xref: /openbmc/linux/fs/f2fs/segment.c (revision ed1666f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 	unsigned long tmp = 0;
36 	int shift = 24, idx = 0;
37 
38 #if BITS_PER_LONG == 64
39 	shift = 56;
40 #endif
41 	while (shift >= 0) {
42 		tmp |= (unsigned long)str[idx++] << shift;
43 		shift -= BITS_PER_BYTE;
44 	}
45 	return tmp;
46 }
47 
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 	int num = 0;
55 
56 #if BITS_PER_LONG == 64
57 	if ((word & 0xffffffff00000000UL) == 0)
58 		num += 32;
59 	else
60 		word >>= 32;
61 #endif
62 	if ((word & 0xffff0000) == 0)
63 		num += 16;
64 	else
65 		word >>= 16;
66 
67 	if ((word & 0xff00) == 0)
68 		num += 8;
69 	else
70 		word >>= 8;
71 
72 	if ((word & 0xf0) == 0)
73 		num += 4;
74 	else
75 		word >>= 4;
76 
77 	if ((word & 0xc) == 0)
78 		num += 2;
79 	else
80 		word >>= 2;
81 
82 	if ((word & 0x2) == 0)
83 		num += 1;
84 	return num;
85 }
86 
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 			unsigned long size, unsigned long offset)
98 {
99 	const unsigned long *p = addr + BIT_WORD(offset);
100 	unsigned long result = size;
101 	unsigned long tmp;
102 
103 	if (offset >= size)
104 		return size;
105 
106 	size -= (offset & ~(BITS_PER_LONG - 1));
107 	offset %= BITS_PER_LONG;
108 
109 	while (1) {
110 		if (*p == 0)
111 			goto pass;
112 
113 		tmp = __reverse_ulong((unsigned char *)p);
114 
115 		tmp &= ~0UL >> offset;
116 		if (size < BITS_PER_LONG)
117 			tmp &= (~0UL << (BITS_PER_LONG - size));
118 		if (tmp)
119 			goto found;
120 pass:
121 		if (size <= BITS_PER_LONG)
122 			break;
123 		size -= BITS_PER_LONG;
124 		offset = 0;
125 		p++;
126 	}
127 	return result;
128 found:
129 	return result - size + __reverse_ffs(tmp);
130 }
131 
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 			unsigned long size, unsigned long offset)
134 {
135 	const unsigned long *p = addr + BIT_WORD(offset);
136 	unsigned long result = size;
137 	unsigned long tmp;
138 
139 	if (offset >= size)
140 		return size;
141 
142 	size -= (offset & ~(BITS_PER_LONG - 1));
143 	offset %= BITS_PER_LONG;
144 
145 	while (1) {
146 		if (*p == ~0UL)
147 			goto pass;
148 
149 		tmp = __reverse_ulong((unsigned char *)p);
150 
151 		if (offset)
152 			tmp |= ~0UL << (BITS_PER_LONG - offset);
153 		if (size < BITS_PER_LONG)
154 			tmp |= ~0UL >> size;
155 		if (tmp != ~0UL)
156 			goto found;
157 pass:
158 		if (size <= BITS_PER_LONG)
159 			break;
160 		size -= BITS_PER_LONG;
161 		offset = 0;
162 		p++;
163 	}
164 	return result;
165 found:
166 	return result - size + __reverse_ffz(tmp);
167 }
168 
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174 
175 	if (test_opt(sbi, LFS))
176 		return false;
177 	if (sbi->gc_mode == GC_URGENT)
178 		return true;
179 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 		return true;
181 
182 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185 
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
189 	struct f2fs_inode_info *fi = F2FS_I(inode);
190 	struct inmem_pages *new;
191 
192 	f2fs_trace_pid(page);
193 
194 	f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195 
196 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
197 
198 	/* add atomic page indices to the list */
199 	new->page = page;
200 	INIT_LIST_HEAD(&new->list);
201 
202 	/* increase reference count with clean state */
203 	mutex_lock(&fi->inmem_lock);
204 	get_page(page);
205 	list_add_tail(&new->list, &fi->inmem_pages);
206 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
207 	if (list_empty(&fi->inmem_ilist))
208 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
209 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
210 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
211 	mutex_unlock(&fi->inmem_lock);
212 
213 	trace_f2fs_register_inmem_page(page, INMEM);
214 }
215 
216 static int __revoke_inmem_pages(struct inode *inode,
217 				struct list_head *head, bool drop, bool recover,
218 				bool trylock)
219 {
220 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
221 	struct inmem_pages *cur, *tmp;
222 	int err = 0;
223 
224 	list_for_each_entry_safe(cur, tmp, head, list) {
225 		struct page *page = cur->page;
226 
227 		if (drop)
228 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
229 
230 		if (trylock) {
231 			/*
232 			 * to avoid deadlock in between page lock and
233 			 * inmem_lock.
234 			 */
235 			if (!trylock_page(page))
236 				continue;
237 		} else {
238 			lock_page(page);
239 		}
240 
241 		f2fs_wait_on_page_writeback(page, DATA, true, true);
242 
243 		if (recover) {
244 			struct dnode_of_data dn;
245 			struct node_info ni;
246 
247 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
248 retry:
249 			set_new_dnode(&dn, inode, NULL, NULL, 0);
250 			err = f2fs_get_dnode_of_data(&dn, page->index,
251 								LOOKUP_NODE);
252 			if (err) {
253 				if (err == -ENOMEM) {
254 					congestion_wait(BLK_RW_ASYNC, HZ/50);
255 					cond_resched();
256 					goto retry;
257 				}
258 				err = -EAGAIN;
259 				goto next;
260 			}
261 
262 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
263 			if (err) {
264 				f2fs_put_dnode(&dn);
265 				return err;
266 			}
267 
268 			if (cur->old_addr == NEW_ADDR) {
269 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
270 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
271 			} else
272 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
273 					cur->old_addr, ni.version, true, true);
274 			f2fs_put_dnode(&dn);
275 		}
276 next:
277 		/* we don't need to invalidate this in the sccessful status */
278 		if (drop || recover) {
279 			ClearPageUptodate(page);
280 			clear_cold_data(page);
281 		}
282 		f2fs_clear_page_private(page);
283 		f2fs_put_page(page, 1);
284 
285 		list_del(&cur->list);
286 		kmem_cache_free(inmem_entry_slab, cur);
287 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
288 	}
289 	return err;
290 }
291 
292 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
293 {
294 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
295 	struct inode *inode;
296 	struct f2fs_inode_info *fi;
297 next:
298 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
299 	if (list_empty(head)) {
300 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
301 		return;
302 	}
303 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
304 	inode = igrab(&fi->vfs_inode);
305 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
306 
307 	if (inode) {
308 		if (gc_failure) {
309 			if (fi->i_gc_failures[GC_FAILURE_ATOMIC])
310 				goto drop;
311 			goto skip;
312 		}
313 drop:
314 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
315 		f2fs_drop_inmem_pages(inode);
316 		iput(inode);
317 	}
318 skip:
319 	congestion_wait(BLK_RW_ASYNC, HZ/50);
320 	cond_resched();
321 	goto next;
322 }
323 
324 void f2fs_drop_inmem_pages(struct inode *inode)
325 {
326 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
327 	struct f2fs_inode_info *fi = F2FS_I(inode);
328 
329 	while (!list_empty(&fi->inmem_pages)) {
330 		mutex_lock(&fi->inmem_lock);
331 		__revoke_inmem_pages(inode, &fi->inmem_pages,
332 						true, false, true);
333 
334 		if (list_empty(&fi->inmem_pages)) {
335 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336 			if (!list_empty(&fi->inmem_ilist))
337 				list_del_init(&fi->inmem_ilist);
338 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
339 		}
340 		mutex_unlock(&fi->inmem_lock);
341 	}
342 
343 	clear_inode_flag(inode, FI_ATOMIC_FILE);
344 	fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
345 	stat_dec_atomic_write(inode);
346 }
347 
348 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
349 {
350 	struct f2fs_inode_info *fi = F2FS_I(inode);
351 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
352 	struct list_head *head = &fi->inmem_pages;
353 	struct inmem_pages *cur = NULL;
354 
355 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
356 
357 	mutex_lock(&fi->inmem_lock);
358 	list_for_each_entry(cur, head, list) {
359 		if (cur->page == page)
360 			break;
361 	}
362 
363 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
364 	list_del(&cur->list);
365 	mutex_unlock(&fi->inmem_lock);
366 
367 	dec_page_count(sbi, F2FS_INMEM_PAGES);
368 	kmem_cache_free(inmem_entry_slab, cur);
369 
370 	ClearPageUptodate(page);
371 	f2fs_clear_page_private(page);
372 	f2fs_put_page(page, 0);
373 
374 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
375 }
376 
377 static int __f2fs_commit_inmem_pages(struct inode *inode)
378 {
379 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
380 	struct f2fs_inode_info *fi = F2FS_I(inode);
381 	struct inmem_pages *cur, *tmp;
382 	struct f2fs_io_info fio = {
383 		.sbi = sbi,
384 		.ino = inode->i_ino,
385 		.type = DATA,
386 		.op = REQ_OP_WRITE,
387 		.op_flags = REQ_SYNC | REQ_PRIO,
388 		.io_type = FS_DATA_IO,
389 	};
390 	struct list_head revoke_list;
391 	bool submit_bio = false;
392 	int err = 0;
393 
394 	INIT_LIST_HEAD(&revoke_list);
395 
396 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
397 		struct page *page = cur->page;
398 
399 		lock_page(page);
400 		if (page->mapping == inode->i_mapping) {
401 			trace_f2fs_commit_inmem_page(page, INMEM);
402 
403 			f2fs_wait_on_page_writeback(page, DATA, true, true);
404 
405 			set_page_dirty(page);
406 			if (clear_page_dirty_for_io(page)) {
407 				inode_dec_dirty_pages(inode);
408 				f2fs_remove_dirty_inode(inode);
409 			}
410 retry:
411 			fio.page = page;
412 			fio.old_blkaddr = NULL_ADDR;
413 			fio.encrypted_page = NULL;
414 			fio.need_lock = LOCK_DONE;
415 			err = f2fs_do_write_data_page(&fio);
416 			if (err) {
417 				if (err == -ENOMEM) {
418 					congestion_wait(BLK_RW_ASYNC, HZ/50);
419 					cond_resched();
420 					goto retry;
421 				}
422 				unlock_page(page);
423 				break;
424 			}
425 			/* record old blkaddr for revoking */
426 			cur->old_addr = fio.old_blkaddr;
427 			submit_bio = true;
428 		}
429 		unlock_page(page);
430 		list_move_tail(&cur->list, &revoke_list);
431 	}
432 
433 	if (submit_bio)
434 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
435 
436 	if (err) {
437 		/*
438 		 * try to revoke all committed pages, but still we could fail
439 		 * due to no memory or other reason, if that happened, EAGAIN
440 		 * will be returned, which means in such case, transaction is
441 		 * already not integrity, caller should use journal to do the
442 		 * recovery or rewrite & commit last transaction. For other
443 		 * error number, revoking was done by filesystem itself.
444 		 */
445 		err = __revoke_inmem_pages(inode, &revoke_list,
446 						false, true, false);
447 
448 		/* drop all uncommitted pages */
449 		__revoke_inmem_pages(inode, &fi->inmem_pages,
450 						true, false, false);
451 	} else {
452 		__revoke_inmem_pages(inode, &revoke_list,
453 						false, false, false);
454 	}
455 
456 	return err;
457 }
458 
459 int f2fs_commit_inmem_pages(struct inode *inode)
460 {
461 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
462 	struct f2fs_inode_info *fi = F2FS_I(inode);
463 	int err;
464 
465 	f2fs_balance_fs(sbi, true);
466 
467 	down_write(&fi->i_gc_rwsem[WRITE]);
468 
469 	f2fs_lock_op(sbi);
470 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
471 
472 	mutex_lock(&fi->inmem_lock);
473 	err = __f2fs_commit_inmem_pages(inode);
474 
475 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
476 	if (!list_empty(&fi->inmem_ilist))
477 		list_del_init(&fi->inmem_ilist);
478 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
479 	mutex_unlock(&fi->inmem_lock);
480 
481 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
482 
483 	f2fs_unlock_op(sbi);
484 	up_write(&fi->i_gc_rwsem[WRITE]);
485 
486 	return err;
487 }
488 
489 /*
490  * This function balances dirty node and dentry pages.
491  * In addition, it controls garbage collection.
492  */
493 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
494 {
495 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
496 		f2fs_show_injection_info(FAULT_CHECKPOINT);
497 		f2fs_stop_checkpoint(sbi, false);
498 	}
499 
500 	/* balance_fs_bg is able to be pending */
501 	if (need && excess_cached_nats(sbi))
502 		f2fs_balance_fs_bg(sbi);
503 
504 	if (f2fs_is_checkpoint_ready(sbi))
505 		return;
506 
507 	/*
508 	 * We should do GC or end up with checkpoint, if there are so many dirty
509 	 * dir/node pages without enough free segments.
510 	 */
511 	if (has_not_enough_free_secs(sbi, 0, 0)) {
512 		mutex_lock(&sbi->gc_mutex);
513 		f2fs_gc(sbi, false, false, NULL_SEGNO);
514 	}
515 }
516 
517 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
518 {
519 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
520 		return;
521 
522 	/* try to shrink extent cache when there is no enough memory */
523 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
524 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
525 
526 	/* check the # of cached NAT entries */
527 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
528 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
529 
530 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
531 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
532 	else
533 		f2fs_build_free_nids(sbi, false, false);
534 
535 	if (!is_idle(sbi, REQ_TIME) &&
536 		(!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
537 		return;
538 
539 	/* checkpoint is the only way to shrink partial cached entries */
540 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
541 			!f2fs_available_free_memory(sbi, INO_ENTRIES) ||
542 			excess_prefree_segs(sbi) ||
543 			excess_dirty_nats(sbi) ||
544 			excess_dirty_nodes(sbi) ||
545 			f2fs_time_over(sbi, CP_TIME)) {
546 		if (test_opt(sbi, DATA_FLUSH)) {
547 			struct blk_plug plug;
548 
549 			blk_start_plug(&plug);
550 			f2fs_sync_dirty_inodes(sbi, FILE_INODE);
551 			blk_finish_plug(&plug);
552 		}
553 		f2fs_sync_fs(sbi->sb, true);
554 		stat_inc_bg_cp_count(sbi->stat_info);
555 	}
556 }
557 
558 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
559 				struct block_device *bdev)
560 {
561 	struct bio *bio;
562 	int ret;
563 
564 	bio = f2fs_bio_alloc(sbi, 0, false);
565 	if (!bio)
566 		return -ENOMEM;
567 
568 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
569 	bio_set_dev(bio, bdev);
570 	ret = submit_bio_wait(bio);
571 	bio_put(bio);
572 
573 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
574 				test_opt(sbi, FLUSH_MERGE), ret);
575 	return ret;
576 }
577 
578 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
579 {
580 	int ret = 0;
581 	int i;
582 
583 	if (!sbi->s_ndevs)
584 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
585 
586 	for (i = 0; i < sbi->s_ndevs; i++) {
587 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
588 			continue;
589 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
590 		if (ret)
591 			break;
592 	}
593 	return ret;
594 }
595 
596 static int issue_flush_thread(void *data)
597 {
598 	struct f2fs_sb_info *sbi = data;
599 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
600 	wait_queue_head_t *q = &fcc->flush_wait_queue;
601 repeat:
602 	if (kthread_should_stop())
603 		return 0;
604 
605 	sb_start_intwrite(sbi->sb);
606 
607 	if (!llist_empty(&fcc->issue_list)) {
608 		struct flush_cmd *cmd, *next;
609 		int ret;
610 
611 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
612 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
613 
614 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
615 
616 		ret = submit_flush_wait(sbi, cmd->ino);
617 		atomic_inc(&fcc->issued_flush);
618 
619 		llist_for_each_entry_safe(cmd, next,
620 					  fcc->dispatch_list, llnode) {
621 			cmd->ret = ret;
622 			complete(&cmd->wait);
623 		}
624 		fcc->dispatch_list = NULL;
625 	}
626 
627 	sb_end_intwrite(sbi->sb);
628 
629 	wait_event_interruptible(*q,
630 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
631 	goto repeat;
632 }
633 
634 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
635 {
636 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
637 	struct flush_cmd cmd;
638 	int ret;
639 
640 	if (test_opt(sbi, NOBARRIER))
641 		return 0;
642 
643 	if (!test_opt(sbi, FLUSH_MERGE)) {
644 		atomic_inc(&fcc->queued_flush);
645 		ret = submit_flush_wait(sbi, ino);
646 		atomic_dec(&fcc->queued_flush);
647 		atomic_inc(&fcc->issued_flush);
648 		return ret;
649 	}
650 
651 	if (atomic_inc_return(&fcc->queued_flush) == 1 || sbi->s_ndevs > 1) {
652 		ret = submit_flush_wait(sbi, ino);
653 		atomic_dec(&fcc->queued_flush);
654 
655 		atomic_inc(&fcc->issued_flush);
656 		return ret;
657 	}
658 
659 	cmd.ino = ino;
660 	init_completion(&cmd.wait);
661 
662 	llist_add(&cmd.llnode, &fcc->issue_list);
663 
664 	/* update issue_list before we wake up issue_flush thread */
665 	smp_mb();
666 
667 	if (waitqueue_active(&fcc->flush_wait_queue))
668 		wake_up(&fcc->flush_wait_queue);
669 
670 	if (fcc->f2fs_issue_flush) {
671 		wait_for_completion(&cmd.wait);
672 		atomic_dec(&fcc->queued_flush);
673 	} else {
674 		struct llist_node *list;
675 
676 		list = llist_del_all(&fcc->issue_list);
677 		if (!list) {
678 			wait_for_completion(&cmd.wait);
679 			atomic_dec(&fcc->queued_flush);
680 		} else {
681 			struct flush_cmd *tmp, *next;
682 
683 			ret = submit_flush_wait(sbi, ino);
684 
685 			llist_for_each_entry_safe(tmp, next, list, llnode) {
686 				if (tmp == &cmd) {
687 					cmd.ret = ret;
688 					atomic_dec(&fcc->queued_flush);
689 					continue;
690 				}
691 				tmp->ret = ret;
692 				complete(&tmp->wait);
693 			}
694 		}
695 	}
696 
697 	return cmd.ret;
698 }
699 
700 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
701 {
702 	dev_t dev = sbi->sb->s_bdev->bd_dev;
703 	struct flush_cmd_control *fcc;
704 	int err = 0;
705 
706 	if (SM_I(sbi)->fcc_info) {
707 		fcc = SM_I(sbi)->fcc_info;
708 		if (fcc->f2fs_issue_flush)
709 			return err;
710 		goto init_thread;
711 	}
712 
713 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
714 	if (!fcc)
715 		return -ENOMEM;
716 	atomic_set(&fcc->issued_flush, 0);
717 	atomic_set(&fcc->queued_flush, 0);
718 	init_waitqueue_head(&fcc->flush_wait_queue);
719 	init_llist_head(&fcc->issue_list);
720 	SM_I(sbi)->fcc_info = fcc;
721 	if (!test_opt(sbi, FLUSH_MERGE))
722 		return err;
723 
724 init_thread:
725 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
726 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
727 	if (IS_ERR(fcc->f2fs_issue_flush)) {
728 		err = PTR_ERR(fcc->f2fs_issue_flush);
729 		kvfree(fcc);
730 		SM_I(sbi)->fcc_info = NULL;
731 		return err;
732 	}
733 
734 	return err;
735 }
736 
737 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
738 {
739 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
740 
741 	if (fcc && fcc->f2fs_issue_flush) {
742 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
743 
744 		fcc->f2fs_issue_flush = NULL;
745 		kthread_stop(flush_thread);
746 	}
747 	if (free) {
748 		kvfree(fcc);
749 		SM_I(sbi)->fcc_info = NULL;
750 	}
751 }
752 
753 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
754 {
755 	int ret = 0, i;
756 
757 	if (!sbi->s_ndevs)
758 		return 0;
759 
760 	for (i = 1; i < sbi->s_ndevs; i++) {
761 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
762 			continue;
763 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
764 		if (ret)
765 			break;
766 
767 		spin_lock(&sbi->dev_lock);
768 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
769 		spin_unlock(&sbi->dev_lock);
770 	}
771 
772 	return ret;
773 }
774 
775 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
776 		enum dirty_type dirty_type)
777 {
778 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
779 
780 	/* need not be added */
781 	if (IS_CURSEG(sbi, segno))
782 		return;
783 
784 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
785 		dirty_i->nr_dirty[dirty_type]++;
786 
787 	if (dirty_type == DIRTY) {
788 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
789 		enum dirty_type t = sentry->type;
790 
791 		if (unlikely(t >= DIRTY)) {
792 			f2fs_bug_on(sbi, 1);
793 			return;
794 		}
795 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
796 			dirty_i->nr_dirty[t]++;
797 	}
798 }
799 
800 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
801 		enum dirty_type dirty_type)
802 {
803 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
804 
805 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
806 		dirty_i->nr_dirty[dirty_type]--;
807 
808 	if (dirty_type == DIRTY) {
809 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
810 		enum dirty_type t = sentry->type;
811 
812 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
813 			dirty_i->nr_dirty[t]--;
814 
815 		if (get_valid_blocks(sbi, segno, true) == 0)
816 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
817 						dirty_i->victim_secmap);
818 	}
819 }
820 
821 /*
822  * Should not occur error such as -ENOMEM.
823  * Adding dirty entry into seglist is not critical operation.
824  * If a given segment is one of current working segments, it won't be added.
825  */
826 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
827 {
828 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
829 	unsigned short valid_blocks, ckpt_valid_blocks;
830 
831 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
832 		return;
833 
834 	mutex_lock(&dirty_i->seglist_lock);
835 
836 	valid_blocks = get_valid_blocks(sbi, segno, false);
837 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
838 
839 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
840 				ckpt_valid_blocks == sbi->blocks_per_seg)) {
841 		__locate_dirty_segment(sbi, segno, PRE);
842 		__remove_dirty_segment(sbi, segno, DIRTY);
843 	} else if (valid_blocks < sbi->blocks_per_seg) {
844 		__locate_dirty_segment(sbi, segno, DIRTY);
845 	} else {
846 		/* Recovery routine with SSR needs this */
847 		__remove_dirty_segment(sbi, segno, DIRTY);
848 	}
849 
850 	mutex_unlock(&dirty_i->seglist_lock);
851 }
852 
853 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
854 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
855 {
856 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
857 	unsigned int segno;
858 
859 	mutex_lock(&dirty_i->seglist_lock);
860 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
861 		if (get_valid_blocks(sbi, segno, false))
862 			continue;
863 		if (IS_CURSEG(sbi, segno))
864 			continue;
865 		__locate_dirty_segment(sbi, segno, PRE);
866 		__remove_dirty_segment(sbi, segno, DIRTY);
867 	}
868 	mutex_unlock(&dirty_i->seglist_lock);
869 }
870 
871 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi)
872 {
873 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
874 	block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg;
875 	block_t holes[2] = {0, 0};	/* DATA and NODE */
876 	struct seg_entry *se;
877 	unsigned int segno;
878 
879 	mutex_lock(&dirty_i->seglist_lock);
880 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
881 		se = get_seg_entry(sbi, segno);
882 		if (IS_NODESEG(se->type))
883 			holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
884 		else
885 			holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
886 	}
887 	mutex_unlock(&dirty_i->seglist_lock);
888 
889 	if (holes[DATA] > ovp || holes[NODE] > ovp)
890 		return -EAGAIN;
891 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
892 		dirty_segments(sbi) > overprovision_segments(sbi))
893 		return -EAGAIN;
894 	return 0;
895 }
896 
897 /* This is only used by SBI_CP_DISABLED */
898 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
899 {
900 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
901 	unsigned int segno = 0;
902 
903 	mutex_lock(&dirty_i->seglist_lock);
904 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
905 		if (get_valid_blocks(sbi, segno, false))
906 			continue;
907 		if (get_ckpt_valid_blocks(sbi, segno))
908 			continue;
909 		mutex_unlock(&dirty_i->seglist_lock);
910 		return segno;
911 	}
912 	mutex_unlock(&dirty_i->seglist_lock);
913 	return NULL_SEGNO;
914 }
915 
916 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
917 		struct block_device *bdev, block_t lstart,
918 		block_t start, block_t len)
919 {
920 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
921 	struct list_head *pend_list;
922 	struct discard_cmd *dc;
923 
924 	f2fs_bug_on(sbi, !len);
925 
926 	pend_list = &dcc->pend_list[plist_idx(len)];
927 
928 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
929 	INIT_LIST_HEAD(&dc->list);
930 	dc->bdev = bdev;
931 	dc->lstart = lstart;
932 	dc->start = start;
933 	dc->len = len;
934 	dc->ref = 0;
935 	dc->state = D_PREP;
936 	dc->queued = 0;
937 	dc->error = 0;
938 	init_completion(&dc->wait);
939 	list_add_tail(&dc->list, pend_list);
940 	spin_lock_init(&dc->lock);
941 	dc->bio_ref = 0;
942 	atomic_inc(&dcc->discard_cmd_cnt);
943 	dcc->undiscard_blks += len;
944 
945 	return dc;
946 }
947 
948 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
949 				struct block_device *bdev, block_t lstart,
950 				block_t start, block_t len,
951 				struct rb_node *parent, struct rb_node **p,
952 				bool leftmost)
953 {
954 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
955 	struct discard_cmd *dc;
956 
957 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
958 
959 	rb_link_node(&dc->rb_node, parent, p);
960 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
961 
962 	return dc;
963 }
964 
965 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
966 							struct discard_cmd *dc)
967 {
968 	if (dc->state == D_DONE)
969 		atomic_sub(dc->queued, &dcc->queued_discard);
970 
971 	list_del(&dc->list);
972 	rb_erase_cached(&dc->rb_node, &dcc->root);
973 	dcc->undiscard_blks -= dc->len;
974 
975 	kmem_cache_free(discard_cmd_slab, dc);
976 
977 	atomic_dec(&dcc->discard_cmd_cnt);
978 }
979 
980 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
981 							struct discard_cmd *dc)
982 {
983 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
984 	unsigned long flags;
985 
986 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
987 
988 	spin_lock_irqsave(&dc->lock, flags);
989 	if (dc->bio_ref) {
990 		spin_unlock_irqrestore(&dc->lock, flags);
991 		return;
992 	}
993 	spin_unlock_irqrestore(&dc->lock, flags);
994 
995 	f2fs_bug_on(sbi, dc->ref);
996 
997 	if (dc->error == -EOPNOTSUPP)
998 		dc->error = 0;
999 
1000 	if (dc->error)
1001 		printk_ratelimited(
1002 			"%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d",
1003 			KERN_INFO, dc->lstart, dc->start, dc->len, dc->error);
1004 	__detach_discard_cmd(dcc, dc);
1005 }
1006 
1007 static void f2fs_submit_discard_endio(struct bio *bio)
1008 {
1009 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1010 	unsigned long flags;
1011 
1012 	dc->error = blk_status_to_errno(bio->bi_status);
1013 
1014 	spin_lock_irqsave(&dc->lock, flags);
1015 	dc->bio_ref--;
1016 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1017 		dc->state = D_DONE;
1018 		complete_all(&dc->wait);
1019 	}
1020 	spin_unlock_irqrestore(&dc->lock, flags);
1021 	bio_put(bio);
1022 }
1023 
1024 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1025 				block_t start, block_t end)
1026 {
1027 #ifdef CONFIG_F2FS_CHECK_FS
1028 	struct seg_entry *sentry;
1029 	unsigned int segno;
1030 	block_t blk = start;
1031 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1032 	unsigned long *map;
1033 
1034 	while (blk < end) {
1035 		segno = GET_SEGNO(sbi, blk);
1036 		sentry = get_seg_entry(sbi, segno);
1037 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1038 
1039 		if (end < START_BLOCK(sbi, segno + 1))
1040 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1041 		else
1042 			size = max_blocks;
1043 		map = (unsigned long *)(sentry->cur_valid_map);
1044 		offset = __find_rev_next_bit(map, size, offset);
1045 		f2fs_bug_on(sbi, offset != size);
1046 		blk = START_BLOCK(sbi, segno + 1);
1047 	}
1048 #endif
1049 }
1050 
1051 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1052 				struct discard_policy *dpolicy,
1053 				int discard_type, unsigned int granularity)
1054 {
1055 	/* common policy */
1056 	dpolicy->type = discard_type;
1057 	dpolicy->sync = true;
1058 	dpolicy->ordered = false;
1059 	dpolicy->granularity = granularity;
1060 
1061 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1062 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1063 	dpolicy->timeout = 0;
1064 
1065 	if (discard_type == DPOLICY_BG) {
1066 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1067 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1068 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1069 		dpolicy->io_aware = true;
1070 		dpolicy->sync = false;
1071 		dpolicy->ordered = true;
1072 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1073 			dpolicy->granularity = 1;
1074 			dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1075 		}
1076 	} else if (discard_type == DPOLICY_FORCE) {
1077 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1078 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1079 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1080 		dpolicy->io_aware = false;
1081 	} else if (discard_type == DPOLICY_FSTRIM) {
1082 		dpolicy->io_aware = false;
1083 	} else if (discard_type == DPOLICY_UMOUNT) {
1084 		dpolicy->max_requests = UINT_MAX;
1085 		dpolicy->io_aware = false;
1086 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1087 		dpolicy->granularity = 1;
1088 	}
1089 }
1090 
1091 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1092 				struct block_device *bdev, block_t lstart,
1093 				block_t start, block_t len);
1094 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1095 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1096 						struct discard_policy *dpolicy,
1097 						struct discard_cmd *dc,
1098 						unsigned int *issued)
1099 {
1100 	struct block_device *bdev = dc->bdev;
1101 	struct request_queue *q = bdev_get_queue(bdev);
1102 	unsigned int max_discard_blocks =
1103 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1104 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1105 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1106 					&(dcc->fstrim_list) : &(dcc->wait_list);
1107 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1108 	block_t lstart, start, len, total_len;
1109 	int err = 0;
1110 
1111 	if (dc->state != D_PREP)
1112 		return 0;
1113 
1114 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1115 		return 0;
1116 
1117 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1118 
1119 	lstart = dc->lstart;
1120 	start = dc->start;
1121 	len = dc->len;
1122 	total_len = len;
1123 
1124 	dc->len = 0;
1125 
1126 	while (total_len && *issued < dpolicy->max_requests && !err) {
1127 		struct bio *bio = NULL;
1128 		unsigned long flags;
1129 		bool last = true;
1130 
1131 		if (len > max_discard_blocks) {
1132 			len = max_discard_blocks;
1133 			last = false;
1134 		}
1135 
1136 		(*issued)++;
1137 		if (*issued == dpolicy->max_requests)
1138 			last = true;
1139 
1140 		dc->len += len;
1141 
1142 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1143 			f2fs_show_injection_info(FAULT_DISCARD);
1144 			err = -EIO;
1145 			goto submit;
1146 		}
1147 		err = __blkdev_issue_discard(bdev,
1148 					SECTOR_FROM_BLOCK(start),
1149 					SECTOR_FROM_BLOCK(len),
1150 					GFP_NOFS, 0, &bio);
1151 submit:
1152 		if (err) {
1153 			spin_lock_irqsave(&dc->lock, flags);
1154 			if (dc->state == D_PARTIAL)
1155 				dc->state = D_SUBMIT;
1156 			spin_unlock_irqrestore(&dc->lock, flags);
1157 
1158 			break;
1159 		}
1160 
1161 		f2fs_bug_on(sbi, !bio);
1162 
1163 		/*
1164 		 * should keep before submission to avoid D_DONE
1165 		 * right away
1166 		 */
1167 		spin_lock_irqsave(&dc->lock, flags);
1168 		if (last)
1169 			dc->state = D_SUBMIT;
1170 		else
1171 			dc->state = D_PARTIAL;
1172 		dc->bio_ref++;
1173 		spin_unlock_irqrestore(&dc->lock, flags);
1174 
1175 		atomic_inc(&dcc->queued_discard);
1176 		dc->queued++;
1177 		list_move_tail(&dc->list, wait_list);
1178 
1179 		/* sanity check on discard range */
1180 		__check_sit_bitmap(sbi, lstart, lstart + len);
1181 
1182 		bio->bi_private = dc;
1183 		bio->bi_end_io = f2fs_submit_discard_endio;
1184 		bio->bi_opf |= flag;
1185 		submit_bio(bio);
1186 
1187 		atomic_inc(&dcc->issued_discard);
1188 
1189 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1190 
1191 		lstart += len;
1192 		start += len;
1193 		total_len -= len;
1194 		len = total_len;
1195 	}
1196 
1197 	if (!err && len)
1198 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1199 	return err;
1200 }
1201 
1202 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1203 				struct block_device *bdev, block_t lstart,
1204 				block_t start, block_t len,
1205 				struct rb_node **insert_p,
1206 				struct rb_node *insert_parent)
1207 {
1208 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1209 	struct rb_node **p;
1210 	struct rb_node *parent = NULL;
1211 	struct discard_cmd *dc = NULL;
1212 	bool leftmost = true;
1213 
1214 	if (insert_p && insert_parent) {
1215 		parent = insert_parent;
1216 		p = insert_p;
1217 		goto do_insert;
1218 	}
1219 
1220 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1221 							lstart, &leftmost);
1222 do_insert:
1223 	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1224 								p, leftmost);
1225 	if (!dc)
1226 		return NULL;
1227 
1228 	return dc;
1229 }
1230 
1231 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1232 						struct discard_cmd *dc)
1233 {
1234 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1235 }
1236 
1237 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1238 				struct discard_cmd *dc, block_t blkaddr)
1239 {
1240 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1241 	struct discard_info di = dc->di;
1242 	bool modified = false;
1243 
1244 	if (dc->state == D_DONE || dc->len == 1) {
1245 		__remove_discard_cmd(sbi, dc);
1246 		return;
1247 	}
1248 
1249 	dcc->undiscard_blks -= di.len;
1250 
1251 	if (blkaddr > di.lstart) {
1252 		dc->len = blkaddr - dc->lstart;
1253 		dcc->undiscard_blks += dc->len;
1254 		__relocate_discard_cmd(dcc, dc);
1255 		modified = true;
1256 	}
1257 
1258 	if (blkaddr < di.lstart + di.len - 1) {
1259 		if (modified) {
1260 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1261 					di.start + blkaddr + 1 - di.lstart,
1262 					di.lstart + di.len - 1 - blkaddr,
1263 					NULL, NULL);
1264 		} else {
1265 			dc->lstart++;
1266 			dc->len--;
1267 			dc->start++;
1268 			dcc->undiscard_blks += dc->len;
1269 			__relocate_discard_cmd(dcc, dc);
1270 		}
1271 	}
1272 }
1273 
1274 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1275 				struct block_device *bdev, block_t lstart,
1276 				block_t start, block_t len)
1277 {
1278 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1279 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1280 	struct discard_cmd *dc;
1281 	struct discard_info di = {0};
1282 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1283 	struct request_queue *q = bdev_get_queue(bdev);
1284 	unsigned int max_discard_blocks =
1285 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1286 	block_t end = lstart + len;
1287 
1288 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1289 					NULL, lstart,
1290 					(struct rb_entry **)&prev_dc,
1291 					(struct rb_entry **)&next_dc,
1292 					&insert_p, &insert_parent, true, NULL);
1293 	if (dc)
1294 		prev_dc = dc;
1295 
1296 	if (!prev_dc) {
1297 		di.lstart = lstart;
1298 		di.len = next_dc ? next_dc->lstart - lstart : len;
1299 		di.len = min(di.len, len);
1300 		di.start = start;
1301 	}
1302 
1303 	while (1) {
1304 		struct rb_node *node;
1305 		bool merged = false;
1306 		struct discard_cmd *tdc = NULL;
1307 
1308 		if (prev_dc) {
1309 			di.lstart = prev_dc->lstart + prev_dc->len;
1310 			if (di.lstart < lstart)
1311 				di.lstart = lstart;
1312 			if (di.lstart >= end)
1313 				break;
1314 
1315 			if (!next_dc || next_dc->lstart > end)
1316 				di.len = end - di.lstart;
1317 			else
1318 				di.len = next_dc->lstart - di.lstart;
1319 			di.start = start + di.lstart - lstart;
1320 		}
1321 
1322 		if (!di.len)
1323 			goto next;
1324 
1325 		if (prev_dc && prev_dc->state == D_PREP &&
1326 			prev_dc->bdev == bdev &&
1327 			__is_discard_back_mergeable(&di, &prev_dc->di,
1328 							max_discard_blocks)) {
1329 			prev_dc->di.len += di.len;
1330 			dcc->undiscard_blks += di.len;
1331 			__relocate_discard_cmd(dcc, prev_dc);
1332 			di = prev_dc->di;
1333 			tdc = prev_dc;
1334 			merged = true;
1335 		}
1336 
1337 		if (next_dc && next_dc->state == D_PREP &&
1338 			next_dc->bdev == bdev &&
1339 			__is_discard_front_mergeable(&di, &next_dc->di,
1340 							max_discard_blocks)) {
1341 			next_dc->di.lstart = di.lstart;
1342 			next_dc->di.len += di.len;
1343 			next_dc->di.start = di.start;
1344 			dcc->undiscard_blks += di.len;
1345 			__relocate_discard_cmd(dcc, next_dc);
1346 			if (tdc)
1347 				__remove_discard_cmd(sbi, tdc);
1348 			merged = true;
1349 		}
1350 
1351 		if (!merged) {
1352 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1353 							di.len, NULL, NULL);
1354 		}
1355  next:
1356 		prev_dc = next_dc;
1357 		if (!prev_dc)
1358 			break;
1359 
1360 		node = rb_next(&prev_dc->rb_node);
1361 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1362 	}
1363 }
1364 
1365 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1366 		struct block_device *bdev, block_t blkstart, block_t blklen)
1367 {
1368 	block_t lblkstart = blkstart;
1369 
1370 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1371 
1372 	if (sbi->s_ndevs) {
1373 		int devi = f2fs_target_device_index(sbi, blkstart);
1374 
1375 		blkstart -= FDEV(devi).start_blk;
1376 	}
1377 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1378 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1379 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1380 	return 0;
1381 }
1382 
1383 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1384 					struct discard_policy *dpolicy)
1385 {
1386 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1387 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1388 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1389 	struct discard_cmd *dc;
1390 	struct blk_plug plug;
1391 	unsigned int pos = dcc->next_pos;
1392 	unsigned int issued = 0;
1393 	bool io_interrupted = false;
1394 
1395 	mutex_lock(&dcc->cmd_lock);
1396 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1397 					NULL, pos,
1398 					(struct rb_entry **)&prev_dc,
1399 					(struct rb_entry **)&next_dc,
1400 					&insert_p, &insert_parent, true, NULL);
1401 	if (!dc)
1402 		dc = next_dc;
1403 
1404 	blk_start_plug(&plug);
1405 
1406 	while (dc) {
1407 		struct rb_node *node;
1408 		int err = 0;
1409 
1410 		if (dc->state != D_PREP)
1411 			goto next;
1412 
1413 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1414 			io_interrupted = true;
1415 			break;
1416 		}
1417 
1418 		dcc->next_pos = dc->lstart + dc->len;
1419 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1420 
1421 		if (issued >= dpolicy->max_requests)
1422 			break;
1423 next:
1424 		node = rb_next(&dc->rb_node);
1425 		if (err)
1426 			__remove_discard_cmd(sbi, dc);
1427 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1428 	}
1429 
1430 	blk_finish_plug(&plug);
1431 
1432 	if (!dc)
1433 		dcc->next_pos = 0;
1434 
1435 	mutex_unlock(&dcc->cmd_lock);
1436 
1437 	if (!issued && io_interrupted)
1438 		issued = -1;
1439 
1440 	return issued;
1441 }
1442 
1443 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1444 					struct discard_policy *dpolicy)
1445 {
1446 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1447 	struct list_head *pend_list;
1448 	struct discard_cmd *dc, *tmp;
1449 	struct blk_plug plug;
1450 	int i, issued = 0;
1451 	bool io_interrupted = false;
1452 
1453 	if (dpolicy->timeout != 0)
1454 		f2fs_update_time(sbi, dpolicy->timeout);
1455 
1456 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1457 		if (dpolicy->timeout != 0 &&
1458 				f2fs_time_over(sbi, dpolicy->timeout))
1459 			break;
1460 
1461 		if (i + 1 < dpolicy->granularity)
1462 			break;
1463 
1464 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1465 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1466 
1467 		pend_list = &dcc->pend_list[i];
1468 
1469 		mutex_lock(&dcc->cmd_lock);
1470 		if (list_empty(pend_list))
1471 			goto next;
1472 		if (unlikely(dcc->rbtree_check))
1473 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1474 								&dcc->root));
1475 		blk_start_plug(&plug);
1476 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1477 			f2fs_bug_on(sbi, dc->state != D_PREP);
1478 
1479 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1480 						!is_idle(sbi, DISCARD_TIME)) {
1481 				io_interrupted = true;
1482 				break;
1483 			}
1484 
1485 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1486 
1487 			if (issued >= dpolicy->max_requests)
1488 				break;
1489 		}
1490 		blk_finish_plug(&plug);
1491 next:
1492 		mutex_unlock(&dcc->cmd_lock);
1493 
1494 		if (issued >= dpolicy->max_requests || io_interrupted)
1495 			break;
1496 	}
1497 
1498 	if (!issued && io_interrupted)
1499 		issued = -1;
1500 
1501 	return issued;
1502 }
1503 
1504 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1505 {
1506 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1507 	struct list_head *pend_list;
1508 	struct discard_cmd *dc, *tmp;
1509 	int i;
1510 	bool dropped = false;
1511 
1512 	mutex_lock(&dcc->cmd_lock);
1513 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1514 		pend_list = &dcc->pend_list[i];
1515 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1516 			f2fs_bug_on(sbi, dc->state != D_PREP);
1517 			__remove_discard_cmd(sbi, dc);
1518 			dropped = true;
1519 		}
1520 	}
1521 	mutex_unlock(&dcc->cmd_lock);
1522 
1523 	return dropped;
1524 }
1525 
1526 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1527 {
1528 	__drop_discard_cmd(sbi);
1529 }
1530 
1531 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1532 							struct discard_cmd *dc)
1533 {
1534 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1535 	unsigned int len = 0;
1536 
1537 	wait_for_completion_io(&dc->wait);
1538 	mutex_lock(&dcc->cmd_lock);
1539 	f2fs_bug_on(sbi, dc->state != D_DONE);
1540 	dc->ref--;
1541 	if (!dc->ref) {
1542 		if (!dc->error)
1543 			len = dc->len;
1544 		__remove_discard_cmd(sbi, dc);
1545 	}
1546 	mutex_unlock(&dcc->cmd_lock);
1547 
1548 	return len;
1549 }
1550 
1551 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1552 						struct discard_policy *dpolicy,
1553 						block_t start, block_t end)
1554 {
1555 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1556 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1557 					&(dcc->fstrim_list) : &(dcc->wait_list);
1558 	struct discard_cmd *dc, *tmp;
1559 	bool need_wait;
1560 	unsigned int trimmed = 0;
1561 
1562 next:
1563 	need_wait = false;
1564 
1565 	mutex_lock(&dcc->cmd_lock);
1566 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1567 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1568 			continue;
1569 		if (dc->len < dpolicy->granularity)
1570 			continue;
1571 		if (dc->state == D_DONE && !dc->ref) {
1572 			wait_for_completion_io(&dc->wait);
1573 			if (!dc->error)
1574 				trimmed += dc->len;
1575 			__remove_discard_cmd(sbi, dc);
1576 		} else {
1577 			dc->ref++;
1578 			need_wait = true;
1579 			break;
1580 		}
1581 	}
1582 	mutex_unlock(&dcc->cmd_lock);
1583 
1584 	if (need_wait) {
1585 		trimmed += __wait_one_discard_bio(sbi, dc);
1586 		goto next;
1587 	}
1588 
1589 	return trimmed;
1590 }
1591 
1592 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1593 						struct discard_policy *dpolicy)
1594 {
1595 	struct discard_policy dp;
1596 	unsigned int discard_blks;
1597 
1598 	if (dpolicy)
1599 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1600 
1601 	/* wait all */
1602 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1603 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1604 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1605 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1606 
1607 	return discard_blks;
1608 }
1609 
1610 /* This should be covered by global mutex, &sit_i->sentry_lock */
1611 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1612 {
1613 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1614 	struct discard_cmd *dc;
1615 	bool need_wait = false;
1616 
1617 	mutex_lock(&dcc->cmd_lock);
1618 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1619 							NULL, blkaddr);
1620 	if (dc) {
1621 		if (dc->state == D_PREP) {
1622 			__punch_discard_cmd(sbi, dc, blkaddr);
1623 		} else {
1624 			dc->ref++;
1625 			need_wait = true;
1626 		}
1627 	}
1628 	mutex_unlock(&dcc->cmd_lock);
1629 
1630 	if (need_wait)
1631 		__wait_one_discard_bio(sbi, dc);
1632 }
1633 
1634 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1635 {
1636 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1637 
1638 	if (dcc && dcc->f2fs_issue_discard) {
1639 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1640 
1641 		dcc->f2fs_issue_discard = NULL;
1642 		kthread_stop(discard_thread);
1643 	}
1644 }
1645 
1646 /* This comes from f2fs_put_super */
1647 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1648 {
1649 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1650 	struct discard_policy dpolicy;
1651 	bool dropped;
1652 
1653 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1654 					dcc->discard_granularity);
1655 	dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT;
1656 	__issue_discard_cmd(sbi, &dpolicy);
1657 	dropped = __drop_discard_cmd(sbi);
1658 
1659 	/* just to make sure there is no pending discard commands */
1660 	__wait_all_discard_cmd(sbi, NULL);
1661 
1662 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1663 	return dropped;
1664 }
1665 
1666 static int issue_discard_thread(void *data)
1667 {
1668 	struct f2fs_sb_info *sbi = data;
1669 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1670 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1671 	struct discard_policy dpolicy;
1672 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1673 	int issued;
1674 
1675 	set_freezable();
1676 
1677 	do {
1678 		__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1679 					dcc->discard_granularity);
1680 
1681 		wait_event_interruptible_timeout(*q,
1682 				kthread_should_stop() || freezing(current) ||
1683 				dcc->discard_wake,
1684 				msecs_to_jiffies(wait_ms));
1685 
1686 		if (dcc->discard_wake)
1687 			dcc->discard_wake = 0;
1688 
1689 		/* clean up pending candidates before going to sleep */
1690 		if (atomic_read(&dcc->queued_discard))
1691 			__wait_all_discard_cmd(sbi, NULL);
1692 
1693 		if (try_to_freeze())
1694 			continue;
1695 		if (f2fs_readonly(sbi->sb))
1696 			continue;
1697 		if (kthread_should_stop())
1698 			return 0;
1699 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1700 			wait_ms = dpolicy.max_interval;
1701 			continue;
1702 		}
1703 
1704 		if (sbi->gc_mode == GC_URGENT)
1705 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1706 
1707 		sb_start_intwrite(sbi->sb);
1708 
1709 		issued = __issue_discard_cmd(sbi, &dpolicy);
1710 		if (issued > 0) {
1711 			__wait_all_discard_cmd(sbi, &dpolicy);
1712 			wait_ms = dpolicy.min_interval;
1713 		} else if (issued == -1){
1714 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1715 			if (!wait_ms)
1716 				wait_ms = dpolicy.mid_interval;
1717 		} else {
1718 			wait_ms = dpolicy.max_interval;
1719 		}
1720 
1721 		sb_end_intwrite(sbi->sb);
1722 
1723 	} while (!kthread_should_stop());
1724 	return 0;
1725 }
1726 
1727 #ifdef CONFIG_BLK_DEV_ZONED
1728 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1729 		struct block_device *bdev, block_t blkstart, block_t blklen)
1730 {
1731 	sector_t sector, nr_sects;
1732 	block_t lblkstart = blkstart;
1733 	int devi = 0;
1734 
1735 	if (sbi->s_ndevs) {
1736 		devi = f2fs_target_device_index(sbi, blkstart);
1737 		blkstart -= FDEV(devi).start_blk;
1738 	}
1739 
1740 	/*
1741 	 * We need to know the type of the zone: for conventional zones,
1742 	 * use regular discard if the drive supports it. For sequential
1743 	 * zones, reset the zone write pointer.
1744 	 */
1745 	switch (get_blkz_type(sbi, bdev, blkstart)) {
1746 
1747 	case BLK_ZONE_TYPE_CONVENTIONAL:
1748 		if (!blk_queue_discard(bdev_get_queue(bdev)))
1749 			return 0;
1750 		return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1751 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1752 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1753 		sector = SECTOR_FROM_BLOCK(blkstart);
1754 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1755 
1756 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1757 				nr_sects != bdev_zone_sectors(bdev)) {
1758 			f2fs_msg(sbi->sb, KERN_INFO,
1759 				"(%d) %s: Unaligned discard attempted (block %x + %x)",
1760 				devi, sbi->s_ndevs ? FDEV(devi).path: "",
1761 				blkstart, blklen);
1762 			return -EIO;
1763 		}
1764 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1765 		return blkdev_reset_zones(bdev, sector,
1766 					  nr_sects, GFP_NOFS);
1767 	default:
1768 		/* Unknown zone type: broken device ? */
1769 		return -EIO;
1770 	}
1771 }
1772 #endif
1773 
1774 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1775 		struct block_device *bdev, block_t blkstart, block_t blklen)
1776 {
1777 #ifdef CONFIG_BLK_DEV_ZONED
1778 	if (f2fs_sb_has_blkzoned(sbi) &&
1779 				bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1780 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1781 #endif
1782 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1783 }
1784 
1785 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1786 				block_t blkstart, block_t blklen)
1787 {
1788 	sector_t start = blkstart, len = 0;
1789 	struct block_device *bdev;
1790 	struct seg_entry *se;
1791 	unsigned int offset;
1792 	block_t i;
1793 	int err = 0;
1794 
1795 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1796 
1797 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1798 		if (i != start) {
1799 			struct block_device *bdev2 =
1800 				f2fs_target_device(sbi, i, NULL);
1801 
1802 			if (bdev2 != bdev) {
1803 				err = __issue_discard_async(sbi, bdev,
1804 						start, len);
1805 				if (err)
1806 					return err;
1807 				bdev = bdev2;
1808 				start = i;
1809 				len = 0;
1810 			}
1811 		}
1812 
1813 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1814 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1815 
1816 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1817 			sbi->discard_blks--;
1818 	}
1819 
1820 	if (len)
1821 		err = __issue_discard_async(sbi, bdev, start, len);
1822 	return err;
1823 }
1824 
1825 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1826 							bool check_only)
1827 {
1828 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1829 	int max_blocks = sbi->blocks_per_seg;
1830 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1831 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1832 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1833 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1834 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1835 	unsigned int start = 0, end = -1;
1836 	bool force = (cpc->reason & CP_DISCARD);
1837 	struct discard_entry *de = NULL;
1838 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1839 	int i;
1840 
1841 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1842 		return false;
1843 
1844 	if (!force) {
1845 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1846 			SM_I(sbi)->dcc_info->nr_discards >=
1847 				SM_I(sbi)->dcc_info->max_discards)
1848 			return false;
1849 	}
1850 
1851 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1852 	for (i = 0; i < entries; i++)
1853 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1854 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1855 
1856 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1857 				SM_I(sbi)->dcc_info->max_discards) {
1858 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1859 		if (start >= max_blocks)
1860 			break;
1861 
1862 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1863 		if (force && start && end != max_blocks
1864 					&& (end - start) < cpc->trim_minlen)
1865 			continue;
1866 
1867 		if (check_only)
1868 			return true;
1869 
1870 		if (!de) {
1871 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1872 								GFP_F2FS_ZERO);
1873 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1874 			list_add_tail(&de->list, head);
1875 		}
1876 
1877 		for (i = start; i < end; i++)
1878 			__set_bit_le(i, (void *)de->discard_map);
1879 
1880 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1881 	}
1882 	return false;
1883 }
1884 
1885 static void release_discard_addr(struct discard_entry *entry)
1886 {
1887 	list_del(&entry->list);
1888 	kmem_cache_free(discard_entry_slab, entry);
1889 }
1890 
1891 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1892 {
1893 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1894 	struct discard_entry *entry, *this;
1895 
1896 	/* drop caches */
1897 	list_for_each_entry_safe(entry, this, head, list)
1898 		release_discard_addr(entry);
1899 }
1900 
1901 /*
1902  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1903  */
1904 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1905 {
1906 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1907 	unsigned int segno;
1908 
1909 	mutex_lock(&dirty_i->seglist_lock);
1910 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1911 		__set_test_and_free(sbi, segno);
1912 	mutex_unlock(&dirty_i->seglist_lock);
1913 }
1914 
1915 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1916 						struct cp_control *cpc)
1917 {
1918 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1919 	struct list_head *head = &dcc->entry_list;
1920 	struct discard_entry *entry, *this;
1921 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1922 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1923 	unsigned int start = 0, end = -1;
1924 	unsigned int secno, start_segno;
1925 	bool force = (cpc->reason & CP_DISCARD);
1926 	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
1927 
1928 	mutex_lock(&dirty_i->seglist_lock);
1929 
1930 	while (1) {
1931 		int i;
1932 
1933 		if (need_align && end != -1)
1934 			end--;
1935 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1936 		if (start >= MAIN_SEGS(sbi))
1937 			break;
1938 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1939 								start + 1);
1940 
1941 		if (need_align) {
1942 			start = rounddown(start, sbi->segs_per_sec);
1943 			end = roundup(end, sbi->segs_per_sec);
1944 		}
1945 
1946 		for (i = start; i < end; i++) {
1947 			if (test_and_clear_bit(i, prefree_map))
1948 				dirty_i->nr_dirty[PRE]--;
1949 		}
1950 
1951 		if (!f2fs_realtime_discard_enable(sbi))
1952 			continue;
1953 
1954 		if (force && start >= cpc->trim_start &&
1955 					(end - 1) <= cpc->trim_end)
1956 				continue;
1957 
1958 		if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) {
1959 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1960 				(end - start) << sbi->log_blocks_per_seg);
1961 			continue;
1962 		}
1963 next:
1964 		secno = GET_SEC_FROM_SEG(sbi, start);
1965 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1966 		if (!IS_CURSEC(sbi, secno) &&
1967 			!get_valid_blocks(sbi, start, true))
1968 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1969 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1970 
1971 		start = start_segno + sbi->segs_per_sec;
1972 		if (start < end)
1973 			goto next;
1974 		else
1975 			end = start - 1;
1976 	}
1977 	mutex_unlock(&dirty_i->seglist_lock);
1978 
1979 	/* send small discards */
1980 	list_for_each_entry_safe(entry, this, head, list) {
1981 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1982 		bool is_valid = test_bit_le(0, entry->discard_map);
1983 
1984 find_next:
1985 		if (is_valid) {
1986 			next_pos = find_next_zero_bit_le(entry->discard_map,
1987 					sbi->blocks_per_seg, cur_pos);
1988 			len = next_pos - cur_pos;
1989 
1990 			if (f2fs_sb_has_blkzoned(sbi) ||
1991 			    (force && len < cpc->trim_minlen))
1992 				goto skip;
1993 
1994 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1995 									len);
1996 			total_len += len;
1997 		} else {
1998 			next_pos = find_next_bit_le(entry->discard_map,
1999 					sbi->blocks_per_seg, cur_pos);
2000 		}
2001 skip:
2002 		cur_pos = next_pos;
2003 		is_valid = !is_valid;
2004 
2005 		if (cur_pos < sbi->blocks_per_seg)
2006 			goto find_next;
2007 
2008 		release_discard_addr(entry);
2009 		dcc->nr_discards -= total_len;
2010 	}
2011 
2012 	wake_up_discard_thread(sbi, false);
2013 }
2014 
2015 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2016 {
2017 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2018 	struct discard_cmd_control *dcc;
2019 	int err = 0, i;
2020 
2021 	if (SM_I(sbi)->dcc_info) {
2022 		dcc = SM_I(sbi)->dcc_info;
2023 		goto init_thread;
2024 	}
2025 
2026 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2027 	if (!dcc)
2028 		return -ENOMEM;
2029 
2030 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2031 	INIT_LIST_HEAD(&dcc->entry_list);
2032 	for (i = 0; i < MAX_PLIST_NUM; i++)
2033 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2034 	INIT_LIST_HEAD(&dcc->wait_list);
2035 	INIT_LIST_HEAD(&dcc->fstrim_list);
2036 	mutex_init(&dcc->cmd_lock);
2037 	atomic_set(&dcc->issued_discard, 0);
2038 	atomic_set(&dcc->queued_discard, 0);
2039 	atomic_set(&dcc->discard_cmd_cnt, 0);
2040 	dcc->nr_discards = 0;
2041 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2042 	dcc->undiscard_blks = 0;
2043 	dcc->next_pos = 0;
2044 	dcc->root = RB_ROOT_CACHED;
2045 	dcc->rbtree_check = false;
2046 
2047 	init_waitqueue_head(&dcc->discard_wait_queue);
2048 	SM_I(sbi)->dcc_info = dcc;
2049 init_thread:
2050 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2051 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2052 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2053 		err = PTR_ERR(dcc->f2fs_issue_discard);
2054 		kvfree(dcc);
2055 		SM_I(sbi)->dcc_info = NULL;
2056 		return err;
2057 	}
2058 
2059 	return err;
2060 }
2061 
2062 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2063 {
2064 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2065 
2066 	if (!dcc)
2067 		return;
2068 
2069 	f2fs_stop_discard_thread(sbi);
2070 
2071 	kvfree(dcc);
2072 	SM_I(sbi)->dcc_info = NULL;
2073 }
2074 
2075 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2076 {
2077 	struct sit_info *sit_i = SIT_I(sbi);
2078 
2079 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2080 		sit_i->dirty_sentries++;
2081 		return false;
2082 	}
2083 
2084 	return true;
2085 }
2086 
2087 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2088 					unsigned int segno, int modified)
2089 {
2090 	struct seg_entry *se = get_seg_entry(sbi, segno);
2091 	se->type = type;
2092 	if (modified)
2093 		__mark_sit_entry_dirty(sbi, segno);
2094 }
2095 
2096 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2097 {
2098 	struct seg_entry *se;
2099 	unsigned int segno, offset;
2100 	long int new_vblocks;
2101 	bool exist;
2102 #ifdef CONFIG_F2FS_CHECK_FS
2103 	bool mir_exist;
2104 #endif
2105 
2106 	segno = GET_SEGNO(sbi, blkaddr);
2107 
2108 	se = get_seg_entry(sbi, segno);
2109 	new_vblocks = se->valid_blocks + del;
2110 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2111 
2112 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2113 				(new_vblocks > sbi->blocks_per_seg)));
2114 
2115 	se->valid_blocks = new_vblocks;
2116 	se->mtime = get_mtime(sbi, false);
2117 	if (se->mtime > SIT_I(sbi)->max_mtime)
2118 		SIT_I(sbi)->max_mtime = se->mtime;
2119 
2120 	/* Update valid block bitmap */
2121 	if (del > 0) {
2122 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2123 #ifdef CONFIG_F2FS_CHECK_FS
2124 		mir_exist = f2fs_test_and_set_bit(offset,
2125 						se->cur_valid_map_mir);
2126 		if (unlikely(exist != mir_exist)) {
2127 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2128 				"when setting bitmap, blk:%u, old bit:%d",
2129 				blkaddr, exist);
2130 			f2fs_bug_on(sbi, 1);
2131 		}
2132 #endif
2133 		if (unlikely(exist)) {
2134 			f2fs_msg(sbi->sb, KERN_ERR,
2135 				"Bitmap was wrongly set, blk:%u", blkaddr);
2136 			f2fs_bug_on(sbi, 1);
2137 			se->valid_blocks--;
2138 			del = 0;
2139 		}
2140 
2141 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2142 			sbi->discard_blks--;
2143 
2144 		/* don't overwrite by SSR to keep node chain */
2145 		if (IS_NODESEG(se->type) &&
2146 				!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2147 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2148 				se->ckpt_valid_blocks++;
2149 		}
2150 	} else {
2151 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2152 #ifdef CONFIG_F2FS_CHECK_FS
2153 		mir_exist = f2fs_test_and_clear_bit(offset,
2154 						se->cur_valid_map_mir);
2155 		if (unlikely(exist != mir_exist)) {
2156 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
2157 				"when clearing bitmap, blk:%u, old bit:%d",
2158 				blkaddr, exist);
2159 			f2fs_bug_on(sbi, 1);
2160 		}
2161 #endif
2162 		if (unlikely(!exist)) {
2163 			f2fs_msg(sbi->sb, KERN_ERR,
2164 				"Bitmap was wrongly cleared, blk:%u", blkaddr);
2165 			f2fs_bug_on(sbi, 1);
2166 			se->valid_blocks++;
2167 			del = 0;
2168 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2169 			/*
2170 			 * If checkpoints are off, we must not reuse data that
2171 			 * was used in the previous checkpoint. If it was used
2172 			 * before, we must track that to know how much space we
2173 			 * really have.
2174 			 */
2175 			if (f2fs_test_bit(offset, se->ckpt_valid_map))
2176 				sbi->unusable_block_count++;
2177 		}
2178 
2179 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2180 			sbi->discard_blks++;
2181 	}
2182 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2183 		se->ckpt_valid_blocks += del;
2184 
2185 	__mark_sit_entry_dirty(sbi, segno);
2186 
2187 	/* update total number of valid blocks to be written in ckpt area */
2188 	SIT_I(sbi)->written_valid_blocks += del;
2189 
2190 	if (__is_large_section(sbi))
2191 		get_sec_entry(sbi, segno)->valid_blocks += del;
2192 }
2193 
2194 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2195 {
2196 	unsigned int segno = GET_SEGNO(sbi, addr);
2197 	struct sit_info *sit_i = SIT_I(sbi);
2198 
2199 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2200 	if (addr == NEW_ADDR)
2201 		return;
2202 
2203 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2204 
2205 	/* add it into sit main buffer */
2206 	down_write(&sit_i->sentry_lock);
2207 
2208 	update_sit_entry(sbi, addr, -1);
2209 
2210 	/* add it into dirty seglist */
2211 	locate_dirty_segment(sbi, segno);
2212 
2213 	up_write(&sit_i->sentry_lock);
2214 }
2215 
2216 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2217 {
2218 	struct sit_info *sit_i = SIT_I(sbi);
2219 	unsigned int segno, offset;
2220 	struct seg_entry *se;
2221 	bool is_cp = false;
2222 
2223 	if (!is_valid_data_blkaddr(sbi, blkaddr))
2224 		return true;
2225 
2226 	down_read(&sit_i->sentry_lock);
2227 
2228 	segno = GET_SEGNO(sbi, blkaddr);
2229 	se = get_seg_entry(sbi, segno);
2230 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2231 
2232 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2233 		is_cp = true;
2234 
2235 	up_read(&sit_i->sentry_lock);
2236 
2237 	return is_cp;
2238 }
2239 
2240 /*
2241  * This function should be resided under the curseg_mutex lock
2242  */
2243 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2244 					struct f2fs_summary *sum)
2245 {
2246 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2247 	void *addr = curseg->sum_blk;
2248 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2249 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2250 }
2251 
2252 /*
2253  * Calculate the number of current summary pages for writing
2254  */
2255 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2256 {
2257 	int valid_sum_count = 0;
2258 	int i, sum_in_page;
2259 
2260 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2261 		if (sbi->ckpt->alloc_type[i] == SSR)
2262 			valid_sum_count += sbi->blocks_per_seg;
2263 		else {
2264 			if (for_ra)
2265 				valid_sum_count += le16_to_cpu(
2266 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2267 			else
2268 				valid_sum_count += curseg_blkoff(sbi, i);
2269 		}
2270 	}
2271 
2272 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2273 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2274 	if (valid_sum_count <= sum_in_page)
2275 		return 1;
2276 	else if ((valid_sum_count - sum_in_page) <=
2277 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2278 		return 2;
2279 	return 3;
2280 }
2281 
2282 /*
2283  * Caller should put this summary page
2284  */
2285 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2286 {
2287 	return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2288 }
2289 
2290 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2291 					void *src, block_t blk_addr)
2292 {
2293 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2294 
2295 	memcpy(page_address(page), src, PAGE_SIZE);
2296 	set_page_dirty(page);
2297 	f2fs_put_page(page, 1);
2298 }
2299 
2300 static void write_sum_page(struct f2fs_sb_info *sbi,
2301 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2302 {
2303 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2304 }
2305 
2306 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2307 						int type, block_t blk_addr)
2308 {
2309 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2310 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2311 	struct f2fs_summary_block *src = curseg->sum_blk;
2312 	struct f2fs_summary_block *dst;
2313 
2314 	dst = (struct f2fs_summary_block *)page_address(page);
2315 	memset(dst, 0, PAGE_SIZE);
2316 
2317 	mutex_lock(&curseg->curseg_mutex);
2318 
2319 	down_read(&curseg->journal_rwsem);
2320 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2321 	up_read(&curseg->journal_rwsem);
2322 
2323 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2324 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2325 
2326 	mutex_unlock(&curseg->curseg_mutex);
2327 
2328 	set_page_dirty(page);
2329 	f2fs_put_page(page, 1);
2330 }
2331 
2332 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2333 {
2334 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2335 	unsigned int segno = curseg->segno + 1;
2336 	struct free_segmap_info *free_i = FREE_I(sbi);
2337 
2338 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2339 		return !test_bit(segno, free_i->free_segmap);
2340 	return 0;
2341 }
2342 
2343 /*
2344  * Find a new segment from the free segments bitmap to right order
2345  * This function should be returned with success, otherwise BUG
2346  */
2347 static void get_new_segment(struct f2fs_sb_info *sbi,
2348 			unsigned int *newseg, bool new_sec, int dir)
2349 {
2350 	struct free_segmap_info *free_i = FREE_I(sbi);
2351 	unsigned int segno, secno, zoneno;
2352 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2353 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2354 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2355 	unsigned int left_start = hint;
2356 	bool init = true;
2357 	int go_left = 0;
2358 	int i;
2359 
2360 	spin_lock(&free_i->segmap_lock);
2361 
2362 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2363 		segno = find_next_zero_bit(free_i->free_segmap,
2364 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2365 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2366 			goto got_it;
2367 	}
2368 find_other_zone:
2369 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2370 	if (secno >= MAIN_SECS(sbi)) {
2371 		if (dir == ALLOC_RIGHT) {
2372 			secno = find_next_zero_bit(free_i->free_secmap,
2373 							MAIN_SECS(sbi), 0);
2374 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2375 		} else {
2376 			go_left = 1;
2377 			left_start = hint - 1;
2378 		}
2379 	}
2380 	if (go_left == 0)
2381 		goto skip_left;
2382 
2383 	while (test_bit(left_start, free_i->free_secmap)) {
2384 		if (left_start > 0) {
2385 			left_start--;
2386 			continue;
2387 		}
2388 		left_start = find_next_zero_bit(free_i->free_secmap,
2389 							MAIN_SECS(sbi), 0);
2390 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2391 		break;
2392 	}
2393 	secno = left_start;
2394 skip_left:
2395 	segno = GET_SEG_FROM_SEC(sbi, secno);
2396 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2397 
2398 	/* give up on finding another zone */
2399 	if (!init)
2400 		goto got_it;
2401 	if (sbi->secs_per_zone == 1)
2402 		goto got_it;
2403 	if (zoneno == old_zoneno)
2404 		goto got_it;
2405 	if (dir == ALLOC_LEFT) {
2406 		if (!go_left && zoneno + 1 >= total_zones)
2407 			goto got_it;
2408 		if (go_left && zoneno == 0)
2409 			goto got_it;
2410 	}
2411 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2412 		if (CURSEG_I(sbi, i)->zone == zoneno)
2413 			break;
2414 
2415 	if (i < NR_CURSEG_TYPE) {
2416 		/* zone is in user, try another */
2417 		if (go_left)
2418 			hint = zoneno * sbi->secs_per_zone - 1;
2419 		else if (zoneno + 1 >= total_zones)
2420 			hint = 0;
2421 		else
2422 			hint = (zoneno + 1) * sbi->secs_per_zone;
2423 		init = false;
2424 		goto find_other_zone;
2425 	}
2426 got_it:
2427 	/* set it as dirty segment in free segmap */
2428 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2429 	__set_inuse(sbi, segno);
2430 	*newseg = segno;
2431 	spin_unlock(&free_i->segmap_lock);
2432 }
2433 
2434 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2435 {
2436 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2437 	struct summary_footer *sum_footer;
2438 
2439 	curseg->segno = curseg->next_segno;
2440 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2441 	curseg->next_blkoff = 0;
2442 	curseg->next_segno = NULL_SEGNO;
2443 
2444 	sum_footer = &(curseg->sum_blk->footer);
2445 	memset(sum_footer, 0, sizeof(struct summary_footer));
2446 	if (IS_DATASEG(type))
2447 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2448 	if (IS_NODESEG(type))
2449 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2450 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
2451 }
2452 
2453 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2454 {
2455 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2456 	if (__is_large_section(sbi))
2457 		return CURSEG_I(sbi, type)->segno;
2458 
2459 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2460 		return 0;
2461 
2462 	if (test_opt(sbi, NOHEAP) &&
2463 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2464 		return 0;
2465 
2466 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2467 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2468 
2469 	/* find segments from 0 to reuse freed segments */
2470 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2471 		return 0;
2472 
2473 	return CURSEG_I(sbi, type)->segno;
2474 }
2475 
2476 /*
2477  * Allocate a current working segment.
2478  * This function always allocates a free segment in LFS manner.
2479  */
2480 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2481 {
2482 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2483 	unsigned int segno = curseg->segno;
2484 	int dir = ALLOC_LEFT;
2485 
2486 	write_sum_page(sbi, curseg->sum_blk,
2487 				GET_SUM_BLOCK(sbi, segno));
2488 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2489 		dir = ALLOC_RIGHT;
2490 
2491 	if (test_opt(sbi, NOHEAP))
2492 		dir = ALLOC_RIGHT;
2493 
2494 	segno = __get_next_segno(sbi, type);
2495 	get_new_segment(sbi, &segno, new_sec, dir);
2496 	curseg->next_segno = segno;
2497 	reset_curseg(sbi, type, 1);
2498 	curseg->alloc_type = LFS;
2499 }
2500 
2501 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2502 			struct curseg_info *seg, block_t start)
2503 {
2504 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2505 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2506 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2507 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2508 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2509 	int i, pos;
2510 
2511 	for (i = 0; i < entries; i++)
2512 		target_map[i] = ckpt_map[i] | cur_map[i];
2513 
2514 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2515 
2516 	seg->next_blkoff = pos;
2517 }
2518 
2519 /*
2520  * If a segment is written by LFS manner, next block offset is just obtained
2521  * by increasing the current block offset. However, if a segment is written by
2522  * SSR manner, next block offset obtained by calling __next_free_blkoff
2523  */
2524 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2525 				struct curseg_info *seg)
2526 {
2527 	if (seg->alloc_type == SSR)
2528 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2529 	else
2530 		seg->next_blkoff++;
2531 }
2532 
2533 /*
2534  * This function always allocates a used segment(from dirty seglist) by SSR
2535  * manner, so it should recover the existing segment information of valid blocks
2536  */
2537 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2538 {
2539 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2540 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2541 	unsigned int new_segno = curseg->next_segno;
2542 	struct f2fs_summary_block *sum_node;
2543 	struct page *sum_page;
2544 
2545 	write_sum_page(sbi, curseg->sum_blk,
2546 				GET_SUM_BLOCK(sbi, curseg->segno));
2547 	__set_test_and_inuse(sbi, new_segno);
2548 
2549 	mutex_lock(&dirty_i->seglist_lock);
2550 	__remove_dirty_segment(sbi, new_segno, PRE);
2551 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2552 	mutex_unlock(&dirty_i->seglist_lock);
2553 
2554 	reset_curseg(sbi, type, 1);
2555 	curseg->alloc_type = SSR;
2556 	__next_free_blkoff(sbi, curseg, 0);
2557 
2558 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2559 	f2fs_bug_on(sbi, IS_ERR(sum_page));
2560 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2561 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2562 	f2fs_put_page(sum_page, 1);
2563 }
2564 
2565 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2566 {
2567 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2568 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2569 	unsigned segno = NULL_SEGNO;
2570 	int i, cnt;
2571 	bool reversed = false;
2572 
2573 	/* f2fs_need_SSR() already forces to do this */
2574 	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2575 		curseg->next_segno = segno;
2576 		return 1;
2577 	}
2578 
2579 	/* For node segments, let's do SSR more intensively */
2580 	if (IS_NODESEG(type)) {
2581 		if (type >= CURSEG_WARM_NODE) {
2582 			reversed = true;
2583 			i = CURSEG_COLD_NODE;
2584 		} else {
2585 			i = CURSEG_HOT_NODE;
2586 		}
2587 		cnt = NR_CURSEG_NODE_TYPE;
2588 	} else {
2589 		if (type >= CURSEG_WARM_DATA) {
2590 			reversed = true;
2591 			i = CURSEG_COLD_DATA;
2592 		} else {
2593 			i = CURSEG_HOT_DATA;
2594 		}
2595 		cnt = NR_CURSEG_DATA_TYPE;
2596 	}
2597 
2598 	for (; cnt-- > 0; reversed ? i-- : i++) {
2599 		if (i == type)
2600 			continue;
2601 		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2602 			curseg->next_segno = segno;
2603 			return 1;
2604 		}
2605 	}
2606 
2607 	/* find valid_blocks=0 in dirty list */
2608 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2609 		segno = get_free_segment(sbi);
2610 		if (segno != NULL_SEGNO) {
2611 			curseg->next_segno = segno;
2612 			return 1;
2613 		}
2614 	}
2615 	return 0;
2616 }
2617 
2618 /*
2619  * flush out current segment and replace it with new segment
2620  * This function should be returned with success, otherwise BUG
2621  */
2622 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2623 						int type, bool force)
2624 {
2625 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2626 
2627 	if (force)
2628 		new_curseg(sbi, type, true);
2629 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2630 					type == CURSEG_WARM_NODE)
2631 		new_curseg(sbi, type, false);
2632 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2633 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2634 		new_curseg(sbi, type, false);
2635 	else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2636 		change_curseg(sbi, type);
2637 	else
2638 		new_curseg(sbi, type, false);
2639 
2640 	stat_inc_seg_type(sbi, curseg);
2641 }
2642 
2643 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2644 {
2645 	struct curseg_info *curseg;
2646 	unsigned int old_segno;
2647 	int i;
2648 
2649 	down_write(&SIT_I(sbi)->sentry_lock);
2650 
2651 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2652 		curseg = CURSEG_I(sbi, i);
2653 		old_segno = curseg->segno;
2654 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2655 		locate_dirty_segment(sbi, old_segno);
2656 	}
2657 
2658 	up_write(&SIT_I(sbi)->sentry_lock);
2659 }
2660 
2661 static const struct segment_allocation default_salloc_ops = {
2662 	.allocate_segment = allocate_segment_by_default,
2663 };
2664 
2665 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2666 						struct cp_control *cpc)
2667 {
2668 	__u64 trim_start = cpc->trim_start;
2669 	bool has_candidate = false;
2670 
2671 	down_write(&SIT_I(sbi)->sentry_lock);
2672 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2673 		if (add_discard_addrs(sbi, cpc, true)) {
2674 			has_candidate = true;
2675 			break;
2676 		}
2677 	}
2678 	up_write(&SIT_I(sbi)->sentry_lock);
2679 
2680 	cpc->trim_start = trim_start;
2681 	return has_candidate;
2682 }
2683 
2684 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2685 					struct discard_policy *dpolicy,
2686 					unsigned int start, unsigned int end)
2687 {
2688 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2689 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2690 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2691 	struct discard_cmd *dc;
2692 	struct blk_plug plug;
2693 	int issued;
2694 	unsigned int trimmed = 0;
2695 
2696 next:
2697 	issued = 0;
2698 
2699 	mutex_lock(&dcc->cmd_lock);
2700 	if (unlikely(dcc->rbtree_check))
2701 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2702 								&dcc->root));
2703 
2704 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2705 					NULL, start,
2706 					(struct rb_entry **)&prev_dc,
2707 					(struct rb_entry **)&next_dc,
2708 					&insert_p, &insert_parent, true, NULL);
2709 	if (!dc)
2710 		dc = next_dc;
2711 
2712 	blk_start_plug(&plug);
2713 
2714 	while (dc && dc->lstart <= end) {
2715 		struct rb_node *node;
2716 		int err = 0;
2717 
2718 		if (dc->len < dpolicy->granularity)
2719 			goto skip;
2720 
2721 		if (dc->state != D_PREP) {
2722 			list_move_tail(&dc->list, &dcc->fstrim_list);
2723 			goto skip;
2724 		}
2725 
2726 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2727 
2728 		if (issued >= dpolicy->max_requests) {
2729 			start = dc->lstart + dc->len;
2730 
2731 			if (err)
2732 				__remove_discard_cmd(sbi, dc);
2733 
2734 			blk_finish_plug(&plug);
2735 			mutex_unlock(&dcc->cmd_lock);
2736 			trimmed += __wait_all_discard_cmd(sbi, NULL);
2737 			congestion_wait(BLK_RW_ASYNC, HZ/50);
2738 			goto next;
2739 		}
2740 skip:
2741 		node = rb_next(&dc->rb_node);
2742 		if (err)
2743 			__remove_discard_cmd(sbi, dc);
2744 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2745 
2746 		if (fatal_signal_pending(current))
2747 			break;
2748 	}
2749 
2750 	blk_finish_plug(&plug);
2751 	mutex_unlock(&dcc->cmd_lock);
2752 
2753 	return trimmed;
2754 }
2755 
2756 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2757 {
2758 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2759 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2760 	unsigned int start_segno, end_segno;
2761 	block_t start_block, end_block;
2762 	struct cp_control cpc;
2763 	struct discard_policy dpolicy;
2764 	unsigned long long trimmed = 0;
2765 	int err = 0;
2766 	bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi);
2767 
2768 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2769 		return -EINVAL;
2770 
2771 	if (end < MAIN_BLKADDR(sbi))
2772 		goto out;
2773 
2774 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2775 		f2fs_msg(sbi->sb, KERN_WARNING,
2776 			"Found FS corruption, run fsck to fix.");
2777 		return -EIO;
2778 	}
2779 
2780 	/* start/end segment number in main_area */
2781 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2782 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2783 						GET_SEGNO(sbi, end);
2784 	if (need_align) {
2785 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
2786 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2787 	}
2788 
2789 	cpc.reason = CP_DISCARD;
2790 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2791 	cpc.trim_start = start_segno;
2792 	cpc.trim_end = end_segno;
2793 
2794 	if (sbi->discard_blks == 0)
2795 		goto out;
2796 
2797 	mutex_lock(&sbi->gc_mutex);
2798 	err = f2fs_write_checkpoint(sbi, &cpc);
2799 	mutex_unlock(&sbi->gc_mutex);
2800 	if (err)
2801 		goto out;
2802 
2803 	/*
2804 	 * We filed discard candidates, but actually we don't need to wait for
2805 	 * all of them, since they'll be issued in idle time along with runtime
2806 	 * discard option. User configuration looks like using runtime discard
2807 	 * or periodic fstrim instead of it.
2808 	 */
2809 	if (f2fs_realtime_discard_enable(sbi))
2810 		goto out;
2811 
2812 	start_block = START_BLOCK(sbi, start_segno);
2813 	end_block = START_BLOCK(sbi, end_segno + 1);
2814 
2815 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2816 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2817 					start_block, end_block);
2818 
2819 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2820 					start_block, end_block);
2821 out:
2822 	if (!err)
2823 		range->len = F2FS_BLK_TO_BYTES(trimmed);
2824 	return err;
2825 }
2826 
2827 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2828 {
2829 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2830 	if (curseg->next_blkoff < sbi->blocks_per_seg)
2831 		return true;
2832 	return false;
2833 }
2834 
2835 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2836 {
2837 	switch (hint) {
2838 	case WRITE_LIFE_SHORT:
2839 		return CURSEG_HOT_DATA;
2840 	case WRITE_LIFE_EXTREME:
2841 		return CURSEG_COLD_DATA;
2842 	default:
2843 		return CURSEG_WARM_DATA;
2844 	}
2845 }
2846 
2847 /* This returns write hints for each segment type. This hints will be
2848  * passed down to block layer. There are mapping tables which depend on
2849  * the mount option 'whint_mode'.
2850  *
2851  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2852  *
2853  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2854  *
2855  * User                  F2FS                     Block
2856  * ----                  ----                     -----
2857  *                       META                     WRITE_LIFE_NOT_SET
2858  *                       HOT_NODE                 "
2859  *                       WARM_NODE                "
2860  *                       COLD_NODE                "
2861  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2862  * extension list        "                        "
2863  *
2864  * -- buffered io
2865  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2866  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2867  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2868  * WRITE_LIFE_NONE       "                        "
2869  * WRITE_LIFE_MEDIUM     "                        "
2870  * WRITE_LIFE_LONG       "                        "
2871  *
2872  * -- direct io
2873  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2874  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2875  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2876  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2877  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2878  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2879  *
2880  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2881  *
2882  * User                  F2FS                     Block
2883  * ----                  ----                     -----
2884  *                       META                     WRITE_LIFE_MEDIUM;
2885  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2886  *                       WARM_NODE                "
2887  *                       COLD_NODE                WRITE_LIFE_NONE
2888  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2889  * extension list        "                        "
2890  *
2891  * -- buffered io
2892  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2893  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2894  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2895  * WRITE_LIFE_NONE       "                        "
2896  * WRITE_LIFE_MEDIUM     "                        "
2897  * WRITE_LIFE_LONG       "                        "
2898  *
2899  * -- direct io
2900  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2901  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2902  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2903  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2904  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2905  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2906  */
2907 
2908 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2909 				enum page_type type, enum temp_type temp)
2910 {
2911 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2912 		if (type == DATA) {
2913 			if (temp == WARM)
2914 				return WRITE_LIFE_NOT_SET;
2915 			else if (temp == HOT)
2916 				return WRITE_LIFE_SHORT;
2917 			else if (temp == COLD)
2918 				return WRITE_LIFE_EXTREME;
2919 		} else {
2920 			return WRITE_LIFE_NOT_SET;
2921 		}
2922 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2923 		if (type == DATA) {
2924 			if (temp == WARM)
2925 				return WRITE_LIFE_LONG;
2926 			else if (temp == HOT)
2927 				return WRITE_LIFE_SHORT;
2928 			else if (temp == COLD)
2929 				return WRITE_LIFE_EXTREME;
2930 		} else if (type == NODE) {
2931 			if (temp == WARM || temp == HOT)
2932 				return WRITE_LIFE_NOT_SET;
2933 			else if (temp == COLD)
2934 				return WRITE_LIFE_NONE;
2935 		} else if (type == META) {
2936 			return WRITE_LIFE_MEDIUM;
2937 		}
2938 	}
2939 	return WRITE_LIFE_NOT_SET;
2940 }
2941 
2942 static int __get_segment_type_2(struct f2fs_io_info *fio)
2943 {
2944 	if (fio->type == DATA)
2945 		return CURSEG_HOT_DATA;
2946 	else
2947 		return CURSEG_HOT_NODE;
2948 }
2949 
2950 static int __get_segment_type_4(struct f2fs_io_info *fio)
2951 {
2952 	if (fio->type == DATA) {
2953 		struct inode *inode = fio->page->mapping->host;
2954 
2955 		if (S_ISDIR(inode->i_mode))
2956 			return CURSEG_HOT_DATA;
2957 		else
2958 			return CURSEG_COLD_DATA;
2959 	} else {
2960 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2961 			return CURSEG_WARM_NODE;
2962 		else
2963 			return CURSEG_COLD_NODE;
2964 	}
2965 }
2966 
2967 static int __get_segment_type_6(struct f2fs_io_info *fio)
2968 {
2969 	if (fio->type == DATA) {
2970 		struct inode *inode = fio->page->mapping->host;
2971 
2972 		if (is_cold_data(fio->page) || file_is_cold(inode))
2973 			return CURSEG_COLD_DATA;
2974 		if (file_is_hot(inode) ||
2975 				is_inode_flag_set(inode, FI_HOT_DATA) ||
2976 				f2fs_is_atomic_file(inode) ||
2977 				f2fs_is_volatile_file(inode))
2978 			return CURSEG_HOT_DATA;
2979 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
2980 	} else {
2981 		if (IS_DNODE(fio->page))
2982 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2983 						CURSEG_HOT_NODE;
2984 		return CURSEG_COLD_NODE;
2985 	}
2986 }
2987 
2988 static int __get_segment_type(struct f2fs_io_info *fio)
2989 {
2990 	int type = 0;
2991 
2992 	switch (F2FS_OPTION(fio->sbi).active_logs) {
2993 	case 2:
2994 		type = __get_segment_type_2(fio);
2995 		break;
2996 	case 4:
2997 		type = __get_segment_type_4(fio);
2998 		break;
2999 	case 6:
3000 		type = __get_segment_type_6(fio);
3001 		break;
3002 	default:
3003 		f2fs_bug_on(fio->sbi, true);
3004 	}
3005 
3006 	if (IS_HOT(type))
3007 		fio->temp = HOT;
3008 	else if (IS_WARM(type))
3009 		fio->temp = WARM;
3010 	else
3011 		fio->temp = COLD;
3012 	return type;
3013 }
3014 
3015 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3016 		block_t old_blkaddr, block_t *new_blkaddr,
3017 		struct f2fs_summary *sum, int type,
3018 		struct f2fs_io_info *fio, bool add_list)
3019 {
3020 	struct sit_info *sit_i = SIT_I(sbi);
3021 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3022 
3023 	down_read(&SM_I(sbi)->curseg_lock);
3024 
3025 	mutex_lock(&curseg->curseg_mutex);
3026 	down_write(&sit_i->sentry_lock);
3027 
3028 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3029 
3030 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3031 
3032 	/*
3033 	 * __add_sum_entry should be resided under the curseg_mutex
3034 	 * because, this function updates a summary entry in the
3035 	 * current summary block.
3036 	 */
3037 	__add_sum_entry(sbi, type, sum);
3038 
3039 	__refresh_next_blkoff(sbi, curseg);
3040 
3041 	stat_inc_block_count(sbi, curseg);
3042 
3043 	/*
3044 	 * SIT information should be updated before segment allocation,
3045 	 * since SSR needs latest valid block information.
3046 	 */
3047 	update_sit_entry(sbi, *new_blkaddr, 1);
3048 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3049 		update_sit_entry(sbi, old_blkaddr, -1);
3050 
3051 	if (!__has_curseg_space(sbi, type))
3052 		sit_i->s_ops->allocate_segment(sbi, type, false);
3053 
3054 	/*
3055 	 * segment dirty status should be updated after segment allocation,
3056 	 * so we just need to update status only one time after previous
3057 	 * segment being closed.
3058 	 */
3059 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3060 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3061 
3062 	up_write(&sit_i->sentry_lock);
3063 
3064 	if (page && IS_NODESEG(type)) {
3065 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3066 
3067 		f2fs_inode_chksum_set(sbi, page);
3068 	}
3069 
3070 	if (add_list) {
3071 		struct f2fs_bio_info *io;
3072 
3073 		INIT_LIST_HEAD(&fio->list);
3074 		fio->in_list = true;
3075 		fio->retry = false;
3076 		io = sbi->write_io[fio->type] + fio->temp;
3077 		spin_lock(&io->io_lock);
3078 		list_add_tail(&fio->list, &io->io_list);
3079 		spin_unlock(&io->io_lock);
3080 	}
3081 
3082 	mutex_unlock(&curseg->curseg_mutex);
3083 
3084 	up_read(&SM_I(sbi)->curseg_lock);
3085 }
3086 
3087 static void update_device_state(struct f2fs_io_info *fio)
3088 {
3089 	struct f2fs_sb_info *sbi = fio->sbi;
3090 	unsigned int devidx;
3091 
3092 	if (!sbi->s_ndevs)
3093 		return;
3094 
3095 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3096 
3097 	/* update device state for fsync */
3098 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3099 
3100 	/* update device state for checkpoint */
3101 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3102 		spin_lock(&sbi->dev_lock);
3103 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3104 		spin_unlock(&sbi->dev_lock);
3105 	}
3106 }
3107 
3108 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3109 {
3110 	int type = __get_segment_type(fio);
3111 	bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA);
3112 
3113 	if (keep_order)
3114 		down_read(&fio->sbi->io_order_lock);
3115 reallocate:
3116 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3117 			&fio->new_blkaddr, sum, type, fio, true);
3118 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3119 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3120 					fio->old_blkaddr, fio->old_blkaddr);
3121 
3122 	/* writeout dirty page into bdev */
3123 	f2fs_submit_page_write(fio);
3124 	if (fio->retry) {
3125 		fio->old_blkaddr = fio->new_blkaddr;
3126 		goto reallocate;
3127 	}
3128 
3129 	update_device_state(fio);
3130 
3131 	if (keep_order)
3132 		up_read(&fio->sbi->io_order_lock);
3133 }
3134 
3135 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3136 					enum iostat_type io_type)
3137 {
3138 	struct f2fs_io_info fio = {
3139 		.sbi = sbi,
3140 		.type = META,
3141 		.temp = HOT,
3142 		.op = REQ_OP_WRITE,
3143 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3144 		.old_blkaddr = page->index,
3145 		.new_blkaddr = page->index,
3146 		.page = page,
3147 		.encrypted_page = NULL,
3148 		.in_list = false,
3149 	};
3150 
3151 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3152 		fio.op_flags &= ~REQ_META;
3153 
3154 	set_page_writeback(page);
3155 	ClearPageError(page);
3156 	f2fs_submit_page_write(&fio);
3157 
3158 	stat_inc_meta_count(sbi, page->index);
3159 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3160 }
3161 
3162 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3163 {
3164 	struct f2fs_summary sum;
3165 
3166 	set_summary(&sum, nid, 0, 0);
3167 	do_write_page(&sum, fio);
3168 
3169 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3170 }
3171 
3172 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3173 					struct f2fs_io_info *fio)
3174 {
3175 	struct f2fs_sb_info *sbi = fio->sbi;
3176 	struct f2fs_summary sum;
3177 
3178 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3179 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3180 	do_write_page(&sum, fio);
3181 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3182 
3183 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3184 }
3185 
3186 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3187 {
3188 	int err;
3189 	struct f2fs_sb_info *sbi = fio->sbi;
3190 
3191 	fio->new_blkaddr = fio->old_blkaddr;
3192 	/* i/o temperature is needed for passing down write hints */
3193 	__get_segment_type(fio);
3194 
3195 	f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
3196 			GET_SEGNO(sbi, fio->new_blkaddr))->type));
3197 
3198 	stat_inc_inplace_blocks(fio->sbi);
3199 
3200 	err = f2fs_submit_page_bio(fio);
3201 	if (!err) {
3202 		update_device_state(fio);
3203 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3204 	}
3205 
3206 	return err;
3207 }
3208 
3209 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3210 						unsigned int segno)
3211 {
3212 	int i;
3213 
3214 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3215 		if (CURSEG_I(sbi, i)->segno == segno)
3216 			break;
3217 	}
3218 	return i;
3219 }
3220 
3221 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3222 				block_t old_blkaddr, block_t new_blkaddr,
3223 				bool recover_curseg, bool recover_newaddr)
3224 {
3225 	struct sit_info *sit_i = SIT_I(sbi);
3226 	struct curseg_info *curseg;
3227 	unsigned int segno, old_cursegno;
3228 	struct seg_entry *se;
3229 	int type;
3230 	unsigned short old_blkoff;
3231 
3232 	segno = GET_SEGNO(sbi, new_blkaddr);
3233 	se = get_seg_entry(sbi, segno);
3234 	type = se->type;
3235 
3236 	down_write(&SM_I(sbi)->curseg_lock);
3237 
3238 	if (!recover_curseg) {
3239 		/* for recovery flow */
3240 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3241 			if (old_blkaddr == NULL_ADDR)
3242 				type = CURSEG_COLD_DATA;
3243 			else
3244 				type = CURSEG_WARM_DATA;
3245 		}
3246 	} else {
3247 		if (IS_CURSEG(sbi, segno)) {
3248 			/* se->type is volatile as SSR allocation */
3249 			type = __f2fs_get_curseg(sbi, segno);
3250 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3251 		} else {
3252 			type = CURSEG_WARM_DATA;
3253 		}
3254 	}
3255 
3256 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3257 	curseg = CURSEG_I(sbi, type);
3258 
3259 	mutex_lock(&curseg->curseg_mutex);
3260 	down_write(&sit_i->sentry_lock);
3261 
3262 	old_cursegno = curseg->segno;
3263 	old_blkoff = curseg->next_blkoff;
3264 
3265 	/* change the current segment */
3266 	if (segno != curseg->segno) {
3267 		curseg->next_segno = segno;
3268 		change_curseg(sbi, type);
3269 	}
3270 
3271 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3272 	__add_sum_entry(sbi, type, sum);
3273 
3274 	if (!recover_curseg || recover_newaddr)
3275 		update_sit_entry(sbi, new_blkaddr, 1);
3276 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3277 		invalidate_mapping_pages(META_MAPPING(sbi),
3278 					old_blkaddr, old_blkaddr);
3279 		update_sit_entry(sbi, old_blkaddr, -1);
3280 	}
3281 
3282 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3283 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3284 
3285 	locate_dirty_segment(sbi, old_cursegno);
3286 
3287 	if (recover_curseg) {
3288 		if (old_cursegno != curseg->segno) {
3289 			curseg->next_segno = old_cursegno;
3290 			change_curseg(sbi, type);
3291 		}
3292 		curseg->next_blkoff = old_blkoff;
3293 	}
3294 
3295 	up_write(&sit_i->sentry_lock);
3296 	mutex_unlock(&curseg->curseg_mutex);
3297 	up_write(&SM_I(sbi)->curseg_lock);
3298 }
3299 
3300 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3301 				block_t old_addr, block_t new_addr,
3302 				unsigned char version, bool recover_curseg,
3303 				bool recover_newaddr)
3304 {
3305 	struct f2fs_summary sum;
3306 
3307 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3308 
3309 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3310 					recover_curseg, recover_newaddr);
3311 
3312 	f2fs_update_data_blkaddr(dn, new_addr);
3313 }
3314 
3315 void f2fs_wait_on_page_writeback(struct page *page,
3316 				enum page_type type, bool ordered, bool locked)
3317 {
3318 	if (PageWriteback(page)) {
3319 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3320 
3321 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3322 		if (ordered) {
3323 			wait_on_page_writeback(page);
3324 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3325 		} else {
3326 			wait_for_stable_page(page);
3327 		}
3328 	}
3329 }
3330 
3331 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3332 {
3333 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3334 	struct page *cpage;
3335 
3336 	if (!f2fs_post_read_required(inode))
3337 		return;
3338 
3339 	if (!is_valid_data_blkaddr(sbi, blkaddr))
3340 		return;
3341 
3342 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3343 	if (cpage) {
3344 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3345 		f2fs_put_page(cpage, 1);
3346 	}
3347 }
3348 
3349 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3350 								block_t len)
3351 {
3352 	block_t i;
3353 
3354 	for (i = 0; i < len; i++)
3355 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3356 }
3357 
3358 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3359 {
3360 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3361 	struct curseg_info *seg_i;
3362 	unsigned char *kaddr;
3363 	struct page *page;
3364 	block_t start;
3365 	int i, j, offset;
3366 
3367 	start = start_sum_block(sbi);
3368 
3369 	page = f2fs_get_meta_page(sbi, start++);
3370 	if (IS_ERR(page))
3371 		return PTR_ERR(page);
3372 	kaddr = (unsigned char *)page_address(page);
3373 
3374 	/* Step 1: restore nat cache */
3375 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3376 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3377 
3378 	/* Step 2: restore sit cache */
3379 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3380 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3381 	offset = 2 * SUM_JOURNAL_SIZE;
3382 
3383 	/* Step 3: restore summary entries */
3384 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3385 		unsigned short blk_off;
3386 		unsigned int segno;
3387 
3388 		seg_i = CURSEG_I(sbi, i);
3389 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3390 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3391 		seg_i->next_segno = segno;
3392 		reset_curseg(sbi, i, 0);
3393 		seg_i->alloc_type = ckpt->alloc_type[i];
3394 		seg_i->next_blkoff = blk_off;
3395 
3396 		if (seg_i->alloc_type == SSR)
3397 			blk_off = sbi->blocks_per_seg;
3398 
3399 		for (j = 0; j < blk_off; j++) {
3400 			struct f2fs_summary *s;
3401 			s = (struct f2fs_summary *)(kaddr + offset);
3402 			seg_i->sum_blk->entries[j] = *s;
3403 			offset += SUMMARY_SIZE;
3404 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3405 						SUM_FOOTER_SIZE)
3406 				continue;
3407 
3408 			f2fs_put_page(page, 1);
3409 			page = NULL;
3410 
3411 			page = f2fs_get_meta_page(sbi, start++);
3412 			if (IS_ERR(page))
3413 				return PTR_ERR(page);
3414 			kaddr = (unsigned char *)page_address(page);
3415 			offset = 0;
3416 		}
3417 	}
3418 	f2fs_put_page(page, 1);
3419 	return 0;
3420 }
3421 
3422 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3423 {
3424 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3425 	struct f2fs_summary_block *sum;
3426 	struct curseg_info *curseg;
3427 	struct page *new;
3428 	unsigned short blk_off;
3429 	unsigned int segno = 0;
3430 	block_t blk_addr = 0;
3431 	int err = 0;
3432 
3433 	/* get segment number and block addr */
3434 	if (IS_DATASEG(type)) {
3435 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3436 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3437 							CURSEG_HOT_DATA]);
3438 		if (__exist_node_summaries(sbi))
3439 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3440 		else
3441 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3442 	} else {
3443 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3444 							CURSEG_HOT_NODE]);
3445 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3446 							CURSEG_HOT_NODE]);
3447 		if (__exist_node_summaries(sbi))
3448 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3449 							type - CURSEG_HOT_NODE);
3450 		else
3451 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3452 	}
3453 
3454 	new = f2fs_get_meta_page(sbi, blk_addr);
3455 	if (IS_ERR(new))
3456 		return PTR_ERR(new);
3457 	sum = (struct f2fs_summary_block *)page_address(new);
3458 
3459 	if (IS_NODESEG(type)) {
3460 		if (__exist_node_summaries(sbi)) {
3461 			struct f2fs_summary *ns = &sum->entries[0];
3462 			int i;
3463 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3464 				ns->version = 0;
3465 				ns->ofs_in_node = 0;
3466 			}
3467 		} else {
3468 			err = f2fs_restore_node_summary(sbi, segno, sum);
3469 			if (err)
3470 				goto out;
3471 		}
3472 	}
3473 
3474 	/* set uncompleted segment to curseg */
3475 	curseg = CURSEG_I(sbi, type);
3476 	mutex_lock(&curseg->curseg_mutex);
3477 
3478 	/* update journal info */
3479 	down_write(&curseg->journal_rwsem);
3480 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3481 	up_write(&curseg->journal_rwsem);
3482 
3483 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3484 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3485 	curseg->next_segno = segno;
3486 	reset_curseg(sbi, type, 0);
3487 	curseg->alloc_type = ckpt->alloc_type[type];
3488 	curseg->next_blkoff = blk_off;
3489 	mutex_unlock(&curseg->curseg_mutex);
3490 out:
3491 	f2fs_put_page(new, 1);
3492 	return err;
3493 }
3494 
3495 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3496 {
3497 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3498 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3499 	int type = CURSEG_HOT_DATA;
3500 	int err;
3501 
3502 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3503 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3504 
3505 		if (npages >= 2)
3506 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3507 							META_CP, true);
3508 
3509 		/* restore for compacted data summary */
3510 		err = read_compacted_summaries(sbi);
3511 		if (err)
3512 			return err;
3513 		type = CURSEG_HOT_NODE;
3514 	}
3515 
3516 	if (__exist_node_summaries(sbi))
3517 		f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3518 					NR_CURSEG_TYPE - type, META_CP, true);
3519 
3520 	for (; type <= CURSEG_COLD_NODE; type++) {
3521 		err = read_normal_summaries(sbi, type);
3522 		if (err)
3523 			return err;
3524 	}
3525 
3526 	/* sanity check for summary blocks */
3527 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3528 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3529 		return -EINVAL;
3530 
3531 	return 0;
3532 }
3533 
3534 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3535 {
3536 	struct page *page;
3537 	unsigned char *kaddr;
3538 	struct f2fs_summary *summary;
3539 	struct curseg_info *seg_i;
3540 	int written_size = 0;
3541 	int i, j;
3542 
3543 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3544 	kaddr = (unsigned char *)page_address(page);
3545 	memset(kaddr, 0, PAGE_SIZE);
3546 
3547 	/* Step 1: write nat cache */
3548 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3549 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3550 	written_size += SUM_JOURNAL_SIZE;
3551 
3552 	/* Step 2: write sit cache */
3553 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3554 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3555 	written_size += SUM_JOURNAL_SIZE;
3556 
3557 	/* Step 3: write summary entries */
3558 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3559 		unsigned short blkoff;
3560 		seg_i = CURSEG_I(sbi, i);
3561 		if (sbi->ckpt->alloc_type[i] == SSR)
3562 			blkoff = sbi->blocks_per_seg;
3563 		else
3564 			blkoff = curseg_blkoff(sbi, i);
3565 
3566 		for (j = 0; j < blkoff; j++) {
3567 			if (!page) {
3568 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3569 				kaddr = (unsigned char *)page_address(page);
3570 				memset(kaddr, 0, PAGE_SIZE);
3571 				written_size = 0;
3572 			}
3573 			summary = (struct f2fs_summary *)(kaddr + written_size);
3574 			*summary = seg_i->sum_blk->entries[j];
3575 			written_size += SUMMARY_SIZE;
3576 
3577 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3578 							SUM_FOOTER_SIZE)
3579 				continue;
3580 
3581 			set_page_dirty(page);
3582 			f2fs_put_page(page, 1);
3583 			page = NULL;
3584 		}
3585 	}
3586 	if (page) {
3587 		set_page_dirty(page);
3588 		f2fs_put_page(page, 1);
3589 	}
3590 }
3591 
3592 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3593 					block_t blkaddr, int type)
3594 {
3595 	int i, end;
3596 	if (IS_DATASEG(type))
3597 		end = type + NR_CURSEG_DATA_TYPE;
3598 	else
3599 		end = type + NR_CURSEG_NODE_TYPE;
3600 
3601 	for (i = type; i < end; i++)
3602 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3603 }
3604 
3605 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3606 {
3607 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3608 		write_compacted_summaries(sbi, start_blk);
3609 	else
3610 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3611 }
3612 
3613 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3614 {
3615 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3616 }
3617 
3618 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3619 					unsigned int val, int alloc)
3620 {
3621 	int i;
3622 
3623 	if (type == NAT_JOURNAL) {
3624 		for (i = 0; i < nats_in_cursum(journal); i++) {
3625 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3626 				return i;
3627 		}
3628 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3629 			return update_nats_in_cursum(journal, 1);
3630 	} else if (type == SIT_JOURNAL) {
3631 		for (i = 0; i < sits_in_cursum(journal); i++)
3632 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3633 				return i;
3634 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3635 			return update_sits_in_cursum(journal, 1);
3636 	}
3637 	return -1;
3638 }
3639 
3640 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3641 					unsigned int segno)
3642 {
3643 	return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3644 }
3645 
3646 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3647 					unsigned int start)
3648 {
3649 	struct sit_info *sit_i = SIT_I(sbi);
3650 	struct page *page;
3651 	pgoff_t src_off, dst_off;
3652 
3653 	src_off = current_sit_addr(sbi, start);
3654 	dst_off = next_sit_addr(sbi, src_off);
3655 
3656 	page = f2fs_grab_meta_page(sbi, dst_off);
3657 	seg_info_to_sit_page(sbi, page, start);
3658 
3659 	set_page_dirty(page);
3660 	set_to_next_sit(sit_i, start);
3661 
3662 	return page;
3663 }
3664 
3665 static struct sit_entry_set *grab_sit_entry_set(void)
3666 {
3667 	struct sit_entry_set *ses =
3668 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3669 
3670 	ses->entry_cnt = 0;
3671 	INIT_LIST_HEAD(&ses->set_list);
3672 	return ses;
3673 }
3674 
3675 static void release_sit_entry_set(struct sit_entry_set *ses)
3676 {
3677 	list_del(&ses->set_list);
3678 	kmem_cache_free(sit_entry_set_slab, ses);
3679 }
3680 
3681 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3682 						struct list_head *head)
3683 {
3684 	struct sit_entry_set *next = ses;
3685 
3686 	if (list_is_last(&ses->set_list, head))
3687 		return;
3688 
3689 	list_for_each_entry_continue(next, head, set_list)
3690 		if (ses->entry_cnt <= next->entry_cnt)
3691 			break;
3692 
3693 	list_move_tail(&ses->set_list, &next->set_list);
3694 }
3695 
3696 static void add_sit_entry(unsigned int segno, struct list_head *head)
3697 {
3698 	struct sit_entry_set *ses;
3699 	unsigned int start_segno = START_SEGNO(segno);
3700 
3701 	list_for_each_entry(ses, head, set_list) {
3702 		if (ses->start_segno == start_segno) {
3703 			ses->entry_cnt++;
3704 			adjust_sit_entry_set(ses, head);
3705 			return;
3706 		}
3707 	}
3708 
3709 	ses = grab_sit_entry_set();
3710 
3711 	ses->start_segno = start_segno;
3712 	ses->entry_cnt++;
3713 	list_add(&ses->set_list, head);
3714 }
3715 
3716 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3717 {
3718 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3719 	struct list_head *set_list = &sm_info->sit_entry_set;
3720 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3721 	unsigned int segno;
3722 
3723 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3724 		add_sit_entry(segno, set_list);
3725 }
3726 
3727 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3728 {
3729 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3730 	struct f2fs_journal *journal = curseg->journal;
3731 	int i;
3732 
3733 	down_write(&curseg->journal_rwsem);
3734 	for (i = 0; i < sits_in_cursum(journal); i++) {
3735 		unsigned int segno;
3736 		bool dirtied;
3737 
3738 		segno = le32_to_cpu(segno_in_journal(journal, i));
3739 		dirtied = __mark_sit_entry_dirty(sbi, segno);
3740 
3741 		if (!dirtied)
3742 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3743 	}
3744 	update_sits_in_cursum(journal, -i);
3745 	up_write(&curseg->journal_rwsem);
3746 }
3747 
3748 /*
3749  * CP calls this function, which flushes SIT entries including sit_journal,
3750  * and moves prefree segs to free segs.
3751  */
3752 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3753 {
3754 	struct sit_info *sit_i = SIT_I(sbi);
3755 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3756 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3757 	struct f2fs_journal *journal = curseg->journal;
3758 	struct sit_entry_set *ses, *tmp;
3759 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
3760 	bool to_journal = true;
3761 	struct seg_entry *se;
3762 
3763 	down_write(&sit_i->sentry_lock);
3764 
3765 	if (!sit_i->dirty_sentries)
3766 		goto out;
3767 
3768 	/*
3769 	 * add and account sit entries of dirty bitmap in sit entry
3770 	 * set temporarily
3771 	 */
3772 	add_sits_in_set(sbi);
3773 
3774 	/*
3775 	 * if there are no enough space in journal to store dirty sit
3776 	 * entries, remove all entries from journal and add and account
3777 	 * them in sit entry set.
3778 	 */
3779 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3780 		remove_sits_in_journal(sbi);
3781 
3782 	/*
3783 	 * there are two steps to flush sit entries:
3784 	 * #1, flush sit entries to journal in current cold data summary block.
3785 	 * #2, flush sit entries to sit page.
3786 	 */
3787 	list_for_each_entry_safe(ses, tmp, head, set_list) {
3788 		struct page *page = NULL;
3789 		struct f2fs_sit_block *raw_sit = NULL;
3790 		unsigned int start_segno = ses->start_segno;
3791 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3792 						(unsigned long)MAIN_SEGS(sbi));
3793 		unsigned int segno = start_segno;
3794 
3795 		if (to_journal &&
3796 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3797 			to_journal = false;
3798 
3799 		if (to_journal) {
3800 			down_write(&curseg->journal_rwsem);
3801 		} else {
3802 			page = get_next_sit_page(sbi, start_segno);
3803 			raw_sit = page_address(page);
3804 		}
3805 
3806 		/* flush dirty sit entries in region of current sit set */
3807 		for_each_set_bit_from(segno, bitmap, end) {
3808 			int offset, sit_offset;
3809 
3810 			se = get_seg_entry(sbi, segno);
3811 #ifdef CONFIG_F2FS_CHECK_FS
3812 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3813 						SIT_VBLOCK_MAP_SIZE))
3814 				f2fs_bug_on(sbi, 1);
3815 #endif
3816 
3817 			/* add discard candidates */
3818 			if (!(cpc->reason & CP_DISCARD)) {
3819 				cpc->trim_start = segno;
3820 				add_discard_addrs(sbi, cpc, false);
3821 			}
3822 
3823 			if (to_journal) {
3824 				offset = f2fs_lookup_journal_in_cursum(journal,
3825 							SIT_JOURNAL, segno, 1);
3826 				f2fs_bug_on(sbi, offset < 0);
3827 				segno_in_journal(journal, offset) =
3828 							cpu_to_le32(segno);
3829 				seg_info_to_raw_sit(se,
3830 					&sit_in_journal(journal, offset));
3831 				check_block_count(sbi, segno,
3832 					&sit_in_journal(journal, offset));
3833 			} else {
3834 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3835 				seg_info_to_raw_sit(se,
3836 						&raw_sit->entries[sit_offset]);
3837 				check_block_count(sbi, segno,
3838 						&raw_sit->entries[sit_offset]);
3839 			}
3840 
3841 			__clear_bit(segno, bitmap);
3842 			sit_i->dirty_sentries--;
3843 			ses->entry_cnt--;
3844 		}
3845 
3846 		if (to_journal)
3847 			up_write(&curseg->journal_rwsem);
3848 		else
3849 			f2fs_put_page(page, 1);
3850 
3851 		f2fs_bug_on(sbi, ses->entry_cnt);
3852 		release_sit_entry_set(ses);
3853 	}
3854 
3855 	f2fs_bug_on(sbi, !list_empty(head));
3856 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3857 out:
3858 	if (cpc->reason & CP_DISCARD) {
3859 		__u64 trim_start = cpc->trim_start;
3860 
3861 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3862 			add_discard_addrs(sbi, cpc, false);
3863 
3864 		cpc->trim_start = trim_start;
3865 	}
3866 	up_write(&sit_i->sentry_lock);
3867 
3868 	set_prefree_as_free_segments(sbi);
3869 }
3870 
3871 static int build_sit_info(struct f2fs_sb_info *sbi)
3872 {
3873 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3874 	struct sit_info *sit_i;
3875 	unsigned int sit_segs, start;
3876 	char *src_bitmap;
3877 	unsigned int bitmap_size;
3878 
3879 	/* allocate memory for SIT information */
3880 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3881 	if (!sit_i)
3882 		return -ENOMEM;
3883 
3884 	SM_I(sbi)->sit_info = sit_i;
3885 
3886 	sit_i->sentries =
3887 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3888 					      MAIN_SEGS(sbi)),
3889 			      GFP_KERNEL);
3890 	if (!sit_i->sentries)
3891 		return -ENOMEM;
3892 
3893 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3894 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3895 								GFP_KERNEL);
3896 	if (!sit_i->dirty_sentries_bitmap)
3897 		return -ENOMEM;
3898 
3899 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3900 		sit_i->sentries[start].cur_valid_map
3901 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3902 		sit_i->sentries[start].ckpt_valid_map
3903 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3904 		if (!sit_i->sentries[start].cur_valid_map ||
3905 				!sit_i->sentries[start].ckpt_valid_map)
3906 			return -ENOMEM;
3907 
3908 #ifdef CONFIG_F2FS_CHECK_FS
3909 		sit_i->sentries[start].cur_valid_map_mir
3910 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3911 		if (!sit_i->sentries[start].cur_valid_map_mir)
3912 			return -ENOMEM;
3913 #endif
3914 
3915 		sit_i->sentries[start].discard_map
3916 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3917 							GFP_KERNEL);
3918 		if (!sit_i->sentries[start].discard_map)
3919 			return -ENOMEM;
3920 	}
3921 
3922 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3923 	if (!sit_i->tmp_map)
3924 		return -ENOMEM;
3925 
3926 	if (__is_large_section(sbi)) {
3927 		sit_i->sec_entries =
3928 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
3929 						      MAIN_SECS(sbi)),
3930 				      GFP_KERNEL);
3931 		if (!sit_i->sec_entries)
3932 			return -ENOMEM;
3933 	}
3934 
3935 	/* get information related with SIT */
3936 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3937 
3938 	/* setup SIT bitmap from ckeckpoint pack */
3939 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3940 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3941 
3942 	sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3943 	if (!sit_i->sit_bitmap)
3944 		return -ENOMEM;
3945 
3946 #ifdef CONFIG_F2FS_CHECK_FS
3947 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3948 	if (!sit_i->sit_bitmap_mir)
3949 		return -ENOMEM;
3950 #endif
3951 
3952 	/* init SIT information */
3953 	sit_i->s_ops = &default_salloc_ops;
3954 
3955 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3956 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3957 	sit_i->written_valid_blocks = 0;
3958 	sit_i->bitmap_size = bitmap_size;
3959 	sit_i->dirty_sentries = 0;
3960 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3961 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3962 	sit_i->mounted_time = ktime_get_real_seconds();
3963 	init_rwsem(&sit_i->sentry_lock);
3964 	return 0;
3965 }
3966 
3967 static int build_free_segmap(struct f2fs_sb_info *sbi)
3968 {
3969 	struct free_segmap_info *free_i;
3970 	unsigned int bitmap_size, sec_bitmap_size;
3971 
3972 	/* allocate memory for free segmap information */
3973 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3974 	if (!free_i)
3975 		return -ENOMEM;
3976 
3977 	SM_I(sbi)->free_info = free_i;
3978 
3979 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3980 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3981 	if (!free_i->free_segmap)
3982 		return -ENOMEM;
3983 
3984 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3985 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3986 	if (!free_i->free_secmap)
3987 		return -ENOMEM;
3988 
3989 	/* set all segments as dirty temporarily */
3990 	memset(free_i->free_segmap, 0xff, bitmap_size);
3991 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3992 
3993 	/* init free segmap information */
3994 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3995 	free_i->free_segments = 0;
3996 	free_i->free_sections = 0;
3997 	spin_lock_init(&free_i->segmap_lock);
3998 	return 0;
3999 }
4000 
4001 static int build_curseg(struct f2fs_sb_info *sbi)
4002 {
4003 	struct curseg_info *array;
4004 	int i;
4005 
4006 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4007 			     GFP_KERNEL);
4008 	if (!array)
4009 		return -ENOMEM;
4010 
4011 	SM_I(sbi)->curseg_array = array;
4012 
4013 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4014 		mutex_init(&array[i].curseg_mutex);
4015 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4016 		if (!array[i].sum_blk)
4017 			return -ENOMEM;
4018 		init_rwsem(&array[i].journal_rwsem);
4019 		array[i].journal = f2fs_kzalloc(sbi,
4020 				sizeof(struct f2fs_journal), GFP_KERNEL);
4021 		if (!array[i].journal)
4022 			return -ENOMEM;
4023 		array[i].segno = NULL_SEGNO;
4024 		array[i].next_blkoff = 0;
4025 	}
4026 	return restore_curseg_summaries(sbi);
4027 }
4028 
4029 static int build_sit_entries(struct f2fs_sb_info *sbi)
4030 {
4031 	struct sit_info *sit_i = SIT_I(sbi);
4032 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4033 	struct f2fs_journal *journal = curseg->journal;
4034 	struct seg_entry *se;
4035 	struct f2fs_sit_entry sit;
4036 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4037 	unsigned int i, start, end;
4038 	unsigned int readed, start_blk = 0;
4039 	int err = 0;
4040 	block_t total_node_blocks = 0;
4041 
4042 	do {
4043 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4044 							META_SIT, true);
4045 
4046 		start = start_blk * sit_i->sents_per_block;
4047 		end = (start_blk + readed) * sit_i->sents_per_block;
4048 
4049 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4050 			struct f2fs_sit_block *sit_blk;
4051 			struct page *page;
4052 
4053 			se = &sit_i->sentries[start];
4054 			page = get_current_sit_page(sbi, start);
4055 			if (IS_ERR(page))
4056 				return PTR_ERR(page);
4057 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4058 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4059 			f2fs_put_page(page, 1);
4060 
4061 			err = check_block_count(sbi, start, &sit);
4062 			if (err)
4063 				return err;
4064 			seg_info_from_raw_sit(se, &sit);
4065 			if (IS_NODESEG(se->type))
4066 				total_node_blocks += se->valid_blocks;
4067 
4068 			/* build discard map only one time */
4069 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4070 				memset(se->discard_map, 0xff,
4071 					SIT_VBLOCK_MAP_SIZE);
4072 			} else {
4073 				memcpy(se->discard_map,
4074 					se->cur_valid_map,
4075 					SIT_VBLOCK_MAP_SIZE);
4076 				sbi->discard_blks +=
4077 					sbi->blocks_per_seg -
4078 					se->valid_blocks;
4079 			}
4080 
4081 			if (__is_large_section(sbi))
4082 				get_sec_entry(sbi, start)->valid_blocks +=
4083 							se->valid_blocks;
4084 		}
4085 		start_blk += readed;
4086 	} while (start_blk < sit_blk_cnt);
4087 
4088 	down_read(&curseg->journal_rwsem);
4089 	for (i = 0; i < sits_in_cursum(journal); i++) {
4090 		unsigned int old_valid_blocks;
4091 
4092 		start = le32_to_cpu(segno_in_journal(journal, i));
4093 		if (start >= MAIN_SEGS(sbi)) {
4094 			f2fs_msg(sbi->sb, KERN_ERR,
4095 					"Wrong journal entry on segno %u",
4096 					start);
4097 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4098 			err = -EINVAL;
4099 			break;
4100 		}
4101 
4102 		se = &sit_i->sentries[start];
4103 		sit = sit_in_journal(journal, i);
4104 
4105 		old_valid_blocks = se->valid_blocks;
4106 		if (IS_NODESEG(se->type))
4107 			total_node_blocks -= old_valid_blocks;
4108 
4109 		err = check_block_count(sbi, start, &sit);
4110 		if (err)
4111 			break;
4112 		seg_info_from_raw_sit(se, &sit);
4113 		if (IS_NODESEG(se->type))
4114 			total_node_blocks += se->valid_blocks;
4115 
4116 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4117 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4118 		} else {
4119 			memcpy(se->discard_map, se->cur_valid_map,
4120 						SIT_VBLOCK_MAP_SIZE);
4121 			sbi->discard_blks += old_valid_blocks;
4122 			sbi->discard_blks -= se->valid_blocks;
4123 		}
4124 
4125 		if (__is_large_section(sbi)) {
4126 			get_sec_entry(sbi, start)->valid_blocks +=
4127 							se->valid_blocks;
4128 			get_sec_entry(sbi, start)->valid_blocks -=
4129 							old_valid_blocks;
4130 		}
4131 	}
4132 	up_read(&curseg->journal_rwsem);
4133 
4134 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4135 		f2fs_msg(sbi->sb, KERN_ERR,
4136 			"SIT is corrupted node# %u vs %u",
4137 			total_node_blocks, valid_node_count(sbi));
4138 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4139 		err = -EINVAL;
4140 	}
4141 
4142 	return err;
4143 }
4144 
4145 static void init_free_segmap(struct f2fs_sb_info *sbi)
4146 {
4147 	unsigned int start;
4148 	int type;
4149 
4150 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4151 		struct seg_entry *sentry = get_seg_entry(sbi, start);
4152 		if (!sentry->valid_blocks)
4153 			__set_free(sbi, start);
4154 		else
4155 			SIT_I(sbi)->written_valid_blocks +=
4156 						sentry->valid_blocks;
4157 	}
4158 
4159 	/* set use the current segments */
4160 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4161 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4162 		__set_test_and_inuse(sbi, curseg_t->segno);
4163 	}
4164 }
4165 
4166 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4167 {
4168 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4169 	struct free_segmap_info *free_i = FREE_I(sbi);
4170 	unsigned int segno = 0, offset = 0;
4171 	unsigned short valid_blocks;
4172 
4173 	while (1) {
4174 		/* find dirty segment based on free segmap */
4175 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4176 		if (segno >= MAIN_SEGS(sbi))
4177 			break;
4178 		offset = segno + 1;
4179 		valid_blocks = get_valid_blocks(sbi, segno, false);
4180 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4181 			continue;
4182 		if (valid_blocks > sbi->blocks_per_seg) {
4183 			f2fs_bug_on(sbi, 1);
4184 			continue;
4185 		}
4186 		mutex_lock(&dirty_i->seglist_lock);
4187 		__locate_dirty_segment(sbi, segno, DIRTY);
4188 		mutex_unlock(&dirty_i->seglist_lock);
4189 	}
4190 }
4191 
4192 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4193 {
4194 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4195 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4196 
4197 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4198 	if (!dirty_i->victim_secmap)
4199 		return -ENOMEM;
4200 	return 0;
4201 }
4202 
4203 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4204 {
4205 	struct dirty_seglist_info *dirty_i;
4206 	unsigned int bitmap_size, i;
4207 
4208 	/* allocate memory for dirty segments list information */
4209 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4210 								GFP_KERNEL);
4211 	if (!dirty_i)
4212 		return -ENOMEM;
4213 
4214 	SM_I(sbi)->dirty_info = dirty_i;
4215 	mutex_init(&dirty_i->seglist_lock);
4216 
4217 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4218 
4219 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4220 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4221 								GFP_KERNEL);
4222 		if (!dirty_i->dirty_segmap[i])
4223 			return -ENOMEM;
4224 	}
4225 
4226 	init_dirty_segmap(sbi);
4227 	return init_victim_secmap(sbi);
4228 }
4229 
4230 /*
4231  * Update min, max modified time for cost-benefit GC algorithm
4232  */
4233 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4234 {
4235 	struct sit_info *sit_i = SIT_I(sbi);
4236 	unsigned int segno;
4237 
4238 	down_write(&sit_i->sentry_lock);
4239 
4240 	sit_i->min_mtime = ULLONG_MAX;
4241 
4242 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4243 		unsigned int i;
4244 		unsigned long long mtime = 0;
4245 
4246 		for (i = 0; i < sbi->segs_per_sec; i++)
4247 			mtime += get_seg_entry(sbi, segno + i)->mtime;
4248 
4249 		mtime = div_u64(mtime, sbi->segs_per_sec);
4250 
4251 		if (sit_i->min_mtime > mtime)
4252 			sit_i->min_mtime = mtime;
4253 	}
4254 	sit_i->max_mtime = get_mtime(sbi, false);
4255 	up_write(&sit_i->sentry_lock);
4256 }
4257 
4258 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4259 {
4260 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4261 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4262 	struct f2fs_sm_info *sm_info;
4263 	int err;
4264 
4265 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4266 	if (!sm_info)
4267 		return -ENOMEM;
4268 
4269 	/* init sm info */
4270 	sbi->sm_info = sm_info;
4271 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4272 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4273 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4274 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4275 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4276 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4277 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4278 	sm_info->rec_prefree_segments = sm_info->main_segments *
4279 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4280 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4281 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4282 
4283 	if (!test_opt(sbi, LFS))
4284 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4285 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4286 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4287 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4288 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4289 	sm_info->min_ssr_sections = reserved_sections(sbi);
4290 
4291 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
4292 
4293 	init_rwsem(&sm_info->curseg_lock);
4294 
4295 	if (!f2fs_readonly(sbi->sb)) {
4296 		err = f2fs_create_flush_cmd_control(sbi);
4297 		if (err)
4298 			return err;
4299 	}
4300 
4301 	err = create_discard_cmd_control(sbi);
4302 	if (err)
4303 		return err;
4304 
4305 	err = build_sit_info(sbi);
4306 	if (err)
4307 		return err;
4308 	err = build_free_segmap(sbi);
4309 	if (err)
4310 		return err;
4311 	err = build_curseg(sbi);
4312 	if (err)
4313 		return err;
4314 
4315 	/* reinit free segmap based on SIT */
4316 	err = build_sit_entries(sbi);
4317 	if (err)
4318 		return err;
4319 
4320 	init_free_segmap(sbi);
4321 	err = build_dirty_segmap(sbi);
4322 	if (err)
4323 		return err;
4324 
4325 	init_min_max_mtime(sbi);
4326 	return 0;
4327 }
4328 
4329 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4330 		enum dirty_type dirty_type)
4331 {
4332 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4333 
4334 	mutex_lock(&dirty_i->seglist_lock);
4335 	kvfree(dirty_i->dirty_segmap[dirty_type]);
4336 	dirty_i->nr_dirty[dirty_type] = 0;
4337 	mutex_unlock(&dirty_i->seglist_lock);
4338 }
4339 
4340 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4341 {
4342 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4343 	kvfree(dirty_i->victim_secmap);
4344 }
4345 
4346 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4347 {
4348 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4349 	int i;
4350 
4351 	if (!dirty_i)
4352 		return;
4353 
4354 	/* discard pre-free/dirty segments list */
4355 	for (i = 0; i < NR_DIRTY_TYPE; i++)
4356 		discard_dirty_segmap(sbi, i);
4357 
4358 	destroy_victim_secmap(sbi);
4359 	SM_I(sbi)->dirty_info = NULL;
4360 	kvfree(dirty_i);
4361 }
4362 
4363 static void destroy_curseg(struct f2fs_sb_info *sbi)
4364 {
4365 	struct curseg_info *array = SM_I(sbi)->curseg_array;
4366 	int i;
4367 
4368 	if (!array)
4369 		return;
4370 	SM_I(sbi)->curseg_array = NULL;
4371 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4372 		kvfree(array[i].sum_blk);
4373 		kvfree(array[i].journal);
4374 	}
4375 	kvfree(array);
4376 }
4377 
4378 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4379 {
4380 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4381 	if (!free_i)
4382 		return;
4383 	SM_I(sbi)->free_info = NULL;
4384 	kvfree(free_i->free_segmap);
4385 	kvfree(free_i->free_secmap);
4386 	kvfree(free_i);
4387 }
4388 
4389 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4390 {
4391 	struct sit_info *sit_i = SIT_I(sbi);
4392 	unsigned int start;
4393 
4394 	if (!sit_i)
4395 		return;
4396 
4397 	if (sit_i->sentries) {
4398 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
4399 			kvfree(sit_i->sentries[start].cur_valid_map);
4400 #ifdef CONFIG_F2FS_CHECK_FS
4401 			kvfree(sit_i->sentries[start].cur_valid_map_mir);
4402 #endif
4403 			kvfree(sit_i->sentries[start].ckpt_valid_map);
4404 			kvfree(sit_i->sentries[start].discard_map);
4405 		}
4406 	}
4407 	kvfree(sit_i->tmp_map);
4408 
4409 	kvfree(sit_i->sentries);
4410 	kvfree(sit_i->sec_entries);
4411 	kvfree(sit_i->dirty_sentries_bitmap);
4412 
4413 	SM_I(sbi)->sit_info = NULL;
4414 	kvfree(sit_i->sit_bitmap);
4415 #ifdef CONFIG_F2FS_CHECK_FS
4416 	kvfree(sit_i->sit_bitmap_mir);
4417 #endif
4418 	kvfree(sit_i);
4419 }
4420 
4421 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4422 {
4423 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4424 
4425 	if (!sm_info)
4426 		return;
4427 	f2fs_destroy_flush_cmd_control(sbi, true);
4428 	destroy_discard_cmd_control(sbi);
4429 	destroy_dirty_segmap(sbi);
4430 	destroy_curseg(sbi);
4431 	destroy_free_segmap(sbi);
4432 	destroy_sit_info(sbi);
4433 	sbi->sm_info = NULL;
4434 	kvfree(sm_info);
4435 }
4436 
4437 int __init f2fs_create_segment_manager_caches(void)
4438 {
4439 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
4440 			sizeof(struct discard_entry));
4441 	if (!discard_entry_slab)
4442 		goto fail;
4443 
4444 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
4445 			sizeof(struct discard_cmd));
4446 	if (!discard_cmd_slab)
4447 		goto destroy_discard_entry;
4448 
4449 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
4450 			sizeof(struct sit_entry_set));
4451 	if (!sit_entry_set_slab)
4452 		goto destroy_discard_cmd;
4453 
4454 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
4455 			sizeof(struct inmem_pages));
4456 	if (!inmem_entry_slab)
4457 		goto destroy_sit_entry_set;
4458 	return 0;
4459 
4460 destroy_sit_entry_set:
4461 	kmem_cache_destroy(sit_entry_set_slab);
4462 destroy_discard_cmd:
4463 	kmem_cache_destroy(discard_cmd_slab);
4464 destroy_discard_entry:
4465 	kmem_cache_destroy(discard_entry_slab);
4466 fail:
4467 	return -ENOMEM;
4468 }
4469 
4470 void f2fs_destroy_segment_manager_caches(void)
4471 {
4472 	kmem_cache_destroy(sit_entry_set_slab);
4473 	kmem_cache_destroy(discard_cmd_slab);
4474 	kmem_cache_destroy(discard_entry_slab);
4475 	kmem_cache_destroy(inmem_entry_slab);
4476 }
4477