xref: /openbmc/linux/fs/f2fs/segment.c (revision eb9fe179)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	release_atomic_write_cnt(inode);
196 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
197 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
198 	clear_inode_flag(inode, FI_ATOMIC_FILE);
199 	stat_dec_atomic_inode(inode);
200 
201 	F2FS_I(inode)->atomic_write_task = NULL;
202 
203 	if (clean) {
204 		truncate_inode_pages_final(inode->i_mapping);
205 		f2fs_i_size_write(inode, fi->original_i_size);
206 		fi->original_i_size = 0;
207 	}
208 }
209 
210 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
211 			block_t new_addr, block_t *old_addr, bool recover)
212 {
213 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
214 	struct dnode_of_data dn;
215 	struct node_info ni;
216 	int err;
217 
218 retry:
219 	set_new_dnode(&dn, inode, NULL, NULL, 0);
220 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
221 	if (err) {
222 		if (err == -ENOMEM) {
223 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
224 			goto retry;
225 		}
226 		return err;
227 	}
228 
229 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
230 	if (err) {
231 		f2fs_put_dnode(&dn);
232 		return err;
233 	}
234 
235 	if (recover) {
236 		/* dn.data_blkaddr is always valid */
237 		if (!__is_valid_data_blkaddr(new_addr)) {
238 			if (new_addr == NULL_ADDR)
239 				dec_valid_block_count(sbi, inode, 1);
240 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
241 			f2fs_update_data_blkaddr(&dn, new_addr);
242 		} else {
243 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
244 				new_addr, ni.version, true, true);
245 		}
246 	} else {
247 		blkcnt_t count = 1;
248 
249 		err = inc_valid_block_count(sbi, inode, &count);
250 		if (err) {
251 			f2fs_put_dnode(&dn);
252 			return err;
253 		}
254 
255 		*old_addr = dn.data_blkaddr;
256 		f2fs_truncate_data_blocks_range(&dn, 1);
257 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
258 
259 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
260 					ni.version, true, false);
261 	}
262 
263 	f2fs_put_dnode(&dn);
264 
265 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
266 			index, old_addr ? *old_addr : 0, new_addr, recover);
267 	return 0;
268 }
269 
270 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
271 					bool revoke)
272 {
273 	struct revoke_entry *cur, *tmp;
274 	pgoff_t start_index = 0;
275 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
276 
277 	list_for_each_entry_safe(cur, tmp, head, list) {
278 		if (revoke) {
279 			__replace_atomic_write_block(inode, cur->index,
280 						cur->old_addr, NULL, true);
281 		} else if (truncate) {
282 			f2fs_truncate_hole(inode, start_index, cur->index);
283 			start_index = cur->index + 1;
284 		}
285 
286 		list_del(&cur->list);
287 		kmem_cache_free(revoke_entry_slab, cur);
288 	}
289 
290 	if (!revoke && truncate)
291 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
292 }
293 
294 static int __f2fs_commit_atomic_write(struct inode *inode)
295 {
296 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
297 	struct f2fs_inode_info *fi = F2FS_I(inode);
298 	struct inode *cow_inode = fi->cow_inode;
299 	struct revoke_entry *new;
300 	struct list_head revoke_list;
301 	block_t blkaddr;
302 	struct dnode_of_data dn;
303 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
304 	pgoff_t off = 0, blen, index;
305 	int ret = 0, i;
306 
307 	INIT_LIST_HEAD(&revoke_list);
308 
309 	while (len) {
310 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
311 
312 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
313 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
314 		if (ret && ret != -ENOENT) {
315 			goto out;
316 		} else if (ret == -ENOENT) {
317 			ret = 0;
318 			if (dn.max_level == 0)
319 				goto out;
320 			goto next;
321 		}
322 
323 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
324 				len);
325 		index = off;
326 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
327 			blkaddr = f2fs_data_blkaddr(&dn);
328 
329 			if (!__is_valid_data_blkaddr(blkaddr)) {
330 				continue;
331 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
332 					DATA_GENERIC_ENHANCE)) {
333 				f2fs_put_dnode(&dn);
334 				ret = -EFSCORRUPTED;
335 				f2fs_handle_error(sbi,
336 						ERROR_INVALID_BLKADDR);
337 				goto out;
338 			}
339 
340 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
341 							true, NULL);
342 
343 			ret = __replace_atomic_write_block(inode, index, blkaddr,
344 							&new->old_addr, false);
345 			if (ret) {
346 				f2fs_put_dnode(&dn);
347 				kmem_cache_free(revoke_entry_slab, new);
348 				goto out;
349 			}
350 
351 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
352 			new->index = index;
353 			list_add_tail(&new->list, &revoke_list);
354 		}
355 		f2fs_put_dnode(&dn);
356 next:
357 		off += blen;
358 		len -= blen;
359 	}
360 
361 out:
362 	if (ret) {
363 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
364 	} else {
365 		sbi->committed_atomic_block += fi->atomic_write_cnt;
366 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
367 	}
368 
369 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
370 
371 	return ret;
372 }
373 
374 int f2fs_commit_atomic_write(struct inode *inode)
375 {
376 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
377 	struct f2fs_inode_info *fi = F2FS_I(inode);
378 	int err;
379 
380 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
381 	if (err)
382 		return err;
383 
384 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
385 	f2fs_lock_op(sbi);
386 
387 	err = __f2fs_commit_atomic_write(inode);
388 
389 	f2fs_unlock_op(sbi);
390 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
391 
392 	return err;
393 }
394 
395 /*
396  * This function balances dirty node and dentry pages.
397  * In addition, it controls garbage collection.
398  */
399 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
400 {
401 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
402 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
403 
404 	/* balance_fs_bg is able to be pending */
405 	if (need && excess_cached_nats(sbi))
406 		f2fs_balance_fs_bg(sbi, false);
407 
408 	if (!f2fs_is_checkpoint_ready(sbi))
409 		return;
410 
411 	/*
412 	 * We should do GC or end up with checkpoint, if there are so many dirty
413 	 * dir/node pages without enough free segments.
414 	 */
415 	if (has_enough_free_secs(sbi, 0, 0))
416 		return;
417 
418 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
419 				sbi->gc_thread->f2fs_gc_task) {
420 		DEFINE_WAIT(wait);
421 
422 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
423 					TASK_UNINTERRUPTIBLE);
424 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
425 		io_schedule();
426 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
427 	} else {
428 		struct f2fs_gc_control gc_control = {
429 			.victim_segno = NULL_SEGNO,
430 			.init_gc_type = BG_GC,
431 			.no_bg_gc = true,
432 			.should_migrate_blocks = false,
433 			.err_gc_skipped = false,
434 			.nr_free_secs = 1 };
435 		f2fs_down_write(&sbi->gc_lock);
436 		f2fs_gc(sbi, &gc_control);
437 	}
438 }
439 
440 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
441 {
442 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
443 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
444 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
445 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
446 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
447 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
448 	unsigned int threshold = sbi->blocks_per_seg * factor *
449 					DEFAULT_DIRTY_THRESHOLD;
450 	unsigned int global_threshold = threshold * 3 / 2;
451 
452 	if (dents >= threshold || qdata >= threshold ||
453 		nodes >= threshold || meta >= threshold ||
454 		imeta >= threshold)
455 		return true;
456 	return dents + qdata + nodes + meta + imeta >  global_threshold;
457 }
458 
459 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
460 {
461 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
462 		return;
463 
464 	/* try to shrink extent cache when there is no enough memory */
465 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
466 		f2fs_shrink_read_extent_tree(sbi,
467 				READ_EXTENT_CACHE_SHRINK_NUMBER);
468 
469 	/* try to shrink age extent cache when there is no enough memory */
470 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
471 		f2fs_shrink_age_extent_tree(sbi,
472 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
473 
474 	/* check the # of cached NAT entries */
475 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
476 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
477 
478 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
479 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
480 	else
481 		f2fs_build_free_nids(sbi, false, false);
482 
483 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
484 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
485 		goto do_sync;
486 
487 	/* there is background inflight IO or foreground operation recently */
488 	if (is_inflight_io(sbi, REQ_TIME) ||
489 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
490 		return;
491 
492 	/* exceed periodical checkpoint timeout threshold */
493 	if (f2fs_time_over(sbi, CP_TIME))
494 		goto do_sync;
495 
496 	/* checkpoint is the only way to shrink partial cached entries */
497 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
498 		f2fs_available_free_memory(sbi, INO_ENTRIES))
499 		return;
500 
501 do_sync:
502 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
503 		struct blk_plug plug;
504 
505 		mutex_lock(&sbi->flush_lock);
506 
507 		blk_start_plug(&plug);
508 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
509 		blk_finish_plug(&plug);
510 
511 		mutex_unlock(&sbi->flush_lock);
512 	}
513 	f2fs_sync_fs(sbi->sb, 1);
514 	stat_inc_bg_cp_count(sbi->stat_info);
515 }
516 
517 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
518 				struct block_device *bdev)
519 {
520 	int ret = blkdev_issue_flush(bdev);
521 
522 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
523 				test_opt(sbi, FLUSH_MERGE), ret);
524 	if (!ret)
525 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
526 	return ret;
527 }
528 
529 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
530 {
531 	int ret = 0;
532 	int i;
533 
534 	if (!f2fs_is_multi_device(sbi))
535 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
536 
537 	for (i = 0; i < sbi->s_ndevs; i++) {
538 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
539 			continue;
540 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
541 		if (ret)
542 			break;
543 	}
544 	return ret;
545 }
546 
547 static int issue_flush_thread(void *data)
548 {
549 	struct f2fs_sb_info *sbi = data;
550 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
551 	wait_queue_head_t *q = &fcc->flush_wait_queue;
552 repeat:
553 	if (kthread_should_stop())
554 		return 0;
555 
556 	if (!llist_empty(&fcc->issue_list)) {
557 		struct flush_cmd *cmd, *next;
558 		int ret;
559 
560 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
561 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
562 
563 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
564 
565 		ret = submit_flush_wait(sbi, cmd->ino);
566 		atomic_inc(&fcc->issued_flush);
567 
568 		llist_for_each_entry_safe(cmd, next,
569 					  fcc->dispatch_list, llnode) {
570 			cmd->ret = ret;
571 			complete(&cmd->wait);
572 		}
573 		fcc->dispatch_list = NULL;
574 	}
575 
576 	wait_event_interruptible(*q,
577 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
578 	goto repeat;
579 }
580 
581 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
582 {
583 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
584 	struct flush_cmd cmd;
585 	int ret;
586 
587 	if (test_opt(sbi, NOBARRIER))
588 		return 0;
589 
590 	if (!test_opt(sbi, FLUSH_MERGE)) {
591 		atomic_inc(&fcc->queued_flush);
592 		ret = submit_flush_wait(sbi, ino);
593 		atomic_dec(&fcc->queued_flush);
594 		atomic_inc(&fcc->issued_flush);
595 		return ret;
596 	}
597 
598 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
599 	    f2fs_is_multi_device(sbi)) {
600 		ret = submit_flush_wait(sbi, ino);
601 		atomic_dec(&fcc->queued_flush);
602 
603 		atomic_inc(&fcc->issued_flush);
604 		return ret;
605 	}
606 
607 	cmd.ino = ino;
608 	init_completion(&cmd.wait);
609 
610 	llist_add(&cmd.llnode, &fcc->issue_list);
611 
612 	/*
613 	 * update issue_list before we wake up issue_flush thread, this
614 	 * smp_mb() pairs with another barrier in ___wait_event(), see
615 	 * more details in comments of waitqueue_active().
616 	 */
617 	smp_mb();
618 
619 	if (waitqueue_active(&fcc->flush_wait_queue))
620 		wake_up(&fcc->flush_wait_queue);
621 
622 	if (fcc->f2fs_issue_flush) {
623 		wait_for_completion(&cmd.wait);
624 		atomic_dec(&fcc->queued_flush);
625 	} else {
626 		struct llist_node *list;
627 
628 		list = llist_del_all(&fcc->issue_list);
629 		if (!list) {
630 			wait_for_completion(&cmd.wait);
631 			atomic_dec(&fcc->queued_flush);
632 		} else {
633 			struct flush_cmd *tmp, *next;
634 
635 			ret = submit_flush_wait(sbi, ino);
636 
637 			llist_for_each_entry_safe(tmp, next, list, llnode) {
638 				if (tmp == &cmd) {
639 					cmd.ret = ret;
640 					atomic_dec(&fcc->queued_flush);
641 					continue;
642 				}
643 				tmp->ret = ret;
644 				complete(&tmp->wait);
645 			}
646 		}
647 	}
648 
649 	return cmd.ret;
650 }
651 
652 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
653 {
654 	dev_t dev = sbi->sb->s_bdev->bd_dev;
655 	struct flush_cmd_control *fcc;
656 
657 	if (SM_I(sbi)->fcc_info) {
658 		fcc = SM_I(sbi)->fcc_info;
659 		if (fcc->f2fs_issue_flush)
660 			return 0;
661 		goto init_thread;
662 	}
663 
664 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
665 	if (!fcc)
666 		return -ENOMEM;
667 	atomic_set(&fcc->issued_flush, 0);
668 	atomic_set(&fcc->queued_flush, 0);
669 	init_waitqueue_head(&fcc->flush_wait_queue);
670 	init_llist_head(&fcc->issue_list);
671 	SM_I(sbi)->fcc_info = fcc;
672 	if (!test_opt(sbi, FLUSH_MERGE))
673 		return 0;
674 
675 init_thread:
676 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
677 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
678 	if (IS_ERR(fcc->f2fs_issue_flush)) {
679 		int err = PTR_ERR(fcc->f2fs_issue_flush);
680 
681 		fcc->f2fs_issue_flush = NULL;
682 		return err;
683 	}
684 
685 	return 0;
686 }
687 
688 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
689 {
690 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
691 
692 	if (fcc && fcc->f2fs_issue_flush) {
693 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
694 
695 		fcc->f2fs_issue_flush = NULL;
696 		kthread_stop(flush_thread);
697 	}
698 	if (free) {
699 		kfree(fcc);
700 		SM_I(sbi)->fcc_info = NULL;
701 	}
702 }
703 
704 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
705 {
706 	int ret = 0, i;
707 
708 	if (!f2fs_is_multi_device(sbi))
709 		return 0;
710 
711 	if (test_opt(sbi, NOBARRIER))
712 		return 0;
713 
714 	for (i = 1; i < sbi->s_ndevs; i++) {
715 		int count = DEFAULT_RETRY_IO_COUNT;
716 
717 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
718 			continue;
719 
720 		do {
721 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
722 			if (ret)
723 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
724 		} while (ret && --count);
725 
726 		if (ret) {
727 			f2fs_stop_checkpoint(sbi, false,
728 					STOP_CP_REASON_FLUSH_FAIL);
729 			break;
730 		}
731 
732 		spin_lock(&sbi->dev_lock);
733 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
734 		spin_unlock(&sbi->dev_lock);
735 	}
736 
737 	return ret;
738 }
739 
740 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
741 		enum dirty_type dirty_type)
742 {
743 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
744 
745 	/* need not be added */
746 	if (IS_CURSEG(sbi, segno))
747 		return;
748 
749 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
750 		dirty_i->nr_dirty[dirty_type]++;
751 
752 	if (dirty_type == DIRTY) {
753 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
754 		enum dirty_type t = sentry->type;
755 
756 		if (unlikely(t >= DIRTY)) {
757 			f2fs_bug_on(sbi, 1);
758 			return;
759 		}
760 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
761 			dirty_i->nr_dirty[t]++;
762 
763 		if (__is_large_section(sbi)) {
764 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
765 			block_t valid_blocks =
766 				get_valid_blocks(sbi, segno, true);
767 
768 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
769 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
770 
771 			if (!IS_CURSEC(sbi, secno))
772 				set_bit(secno, dirty_i->dirty_secmap);
773 		}
774 	}
775 }
776 
777 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
778 		enum dirty_type dirty_type)
779 {
780 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
781 	block_t valid_blocks;
782 
783 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
784 		dirty_i->nr_dirty[dirty_type]--;
785 
786 	if (dirty_type == DIRTY) {
787 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
788 		enum dirty_type t = sentry->type;
789 
790 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
791 			dirty_i->nr_dirty[t]--;
792 
793 		valid_blocks = get_valid_blocks(sbi, segno, true);
794 		if (valid_blocks == 0) {
795 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
796 						dirty_i->victim_secmap);
797 #ifdef CONFIG_F2FS_CHECK_FS
798 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
799 #endif
800 		}
801 		if (__is_large_section(sbi)) {
802 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
803 
804 			if (!valid_blocks ||
805 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
806 				clear_bit(secno, dirty_i->dirty_secmap);
807 				return;
808 			}
809 
810 			if (!IS_CURSEC(sbi, secno))
811 				set_bit(secno, dirty_i->dirty_secmap);
812 		}
813 	}
814 }
815 
816 /*
817  * Should not occur error such as -ENOMEM.
818  * Adding dirty entry into seglist is not critical operation.
819  * If a given segment is one of current working segments, it won't be added.
820  */
821 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
822 {
823 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
824 	unsigned short valid_blocks, ckpt_valid_blocks;
825 	unsigned int usable_blocks;
826 
827 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
828 		return;
829 
830 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
831 	mutex_lock(&dirty_i->seglist_lock);
832 
833 	valid_blocks = get_valid_blocks(sbi, segno, false);
834 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
835 
836 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
837 		ckpt_valid_blocks == usable_blocks)) {
838 		__locate_dirty_segment(sbi, segno, PRE);
839 		__remove_dirty_segment(sbi, segno, DIRTY);
840 	} else if (valid_blocks < usable_blocks) {
841 		__locate_dirty_segment(sbi, segno, DIRTY);
842 	} else {
843 		/* Recovery routine with SSR needs this */
844 		__remove_dirty_segment(sbi, segno, DIRTY);
845 	}
846 
847 	mutex_unlock(&dirty_i->seglist_lock);
848 }
849 
850 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
851 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
852 {
853 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
854 	unsigned int segno;
855 
856 	mutex_lock(&dirty_i->seglist_lock);
857 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
858 		if (get_valid_blocks(sbi, segno, false))
859 			continue;
860 		if (IS_CURSEG(sbi, segno))
861 			continue;
862 		__locate_dirty_segment(sbi, segno, PRE);
863 		__remove_dirty_segment(sbi, segno, DIRTY);
864 	}
865 	mutex_unlock(&dirty_i->seglist_lock);
866 }
867 
868 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
869 {
870 	int ovp_hole_segs =
871 		(overprovision_segments(sbi) - reserved_segments(sbi));
872 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
873 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
874 	block_t holes[2] = {0, 0};	/* DATA and NODE */
875 	block_t unusable;
876 	struct seg_entry *se;
877 	unsigned int segno;
878 
879 	mutex_lock(&dirty_i->seglist_lock);
880 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
881 		se = get_seg_entry(sbi, segno);
882 		if (IS_NODESEG(se->type))
883 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
884 							se->valid_blocks;
885 		else
886 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
887 							se->valid_blocks;
888 	}
889 	mutex_unlock(&dirty_i->seglist_lock);
890 
891 	unusable = max(holes[DATA], holes[NODE]);
892 	if (unusable > ovp_holes)
893 		return unusable - ovp_holes;
894 	return 0;
895 }
896 
897 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
898 {
899 	int ovp_hole_segs =
900 		(overprovision_segments(sbi) - reserved_segments(sbi));
901 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
902 		return -EAGAIN;
903 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
904 		dirty_segments(sbi) > ovp_hole_segs)
905 		return -EAGAIN;
906 	return 0;
907 }
908 
909 /* This is only used by SBI_CP_DISABLED */
910 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
911 {
912 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
913 	unsigned int segno = 0;
914 
915 	mutex_lock(&dirty_i->seglist_lock);
916 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
917 		if (get_valid_blocks(sbi, segno, false))
918 			continue;
919 		if (get_ckpt_valid_blocks(sbi, segno, false))
920 			continue;
921 		mutex_unlock(&dirty_i->seglist_lock);
922 		return segno;
923 	}
924 	mutex_unlock(&dirty_i->seglist_lock);
925 	return NULL_SEGNO;
926 }
927 
928 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
929 		struct block_device *bdev, block_t lstart,
930 		block_t start, block_t len)
931 {
932 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
933 	struct list_head *pend_list;
934 	struct discard_cmd *dc;
935 
936 	f2fs_bug_on(sbi, !len);
937 
938 	pend_list = &dcc->pend_list[plist_idx(len)];
939 
940 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
941 	INIT_LIST_HEAD(&dc->list);
942 	dc->bdev = bdev;
943 	dc->di.lstart = lstart;
944 	dc->di.start = start;
945 	dc->di.len = len;
946 	dc->ref = 0;
947 	dc->state = D_PREP;
948 	dc->queued = 0;
949 	dc->error = 0;
950 	init_completion(&dc->wait);
951 	list_add_tail(&dc->list, pend_list);
952 	spin_lock_init(&dc->lock);
953 	dc->bio_ref = 0;
954 	atomic_inc(&dcc->discard_cmd_cnt);
955 	dcc->undiscard_blks += len;
956 
957 	return dc;
958 }
959 
960 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
961 {
962 #ifdef CONFIG_F2FS_CHECK_FS
963 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
964 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
965 	struct discard_cmd *cur_dc, *next_dc;
966 
967 	while (cur) {
968 		next = rb_next(cur);
969 		if (!next)
970 			return true;
971 
972 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
973 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
974 
975 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
976 			f2fs_info(sbi, "broken discard_rbtree, "
977 				"cur(%u, %u) next(%u, %u)",
978 				cur_dc->di.lstart, cur_dc->di.len,
979 				next_dc->di.lstart, next_dc->di.len);
980 			return false;
981 		}
982 		cur = next;
983 	}
984 #endif
985 	return true;
986 }
987 
988 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
989 						block_t blkaddr)
990 {
991 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
992 	struct rb_node *node = dcc->root.rb_root.rb_node;
993 	struct discard_cmd *dc;
994 
995 	while (node) {
996 		dc = rb_entry(node, struct discard_cmd, rb_node);
997 
998 		if (blkaddr < dc->di.lstart)
999 			node = node->rb_left;
1000 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1001 			node = node->rb_right;
1002 		else
1003 			return dc;
1004 	}
1005 	return NULL;
1006 }
1007 
1008 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1009 				block_t blkaddr,
1010 				struct discard_cmd **prev_entry,
1011 				struct discard_cmd **next_entry,
1012 				struct rb_node ***insert_p,
1013 				struct rb_node **insert_parent)
1014 {
1015 	struct rb_node **pnode = &root->rb_root.rb_node;
1016 	struct rb_node *parent = NULL, *tmp_node;
1017 	struct discard_cmd *dc;
1018 
1019 	*insert_p = NULL;
1020 	*insert_parent = NULL;
1021 	*prev_entry = NULL;
1022 	*next_entry = NULL;
1023 
1024 	if (RB_EMPTY_ROOT(&root->rb_root))
1025 		return NULL;
1026 
1027 	while (*pnode) {
1028 		parent = *pnode;
1029 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1030 
1031 		if (blkaddr < dc->di.lstart)
1032 			pnode = &(*pnode)->rb_left;
1033 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1034 			pnode = &(*pnode)->rb_right;
1035 		else
1036 			goto lookup_neighbors;
1037 	}
1038 
1039 	*insert_p = pnode;
1040 	*insert_parent = parent;
1041 
1042 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1043 	tmp_node = parent;
1044 	if (parent && blkaddr > dc->di.lstart)
1045 		tmp_node = rb_next(parent);
1046 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1047 
1048 	tmp_node = parent;
1049 	if (parent && blkaddr < dc->di.lstart)
1050 		tmp_node = rb_prev(parent);
1051 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1052 	return NULL;
1053 
1054 lookup_neighbors:
1055 	/* lookup prev node for merging backward later */
1056 	tmp_node = rb_prev(&dc->rb_node);
1057 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1058 
1059 	/* lookup next node for merging frontward later */
1060 	tmp_node = rb_next(&dc->rb_node);
1061 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1062 	return dc;
1063 }
1064 
1065 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1066 							struct discard_cmd *dc)
1067 {
1068 	if (dc->state == D_DONE)
1069 		atomic_sub(dc->queued, &dcc->queued_discard);
1070 
1071 	list_del(&dc->list);
1072 	rb_erase_cached(&dc->rb_node, &dcc->root);
1073 	dcc->undiscard_blks -= dc->di.len;
1074 
1075 	kmem_cache_free(discard_cmd_slab, dc);
1076 
1077 	atomic_dec(&dcc->discard_cmd_cnt);
1078 }
1079 
1080 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1081 							struct discard_cmd *dc)
1082 {
1083 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1084 	unsigned long flags;
1085 
1086 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1087 
1088 	spin_lock_irqsave(&dc->lock, flags);
1089 	if (dc->bio_ref) {
1090 		spin_unlock_irqrestore(&dc->lock, flags);
1091 		return;
1092 	}
1093 	spin_unlock_irqrestore(&dc->lock, flags);
1094 
1095 	f2fs_bug_on(sbi, dc->ref);
1096 
1097 	if (dc->error == -EOPNOTSUPP)
1098 		dc->error = 0;
1099 
1100 	if (dc->error)
1101 		printk_ratelimited(
1102 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1103 			KERN_INFO, sbi->sb->s_id,
1104 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1105 	__detach_discard_cmd(dcc, dc);
1106 }
1107 
1108 static void f2fs_submit_discard_endio(struct bio *bio)
1109 {
1110 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1111 	unsigned long flags;
1112 
1113 	spin_lock_irqsave(&dc->lock, flags);
1114 	if (!dc->error)
1115 		dc->error = blk_status_to_errno(bio->bi_status);
1116 	dc->bio_ref--;
1117 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1118 		dc->state = D_DONE;
1119 		complete_all(&dc->wait);
1120 	}
1121 	spin_unlock_irqrestore(&dc->lock, flags);
1122 	bio_put(bio);
1123 }
1124 
1125 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1126 				block_t start, block_t end)
1127 {
1128 #ifdef CONFIG_F2FS_CHECK_FS
1129 	struct seg_entry *sentry;
1130 	unsigned int segno;
1131 	block_t blk = start;
1132 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1133 	unsigned long *map;
1134 
1135 	while (blk < end) {
1136 		segno = GET_SEGNO(sbi, blk);
1137 		sentry = get_seg_entry(sbi, segno);
1138 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1139 
1140 		if (end < START_BLOCK(sbi, segno + 1))
1141 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1142 		else
1143 			size = max_blocks;
1144 		map = (unsigned long *)(sentry->cur_valid_map);
1145 		offset = __find_rev_next_bit(map, size, offset);
1146 		f2fs_bug_on(sbi, offset != size);
1147 		blk = START_BLOCK(sbi, segno + 1);
1148 	}
1149 #endif
1150 }
1151 
1152 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1153 				struct discard_policy *dpolicy,
1154 				int discard_type, unsigned int granularity)
1155 {
1156 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1157 
1158 	/* common policy */
1159 	dpolicy->type = discard_type;
1160 	dpolicy->sync = true;
1161 	dpolicy->ordered = false;
1162 	dpolicy->granularity = granularity;
1163 
1164 	dpolicy->max_requests = dcc->max_discard_request;
1165 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1166 	dpolicy->timeout = false;
1167 
1168 	if (discard_type == DPOLICY_BG) {
1169 		dpolicy->min_interval = dcc->min_discard_issue_time;
1170 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1171 		dpolicy->max_interval = dcc->max_discard_issue_time;
1172 		dpolicy->io_aware = true;
1173 		dpolicy->sync = false;
1174 		dpolicy->ordered = true;
1175 		if (utilization(sbi) > dcc->discard_urgent_util) {
1176 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1177 			if (atomic_read(&dcc->discard_cmd_cnt))
1178 				dpolicy->max_interval =
1179 					dcc->min_discard_issue_time;
1180 		}
1181 	} else if (discard_type == DPOLICY_FORCE) {
1182 		dpolicy->min_interval = dcc->min_discard_issue_time;
1183 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1184 		dpolicy->max_interval = dcc->max_discard_issue_time;
1185 		dpolicy->io_aware = false;
1186 	} else if (discard_type == DPOLICY_FSTRIM) {
1187 		dpolicy->io_aware = false;
1188 	} else if (discard_type == DPOLICY_UMOUNT) {
1189 		dpolicy->io_aware = false;
1190 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1191 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1192 		dpolicy->timeout = true;
1193 	}
1194 }
1195 
1196 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1197 				struct block_device *bdev, block_t lstart,
1198 				block_t start, block_t len);
1199 
1200 #ifdef CONFIG_BLK_DEV_ZONED
1201 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1202 				   struct discard_cmd *dc, blk_opf_t flag,
1203 				   struct list_head *wait_list,
1204 				   unsigned int *issued)
1205 {
1206 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1207 	struct block_device *bdev = dc->bdev;
1208 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1209 	unsigned long flags;
1210 
1211 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1212 
1213 	spin_lock_irqsave(&dc->lock, flags);
1214 	dc->state = D_SUBMIT;
1215 	dc->bio_ref++;
1216 	spin_unlock_irqrestore(&dc->lock, flags);
1217 
1218 	if (issued)
1219 		(*issued)++;
1220 
1221 	atomic_inc(&dcc->queued_discard);
1222 	dc->queued++;
1223 	list_move_tail(&dc->list, wait_list);
1224 
1225 	/* sanity check on discard range */
1226 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1227 
1228 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1229 	bio->bi_private = dc;
1230 	bio->bi_end_io = f2fs_submit_discard_endio;
1231 	submit_bio(bio);
1232 
1233 	atomic_inc(&dcc->issued_discard);
1234 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1235 }
1236 #endif
1237 
1238 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1239 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1240 				struct discard_policy *dpolicy,
1241 				struct discard_cmd *dc, int *issued)
1242 {
1243 	struct block_device *bdev = dc->bdev;
1244 	unsigned int max_discard_blocks =
1245 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1246 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1247 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1248 					&(dcc->fstrim_list) : &(dcc->wait_list);
1249 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1250 	block_t lstart, start, len, total_len;
1251 	int err = 0;
1252 
1253 	if (dc->state != D_PREP)
1254 		return 0;
1255 
1256 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1257 		return 0;
1258 
1259 #ifdef CONFIG_BLK_DEV_ZONED
1260 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1261 		__submit_zone_reset_cmd(sbi, dc, flag, wait_list, issued);
1262 		return 0;
1263 	}
1264 #endif
1265 
1266 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1267 
1268 	lstart = dc->di.lstart;
1269 	start = dc->di.start;
1270 	len = dc->di.len;
1271 	total_len = len;
1272 
1273 	dc->di.len = 0;
1274 
1275 	while (total_len && *issued < dpolicy->max_requests && !err) {
1276 		struct bio *bio = NULL;
1277 		unsigned long flags;
1278 		bool last = true;
1279 
1280 		if (len > max_discard_blocks) {
1281 			len = max_discard_blocks;
1282 			last = false;
1283 		}
1284 
1285 		(*issued)++;
1286 		if (*issued == dpolicy->max_requests)
1287 			last = true;
1288 
1289 		dc->di.len += len;
1290 
1291 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1292 			err = -EIO;
1293 		} else {
1294 			err = __blkdev_issue_discard(bdev,
1295 					SECTOR_FROM_BLOCK(start),
1296 					SECTOR_FROM_BLOCK(len),
1297 					GFP_NOFS, &bio);
1298 		}
1299 		if (err) {
1300 			spin_lock_irqsave(&dc->lock, flags);
1301 			if (dc->state == D_PARTIAL)
1302 				dc->state = D_SUBMIT;
1303 			spin_unlock_irqrestore(&dc->lock, flags);
1304 
1305 			break;
1306 		}
1307 
1308 		f2fs_bug_on(sbi, !bio);
1309 
1310 		/*
1311 		 * should keep before submission to avoid D_DONE
1312 		 * right away
1313 		 */
1314 		spin_lock_irqsave(&dc->lock, flags);
1315 		if (last)
1316 			dc->state = D_SUBMIT;
1317 		else
1318 			dc->state = D_PARTIAL;
1319 		dc->bio_ref++;
1320 		spin_unlock_irqrestore(&dc->lock, flags);
1321 
1322 		atomic_inc(&dcc->queued_discard);
1323 		dc->queued++;
1324 		list_move_tail(&dc->list, wait_list);
1325 
1326 		/* sanity check on discard range */
1327 		__check_sit_bitmap(sbi, lstart, lstart + len);
1328 
1329 		bio->bi_private = dc;
1330 		bio->bi_end_io = f2fs_submit_discard_endio;
1331 		bio->bi_opf |= flag;
1332 		submit_bio(bio);
1333 
1334 		atomic_inc(&dcc->issued_discard);
1335 
1336 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1337 
1338 		lstart += len;
1339 		start += len;
1340 		total_len -= len;
1341 		len = total_len;
1342 	}
1343 
1344 	if (!err && len) {
1345 		dcc->undiscard_blks -= len;
1346 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1347 	}
1348 	return err;
1349 }
1350 
1351 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1352 				struct block_device *bdev, block_t lstart,
1353 				block_t start, block_t len)
1354 {
1355 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1356 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1357 	struct rb_node *parent = NULL;
1358 	struct discard_cmd *dc;
1359 	bool leftmost = true;
1360 
1361 	/* look up rb tree to find parent node */
1362 	while (*p) {
1363 		parent = *p;
1364 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1365 
1366 		if (lstart < dc->di.lstart) {
1367 			p = &(*p)->rb_left;
1368 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1369 			p = &(*p)->rb_right;
1370 			leftmost = false;
1371 		} else {
1372 			f2fs_bug_on(sbi, 1);
1373 		}
1374 	}
1375 
1376 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1377 
1378 	rb_link_node(&dc->rb_node, parent, p);
1379 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1380 }
1381 
1382 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1383 						struct discard_cmd *dc)
1384 {
1385 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1386 }
1387 
1388 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1389 				struct discard_cmd *dc, block_t blkaddr)
1390 {
1391 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1392 	struct discard_info di = dc->di;
1393 	bool modified = false;
1394 
1395 	if (dc->state == D_DONE || dc->di.len == 1) {
1396 		__remove_discard_cmd(sbi, dc);
1397 		return;
1398 	}
1399 
1400 	dcc->undiscard_blks -= di.len;
1401 
1402 	if (blkaddr > di.lstart) {
1403 		dc->di.len = blkaddr - dc->di.lstart;
1404 		dcc->undiscard_blks += dc->di.len;
1405 		__relocate_discard_cmd(dcc, dc);
1406 		modified = true;
1407 	}
1408 
1409 	if (blkaddr < di.lstart + di.len - 1) {
1410 		if (modified) {
1411 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1412 					di.start + blkaddr + 1 - di.lstart,
1413 					di.lstart + di.len - 1 - blkaddr);
1414 		} else {
1415 			dc->di.lstart++;
1416 			dc->di.len--;
1417 			dc->di.start++;
1418 			dcc->undiscard_blks += dc->di.len;
1419 			__relocate_discard_cmd(dcc, dc);
1420 		}
1421 	}
1422 }
1423 
1424 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1425 				struct block_device *bdev, block_t lstart,
1426 				block_t start, block_t len)
1427 {
1428 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1429 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1430 	struct discard_cmd *dc;
1431 	struct discard_info di = {0};
1432 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1433 	unsigned int max_discard_blocks =
1434 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1435 	block_t end = lstart + len;
1436 
1437 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1438 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1439 	if (dc)
1440 		prev_dc = dc;
1441 
1442 	if (!prev_dc) {
1443 		di.lstart = lstart;
1444 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1445 		di.len = min(di.len, len);
1446 		di.start = start;
1447 	}
1448 
1449 	while (1) {
1450 		struct rb_node *node;
1451 		bool merged = false;
1452 		struct discard_cmd *tdc = NULL;
1453 
1454 		if (prev_dc) {
1455 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1456 			if (di.lstart < lstart)
1457 				di.lstart = lstart;
1458 			if (di.lstart >= end)
1459 				break;
1460 
1461 			if (!next_dc || next_dc->di.lstart > end)
1462 				di.len = end - di.lstart;
1463 			else
1464 				di.len = next_dc->di.lstart - di.lstart;
1465 			di.start = start + di.lstart - lstart;
1466 		}
1467 
1468 		if (!di.len)
1469 			goto next;
1470 
1471 		if (prev_dc && prev_dc->state == D_PREP &&
1472 			prev_dc->bdev == bdev &&
1473 			__is_discard_back_mergeable(&di, &prev_dc->di,
1474 							max_discard_blocks)) {
1475 			prev_dc->di.len += di.len;
1476 			dcc->undiscard_blks += di.len;
1477 			__relocate_discard_cmd(dcc, prev_dc);
1478 			di = prev_dc->di;
1479 			tdc = prev_dc;
1480 			merged = true;
1481 		}
1482 
1483 		if (next_dc && next_dc->state == D_PREP &&
1484 			next_dc->bdev == bdev &&
1485 			__is_discard_front_mergeable(&di, &next_dc->di,
1486 							max_discard_blocks)) {
1487 			next_dc->di.lstart = di.lstart;
1488 			next_dc->di.len += di.len;
1489 			next_dc->di.start = di.start;
1490 			dcc->undiscard_blks += di.len;
1491 			__relocate_discard_cmd(dcc, next_dc);
1492 			if (tdc)
1493 				__remove_discard_cmd(sbi, tdc);
1494 			merged = true;
1495 		}
1496 
1497 		if (!merged)
1498 			__insert_discard_cmd(sbi, bdev,
1499 						di.lstart, di.start, di.len);
1500  next:
1501 		prev_dc = next_dc;
1502 		if (!prev_dc)
1503 			break;
1504 
1505 		node = rb_next(&prev_dc->rb_node);
1506 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1507 	}
1508 }
1509 
1510 #ifdef CONFIG_BLK_DEV_ZONED
1511 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1512 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1513 		block_t blklen)
1514 {
1515 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1516 
1517 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1518 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1519 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1520 }
1521 #endif
1522 
1523 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1524 		struct block_device *bdev, block_t blkstart, block_t blklen)
1525 {
1526 	block_t lblkstart = blkstart;
1527 
1528 	if (!f2fs_bdev_support_discard(bdev))
1529 		return;
1530 
1531 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1532 
1533 	if (f2fs_is_multi_device(sbi)) {
1534 		int devi = f2fs_target_device_index(sbi, blkstart);
1535 
1536 		blkstart -= FDEV(devi).start_blk;
1537 	}
1538 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1539 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1540 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1541 }
1542 
1543 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1544 		struct discard_policy *dpolicy, int *issued)
1545 {
1546 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1547 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1548 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1549 	struct discard_cmd *dc;
1550 	struct blk_plug plug;
1551 	bool io_interrupted = false;
1552 
1553 	mutex_lock(&dcc->cmd_lock);
1554 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1555 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1556 	if (!dc)
1557 		dc = next_dc;
1558 
1559 	blk_start_plug(&plug);
1560 
1561 	while (dc) {
1562 		struct rb_node *node;
1563 		int err = 0;
1564 
1565 		if (dc->state != D_PREP)
1566 			goto next;
1567 
1568 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1569 			io_interrupted = true;
1570 			break;
1571 		}
1572 
1573 		dcc->next_pos = dc->di.lstart + dc->di.len;
1574 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1575 
1576 		if (*issued >= dpolicy->max_requests)
1577 			break;
1578 next:
1579 		node = rb_next(&dc->rb_node);
1580 		if (err)
1581 			__remove_discard_cmd(sbi, dc);
1582 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1583 	}
1584 
1585 	blk_finish_plug(&plug);
1586 
1587 	if (!dc)
1588 		dcc->next_pos = 0;
1589 
1590 	mutex_unlock(&dcc->cmd_lock);
1591 
1592 	if (!(*issued) && io_interrupted)
1593 		*issued = -1;
1594 }
1595 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1596 					struct discard_policy *dpolicy);
1597 
1598 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1599 					struct discard_policy *dpolicy)
1600 {
1601 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1602 	struct list_head *pend_list;
1603 	struct discard_cmd *dc, *tmp;
1604 	struct blk_plug plug;
1605 	int i, issued;
1606 	bool io_interrupted = false;
1607 
1608 	if (dpolicy->timeout)
1609 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1610 
1611 retry:
1612 	issued = 0;
1613 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1614 		if (dpolicy->timeout &&
1615 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1616 			break;
1617 
1618 		if (i + 1 < dpolicy->granularity)
1619 			break;
1620 
1621 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1622 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1623 			return issued;
1624 		}
1625 
1626 		pend_list = &dcc->pend_list[i];
1627 
1628 		mutex_lock(&dcc->cmd_lock);
1629 		if (list_empty(pend_list))
1630 			goto next;
1631 		if (unlikely(dcc->rbtree_check))
1632 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1633 		blk_start_plug(&plug);
1634 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1635 			f2fs_bug_on(sbi, dc->state != D_PREP);
1636 
1637 			if (dpolicy->timeout &&
1638 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1639 				break;
1640 
1641 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1642 						!is_idle(sbi, DISCARD_TIME)) {
1643 				io_interrupted = true;
1644 				break;
1645 			}
1646 
1647 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1648 
1649 			if (issued >= dpolicy->max_requests)
1650 				break;
1651 		}
1652 		blk_finish_plug(&plug);
1653 next:
1654 		mutex_unlock(&dcc->cmd_lock);
1655 
1656 		if (issued >= dpolicy->max_requests || io_interrupted)
1657 			break;
1658 	}
1659 
1660 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1661 		__wait_all_discard_cmd(sbi, dpolicy);
1662 		goto retry;
1663 	}
1664 
1665 	if (!issued && io_interrupted)
1666 		issued = -1;
1667 
1668 	return issued;
1669 }
1670 
1671 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1672 {
1673 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1674 	struct list_head *pend_list;
1675 	struct discard_cmd *dc, *tmp;
1676 	int i;
1677 	bool dropped = false;
1678 
1679 	mutex_lock(&dcc->cmd_lock);
1680 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1681 		pend_list = &dcc->pend_list[i];
1682 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1683 			f2fs_bug_on(sbi, dc->state != D_PREP);
1684 			__remove_discard_cmd(sbi, dc);
1685 			dropped = true;
1686 		}
1687 	}
1688 	mutex_unlock(&dcc->cmd_lock);
1689 
1690 	return dropped;
1691 }
1692 
1693 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1694 {
1695 	__drop_discard_cmd(sbi);
1696 }
1697 
1698 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1699 							struct discard_cmd *dc)
1700 {
1701 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1702 	unsigned int len = 0;
1703 
1704 	wait_for_completion_io(&dc->wait);
1705 	mutex_lock(&dcc->cmd_lock);
1706 	f2fs_bug_on(sbi, dc->state != D_DONE);
1707 	dc->ref--;
1708 	if (!dc->ref) {
1709 		if (!dc->error)
1710 			len = dc->di.len;
1711 		__remove_discard_cmd(sbi, dc);
1712 	}
1713 	mutex_unlock(&dcc->cmd_lock);
1714 
1715 	return len;
1716 }
1717 
1718 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1719 						struct discard_policy *dpolicy,
1720 						block_t start, block_t end)
1721 {
1722 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1723 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1724 					&(dcc->fstrim_list) : &(dcc->wait_list);
1725 	struct discard_cmd *dc = NULL, *iter, *tmp;
1726 	unsigned int trimmed = 0;
1727 
1728 next:
1729 	dc = NULL;
1730 
1731 	mutex_lock(&dcc->cmd_lock);
1732 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1733 		if (iter->di.lstart + iter->di.len <= start ||
1734 					end <= iter->di.lstart)
1735 			continue;
1736 		if (iter->di.len < dpolicy->granularity)
1737 			continue;
1738 		if (iter->state == D_DONE && !iter->ref) {
1739 			wait_for_completion_io(&iter->wait);
1740 			if (!iter->error)
1741 				trimmed += iter->di.len;
1742 			__remove_discard_cmd(sbi, iter);
1743 		} else {
1744 			iter->ref++;
1745 			dc = iter;
1746 			break;
1747 		}
1748 	}
1749 	mutex_unlock(&dcc->cmd_lock);
1750 
1751 	if (dc) {
1752 		trimmed += __wait_one_discard_bio(sbi, dc);
1753 		goto next;
1754 	}
1755 
1756 	return trimmed;
1757 }
1758 
1759 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1760 						struct discard_policy *dpolicy)
1761 {
1762 	struct discard_policy dp;
1763 	unsigned int discard_blks;
1764 
1765 	if (dpolicy)
1766 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1767 
1768 	/* wait all */
1769 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1770 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1771 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1772 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1773 
1774 	return discard_blks;
1775 }
1776 
1777 /* This should be covered by global mutex, &sit_i->sentry_lock */
1778 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1779 {
1780 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1781 	struct discard_cmd *dc;
1782 	bool need_wait = false;
1783 
1784 	mutex_lock(&dcc->cmd_lock);
1785 	dc = __lookup_discard_cmd(sbi, blkaddr);
1786 #ifdef CONFIG_BLK_DEV_ZONED
1787 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1788 		/* force submit zone reset */
1789 		if (dc->state == D_PREP)
1790 			__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1791 						&dcc->wait_list, NULL);
1792 		dc->ref++;
1793 		mutex_unlock(&dcc->cmd_lock);
1794 		/* wait zone reset */
1795 		__wait_one_discard_bio(sbi, dc);
1796 		return;
1797 	}
1798 #endif
1799 	if (dc) {
1800 		if (dc->state == D_PREP) {
1801 			__punch_discard_cmd(sbi, dc, blkaddr);
1802 		} else {
1803 			dc->ref++;
1804 			need_wait = true;
1805 		}
1806 	}
1807 	mutex_unlock(&dcc->cmd_lock);
1808 
1809 	if (need_wait)
1810 		__wait_one_discard_bio(sbi, dc);
1811 }
1812 
1813 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1814 {
1815 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1816 
1817 	if (dcc && dcc->f2fs_issue_discard) {
1818 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1819 
1820 		dcc->f2fs_issue_discard = NULL;
1821 		kthread_stop(discard_thread);
1822 	}
1823 }
1824 
1825 /**
1826  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1827  * @sbi: the f2fs_sb_info data for discard cmd to issue
1828  *
1829  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1830  *
1831  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1832  */
1833 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1834 {
1835 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1836 	struct discard_policy dpolicy;
1837 	bool dropped;
1838 
1839 	if (!atomic_read(&dcc->discard_cmd_cnt))
1840 		return true;
1841 
1842 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1843 					dcc->discard_granularity);
1844 	__issue_discard_cmd(sbi, &dpolicy);
1845 	dropped = __drop_discard_cmd(sbi);
1846 
1847 	/* just to make sure there is no pending discard commands */
1848 	__wait_all_discard_cmd(sbi, NULL);
1849 
1850 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1851 	return !dropped;
1852 }
1853 
1854 static int issue_discard_thread(void *data)
1855 {
1856 	struct f2fs_sb_info *sbi = data;
1857 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1858 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1859 	struct discard_policy dpolicy;
1860 	unsigned int wait_ms = dcc->min_discard_issue_time;
1861 	int issued;
1862 
1863 	set_freezable();
1864 
1865 	do {
1866 		wait_event_interruptible_timeout(*q,
1867 				kthread_should_stop() || freezing(current) ||
1868 				dcc->discard_wake,
1869 				msecs_to_jiffies(wait_ms));
1870 
1871 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1872 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1873 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1874 						MIN_DISCARD_GRANULARITY);
1875 		else
1876 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1877 						dcc->discard_granularity);
1878 
1879 		if (dcc->discard_wake)
1880 			dcc->discard_wake = false;
1881 
1882 		/* clean up pending candidates before going to sleep */
1883 		if (atomic_read(&dcc->queued_discard))
1884 			__wait_all_discard_cmd(sbi, NULL);
1885 
1886 		if (try_to_freeze())
1887 			continue;
1888 		if (f2fs_readonly(sbi->sb))
1889 			continue;
1890 		if (kthread_should_stop())
1891 			return 0;
1892 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1893 			!atomic_read(&dcc->discard_cmd_cnt)) {
1894 			wait_ms = dpolicy.max_interval;
1895 			continue;
1896 		}
1897 
1898 		sb_start_intwrite(sbi->sb);
1899 
1900 		issued = __issue_discard_cmd(sbi, &dpolicy);
1901 		if (issued > 0) {
1902 			__wait_all_discard_cmd(sbi, &dpolicy);
1903 			wait_ms = dpolicy.min_interval;
1904 		} else if (issued == -1) {
1905 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1906 			if (!wait_ms)
1907 				wait_ms = dpolicy.mid_interval;
1908 		} else {
1909 			wait_ms = dpolicy.max_interval;
1910 		}
1911 		if (!atomic_read(&dcc->discard_cmd_cnt))
1912 			wait_ms = dpolicy.max_interval;
1913 
1914 		sb_end_intwrite(sbi->sb);
1915 
1916 	} while (!kthread_should_stop());
1917 	return 0;
1918 }
1919 
1920 #ifdef CONFIG_BLK_DEV_ZONED
1921 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1922 		struct block_device *bdev, block_t blkstart, block_t blklen)
1923 {
1924 	sector_t sector, nr_sects;
1925 	block_t lblkstart = blkstart;
1926 	int devi = 0;
1927 	u64 remainder = 0;
1928 
1929 	if (f2fs_is_multi_device(sbi)) {
1930 		devi = f2fs_target_device_index(sbi, blkstart);
1931 		if (blkstart < FDEV(devi).start_blk ||
1932 		    blkstart > FDEV(devi).end_blk) {
1933 			f2fs_err(sbi, "Invalid block %x", blkstart);
1934 			return -EIO;
1935 		}
1936 		blkstart -= FDEV(devi).start_blk;
1937 	}
1938 
1939 	/* For sequential zones, reset the zone write pointer */
1940 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1941 		sector = SECTOR_FROM_BLOCK(blkstart);
1942 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1943 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1944 
1945 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1946 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1947 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1948 				 blkstart, blklen);
1949 			return -EIO;
1950 		}
1951 
1952 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1953 			trace_f2fs_issue_reset_zone(bdev, blkstart);
1954 			return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1955 						sector, nr_sects, GFP_NOFS);
1956 		}
1957 
1958 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1959 		return 0;
1960 	}
1961 
1962 	/* For conventional zones, use regular discard if supported */
1963 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1964 	return 0;
1965 }
1966 #endif
1967 
1968 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1969 		struct block_device *bdev, block_t blkstart, block_t blklen)
1970 {
1971 #ifdef CONFIG_BLK_DEV_ZONED
1972 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1973 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1974 #endif
1975 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1976 	return 0;
1977 }
1978 
1979 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1980 				block_t blkstart, block_t blklen)
1981 {
1982 	sector_t start = blkstart, len = 0;
1983 	struct block_device *bdev;
1984 	struct seg_entry *se;
1985 	unsigned int offset;
1986 	block_t i;
1987 	int err = 0;
1988 
1989 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1990 
1991 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1992 		if (i != start) {
1993 			struct block_device *bdev2 =
1994 				f2fs_target_device(sbi, i, NULL);
1995 
1996 			if (bdev2 != bdev) {
1997 				err = __issue_discard_async(sbi, bdev,
1998 						start, len);
1999 				if (err)
2000 					return err;
2001 				bdev = bdev2;
2002 				start = i;
2003 				len = 0;
2004 			}
2005 		}
2006 
2007 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2008 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2009 
2010 		if (f2fs_block_unit_discard(sbi) &&
2011 				!f2fs_test_and_set_bit(offset, se->discard_map))
2012 			sbi->discard_blks--;
2013 	}
2014 
2015 	if (len)
2016 		err = __issue_discard_async(sbi, bdev, start, len);
2017 	return err;
2018 }
2019 
2020 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2021 							bool check_only)
2022 {
2023 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2024 	int max_blocks = sbi->blocks_per_seg;
2025 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2026 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2027 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2028 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2029 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2030 	unsigned int start = 0, end = -1;
2031 	bool force = (cpc->reason & CP_DISCARD);
2032 	struct discard_entry *de = NULL;
2033 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2034 	int i;
2035 
2036 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
2037 			!f2fs_block_unit_discard(sbi))
2038 		return false;
2039 
2040 	if (!force) {
2041 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2042 			SM_I(sbi)->dcc_info->nr_discards >=
2043 				SM_I(sbi)->dcc_info->max_discards)
2044 			return false;
2045 	}
2046 
2047 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2048 	for (i = 0; i < entries; i++)
2049 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2050 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2051 
2052 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2053 				SM_I(sbi)->dcc_info->max_discards) {
2054 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
2055 		if (start >= max_blocks)
2056 			break;
2057 
2058 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
2059 		if (force && start && end != max_blocks
2060 					&& (end - start) < cpc->trim_minlen)
2061 			continue;
2062 
2063 		if (check_only)
2064 			return true;
2065 
2066 		if (!de) {
2067 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2068 						GFP_F2FS_ZERO, true, NULL);
2069 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2070 			list_add_tail(&de->list, head);
2071 		}
2072 
2073 		for (i = start; i < end; i++)
2074 			__set_bit_le(i, (void *)de->discard_map);
2075 
2076 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2077 	}
2078 	return false;
2079 }
2080 
2081 static void release_discard_addr(struct discard_entry *entry)
2082 {
2083 	list_del(&entry->list);
2084 	kmem_cache_free(discard_entry_slab, entry);
2085 }
2086 
2087 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2088 {
2089 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2090 	struct discard_entry *entry, *this;
2091 
2092 	/* drop caches */
2093 	list_for_each_entry_safe(entry, this, head, list)
2094 		release_discard_addr(entry);
2095 }
2096 
2097 /*
2098  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2099  */
2100 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2101 {
2102 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2103 	unsigned int segno;
2104 
2105 	mutex_lock(&dirty_i->seglist_lock);
2106 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2107 		__set_test_and_free(sbi, segno, false);
2108 	mutex_unlock(&dirty_i->seglist_lock);
2109 }
2110 
2111 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2112 						struct cp_control *cpc)
2113 {
2114 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2115 	struct list_head *head = &dcc->entry_list;
2116 	struct discard_entry *entry, *this;
2117 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2118 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2119 	unsigned int start = 0, end = -1;
2120 	unsigned int secno, start_segno;
2121 	bool force = (cpc->reason & CP_DISCARD);
2122 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2123 						DISCARD_UNIT_SECTION;
2124 
2125 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2126 		section_alignment = true;
2127 
2128 	mutex_lock(&dirty_i->seglist_lock);
2129 
2130 	while (1) {
2131 		int i;
2132 
2133 		if (section_alignment && end != -1)
2134 			end--;
2135 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2136 		if (start >= MAIN_SEGS(sbi))
2137 			break;
2138 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2139 								start + 1);
2140 
2141 		if (section_alignment) {
2142 			start = rounddown(start, sbi->segs_per_sec);
2143 			end = roundup(end, sbi->segs_per_sec);
2144 		}
2145 
2146 		for (i = start; i < end; i++) {
2147 			if (test_and_clear_bit(i, prefree_map))
2148 				dirty_i->nr_dirty[PRE]--;
2149 		}
2150 
2151 		if (!f2fs_realtime_discard_enable(sbi))
2152 			continue;
2153 
2154 		if (force && start >= cpc->trim_start &&
2155 					(end - 1) <= cpc->trim_end)
2156 			continue;
2157 
2158 		/* Should cover 2MB zoned device for zone-based reset */
2159 		if (!f2fs_sb_has_blkzoned(sbi) &&
2160 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2161 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2162 				(end - start) << sbi->log_blocks_per_seg);
2163 			continue;
2164 		}
2165 next:
2166 		secno = GET_SEC_FROM_SEG(sbi, start);
2167 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2168 		if (!IS_CURSEC(sbi, secno) &&
2169 			!get_valid_blocks(sbi, start, true))
2170 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2171 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2172 
2173 		start = start_segno + sbi->segs_per_sec;
2174 		if (start < end)
2175 			goto next;
2176 		else
2177 			end = start - 1;
2178 	}
2179 	mutex_unlock(&dirty_i->seglist_lock);
2180 
2181 	if (!f2fs_block_unit_discard(sbi))
2182 		goto wakeup;
2183 
2184 	/* send small discards */
2185 	list_for_each_entry_safe(entry, this, head, list) {
2186 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2187 		bool is_valid = test_bit_le(0, entry->discard_map);
2188 
2189 find_next:
2190 		if (is_valid) {
2191 			next_pos = find_next_zero_bit_le(entry->discard_map,
2192 					sbi->blocks_per_seg, cur_pos);
2193 			len = next_pos - cur_pos;
2194 
2195 			if (f2fs_sb_has_blkzoned(sbi) ||
2196 					!force || len < cpc->trim_minlen)
2197 				goto skip;
2198 
2199 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2200 									len);
2201 			total_len += len;
2202 		} else {
2203 			next_pos = find_next_bit_le(entry->discard_map,
2204 					sbi->blocks_per_seg, cur_pos);
2205 		}
2206 skip:
2207 		cur_pos = next_pos;
2208 		is_valid = !is_valid;
2209 
2210 		if (cur_pos < sbi->blocks_per_seg)
2211 			goto find_next;
2212 
2213 		release_discard_addr(entry);
2214 		dcc->nr_discards -= total_len;
2215 	}
2216 
2217 wakeup:
2218 	wake_up_discard_thread(sbi, false);
2219 }
2220 
2221 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2222 {
2223 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2224 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2225 	int err = 0;
2226 
2227 	if (!f2fs_realtime_discard_enable(sbi))
2228 		return 0;
2229 
2230 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2231 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2232 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2233 		err = PTR_ERR(dcc->f2fs_issue_discard);
2234 		dcc->f2fs_issue_discard = NULL;
2235 	}
2236 
2237 	return err;
2238 }
2239 
2240 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2241 {
2242 	struct discard_cmd_control *dcc;
2243 	int err = 0, i;
2244 
2245 	if (SM_I(sbi)->dcc_info) {
2246 		dcc = SM_I(sbi)->dcc_info;
2247 		goto init_thread;
2248 	}
2249 
2250 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2251 	if (!dcc)
2252 		return -ENOMEM;
2253 
2254 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2255 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2256 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2257 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2258 		dcc->discard_granularity = sbi->blocks_per_seg;
2259 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2260 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2261 
2262 	INIT_LIST_HEAD(&dcc->entry_list);
2263 	for (i = 0; i < MAX_PLIST_NUM; i++)
2264 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2265 	INIT_LIST_HEAD(&dcc->wait_list);
2266 	INIT_LIST_HEAD(&dcc->fstrim_list);
2267 	mutex_init(&dcc->cmd_lock);
2268 	atomic_set(&dcc->issued_discard, 0);
2269 	atomic_set(&dcc->queued_discard, 0);
2270 	atomic_set(&dcc->discard_cmd_cnt, 0);
2271 	dcc->nr_discards = 0;
2272 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2273 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2274 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2275 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2276 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2277 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2278 	dcc->undiscard_blks = 0;
2279 	dcc->next_pos = 0;
2280 	dcc->root = RB_ROOT_CACHED;
2281 	dcc->rbtree_check = false;
2282 
2283 	init_waitqueue_head(&dcc->discard_wait_queue);
2284 	SM_I(sbi)->dcc_info = dcc;
2285 init_thread:
2286 	err = f2fs_start_discard_thread(sbi);
2287 	if (err) {
2288 		kfree(dcc);
2289 		SM_I(sbi)->dcc_info = NULL;
2290 	}
2291 
2292 	return err;
2293 }
2294 
2295 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2296 {
2297 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2298 
2299 	if (!dcc)
2300 		return;
2301 
2302 	f2fs_stop_discard_thread(sbi);
2303 
2304 	/*
2305 	 * Recovery can cache discard commands, so in error path of
2306 	 * fill_super(), it needs to give a chance to handle them.
2307 	 */
2308 	f2fs_issue_discard_timeout(sbi);
2309 
2310 	kfree(dcc);
2311 	SM_I(sbi)->dcc_info = NULL;
2312 }
2313 
2314 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2315 {
2316 	struct sit_info *sit_i = SIT_I(sbi);
2317 
2318 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2319 		sit_i->dirty_sentries++;
2320 		return false;
2321 	}
2322 
2323 	return true;
2324 }
2325 
2326 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2327 					unsigned int segno, int modified)
2328 {
2329 	struct seg_entry *se = get_seg_entry(sbi, segno);
2330 
2331 	se->type = type;
2332 	if (modified)
2333 		__mark_sit_entry_dirty(sbi, segno);
2334 }
2335 
2336 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2337 								block_t blkaddr)
2338 {
2339 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2340 
2341 	if (segno == NULL_SEGNO)
2342 		return 0;
2343 	return get_seg_entry(sbi, segno)->mtime;
2344 }
2345 
2346 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2347 						unsigned long long old_mtime)
2348 {
2349 	struct seg_entry *se;
2350 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2351 	unsigned long long ctime = get_mtime(sbi, false);
2352 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2353 
2354 	if (segno == NULL_SEGNO)
2355 		return;
2356 
2357 	se = get_seg_entry(sbi, segno);
2358 
2359 	if (!se->mtime)
2360 		se->mtime = mtime;
2361 	else
2362 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2363 						se->valid_blocks + 1);
2364 
2365 	if (ctime > SIT_I(sbi)->max_mtime)
2366 		SIT_I(sbi)->max_mtime = ctime;
2367 }
2368 
2369 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2370 {
2371 	struct seg_entry *se;
2372 	unsigned int segno, offset;
2373 	long int new_vblocks;
2374 	bool exist;
2375 #ifdef CONFIG_F2FS_CHECK_FS
2376 	bool mir_exist;
2377 #endif
2378 
2379 	segno = GET_SEGNO(sbi, blkaddr);
2380 
2381 	se = get_seg_entry(sbi, segno);
2382 	new_vblocks = se->valid_blocks + del;
2383 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2384 
2385 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2386 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2387 
2388 	se->valid_blocks = new_vblocks;
2389 
2390 	/* Update valid block bitmap */
2391 	if (del > 0) {
2392 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2393 #ifdef CONFIG_F2FS_CHECK_FS
2394 		mir_exist = f2fs_test_and_set_bit(offset,
2395 						se->cur_valid_map_mir);
2396 		if (unlikely(exist != mir_exist)) {
2397 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2398 				 blkaddr, exist);
2399 			f2fs_bug_on(sbi, 1);
2400 		}
2401 #endif
2402 		if (unlikely(exist)) {
2403 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2404 				 blkaddr);
2405 			f2fs_bug_on(sbi, 1);
2406 			se->valid_blocks--;
2407 			del = 0;
2408 		}
2409 
2410 		if (f2fs_block_unit_discard(sbi) &&
2411 				!f2fs_test_and_set_bit(offset, se->discard_map))
2412 			sbi->discard_blks--;
2413 
2414 		/*
2415 		 * SSR should never reuse block which is checkpointed
2416 		 * or newly invalidated.
2417 		 */
2418 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2419 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2420 				se->ckpt_valid_blocks++;
2421 		}
2422 	} else {
2423 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2424 #ifdef CONFIG_F2FS_CHECK_FS
2425 		mir_exist = f2fs_test_and_clear_bit(offset,
2426 						se->cur_valid_map_mir);
2427 		if (unlikely(exist != mir_exist)) {
2428 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2429 				 blkaddr, exist);
2430 			f2fs_bug_on(sbi, 1);
2431 		}
2432 #endif
2433 		if (unlikely(!exist)) {
2434 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2435 				 blkaddr);
2436 			f2fs_bug_on(sbi, 1);
2437 			se->valid_blocks++;
2438 			del = 0;
2439 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2440 			/*
2441 			 * If checkpoints are off, we must not reuse data that
2442 			 * was used in the previous checkpoint. If it was used
2443 			 * before, we must track that to know how much space we
2444 			 * really have.
2445 			 */
2446 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2447 				spin_lock(&sbi->stat_lock);
2448 				sbi->unusable_block_count++;
2449 				spin_unlock(&sbi->stat_lock);
2450 			}
2451 		}
2452 
2453 		if (f2fs_block_unit_discard(sbi) &&
2454 			f2fs_test_and_clear_bit(offset, se->discard_map))
2455 			sbi->discard_blks++;
2456 	}
2457 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2458 		se->ckpt_valid_blocks += del;
2459 
2460 	__mark_sit_entry_dirty(sbi, segno);
2461 
2462 	/* update total number of valid blocks to be written in ckpt area */
2463 	SIT_I(sbi)->written_valid_blocks += del;
2464 
2465 	if (__is_large_section(sbi))
2466 		get_sec_entry(sbi, segno)->valid_blocks += del;
2467 }
2468 
2469 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2470 {
2471 	unsigned int segno = GET_SEGNO(sbi, addr);
2472 	struct sit_info *sit_i = SIT_I(sbi);
2473 
2474 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2475 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2476 		return;
2477 
2478 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2479 	f2fs_invalidate_compress_page(sbi, addr);
2480 
2481 	/* add it into sit main buffer */
2482 	down_write(&sit_i->sentry_lock);
2483 
2484 	update_segment_mtime(sbi, addr, 0);
2485 	update_sit_entry(sbi, addr, -1);
2486 
2487 	/* add it into dirty seglist */
2488 	locate_dirty_segment(sbi, segno);
2489 
2490 	up_write(&sit_i->sentry_lock);
2491 }
2492 
2493 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2494 {
2495 	struct sit_info *sit_i = SIT_I(sbi);
2496 	unsigned int segno, offset;
2497 	struct seg_entry *se;
2498 	bool is_cp = false;
2499 
2500 	if (!__is_valid_data_blkaddr(blkaddr))
2501 		return true;
2502 
2503 	down_read(&sit_i->sentry_lock);
2504 
2505 	segno = GET_SEGNO(sbi, blkaddr);
2506 	se = get_seg_entry(sbi, segno);
2507 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2508 
2509 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2510 		is_cp = true;
2511 
2512 	up_read(&sit_i->sentry_lock);
2513 
2514 	return is_cp;
2515 }
2516 
2517 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2518 {
2519 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2520 
2521 	if (sbi->ckpt->alloc_type[type] == SSR)
2522 		return sbi->blocks_per_seg;
2523 	return curseg->next_blkoff;
2524 }
2525 
2526 /*
2527  * Calculate the number of current summary pages for writing
2528  */
2529 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2530 {
2531 	int valid_sum_count = 0;
2532 	int i, sum_in_page;
2533 
2534 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2535 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2536 			valid_sum_count +=
2537 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2538 		else
2539 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2540 	}
2541 
2542 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2543 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2544 	if (valid_sum_count <= sum_in_page)
2545 		return 1;
2546 	else if ((valid_sum_count - sum_in_page) <=
2547 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2548 		return 2;
2549 	return 3;
2550 }
2551 
2552 /*
2553  * Caller should put this summary page
2554  */
2555 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2556 {
2557 	if (unlikely(f2fs_cp_error(sbi)))
2558 		return ERR_PTR(-EIO);
2559 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2560 }
2561 
2562 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2563 					void *src, block_t blk_addr)
2564 {
2565 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2566 
2567 	memcpy(page_address(page), src, PAGE_SIZE);
2568 	set_page_dirty(page);
2569 	f2fs_put_page(page, 1);
2570 }
2571 
2572 static void write_sum_page(struct f2fs_sb_info *sbi,
2573 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2574 {
2575 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2576 }
2577 
2578 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2579 						int type, block_t blk_addr)
2580 {
2581 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2582 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2583 	struct f2fs_summary_block *src = curseg->sum_blk;
2584 	struct f2fs_summary_block *dst;
2585 
2586 	dst = (struct f2fs_summary_block *)page_address(page);
2587 	memset(dst, 0, PAGE_SIZE);
2588 
2589 	mutex_lock(&curseg->curseg_mutex);
2590 
2591 	down_read(&curseg->journal_rwsem);
2592 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2593 	up_read(&curseg->journal_rwsem);
2594 
2595 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2596 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2597 
2598 	mutex_unlock(&curseg->curseg_mutex);
2599 
2600 	set_page_dirty(page);
2601 	f2fs_put_page(page, 1);
2602 }
2603 
2604 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2605 				struct curseg_info *curseg, int type)
2606 {
2607 	unsigned int segno = curseg->segno + 1;
2608 	struct free_segmap_info *free_i = FREE_I(sbi);
2609 
2610 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2611 		return !test_bit(segno, free_i->free_segmap);
2612 	return 0;
2613 }
2614 
2615 /*
2616  * Find a new segment from the free segments bitmap to right order
2617  * This function should be returned with success, otherwise BUG
2618  */
2619 static void get_new_segment(struct f2fs_sb_info *sbi,
2620 			unsigned int *newseg, bool new_sec, int dir)
2621 {
2622 	struct free_segmap_info *free_i = FREE_I(sbi);
2623 	unsigned int segno, secno, zoneno;
2624 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2625 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2626 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2627 	unsigned int left_start = hint;
2628 	bool init = true;
2629 	int go_left = 0;
2630 	int i;
2631 
2632 	spin_lock(&free_i->segmap_lock);
2633 
2634 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2635 		segno = find_next_zero_bit(free_i->free_segmap,
2636 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2637 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2638 			goto got_it;
2639 	}
2640 find_other_zone:
2641 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2642 	if (secno >= MAIN_SECS(sbi)) {
2643 		if (dir == ALLOC_RIGHT) {
2644 			secno = find_first_zero_bit(free_i->free_secmap,
2645 							MAIN_SECS(sbi));
2646 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2647 		} else {
2648 			go_left = 1;
2649 			left_start = hint - 1;
2650 		}
2651 	}
2652 	if (go_left == 0)
2653 		goto skip_left;
2654 
2655 	while (test_bit(left_start, free_i->free_secmap)) {
2656 		if (left_start > 0) {
2657 			left_start--;
2658 			continue;
2659 		}
2660 		left_start = find_first_zero_bit(free_i->free_secmap,
2661 							MAIN_SECS(sbi));
2662 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2663 		break;
2664 	}
2665 	secno = left_start;
2666 skip_left:
2667 	segno = GET_SEG_FROM_SEC(sbi, secno);
2668 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2669 
2670 	/* give up on finding another zone */
2671 	if (!init)
2672 		goto got_it;
2673 	if (sbi->secs_per_zone == 1)
2674 		goto got_it;
2675 	if (zoneno == old_zoneno)
2676 		goto got_it;
2677 	if (dir == ALLOC_LEFT) {
2678 		if (!go_left && zoneno + 1 >= total_zones)
2679 			goto got_it;
2680 		if (go_left && zoneno == 0)
2681 			goto got_it;
2682 	}
2683 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2684 		if (CURSEG_I(sbi, i)->zone == zoneno)
2685 			break;
2686 
2687 	if (i < NR_CURSEG_TYPE) {
2688 		/* zone is in user, try another */
2689 		if (go_left)
2690 			hint = zoneno * sbi->secs_per_zone - 1;
2691 		else if (zoneno + 1 >= total_zones)
2692 			hint = 0;
2693 		else
2694 			hint = (zoneno + 1) * sbi->secs_per_zone;
2695 		init = false;
2696 		goto find_other_zone;
2697 	}
2698 got_it:
2699 	/* set it as dirty segment in free segmap */
2700 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2701 	__set_inuse(sbi, segno);
2702 	*newseg = segno;
2703 	spin_unlock(&free_i->segmap_lock);
2704 }
2705 
2706 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2707 {
2708 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2709 	struct summary_footer *sum_footer;
2710 	unsigned short seg_type = curseg->seg_type;
2711 
2712 	curseg->inited = true;
2713 	curseg->segno = curseg->next_segno;
2714 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2715 	curseg->next_blkoff = 0;
2716 	curseg->next_segno = NULL_SEGNO;
2717 
2718 	sum_footer = &(curseg->sum_blk->footer);
2719 	memset(sum_footer, 0, sizeof(struct summary_footer));
2720 
2721 	sanity_check_seg_type(sbi, seg_type);
2722 
2723 	if (IS_DATASEG(seg_type))
2724 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2725 	if (IS_NODESEG(seg_type))
2726 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2727 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2728 }
2729 
2730 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2731 {
2732 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2733 	unsigned short seg_type = curseg->seg_type;
2734 
2735 	sanity_check_seg_type(sbi, seg_type);
2736 	if (f2fs_need_rand_seg(sbi))
2737 		return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2738 
2739 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2740 	if (__is_large_section(sbi))
2741 		return curseg->segno;
2742 
2743 	/* inmem log may not locate on any segment after mount */
2744 	if (!curseg->inited)
2745 		return 0;
2746 
2747 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2748 		return 0;
2749 
2750 	if (test_opt(sbi, NOHEAP) &&
2751 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2752 		return 0;
2753 
2754 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2755 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2756 
2757 	/* find segments from 0 to reuse freed segments */
2758 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2759 		return 0;
2760 
2761 	return curseg->segno;
2762 }
2763 
2764 /*
2765  * Allocate a current working segment.
2766  * This function always allocates a free segment in LFS manner.
2767  */
2768 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2769 {
2770 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2771 	unsigned short seg_type = curseg->seg_type;
2772 	unsigned int segno = curseg->segno;
2773 	int dir = ALLOC_LEFT;
2774 
2775 	if (curseg->inited)
2776 		write_sum_page(sbi, curseg->sum_blk,
2777 				GET_SUM_BLOCK(sbi, segno));
2778 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2779 		dir = ALLOC_RIGHT;
2780 
2781 	if (test_opt(sbi, NOHEAP))
2782 		dir = ALLOC_RIGHT;
2783 
2784 	segno = __get_next_segno(sbi, type);
2785 	get_new_segment(sbi, &segno, new_sec, dir);
2786 	curseg->next_segno = segno;
2787 	reset_curseg(sbi, type, 1);
2788 	curseg->alloc_type = LFS;
2789 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2790 		curseg->fragment_remained_chunk =
2791 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2792 }
2793 
2794 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2795 					int segno, block_t start)
2796 {
2797 	struct seg_entry *se = get_seg_entry(sbi, segno);
2798 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2799 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2800 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2801 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2802 	int i;
2803 
2804 	for (i = 0; i < entries; i++)
2805 		target_map[i] = ckpt_map[i] | cur_map[i];
2806 
2807 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2808 }
2809 
2810 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2811 		struct curseg_info *seg)
2812 {
2813 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2814 }
2815 
2816 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2817 {
2818 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2819 }
2820 
2821 /*
2822  * This function always allocates a used segment(from dirty seglist) by SSR
2823  * manner, so it should recover the existing segment information of valid blocks
2824  */
2825 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2826 {
2827 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2828 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2829 	unsigned int new_segno = curseg->next_segno;
2830 	struct f2fs_summary_block *sum_node;
2831 	struct page *sum_page;
2832 
2833 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2834 
2835 	__set_test_and_inuse(sbi, new_segno);
2836 
2837 	mutex_lock(&dirty_i->seglist_lock);
2838 	__remove_dirty_segment(sbi, new_segno, PRE);
2839 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2840 	mutex_unlock(&dirty_i->seglist_lock);
2841 
2842 	reset_curseg(sbi, type, 1);
2843 	curseg->alloc_type = SSR;
2844 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2845 
2846 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2847 	if (IS_ERR(sum_page)) {
2848 		/* GC won't be able to use stale summary pages by cp_error */
2849 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2850 		return;
2851 	}
2852 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2853 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2854 	f2fs_put_page(sum_page, 1);
2855 }
2856 
2857 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2858 				int alloc_mode, unsigned long long age);
2859 
2860 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2861 					int target_type, int alloc_mode,
2862 					unsigned long long age)
2863 {
2864 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2865 
2866 	curseg->seg_type = target_type;
2867 
2868 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2869 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2870 
2871 		curseg->seg_type = se->type;
2872 		change_curseg(sbi, type);
2873 	} else {
2874 		/* allocate cold segment by default */
2875 		curseg->seg_type = CURSEG_COLD_DATA;
2876 		new_curseg(sbi, type, true);
2877 	}
2878 	stat_inc_seg_type(sbi, curseg);
2879 }
2880 
2881 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2882 {
2883 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2884 
2885 	if (!sbi->am.atgc_enabled)
2886 		return;
2887 
2888 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2889 
2890 	mutex_lock(&curseg->curseg_mutex);
2891 	down_write(&SIT_I(sbi)->sentry_lock);
2892 
2893 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2894 
2895 	up_write(&SIT_I(sbi)->sentry_lock);
2896 	mutex_unlock(&curseg->curseg_mutex);
2897 
2898 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2899 
2900 }
2901 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2902 {
2903 	__f2fs_init_atgc_curseg(sbi);
2904 }
2905 
2906 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2907 {
2908 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2909 
2910 	mutex_lock(&curseg->curseg_mutex);
2911 	if (!curseg->inited)
2912 		goto out;
2913 
2914 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2915 		write_sum_page(sbi, curseg->sum_blk,
2916 				GET_SUM_BLOCK(sbi, curseg->segno));
2917 	} else {
2918 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2919 		__set_test_and_free(sbi, curseg->segno, true);
2920 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2921 	}
2922 out:
2923 	mutex_unlock(&curseg->curseg_mutex);
2924 }
2925 
2926 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2927 {
2928 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2929 
2930 	if (sbi->am.atgc_enabled)
2931 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2932 }
2933 
2934 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2935 {
2936 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2937 
2938 	mutex_lock(&curseg->curseg_mutex);
2939 	if (!curseg->inited)
2940 		goto out;
2941 	if (get_valid_blocks(sbi, curseg->segno, false))
2942 		goto out;
2943 
2944 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2945 	__set_test_and_inuse(sbi, curseg->segno);
2946 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2947 out:
2948 	mutex_unlock(&curseg->curseg_mutex);
2949 }
2950 
2951 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2952 {
2953 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2954 
2955 	if (sbi->am.atgc_enabled)
2956 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2957 }
2958 
2959 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2960 				int alloc_mode, unsigned long long age)
2961 {
2962 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2963 	unsigned segno = NULL_SEGNO;
2964 	unsigned short seg_type = curseg->seg_type;
2965 	int i, cnt;
2966 	bool reversed = false;
2967 
2968 	sanity_check_seg_type(sbi, seg_type);
2969 
2970 	/* f2fs_need_SSR() already forces to do this */
2971 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2972 		curseg->next_segno = segno;
2973 		return 1;
2974 	}
2975 
2976 	/* For node segments, let's do SSR more intensively */
2977 	if (IS_NODESEG(seg_type)) {
2978 		if (seg_type >= CURSEG_WARM_NODE) {
2979 			reversed = true;
2980 			i = CURSEG_COLD_NODE;
2981 		} else {
2982 			i = CURSEG_HOT_NODE;
2983 		}
2984 		cnt = NR_CURSEG_NODE_TYPE;
2985 	} else {
2986 		if (seg_type >= CURSEG_WARM_DATA) {
2987 			reversed = true;
2988 			i = CURSEG_COLD_DATA;
2989 		} else {
2990 			i = CURSEG_HOT_DATA;
2991 		}
2992 		cnt = NR_CURSEG_DATA_TYPE;
2993 	}
2994 
2995 	for (; cnt-- > 0; reversed ? i-- : i++) {
2996 		if (i == seg_type)
2997 			continue;
2998 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2999 			curseg->next_segno = segno;
3000 			return 1;
3001 		}
3002 	}
3003 
3004 	/* find valid_blocks=0 in dirty list */
3005 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3006 		segno = get_free_segment(sbi);
3007 		if (segno != NULL_SEGNO) {
3008 			curseg->next_segno = segno;
3009 			return 1;
3010 		}
3011 	}
3012 	return 0;
3013 }
3014 
3015 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3016 {
3017 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3018 
3019 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3020 	    curseg->seg_type == CURSEG_WARM_NODE)
3021 		return true;
3022 	if (curseg->alloc_type == LFS &&
3023 	    is_next_segment_free(sbi, curseg, type) &&
3024 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3025 		return true;
3026 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3027 		return true;
3028 	return false;
3029 }
3030 
3031 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3032 					unsigned int start, unsigned int end)
3033 {
3034 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3035 	unsigned int segno;
3036 
3037 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3038 	mutex_lock(&curseg->curseg_mutex);
3039 	down_write(&SIT_I(sbi)->sentry_lock);
3040 
3041 	segno = CURSEG_I(sbi, type)->segno;
3042 	if (segno < start || segno > end)
3043 		goto unlock;
3044 
3045 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3046 		change_curseg(sbi, type);
3047 	else
3048 		new_curseg(sbi, type, true);
3049 
3050 	stat_inc_seg_type(sbi, curseg);
3051 
3052 	locate_dirty_segment(sbi, segno);
3053 unlock:
3054 	up_write(&SIT_I(sbi)->sentry_lock);
3055 
3056 	if (segno != curseg->segno)
3057 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3058 			    type, segno, curseg->segno);
3059 
3060 	mutex_unlock(&curseg->curseg_mutex);
3061 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3062 }
3063 
3064 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3065 						bool new_sec, bool force)
3066 {
3067 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3068 	unsigned int old_segno;
3069 
3070 	if (!force && curseg->inited &&
3071 	    !curseg->next_blkoff &&
3072 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3073 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3074 		return;
3075 
3076 	old_segno = curseg->segno;
3077 	new_curseg(sbi, type, true);
3078 	stat_inc_seg_type(sbi, curseg);
3079 	locate_dirty_segment(sbi, old_segno);
3080 }
3081 
3082 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3083 {
3084 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3085 	down_write(&SIT_I(sbi)->sentry_lock);
3086 	__allocate_new_segment(sbi, type, true, force);
3087 	up_write(&SIT_I(sbi)->sentry_lock);
3088 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3089 }
3090 
3091 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3092 {
3093 	int i;
3094 
3095 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3096 	down_write(&SIT_I(sbi)->sentry_lock);
3097 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3098 		__allocate_new_segment(sbi, i, false, false);
3099 	up_write(&SIT_I(sbi)->sentry_lock);
3100 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3101 }
3102 
3103 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3104 						struct cp_control *cpc)
3105 {
3106 	__u64 trim_start = cpc->trim_start;
3107 	bool has_candidate = false;
3108 
3109 	down_write(&SIT_I(sbi)->sentry_lock);
3110 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3111 		if (add_discard_addrs(sbi, cpc, true)) {
3112 			has_candidate = true;
3113 			break;
3114 		}
3115 	}
3116 	up_write(&SIT_I(sbi)->sentry_lock);
3117 
3118 	cpc->trim_start = trim_start;
3119 	return has_candidate;
3120 }
3121 
3122 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3123 					struct discard_policy *dpolicy,
3124 					unsigned int start, unsigned int end)
3125 {
3126 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3127 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3128 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3129 	struct discard_cmd *dc;
3130 	struct blk_plug plug;
3131 	int issued;
3132 	unsigned int trimmed = 0;
3133 
3134 next:
3135 	issued = 0;
3136 
3137 	mutex_lock(&dcc->cmd_lock);
3138 	if (unlikely(dcc->rbtree_check))
3139 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3140 
3141 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3142 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3143 	if (!dc)
3144 		dc = next_dc;
3145 
3146 	blk_start_plug(&plug);
3147 
3148 	while (dc && dc->di.lstart <= end) {
3149 		struct rb_node *node;
3150 		int err = 0;
3151 
3152 		if (dc->di.len < dpolicy->granularity)
3153 			goto skip;
3154 
3155 		if (dc->state != D_PREP) {
3156 			list_move_tail(&dc->list, &dcc->fstrim_list);
3157 			goto skip;
3158 		}
3159 
3160 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3161 
3162 		if (issued >= dpolicy->max_requests) {
3163 			start = dc->di.lstart + dc->di.len;
3164 
3165 			if (err)
3166 				__remove_discard_cmd(sbi, dc);
3167 
3168 			blk_finish_plug(&plug);
3169 			mutex_unlock(&dcc->cmd_lock);
3170 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3171 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3172 			goto next;
3173 		}
3174 skip:
3175 		node = rb_next(&dc->rb_node);
3176 		if (err)
3177 			__remove_discard_cmd(sbi, dc);
3178 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3179 
3180 		if (fatal_signal_pending(current))
3181 			break;
3182 	}
3183 
3184 	blk_finish_plug(&plug);
3185 	mutex_unlock(&dcc->cmd_lock);
3186 
3187 	return trimmed;
3188 }
3189 
3190 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3191 {
3192 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3193 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3194 	unsigned int start_segno, end_segno;
3195 	block_t start_block, end_block;
3196 	struct cp_control cpc;
3197 	struct discard_policy dpolicy;
3198 	unsigned long long trimmed = 0;
3199 	int err = 0;
3200 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3201 
3202 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3203 		return -EINVAL;
3204 
3205 	if (end < MAIN_BLKADDR(sbi))
3206 		goto out;
3207 
3208 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3209 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3210 		return -EFSCORRUPTED;
3211 	}
3212 
3213 	/* start/end segment number in main_area */
3214 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3215 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3216 						GET_SEGNO(sbi, end);
3217 	if (need_align) {
3218 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3219 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3220 	}
3221 
3222 	cpc.reason = CP_DISCARD;
3223 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3224 	cpc.trim_start = start_segno;
3225 	cpc.trim_end = end_segno;
3226 
3227 	if (sbi->discard_blks == 0)
3228 		goto out;
3229 
3230 	f2fs_down_write(&sbi->gc_lock);
3231 	err = f2fs_write_checkpoint(sbi, &cpc);
3232 	f2fs_up_write(&sbi->gc_lock);
3233 	if (err)
3234 		goto out;
3235 
3236 	/*
3237 	 * We filed discard candidates, but actually we don't need to wait for
3238 	 * all of them, since they'll be issued in idle time along with runtime
3239 	 * discard option. User configuration looks like using runtime discard
3240 	 * or periodic fstrim instead of it.
3241 	 */
3242 	if (f2fs_realtime_discard_enable(sbi))
3243 		goto out;
3244 
3245 	start_block = START_BLOCK(sbi, start_segno);
3246 	end_block = START_BLOCK(sbi, end_segno + 1);
3247 
3248 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3249 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3250 					start_block, end_block);
3251 
3252 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3253 					start_block, end_block);
3254 out:
3255 	if (!err)
3256 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3257 	return err;
3258 }
3259 
3260 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3261 {
3262 	switch (hint) {
3263 	case WRITE_LIFE_SHORT:
3264 		return CURSEG_HOT_DATA;
3265 	case WRITE_LIFE_EXTREME:
3266 		return CURSEG_COLD_DATA;
3267 	default:
3268 		return CURSEG_WARM_DATA;
3269 	}
3270 }
3271 
3272 static int __get_segment_type_2(struct f2fs_io_info *fio)
3273 {
3274 	if (fio->type == DATA)
3275 		return CURSEG_HOT_DATA;
3276 	else
3277 		return CURSEG_HOT_NODE;
3278 }
3279 
3280 static int __get_segment_type_4(struct f2fs_io_info *fio)
3281 {
3282 	if (fio->type == DATA) {
3283 		struct inode *inode = fio->page->mapping->host;
3284 
3285 		if (S_ISDIR(inode->i_mode))
3286 			return CURSEG_HOT_DATA;
3287 		else
3288 			return CURSEG_COLD_DATA;
3289 	} else {
3290 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3291 			return CURSEG_WARM_NODE;
3292 		else
3293 			return CURSEG_COLD_NODE;
3294 	}
3295 }
3296 
3297 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3298 {
3299 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3300 	struct extent_info ei = {};
3301 
3302 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3303 		if (!ei.age)
3304 			return NO_CHECK_TYPE;
3305 		if (ei.age <= sbi->hot_data_age_threshold)
3306 			return CURSEG_HOT_DATA;
3307 		if (ei.age <= sbi->warm_data_age_threshold)
3308 			return CURSEG_WARM_DATA;
3309 		return CURSEG_COLD_DATA;
3310 	}
3311 	return NO_CHECK_TYPE;
3312 }
3313 
3314 static int __get_segment_type_6(struct f2fs_io_info *fio)
3315 {
3316 	if (fio->type == DATA) {
3317 		struct inode *inode = fio->page->mapping->host;
3318 		int type;
3319 
3320 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3321 			return CURSEG_COLD_DATA_PINNED;
3322 
3323 		if (page_private_gcing(fio->page)) {
3324 			if (fio->sbi->am.atgc_enabled &&
3325 				(fio->io_type == FS_DATA_IO) &&
3326 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3327 				return CURSEG_ALL_DATA_ATGC;
3328 			else
3329 				return CURSEG_COLD_DATA;
3330 		}
3331 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3332 			return CURSEG_COLD_DATA;
3333 
3334 		type = __get_age_segment_type(inode, fio->page->index);
3335 		if (type != NO_CHECK_TYPE)
3336 			return type;
3337 
3338 		if (file_is_hot(inode) ||
3339 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3340 				f2fs_is_cow_file(inode))
3341 			return CURSEG_HOT_DATA;
3342 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3343 	} else {
3344 		if (IS_DNODE(fio->page))
3345 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3346 						CURSEG_HOT_NODE;
3347 		return CURSEG_COLD_NODE;
3348 	}
3349 }
3350 
3351 static int __get_segment_type(struct f2fs_io_info *fio)
3352 {
3353 	int type = 0;
3354 
3355 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3356 	case 2:
3357 		type = __get_segment_type_2(fio);
3358 		break;
3359 	case 4:
3360 		type = __get_segment_type_4(fio);
3361 		break;
3362 	case 6:
3363 		type = __get_segment_type_6(fio);
3364 		break;
3365 	default:
3366 		f2fs_bug_on(fio->sbi, true);
3367 	}
3368 
3369 	if (IS_HOT(type))
3370 		fio->temp = HOT;
3371 	else if (IS_WARM(type))
3372 		fio->temp = WARM;
3373 	else
3374 		fio->temp = COLD;
3375 	return type;
3376 }
3377 
3378 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3379 		struct curseg_info *seg)
3380 {
3381 	/* To allocate block chunks in different sizes, use random number */
3382 	if (--seg->fragment_remained_chunk > 0)
3383 		return;
3384 
3385 	seg->fragment_remained_chunk =
3386 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3387 	seg->next_blkoff +=
3388 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3389 }
3390 
3391 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3392 		block_t old_blkaddr, block_t *new_blkaddr,
3393 		struct f2fs_summary *sum, int type,
3394 		struct f2fs_io_info *fio)
3395 {
3396 	struct sit_info *sit_i = SIT_I(sbi);
3397 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3398 	unsigned long long old_mtime;
3399 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3400 	struct seg_entry *se = NULL;
3401 	bool segment_full = false;
3402 
3403 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3404 
3405 	mutex_lock(&curseg->curseg_mutex);
3406 	down_write(&sit_i->sentry_lock);
3407 
3408 	if (from_gc) {
3409 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3410 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3411 		sanity_check_seg_type(sbi, se->type);
3412 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3413 	}
3414 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3415 
3416 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3417 
3418 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3419 
3420 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3421 	if (curseg->alloc_type == SSR) {
3422 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3423 	} else {
3424 		curseg->next_blkoff++;
3425 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3426 			f2fs_randomize_chunk(sbi, curseg);
3427 	}
3428 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3429 		segment_full = true;
3430 	stat_inc_block_count(sbi, curseg);
3431 
3432 	if (from_gc) {
3433 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3434 	} else {
3435 		update_segment_mtime(sbi, old_blkaddr, 0);
3436 		old_mtime = 0;
3437 	}
3438 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3439 
3440 	/*
3441 	 * SIT information should be updated before segment allocation,
3442 	 * since SSR needs latest valid block information.
3443 	 */
3444 	update_sit_entry(sbi, *new_blkaddr, 1);
3445 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3446 		update_sit_entry(sbi, old_blkaddr, -1);
3447 
3448 	/*
3449 	 * If the current segment is full, flush it out and replace it with a
3450 	 * new segment.
3451 	 */
3452 	if (segment_full) {
3453 		if (from_gc) {
3454 			get_atssr_segment(sbi, type, se->type,
3455 						AT_SSR, se->mtime);
3456 		} else {
3457 			if (need_new_seg(sbi, type))
3458 				new_curseg(sbi, type, false);
3459 			else
3460 				change_curseg(sbi, type);
3461 			stat_inc_seg_type(sbi, curseg);
3462 		}
3463 	}
3464 	/*
3465 	 * segment dirty status should be updated after segment allocation,
3466 	 * so we just need to update status only one time after previous
3467 	 * segment being closed.
3468 	 */
3469 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3470 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3471 
3472 	if (IS_DATASEG(type))
3473 		atomic64_inc(&sbi->allocated_data_blocks);
3474 
3475 	up_write(&sit_i->sentry_lock);
3476 
3477 	if (page && IS_NODESEG(type)) {
3478 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3479 
3480 		f2fs_inode_chksum_set(sbi, page);
3481 	}
3482 
3483 	if (fio) {
3484 		struct f2fs_bio_info *io;
3485 
3486 		if (F2FS_IO_ALIGNED(sbi))
3487 			fio->retry = 0;
3488 
3489 		INIT_LIST_HEAD(&fio->list);
3490 		fio->in_list = 1;
3491 		io = sbi->write_io[fio->type] + fio->temp;
3492 		spin_lock(&io->io_lock);
3493 		list_add_tail(&fio->list, &io->io_list);
3494 		spin_unlock(&io->io_lock);
3495 	}
3496 
3497 	mutex_unlock(&curseg->curseg_mutex);
3498 
3499 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3500 }
3501 
3502 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3503 					block_t blkaddr, unsigned int blkcnt)
3504 {
3505 	if (!f2fs_is_multi_device(sbi))
3506 		return;
3507 
3508 	while (1) {
3509 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3510 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3511 
3512 		/* update device state for fsync */
3513 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3514 
3515 		/* update device state for checkpoint */
3516 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3517 			spin_lock(&sbi->dev_lock);
3518 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3519 			spin_unlock(&sbi->dev_lock);
3520 		}
3521 
3522 		if (blkcnt <= blks)
3523 			break;
3524 		blkcnt -= blks;
3525 		blkaddr += blks;
3526 	}
3527 }
3528 
3529 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3530 {
3531 	int type = __get_segment_type(fio);
3532 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3533 
3534 	if (keep_order)
3535 		f2fs_down_read(&fio->sbi->io_order_lock);
3536 reallocate:
3537 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3538 			&fio->new_blkaddr, sum, type, fio);
3539 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3540 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3541 					fio->old_blkaddr, fio->old_blkaddr);
3542 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3543 	}
3544 
3545 	/* writeout dirty page into bdev */
3546 	f2fs_submit_page_write(fio);
3547 	if (fio->retry) {
3548 		fio->old_blkaddr = fio->new_blkaddr;
3549 		goto reallocate;
3550 	}
3551 
3552 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3553 
3554 	if (keep_order)
3555 		f2fs_up_read(&fio->sbi->io_order_lock);
3556 }
3557 
3558 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3559 					enum iostat_type io_type)
3560 {
3561 	struct f2fs_io_info fio = {
3562 		.sbi = sbi,
3563 		.type = META,
3564 		.temp = HOT,
3565 		.op = REQ_OP_WRITE,
3566 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3567 		.old_blkaddr = page->index,
3568 		.new_blkaddr = page->index,
3569 		.page = page,
3570 		.encrypted_page = NULL,
3571 		.in_list = 0,
3572 	};
3573 
3574 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3575 		fio.op_flags &= ~REQ_META;
3576 
3577 	set_page_writeback(page);
3578 	f2fs_submit_page_write(&fio);
3579 
3580 	stat_inc_meta_count(sbi, page->index);
3581 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3582 }
3583 
3584 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3585 {
3586 	struct f2fs_summary sum;
3587 
3588 	set_summary(&sum, nid, 0, 0);
3589 	do_write_page(&sum, fio);
3590 
3591 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3592 }
3593 
3594 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3595 					struct f2fs_io_info *fio)
3596 {
3597 	struct f2fs_sb_info *sbi = fio->sbi;
3598 	struct f2fs_summary sum;
3599 
3600 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3601 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3602 		f2fs_update_age_extent_cache(dn);
3603 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3604 	do_write_page(&sum, fio);
3605 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3606 
3607 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3608 }
3609 
3610 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3611 {
3612 	int err;
3613 	struct f2fs_sb_info *sbi = fio->sbi;
3614 	unsigned int segno;
3615 
3616 	fio->new_blkaddr = fio->old_blkaddr;
3617 	/* i/o temperature is needed for passing down write hints */
3618 	__get_segment_type(fio);
3619 
3620 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3621 
3622 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3623 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3624 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3625 			  __func__, segno);
3626 		err = -EFSCORRUPTED;
3627 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3628 		goto drop_bio;
3629 	}
3630 
3631 	if (f2fs_cp_error(sbi)) {
3632 		err = -EIO;
3633 		goto drop_bio;
3634 	}
3635 
3636 	if (fio->post_read)
3637 		invalidate_mapping_pages(META_MAPPING(sbi),
3638 				fio->new_blkaddr, fio->new_blkaddr);
3639 
3640 	stat_inc_inplace_blocks(fio->sbi);
3641 
3642 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3643 		err = f2fs_merge_page_bio(fio);
3644 	else
3645 		err = f2fs_submit_page_bio(fio);
3646 	if (!err) {
3647 		f2fs_update_device_state(fio->sbi, fio->ino,
3648 						fio->new_blkaddr, 1);
3649 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3650 						fio->io_type, F2FS_BLKSIZE);
3651 	}
3652 
3653 	return err;
3654 drop_bio:
3655 	if (fio->bio && *(fio->bio)) {
3656 		struct bio *bio = *(fio->bio);
3657 
3658 		bio->bi_status = BLK_STS_IOERR;
3659 		bio_endio(bio);
3660 		*(fio->bio) = NULL;
3661 	}
3662 	return err;
3663 }
3664 
3665 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3666 						unsigned int segno)
3667 {
3668 	int i;
3669 
3670 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3671 		if (CURSEG_I(sbi, i)->segno == segno)
3672 			break;
3673 	}
3674 	return i;
3675 }
3676 
3677 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3678 				block_t old_blkaddr, block_t new_blkaddr,
3679 				bool recover_curseg, bool recover_newaddr,
3680 				bool from_gc)
3681 {
3682 	struct sit_info *sit_i = SIT_I(sbi);
3683 	struct curseg_info *curseg;
3684 	unsigned int segno, old_cursegno;
3685 	struct seg_entry *se;
3686 	int type;
3687 	unsigned short old_blkoff;
3688 	unsigned char old_alloc_type;
3689 
3690 	segno = GET_SEGNO(sbi, new_blkaddr);
3691 	se = get_seg_entry(sbi, segno);
3692 	type = se->type;
3693 
3694 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3695 
3696 	if (!recover_curseg) {
3697 		/* for recovery flow */
3698 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3699 			if (old_blkaddr == NULL_ADDR)
3700 				type = CURSEG_COLD_DATA;
3701 			else
3702 				type = CURSEG_WARM_DATA;
3703 		}
3704 	} else {
3705 		if (IS_CURSEG(sbi, segno)) {
3706 			/* se->type is volatile as SSR allocation */
3707 			type = __f2fs_get_curseg(sbi, segno);
3708 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3709 		} else {
3710 			type = CURSEG_WARM_DATA;
3711 		}
3712 	}
3713 
3714 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3715 	curseg = CURSEG_I(sbi, type);
3716 
3717 	mutex_lock(&curseg->curseg_mutex);
3718 	down_write(&sit_i->sentry_lock);
3719 
3720 	old_cursegno = curseg->segno;
3721 	old_blkoff = curseg->next_blkoff;
3722 	old_alloc_type = curseg->alloc_type;
3723 
3724 	/* change the current segment */
3725 	if (segno != curseg->segno) {
3726 		curseg->next_segno = segno;
3727 		change_curseg(sbi, type);
3728 	}
3729 
3730 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3731 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3732 
3733 	if (!recover_curseg || recover_newaddr) {
3734 		if (!from_gc)
3735 			update_segment_mtime(sbi, new_blkaddr, 0);
3736 		update_sit_entry(sbi, new_blkaddr, 1);
3737 	}
3738 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3739 		invalidate_mapping_pages(META_MAPPING(sbi),
3740 					old_blkaddr, old_blkaddr);
3741 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3742 		if (!from_gc)
3743 			update_segment_mtime(sbi, old_blkaddr, 0);
3744 		update_sit_entry(sbi, old_blkaddr, -1);
3745 	}
3746 
3747 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3748 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3749 
3750 	locate_dirty_segment(sbi, old_cursegno);
3751 
3752 	if (recover_curseg) {
3753 		if (old_cursegno != curseg->segno) {
3754 			curseg->next_segno = old_cursegno;
3755 			change_curseg(sbi, type);
3756 		}
3757 		curseg->next_blkoff = old_blkoff;
3758 		curseg->alloc_type = old_alloc_type;
3759 	}
3760 
3761 	up_write(&sit_i->sentry_lock);
3762 	mutex_unlock(&curseg->curseg_mutex);
3763 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3764 }
3765 
3766 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3767 				block_t old_addr, block_t new_addr,
3768 				unsigned char version, bool recover_curseg,
3769 				bool recover_newaddr)
3770 {
3771 	struct f2fs_summary sum;
3772 
3773 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3774 
3775 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3776 					recover_curseg, recover_newaddr, false);
3777 
3778 	f2fs_update_data_blkaddr(dn, new_addr);
3779 }
3780 
3781 void f2fs_wait_on_page_writeback(struct page *page,
3782 				enum page_type type, bool ordered, bool locked)
3783 {
3784 	if (PageWriteback(page)) {
3785 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3786 
3787 		/* submit cached LFS IO */
3788 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3789 		/* submit cached IPU IO */
3790 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3791 		if (ordered) {
3792 			wait_on_page_writeback(page);
3793 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3794 		} else {
3795 			wait_for_stable_page(page);
3796 		}
3797 	}
3798 }
3799 
3800 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3801 {
3802 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3803 	struct page *cpage;
3804 
3805 	if (!f2fs_post_read_required(inode))
3806 		return;
3807 
3808 	if (!__is_valid_data_blkaddr(blkaddr))
3809 		return;
3810 
3811 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3812 	if (cpage) {
3813 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3814 		f2fs_put_page(cpage, 1);
3815 	}
3816 }
3817 
3818 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3819 								block_t len)
3820 {
3821 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3822 	block_t i;
3823 
3824 	if (!f2fs_post_read_required(inode))
3825 		return;
3826 
3827 	for (i = 0; i < len; i++)
3828 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3829 
3830 	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3831 }
3832 
3833 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3834 {
3835 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3836 	struct curseg_info *seg_i;
3837 	unsigned char *kaddr;
3838 	struct page *page;
3839 	block_t start;
3840 	int i, j, offset;
3841 
3842 	start = start_sum_block(sbi);
3843 
3844 	page = f2fs_get_meta_page(sbi, start++);
3845 	if (IS_ERR(page))
3846 		return PTR_ERR(page);
3847 	kaddr = (unsigned char *)page_address(page);
3848 
3849 	/* Step 1: restore nat cache */
3850 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3851 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3852 
3853 	/* Step 2: restore sit cache */
3854 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3855 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3856 	offset = 2 * SUM_JOURNAL_SIZE;
3857 
3858 	/* Step 3: restore summary entries */
3859 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3860 		unsigned short blk_off;
3861 		unsigned int segno;
3862 
3863 		seg_i = CURSEG_I(sbi, i);
3864 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3865 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3866 		seg_i->next_segno = segno;
3867 		reset_curseg(sbi, i, 0);
3868 		seg_i->alloc_type = ckpt->alloc_type[i];
3869 		seg_i->next_blkoff = blk_off;
3870 
3871 		if (seg_i->alloc_type == SSR)
3872 			blk_off = sbi->blocks_per_seg;
3873 
3874 		for (j = 0; j < blk_off; j++) {
3875 			struct f2fs_summary *s;
3876 
3877 			s = (struct f2fs_summary *)(kaddr + offset);
3878 			seg_i->sum_blk->entries[j] = *s;
3879 			offset += SUMMARY_SIZE;
3880 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3881 						SUM_FOOTER_SIZE)
3882 				continue;
3883 
3884 			f2fs_put_page(page, 1);
3885 			page = NULL;
3886 
3887 			page = f2fs_get_meta_page(sbi, start++);
3888 			if (IS_ERR(page))
3889 				return PTR_ERR(page);
3890 			kaddr = (unsigned char *)page_address(page);
3891 			offset = 0;
3892 		}
3893 	}
3894 	f2fs_put_page(page, 1);
3895 	return 0;
3896 }
3897 
3898 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3899 {
3900 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3901 	struct f2fs_summary_block *sum;
3902 	struct curseg_info *curseg;
3903 	struct page *new;
3904 	unsigned short blk_off;
3905 	unsigned int segno = 0;
3906 	block_t blk_addr = 0;
3907 	int err = 0;
3908 
3909 	/* get segment number and block addr */
3910 	if (IS_DATASEG(type)) {
3911 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3912 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3913 							CURSEG_HOT_DATA]);
3914 		if (__exist_node_summaries(sbi))
3915 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3916 		else
3917 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3918 	} else {
3919 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3920 							CURSEG_HOT_NODE]);
3921 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3922 							CURSEG_HOT_NODE]);
3923 		if (__exist_node_summaries(sbi))
3924 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3925 							type - CURSEG_HOT_NODE);
3926 		else
3927 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3928 	}
3929 
3930 	new = f2fs_get_meta_page(sbi, blk_addr);
3931 	if (IS_ERR(new))
3932 		return PTR_ERR(new);
3933 	sum = (struct f2fs_summary_block *)page_address(new);
3934 
3935 	if (IS_NODESEG(type)) {
3936 		if (__exist_node_summaries(sbi)) {
3937 			struct f2fs_summary *ns = &sum->entries[0];
3938 			int i;
3939 
3940 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3941 				ns->version = 0;
3942 				ns->ofs_in_node = 0;
3943 			}
3944 		} else {
3945 			err = f2fs_restore_node_summary(sbi, segno, sum);
3946 			if (err)
3947 				goto out;
3948 		}
3949 	}
3950 
3951 	/* set uncompleted segment to curseg */
3952 	curseg = CURSEG_I(sbi, type);
3953 	mutex_lock(&curseg->curseg_mutex);
3954 
3955 	/* update journal info */
3956 	down_write(&curseg->journal_rwsem);
3957 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3958 	up_write(&curseg->journal_rwsem);
3959 
3960 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3961 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3962 	curseg->next_segno = segno;
3963 	reset_curseg(sbi, type, 0);
3964 	curseg->alloc_type = ckpt->alloc_type[type];
3965 	curseg->next_blkoff = blk_off;
3966 	mutex_unlock(&curseg->curseg_mutex);
3967 out:
3968 	f2fs_put_page(new, 1);
3969 	return err;
3970 }
3971 
3972 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3973 {
3974 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3975 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3976 	int type = CURSEG_HOT_DATA;
3977 	int err;
3978 
3979 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3980 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3981 
3982 		if (npages >= 2)
3983 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3984 							META_CP, true);
3985 
3986 		/* restore for compacted data summary */
3987 		err = read_compacted_summaries(sbi);
3988 		if (err)
3989 			return err;
3990 		type = CURSEG_HOT_NODE;
3991 	}
3992 
3993 	if (__exist_node_summaries(sbi))
3994 		f2fs_ra_meta_pages(sbi,
3995 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3996 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3997 
3998 	for (; type <= CURSEG_COLD_NODE; type++) {
3999 		err = read_normal_summaries(sbi, type);
4000 		if (err)
4001 			return err;
4002 	}
4003 
4004 	/* sanity check for summary blocks */
4005 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4006 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4007 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4008 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4009 		return -EINVAL;
4010 	}
4011 
4012 	return 0;
4013 }
4014 
4015 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4016 {
4017 	struct page *page;
4018 	unsigned char *kaddr;
4019 	struct f2fs_summary *summary;
4020 	struct curseg_info *seg_i;
4021 	int written_size = 0;
4022 	int i, j;
4023 
4024 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4025 	kaddr = (unsigned char *)page_address(page);
4026 	memset(kaddr, 0, PAGE_SIZE);
4027 
4028 	/* Step 1: write nat cache */
4029 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4030 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4031 	written_size += SUM_JOURNAL_SIZE;
4032 
4033 	/* Step 2: write sit cache */
4034 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4035 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4036 	written_size += SUM_JOURNAL_SIZE;
4037 
4038 	/* Step 3: write summary entries */
4039 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4040 		seg_i = CURSEG_I(sbi, i);
4041 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4042 			if (!page) {
4043 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4044 				kaddr = (unsigned char *)page_address(page);
4045 				memset(kaddr, 0, PAGE_SIZE);
4046 				written_size = 0;
4047 			}
4048 			summary = (struct f2fs_summary *)(kaddr + written_size);
4049 			*summary = seg_i->sum_blk->entries[j];
4050 			written_size += SUMMARY_SIZE;
4051 
4052 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4053 							SUM_FOOTER_SIZE)
4054 				continue;
4055 
4056 			set_page_dirty(page);
4057 			f2fs_put_page(page, 1);
4058 			page = NULL;
4059 		}
4060 	}
4061 	if (page) {
4062 		set_page_dirty(page);
4063 		f2fs_put_page(page, 1);
4064 	}
4065 }
4066 
4067 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4068 					block_t blkaddr, int type)
4069 {
4070 	int i, end;
4071 
4072 	if (IS_DATASEG(type))
4073 		end = type + NR_CURSEG_DATA_TYPE;
4074 	else
4075 		end = type + NR_CURSEG_NODE_TYPE;
4076 
4077 	for (i = type; i < end; i++)
4078 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4079 }
4080 
4081 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4082 {
4083 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4084 		write_compacted_summaries(sbi, start_blk);
4085 	else
4086 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4087 }
4088 
4089 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4090 {
4091 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4092 }
4093 
4094 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4095 					unsigned int val, int alloc)
4096 {
4097 	int i;
4098 
4099 	if (type == NAT_JOURNAL) {
4100 		for (i = 0; i < nats_in_cursum(journal); i++) {
4101 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4102 				return i;
4103 		}
4104 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4105 			return update_nats_in_cursum(journal, 1);
4106 	} else if (type == SIT_JOURNAL) {
4107 		for (i = 0; i < sits_in_cursum(journal); i++)
4108 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4109 				return i;
4110 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4111 			return update_sits_in_cursum(journal, 1);
4112 	}
4113 	return -1;
4114 }
4115 
4116 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4117 					unsigned int segno)
4118 {
4119 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4120 }
4121 
4122 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4123 					unsigned int start)
4124 {
4125 	struct sit_info *sit_i = SIT_I(sbi);
4126 	struct page *page;
4127 	pgoff_t src_off, dst_off;
4128 
4129 	src_off = current_sit_addr(sbi, start);
4130 	dst_off = next_sit_addr(sbi, src_off);
4131 
4132 	page = f2fs_grab_meta_page(sbi, dst_off);
4133 	seg_info_to_sit_page(sbi, page, start);
4134 
4135 	set_page_dirty(page);
4136 	set_to_next_sit(sit_i, start);
4137 
4138 	return page;
4139 }
4140 
4141 static struct sit_entry_set *grab_sit_entry_set(void)
4142 {
4143 	struct sit_entry_set *ses =
4144 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4145 						GFP_NOFS, true, NULL);
4146 
4147 	ses->entry_cnt = 0;
4148 	INIT_LIST_HEAD(&ses->set_list);
4149 	return ses;
4150 }
4151 
4152 static void release_sit_entry_set(struct sit_entry_set *ses)
4153 {
4154 	list_del(&ses->set_list);
4155 	kmem_cache_free(sit_entry_set_slab, ses);
4156 }
4157 
4158 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4159 						struct list_head *head)
4160 {
4161 	struct sit_entry_set *next = ses;
4162 
4163 	if (list_is_last(&ses->set_list, head))
4164 		return;
4165 
4166 	list_for_each_entry_continue(next, head, set_list)
4167 		if (ses->entry_cnt <= next->entry_cnt) {
4168 			list_move_tail(&ses->set_list, &next->set_list);
4169 			return;
4170 		}
4171 
4172 	list_move_tail(&ses->set_list, head);
4173 }
4174 
4175 static void add_sit_entry(unsigned int segno, struct list_head *head)
4176 {
4177 	struct sit_entry_set *ses;
4178 	unsigned int start_segno = START_SEGNO(segno);
4179 
4180 	list_for_each_entry(ses, head, set_list) {
4181 		if (ses->start_segno == start_segno) {
4182 			ses->entry_cnt++;
4183 			adjust_sit_entry_set(ses, head);
4184 			return;
4185 		}
4186 	}
4187 
4188 	ses = grab_sit_entry_set();
4189 
4190 	ses->start_segno = start_segno;
4191 	ses->entry_cnt++;
4192 	list_add(&ses->set_list, head);
4193 }
4194 
4195 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4196 {
4197 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4198 	struct list_head *set_list = &sm_info->sit_entry_set;
4199 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4200 	unsigned int segno;
4201 
4202 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4203 		add_sit_entry(segno, set_list);
4204 }
4205 
4206 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4207 {
4208 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4209 	struct f2fs_journal *journal = curseg->journal;
4210 	int i;
4211 
4212 	down_write(&curseg->journal_rwsem);
4213 	for (i = 0; i < sits_in_cursum(journal); i++) {
4214 		unsigned int segno;
4215 		bool dirtied;
4216 
4217 		segno = le32_to_cpu(segno_in_journal(journal, i));
4218 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4219 
4220 		if (!dirtied)
4221 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4222 	}
4223 	update_sits_in_cursum(journal, -i);
4224 	up_write(&curseg->journal_rwsem);
4225 }
4226 
4227 /*
4228  * CP calls this function, which flushes SIT entries including sit_journal,
4229  * and moves prefree segs to free segs.
4230  */
4231 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4232 {
4233 	struct sit_info *sit_i = SIT_I(sbi);
4234 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4235 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4236 	struct f2fs_journal *journal = curseg->journal;
4237 	struct sit_entry_set *ses, *tmp;
4238 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4239 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4240 	struct seg_entry *se;
4241 
4242 	down_write(&sit_i->sentry_lock);
4243 
4244 	if (!sit_i->dirty_sentries)
4245 		goto out;
4246 
4247 	/*
4248 	 * add and account sit entries of dirty bitmap in sit entry
4249 	 * set temporarily
4250 	 */
4251 	add_sits_in_set(sbi);
4252 
4253 	/*
4254 	 * if there are no enough space in journal to store dirty sit
4255 	 * entries, remove all entries from journal and add and account
4256 	 * them in sit entry set.
4257 	 */
4258 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4259 								!to_journal)
4260 		remove_sits_in_journal(sbi);
4261 
4262 	/*
4263 	 * there are two steps to flush sit entries:
4264 	 * #1, flush sit entries to journal in current cold data summary block.
4265 	 * #2, flush sit entries to sit page.
4266 	 */
4267 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4268 		struct page *page = NULL;
4269 		struct f2fs_sit_block *raw_sit = NULL;
4270 		unsigned int start_segno = ses->start_segno;
4271 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4272 						(unsigned long)MAIN_SEGS(sbi));
4273 		unsigned int segno = start_segno;
4274 
4275 		if (to_journal &&
4276 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4277 			to_journal = false;
4278 
4279 		if (to_journal) {
4280 			down_write(&curseg->journal_rwsem);
4281 		} else {
4282 			page = get_next_sit_page(sbi, start_segno);
4283 			raw_sit = page_address(page);
4284 		}
4285 
4286 		/* flush dirty sit entries in region of current sit set */
4287 		for_each_set_bit_from(segno, bitmap, end) {
4288 			int offset, sit_offset;
4289 
4290 			se = get_seg_entry(sbi, segno);
4291 #ifdef CONFIG_F2FS_CHECK_FS
4292 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4293 						SIT_VBLOCK_MAP_SIZE))
4294 				f2fs_bug_on(sbi, 1);
4295 #endif
4296 
4297 			/* add discard candidates */
4298 			if (!(cpc->reason & CP_DISCARD)) {
4299 				cpc->trim_start = segno;
4300 				add_discard_addrs(sbi, cpc, false);
4301 			}
4302 
4303 			if (to_journal) {
4304 				offset = f2fs_lookup_journal_in_cursum(journal,
4305 							SIT_JOURNAL, segno, 1);
4306 				f2fs_bug_on(sbi, offset < 0);
4307 				segno_in_journal(journal, offset) =
4308 							cpu_to_le32(segno);
4309 				seg_info_to_raw_sit(se,
4310 					&sit_in_journal(journal, offset));
4311 				check_block_count(sbi, segno,
4312 					&sit_in_journal(journal, offset));
4313 			} else {
4314 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4315 				seg_info_to_raw_sit(se,
4316 						&raw_sit->entries[sit_offset]);
4317 				check_block_count(sbi, segno,
4318 						&raw_sit->entries[sit_offset]);
4319 			}
4320 
4321 			__clear_bit(segno, bitmap);
4322 			sit_i->dirty_sentries--;
4323 			ses->entry_cnt--;
4324 		}
4325 
4326 		if (to_journal)
4327 			up_write(&curseg->journal_rwsem);
4328 		else
4329 			f2fs_put_page(page, 1);
4330 
4331 		f2fs_bug_on(sbi, ses->entry_cnt);
4332 		release_sit_entry_set(ses);
4333 	}
4334 
4335 	f2fs_bug_on(sbi, !list_empty(head));
4336 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4337 out:
4338 	if (cpc->reason & CP_DISCARD) {
4339 		__u64 trim_start = cpc->trim_start;
4340 
4341 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4342 			add_discard_addrs(sbi, cpc, false);
4343 
4344 		cpc->trim_start = trim_start;
4345 	}
4346 	up_write(&sit_i->sentry_lock);
4347 
4348 	set_prefree_as_free_segments(sbi);
4349 }
4350 
4351 static int build_sit_info(struct f2fs_sb_info *sbi)
4352 {
4353 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4354 	struct sit_info *sit_i;
4355 	unsigned int sit_segs, start;
4356 	char *src_bitmap, *bitmap;
4357 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4358 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4359 
4360 	/* allocate memory for SIT information */
4361 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4362 	if (!sit_i)
4363 		return -ENOMEM;
4364 
4365 	SM_I(sbi)->sit_info = sit_i;
4366 
4367 	sit_i->sentries =
4368 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4369 					      MAIN_SEGS(sbi)),
4370 			      GFP_KERNEL);
4371 	if (!sit_i->sentries)
4372 		return -ENOMEM;
4373 
4374 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4375 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4376 								GFP_KERNEL);
4377 	if (!sit_i->dirty_sentries_bitmap)
4378 		return -ENOMEM;
4379 
4380 #ifdef CONFIG_F2FS_CHECK_FS
4381 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4382 #else
4383 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4384 #endif
4385 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4386 	if (!sit_i->bitmap)
4387 		return -ENOMEM;
4388 
4389 	bitmap = sit_i->bitmap;
4390 
4391 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4392 		sit_i->sentries[start].cur_valid_map = bitmap;
4393 		bitmap += SIT_VBLOCK_MAP_SIZE;
4394 
4395 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4396 		bitmap += SIT_VBLOCK_MAP_SIZE;
4397 
4398 #ifdef CONFIG_F2FS_CHECK_FS
4399 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4400 		bitmap += SIT_VBLOCK_MAP_SIZE;
4401 #endif
4402 
4403 		if (discard_map) {
4404 			sit_i->sentries[start].discard_map = bitmap;
4405 			bitmap += SIT_VBLOCK_MAP_SIZE;
4406 		}
4407 	}
4408 
4409 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4410 	if (!sit_i->tmp_map)
4411 		return -ENOMEM;
4412 
4413 	if (__is_large_section(sbi)) {
4414 		sit_i->sec_entries =
4415 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4416 						      MAIN_SECS(sbi)),
4417 				      GFP_KERNEL);
4418 		if (!sit_i->sec_entries)
4419 			return -ENOMEM;
4420 	}
4421 
4422 	/* get information related with SIT */
4423 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4424 
4425 	/* setup SIT bitmap from ckeckpoint pack */
4426 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4427 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4428 
4429 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4430 	if (!sit_i->sit_bitmap)
4431 		return -ENOMEM;
4432 
4433 #ifdef CONFIG_F2FS_CHECK_FS
4434 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4435 					sit_bitmap_size, GFP_KERNEL);
4436 	if (!sit_i->sit_bitmap_mir)
4437 		return -ENOMEM;
4438 
4439 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4440 					main_bitmap_size, GFP_KERNEL);
4441 	if (!sit_i->invalid_segmap)
4442 		return -ENOMEM;
4443 #endif
4444 
4445 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4446 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4447 	sit_i->written_valid_blocks = 0;
4448 	sit_i->bitmap_size = sit_bitmap_size;
4449 	sit_i->dirty_sentries = 0;
4450 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4451 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4452 	sit_i->mounted_time = ktime_get_boottime_seconds();
4453 	init_rwsem(&sit_i->sentry_lock);
4454 	return 0;
4455 }
4456 
4457 static int build_free_segmap(struct f2fs_sb_info *sbi)
4458 {
4459 	struct free_segmap_info *free_i;
4460 	unsigned int bitmap_size, sec_bitmap_size;
4461 
4462 	/* allocate memory for free segmap information */
4463 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4464 	if (!free_i)
4465 		return -ENOMEM;
4466 
4467 	SM_I(sbi)->free_info = free_i;
4468 
4469 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4470 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4471 	if (!free_i->free_segmap)
4472 		return -ENOMEM;
4473 
4474 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4475 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4476 	if (!free_i->free_secmap)
4477 		return -ENOMEM;
4478 
4479 	/* set all segments as dirty temporarily */
4480 	memset(free_i->free_segmap, 0xff, bitmap_size);
4481 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4482 
4483 	/* init free segmap information */
4484 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4485 	free_i->free_segments = 0;
4486 	free_i->free_sections = 0;
4487 	spin_lock_init(&free_i->segmap_lock);
4488 	return 0;
4489 }
4490 
4491 static int build_curseg(struct f2fs_sb_info *sbi)
4492 {
4493 	struct curseg_info *array;
4494 	int i;
4495 
4496 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4497 					sizeof(*array)), GFP_KERNEL);
4498 	if (!array)
4499 		return -ENOMEM;
4500 
4501 	SM_I(sbi)->curseg_array = array;
4502 
4503 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4504 		mutex_init(&array[i].curseg_mutex);
4505 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4506 		if (!array[i].sum_blk)
4507 			return -ENOMEM;
4508 		init_rwsem(&array[i].journal_rwsem);
4509 		array[i].journal = f2fs_kzalloc(sbi,
4510 				sizeof(struct f2fs_journal), GFP_KERNEL);
4511 		if (!array[i].journal)
4512 			return -ENOMEM;
4513 		if (i < NR_PERSISTENT_LOG)
4514 			array[i].seg_type = CURSEG_HOT_DATA + i;
4515 		else if (i == CURSEG_COLD_DATA_PINNED)
4516 			array[i].seg_type = CURSEG_COLD_DATA;
4517 		else if (i == CURSEG_ALL_DATA_ATGC)
4518 			array[i].seg_type = CURSEG_COLD_DATA;
4519 		array[i].segno = NULL_SEGNO;
4520 		array[i].next_blkoff = 0;
4521 		array[i].inited = false;
4522 	}
4523 	return restore_curseg_summaries(sbi);
4524 }
4525 
4526 static int build_sit_entries(struct f2fs_sb_info *sbi)
4527 {
4528 	struct sit_info *sit_i = SIT_I(sbi);
4529 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4530 	struct f2fs_journal *journal = curseg->journal;
4531 	struct seg_entry *se;
4532 	struct f2fs_sit_entry sit;
4533 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4534 	unsigned int i, start, end;
4535 	unsigned int readed, start_blk = 0;
4536 	int err = 0;
4537 	block_t sit_valid_blocks[2] = {0, 0};
4538 
4539 	do {
4540 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4541 							META_SIT, true);
4542 
4543 		start = start_blk * sit_i->sents_per_block;
4544 		end = (start_blk + readed) * sit_i->sents_per_block;
4545 
4546 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4547 			struct f2fs_sit_block *sit_blk;
4548 			struct page *page;
4549 
4550 			se = &sit_i->sentries[start];
4551 			page = get_current_sit_page(sbi, start);
4552 			if (IS_ERR(page))
4553 				return PTR_ERR(page);
4554 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4555 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4556 			f2fs_put_page(page, 1);
4557 
4558 			err = check_block_count(sbi, start, &sit);
4559 			if (err)
4560 				return err;
4561 			seg_info_from_raw_sit(se, &sit);
4562 
4563 			if (se->type >= NR_PERSISTENT_LOG) {
4564 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4565 							se->type, start);
4566 				f2fs_handle_error(sbi,
4567 						ERROR_INCONSISTENT_SUM_TYPE);
4568 				return -EFSCORRUPTED;
4569 			}
4570 
4571 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4572 
4573 			if (f2fs_block_unit_discard(sbi)) {
4574 				/* build discard map only one time */
4575 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4576 					memset(se->discard_map, 0xff,
4577 						SIT_VBLOCK_MAP_SIZE);
4578 				} else {
4579 					memcpy(se->discard_map,
4580 						se->cur_valid_map,
4581 						SIT_VBLOCK_MAP_SIZE);
4582 					sbi->discard_blks +=
4583 						sbi->blocks_per_seg -
4584 						se->valid_blocks;
4585 				}
4586 			}
4587 
4588 			if (__is_large_section(sbi))
4589 				get_sec_entry(sbi, start)->valid_blocks +=
4590 							se->valid_blocks;
4591 		}
4592 		start_blk += readed;
4593 	} while (start_blk < sit_blk_cnt);
4594 
4595 	down_read(&curseg->journal_rwsem);
4596 	for (i = 0; i < sits_in_cursum(journal); i++) {
4597 		unsigned int old_valid_blocks;
4598 
4599 		start = le32_to_cpu(segno_in_journal(journal, i));
4600 		if (start >= MAIN_SEGS(sbi)) {
4601 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4602 				 start);
4603 			err = -EFSCORRUPTED;
4604 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4605 			break;
4606 		}
4607 
4608 		se = &sit_i->sentries[start];
4609 		sit = sit_in_journal(journal, i);
4610 
4611 		old_valid_blocks = se->valid_blocks;
4612 
4613 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4614 
4615 		err = check_block_count(sbi, start, &sit);
4616 		if (err)
4617 			break;
4618 		seg_info_from_raw_sit(se, &sit);
4619 
4620 		if (se->type >= NR_PERSISTENT_LOG) {
4621 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4622 							se->type, start);
4623 			err = -EFSCORRUPTED;
4624 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4625 			break;
4626 		}
4627 
4628 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4629 
4630 		if (f2fs_block_unit_discard(sbi)) {
4631 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4632 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4633 			} else {
4634 				memcpy(se->discard_map, se->cur_valid_map,
4635 							SIT_VBLOCK_MAP_SIZE);
4636 				sbi->discard_blks += old_valid_blocks;
4637 				sbi->discard_blks -= se->valid_blocks;
4638 			}
4639 		}
4640 
4641 		if (__is_large_section(sbi)) {
4642 			get_sec_entry(sbi, start)->valid_blocks +=
4643 							se->valid_blocks;
4644 			get_sec_entry(sbi, start)->valid_blocks -=
4645 							old_valid_blocks;
4646 		}
4647 	}
4648 	up_read(&curseg->journal_rwsem);
4649 
4650 	if (err)
4651 		return err;
4652 
4653 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4654 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4655 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4656 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4657 		return -EFSCORRUPTED;
4658 	}
4659 
4660 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4661 				valid_user_blocks(sbi)) {
4662 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4663 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4664 			 valid_user_blocks(sbi));
4665 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4666 		return -EFSCORRUPTED;
4667 	}
4668 
4669 	return 0;
4670 }
4671 
4672 static void init_free_segmap(struct f2fs_sb_info *sbi)
4673 {
4674 	unsigned int start;
4675 	int type;
4676 	struct seg_entry *sentry;
4677 
4678 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4679 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4680 			continue;
4681 		sentry = get_seg_entry(sbi, start);
4682 		if (!sentry->valid_blocks)
4683 			__set_free(sbi, start);
4684 		else
4685 			SIT_I(sbi)->written_valid_blocks +=
4686 						sentry->valid_blocks;
4687 	}
4688 
4689 	/* set use the current segments */
4690 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4691 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4692 
4693 		__set_test_and_inuse(sbi, curseg_t->segno);
4694 	}
4695 }
4696 
4697 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4698 {
4699 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4700 	struct free_segmap_info *free_i = FREE_I(sbi);
4701 	unsigned int segno = 0, offset = 0, secno;
4702 	block_t valid_blocks, usable_blks_in_seg;
4703 
4704 	while (1) {
4705 		/* find dirty segment based on free segmap */
4706 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4707 		if (segno >= MAIN_SEGS(sbi))
4708 			break;
4709 		offset = segno + 1;
4710 		valid_blocks = get_valid_blocks(sbi, segno, false);
4711 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4712 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4713 			continue;
4714 		if (valid_blocks > usable_blks_in_seg) {
4715 			f2fs_bug_on(sbi, 1);
4716 			continue;
4717 		}
4718 		mutex_lock(&dirty_i->seglist_lock);
4719 		__locate_dirty_segment(sbi, segno, DIRTY);
4720 		mutex_unlock(&dirty_i->seglist_lock);
4721 	}
4722 
4723 	if (!__is_large_section(sbi))
4724 		return;
4725 
4726 	mutex_lock(&dirty_i->seglist_lock);
4727 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4728 		valid_blocks = get_valid_blocks(sbi, segno, true);
4729 		secno = GET_SEC_FROM_SEG(sbi, segno);
4730 
4731 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4732 			continue;
4733 		if (IS_CURSEC(sbi, secno))
4734 			continue;
4735 		set_bit(secno, dirty_i->dirty_secmap);
4736 	}
4737 	mutex_unlock(&dirty_i->seglist_lock);
4738 }
4739 
4740 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4741 {
4742 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4743 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4744 
4745 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4746 	if (!dirty_i->victim_secmap)
4747 		return -ENOMEM;
4748 
4749 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4750 	if (!dirty_i->pinned_secmap)
4751 		return -ENOMEM;
4752 
4753 	dirty_i->pinned_secmap_cnt = 0;
4754 	dirty_i->enable_pin_section = true;
4755 	return 0;
4756 }
4757 
4758 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4759 {
4760 	struct dirty_seglist_info *dirty_i;
4761 	unsigned int bitmap_size, i;
4762 
4763 	/* allocate memory for dirty segments list information */
4764 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4765 								GFP_KERNEL);
4766 	if (!dirty_i)
4767 		return -ENOMEM;
4768 
4769 	SM_I(sbi)->dirty_info = dirty_i;
4770 	mutex_init(&dirty_i->seglist_lock);
4771 
4772 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4773 
4774 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4775 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4776 								GFP_KERNEL);
4777 		if (!dirty_i->dirty_segmap[i])
4778 			return -ENOMEM;
4779 	}
4780 
4781 	if (__is_large_section(sbi)) {
4782 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4783 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4784 						bitmap_size, GFP_KERNEL);
4785 		if (!dirty_i->dirty_secmap)
4786 			return -ENOMEM;
4787 	}
4788 
4789 	init_dirty_segmap(sbi);
4790 	return init_victim_secmap(sbi);
4791 }
4792 
4793 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4794 {
4795 	int i;
4796 
4797 	/*
4798 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4799 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4800 	 */
4801 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4802 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4803 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4804 		unsigned int blkofs = curseg->next_blkoff;
4805 
4806 		if (f2fs_sb_has_readonly(sbi) &&
4807 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4808 			continue;
4809 
4810 		sanity_check_seg_type(sbi, curseg->seg_type);
4811 
4812 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4813 			f2fs_err(sbi,
4814 				 "Current segment has invalid alloc_type:%d",
4815 				 curseg->alloc_type);
4816 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4817 			return -EFSCORRUPTED;
4818 		}
4819 
4820 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4821 			goto out;
4822 
4823 		if (curseg->alloc_type == SSR)
4824 			continue;
4825 
4826 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4827 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4828 				continue;
4829 out:
4830 			f2fs_err(sbi,
4831 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4832 				 i, curseg->segno, curseg->alloc_type,
4833 				 curseg->next_blkoff, blkofs);
4834 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4835 			return -EFSCORRUPTED;
4836 		}
4837 	}
4838 	return 0;
4839 }
4840 
4841 #ifdef CONFIG_BLK_DEV_ZONED
4842 
4843 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4844 				    struct f2fs_dev_info *fdev,
4845 				    struct blk_zone *zone)
4846 {
4847 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4848 	block_t zone_block, wp_block, last_valid_block;
4849 	int i, s, b, ret;
4850 	struct seg_entry *se;
4851 
4852 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4853 		return 0;
4854 
4855 	wp_block = fdev->start_blk + (zone->wp >> sbi->log_sectors_per_block);
4856 	wp_segno = GET_SEGNO(sbi, wp_block);
4857 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4858 	zone_block = fdev->start_blk + (zone->start >>
4859 						sbi->log_sectors_per_block);
4860 	zone_segno = GET_SEGNO(sbi, zone_block);
4861 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4862 
4863 	if (zone_segno >= MAIN_SEGS(sbi))
4864 		return 0;
4865 
4866 	/*
4867 	 * Skip check of zones cursegs point to, since
4868 	 * fix_curseg_write_pointer() checks them.
4869 	 */
4870 	for (i = 0; i < NO_CHECK_TYPE; i++)
4871 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4872 						   CURSEG_I(sbi, i)->segno))
4873 			return 0;
4874 
4875 	/*
4876 	 * Get last valid block of the zone.
4877 	 */
4878 	last_valid_block = zone_block - 1;
4879 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4880 		segno = zone_segno + s;
4881 		se = get_seg_entry(sbi, segno);
4882 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4883 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4884 				last_valid_block = START_BLOCK(sbi, segno) + b;
4885 				break;
4886 			}
4887 		if (last_valid_block >= zone_block)
4888 			break;
4889 	}
4890 
4891 	/*
4892 	 * The write pointer matches with the valid blocks or
4893 	 * already points to the end of the zone.
4894 	 */
4895 	if ((last_valid_block + 1 == wp_block) ||
4896 			(zone->wp == zone->start + zone->len))
4897 		return 0;
4898 
4899 	if (last_valid_block + 1 == zone_block) {
4900 		/*
4901 		 * If there is no valid block in the zone and if write pointer
4902 		 * is not at zone start, reset the write pointer.
4903 		 */
4904 		f2fs_notice(sbi,
4905 			    "Zone without valid block has non-zero write "
4906 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4907 			    wp_segno, wp_blkoff);
4908 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4909 				zone->len >> sbi->log_sectors_per_block);
4910 		if (ret)
4911 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4912 				 fdev->path, ret);
4913 
4914 		return ret;
4915 	}
4916 
4917 	/*
4918 	 * If there are valid blocks and the write pointer doesn't
4919 	 * match with them, we need to report the inconsistency and
4920 	 * fill the zone till the end to close the zone. This inconsistency
4921 	 * does not cause write error because the zone will not be selected
4922 	 * for write operation until it get discarded.
4923 	 */
4924 	f2fs_notice(sbi, "Valid blocks are not aligned with write pointer: "
4925 		    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4926 		    GET_SEGNO(sbi, last_valid_block),
4927 		    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4928 		    wp_segno, wp_blkoff);
4929 
4930 	ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4931 				zone->len - (zone->wp - zone->start),
4932 				GFP_NOFS, 0);
4933 	if (ret)
4934 		f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4935 			 fdev->path, ret);
4936 
4937 	return ret;
4938 }
4939 
4940 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4941 						  block_t zone_blkaddr)
4942 {
4943 	int i;
4944 
4945 	for (i = 0; i < sbi->s_ndevs; i++) {
4946 		if (!bdev_is_zoned(FDEV(i).bdev))
4947 			continue;
4948 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4949 				zone_blkaddr <= FDEV(i).end_blk))
4950 			return &FDEV(i);
4951 	}
4952 
4953 	return NULL;
4954 }
4955 
4956 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4957 			      void *data)
4958 {
4959 	memcpy(data, zone, sizeof(struct blk_zone));
4960 	return 0;
4961 }
4962 
4963 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4964 {
4965 	struct curseg_info *cs = CURSEG_I(sbi, type);
4966 	struct f2fs_dev_info *zbd;
4967 	struct blk_zone zone;
4968 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4969 	block_t cs_zone_block, wp_block;
4970 	sector_t zone_sector;
4971 	int err;
4972 
4973 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4974 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4975 
4976 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4977 	if (!zbd)
4978 		return 0;
4979 
4980 	/* report zone for the sector the curseg points to */
4981 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) <<
4982 						sbi->log_sectors_per_block;
4983 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4984 				  report_one_zone_cb, &zone);
4985 	if (err != 1) {
4986 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4987 			 zbd->path, err);
4988 		return err;
4989 	}
4990 
4991 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4992 		return 0;
4993 
4994 	wp_block = zbd->start_blk + (zone.wp >> sbi->log_sectors_per_block);
4995 	wp_segno = GET_SEGNO(sbi, wp_block);
4996 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4997 	wp_sector_off = zone.wp & GENMASK(sbi->log_sectors_per_block - 1, 0);
4998 
4999 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5000 		wp_sector_off == 0)
5001 		return 0;
5002 
5003 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5004 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
5005 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
5006 
5007 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5008 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
5009 
5010 	f2fs_allocate_new_section(sbi, type, true);
5011 
5012 	/* check consistency of the zone curseg pointed to */
5013 	if (check_zone_write_pointer(sbi, zbd, &zone))
5014 		return -EIO;
5015 
5016 	/* check newly assigned zone */
5017 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5018 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5019 
5020 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5021 	if (!zbd)
5022 		return 0;
5023 
5024 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) <<
5025 						sbi->log_sectors_per_block;
5026 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5027 				  report_one_zone_cb, &zone);
5028 	if (err != 1) {
5029 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5030 			 zbd->path, err);
5031 		return err;
5032 	}
5033 
5034 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5035 		return 0;
5036 
5037 	if (zone.wp != zone.start) {
5038 		f2fs_notice(sbi,
5039 			    "New zone for curseg[%d] is not yet discarded. "
5040 			    "Reset the zone: curseg[0x%x,0x%x]",
5041 			    type, cs->segno, cs->next_blkoff);
5042 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5043 					zone.len >> sbi->log_sectors_per_block);
5044 		if (err) {
5045 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5046 				 zbd->path, err);
5047 			return err;
5048 		}
5049 	}
5050 
5051 	return 0;
5052 }
5053 
5054 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5055 {
5056 	int i, ret;
5057 
5058 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5059 		ret = fix_curseg_write_pointer(sbi, i);
5060 		if (ret)
5061 			return ret;
5062 	}
5063 
5064 	return 0;
5065 }
5066 
5067 struct check_zone_write_pointer_args {
5068 	struct f2fs_sb_info *sbi;
5069 	struct f2fs_dev_info *fdev;
5070 };
5071 
5072 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5073 				      void *data)
5074 {
5075 	struct check_zone_write_pointer_args *args;
5076 
5077 	args = (struct check_zone_write_pointer_args *)data;
5078 
5079 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5080 }
5081 
5082 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5083 {
5084 	int i, ret;
5085 	struct check_zone_write_pointer_args args;
5086 
5087 	for (i = 0; i < sbi->s_ndevs; i++) {
5088 		if (!bdev_is_zoned(FDEV(i).bdev))
5089 			continue;
5090 
5091 		args.sbi = sbi;
5092 		args.fdev = &FDEV(i);
5093 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5094 					  check_zone_write_pointer_cb, &args);
5095 		if (ret < 0)
5096 			return ret;
5097 	}
5098 
5099 	return 0;
5100 }
5101 
5102 /*
5103  * Return the number of usable blocks in a segment. The number of blocks
5104  * returned is always equal to the number of blocks in a segment for
5105  * segments fully contained within a sequential zone capacity or a
5106  * conventional zone. For segments partially contained in a sequential
5107  * zone capacity, the number of usable blocks up to the zone capacity
5108  * is returned. 0 is returned in all other cases.
5109  */
5110 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5111 			struct f2fs_sb_info *sbi, unsigned int segno)
5112 {
5113 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5114 	unsigned int secno;
5115 
5116 	if (!sbi->unusable_blocks_per_sec)
5117 		return sbi->blocks_per_seg;
5118 
5119 	secno = GET_SEC_FROM_SEG(sbi, segno);
5120 	seg_start = START_BLOCK(sbi, segno);
5121 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5122 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5123 
5124 	/*
5125 	 * If segment starts before zone capacity and spans beyond
5126 	 * zone capacity, then usable blocks are from seg start to
5127 	 * zone capacity. If the segment starts after the zone capacity,
5128 	 * then there are no usable blocks.
5129 	 */
5130 	if (seg_start >= sec_cap_blkaddr)
5131 		return 0;
5132 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5133 		return sec_cap_blkaddr - seg_start;
5134 
5135 	return sbi->blocks_per_seg;
5136 }
5137 #else
5138 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5139 {
5140 	return 0;
5141 }
5142 
5143 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5144 {
5145 	return 0;
5146 }
5147 
5148 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5149 							unsigned int segno)
5150 {
5151 	return 0;
5152 }
5153 
5154 #endif
5155 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5156 					unsigned int segno)
5157 {
5158 	if (f2fs_sb_has_blkzoned(sbi))
5159 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5160 
5161 	return sbi->blocks_per_seg;
5162 }
5163 
5164 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5165 					unsigned int segno)
5166 {
5167 	if (f2fs_sb_has_blkzoned(sbi))
5168 		return CAP_SEGS_PER_SEC(sbi);
5169 
5170 	return sbi->segs_per_sec;
5171 }
5172 
5173 /*
5174  * Update min, max modified time for cost-benefit GC algorithm
5175  */
5176 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5177 {
5178 	struct sit_info *sit_i = SIT_I(sbi);
5179 	unsigned int segno;
5180 
5181 	down_write(&sit_i->sentry_lock);
5182 
5183 	sit_i->min_mtime = ULLONG_MAX;
5184 
5185 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5186 		unsigned int i;
5187 		unsigned long long mtime = 0;
5188 
5189 		for (i = 0; i < sbi->segs_per_sec; i++)
5190 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5191 
5192 		mtime = div_u64(mtime, sbi->segs_per_sec);
5193 
5194 		if (sit_i->min_mtime > mtime)
5195 			sit_i->min_mtime = mtime;
5196 	}
5197 	sit_i->max_mtime = get_mtime(sbi, false);
5198 	sit_i->dirty_max_mtime = 0;
5199 	up_write(&sit_i->sentry_lock);
5200 }
5201 
5202 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5203 {
5204 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5205 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5206 	struct f2fs_sm_info *sm_info;
5207 	int err;
5208 
5209 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5210 	if (!sm_info)
5211 		return -ENOMEM;
5212 
5213 	/* init sm info */
5214 	sbi->sm_info = sm_info;
5215 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5216 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5217 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5218 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5219 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5220 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5221 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5222 	sm_info->rec_prefree_segments = sm_info->main_segments *
5223 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5224 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5225 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5226 
5227 	if (!f2fs_lfs_mode(sbi))
5228 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5229 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5230 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5231 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5232 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5233 	sm_info->min_ssr_sections = reserved_sections(sbi);
5234 
5235 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5236 
5237 	init_f2fs_rwsem(&sm_info->curseg_lock);
5238 
5239 	err = f2fs_create_flush_cmd_control(sbi);
5240 	if (err)
5241 		return err;
5242 
5243 	err = create_discard_cmd_control(sbi);
5244 	if (err)
5245 		return err;
5246 
5247 	err = build_sit_info(sbi);
5248 	if (err)
5249 		return err;
5250 	err = build_free_segmap(sbi);
5251 	if (err)
5252 		return err;
5253 	err = build_curseg(sbi);
5254 	if (err)
5255 		return err;
5256 
5257 	/* reinit free segmap based on SIT */
5258 	err = build_sit_entries(sbi);
5259 	if (err)
5260 		return err;
5261 
5262 	init_free_segmap(sbi);
5263 	err = build_dirty_segmap(sbi);
5264 	if (err)
5265 		return err;
5266 
5267 	err = sanity_check_curseg(sbi);
5268 	if (err)
5269 		return err;
5270 
5271 	init_min_max_mtime(sbi);
5272 	return 0;
5273 }
5274 
5275 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5276 		enum dirty_type dirty_type)
5277 {
5278 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5279 
5280 	mutex_lock(&dirty_i->seglist_lock);
5281 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5282 	dirty_i->nr_dirty[dirty_type] = 0;
5283 	mutex_unlock(&dirty_i->seglist_lock);
5284 }
5285 
5286 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5287 {
5288 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5289 
5290 	kvfree(dirty_i->pinned_secmap);
5291 	kvfree(dirty_i->victim_secmap);
5292 }
5293 
5294 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5295 {
5296 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5297 	int i;
5298 
5299 	if (!dirty_i)
5300 		return;
5301 
5302 	/* discard pre-free/dirty segments list */
5303 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5304 		discard_dirty_segmap(sbi, i);
5305 
5306 	if (__is_large_section(sbi)) {
5307 		mutex_lock(&dirty_i->seglist_lock);
5308 		kvfree(dirty_i->dirty_secmap);
5309 		mutex_unlock(&dirty_i->seglist_lock);
5310 	}
5311 
5312 	destroy_victim_secmap(sbi);
5313 	SM_I(sbi)->dirty_info = NULL;
5314 	kfree(dirty_i);
5315 }
5316 
5317 static void destroy_curseg(struct f2fs_sb_info *sbi)
5318 {
5319 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5320 	int i;
5321 
5322 	if (!array)
5323 		return;
5324 	SM_I(sbi)->curseg_array = NULL;
5325 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5326 		kfree(array[i].sum_blk);
5327 		kfree(array[i].journal);
5328 	}
5329 	kfree(array);
5330 }
5331 
5332 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5333 {
5334 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5335 
5336 	if (!free_i)
5337 		return;
5338 	SM_I(sbi)->free_info = NULL;
5339 	kvfree(free_i->free_segmap);
5340 	kvfree(free_i->free_secmap);
5341 	kfree(free_i);
5342 }
5343 
5344 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5345 {
5346 	struct sit_info *sit_i = SIT_I(sbi);
5347 
5348 	if (!sit_i)
5349 		return;
5350 
5351 	if (sit_i->sentries)
5352 		kvfree(sit_i->bitmap);
5353 	kfree(sit_i->tmp_map);
5354 
5355 	kvfree(sit_i->sentries);
5356 	kvfree(sit_i->sec_entries);
5357 	kvfree(sit_i->dirty_sentries_bitmap);
5358 
5359 	SM_I(sbi)->sit_info = NULL;
5360 	kvfree(sit_i->sit_bitmap);
5361 #ifdef CONFIG_F2FS_CHECK_FS
5362 	kvfree(sit_i->sit_bitmap_mir);
5363 	kvfree(sit_i->invalid_segmap);
5364 #endif
5365 	kfree(sit_i);
5366 }
5367 
5368 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5369 {
5370 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5371 
5372 	if (!sm_info)
5373 		return;
5374 	f2fs_destroy_flush_cmd_control(sbi, true);
5375 	destroy_discard_cmd_control(sbi);
5376 	destroy_dirty_segmap(sbi);
5377 	destroy_curseg(sbi);
5378 	destroy_free_segmap(sbi);
5379 	destroy_sit_info(sbi);
5380 	sbi->sm_info = NULL;
5381 	kfree(sm_info);
5382 }
5383 
5384 int __init f2fs_create_segment_manager_caches(void)
5385 {
5386 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5387 			sizeof(struct discard_entry));
5388 	if (!discard_entry_slab)
5389 		goto fail;
5390 
5391 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5392 			sizeof(struct discard_cmd));
5393 	if (!discard_cmd_slab)
5394 		goto destroy_discard_entry;
5395 
5396 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5397 			sizeof(struct sit_entry_set));
5398 	if (!sit_entry_set_slab)
5399 		goto destroy_discard_cmd;
5400 
5401 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5402 			sizeof(struct revoke_entry));
5403 	if (!revoke_entry_slab)
5404 		goto destroy_sit_entry_set;
5405 	return 0;
5406 
5407 destroy_sit_entry_set:
5408 	kmem_cache_destroy(sit_entry_set_slab);
5409 destroy_discard_cmd:
5410 	kmem_cache_destroy(discard_cmd_slab);
5411 destroy_discard_entry:
5412 	kmem_cache_destroy(discard_entry_slab);
5413 fail:
5414 	return -ENOMEM;
5415 }
5416 
5417 void f2fs_destroy_segment_manager_caches(void)
5418 {
5419 	kmem_cache_destroy(sit_entry_set_slab);
5420 	kmem_cache_destroy(discard_cmd_slab);
5421 	kmem_cache_destroy(discard_entry_slab);
5422 	kmem_cache_destroy(revoke_entry_slab);
5423 }
5424