!test_opt(sbi, DISCARD))
1287 			continue;
1288 
1289 		if (force && start >= cpc->trim_start &&
1290 					(end - 1) <= cpc->trim_end)
1291 				continue;
1292 
1293 		if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1294 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1295 				(end - start) << sbi->log_blocks_per_seg);
1296 			continue;
1297 		}
1298 next:
1299 		secno = GET_SEC_FROM_SEG(sbi, start);
1300 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1301 		if (!IS_CURSEC(sbi, secno) &&
1302 			!get_valid_blocks(sbi, start, true))
1303 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1304 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1305 
1306 		start = start_segno + sbi->segs_per_sec;
1307 		if (start < end)
1308 			goto next;
1309 		else
1310 			end = start - 1;
1311 	}
1312 	mutex_unlock(&dirty_i->seglist_lock);
1313 
1314 	/* send small discards */
1315 	list_for_each_entry_safe(entry, this, head, list) {
1316 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1317 		bool is_valid = test_bit_le(0, entry->discard_map);
1318 
1319 find_next:
1320 		if (is_valid) {
1321 			next_pos = find_next_zero_bit_le(entry->discard_map,
1322 					sbi->blocks_per_seg, cur_pos);
1323 			len = next_pos - cur_pos;
1324 
1325 			if (force && len < cpc->trim_minlen)
1326 				goto skip;
1327 
1328 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1329 									len);
1330 			cpc->trimmed += len;
1331 			total_len += len;
1332 		} else {
1333 			next_pos = find_next_bit_le(entry->discard_map,
1334 					sbi->blocks_per_seg, cur_pos);
1335 		}
1336 skip:
1337 		cur_pos = next_pos;
1338 		is_valid = !is_valid;
1339 
1340 		if (cur_pos < sbi->blocks_per_seg)
1341 			goto find_next;
1342 
1343 		list_del(&entry->list);
1344 		SM_I(sbi)->dcc_info->nr_discards -= total_len;
1345 		kmem_cache_free(discard_entry_slab, entry);
1346 	}
1347 
1348 	wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue);
1349 }
1350 
1351 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1352 {
1353 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1354 	struct discard_cmd_control *dcc;
1355 	int err = 0, i;
1356 
1357 	if (SM_I(sbi)->dcc_info) {
1358 		dcc = SM_I(sbi)->dcc_info;
1359 		goto init_thread;
1360 	}
1361 
1362 	dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
1363 	if (!dcc)
1364 		return -ENOMEM;
1365 
1366 	INIT_LIST_HEAD(&dcc->entry_list);
1367 	for (i = 0; i < MAX_PLIST_NUM; i++)
1368 		INIT_LIST_HEAD(&dcc->pend_list[i]);
1369 	INIT_LIST_HEAD(&dcc->wait_list);
1370 	mutex_init(&dcc->cmd_lock);
1371 	atomic_set(&dcc->issued_discard, 0);
1372 	atomic_set(&dcc->issing_discard, 0);
1373 	atomic_set(&dcc->discard_cmd_cnt, 0);
1374 	dcc->nr_discards = 0;
1375 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1376 	dcc->undiscard_blks = 0;
1377 	dcc->root = RB_ROOT;
1378 
1379 	init_waitqueue_head(&dcc->discard_wait_queue);
1380 	SM_I(sbi)->dcc_info = dcc;
1381 init_thread:
1382 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1383 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1384 	if (IS_ERR(dcc->f2fs_issue_discard)) {
1385 		err = PTR_ERR(dcc->f2fs_issue_discard);
1386 		kfree(dcc);
1387 		SM_I(sbi)->dcc_info = NULL;
1388 		return err;
1389 	}
1390 
1391 	return err;
1392 }
1393 
1394 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1395 {
1396 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1397 
1398 	if (!dcc)
1399 		return;
1400 
1401 	if (dcc->f2fs_issue_discard) {
1402 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1403 
1404 		dcc->f2fs_issue_discard = NULL;
1405 		kthread_stop(discard_thread);
1406 	}
1407 
1408 	kfree(dcc);
1409 	SM_I(sbi)->dcc_info = NULL;
1410 }
1411 
1412 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1413 {
1414 	struct sit_info *sit_i = SIT_I(sbi);
1415 
1416 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1417 		sit_i->dirty_sentries++;
1418 		return false;
1419 	}
1420 
1421 	return true;
1422 }
1423 
1424 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1425 					unsigned int segno, int modified)
1426 {
1427 	struct seg_entry *se = get_seg_entry(sbi, segno);
1428 	se->type = type;
1429 	if (modified)
1430 		__mark_sit_entry_dirty(sbi, segno);
1431 }
1432 
1433 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1434 {
1435 	struct seg_entry *se;
1436 	unsigned int segno, offset;
1437 	long int new_vblocks;
1438 
1439 	segno = GET_SEGNO(sbi, blkaddr);
1440 
1441 	se = get_seg_entry(sbi, segno);
1442 	new_vblocks = se->valid_blocks + del;
1443 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1444 
1445 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1446 				(new_vblocks > sbi->blocks_per_seg)));
1447 
1448 	se->valid_blocks = new_vblocks;
1449 	se->mtime = get_mtime(sbi);
1450 	SIT_I(sbi)->max_mtime = se->mtime;
1451 
1452 	/* Update valid block bitmap */
1453 	if (del > 0) {
1454 		if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) {
1455 #ifdef CONFIG_F2FS_CHECK_FS
1456 			if (f2fs_test_and_set_bit(offset,
1457 						se->cur_valid_map_mir))
1458 				f2fs_bug_on(sbi, 1);
1459 			else
1460 				WARN_ON(1);
1461 #else
1462 			f2fs_bug_on(sbi, 1);
1463 #endif
1464 		}
1465 		if (f2fs_discard_en(sbi) &&
1466 			!f2fs_test_and_set_bit(offset, se->discard_map))
1467 			sbi->discard_blks--;
1468 
1469 		/* don't overwrite by SSR to keep node chain */
1470 		if (se->type == CURSEG_WARM_NODE) {
1471 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1472 				se->ckpt_valid_blocks++;
1473 		}
1474 	} else {
1475 		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) {
1476 #ifdef CONFIG_F2FS_CHECK_FS
1477 			if (!f2fs_test_and_clear_bit(offset,
1478 						se->cur_valid_map_mir))
1479 				f2fs_bug_on(sbi, 1);
1480 			else
1481 				WARN_ON(1);
1482 #else
1483 			f2fs_bug_on(sbi, 1);
1484 #endif
1485 		}
1486 		if (f2fs_discard_en(sbi) &&
1487 			f2fs_test_and_clear_bit(offset, se->discard_map))
1488 			sbi->discard_blks++;
1489 	}
1490 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1491 		se->ckpt_valid_blocks += del;
1492 
1493 	__mark_sit_entry_dirty(sbi, segno);
1494 
1495 	/* update total number of valid blocks to be written in ckpt area */
1496 	SIT_I(sbi)->written_valid_blocks += del;
1497 
1498 	if (sbi->segs_per_sec > 1)
1499 		get_sec_entry(sbi, segno)->valid_blocks += del;
1500 }
1501 
1502 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1503 {
1504 	update_sit_entry(sbi, new, 1);
1505 	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1506 		update_sit_entry(sbi, old, -1);
1507 
1508 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1509 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1510 }
1511 
1512 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1513 {
1514 	unsigned int segno = GET_SEGNO(sbi, addr);
1515 	struct sit_info *sit_i = SIT_I(sbi);
1516 
1517 	f2fs_bug_on(sbi, addr == NULL_ADDR);
1518 	if (addr == NEW_ADDR)
1519 		return;
1520 
1521 	/* add it into sit main buffer */
1522 	mutex_lock(&sit_i->sentry_lock);
1523 
1524 	update_sit_entry(sbi, addr, -1);
1525 
1526 	/* add it into dirty seglist */
1527 	locate_dirty_segment(sbi, segno);
1528 
1529 	mutex_unlock(&sit_i->sentry_lock);
1530 }
1531 
1532 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1533 {
1534 	struct sit_info *sit_i = SIT_I(sbi);
1535 	unsigned int segno, offset;
1536 	struct seg_entry *se;
1537 	bool is_cp = false;
1538 
1539 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1540 		return true;
1541 
1542 	mutex_lock(&sit_i->sentry_lock);
1543 
1544 	segno = GET_SEGNO(sbi, blkaddr);
1545 	se = get_seg_entry(sbi, segno);
1546 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1547 
1548 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
1549 		is_cp = true;
1550 
1551 	mutex_unlock(&sit_i->sentry_lock);
1552 
1553 	return is_cp;
1554 }
1555 
1556 /*
1557  * This function should be resided under the curseg_mutex lock
1558  */
1559 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1560 					struct f2fs_summary *sum)
1561 {
1562 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1563 	void *addr = curseg->sum_blk;
1564 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1565 	memcpy(addr, sum, sizeof(struct f2fs_summary));
1566 }
1567 
1568 /*
1569  * Calculate the number of current summary pages for writing
1570  */
1571 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1572 {
1573 	int valid_sum_count = 0;
1574 	int i, sum_in_page;
1575 
1576 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1577 		if (sbi->ckpt->alloc_type[i] == SSR)
1578 			valid_sum_count += sbi->blocks_per_seg;
1579 		else {
1580 			if (for_ra)
1581 				valid_sum_count += le16_to_cpu(
1582 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1583 			else
1584 				valid_sum_count += curseg_blkoff(sbi, i);
1585 		}
1586 	}
1587 
1588 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1589 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1590 	if (valid_sum_count <= sum_in_page)
1591 		return 1;
1592 	else if ((valid_sum_count - sum_in_page) <=
1593 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1594 		return 2;
1595 	return 3;
1596 }
1597 
1598 /*
1599  * Caller should put this summary page
1600  */
1601 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1602 {
1603 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1604 }
1605 
1606 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1607 {
1608 	struct page *page = grab_meta_page(sbi, blk_addr);
1609 	void *dst = page_address(page);
1610 
1611 	if (src)
1612 		memcpy(dst, src, PAGE_SIZE);
1613 	else
1614 		memset(dst, 0, PAGE_SIZE);
1615 	set_page_dirty(page);
1616 	f2fs_put_page(page, 1);
1617 }
1618 
1619 static void write_sum_page(struct f2fs_sb_info *sbi,
1620 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
1621 {
1622 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
1623 }
1624 
1625 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1626 						int type, block_t blk_addr)
1627 {
1628 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1629 	struct page *page = grab_meta_page(sbi, blk_addr);
1630 	struct f2fs_summary_block *src = curseg->sum_blk;
1631 	struct f2fs_summary_block *dst;
1632 
1633 	dst = (struct f2fs_summary_block *)page_address(page);
1634 
1635 	mutex_lock(&curseg->curseg_mutex);
1636 
1637 	down_read(&curseg->journal_rwsem);
1638 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1639 	up_read(&curseg->journal_rwsem);
1640 
1641 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1642 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1643 
1644 	mutex_unlock(&curseg->curseg_mutex);
1645 
1646 	set_page_dirty(page);
1647 	f2fs_put_page(page, 1);
1648 }
1649 
1650 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1651 {
1652 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1653 	unsigned int segno = curseg->segno + 1;
1654 	struct free_segmap_info *free_i = FREE_I(sbi);
1655 
1656 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1657 		return !test_bit(segno, free_i->free_segmap);
1658 	return 0;
1659 }
1660 
1661 /*
1662  * Find a new segment from the free segments bitmap to right order
1663  * This function should be returned with success, otherwise BUG
1664  */
1665 static void get_new_segment(struct f2fs_sb_info *sbi,
1666 			unsigned int *newseg, bool new_sec, int dir)
1667 {
1668 	struct free_segmap_info *free_i = FREE_I(sbi);
1669 	unsigned int segno, secno, zoneno;
1670 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1671 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
1672 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
1673 	unsigned int left_start = hint;
1674 	bool init = true;
1675 	int go_left = 0;
1676 	int i;
1677 
1678 	spin_lock(&free_i->segmap_lock);
1679 
1680 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1681 		segno = find_next_zero_bit(free_i->free_segmap,
1682 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
1683 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
1684 			goto got_it;
1685 	}
1686 find_other_zone:
1687 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1688 	if (secno >= MAIN_SECS(sbi)) {
1689 		if (dir == ALLOC_RIGHT) {
1690 			secno = find_next_zero_bit(free_i->free_secmap,
1691 							MAIN_SECS(sbi), 0);
1692 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1693 		} else {
1694 			go_left = 1;
1695 			left_start = hint - 1;
1696 		}
1697 	}
1698 	if (go_left == 0)
1699 		goto skip_left;
1700 
1701 	while (test_bit(left_start, free_i->free_secmap)) {
1702 		if (left_start > 0) {
1703 			left_start--;
1704 			continue;
1705 		}
1706 		left_start = find_next_zero_bit(free_i->free_secmap,
1707 							MAIN_SECS(sbi), 0);
1708 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1709 		break;
1710 	}
1711 	secno = left_start;
1712 skip_left:
1713 	hint = secno;
1714 	segno = GET_SEG_FROM_SEC(sbi, secno);
1715 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
1716 
1717 	/* give up on finding another zone */
1718 	if (!init)
1719 		goto got_it;
1720 	if (sbi->secs_per_zone == 1)
1721 		goto got_it;
1722 	if (zoneno == old_zoneno)
1723 		goto got_it;
1724 	if (dir == ALLOC_LEFT) {
1725 		if (!go_left && zoneno + 1 >= total_zones)
1726 			goto got_it;
1727 		if (go_left && zoneno == 0)
1728 			goto got_it;
1729 	}
1730 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1731 		if (CURSEG_I(sbi, i)->zone == zoneno)
1732 			break;
1733 
1734 	if (i < NR_CURSEG_TYPE) {
1735 		/* zone is in user, try another */
1736 		if (go_left)
1737 			hint = zoneno * sbi->secs_per_zone - 1;
1738 		else if (zoneno + 1 >= total_zones)
1739 			hint = 0;
1740 		else
1741 			hint = (zoneno + 1) * sbi->secs_per_zone;
1742 		init = false;
1743 		goto find_other_zone;
1744 	}
1745 got_it:
1746 	/* set it as dirty segment in free segmap */
1747 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1748 	__set_inuse(sbi, segno);
1749 	*newseg = segno;
1750 	spin_unlock(&free_i->segmap_lock);
1751 }
1752 
1753 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1754 {
1755 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1756 	struct summary_footer *sum_footer;
1757 
1758 	curseg->segno = curseg->next_segno;
1759 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
1760 	curseg->next_blkoff = 0;
1761 	curseg->next_segno = NULL_SEGNO;
1762 
1763 	sum_footer = &(curseg->sum_blk->footer);
1764 	memset(sum_footer, 0, sizeof(struct summary_footer));
1765 	if (IS_DATASEG(type))
1766 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1767 	if (IS_NODESEG(type))
1768 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1769 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
1770 }
1771 
1772 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
1773 {
1774 	/* if segs_per_sec is large than 1, we need to keep original policy. */
1775 	if (sbi->segs_per_sec != 1)
1776 		return CURSEG_I(sbi, type)->segno;
1777 
1778 	if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
1779 		return 0;
1780 
1781 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
1782 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
1783 	return CURSEG_I(sbi, type)->segno;
1784 }
1785 
1786 /*
1787  * Allocate a current working segment.
1788  * This function always allocates a free segment in LFS manner.
1789  */
1790 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1791 {
1792 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1793 	unsigned int segno = curseg->segno;
1794 	int dir = ALLOC_LEFT;
1795 
1796 	write_sum_page(sbi, curseg->sum_blk,
1797 				GET_SUM_BLOCK(sbi, segno));
1798 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1799 		dir = ALLOC_RIGHT;
1800 
1801 	if (test_opt(sbi, NOHEAP))
1802 		dir = ALLOC_RIGHT;
1803 
1804 	segno = __get_next_segno(sbi, type);
1805 	get_new_segment(sbi, &segno, new_sec, dir);
1806 	curseg->next_segno = segno;
1807 	reset_curseg(sbi, type, 1);
1808 	curseg->alloc_type = LFS;
1809 }
1810 
1811 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1812 			struct curseg_info *seg, block_t start)
1813 {
1814 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1815 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1816 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
1817 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1818 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1819 	int i, pos;
1820 
1821 	for (i = 0; i < entries; i++)
1822 		target_map[i] = ckpt_map[i] | cur_map[i];
1823 
1824 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1825 
1826 	seg->next_blkoff = pos;
1827 }
1828 
1829 /*
1830  * If a segment is written by LFS manner, next block offset is just obtained
1831  * by increasing the current block offset. However, if a segment is written by
1832  * SSR manner, next block offset obtained by calling __next_free_blkoff
1833  */
1834 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1835 				struct curseg_info *seg)
1836 {
1837 	if (seg->alloc_type == SSR)
1838 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1839 	else
1840 		seg->next_blkoff++;
1841 }
1842 
1843 /*
1844  * This function always allocates a used segment(from dirty seglist) by SSR
1845  * manner, so it should recover the existing segment information of valid blocks
1846  */
1847 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1848 {
1849 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1850 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1851 	unsigned int new_segno = curseg->next_segno;
1852 	struct f2fs_summary_block *sum_node;
1853 	struct page *sum_page;
1854 
1855 	write_sum_page(sbi, curseg->sum_blk,
1856 				GET_SUM_BLOCK(sbi, curseg->segno));
1857 	__set_test_and_inuse(sbi, new_segno);
1858 
1859 	mutex_lock(&dirty_i->seglist_lock);
1860 	__remove_dirty_segment(sbi, new_segno, PRE);
1861 	__remove_dirty_segment(sbi, new_segno, DIRTY);
1862 	mutex_unlock(&dirty_i->seglist_lock);
1863 
1864 	reset_curseg(sbi, type, 1);
1865 	curseg->alloc_type = SSR;
1866 	__next_free_blkoff(sbi, curseg, 0);
1867 
1868 	if (reuse) {
1869 		sum_page = get_sum_page(sbi, new_segno);
1870 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1871 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1872 		f2fs_put_page(sum_page, 1);
1873 	}
1874 }
1875 
1876 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1877 {
1878 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1879 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1880 	unsigned segno = NULL_SEGNO;
1881 	int i, cnt;
1882 	bool reversed = false;
1883 
1884 	/* need_SSR() already forces to do this */
1885 	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
1886 		curseg->next_segno = segno;
1887 		return 1;
1888 	}
1889 
1890 	/* For node segments, let's do SSR more intensively */
1891 	if (IS_NODESEG(type)) {
1892 		if (type >= CURSEG_WARM_NODE) {
1893 			reversed = true;
1894 			i = CURSEG_COLD_NODE;
1895 		} else {
1896 			i = CURSEG_HOT_NODE;
1897 		}
1898 		cnt = NR_CURSEG_NODE_TYPE;
1899 	} else {
1900 		if (type >= CURSEG_WARM_DATA) {
1901 			reversed = true;
1902 			i = CURSEG_COLD_DATA;
1903 		} else {
1904 			i = CURSEG_HOT_DATA;
1905 		}
1906 		cnt = NR_CURSEG_DATA_TYPE;
1907 	}
1908 
1909 	for (; cnt-- > 0; reversed ? i-- : i++) {
1910 		if (i == type)
1911 			continue;
1912 		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
1913 			curseg->next_segno = segno;
1914 			return 1;
1915 		}
1916 	}
1917 	return 0;
1918 }
1919 
1920 /*
1921  * flush out current segment and replace it with new segment
1922  * This function should be returned with success, otherwise BUG
1923  */
1924 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1925 						int type, bool force)
1926 {
1927 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1928 
1929 	if (force)
1930 		new_curseg(sbi, type, true);
1931 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
1932 					type == CURSEG_WARM_NODE)
1933 		new_curseg(sbi, type, false);
1934 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1935 		new_curseg(sbi, type, false);
1936 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1937 		change_curseg(sbi, type, true);
1938 	else
1939 		new_curseg(sbi, type, false);
1940 
1941 	stat_inc_seg_type(sbi, curseg);
1942 }
1943 
1944 void allocate_new_segments(struct f2fs_sb_info *sbi)
1945 {
1946 	struct curseg_info *curseg;
1947 	unsigned int old_segno;
1948 	int i;
1949 
1950 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1951 		curseg = CURSEG_I(sbi, i);
1952 		old_segno = curseg->segno;
1953 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
1954 		locate_dirty_segment(sbi, old_segno);
1955 	}
1956 }
1957 
1958 static const struct segment_allocation default_salloc_ops = {
1959 	.allocate_segment = allocate_segment_by_default,
1960 };
1961 
1962 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1963 {
1964 	__u64 trim_start = cpc->trim_start;
1965 	bool has_candidate = false;
1966 
1967 	mutex_lock(&SIT_I(sbi)->sentry_lock);
1968 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
1969 		if (add_discard_addrs(sbi, cpc, true)) {
1970 			has_candidate = true;
1971 			break;
1972 		}
1973 	}
1974 	mutex_unlock(&SIT_I(sbi)->sentry_lock);
1975 
1976 	cpc->trim_start = trim_start;
1977 	return has_candidate;
1978 }
1979 
1980 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1981 {
1982 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
1983 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1984 	unsigned int start_segno, end_segno;
1985 	struct cp_control cpc;
1986 	int err = 0;
1987 
1988 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1989 		return -EINVAL;
1990 
1991 	cpc.trimmed = 0;
1992 	if (end <= MAIN_BLKADDR(sbi))
1993 		goto out;
1994 
1995 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1996 		f2fs_msg(sbi->sb, KERN_WARNING,
1997 			"Found FS corruption, run fsck to fix.");
1998 		goto out;
1999 	}
2000 
2001 	/* start/end segment number in main_area */
2002 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2003 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2004 						GET_SEGNO(sbi, end);
2005 	cpc.reason = CP_DISCARD;
2006 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2007 
2008 	/* do checkpoint to issue discard commands safely */
2009 	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
2010 		cpc.trim_start = start_segno;
2011 
2012 		if (sbi->discard_blks == 0)
2013 			break;
2014 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2015 			cpc.trim_end = end_segno;
2016 		else
2017 			cpc.trim_end = min_t(unsigned int,
2018 				rounddown(start_segno +
2019 				BATCHED_TRIM_SEGMENTS(sbi),
2020 				sbi->segs_per_sec) - 1, end_segno);
2021 
2022 		mutex_lock(&sbi->gc_mutex);
2023 		err = write_checkpoint(sbi, &cpc);
2024 		mutex_unlock(&sbi->gc_mutex);
2025 		if (err)
2026 			break;
2027 
2028 		schedule();
2029 	}
2030 out:
2031 	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
2032 	return err;
2033 }
2034 
2035 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2036 {
2037 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2038 	if (curseg->next_blkoff < sbi->blocks_per_seg)
2039 		return true;
2040 	return false;
2041 }
2042 
2043 static int __get_segment_type_2(struct page *page, enum page_type p_type)
2044 {
2045 	if (p_type == DATA)
2046 		return CURSEG_HOT_DATA;
2047 	else
2048 		return CURSEG_HOT_NODE;
2049 }
2050 
2051 static int __get_segment_type_4(struct page *page, enum page_type p_type)
2052 {
2053 	if (p_type == DATA) {
2054 		struct inode *inode = page->mapping->host;
2055 
2056 		if (S_ISDIR(inode->i_mode))
2057 			return CURSEG_HOT_DATA;
2058 		else
2059 			return CURSEG_COLD_DATA;
2060 	} else {
2061 		if (IS_DNODE(page) && is_cold_node(page))
2062 			return CURSEG_WARM_NODE;
2063 		else
2064 			return CURSEG_COLD_NODE;
2065 	}
2066 }
2067 
2068 static int __get_segment_type_6(struct page *page, enum page_type p_type)
2069 {
2070 	if (p_type == DATA) {
2071 		struct inode *inode = page->mapping->host;
2072 
2073 		if (is_cold_data(page) || file_is_cold(inode))
2074 			return CURSEG_COLD_DATA;
2075 		if (is_inode_flag_set(inode, FI_HOT_DATA))
2076 			return CURSEG_HOT_DATA;
2077 		return CURSEG_WARM_DATA;
2078 	} else {
2079 		if (IS_DNODE(page))
2080 			return is_cold_node(page) ? CURSEG_WARM_NODE :
2081 						CURSEG_HOT_NODE;
2082 		return CURSEG_COLD_NODE;
2083 	}
2084 }
2085 
2086 static int __get_segment_type(struct page *page, enum page_type p_type)
2087 {
2088 	switch (F2FS_P_SB(page)->active_logs) {
2089 	case 2:
2090 		return __get_segment_type_2(page, p_type);
2091 	case 4:
2092 		return __get_segment_type_4(page, p_type);
2093 	}
2094 	/* NR_CURSEG_TYPE(6) logs by default */
2095 	f2fs_bug_on(F2FS_P_SB(page),
2096 		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
2097 	return __get_segment_type_6(page, p_type);
2098 }
2099 
2100 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2101 		block_t old_blkaddr, block_t *new_blkaddr,
2102 		struct f2fs_summary *sum, int type)
2103 {
2104 	struct sit_info *sit_i = SIT_I(sbi);
2105 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2106 
2107 	mutex_lock(&curseg->curseg_mutex);
2108 	mutex_lock(&sit_i->sentry_lock);
2109 
2110 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2111 
2112 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
2113 
2114 	/*
2115 	 * __add_sum_entry should be resided under the curseg_mutex
2116 	 * because, this function updates a summary entry in the
2117 	 * current summary block.
2118 	 */
2119 	__add_sum_entry(sbi, type, sum);
2120 
2121 	__refresh_next_blkoff(sbi, curseg);
2122 
2123 	stat_inc_block_count(sbi, curseg);
2124 
2125 	if (!__has_curseg_space(sbi, type))
2126 		sit_i->s_ops->allocate_segment(sbi, type, false);
2127 	/*
2128 	 * SIT information should be updated after segment allocation,
2129 	 * since we need to keep dirty segments precisely under SSR.
2130 	 */
2131 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
2132 
2133 	mutex_unlock(&sit_i->sentry_lock);
2134 
2135 	if (page && IS_NODESEG(type))
2136 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2137 
2138 	mutex_unlock(&curseg->curseg_mutex);
2139 }
2140 
2141 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2142 {
2143 	int type = __get_segment_type(fio->page, fio->type);
2144 	int err;
2145 
2146 	if (fio->type == NODE || fio->type == DATA)
2147 		mutex_lock(&fio->sbi->wio_mutex[fio->type]);
2148 reallocate:
2149 	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2150 					&fio->new_blkaddr, sum, type);
2151 
2152 	/* writeout dirty page into bdev */
2153 	err = f2fs_submit_page_mbio(fio);
2154 	if (err == -EAGAIN) {
2155 		fio->old_blkaddr = fio->new_blkaddr;
2156 		goto reallocate;
2157 	}
2158 
2159 	if (fio->type == NODE || fio->type == DATA)
2160 		mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
2161 }
2162 
2163 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
2164 {
2165 	struct f2fs_io_info fio = {
2166 		.sbi = sbi,
2167 		.type = META,
2168 		.op = REQ_OP_WRITE,
2169 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2170 		.old_blkaddr = page->index,
2171 		.new_blkaddr = page->index,
2172 		.page = page,
2173 		.encrypted_page = NULL,
2174 	};
2175 
2176 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2177 		fio.op_flags &= ~REQ_META;
2178 
2179 	set_page_writeback(page);
2180 	f2fs_submit_page_mbio(&fio);
2181 }
2182 
2183 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2184 {
2185 	struct f2fs_summary sum;
2186 
2187 	set_summary(&sum, nid, 0, 0);
2188 	do_write_page(&sum, fio);
2189 }
2190 
2191 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2192 {
2193 	struct f2fs_sb_info *sbi = fio->sbi;
2194 	struct f2fs_summary sum;
2195 	struct node_info ni;
2196 
2197 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2198 	get_node_info(sbi, dn->nid, &ni);
2199 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2200 	do_write_page(&sum, fio);
2201 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2202 }
2203 
2204 int rewrite_data_page(struct f2fs_io_info *fio)
2205 {
2206 	fio->new_blkaddr = fio->old_blkaddr;
2207 	stat_inc_inplace_blocks(fio->sbi);
2208 	return f2fs_submit_page_bio(fio);
2209 }
2210 
2211 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2212 				block_t old_blkaddr, block_t new_blkaddr,
2213 				bool recover_curseg, bool recover_newaddr)
2214 {
2215 	struct sit_info *sit_i = SIT_I(sbi);
2216 	struct curseg_info *curseg;
2217 	unsigned int segno, old_cursegno;
2218 	struct seg_entry *se;
2219 	int type;
2220 	unsigned short old_blkoff;
2221 
2222 	segno = GET_SEGNO(sbi, new_blkaddr);
2223 	se = get_seg_entry(sbi, segno);
2224 	type = se->type;
2225 
2226 	if (!recover_curseg) {
2227 		/* for recovery flow */
2228 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2229 			if (old_blkaddr == NULL_ADDR)
2230 				type = CURSEG_COLD_DATA;
2231 			else
2232 				type = CURSEG_WARM_DATA;
2233 		}
2234 	} else {
2235 		if (!IS_CURSEG(sbi, segno))
2236 			type = CURSEG_WARM_DATA;
2237 	}
2238 
2239 	curseg = CURSEG_I(sbi, type);
2240 
2241 	mutex_lock(&curseg->curseg_mutex);
2242 	mutex_lock(&sit_i->sentry_lock);
2243 
2244 	old_cursegno = curseg->segno;
2245 	old_blkoff = curseg->next_blkoff;
2246 
2247 	/* change the current segment */
2248 	if (segno != curseg->segno) {
2249 		curseg->next_segno = segno;
2250 		change_curseg(sbi, type, true);
2251 	}
2252 
2253 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2254 	__add_sum_entry(sbi, type, sum);
2255 
2256 	if (!recover_curseg || recover_newaddr)
2257 		update_sit_entry(sbi, new_blkaddr, 1);
2258 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2259 		update_sit_entry(sbi, old_blkaddr, -1);
2260 
2261 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2262 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2263 
2264 	locate_dirty_segment(sbi, old_cursegno);
2265 
2266 	if (recover_curseg) {
2267 		if (old_cursegno != curseg->segno) {
2268 			curseg->next_segno = old_cursegno;
2269 			change_curseg(sbi, type, true);
2270 		}
2271 		curseg->next_blkoff = old_blkoff;
2272 	}
2273 
2274 	mutex_unlock(&sit_i->sentry_lock);
2275 	mutex_unlock(&curseg->curseg_mutex);
2276 }
2277 
2278 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2279 				block_t old_addr, block_t new_addr,
2280 				unsigned char version, bool recover_curseg,
2281 				bool recover_newaddr)
2282 {
2283 	struct f2fs_summary sum;
2284 
2285 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2286 
2287 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2288 					recover_curseg, recover_newaddr);
2289 
2290 	f2fs_update_data_blkaddr(dn, new_addr);
2291 }
2292 
2293 void f2fs_wait_on_page_writeback(struct page *page,
2294 				enum page_type type, bool ordered)
2295 {
2296 	if (PageWriteback(page)) {
2297 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2298 
2299 		f2fs_submit_merged_bio_cond(sbi, page->mapping->host,
2300 						0, page->index, type, WRITE);
2301 		if (ordered)
2302 			wait_on_page_writeback(page);
2303 		else
2304 			wait_for_stable_page(page);
2305 	}
2306 }
2307 
2308 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
2309 							block_t blkaddr)
2310 {
2311 	struct page *cpage;
2312 
2313 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2314 		return;
2315 
2316 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2317 	if (cpage) {
2318 		f2fs_wait_on_page_writeback(cpage, DATA, true);
2319 		f2fs_put_page(cpage, 1);
2320 	}
2321 }
2322 
2323 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
2324 {
2325 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2326 	struct curseg_info *seg_i;
2327 	unsigned char *kaddr;
2328 	struct page *page;
2329 	block_t start;
2330 	int i, j, offset;
2331 
2332 	start = start_sum_block(sbi);
2333 
2334 	page = get_meta_page(sbi, start++);
2335 	kaddr = (unsigned char *)page_address(page);
2336 
2337 	/* Step 1: restore nat cache */
2338 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2339 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2340 
2341 	/* Step 2: restore sit cache */
2342 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2343 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2344 	offset = 2 * SUM_JOURNAL_SIZE;
2345 
2346 	/* Step 3: restore summary entries */
2347 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2348 		unsigned short blk_off;
2349 		unsigned int segno;
2350 
2351 		seg_i = CURSEG_I(sbi, i);
2352 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2353 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2354 		seg_i->next_segno = segno;
2355 		reset_curseg(sbi, i, 0);
2356 		seg_i->alloc_type = ckpt->alloc_type[i];
2357 		seg_i->next_blkoff = blk_off;
2358 
2359 		if (seg_i->alloc_type == SSR)
2360 			blk_off = sbi->blocks_per_seg;
2361 
2362 		for (j = 0; j < blk_off; j++) {
2363 			struct f2fs_summary *s;
2364 			s = (struct f2fs_summary *)(kaddr + offset);
2365 			seg_i->sum_blk->entries[j] = *s;
2366 			offset += SUMMARY_SIZE;
2367 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2368 						SUM_FOOTER_SIZE)
2369 				continue;
2370 
2371 			f2fs_put_page(page, 1);
2372 			page = NULL;
2373 
2374 			page = get_meta_page(sbi, start++);
2375 			kaddr = (unsigned char *)page_address(page);
2376 			offset = 0;
2377 		}
2378 	}
2379 	f2fs_put_page(page, 1);
2380 	return 0;
2381 }
2382 
2383 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2384 {
2385 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2386 	struct f2fs_summary_block *sum;
2387 	struct curseg_info *curseg;
2388 	struct page *new;
2389 	unsigned short blk_off;
2390 	unsigned int segno = 0;
2391 	block_t blk_addr = 0;
2392 
2393 	/* get segment number and block addr */
2394 	if (IS_DATASEG(type)) {
2395 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2396 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2397 							CURSEG_HOT_DATA]);
2398 		if (__exist_node_summaries(sbi))
2399 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2400 		else
2401 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2402 	} else {
2403 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
2404 							CURSEG_HOT_NODE]);
2405 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2406 							CURSEG_HOT_NODE]);
2407 		if (__exist_node_summaries(sbi))
2408 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2409 							type - CURSEG_HOT_NODE);
2410 		else
2411 			blk_addr = GET_SUM_BLOCK(sbi, segno);
2412 	}
2413 
2414 	new = get_meta_page(sbi, blk_addr);
2415 	sum = (struct f2fs_summary_block *)page_address(new);
2416 
2417 	if (IS_NODESEG(type)) {
2418 		if (__exist_node_summaries(sbi)) {
2419 			struct f2fs_summary *ns = &sum->entries[0];
2420 			int i;
2421 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2422 				ns->version = 0;
2423 				ns->ofs_in_node = 0;
2424 			}
2425 		} else {
2426 			int err;
2427 
2428 			err = restore_node_summary(sbi, segno, sum);
2429 			if (err) {
2430 				f2fs_put_page(new, 1);
2431 				return err;
2432 			}
2433 		}
2434 	}
2435 
2436 	/* set uncompleted segment to curseg */
2437 	curseg = CURSEG_I(sbi, type);
2438 	mutex_lock(&curseg->curseg_mutex);
2439 
2440 	/* update journal info */
2441 	down_write(&curseg->journal_rwsem);
2442 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2443 	up_write(&curseg->journal_rwsem);
2444 
2445 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2446 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2447 	curseg->next_segno = segno;
2448 	reset_curseg(sbi, type, 0);
2449 	curseg->alloc_type = ckpt->alloc_type[type];
2450 	curseg->next_blkoff = blk_off;
2451 	mutex_unlock(&curseg->curseg_mutex);
2452 	f2fs_put_page(new, 1);
2453 	return 0;
2454 }
2455 
2456 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2457 {
2458 	int type = CURSEG_HOT_DATA;
2459 	int err;
2460 
2461 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2462 		int npages = npages_for_summary_flush(sbi, true);
2463 
2464 		if (npages >= 2)
2465 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
2466 							META_CP, true);
2467 
2468 		/* restore for compacted data summary */
2469 		if (read_compacted_summaries(sbi))
2470 			return -EINVAL;
2471 		type = CURSEG_HOT_NODE;
2472 	}
2473 
2474 	if (__exist_node_summaries(sbi))
2475 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2476 					NR_CURSEG_TYPE - type, META_CP, true);
2477 
2478 	for (; type <= CURSEG_COLD_NODE; type++) {
2479 		err = read_normal_summaries(sbi, type);
2480 		if (err)
2481 			return err;
2482 	}
2483 
2484 	return 0;
2485 }
2486 
2487 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2488 {
2489 	struct page *page;
2490 	unsigned char *kaddr;
2491 	struct f2fs_summary *summary;
2492 	struct curseg_info *seg_i;
2493 	int written_size = 0;
2494 	int i, j;
2495 
2496 	page = grab_meta_page(sbi, blkaddr++);
2497 	kaddr = (unsigned char *)page_address(page);
2498 
2499 	/* Step 1: write nat cache */
2500 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2501 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
2502 	written_size += SUM_JOURNAL_SIZE;
2503 
2504 	/* Step 2: write sit cache */
2505 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2506 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
2507 	written_size += SUM_JOURNAL_SIZE;
2508 
2509 	/* Step 3: write summary entries */
2510 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2511 		unsigned short blkoff;
2512 		seg_i = CURSEG_I(sbi, i);
2513 		if (sbi->ckpt->alloc_type[i] == SSR)
2514 			blkoff = sbi->blocks_per_seg;
2515 		else
2516 			blkoff = curseg_blkoff(sbi, i);
2517 
2518 		for (j = 0; j < blkoff; j++) {
2519 			if (!page) {
2520 				page = grab_meta_page(sbi, blkaddr++);
2521 				kaddr = (unsigned char *)page_address(page);
2522 				written_size = 0;
2523 			}
2524 			summary = (struct f2fs_summary *)(kaddr + written_size);
2525 			*summary = seg_i->sum_blk->entries[j];
2526 			written_size += SUMMARY_SIZE;
2527 
2528 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
2529 							SUM_FOOTER_SIZE)
2530 				continue;
2531 
2532 			set_page_dirty(page);
2533 			f2fs_put_page(page, 1);
2534 			page = NULL;
2535 		}
2536 	}
2537 	if (page) {
2538 		set_page_dirty(page);
2539 		f2fs_put_page(page, 1);
2540 	}
2541 }
2542 
2543 static void write_normal_summaries(struct f2fs_sb_info *sbi,
2544 					block_t blkaddr, int type)
2545 {
2546 	int i, end;
2547 	if (IS_DATASEG(type))
2548 		end = type + NR_CURSEG_DATA_TYPE;
2549 	else
2550 		end = type + NR_CURSEG_NODE_TYPE;
2551 
2552 	for (i = type; i < end; i++)
2553 		write_current_sum_page(sbi, i, blkaddr + (i - type));
2554 }
2555 
2556 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2557 {
2558 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2559 		write_compacted_summaries(sbi, start_blk);
2560 	else
2561 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2562 }
2563 
2564 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2565 {
2566 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2567 }
2568 
2569 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2570 					unsigned int val, int alloc)
2571 {
2572 	int i;
2573 
2574 	if (type == NAT_JOURNAL) {
2575 		for (i = 0; i < nats_in_cursum(journal); i++) {
2576 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2577 				return i;
2578 		}
2579 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2580 			return update_nats_in_cursum(journal, 1);
2581 	} else if (type == SIT_JOURNAL) {
2582 		for (i = 0; i < sits_in_cursum(journal); i++)
2583 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2584 				return i;
2585 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2586 			return update_sits_in_cursum(journal, 1);
2587 	}
2588 	return -1;
2589 }
2590 
2591 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2592 					unsigned int segno)
2593 {
2594 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
2595 }
2596 
2597 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2598 					unsigned int start)
2599 {
2600 	struct sit_info *sit_i = SIT_I(sbi);
2601 	struct page *src_page, *dst_page;
2602 	pgoff_t src_off, dst_off;
2603 	void *src_addr, *dst_addr;
2604 
2605 	src_off = current_sit_addr(sbi, start);
2606 	dst_off = next_sit_addr(sbi, src_off);
2607 
2608 	/* get current sit block page without lock */
2609 	src_page = get_meta_page(sbi, src_off);
2610 	dst_page = grab_meta_page(sbi, dst_off);
2611 	f2fs_bug_on(sbi, PageDirty(src_page));
2612 
2613 	src_addr = page_address(src_page);
2614 	dst_addr = page_address(dst_page);
2615 	memcpy(dst_addr, src_addr, PAGE_SIZE);
2616 
2617 	set_page_dirty(dst_page);
2618 	f2fs_put_page(src_page, 1);
2619 
2620 	set_to_next_sit(sit_i, start);
2621 
2622 	return dst_page;
2623 }
2624 
2625 static struct sit_entry_set *grab_sit_entry_set(void)
2626 {
2627 	struct sit_entry_set *ses =
2628 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2629 
2630 	ses->entry_cnt = 0;
2631 	INIT_LIST_HEAD(&ses->set_list);
2632 	return ses;
2633 }
2634 
2635 static void release_sit_entry_set(struct sit_entry_set *ses)
2636 {
2637 	list_del(&ses->set_list);
2638 	kmem_cache_free(sit_entry_set_slab, ses);
2639 }
2640 
2641 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2642 						struct list_head *head)
2643 {
2644 	struct sit_entry_set *next = ses;
2645 
2646 	if (list_is_last(&ses->set_list, head))
2647 		return;
2648 
2649 	list_for_each_entry_continue(next, head, set_list)
2650 		if (ses->entry_cnt <= next->entry_cnt)
2651 			break;
2652 
2653 	list_move_tail(&ses->set_list, &next->set_list);
2654 }
2655 
2656 static void add_sit_entry(unsigned int segno, struct list_head *head)
2657 {
2658 	struct sit_entry_set *ses;
2659 	unsigned int start_segno = START_SEGNO(segno);
2660 
2661 	list_for_each_entry(ses, head, set_list) {
2662 		if (ses->start_segno == start_segno) {
2663 			ses->entry_cnt++;
2664 			adjust_sit_entry_set(ses, head);
2665 			return;
2666 		}
2667 	}
2668 
2669 	ses = grab_sit_entry_set();
2670 
2671 	ses->start_segno = start_segno;
2672 	ses->entry_cnt++;
2673 	list_add(&ses->set_list, head);
2674 }
2675 
2676 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2677 {
2678 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2679 	struct list_head *set_list = &sm_info->sit_entry_set;
2680 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2681 	unsigned int segno;
2682 
2683 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2684 		add_sit_entry(segno, set_list);
2685 }
2686 
2687 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2688 {
2689 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2690 	struct f2fs_journal *journal = curseg->journal;
2691 	int i;
2692 
2693 	down_write(&curseg->journal_rwsem);
2694 	for (i = 0; i < sits_in_cursum(journal); i++) {
2695 		unsigned int segno;
2696 		bool dirtied;
2697 
2698 		segno = le32_to_cpu(segno_in_journal(journal, i));
2699 		dirtied = __mark_sit_entry_dirty(sbi, segno);
2700 
2701 		if (!dirtied)
2702 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2703 	}
2704 	update_sits_in_cursum(journal, -i);
2705 	up_write(&curseg->journal_rwsem);
2706 }
2707 
2708 /*
2709  * CP calls this function, which flushes SIT entries including sit_journal,
2710  * and moves prefree segs to free segs.
2711  */
2712 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2713 {
2714 	struct sit_info *sit_i = SIT_I(sbi);
2715 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2716 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2717 	struct f2fs_journal *journal = curseg->journal;
2718 	struct sit_entry_set *ses, *tmp;
2719 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
2720 	bool to_journal = true;
2721 	struct seg_entry *se;
2722 
2723 	mutex_lock(&sit_i->sentry_lock);
2724 
2725 	if (!sit_i->dirty_sentries)
2726 		goto out;
2727 
2728 	/*
2729 	 * add and account sit entries of dirty bitmap in sit entry
2730 	 * set temporarily
2731 	 */
2732 	add_sits_in_set(sbi);
2733 
2734 	/*
2735 	 * if there are no enough space in journal to store dirty sit
2736 	 * entries, remove all entries from journal and add and account
2737 	 * them in sit entry set.
2738 	 */
2739 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2740 		remove_sits_in_journal(sbi);
2741 
2742 	/*
2743 	 * there are two steps to flush sit entries:
2744 	 * #1, flush sit entries to journal in current cold data summary block.
2745 	 * #2, flush sit entries to sit page.
2746 	 */
2747 	list_for_each_entry_safe(ses, tmp, head, set_list) {
2748 		struct page *page = NULL;
2749 		struct f2fs_sit_block *raw_sit = NULL;
2750 		unsigned int start_segno = ses->start_segno;
2751 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2752 						(unsigned long)MAIN_SEGS(sbi));
2753 		unsigned int segno = start_segno;
2754 
2755 		if (to_journal &&
2756 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2757 			to_journal = false;
2758 
2759 		if (to_journal) {
2760 			down_write(&curseg->journal_rwsem);
2761 		} else {
2762 			page = get_next_sit_page(sbi, start_segno);
2763 			raw_sit = page_address(page);
2764 		}
2765 
2766 		/* flush dirty sit entries in region of current sit set */
2767 		for_each_set_bit_from(segno, bitmap, end) {
2768 			int offset, sit_offset;
2769 
2770 			se = get_seg_entry(sbi, segno);
2771 
2772 			/* add discard candidates */
2773 			if (!(cpc->reason & CP_DISCARD)) {
2774 				cpc->trim_start = segno;
2775 				add_discard_addrs(sbi, cpc, false);
2776 			}
2777 
2778 			if (to_journal) {
2779 				offset = lookup_journal_in_cursum(journal,
2780 							SIT_JOURNAL, segno, 1);
2781 				f2fs_bug_on(sbi, offset < 0);
2782 				segno_in_journal(journal, offset) =
2783 							cpu_to_le32(segno);
2784 				seg_info_to_raw_sit(se,
2785 					&sit_in_journal(journal, offset));
2786 			} else {
2787 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2788 				seg_info_to_raw_sit(se,
2789 						&raw_sit->entries[sit_offset]);
2790 			}
2791 
2792 			__clear_bit(segno, bitmap);
2793 			sit_i->dirty_sentries--;
2794 			ses->entry_cnt--;
2795 		}
2796 
2797 		if (to_journal)
2798 			up_write(&curseg->journal_rwsem);
2799 		else
2800 			f2fs_put_page(page, 1);
2801 
2802 		f2fs_bug_on(sbi, ses->entry_cnt);
2803 		release_sit_entry_set(ses);
2804 	}
2805 
2806 	f2fs_bug_on(sbi, !list_empty(head));
2807 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
2808 out:
2809 	if (cpc->reason & CP_DISCARD) {
2810 		__u64 trim_start = cpc->trim_start;
2811 
2812 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2813 			add_discard_addrs(sbi, cpc, false);
2814 
2815 		cpc->trim_start = trim_start;
2816 	}
2817 	mutex_unlock(&sit_i->sentry_lock);
2818 
2819 	set_prefree_as_free_segments(sbi);
2820 }
2821 
2822 static int build_sit_info(struct f2fs_sb_info *sbi)
2823 {
2824 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2825 	struct sit_info *sit_i;
2826 	unsigned int sit_segs, start;
2827 	char *src_bitmap;
2828 	unsigned int bitmap_size;
2829 
2830 	/* allocate memory for SIT information */
2831 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2832 	if (!sit_i)
2833 		return -ENOMEM;
2834 
2835 	SM_I(sbi)->sit_info = sit_i;
2836 
2837 	sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
2838 					sizeof(struct seg_entry), GFP_KERNEL);
2839 	if (!sit_i->sentries)
2840 		return -ENOMEM;
2841 
2842 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2843 	sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
2844 	if (!sit_i->dirty_sentries_bitmap)
2845 		return -ENOMEM;
2846 
2847 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2848 		sit_i->sentries[start].cur_valid_map
2849 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2850 		sit_i->sentries[start].ckpt_valid_map
2851 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2852 		if (!sit_i->sentries[start].cur_valid_map ||
2853 				!sit_i->sentries[start].ckpt_valid_map)
2854 			return -ENOMEM;
2855 
2856 #ifdef CONFIG_F2FS_CHECK_FS
2857 		sit_i->sentries[start].cur_valid_map_mir
2858 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2859 		if (!sit_i->sentries[start].cur_valid_map_mir)
2860 			return -ENOMEM;
2861 #endif
2862 
2863 		if (f2fs_discard_en(sbi)) {
2864 			sit_i->sentries[start].discard_map
2865 				= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2866 			if (!sit_i->sentries[start].discard_map)
2867 				return -ENOMEM;
2868 		}
2869 	}
2870 
2871 	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2872 	if (!sit_i->tmp_map)
2873 		return -ENOMEM;
2874 
2875 	if (sbi->segs_per_sec > 1) {
2876 		sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
2877 					sizeof(struct sec_entry), GFP_KERNEL);
2878 		if (!sit_i->sec_entries)
2879 			return -ENOMEM;
2880 	}
2881 
2882 	/* get information related with SIT */
2883 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2884 
2885 	/* setup SIT bitmap from ckeckpoint pack */
2886 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2887 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2888 
2889 	sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2890 	if (!sit_i->sit_bitmap)
2891 		return -ENOMEM;
2892 
2893 #ifdef CONFIG_F2FS_CHECK_FS
2894 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2895 	if (!sit_i->sit_bitmap_mir)
2896 		return -ENOMEM;
2897 #endif
2898 
2899 	/* init SIT information */
2900 	sit_i->s_ops = &default_salloc_ops;
2901 
2902 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2903 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2904 	sit_i->written_valid_blocks = 0;
2905 	sit_i->bitmap_size = bitmap_size;
2906 	sit_i->dirty_sentries = 0;
2907 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2908 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2909 	sit_i->mounted_time = ktime_get_real_seconds();
2910 	mutex_init(&sit_i->sentry_lock);
2911 	return 0;
2912 }
2913 
2914 static int build_free_segmap(struct f2fs_sb_info *sbi)
2915 {
2916 	struct free_segmap_info *free_i;
2917 	unsigned int bitmap_size, sec_bitmap_size;
2918 
2919 	/* allocate memory for free segmap information */
2920 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2921 	if (!free_i)
2922 		return -ENOMEM;
2923 
2924 	SM_I(sbi)->free_info = free_i;
2925 
2926 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2927 	free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
2928 	if (!free_i->free_segmap)
2929 		return -ENOMEM;
2930 
2931 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2932 	free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
2933 	if (!free_i->free_secmap)
2934 		return -ENOMEM;
2935 
2936 	/* set all segments as dirty temporarily */
2937 	memset(free_i->free_segmap, 0xff, bitmap_size);
2938 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2939 
2940 	/* init free segmap information */
2941 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2942 	free_i->free_segments = 0;
2943 	free_i->free_sections = 0;
2944 	spin_lock_init(&free_i->segmap_lock);
2945 	return 0;
2946 }
2947 
2948 static int build_curseg(struct f2fs_sb_info *sbi)
2949 {
2950 	struct curseg_info *array;
2951 	int i;
2952 
2953 	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2954 	if (!array)
2955 		return -ENOMEM;
2956 
2957 	SM_I(sbi)->curseg_array = array;
2958 
2959 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2960 		mutex_init(&array[i].curseg_mutex);
2961 		array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2962 		if (!array[i].sum_blk)
2963 			return -ENOMEM;
2964 		init_rwsem(&array[i].journal_rwsem);
2965 		array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2966 							GFP_KERNEL);
2967 		if (!array[i].journal)
2968 			return -ENOMEM;
2969 		array[i].segno = NULL_SEGNO;
2970 		array[i].next_blkoff = 0;
2971 	}
2972 	return restore_curseg_summaries(sbi);
2973 }
2974 
2975 static void build_sit_entries(struct f2fs_sb_info *sbi)
2976 {
2977 	struct sit_info *sit_i = SIT_I(sbi);
2978 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2979 	struct f2fs_journal *journal = curseg->journal;
2980 	struct seg_entry *se;
2981 	struct f2fs_sit_entry sit;
2982 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2983 	unsigned int i, start, end;
2984 	unsigned int readed, start_blk = 0;
2985 
2986 	do {
2987 		readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
2988 							META_SIT, true);
2989 
2990 		start = start_blk * sit_i->sents_per_block;
2991 		end = (start_blk + readed) * sit_i->sents_per_block;
2992 
2993 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
2994 			struct f2fs_sit_block *sit_blk;
2995 			struct page *page;
2996 
2997 			se = &sit_i->sentries[start];
2998 			page = get_current_sit_page(sbi, start);
2999 			sit_blk = (struct f2fs_sit_block *)page_address(page);
3000 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3001 			f2fs_put_page(page, 1);
3002 
3003 			check_block_count(sbi, start, &sit);
3004 			seg_info_from_raw_sit(se, &sit);
3005 
3006 			/* build discard map only one time */
3007 			if (f2fs_discard_en(sbi)) {
3008 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3009 					memset(se->discard_map, 0xff,
3010 						SIT_VBLOCK_MAP_SIZE);
3011 				} else {
3012 					memcpy(se->discard_map,
3013 						se->cur_valid_map,
3014 						SIT_VBLOCK_MAP_SIZE);
3015 					sbi->discard_blks +=
3016 						sbi->blocks_per_seg -
3017 						se->valid_blocks;
3018 				}
3019 			}
3020 
3021 			if (sbi->segs_per_sec > 1)
3022 				get_sec_entry(sbi, start)->valid_blocks +=
3023 							se->valid_blocks;
3024 		}
3025 		start_blk += readed;
3026 	} while (start_blk < sit_blk_cnt);
3027 
3028 	down_read(&curseg->journal_rwsem);
3029 	for (i = 0; i < sits_in_cursum(journal); i++) {
3030 		unsigned int old_valid_blocks;
3031 
3032 		start = le32_to_cpu(segno_in_journal(journal, i));
3033 		se = &sit_i->sentries[start];
3034 		sit = sit_in_journal(journal, i);
3035 
3036 		old_valid_blocks = se->valid_blocks;
3037 
3038 		check_block_count(sbi, start, &sit);
3039 		seg_info_from_raw_sit(se, &sit);
3040 
3041 		if (f2fs_discard_en(sbi)) {
3042 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3043 				memset(se->discard_map, 0xff,
3044 							SIT_VBLOCK_MAP_SIZE);
3045 			} else {
3046 				memcpy(se->discard_map, se->cur_valid_map,
3047 							SIT_VBLOCK_MAP_SIZE);
3048 				sbi->discard_blks += old_valid_blocks -
3049 							se->valid_blocks;
3050 			}
3051 		}
3052 
3053 		if (sbi->segs_per_sec > 1)
3054 			get_sec_entry(sbi, start)->valid_blocks +=
3055 				se->valid_blocks - old_valid_blocks;
3056 	}
3057 	up_read(&curseg->journal_rwsem);
3058 }
3059 
3060 static void init_free_segmap(struct f2fs_sb_info *sbi)
3061 {
3062 	unsigned int start;
3063 	int type;
3064 
3065 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3066 		struct seg_entry *sentry = get_seg_entry(sbi, start);
3067 		if (!sentry->valid_blocks)
3068 			__set_free(sbi, start);
3069 		else
3070 			SIT_I(sbi)->written_valid_blocks +=
3071 						sentry->valid_blocks;
3072 	}
3073 
3074 	/* set use the current segments */
3075 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3076 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3077 		__set_test_and_inuse(sbi, curseg_t->segno);
3078 	}
3079 }
3080 
3081 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3082 {
3083 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3084 	struct free_segmap_info *free_i = FREE_I(sbi);
3085 	unsigned int segno = 0, offset = 0;
3086 	unsigned short valid_blocks;
3087 
3088 	while (1) {
3089 		/* find dirty segment based on free segmap */
3090 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3091 		if (segno >= MAIN_SEGS(sbi))
3092 			break;
3093 		offset = segno + 1;
3094 		valid_blocks = get_valid_blocks(sbi, segno, false);
3095 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3096 			continue;
3097 		if (valid_blocks > sbi->blocks_per_seg) {
3098 			f2fs_bug_on(sbi, 1);
3099 			continue;
3100 		}
3101 		mutex_lock(&dirty_i->seglist_lock);
3102 		__locate_dirty_segment(sbi, segno, DIRTY);
3103 		mutex_unlock(&dirty_i->seglist_lock);
3104 	}
3105 }
3106 
3107 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3108 {
3109 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3110 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3111 
3112 	dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
3113 	if (!dirty_i->victim_secmap)
3114 		return -ENOMEM;
3115 	return 0;
3116 }
3117 
3118 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3119 {
3120 	struct dirty_seglist_info *dirty_i;
3121 	unsigned int bitmap_size, i;
3122 
3123 	/* allocate memory for dirty segments list information */
3124 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
3125 	if (!dirty_i)
3126 		return -ENOMEM;
3127 
3128 	SM_I(sbi)->dirty_info = dirty_i;
3129 	mutex_init(&dirty_i->seglist_lock);
3130 
3131 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3132 
3133 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
3134 		dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
3135 		if (!dirty_i->dirty_segmap[i])
3136 			return -ENOMEM;
3137 	}
3138 
3139 	init_dirty_segmap(sbi);
3140 	return init_victim_secmap(sbi);
3141 }
3142 
3143 /*
3144  * Update min, max modified time for cost-benefit GC algorithm
3145  */
3146 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3147 {
3148 	struct sit_info *sit_i = SIT_I(sbi);
3149 	unsigned int segno;
3150 
3151 	mutex_lock(&sit_i->sentry_lock);
3152 
3153 	sit_i->min_mtime = LLONG_MAX;
3154 
3155 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3156 		unsigned int i;
3157 		unsigned long long mtime = 0;
3158 
3159 		for (i = 0; i < sbi->segs_per_sec; i++)
3160 			mtime += get_seg_entry(sbi, segno + i)->mtime;
3161 
3162 		mtime = div_u64(mtime, sbi->segs_per_sec);
3163 
3164 		if (sit_i->min_mtime > mtime)
3165 			sit_i->min_mtime = mtime;
3166 	}
3167 	sit_i->max_mtime = get_mtime(sbi);
3168 	mutex_unlock(&sit_i->sentry_lock);
3169 }
3170 
3171 int build_segment_manager(struct f2fs_sb_info *sbi)
3172 {
3173 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3174 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3175 	struct f2fs_sm_info *sm_info;
3176 	int err;
3177 
3178 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
3179 	if (!sm_info)
3180 		return -ENOMEM;
3181 
3182 	/* init sm info */
3183 	sbi->sm_info = sm_info;
3184 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3185 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3186 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3187 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3188 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3189 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3190 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3191 	sm_info->rec_prefree_segments = sm_info->main_segments *
3192 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3193 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3194 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3195 
3196 	if (!test_opt(sbi, LFS))
3197 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3198 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3199 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3200 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3201 
3202 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3203 
3204 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
3205 
3206 	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
3207 		err = create_flush_cmd_control(sbi);
3208 		if (err)
3209 			return err;
3210 	}
3211 
3212 	err = create_discard_cmd_control(sbi);
3213 	if (err)
3214 		return err;
3215 
3216 	err = build_sit_info(sbi);
3217 	if (err)
3218 		return err;
3219 	err = build_free_segmap(sbi);
3220 	if (err)
3221 		return err;
3222 	err = build_curseg(sbi);
3223 	if (err)
3224 		return err;
3225 
3226 	/* reinit free segmap based on SIT */
3227 	build_sit_entries(sbi);
3228 
3229 	init_free_segmap(sbi);
3230 	err = build_dirty_segmap(sbi);
3231 	if (err)
3232 		return err;
3233 
3234 	init_min_max_mtime(sbi);
3235 	return 0;
3236 }
3237 
3238 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3239 		enum dirty_type dirty_type)
3240 {
3241 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3242 
3243 	mutex_lock(&dirty_i->seglist_lock);
3244 	kvfree(dirty_i->dirty_segmap[dirty_type]);
3245 	dirty_i->nr_dirty[dirty_type] = 0;
3246 	mutex_unlock(&dirty_i->seglist_lock);
3247 }
3248 
3249 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3250 {
3251 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3252 	kvfree(dirty_i->victim_secmap);
3253 }
3254 
3255 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3256 {
3257 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3258 	int i;
3259 
3260 	if (!dirty_i)
3261 		return;
3262 
3263 	/* discard pre-free/dirty segments list */
3264 	for (i = 0; i < NR_DIRTY_TYPE; i++)
3265 		discard_dirty_segmap(sbi, i);
3266 
3267 	destroy_victim_secmap(sbi);
3268 	SM_I(sbi)->dirty_info = NULL;
3269 	kfree(dirty_i);
3270 }
3271 
3272 static void destroy_curseg(struct f2fs_sb_info *sbi)
3273 {
3274 	struct curseg_info *array = SM_I(sbi)->curseg_array;
3275 	int i;
3276 
3277 	if (!array)
3278 		return;
3279 	SM_I(sbi)->curseg_array = NULL;
3280 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
3281 		kfree(array[i].sum_blk);
3282 		kfree(array[i].journal);
3283 	}
3284 	kfree(array);
3285 }
3286 
3287 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3288 {
3289 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3290 	if (!free_i)
3291 		return;
3292 	SM_I(sbi)->free_info = NULL;
3293 	kvfree(free_i->free_segmap);
3294 	kvfree(free_i->free_secmap);
3295 	kfree(free_i);
3296 }
3297 
3298 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3299 {
3300 	struct sit_info *sit_i = SIT_I(sbi);
3301 	unsigned int start;
3302 
3303 	if (!sit_i)
3304 		return;
3305 
3306 	if (sit_i->sentries) {
3307 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
3308 			kfree(sit_i->sentries[start].cur_valid_map);
3309 #ifdef CONFIG_F2FS_CHECK_FS
3310 			kfree(sit_i->sentries[start].cur_valid_map_mir);
3311 #endif
3312 			kfree(sit_i->sentries[start].ckpt_valid_map);
3313 			kfree(sit_i->sentries[start].discard_map);
3314 		}
3315 	}
3316 	kfree(sit_i->tmp_map);
3317 
3318 	kvfree(sit_i->sentries);
3319 	kvfree(sit_i->sec_entries);
3320 	kvfree(sit_i->dirty_sentries_bitmap);
3321 
3322 	SM_I(sbi)->sit_info = NULL;
3323 	kfree(sit_i->sit_bitmap);
3324 #ifdef CONFIG_F2FS_CHECK_FS
3325 	kfree(sit_i->sit_bitmap_mir);
3326 #endif
3327 	kfree(sit_i);
3328 }
3329 
3330 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3331 {
3332 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3333 
3334 	if (!sm_info)
3335 		return;
3336 	destroy_flush_cmd_control(sbi, true);
3337 	destroy_discard_cmd_control(sbi);
3338 	destroy_dirty_segmap(sbi);
3339 	destroy_curseg(sbi);
3340 	destroy_free_segmap(sbi);
3341 	destroy_sit_info(sbi);
3342 	sbi->sm_info = NULL;
3343 	kfree(sm_info);
3344 }
3345 
3346 int __init create_segment_manager_caches(void)
3347 {
3348 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3349 			sizeof(struct discard_entry));
3350 	if (!discard_entry_slab)
3351 		goto fail;
3352 
3353 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3354 			sizeof(struct discard_cmd));
3355 	if (!discard_cmd_slab)
3356 		goto destroy_discard_entry;
3357 
3358 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3359 			sizeof(struct sit_entry_set));
3360 	if (!sit_entry_set_slab)
3361 		goto destroy_discard_cmd;
3362 
3363 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3364 			sizeof(struct inmem_pages));
3365 	if (!inmem_entry_slab)
3366 		goto destroy_sit_entry_set;
3367 	return 0;
3368 
3369 destroy_sit_entry_set:
3370 	kmem_cache_destroy(sit_entry_set_slab);
3371 destroy_discard_cmd:
3372 	kmem_cache_destroy(discard_cmd_slab);
3373 destroy_discard_entry:
3374 	kmem_cache_destroy(discard_entry_slab);
3375 fail:
3376 	return -ENOMEM;
3377 }
3378 
3379 void destroy_segment_manager_caches(void)
3380 {
3381 	kmem_cache_destroy(sit_entry_set_slab);
3382 	kmem_cache_destroy(discard_cmd_slab);
3383 	kmem_cache_destroy(discard_entry_slab);
3384 	kmem_cache_destroy(inmem_entry_slab);
3385 }
3386