1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *inmem_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 189 { 190 struct inmem_pages *new; 191 192 set_page_private_atomic(page); 193 194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, 195 GFP_NOFS, true, NULL); 196 197 /* add atomic page indices to the list */ 198 new->page = page; 199 INIT_LIST_HEAD(&new->list); 200 201 /* increase reference count with clean state */ 202 get_page(page); 203 mutex_lock(&F2FS_I(inode)->inmem_lock); 204 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 205 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 206 mutex_unlock(&F2FS_I(inode)->inmem_lock); 207 208 trace_f2fs_register_inmem_page(page, INMEM); 209 } 210 211 static int __revoke_inmem_pages(struct inode *inode, 212 struct list_head *head, bool drop, bool recover, 213 bool trylock) 214 { 215 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 216 struct inmem_pages *cur, *tmp; 217 int err = 0; 218 219 list_for_each_entry_safe(cur, tmp, head, list) { 220 struct page *page = cur->page; 221 222 if (drop) 223 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 224 225 if (trylock) { 226 /* 227 * to avoid deadlock in between page lock and 228 * inmem_lock. 229 */ 230 if (!trylock_page(page)) 231 continue; 232 } else { 233 lock_page(page); 234 } 235 236 f2fs_wait_on_page_writeback(page, DATA, true, true); 237 238 if (recover) { 239 struct dnode_of_data dn; 240 struct node_info ni; 241 242 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 243 retry: 244 set_new_dnode(&dn, inode, NULL, NULL, 0); 245 err = f2fs_get_dnode_of_data(&dn, page->index, 246 LOOKUP_NODE); 247 if (err) { 248 if (err == -ENOMEM) { 249 memalloc_retry_wait(GFP_NOFS); 250 goto retry; 251 } 252 err = -EAGAIN; 253 goto next; 254 } 255 256 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 257 if (err) { 258 f2fs_put_dnode(&dn); 259 return err; 260 } 261 262 if (cur->old_addr == NEW_ADDR) { 263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 264 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 265 } else 266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 267 cur->old_addr, ni.version, true, true); 268 f2fs_put_dnode(&dn); 269 } 270 next: 271 /* we don't need to invalidate this in the sccessful status */ 272 if (drop || recover) { 273 ClearPageUptodate(page); 274 clear_page_private_gcing(page); 275 } 276 detach_page_private(page); 277 set_page_private(page, 0); 278 f2fs_put_page(page, 1); 279 280 list_del(&cur->list); 281 kmem_cache_free(inmem_entry_slab, cur); 282 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 283 } 284 return err; 285 } 286 287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 288 { 289 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 290 struct inode *inode; 291 struct f2fs_inode_info *fi; 292 unsigned int count = sbi->atomic_files; 293 unsigned int looped = 0; 294 next: 295 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 296 if (list_empty(head)) { 297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 298 return; 299 } 300 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 301 inode = igrab(&fi->vfs_inode); 302 if (inode) 303 list_move_tail(&fi->inmem_ilist, head); 304 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 305 306 if (inode) { 307 if (gc_failure) { 308 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) 309 goto skip; 310 } 311 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 312 f2fs_drop_inmem_pages(inode); 313 skip: 314 iput(inode); 315 } 316 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 317 if (gc_failure) { 318 if (++looped >= count) 319 return; 320 } 321 goto next; 322 } 323 324 void f2fs_drop_inmem_pages(struct inode *inode) 325 { 326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 327 struct f2fs_inode_info *fi = F2FS_I(inode); 328 329 do { 330 mutex_lock(&fi->inmem_lock); 331 if (list_empty(&fi->inmem_pages)) { 332 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 333 334 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 335 if (!list_empty(&fi->inmem_ilist)) 336 list_del_init(&fi->inmem_ilist); 337 if (f2fs_is_atomic_file(inode)) { 338 clear_inode_flag(inode, FI_ATOMIC_FILE); 339 sbi->atomic_files--; 340 } 341 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 342 343 mutex_unlock(&fi->inmem_lock); 344 break; 345 } 346 __revoke_inmem_pages(inode, &fi->inmem_pages, 347 true, false, true); 348 mutex_unlock(&fi->inmem_lock); 349 } while (1); 350 } 351 352 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 353 { 354 struct f2fs_inode_info *fi = F2FS_I(inode); 355 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 356 struct list_head *head = &fi->inmem_pages; 357 struct inmem_pages *cur = NULL; 358 359 f2fs_bug_on(sbi, !page_private_atomic(page)); 360 361 mutex_lock(&fi->inmem_lock); 362 list_for_each_entry(cur, head, list) { 363 if (cur->page == page) 364 break; 365 } 366 367 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 368 list_del(&cur->list); 369 mutex_unlock(&fi->inmem_lock); 370 371 dec_page_count(sbi, F2FS_INMEM_PAGES); 372 kmem_cache_free(inmem_entry_slab, cur); 373 374 ClearPageUptodate(page); 375 clear_page_private_atomic(page); 376 f2fs_put_page(page, 0); 377 378 detach_page_private(page); 379 set_page_private(page, 0); 380 381 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 382 } 383 384 static int __f2fs_commit_inmem_pages(struct inode *inode) 385 { 386 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 387 struct f2fs_inode_info *fi = F2FS_I(inode); 388 struct inmem_pages *cur, *tmp; 389 struct f2fs_io_info fio = { 390 .sbi = sbi, 391 .ino = inode->i_ino, 392 .type = DATA, 393 .op = REQ_OP_WRITE, 394 .op_flags = REQ_SYNC | REQ_PRIO, 395 .io_type = FS_DATA_IO, 396 }; 397 struct list_head revoke_list; 398 bool submit_bio = false; 399 int err = 0; 400 401 INIT_LIST_HEAD(&revoke_list); 402 403 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 404 struct page *page = cur->page; 405 406 lock_page(page); 407 if (page->mapping == inode->i_mapping) { 408 trace_f2fs_commit_inmem_page(page, INMEM); 409 410 f2fs_wait_on_page_writeback(page, DATA, true, true); 411 412 set_page_dirty(page); 413 if (clear_page_dirty_for_io(page)) { 414 inode_dec_dirty_pages(inode); 415 f2fs_remove_dirty_inode(inode); 416 } 417 retry: 418 fio.page = page; 419 fio.old_blkaddr = NULL_ADDR; 420 fio.encrypted_page = NULL; 421 fio.need_lock = LOCK_DONE; 422 err = f2fs_do_write_data_page(&fio); 423 if (err) { 424 if (err == -ENOMEM) { 425 memalloc_retry_wait(GFP_NOFS); 426 goto retry; 427 } 428 unlock_page(page); 429 break; 430 } 431 /* record old blkaddr for revoking */ 432 cur->old_addr = fio.old_blkaddr; 433 submit_bio = true; 434 } 435 unlock_page(page); 436 list_move_tail(&cur->list, &revoke_list); 437 } 438 439 if (submit_bio) 440 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 441 442 if (err) { 443 /* 444 * try to revoke all committed pages, but still we could fail 445 * due to no memory or other reason, if that happened, EAGAIN 446 * will be returned, which means in such case, transaction is 447 * already not integrity, caller should use journal to do the 448 * recovery or rewrite & commit last transaction. For other 449 * error number, revoking was done by filesystem itself. 450 */ 451 err = __revoke_inmem_pages(inode, &revoke_list, 452 false, true, false); 453 454 /* drop all uncommitted pages */ 455 __revoke_inmem_pages(inode, &fi->inmem_pages, 456 true, false, false); 457 } else { 458 __revoke_inmem_pages(inode, &revoke_list, 459 false, false, false); 460 } 461 462 return err; 463 } 464 465 int f2fs_commit_inmem_pages(struct inode *inode) 466 { 467 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 468 struct f2fs_inode_info *fi = F2FS_I(inode); 469 int err; 470 471 f2fs_balance_fs(sbi, true); 472 473 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 474 475 f2fs_lock_op(sbi); 476 set_inode_flag(inode, FI_ATOMIC_COMMIT); 477 478 mutex_lock(&fi->inmem_lock); 479 err = __f2fs_commit_inmem_pages(inode); 480 mutex_unlock(&fi->inmem_lock); 481 482 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 483 484 f2fs_unlock_op(sbi); 485 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 486 487 return err; 488 } 489 490 /* 491 * This function balances dirty node and dentry pages. 492 * In addition, it controls garbage collection. 493 */ 494 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 495 { 496 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 497 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 498 f2fs_stop_checkpoint(sbi, false); 499 } 500 501 /* balance_fs_bg is able to be pending */ 502 if (need && excess_cached_nats(sbi)) 503 f2fs_balance_fs_bg(sbi, false); 504 505 if (!f2fs_is_checkpoint_ready(sbi)) 506 return; 507 508 /* 509 * We should do GC or end up with checkpoint, if there are so many dirty 510 * dir/node pages without enough free segments. 511 */ 512 if (has_not_enough_free_secs(sbi, 0, 0)) { 513 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 514 sbi->gc_thread->f2fs_gc_task) { 515 DEFINE_WAIT(wait); 516 517 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 518 TASK_UNINTERRUPTIBLE); 519 wake_up(&sbi->gc_thread->gc_wait_queue_head); 520 io_schedule(); 521 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 522 } else { 523 f2fs_down_write(&sbi->gc_lock); 524 f2fs_gc(sbi, false, false, false, NULL_SEGNO); 525 } 526 } 527 } 528 529 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 530 { 531 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 532 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 533 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 534 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 535 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 536 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 537 unsigned int threshold = sbi->blocks_per_seg * factor * 538 DEFAULT_DIRTY_THRESHOLD; 539 unsigned int global_threshold = threshold * 3 / 2; 540 541 if (dents >= threshold || qdata >= threshold || 542 nodes >= threshold || meta >= threshold || 543 imeta >= threshold) 544 return true; 545 return dents + qdata + nodes + meta + imeta > global_threshold; 546 } 547 548 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 549 { 550 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 551 return; 552 553 /* try to shrink extent cache when there is no enough memory */ 554 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 555 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 556 557 /* check the # of cached NAT entries */ 558 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 559 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 560 561 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 562 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 563 else 564 f2fs_build_free_nids(sbi, false, false); 565 566 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 567 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 568 goto do_sync; 569 570 /* there is background inflight IO or foreground operation recently */ 571 if (is_inflight_io(sbi, REQ_TIME) || 572 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 573 return; 574 575 /* exceed periodical checkpoint timeout threshold */ 576 if (f2fs_time_over(sbi, CP_TIME)) 577 goto do_sync; 578 579 /* checkpoint is the only way to shrink partial cached entries */ 580 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 581 f2fs_available_free_memory(sbi, INO_ENTRIES)) 582 return; 583 584 do_sync: 585 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 586 struct blk_plug plug; 587 588 mutex_lock(&sbi->flush_lock); 589 590 blk_start_plug(&plug); 591 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 592 blk_finish_plug(&plug); 593 594 mutex_unlock(&sbi->flush_lock); 595 } 596 f2fs_sync_fs(sbi->sb, true); 597 stat_inc_bg_cp_count(sbi->stat_info); 598 } 599 600 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 601 struct block_device *bdev) 602 { 603 int ret = blkdev_issue_flush(bdev); 604 605 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 606 test_opt(sbi, FLUSH_MERGE), ret); 607 return ret; 608 } 609 610 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 611 { 612 int ret = 0; 613 int i; 614 615 if (!f2fs_is_multi_device(sbi)) 616 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 617 618 for (i = 0; i < sbi->s_ndevs; i++) { 619 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 620 continue; 621 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 622 if (ret) 623 break; 624 } 625 return ret; 626 } 627 628 static int issue_flush_thread(void *data) 629 { 630 struct f2fs_sb_info *sbi = data; 631 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 632 wait_queue_head_t *q = &fcc->flush_wait_queue; 633 repeat: 634 if (kthread_should_stop()) 635 return 0; 636 637 if (!llist_empty(&fcc->issue_list)) { 638 struct flush_cmd *cmd, *next; 639 int ret; 640 641 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 642 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 643 644 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 645 646 ret = submit_flush_wait(sbi, cmd->ino); 647 atomic_inc(&fcc->issued_flush); 648 649 llist_for_each_entry_safe(cmd, next, 650 fcc->dispatch_list, llnode) { 651 cmd->ret = ret; 652 complete(&cmd->wait); 653 } 654 fcc->dispatch_list = NULL; 655 } 656 657 wait_event_interruptible(*q, 658 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 659 goto repeat; 660 } 661 662 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 663 { 664 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 665 struct flush_cmd cmd; 666 int ret; 667 668 if (test_opt(sbi, NOBARRIER)) 669 return 0; 670 671 if (!test_opt(sbi, FLUSH_MERGE)) { 672 atomic_inc(&fcc->queued_flush); 673 ret = submit_flush_wait(sbi, ino); 674 atomic_dec(&fcc->queued_flush); 675 atomic_inc(&fcc->issued_flush); 676 return ret; 677 } 678 679 if (atomic_inc_return(&fcc->queued_flush) == 1 || 680 f2fs_is_multi_device(sbi)) { 681 ret = submit_flush_wait(sbi, ino); 682 atomic_dec(&fcc->queued_flush); 683 684 atomic_inc(&fcc->issued_flush); 685 return ret; 686 } 687 688 cmd.ino = ino; 689 init_completion(&cmd.wait); 690 691 llist_add(&cmd.llnode, &fcc->issue_list); 692 693 /* 694 * update issue_list before we wake up issue_flush thread, this 695 * smp_mb() pairs with another barrier in ___wait_event(), see 696 * more details in comments of waitqueue_active(). 697 */ 698 smp_mb(); 699 700 if (waitqueue_active(&fcc->flush_wait_queue)) 701 wake_up(&fcc->flush_wait_queue); 702 703 if (fcc->f2fs_issue_flush) { 704 wait_for_completion(&cmd.wait); 705 atomic_dec(&fcc->queued_flush); 706 } else { 707 struct llist_node *list; 708 709 list = llist_del_all(&fcc->issue_list); 710 if (!list) { 711 wait_for_completion(&cmd.wait); 712 atomic_dec(&fcc->queued_flush); 713 } else { 714 struct flush_cmd *tmp, *next; 715 716 ret = submit_flush_wait(sbi, ino); 717 718 llist_for_each_entry_safe(tmp, next, list, llnode) { 719 if (tmp == &cmd) { 720 cmd.ret = ret; 721 atomic_dec(&fcc->queued_flush); 722 continue; 723 } 724 tmp->ret = ret; 725 complete(&tmp->wait); 726 } 727 } 728 } 729 730 return cmd.ret; 731 } 732 733 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 734 { 735 dev_t dev = sbi->sb->s_bdev->bd_dev; 736 struct flush_cmd_control *fcc; 737 int err = 0; 738 739 if (SM_I(sbi)->fcc_info) { 740 fcc = SM_I(sbi)->fcc_info; 741 if (fcc->f2fs_issue_flush) 742 return err; 743 goto init_thread; 744 } 745 746 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 747 if (!fcc) 748 return -ENOMEM; 749 atomic_set(&fcc->issued_flush, 0); 750 atomic_set(&fcc->queued_flush, 0); 751 init_waitqueue_head(&fcc->flush_wait_queue); 752 init_llist_head(&fcc->issue_list); 753 SM_I(sbi)->fcc_info = fcc; 754 if (!test_opt(sbi, FLUSH_MERGE)) 755 return err; 756 757 init_thread: 758 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 759 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 760 if (IS_ERR(fcc->f2fs_issue_flush)) { 761 err = PTR_ERR(fcc->f2fs_issue_flush); 762 kfree(fcc); 763 SM_I(sbi)->fcc_info = NULL; 764 return err; 765 } 766 767 return err; 768 } 769 770 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 771 { 772 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 773 774 if (fcc && fcc->f2fs_issue_flush) { 775 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 776 777 fcc->f2fs_issue_flush = NULL; 778 kthread_stop(flush_thread); 779 } 780 if (free) { 781 kfree(fcc); 782 SM_I(sbi)->fcc_info = NULL; 783 } 784 } 785 786 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 787 { 788 int ret = 0, i; 789 790 if (!f2fs_is_multi_device(sbi)) 791 return 0; 792 793 if (test_opt(sbi, NOBARRIER)) 794 return 0; 795 796 for (i = 1; i < sbi->s_ndevs; i++) { 797 int count = DEFAULT_RETRY_IO_COUNT; 798 799 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 800 continue; 801 802 do { 803 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 804 if (ret) 805 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 806 } while (ret && --count); 807 808 if (ret) { 809 f2fs_stop_checkpoint(sbi, false); 810 break; 811 } 812 813 spin_lock(&sbi->dev_lock); 814 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 815 spin_unlock(&sbi->dev_lock); 816 } 817 818 return ret; 819 } 820 821 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 822 enum dirty_type dirty_type) 823 { 824 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 825 826 /* need not be added */ 827 if (IS_CURSEG(sbi, segno)) 828 return; 829 830 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 831 dirty_i->nr_dirty[dirty_type]++; 832 833 if (dirty_type == DIRTY) { 834 struct seg_entry *sentry = get_seg_entry(sbi, segno); 835 enum dirty_type t = sentry->type; 836 837 if (unlikely(t >= DIRTY)) { 838 f2fs_bug_on(sbi, 1); 839 return; 840 } 841 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 842 dirty_i->nr_dirty[t]++; 843 844 if (__is_large_section(sbi)) { 845 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 846 block_t valid_blocks = 847 get_valid_blocks(sbi, segno, true); 848 849 f2fs_bug_on(sbi, unlikely(!valid_blocks || 850 valid_blocks == BLKS_PER_SEC(sbi))); 851 852 if (!IS_CURSEC(sbi, secno)) 853 set_bit(secno, dirty_i->dirty_secmap); 854 } 855 } 856 } 857 858 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 859 enum dirty_type dirty_type) 860 { 861 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 862 block_t valid_blocks; 863 864 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 865 dirty_i->nr_dirty[dirty_type]--; 866 867 if (dirty_type == DIRTY) { 868 struct seg_entry *sentry = get_seg_entry(sbi, segno); 869 enum dirty_type t = sentry->type; 870 871 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 872 dirty_i->nr_dirty[t]--; 873 874 valid_blocks = get_valid_blocks(sbi, segno, true); 875 if (valid_blocks == 0) { 876 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 877 dirty_i->victim_secmap); 878 #ifdef CONFIG_F2FS_CHECK_FS 879 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 880 #endif 881 } 882 if (__is_large_section(sbi)) { 883 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 884 885 if (!valid_blocks || 886 valid_blocks == BLKS_PER_SEC(sbi)) { 887 clear_bit(secno, dirty_i->dirty_secmap); 888 return; 889 } 890 891 if (!IS_CURSEC(sbi, secno)) 892 set_bit(secno, dirty_i->dirty_secmap); 893 } 894 } 895 } 896 897 /* 898 * Should not occur error such as -ENOMEM. 899 * Adding dirty entry into seglist is not critical operation. 900 * If a given segment is one of current working segments, it won't be added. 901 */ 902 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 903 { 904 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 905 unsigned short valid_blocks, ckpt_valid_blocks; 906 unsigned int usable_blocks; 907 908 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 909 return; 910 911 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 912 mutex_lock(&dirty_i->seglist_lock); 913 914 valid_blocks = get_valid_blocks(sbi, segno, false); 915 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 916 917 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 918 ckpt_valid_blocks == usable_blocks)) { 919 __locate_dirty_segment(sbi, segno, PRE); 920 __remove_dirty_segment(sbi, segno, DIRTY); 921 } else if (valid_blocks < usable_blocks) { 922 __locate_dirty_segment(sbi, segno, DIRTY); 923 } else { 924 /* Recovery routine with SSR needs this */ 925 __remove_dirty_segment(sbi, segno, DIRTY); 926 } 927 928 mutex_unlock(&dirty_i->seglist_lock); 929 } 930 931 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 932 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 933 { 934 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 935 unsigned int segno; 936 937 mutex_lock(&dirty_i->seglist_lock); 938 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 939 if (get_valid_blocks(sbi, segno, false)) 940 continue; 941 if (IS_CURSEG(sbi, segno)) 942 continue; 943 __locate_dirty_segment(sbi, segno, PRE); 944 __remove_dirty_segment(sbi, segno, DIRTY); 945 } 946 mutex_unlock(&dirty_i->seglist_lock); 947 } 948 949 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 950 { 951 int ovp_hole_segs = 952 (overprovision_segments(sbi) - reserved_segments(sbi)); 953 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 954 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 955 block_t holes[2] = {0, 0}; /* DATA and NODE */ 956 block_t unusable; 957 struct seg_entry *se; 958 unsigned int segno; 959 960 mutex_lock(&dirty_i->seglist_lock); 961 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 962 se = get_seg_entry(sbi, segno); 963 if (IS_NODESEG(se->type)) 964 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 965 se->valid_blocks; 966 else 967 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 968 se->valid_blocks; 969 } 970 mutex_unlock(&dirty_i->seglist_lock); 971 972 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 973 if (unusable > ovp_holes) 974 return unusable - ovp_holes; 975 return 0; 976 } 977 978 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 979 { 980 int ovp_hole_segs = 981 (overprovision_segments(sbi) - reserved_segments(sbi)); 982 if (unusable > F2FS_OPTION(sbi).unusable_cap) 983 return -EAGAIN; 984 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 985 dirty_segments(sbi) > ovp_hole_segs) 986 return -EAGAIN; 987 return 0; 988 } 989 990 /* This is only used by SBI_CP_DISABLED */ 991 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 992 { 993 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 994 unsigned int segno = 0; 995 996 mutex_lock(&dirty_i->seglist_lock); 997 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 998 if (get_valid_blocks(sbi, segno, false)) 999 continue; 1000 if (get_ckpt_valid_blocks(sbi, segno, false)) 1001 continue; 1002 mutex_unlock(&dirty_i->seglist_lock); 1003 return segno; 1004 } 1005 mutex_unlock(&dirty_i->seglist_lock); 1006 return NULL_SEGNO; 1007 } 1008 1009 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 1010 struct block_device *bdev, block_t lstart, 1011 block_t start, block_t len) 1012 { 1013 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1014 struct list_head *pend_list; 1015 struct discard_cmd *dc; 1016 1017 f2fs_bug_on(sbi, !len); 1018 1019 pend_list = &dcc->pend_list[plist_idx(len)]; 1020 1021 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 1022 INIT_LIST_HEAD(&dc->list); 1023 dc->bdev = bdev; 1024 dc->lstart = lstart; 1025 dc->start = start; 1026 dc->len = len; 1027 dc->ref = 0; 1028 dc->state = D_PREP; 1029 dc->queued = 0; 1030 dc->error = 0; 1031 init_completion(&dc->wait); 1032 list_add_tail(&dc->list, pend_list); 1033 spin_lock_init(&dc->lock); 1034 dc->bio_ref = 0; 1035 atomic_inc(&dcc->discard_cmd_cnt); 1036 dcc->undiscard_blks += len; 1037 1038 return dc; 1039 } 1040 1041 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 1042 struct block_device *bdev, block_t lstart, 1043 block_t start, block_t len, 1044 struct rb_node *parent, struct rb_node **p, 1045 bool leftmost) 1046 { 1047 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1048 struct discard_cmd *dc; 1049 1050 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1051 1052 rb_link_node(&dc->rb_node, parent, p); 1053 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1054 1055 return dc; 1056 } 1057 1058 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1059 struct discard_cmd *dc) 1060 { 1061 if (dc->state == D_DONE) 1062 atomic_sub(dc->queued, &dcc->queued_discard); 1063 1064 list_del(&dc->list); 1065 rb_erase_cached(&dc->rb_node, &dcc->root); 1066 dcc->undiscard_blks -= dc->len; 1067 1068 kmem_cache_free(discard_cmd_slab, dc); 1069 1070 atomic_dec(&dcc->discard_cmd_cnt); 1071 } 1072 1073 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1074 struct discard_cmd *dc) 1075 { 1076 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1077 unsigned long flags; 1078 1079 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1080 1081 spin_lock_irqsave(&dc->lock, flags); 1082 if (dc->bio_ref) { 1083 spin_unlock_irqrestore(&dc->lock, flags); 1084 return; 1085 } 1086 spin_unlock_irqrestore(&dc->lock, flags); 1087 1088 f2fs_bug_on(sbi, dc->ref); 1089 1090 if (dc->error == -EOPNOTSUPP) 1091 dc->error = 0; 1092 1093 if (dc->error) 1094 printk_ratelimited( 1095 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1096 KERN_INFO, sbi->sb->s_id, 1097 dc->lstart, dc->start, dc->len, dc->error); 1098 __detach_discard_cmd(dcc, dc); 1099 } 1100 1101 static void f2fs_submit_discard_endio(struct bio *bio) 1102 { 1103 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1104 unsigned long flags; 1105 1106 spin_lock_irqsave(&dc->lock, flags); 1107 if (!dc->error) 1108 dc->error = blk_status_to_errno(bio->bi_status); 1109 dc->bio_ref--; 1110 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1111 dc->state = D_DONE; 1112 complete_all(&dc->wait); 1113 } 1114 spin_unlock_irqrestore(&dc->lock, flags); 1115 bio_put(bio); 1116 } 1117 1118 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1119 block_t start, block_t end) 1120 { 1121 #ifdef CONFIG_F2FS_CHECK_FS 1122 struct seg_entry *sentry; 1123 unsigned int segno; 1124 block_t blk = start; 1125 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1126 unsigned long *map; 1127 1128 while (blk < end) { 1129 segno = GET_SEGNO(sbi, blk); 1130 sentry = get_seg_entry(sbi, segno); 1131 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1132 1133 if (end < START_BLOCK(sbi, segno + 1)) 1134 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1135 else 1136 size = max_blocks; 1137 map = (unsigned long *)(sentry->cur_valid_map); 1138 offset = __find_rev_next_bit(map, size, offset); 1139 f2fs_bug_on(sbi, offset != size); 1140 blk = START_BLOCK(sbi, segno + 1); 1141 } 1142 #endif 1143 } 1144 1145 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1146 struct discard_policy *dpolicy, 1147 int discard_type, unsigned int granularity) 1148 { 1149 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1150 1151 /* common policy */ 1152 dpolicy->type = discard_type; 1153 dpolicy->sync = true; 1154 dpolicy->ordered = false; 1155 dpolicy->granularity = granularity; 1156 1157 dpolicy->max_requests = dcc->max_discard_request; 1158 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1159 dpolicy->timeout = false; 1160 1161 if (discard_type == DPOLICY_BG) { 1162 dpolicy->min_interval = dcc->min_discard_issue_time; 1163 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1164 dpolicy->max_interval = dcc->max_discard_issue_time; 1165 dpolicy->io_aware = true; 1166 dpolicy->sync = false; 1167 dpolicy->ordered = true; 1168 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1169 dpolicy->granularity = 1; 1170 if (atomic_read(&dcc->discard_cmd_cnt)) 1171 dpolicy->max_interval = 1172 dcc->min_discard_issue_time; 1173 } 1174 } else if (discard_type == DPOLICY_FORCE) { 1175 dpolicy->min_interval = dcc->min_discard_issue_time; 1176 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1177 dpolicy->max_interval = dcc->max_discard_issue_time; 1178 dpolicy->io_aware = false; 1179 } else if (discard_type == DPOLICY_FSTRIM) { 1180 dpolicy->io_aware = false; 1181 } else if (discard_type == DPOLICY_UMOUNT) { 1182 dpolicy->io_aware = false; 1183 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1184 dpolicy->granularity = 1; 1185 dpolicy->timeout = true; 1186 } 1187 } 1188 1189 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1190 struct block_device *bdev, block_t lstart, 1191 block_t start, block_t len); 1192 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1193 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1194 struct discard_policy *dpolicy, 1195 struct discard_cmd *dc, 1196 unsigned int *issued) 1197 { 1198 struct block_device *bdev = dc->bdev; 1199 struct request_queue *q = bdev_get_queue(bdev); 1200 unsigned int max_discard_blocks = 1201 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1202 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1203 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1204 &(dcc->fstrim_list) : &(dcc->wait_list); 1205 int flag = dpolicy->sync ? REQ_SYNC : 0; 1206 block_t lstart, start, len, total_len; 1207 int err = 0; 1208 1209 if (dc->state != D_PREP) 1210 return 0; 1211 1212 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1213 return 0; 1214 1215 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1216 1217 lstart = dc->lstart; 1218 start = dc->start; 1219 len = dc->len; 1220 total_len = len; 1221 1222 dc->len = 0; 1223 1224 while (total_len && *issued < dpolicy->max_requests && !err) { 1225 struct bio *bio = NULL; 1226 unsigned long flags; 1227 bool last = true; 1228 1229 if (len > max_discard_blocks) { 1230 len = max_discard_blocks; 1231 last = false; 1232 } 1233 1234 (*issued)++; 1235 if (*issued == dpolicy->max_requests) 1236 last = true; 1237 1238 dc->len += len; 1239 1240 if (time_to_inject(sbi, FAULT_DISCARD)) { 1241 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1242 err = -EIO; 1243 goto submit; 1244 } 1245 err = __blkdev_issue_discard(bdev, 1246 SECTOR_FROM_BLOCK(start), 1247 SECTOR_FROM_BLOCK(len), 1248 GFP_NOFS, 0, &bio); 1249 submit: 1250 if (err) { 1251 spin_lock_irqsave(&dc->lock, flags); 1252 if (dc->state == D_PARTIAL) 1253 dc->state = D_SUBMIT; 1254 spin_unlock_irqrestore(&dc->lock, flags); 1255 1256 break; 1257 } 1258 1259 f2fs_bug_on(sbi, !bio); 1260 1261 /* 1262 * should keep before submission to avoid D_DONE 1263 * right away 1264 */ 1265 spin_lock_irqsave(&dc->lock, flags); 1266 if (last) 1267 dc->state = D_SUBMIT; 1268 else 1269 dc->state = D_PARTIAL; 1270 dc->bio_ref++; 1271 spin_unlock_irqrestore(&dc->lock, flags); 1272 1273 atomic_inc(&dcc->queued_discard); 1274 dc->queued++; 1275 list_move_tail(&dc->list, wait_list); 1276 1277 /* sanity check on discard range */ 1278 __check_sit_bitmap(sbi, lstart, lstart + len); 1279 1280 bio->bi_private = dc; 1281 bio->bi_end_io = f2fs_submit_discard_endio; 1282 bio->bi_opf |= flag; 1283 submit_bio(bio); 1284 1285 atomic_inc(&dcc->issued_discard); 1286 1287 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1288 1289 lstart += len; 1290 start += len; 1291 total_len -= len; 1292 len = total_len; 1293 } 1294 1295 if (!err && len) { 1296 dcc->undiscard_blks -= len; 1297 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1298 } 1299 return err; 1300 } 1301 1302 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1303 struct block_device *bdev, block_t lstart, 1304 block_t start, block_t len, 1305 struct rb_node **insert_p, 1306 struct rb_node *insert_parent) 1307 { 1308 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1309 struct rb_node **p; 1310 struct rb_node *parent = NULL; 1311 bool leftmost = true; 1312 1313 if (insert_p && insert_parent) { 1314 parent = insert_parent; 1315 p = insert_p; 1316 goto do_insert; 1317 } 1318 1319 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1320 lstart, &leftmost); 1321 do_insert: 1322 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1323 p, leftmost); 1324 } 1325 1326 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1327 struct discard_cmd *dc) 1328 { 1329 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1330 } 1331 1332 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1333 struct discard_cmd *dc, block_t blkaddr) 1334 { 1335 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1336 struct discard_info di = dc->di; 1337 bool modified = false; 1338 1339 if (dc->state == D_DONE || dc->len == 1) { 1340 __remove_discard_cmd(sbi, dc); 1341 return; 1342 } 1343 1344 dcc->undiscard_blks -= di.len; 1345 1346 if (blkaddr > di.lstart) { 1347 dc->len = blkaddr - dc->lstart; 1348 dcc->undiscard_blks += dc->len; 1349 __relocate_discard_cmd(dcc, dc); 1350 modified = true; 1351 } 1352 1353 if (blkaddr < di.lstart + di.len - 1) { 1354 if (modified) { 1355 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1356 di.start + blkaddr + 1 - di.lstart, 1357 di.lstart + di.len - 1 - blkaddr, 1358 NULL, NULL); 1359 } else { 1360 dc->lstart++; 1361 dc->len--; 1362 dc->start++; 1363 dcc->undiscard_blks += dc->len; 1364 __relocate_discard_cmd(dcc, dc); 1365 } 1366 } 1367 } 1368 1369 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1370 struct block_device *bdev, block_t lstart, 1371 block_t start, block_t len) 1372 { 1373 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1374 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1375 struct discard_cmd *dc; 1376 struct discard_info di = {0}; 1377 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1378 struct request_queue *q = bdev_get_queue(bdev); 1379 unsigned int max_discard_blocks = 1380 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1381 block_t end = lstart + len; 1382 1383 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1384 NULL, lstart, 1385 (struct rb_entry **)&prev_dc, 1386 (struct rb_entry **)&next_dc, 1387 &insert_p, &insert_parent, true, NULL); 1388 if (dc) 1389 prev_dc = dc; 1390 1391 if (!prev_dc) { 1392 di.lstart = lstart; 1393 di.len = next_dc ? next_dc->lstart - lstart : len; 1394 di.len = min(di.len, len); 1395 di.start = start; 1396 } 1397 1398 while (1) { 1399 struct rb_node *node; 1400 bool merged = false; 1401 struct discard_cmd *tdc = NULL; 1402 1403 if (prev_dc) { 1404 di.lstart = prev_dc->lstart + prev_dc->len; 1405 if (di.lstart < lstart) 1406 di.lstart = lstart; 1407 if (di.lstart >= end) 1408 break; 1409 1410 if (!next_dc || next_dc->lstart > end) 1411 di.len = end - di.lstart; 1412 else 1413 di.len = next_dc->lstart - di.lstart; 1414 di.start = start + di.lstart - lstart; 1415 } 1416 1417 if (!di.len) 1418 goto next; 1419 1420 if (prev_dc && prev_dc->state == D_PREP && 1421 prev_dc->bdev == bdev && 1422 __is_discard_back_mergeable(&di, &prev_dc->di, 1423 max_discard_blocks)) { 1424 prev_dc->di.len += di.len; 1425 dcc->undiscard_blks += di.len; 1426 __relocate_discard_cmd(dcc, prev_dc); 1427 di = prev_dc->di; 1428 tdc = prev_dc; 1429 merged = true; 1430 } 1431 1432 if (next_dc && next_dc->state == D_PREP && 1433 next_dc->bdev == bdev && 1434 __is_discard_front_mergeable(&di, &next_dc->di, 1435 max_discard_blocks)) { 1436 next_dc->di.lstart = di.lstart; 1437 next_dc->di.len += di.len; 1438 next_dc->di.start = di.start; 1439 dcc->undiscard_blks += di.len; 1440 __relocate_discard_cmd(dcc, next_dc); 1441 if (tdc) 1442 __remove_discard_cmd(sbi, tdc); 1443 merged = true; 1444 } 1445 1446 if (!merged) { 1447 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1448 di.len, NULL, NULL); 1449 } 1450 next: 1451 prev_dc = next_dc; 1452 if (!prev_dc) 1453 break; 1454 1455 node = rb_next(&prev_dc->rb_node); 1456 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1457 } 1458 } 1459 1460 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1461 struct block_device *bdev, block_t blkstart, block_t blklen) 1462 { 1463 block_t lblkstart = blkstart; 1464 1465 if (!f2fs_bdev_support_discard(bdev)) 1466 return 0; 1467 1468 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1469 1470 if (f2fs_is_multi_device(sbi)) { 1471 int devi = f2fs_target_device_index(sbi, blkstart); 1472 1473 blkstart -= FDEV(devi).start_blk; 1474 } 1475 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1476 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1477 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1478 return 0; 1479 } 1480 1481 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1482 struct discard_policy *dpolicy) 1483 { 1484 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1485 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1486 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1487 struct discard_cmd *dc; 1488 struct blk_plug plug; 1489 unsigned int pos = dcc->next_pos; 1490 unsigned int issued = 0; 1491 bool io_interrupted = false; 1492 1493 mutex_lock(&dcc->cmd_lock); 1494 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1495 NULL, pos, 1496 (struct rb_entry **)&prev_dc, 1497 (struct rb_entry **)&next_dc, 1498 &insert_p, &insert_parent, true, NULL); 1499 if (!dc) 1500 dc = next_dc; 1501 1502 blk_start_plug(&plug); 1503 1504 while (dc) { 1505 struct rb_node *node; 1506 int err = 0; 1507 1508 if (dc->state != D_PREP) 1509 goto next; 1510 1511 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1512 io_interrupted = true; 1513 break; 1514 } 1515 1516 dcc->next_pos = dc->lstart + dc->len; 1517 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1518 1519 if (issued >= dpolicy->max_requests) 1520 break; 1521 next: 1522 node = rb_next(&dc->rb_node); 1523 if (err) 1524 __remove_discard_cmd(sbi, dc); 1525 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1526 } 1527 1528 blk_finish_plug(&plug); 1529 1530 if (!dc) 1531 dcc->next_pos = 0; 1532 1533 mutex_unlock(&dcc->cmd_lock); 1534 1535 if (!issued && io_interrupted) 1536 issued = -1; 1537 1538 return issued; 1539 } 1540 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1541 struct discard_policy *dpolicy); 1542 1543 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1544 struct discard_policy *dpolicy) 1545 { 1546 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1547 struct list_head *pend_list; 1548 struct discard_cmd *dc, *tmp; 1549 struct blk_plug plug; 1550 int i, issued; 1551 bool io_interrupted = false; 1552 1553 if (dpolicy->timeout) 1554 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1555 1556 retry: 1557 issued = 0; 1558 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1559 if (dpolicy->timeout && 1560 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1561 break; 1562 1563 if (i + 1 < dpolicy->granularity) 1564 break; 1565 1566 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1567 return __issue_discard_cmd_orderly(sbi, dpolicy); 1568 1569 pend_list = &dcc->pend_list[i]; 1570 1571 mutex_lock(&dcc->cmd_lock); 1572 if (list_empty(pend_list)) 1573 goto next; 1574 if (unlikely(dcc->rbtree_check)) 1575 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1576 &dcc->root, false)); 1577 blk_start_plug(&plug); 1578 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1579 f2fs_bug_on(sbi, dc->state != D_PREP); 1580 1581 if (dpolicy->timeout && 1582 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1583 break; 1584 1585 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1586 !is_idle(sbi, DISCARD_TIME)) { 1587 io_interrupted = true; 1588 break; 1589 } 1590 1591 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1592 1593 if (issued >= dpolicy->max_requests) 1594 break; 1595 } 1596 blk_finish_plug(&plug); 1597 next: 1598 mutex_unlock(&dcc->cmd_lock); 1599 1600 if (issued >= dpolicy->max_requests || io_interrupted) 1601 break; 1602 } 1603 1604 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1605 __wait_all_discard_cmd(sbi, dpolicy); 1606 goto retry; 1607 } 1608 1609 if (!issued && io_interrupted) 1610 issued = -1; 1611 1612 return issued; 1613 } 1614 1615 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1616 { 1617 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1618 struct list_head *pend_list; 1619 struct discard_cmd *dc, *tmp; 1620 int i; 1621 bool dropped = false; 1622 1623 mutex_lock(&dcc->cmd_lock); 1624 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1625 pend_list = &dcc->pend_list[i]; 1626 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1627 f2fs_bug_on(sbi, dc->state != D_PREP); 1628 __remove_discard_cmd(sbi, dc); 1629 dropped = true; 1630 } 1631 } 1632 mutex_unlock(&dcc->cmd_lock); 1633 1634 return dropped; 1635 } 1636 1637 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1638 { 1639 __drop_discard_cmd(sbi); 1640 } 1641 1642 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1643 struct discard_cmd *dc) 1644 { 1645 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1646 unsigned int len = 0; 1647 1648 wait_for_completion_io(&dc->wait); 1649 mutex_lock(&dcc->cmd_lock); 1650 f2fs_bug_on(sbi, dc->state != D_DONE); 1651 dc->ref--; 1652 if (!dc->ref) { 1653 if (!dc->error) 1654 len = dc->len; 1655 __remove_discard_cmd(sbi, dc); 1656 } 1657 mutex_unlock(&dcc->cmd_lock); 1658 1659 return len; 1660 } 1661 1662 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1663 struct discard_policy *dpolicy, 1664 block_t start, block_t end) 1665 { 1666 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1667 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1668 &(dcc->fstrim_list) : &(dcc->wait_list); 1669 struct discard_cmd *dc, *tmp; 1670 bool need_wait; 1671 unsigned int trimmed = 0; 1672 1673 next: 1674 need_wait = false; 1675 1676 mutex_lock(&dcc->cmd_lock); 1677 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1678 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1679 continue; 1680 if (dc->len < dpolicy->granularity) 1681 continue; 1682 if (dc->state == D_DONE && !dc->ref) { 1683 wait_for_completion_io(&dc->wait); 1684 if (!dc->error) 1685 trimmed += dc->len; 1686 __remove_discard_cmd(sbi, dc); 1687 } else { 1688 dc->ref++; 1689 need_wait = true; 1690 break; 1691 } 1692 } 1693 mutex_unlock(&dcc->cmd_lock); 1694 1695 if (need_wait) { 1696 trimmed += __wait_one_discard_bio(sbi, dc); 1697 goto next; 1698 } 1699 1700 return trimmed; 1701 } 1702 1703 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1704 struct discard_policy *dpolicy) 1705 { 1706 struct discard_policy dp; 1707 unsigned int discard_blks; 1708 1709 if (dpolicy) 1710 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1711 1712 /* wait all */ 1713 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1714 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1715 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1716 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1717 1718 return discard_blks; 1719 } 1720 1721 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1722 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1723 { 1724 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1725 struct discard_cmd *dc; 1726 bool need_wait = false; 1727 1728 mutex_lock(&dcc->cmd_lock); 1729 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1730 NULL, blkaddr); 1731 if (dc) { 1732 if (dc->state == D_PREP) { 1733 __punch_discard_cmd(sbi, dc, blkaddr); 1734 } else { 1735 dc->ref++; 1736 need_wait = true; 1737 } 1738 } 1739 mutex_unlock(&dcc->cmd_lock); 1740 1741 if (need_wait) 1742 __wait_one_discard_bio(sbi, dc); 1743 } 1744 1745 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1746 { 1747 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1748 1749 if (dcc && dcc->f2fs_issue_discard) { 1750 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1751 1752 dcc->f2fs_issue_discard = NULL; 1753 kthread_stop(discard_thread); 1754 } 1755 } 1756 1757 /* This comes from f2fs_put_super */ 1758 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1759 { 1760 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1761 struct discard_policy dpolicy; 1762 bool dropped; 1763 1764 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1765 dcc->discard_granularity); 1766 __issue_discard_cmd(sbi, &dpolicy); 1767 dropped = __drop_discard_cmd(sbi); 1768 1769 /* just to make sure there is no pending discard commands */ 1770 __wait_all_discard_cmd(sbi, NULL); 1771 1772 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1773 return dropped; 1774 } 1775 1776 static int issue_discard_thread(void *data) 1777 { 1778 struct f2fs_sb_info *sbi = data; 1779 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1780 wait_queue_head_t *q = &dcc->discard_wait_queue; 1781 struct discard_policy dpolicy; 1782 unsigned int wait_ms = dcc->min_discard_issue_time; 1783 int issued; 1784 1785 set_freezable(); 1786 1787 do { 1788 if (sbi->gc_mode == GC_URGENT_HIGH || 1789 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1790 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1791 else 1792 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1793 dcc->discard_granularity); 1794 1795 if (!atomic_read(&dcc->discard_cmd_cnt)) 1796 wait_ms = dpolicy.max_interval; 1797 1798 wait_event_interruptible_timeout(*q, 1799 kthread_should_stop() || freezing(current) || 1800 dcc->discard_wake, 1801 msecs_to_jiffies(wait_ms)); 1802 1803 if (dcc->discard_wake) 1804 dcc->discard_wake = 0; 1805 1806 /* clean up pending candidates before going to sleep */ 1807 if (atomic_read(&dcc->queued_discard)) 1808 __wait_all_discard_cmd(sbi, NULL); 1809 1810 if (try_to_freeze()) 1811 continue; 1812 if (f2fs_readonly(sbi->sb)) 1813 continue; 1814 if (kthread_should_stop()) 1815 return 0; 1816 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1817 wait_ms = dpolicy.max_interval; 1818 continue; 1819 } 1820 if (!atomic_read(&dcc->discard_cmd_cnt)) 1821 continue; 1822 1823 sb_start_intwrite(sbi->sb); 1824 1825 issued = __issue_discard_cmd(sbi, &dpolicy); 1826 if (issued > 0) { 1827 __wait_all_discard_cmd(sbi, &dpolicy); 1828 wait_ms = dpolicy.min_interval; 1829 } else if (issued == -1) { 1830 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1831 if (!wait_ms) 1832 wait_ms = dpolicy.mid_interval; 1833 } else { 1834 wait_ms = dpolicy.max_interval; 1835 } 1836 1837 sb_end_intwrite(sbi->sb); 1838 1839 } while (!kthread_should_stop()); 1840 return 0; 1841 } 1842 1843 #ifdef CONFIG_BLK_DEV_ZONED 1844 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1845 struct block_device *bdev, block_t blkstart, block_t blklen) 1846 { 1847 sector_t sector, nr_sects; 1848 block_t lblkstart = blkstart; 1849 int devi = 0; 1850 1851 if (f2fs_is_multi_device(sbi)) { 1852 devi = f2fs_target_device_index(sbi, blkstart); 1853 if (blkstart < FDEV(devi).start_blk || 1854 blkstart > FDEV(devi).end_blk) { 1855 f2fs_err(sbi, "Invalid block %x", blkstart); 1856 return -EIO; 1857 } 1858 blkstart -= FDEV(devi).start_blk; 1859 } 1860 1861 /* For sequential zones, reset the zone write pointer */ 1862 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1863 sector = SECTOR_FROM_BLOCK(blkstart); 1864 nr_sects = SECTOR_FROM_BLOCK(blklen); 1865 1866 if (sector & (bdev_zone_sectors(bdev) - 1) || 1867 nr_sects != bdev_zone_sectors(bdev)) { 1868 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1869 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1870 blkstart, blklen); 1871 return -EIO; 1872 } 1873 trace_f2fs_issue_reset_zone(bdev, blkstart); 1874 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1875 sector, nr_sects, GFP_NOFS); 1876 } 1877 1878 /* For conventional zones, use regular discard if supported */ 1879 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1880 } 1881 #endif 1882 1883 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1884 struct block_device *bdev, block_t blkstart, block_t blklen) 1885 { 1886 #ifdef CONFIG_BLK_DEV_ZONED 1887 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1888 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1889 #endif 1890 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1891 } 1892 1893 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1894 block_t blkstart, block_t blklen) 1895 { 1896 sector_t start = blkstart, len = 0; 1897 struct block_device *bdev; 1898 struct seg_entry *se; 1899 unsigned int offset; 1900 block_t i; 1901 int err = 0; 1902 1903 bdev = f2fs_target_device(sbi, blkstart, NULL); 1904 1905 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1906 if (i != start) { 1907 struct block_device *bdev2 = 1908 f2fs_target_device(sbi, i, NULL); 1909 1910 if (bdev2 != bdev) { 1911 err = __issue_discard_async(sbi, bdev, 1912 start, len); 1913 if (err) 1914 return err; 1915 bdev = bdev2; 1916 start = i; 1917 len = 0; 1918 } 1919 } 1920 1921 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1922 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1923 1924 if (f2fs_block_unit_discard(sbi) && 1925 !f2fs_test_and_set_bit(offset, se->discard_map)) 1926 sbi->discard_blks--; 1927 } 1928 1929 if (len) 1930 err = __issue_discard_async(sbi, bdev, start, len); 1931 return err; 1932 } 1933 1934 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1935 bool check_only) 1936 { 1937 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1938 int max_blocks = sbi->blocks_per_seg; 1939 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1940 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1941 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1942 unsigned long *discard_map = (unsigned long *)se->discard_map; 1943 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1944 unsigned int start = 0, end = -1; 1945 bool force = (cpc->reason & CP_DISCARD); 1946 struct discard_entry *de = NULL; 1947 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1948 int i; 1949 1950 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) || 1951 !f2fs_block_unit_discard(sbi)) 1952 return false; 1953 1954 if (!force) { 1955 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1956 SM_I(sbi)->dcc_info->nr_discards >= 1957 SM_I(sbi)->dcc_info->max_discards) 1958 return false; 1959 } 1960 1961 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1962 for (i = 0; i < entries; i++) 1963 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1964 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1965 1966 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1967 SM_I(sbi)->dcc_info->max_discards) { 1968 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1969 if (start >= max_blocks) 1970 break; 1971 1972 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1973 if (force && start && end != max_blocks 1974 && (end - start) < cpc->trim_minlen) 1975 continue; 1976 1977 if (check_only) 1978 return true; 1979 1980 if (!de) { 1981 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1982 GFP_F2FS_ZERO, true, NULL); 1983 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1984 list_add_tail(&de->list, head); 1985 } 1986 1987 for (i = start; i < end; i++) 1988 __set_bit_le(i, (void *)de->discard_map); 1989 1990 SM_I(sbi)->dcc_info->nr_discards += end - start; 1991 } 1992 return false; 1993 } 1994 1995 static void release_discard_addr(struct discard_entry *entry) 1996 { 1997 list_del(&entry->list); 1998 kmem_cache_free(discard_entry_slab, entry); 1999 } 2000 2001 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2002 { 2003 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2004 struct discard_entry *entry, *this; 2005 2006 /* drop caches */ 2007 list_for_each_entry_safe(entry, this, head, list) 2008 release_discard_addr(entry); 2009 } 2010 2011 /* 2012 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2013 */ 2014 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2015 { 2016 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2017 unsigned int segno; 2018 2019 mutex_lock(&dirty_i->seglist_lock); 2020 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2021 __set_test_and_free(sbi, segno, false); 2022 mutex_unlock(&dirty_i->seglist_lock); 2023 } 2024 2025 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2026 struct cp_control *cpc) 2027 { 2028 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2029 struct list_head *head = &dcc->entry_list; 2030 struct discard_entry *entry, *this; 2031 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2032 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2033 unsigned int start = 0, end = -1; 2034 unsigned int secno, start_segno; 2035 bool force = (cpc->reason & CP_DISCARD); 2036 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2037 DISCARD_UNIT_SECTION; 2038 2039 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2040 section_alignment = true; 2041 2042 mutex_lock(&dirty_i->seglist_lock); 2043 2044 while (1) { 2045 int i; 2046 2047 if (section_alignment && end != -1) 2048 end--; 2049 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2050 if (start >= MAIN_SEGS(sbi)) 2051 break; 2052 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2053 start + 1); 2054 2055 if (section_alignment) { 2056 start = rounddown(start, sbi->segs_per_sec); 2057 end = roundup(end, sbi->segs_per_sec); 2058 } 2059 2060 for (i = start; i < end; i++) { 2061 if (test_and_clear_bit(i, prefree_map)) 2062 dirty_i->nr_dirty[PRE]--; 2063 } 2064 2065 if (!f2fs_realtime_discard_enable(sbi)) 2066 continue; 2067 2068 if (force && start >= cpc->trim_start && 2069 (end - 1) <= cpc->trim_end) 2070 continue; 2071 2072 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 2073 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2074 (end - start) << sbi->log_blocks_per_seg); 2075 continue; 2076 } 2077 next: 2078 secno = GET_SEC_FROM_SEG(sbi, start); 2079 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2080 if (!IS_CURSEC(sbi, secno) && 2081 !get_valid_blocks(sbi, start, true)) 2082 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2083 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2084 2085 start = start_segno + sbi->segs_per_sec; 2086 if (start < end) 2087 goto next; 2088 else 2089 end = start - 1; 2090 } 2091 mutex_unlock(&dirty_i->seglist_lock); 2092 2093 if (!f2fs_block_unit_discard(sbi)) 2094 goto wakeup; 2095 2096 /* send small discards */ 2097 list_for_each_entry_safe(entry, this, head, list) { 2098 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2099 bool is_valid = test_bit_le(0, entry->discard_map); 2100 2101 find_next: 2102 if (is_valid) { 2103 next_pos = find_next_zero_bit_le(entry->discard_map, 2104 sbi->blocks_per_seg, cur_pos); 2105 len = next_pos - cur_pos; 2106 2107 if (f2fs_sb_has_blkzoned(sbi) || 2108 (force && len < cpc->trim_minlen)) 2109 goto skip; 2110 2111 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2112 len); 2113 total_len += len; 2114 } else { 2115 next_pos = find_next_bit_le(entry->discard_map, 2116 sbi->blocks_per_seg, cur_pos); 2117 } 2118 skip: 2119 cur_pos = next_pos; 2120 is_valid = !is_valid; 2121 2122 if (cur_pos < sbi->blocks_per_seg) 2123 goto find_next; 2124 2125 release_discard_addr(entry); 2126 dcc->nr_discards -= total_len; 2127 } 2128 2129 wakeup: 2130 wake_up_discard_thread(sbi, false); 2131 } 2132 2133 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2134 { 2135 dev_t dev = sbi->sb->s_bdev->bd_dev; 2136 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2137 int err = 0; 2138 2139 if (!f2fs_realtime_discard_enable(sbi)) 2140 return 0; 2141 2142 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2143 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2144 if (IS_ERR(dcc->f2fs_issue_discard)) 2145 err = PTR_ERR(dcc->f2fs_issue_discard); 2146 2147 return err; 2148 } 2149 2150 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2151 { 2152 struct discard_cmd_control *dcc; 2153 int err = 0, i; 2154 2155 if (SM_I(sbi)->dcc_info) { 2156 dcc = SM_I(sbi)->dcc_info; 2157 goto init_thread; 2158 } 2159 2160 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2161 if (!dcc) 2162 return -ENOMEM; 2163 2164 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2165 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2166 dcc->discard_granularity = sbi->blocks_per_seg; 2167 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2168 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2169 2170 INIT_LIST_HEAD(&dcc->entry_list); 2171 for (i = 0; i < MAX_PLIST_NUM; i++) 2172 INIT_LIST_HEAD(&dcc->pend_list[i]); 2173 INIT_LIST_HEAD(&dcc->wait_list); 2174 INIT_LIST_HEAD(&dcc->fstrim_list); 2175 mutex_init(&dcc->cmd_lock); 2176 atomic_set(&dcc->issued_discard, 0); 2177 atomic_set(&dcc->queued_discard, 0); 2178 atomic_set(&dcc->discard_cmd_cnt, 0); 2179 dcc->nr_discards = 0; 2180 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2181 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2182 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2183 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2184 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2185 dcc->undiscard_blks = 0; 2186 dcc->next_pos = 0; 2187 dcc->root = RB_ROOT_CACHED; 2188 dcc->rbtree_check = false; 2189 2190 init_waitqueue_head(&dcc->discard_wait_queue); 2191 SM_I(sbi)->dcc_info = dcc; 2192 init_thread: 2193 err = f2fs_start_discard_thread(sbi); 2194 if (err) { 2195 kfree(dcc); 2196 SM_I(sbi)->dcc_info = NULL; 2197 } 2198 2199 return err; 2200 } 2201 2202 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2203 { 2204 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2205 2206 if (!dcc) 2207 return; 2208 2209 f2fs_stop_discard_thread(sbi); 2210 2211 /* 2212 * Recovery can cache discard commands, so in error path of 2213 * fill_super(), it needs to give a chance to handle them. 2214 */ 2215 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2216 f2fs_issue_discard_timeout(sbi); 2217 2218 kfree(dcc); 2219 SM_I(sbi)->dcc_info = NULL; 2220 } 2221 2222 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2223 { 2224 struct sit_info *sit_i = SIT_I(sbi); 2225 2226 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2227 sit_i->dirty_sentries++; 2228 return false; 2229 } 2230 2231 return true; 2232 } 2233 2234 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2235 unsigned int segno, int modified) 2236 { 2237 struct seg_entry *se = get_seg_entry(sbi, segno); 2238 2239 se->type = type; 2240 if (modified) 2241 __mark_sit_entry_dirty(sbi, segno); 2242 } 2243 2244 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2245 block_t blkaddr) 2246 { 2247 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2248 2249 if (segno == NULL_SEGNO) 2250 return 0; 2251 return get_seg_entry(sbi, segno)->mtime; 2252 } 2253 2254 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2255 unsigned long long old_mtime) 2256 { 2257 struct seg_entry *se; 2258 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2259 unsigned long long ctime = get_mtime(sbi, false); 2260 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2261 2262 if (segno == NULL_SEGNO) 2263 return; 2264 2265 se = get_seg_entry(sbi, segno); 2266 2267 if (!se->mtime) 2268 se->mtime = mtime; 2269 else 2270 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2271 se->valid_blocks + 1); 2272 2273 if (ctime > SIT_I(sbi)->max_mtime) 2274 SIT_I(sbi)->max_mtime = ctime; 2275 } 2276 2277 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2278 { 2279 struct seg_entry *se; 2280 unsigned int segno, offset; 2281 long int new_vblocks; 2282 bool exist; 2283 #ifdef CONFIG_F2FS_CHECK_FS 2284 bool mir_exist; 2285 #endif 2286 2287 segno = GET_SEGNO(sbi, blkaddr); 2288 2289 se = get_seg_entry(sbi, segno); 2290 new_vblocks = se->valid_blocks + del; 2291 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2292 2293 f2fs_bug_on(sbi, (new_vblocks < 0 || 2294 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2295 2296 se->valid_blocks = new_vblocks; 2297 2298 /* Update valid block bitmap */ 2299 if (del > 0) { 2300 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2301 #ifdef CONFIG_F2FS_CHECK_FS 2302 mir_exist = f2fs_test_and_set_bit(offset, 2303 se->cur_valid_map_mir); 2304 if (unlikely(exist != mir_exist)) { 2305 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2306 blkaddr, exist); 2307 f2fs_bug_on(sbi, 1); 2308 } 2309 #endif 2310 if (unlikely(exist)) { 2311 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2312 blkaddr); 2313 f2fs_bug_on(sbi, 1); 2314 se->valid_blocks--; 2315 del = 0; 2316 } 2317 2318 if (f2fs_block_unit_discard(sbi) && 2319 !f2fs_test_and_set_bit(offset, se->discard_map)) 2320 sbi->discard_blks--; 2321 2322 /* 2323 * SSR should never reuse block which is checkpointed 2324 * or newly invalidated. 2325 */ 2326 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2327 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2328 se->ckpt_valid_blocks++; 2329 } 2330 } else { 2331 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2332 #ifdef CONFIG_F2FS_CHECK_FS 2333 mir_exist = f2fs_test_and_clear_bit(offset, 2334 se->cur_valid_map_mir); 2335 if (unlikely(exist != mir_exist)) { 2336 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2337 blkaddr, exist); 2338 f2fs_bug_on(sbi, 1); 2339 } 2340 #endif 2341 if (unlikely(!exist)) { 2342 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2343 blkaddr); 2344 f2fs_bug_on(sbi, 1); 2345 se->valid_blocks++; 2346 del = 0; 2347 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2348 /* 2349 * If checkpoints are off, we must not reuse data that 2350 * was used in the previous checkpoint. If it was used 2351 * before, we must track that to know how much space we 2352 * really have. 2353 */ 2354 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2355 spin_lock(&sbi->stat_lock); 2356 sbi->unusable_block_count++; 2357 spin_unlock(&sbi->stat_lock); 2358 } 2359 } 2360 2361 if (f2fs_block_unit_discard(sbi) && 2362 f2fs_test_and_clear_bit(offset, se->discard_map)) 2363 sbi->discard_blks++; 2364 } 2365 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2366 se->ckpt_valid_blocks += del; 2367 2368 __mark_sit_entry_dirty(sbi, segno); 2369 2370 /* update total number of valid blocks to be written in ckpt area */ 2371 SIT_I(sbi)->written_valid_blocks += del; 2372 2373 if (__is_large_section(sbi)) 2374 get_sec_entry(sbi, segno)->valid_blocks += del; 2375 } 2376 2377 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2378 { 2379 unsigned int segno = GET_SEGNO(sbi, addr); 2380 struct sit_info *sit_i = SIT_I(sbi); 2381 2382 f2fs_bug_on(sbi, addr == NULL_ADDR); 2383 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2384 return; 2385 2386 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2387 f2fs_invalidate_compress_page(sbi, addr); 2388 2389 /* add it into sit main buffer */ 2390 down_write(&sit_i->sentry_lock); 2391 2392 update_segment_mtime(sbi, addr, 0); 2393 update_sit_entry(sbi, addr, -1); 2394 2395 /* add it into dirty seglist */ 2396 locate_dirty_segment(sbi, segno); 2397 2398 up_write(&sit_i->sentry_lock); 2399 } 2400 2401 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2402 { 2403 struct sit_info *sit_i = SIT_I(sbi); 2404 unsigned int segno, offset; 2405 struct seg_entry *se; 2406 bool is_cp = false; 2407 2408 if (!__is_valid_data_blkaddr(blkaddr)) 2409 return true; 2410 2411 down_read(&sit_i->sentry_lock); 2412 2413 segno = GET_SEGNO(sbi, blkaddr); 2414 se = get_seg_entry(sbi, segno); 2415 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2416 2417 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2418 is_cp = true; 2419 2420 up_read(&sit_i->sentry_lock); 2421 2422 return is_cp; 2423 } 2424 2425 /* 2426 * This function should be resided under the curseg_mutex lock 2427 */ 2428 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2429 struct f2fs_summary *sum) 2430 { 2431 struct curseg_info *curseg = CURSEG_I(sbi, type); 2432 void *addr = curseg->sum_blk; 2433 2434 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2435 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2436 } 2437 2438 /* 2439 * Calculate the number of current summary pages for writing 2440 */ 2441 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2442 { 2443 int valid_sum_count = 0; 2444 int i, sum_in_page; 2445 2446 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2447 if (sbi->ckpt->alloc_type[i] == SSR) 2448 valid_sum_count += sbi->blocks_per_seg; 2449 else { 2450 if (for_ra) 2451 valid_sum_count += le16_to_cpu( 2452 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2453 else 2454 valid_sum_count += curseg_blkoff(sbi, i); 2455 } 2456 } 2457 2458 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2459 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2460 if (valid_sum_count <= sum_in_page) 2461 return 1; 2462 else if ((valid_sum_count - sum_in_page) <= 2463 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2464 return 2; 2465 return 3; 2466 } 2467 2468 /* 2469 * Caller should put this summary page 2470 */ 2471 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2472 { 2473 if (unlikely(f2fs_cp_error(sbi))) 2474 return ERR_PTR(-EIO); 2475 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2476 } 2477 2478 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2479 void *src, block_t blk_addr) 2480 { 2481 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2482 2483 memcpy(page_address(page), src, PAGE_SIZE); 2484 set_page_dirty(page); 2485 f2fs_put_page(page, 1); 2486 } 2487 2488 static void write_sum_page(struct f2fs_sb_info *sbi, 2489 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2490 { 2491 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2492 } 2493 2494 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2495 int type, block_t blk_addr) 2496 { 2497 struct curseg_info *curseg = CURSEG_I(sbi, type); 2498 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2499 struct f2fs_summary_block *src = curseg->sum_blk; 2500 struct f2fs_summary_block *dst; 2501 2502 dst = (struct f2fs_summary_block *)page_address(page); 2503 memset(dst, 0, PAGE_SIZE); 2504 2505 mutex_lock(&curseg->curseg_mutex); 2506 2507 down_read(&curseg->journal_rwsem); 2508 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2509 up_read(&curseg->journal_rwsem); 2510 2511 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2512 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2513 2514 mutex_unlock(&curseg->curseg_mutex); 2515 2516 set_page_dirty(page); 2517 f2fs_put_page(page, 1); 2518 } 2519 2520 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2521 struct curseg_info *curseg, int type) 2522 { 2523 unsigned int segno = curseg->segno + 1; 2524 struct free_segmap_info *free_i = FREE_I(sbi); 2525 2526 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2527 return !test_bit(segno, free_i->free_segmap); 2528 return 0; 2529 } 2530 2531 /* 2532 * Find a new segment from the free segments bitmap to right order 2533 * This function should be returned with success, otherwise BUG 2534 */ 2535 static void get_new_segment(struct f2fs_sb_info *sbi, 2536 unsigned int *newseg, bool new_sec, int dir) 2537 { 2538 struct free_segmap_info *free_i = FREE_I(sbi); 2539 unsigned int segno, secno, zoneno; 2540 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2541 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2542 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2543 unsigned int left_start = hint; 2544 bool init = true; 2545 int go_left = 0; 2546 int i; 2547 2548 spin_lock(&free_i->segmap_lock); 2549 2550 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2551 segno = find_next_zero_bit(free_i->free_segmap, 2552 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2553 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2554 goto got_it; 2555 } 2556 find_other_zone: 2557 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2558 if (secno >= MAIN_SECS(sbi)) { 2559 if (dir == ALLOC_RIGHT) { 2560 secno = find_first_zero_bit(free_i->free_secmap, 2561 MAIN_SECS(sbi)); 2562 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2563 } else { 2564 go_left = 1; 2565 left_start = hint - 1; 2566 } 2567 } 2568 if (go_left == 0) 2569 goto skip_left; 2570 2571 while (test_bit(left_start, free_i->free_secmap)) { 2572 if (left_start > 0) { 2573 left_start--; 2574 continue; 2575 } 2576 left_start = find_first_zero_bit(free_i->free_secmap, 2577 MAIN_SECS(sbi)); 2578 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2579 break; 2580 } 2581 secno = left_start; 2582 skip_left: 2583 segno = GET_SEG_FROM_SEC(sbi, secno); 2584 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2585 2586 /* give up on finding another zone */ 2587 if (!init) 2588 goto got_it; 2589 if (sbi->secs_per_zone == 1) 2590 goto got_it; 2591 if (zoneno == old_zoneno) 2592 goto got_it; 2593 if (dir == ALLOC_LEFT) { 2594 if (!go_left && zoneno + 1 >= total_zones) 2595 goto got_it; 2596 if (go_left && zoneno == 0) 2597 goto got_it; 2598 } 2599 for (i = 0; i < NR_CURSEG_TYPE; i++) 2600 if (CURSEG_I(sbi, i)->zone == zoneno) 2601 break; 2602 2603 if (i < NR_CURSEG_TYPE) { 2604 /* zone is in user, try another */ 2605 if (go_left) 2606 hint = zoneno * sbi->secs_per_zone - 1; 2607 else if (zoneno + 1 >= total_zones) 2608 hint = 0; 2609 else 2610 hint = (zoneno + 1) * sbi->secs_per_zone; 2611 init = false; 2612 goto find_other_zone; 2613 } 2614 got_it: 2615 /* set it as dirty segment in free segmap */ 2616 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2617 __set_inuse(sbi, segno); 2618 *newseg = segno; 2619 spin_unlock(&free_i->segmap_lock); 2620 } 2621 2622 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2623 { 2624 struct curseg_info *curseg = CURSEG_I(sbi, type); 2625 struct summary_footer *sum_footer; 2626 unsigned short seg_type = curseg->seg_type; 2627 2628 curseg->inited = true; 2629 curseg->segno = curseg->next_segno; 2630 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2631 curseg->next_blkoff = 0; 2632 curseg->next_segno = NULL_SEGNO; 2633 2634 sum_footer = &(curseg->sum_blk->footer); 2635 memset(sum_footer, 0, sizeof(struct summary_footer)); 2636 2637 sanity_check_seg_type(sbi, seg_type); 2638 2639 if (IS_DATASEG(seg_type)) 2640 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2641 if (IS_NODESEG(seg_type)) 2642 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2643 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2644 } 2645 2646 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2647 { 2648 struct curseg_info *curseg = CURSEG_I(sbi, type); 2649 unsigned short seg_type = curseg->seg_type; 2650 2651 sanity_check_seg_type(sbi, seg_type); 2652 if (f2fs_need_rand_seg(sbi)) 2653 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec); 2654 2655 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2656 if (__is_large_section(sbi)) 2657 return curseg->segno; 2658 2659 /* inmem log may not locate on any segment after mount */ 2660 if (!curseg->inited) 2661 return 0; 2662 2663 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2664 return 0; 2665 2666 if (test_opt(sbi, NOHEAP) && 2667 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2668 return 0; 2669 2670 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2671 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2672 2673 /* find segments from 0 to reuse freed segments */ 2674 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2675 return 0; 2676 2677 return curseg->segno; 2678 } 2679 2680 /* 2681 * Allocate a current working segment. 2682 * This function always allocates a free segment in LFS manner. 2683 */ 2684 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2685 { 2686 struct curseg_info *curseg = CURSEG_I(sbi, type); 2687 unsigned short seg_type = curseg->seg_type; 2688 unsigned int segno = curseg->segno; 2689 int dir = ALLOC_LEFT; 2690 2691 if (curseg->inited) 2692 write_sum_page(sbi, curseg->sum_blk, 2693 GET_SUM_BLOCK(sbi, segno)); 2694 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2695 dir = ALLOC_RIGHT; 2696 2697 if (test_opt(sbi, NOHEAP)) 2698 dir = ALLOC_RIGHT; 2699 2700 segno = __get_next_segno(sbi, type); 2701 get_new_segment(sbi, &segno, new_sec, dir); 2702 curseg->next_segno = segno; 2703 reset_curseg(sbi, type, 1); 2704 curseg->alloc_type = LFS; 2705 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2706 curseg->fragment_remained_chunk = 2707 prandom_u32() % sbi->max_fragment_chunk + 1; 2708 } 2709 2710 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2711 int segno, block_t start) 2712 { 2713 struct seg_entry *se = get_seg_entry(sbi, segno); 2714 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2715 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2716 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2717 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2718 int i; 2719 2720 for (i = 0; i < entries; i++) 2721 target_map[i] = ckpt_map[i] | cur_map[i]; 2722 2723 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2724 } 2725 2726 /* 2727 * If a segment is written by LFS manner, next block offset is just obtained 2728 * by increasing the current block offset. However, if a segment is written by 2729 * SSR manner, next block offset obtained by calling __next_free_blkoff 2730 */ 2731 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2732 struct curseg_info *seg) 2733 { 2734 if (seg->alloc_type == SSR) { 2735 seg->next_blkoff = 2736 __next_free_blkoff(sbi, seg->segno, 2737 seg->next_blkoff + 1); 2738 } else { 2739 seg->next_blkoff++; 2740 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) { 2741 /* To allocate block chunks in different sizes, use random number */ 2742 if (--seg->fragment_remained_chunk <= 0) { 2743 seg->fragment_remained_chunk = 2744 prandom_u32() % sbi->max_fragment_chunk + 1; 2745 seg->next_blkoff += 2746 prandom_u32() % sbi->max_fragment_hole + 1; 2747 } 2748 } 2749 } 2750 } 2751 2752 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2753 { 2754 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2755 } 2756 2757 /* 2758 * This function always allocates a used segment(from dirty seglist) by SSR 2759 * manner, so it should recover the existing segment information of valid blocks 2760 */ 2761 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush) 2762 { 2763 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2764 struct curseg_info *curseg = CURSEG_I(sbi, type); 2765 unsigned int new_segno = curseg->next_segno; 2766 struct f2fs_summary_block *sum_node; 2767 struct page *sum_page; 2768 2769 if (flush) 2770 write_sum_page(sbi, curseg->sum_blk, 2771 GET_SUM_BLOCK(sbi, curseg->segno)); 2772 2773 __set_test_and_inuse(sbi, new_segno); 2774 2775 mutex_lock(&dirty_i->seglist_lock); 2776 __remove_dirty_segment(sbi, new_segno, PRE); 2777 __remove_dirty_segment(sbi, new_segno, DIRTY); 2778 mutex_unlock(&dirty_i->seglist_lock); 2779 2780 reset_curseg(sbi, type, 1); 2781 curseg->alloc_type = SSR; 2782 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2783 2784 sum_page = f2fs_get_sum_page(sbi, new_segno); 2785 if (IS_ERR(sum_page)) { 2786 /* GC won't be able to use stale summary pages by cp_error */ 2787 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2788 return; 2789 } 2790 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2791 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2792 f2fs_put_page(sum_page, 1); 2793 } 2794 2795 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2796 int alloc_mode, unsigned long long age); 2797 2798 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2799 int target_type, int alloc_mode, 2800 unsigned long long age) 2801 { 2802 struct curseg_info *curseg = CURSEG_I(sbi, type); 2803 2804 curseg->seg_type = target_type; 2805 2806 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2807 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2808 2809 curseg->seg_type = se->type; 2810 change_curseg(sbi, type, true); 2811 } else { 2812 /* allocate cold segment by default */ 2813 curseg->seg_type = CURSEG_COLD_DATA; 2814 new_curseg(sbi, type, true); 2815 } 2816 stat_inc_seg_type(sbi, curseg); 2817 } 2818 2819 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2820 { 2821 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2822 2823 if (!sbi->am.atgc_enabled) 2824 return; 2825 2826 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2827 2828 mutex_lock(&curseg->curseg_mutex); 2829 down_write(&SIT_I(sbi)->sentry_lock); 2830 2831 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2832 2833 up_write(&SIT_I(sbi)->sentry_lock); 2834 mutex_unlock(&curseg->curseg_mutex); 2835 2836 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2837 2838 } 2839 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2840 { 2841 __f2fs_init_atgc_curseg(sbi); 2842 } 2843 2844 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2845 { 2846 struct curseg_info *curseg = CURSEG_I(sbi, type); 2847 2848 mutex_lock(&curseg->curseg_mutex); 2849 if (!curseg->inited) 2850 goto out; 2851 2852 if (get_valid_blocks(sbi, curseg->segno, false)) { 2853 write_sum_page(sbi, curseg->sum_blk, 2854 GET_SUM_BLOCK(sbi, curseg->segno)); 2855 } else { 2856 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2857 __set_test_and_free(sbi, curseg->segno, true); 2858 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2859 } 2860 out: 2861 mutex_unlock(&curseg->curseg_mutex); 2862 } 2863 2864 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2865 { 2866 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2867 2868 if (sbi->am.atgc_enabled) 2869 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2870 } 2871 2872 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2873 { 2874 struct curseg_info *curseg = CURSEG_I(sbi, type); 2875 2876 mutex_lock(&curseg->curseg_mutex); 2877 if (!curseg->inited) 2878 goto out; 2879 if (get_valid_blocks(sbi, curseg->segno, false)) 2880 goto out; 2881 2882 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2883 __set_test_and_inuse(sbi, curseg->segno); 2884 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2885 out: 2886 mutex_unlock(&curseg->curseg_mutex); 2887 } 2888 2889 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2890 { 2891 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2892 2893 if (sbi->am.atgc_enabled) 2894 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2895 } 2896 2897 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2898 int alloc_mode, unsigned long long age) 2899 { 2900 struct curseg_info *curseg = CURSEG_I(sbi, type); 2901 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2902 unsigned segno = NULL_SEGNO; 2903 unsigned short seg_type = curseg->seg_type; 2904 int i, cnt; 2905 bool reversed = false; 2906 2907 sanity_check_seg_type(sbi, seg_type); 2908 2909 /* f2fs_need_SSR() already forces to do this */ 2910 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2911 curseg->next_segno = segno; 2912 return 1; 2913 } 2914 2915 /* For node segments, let's do SSR more intensively */ 2916 if (IS_NODESEG(seg_type)) { 2917 if (seg_type >= CURSEG_WARM_NODE) { 2918 reversed = true; 2919 i = CURSEG_COLD_NODE; 2920 } else { 2921 i = CURSEG_HOT_NODE; 2922 } 2923 cnt = NR_CURSEG_NODE_TYPE; 2924 } else { 2925 if (seg_type >= CURSEG_WARM_DATA) { 2926 reversed = true; 2927 i = CURSEG_COLD_DATA; 2928 } else { 2929 i = CURSEG_HOT_DATA; 2930 } 2931 cnt = NR_CURSEG_DATA_TYPE; 2932 } 2933 2934 for (; cnt-- > 0; reversed ? i-- : i++) { 2935 if (i == seg_type) 2936 continue; 2937 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2938 curseg->next_segno = segno; 2939 return 1; 2940 } 2941 } 2942 2943 /* find valid_blocks=0 in dirty list */ 2944 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2945 segno = get_free_segment(sbi); 2946 if (segno != NULL_SEGNO) { 2947 curseg->next_segno = segno; 2948 return 1; 2949 } 2950 } 2951 return 0; 2952 } 2953 2954 /* 2955 * flush out current segment and replace it with new segment 2956 * This function should be returned with success, otherwise BUG 2957 */ 2958 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2959 int type, bool force) 2960 { 2961 struct curseg_info *curseg = CURSEG_I(sbi, type); 2962 2963 if (force) 2964 new_curseg(sbi, type, true); 2965 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2966 curseg->seg_type == CURSEG_WARM_NODE) 2967 new_curseg(sbi, type, false); 2968 else if (curseg->alloc_type == LFS && 2969 is_next_segment_free(sbi, curseg, type) && 2970 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2971 new_curseg(sbi, type, false); 2972 else if (f2fs_need_SSR(sbi) && 2973 get_ssr_segment(sbi, type, SSR, 0)) 2974 change_curseg(sbi, type, true); 2975 else 2976 new_curseg(sbi, type, false); 2977 2978 stat_inc_seg_type(sbi, curseg); 2979 } 2980 2981 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2982 unsigned int start, unsigned int end) 2983 { 2984 struct curseg_info *curseg = CURSEG_I(sbi, type); 2985 unsigned int segno; 2986 2987 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2988 mutex_lock(&curseg->curseg_mutex); 2989 down_write(&SIT_I(sbi)->sentry_lock); 2990 2991 segno = CURSEG_I(sbi, type)->segno; 2992 if (segno < start || segno > end) 2993 goto unlock; 2994 2995 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2996 change_curseg(sbi, type, true); 2997 else 2998 new_curseg(sbi, type, true); 2999 3000 stat_inc_seg_type(sbi, curseg); 3001 3002 locate_dirty_segment(sbi, segno); 3003 unlock: 3004 up_write(&SIT_I(sbi)->sentry_lock); 3005 3006 if (segno != curseg->segno) 3007 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 3008 type, segno, curseg->segno); 3009 3010 mutex_unlock(&curseg->curseg_mutex); 3011 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3012 } 3013 3014 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 3015 bool new_sec, bool force) 3016 { 3017 struct curseg_info *curseg = CURSEG_I(sbi, type); 3018 unsigned int old_segno; 3019 3020 if (!curseg->inited) 3021 goto alloc; 3022 3023 if (force || curseg->next_blkoff || 3024 get_valid_blocks(sbi, curseg->segno, new_sec)) 3025 goto alloc; 3026 3027 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 3028 return; 3029 alloc: 3030 old_segno = curseg->segno; 3031 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 3032 locate_dirty_segment(sbi, old_segno); 3033 } 3034 3035 static void __allocate_new_section(struct f2fs_sb_info *sbi, 3036 int type, bool force) 3037 { 3038 __allocate_new_segment(sbi, type, true, force); 3039 } 3040 3041 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3042 { 3043 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3044 down_write(&SIT_I(sbi)->sentry_lock); 3045 __allocate_new_section(sbi, type, force); 3046 up_write(&SIT_I(sbi)->sentry_lock); 3047 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3048 } 3049 3050 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3051 { 3052 int i; 3053 3054 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3055 down_write(&SIT_I(sbi)->sentry_lock); 3056 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3057 __allocate_new_segment(sbi, i, false, false); 3058 up_write(&SIT_I(sbi)->sentry_lock); 3059 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3060 } 3061 3062 static const struct segment_allocation default_salloc_ops = { 3063 .allocate_segment = allocate_segment_by_default, 3064 }; 3065 3066 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3067 struct cp_control *cpc) 3068 { 3069 __u64 trim_start = cpc->trim_start; 3070 bool has_candidate = false; 3071 3072 down_write(&SIT_I(sbi)->sentry_lock); 3073 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3074 if (add_discard_addrs(sbi, cpc, true)) { 3075 has_candidate = true; 3076 break; 3077 } 3078 } 3079 up_write(&SIT_I(sbi)->sentry_lock); 3080 3081 cpc->trim_start = trim_start; 3082 return has_candidate; 3083 } 3084 3085 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3086 struct discard_policy *dpolicy, 3087 unsigned int start, unsigned int end) 3088 { 3089 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3090 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3091 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3092 struct discard_cmd *dc; 3093 struct blk_plug plug; 3094 int issued; 3095 unsigned int trimmed = 0; 3096 3097 next: 3098 issued = 0; 3099 3100 mutex_lock(&dcc->cmd_lock); 3101 if (unlikely(dcc->rbtree_check)) 3102 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 3103 &dcc->root, false)); 3104 3105 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 3106 NULL, start, 3107 (struct rb_entry **)&prev_dc, 3108 (struct rb_entry **)&next_dc, 3109 &insert_p, &insert_parent, true, NULL); 3110 if (!dc) 3111 dc = next_dc; 3112 3113 blk_start_plug(&plug); 3114 3115 while (dc && dc->lstart <= end) { 3116 struct rb_node *node; 3117 int err = 0; 3118 3119 if (dc->len < dpolicy->granularity) 3120 goto skip; 3121 3122 if (dc->state != D_PREP) { 3123 list_move_tail(&dc->list, &dcc->fstrim_list); 3124 goto skip; 3125 } 3126 3127 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3128 3129 if (issued >= dpolicy->max_requests) { 3130 start = dc->lstart + dc->len; 3131 3132 if (err) 3133 __remove_discard_cmd(sbi, dc); 3134 3135 blk_finish_plug(&plug); 3136 mutex_unlock(&dcc->cmd_lock); 3137 trimmed += __wait_all_discard_cmd(sbi, NULL); 3138 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3139 goto next; 3140 } 3141 skip: 3142 node = rb_next(&dc->rb_node); 3143 if (err) 3144 __remove_discard_cmd(sbi, dc); 3145 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3146 3147 if (fatal_signal_pending(current)) 3148 break; 3149 } 3150 3151 blk_finish_plug(&plug); 3152 mutex_unlock(&dcc->cmd_lock); 3153 3154 return trimmed; 3155 } 3156 3157 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3158 { 3159 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3160 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3161 unsigned int start_segno, end_segno; 3162 block_t start_block, end_block; 3163 struct cp_control cpc; 3164 struct discard_policy dpolicy; 3165 unsigned long long trimmed = 0; 3166 int err = 0; 3167 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3168 3169 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3170 return -EINVAL; 3171 3172 if (end < MAIN_BLKADDR(sbi)) 3173 goto out; 3174 3175 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3176 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3177 return -EFSCORRUPTED; 3178 } 3179 3180 /* start/end segment number in main_area */ 3181 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3182 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3183 GET_SEGNO(sbi, end); 3184 if (need_align) { 3185 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3186 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3187 } 3188 3189 cpc.reason = CP_DISCARD; 3190 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3191 cpc.trim_start = start_segno; 3192 cpc.trim_end = end_segno; 3193 3194 if (sbi->discard_blks == 0) 3195 goto out; 3196 3197 f2fs_down_write(&sbi->gc_lock); 3198 err = f2fs_write_checkpoint(sbi, &cpc); 3199 f2fs_up_write(&sbi->gc_lock); 3200 if (err) 3201 goto out; 3202 3203 /* 3204 * We filed discard candidates, but actually we don't need to wait for 3205 * all of them, since they'll be issued in idle time along with runtime 3206 * discard option. User configuration looks like using runtime discard 3207 * or periodic fstrim instead of it. 3208 */ 3209 if (f2fs_realtime_discard_enable(sbi)) 3210 goto out; 3211 3212 start_block = START_BLOCK(sbi, start_segno); 3213 end_block = START_BLOCK(sbi, end_segno + 1); 3214 3215 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3216 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3217 start_block, end_block); 3218 3219 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3220 start_block, end_block); 3221 out: 3222 if (!err) 3223 range->len = F2FS_BLK_TO_BYTES(trimmed); 3224 return err; 3225 } 3226 3227 static bool __has_curseg_space(struct f2fs_sb_info *sbi, 3228 struct curseg_info *curseg) 3229 { 3230 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, 3231 curseg->segno); 3232 } 3233 3234 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3235 { 3236 switch (hint) { 3237 case WRITE_LIFE_SHORT: 3238 return CURSEG_HOT_DATA; 3239 case WRITE_LIFE_EXTREME: 3240 return CURSEG_COLD_DATA; 3241 default: 3242 return CURSEG_WARM_DATA; 3243 } 3244 } 3245 3246 /* This returns write hints for each segment type. This hints will be 3247 * passed down to block layer. There are mapping tables which depend on 3248 * the mount option 'whint_mode'. 3249 * 3250 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 3251 * 3252 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 3253 * 3254 * User F2FS Block 3255 * ---- ---- ----- 3256 * META WRITE_LIFE_NOT_SET 3257 * HOT_NODE " 3258 * WARM_NODE " 3259 * COLD_NODE " 3260 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3261 * extension list " " 3262 * 3263 * -- buffered io 3264 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3265 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3266 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3267 * WRITE_LIFE_NONE " " 3268 * WRITE_LIFE_MEDIUM " " 3269 * WRITE_LIFE_LONG " " 3270 * 3271 * -- direct io 3272 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3273 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3274 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3275 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3276 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3277 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3278 * 3279 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 3280 * 3281 * User F2FS Block 3282 * ---- ---- ----- 3283 * META WRITE_LIFE_MEDIUM; 3284 * HOT_NODE WRITE_LIFE_NOT_SET 3285 * WARM_NODE " 3286 * COLD_NODE WRITE_LIFE_NONE 3287 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3288 * extension list " " 3289 * 3290 * -- buffered io 3291 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3292 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3293 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 3294 * WRITE_LIFE_NONE " " 3295 * WRITE_LIFE_MEDIUM " " 3296 * WRITE_LIFE_LONG " " 3297 * 3298 * -- direct io 3299 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3300 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3301 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3302 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3303 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3304 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3305 */ 3306 3307 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3308 enum page_type type, enum temp_type temp) 3309 { 3310 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 3311 if (type == DATA) { 3312 if (temp == WARM) 3313 return WRITE_LIFE_NOT_SET; 3314 else if (temp == HOT) 3315 return WRITE_LIFE_SHORT; 3316 else if (temp == COLD) 3317 return WRITE_LIFE_EXTREME; 3318 } else { 3319 return WRITE_LIFE_NOT_SET; 3320 } 3321 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 3322 if (type == DATA) { 3323 if (temp == WARM) 3324 return WRITE_LIFE_LONG; 3325 else if (temp == HOT) 3326 return WRITE_LIFE_SHORT; 3327 else if (temp == COLD) 3328 return WRITE_LIFE_EXTREME; 3329 } else if (type == NODE) { 3330 if (temp == WARM || temp == HOT) 3331 return WRITE_LIFE_NOT_SET; 3332 else if (temp == COLD) 3333 return WRITE_LIFE_NONE; 3334 } else if (type == META) { 3335 return WRITE_LIFE_MEDIUM; 3336 } 3337 } 3338 return WRITE_LIFE_NOT_SET; 3339 } 3340 3341 static int __get_segment_type_2(struct f2fs_io_info *fio) 3342 { 3343 if (fio->type == DATA) 3344 return CURSEG_HOT_DATA; 3345 else 3346 return CURSEG_HOT_NODE; 3347 } 3348 3349 static int __get_segment_type_4(struct f2fs_io_info *fio) 3350 { 3351 if (fio->type == DATA) { 3352 struct inode *inode = fio->page->mapping->host; 3353 3354 if (S_ISDIR(inode->i_mode)) 3355 return CURSEG_HOT_DATA; 3356 else 3357 return CURSEG_COLD_DATA; 3358 } else { 3359 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3360 return CURSEG_WARM_NODE; 3361 else 3362 return CURSEG_COLD_NODE; 3363 } 3364 } 3365 3366 static int __get_segment_type_6(struct f2fs_io_info *fio) 3367 { 3368 if (fio->type == DATA) { 3369 struct inode *inode = fio->page->mapping->host; 3370 3371 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3372 return CURSEG_COLD_DATA_PINNED; 3373 3374 if (page_private_gcing(fio->page)) { 3375 if (fio->sbi->am.atgc_enabled && 3376 (fio->io_type == FS_DATA_IO) && 3377 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3378 return CURSEG_ALL_DATA_ATGC; 3379 else 3380 return CURSEG_COLD_DATA; 3381 } 3382 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3383 return CURSEG_COLD_DATA; 3384 if (file_is_hot(inode) || 3385 is_inode_flag_set(inode, FI_HOT_DATA) || 3386 f2fs_is_atomic_file(inode) || 3387 f2fs_is_volatile_file(inode)) 3388 return CURSEG_HOT_DATA; 3389 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3390 } else { 3391 if (IS_DNODE(fio->page)) 3392 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3393 CURSEG_HOT_NODE; 3394 return CURSEG_COLD_NODE; 3395 } 3396 } 3397 3398 static int __get_segment_type(struct f2fs_io_info *fio) 3399 { 3400 int type = 0; 3401 3402 switch (F2FS_OPTION(fio->sbi).active_logs) { 3403 case 2: 3404 type = __get_segment_type_2(fio); 3405 break; 3406 case 4: 3407 type = __get_segment_type_4(fio); 3408 break; 3409 case 6: 3410 type = __get_segment_type_6(fio); 3411 break; 3412 default: 3413 f2fs_bug_on(fio->sbi, true); 3414 } 3415 3416 if (IS_HOT(type)) 3417 fio->temp = HOT; 3418 else if (IS_WARM(type)) 3419 fio->temp = WARM; 3420 else 3421 fio->temp = COLD; 3422 return type; 3423 } 3424 3425 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3426 block_t old_blkaddr, block_t *new_blkaddr, 3427 struct f2fs_summary *sum, int type, 3428 struct f2fs_io_info *fio) 3429 { 3430 struct sit_info *sit_i = SIT_I(sbi); 3431 struct curseg_info *curseg = CURSEG_I(sbi, type); 3432 unsigned long long old_mtime; 3433 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3434 struct seg_entry *se = NULL; 3435 3436 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3437 3438 mutex_lock(&curseg->curseg_mutex); 3439 down_write(&sit_i->sentry_lock); 3440 3441 if (from_gc) { 3442 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3443 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3444 sanity_check_seg_type(sbi, se->type); 3445 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3446 } 3447 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3448 3449 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3450 3451 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3452 3453 /* 3454 * __add_sum_entry should be resided under the curseg_mutex 3455 * because, this function updates a summary entry in the 3456 * current summary block. 3457 */ 3458 __add_sum_entry(sbi, type, sum); 3459 3460 __refresh_next_blkoff(sbi, curseg); 3461 3462 stat_inc_block_count(sbi, curseg); 3463 3464 if (from_gc) { 3465 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3466 } else { 3467 update_segment_mtime(sbi, old_blkaddr, 0); 3468 old_mtime = 0; 3469 } 3470 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3471 3472 /* 3473 * SIT information should be updated before segment allocation, 3474 * since SSR needs latest valid block information. 3475 */ 3476 update_sit_entry(sbi, *new_blkaddr, 1); 3477 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3478 update_sit_entry(sbi, old_blkaddr, -1); 3479 3480 if (!__has_curseg_space(sbi, curseg)) { 3481 if (from_gc) 3482 get_atssr_segment(sbi, type, se->type, 3483 AT_SSR, se->mtime); 3484 else 3485 sit_i->s_ops->allocate_segment(sbi, type, false); 3486 } 3487 /* 3488 * segment dirty status should be updated after segment allocation, 3489 * so we just need to update status only one time after previous 3490 * segment being closed. 3491 */ 3492 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3493 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3494 3495 up_write(&sit_i->sentry_lock); 3496 3497 if (page && IS_NODESEG(type)) { 3498 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3499 3500 f2fs_inode_chksum_set(sbi, page); 3501 } 3502 3503 if (fio) { 3504 struct f2fs_bio_info *io; 3505 3506 if (F2FS_IO_ALIGNED(sbi)) 3507 fio->retry = false; 3508 3509 INIT_LIST_HEAD(&fio->list); 3510 fio->in_list = true; 3511 io = sbi->write_io[fio->type] + fio->temp; 3512 spin_lock(&io->io_lock); 3513 list_add_tail(&fio->list, &io->io_list); 3514 spin_unlock(&io->io_lock); 3515 } 3516 3517 mutex_unlock(&curseg->curseg_mutex); 3518 3519 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3520 } 3521 3522 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3523 block_t blkaddr, unsigned int blkcnt) 3524 { 3525 if (!f2fs_is_multi_device(sbi)) 3526 return; 3527 3528 while (1) { 3529 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3530 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3531 3532 /* update device state for fsync */ 3533 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3534 3535 /* update device state for checkpoint */ 3536 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3537 spin_lock(&sbi->dev_lock); 3538 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3539 spin_unlock(&sbi->dev_lock); 3540 } 3541 3542 if (blkcnt <= blks) 3543 break; 3544 blkcnt -= blks; 3545 blkaddr += blks; 3546 } 3547 } 3548 3549 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3550 { 3551 int type = __get_segment_type(fio); 3552 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3553 3554 if (keep_order) 3555 f2fs_down_read(&fio->sbi->io_order_lock); 3556 reallocate: 3557 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3558 &fio->new_blkaddr, sum, type, fio); 3559 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) { 3560 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3561 fio->old_blkaddr, fio->old_blkaddr); 3562 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr); 3563 } 3564 3565 /* writeout dirty page into bdev */ 3566 f2fs_submit_page_write(fio); 3567 if (fio->retry) { 3568 fio->old_blkaddr = fio->new_blkaddr; 3569 goto reallocate; 3570 } 3571 3572 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3573 3574 if (keep_order) 3575 f2fs_up_read(&fio->sbi->io_order_lock); 3576 } 3577 3578 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3579 enum iostat_type io_type) 3580 { 3581 struct f2fs_io_info fio = { 3582 .sbi = sbi, 3583 .type = META, 3584 .temp = HOT, 3585 .op = REQ_OP_WRITE, 3586 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3587 .old_blkaddr = page->index, 3588 .new_blkaddr = page->index, 3589 .page = page, 3590 .encrypted_page = NULL, 3591 .in_list = false, 3592 }; 3593 3594 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3595 fio.op_flags &= ~REQ_META; 3596 3597 set_page_writeback(page); 3598 ClearPageError(page); 3599 f2fs_submit_page_write(&fio); 3600 3601 stat_inc_meta_count(sbi, page->index); 3602 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3603 } 3604 3605 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3606 { 3607 struct f2fs_summary sum; 3608 3609 set_summary(&sum, nid, 0, 0); 3610 do_write_page(&sum, fio); 3611 3612 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3613 } 3614 3615 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3616 struct f2fs_io_info *fio) 3617 { 3618 struct f2fs_sb_info *sbi = fio->sbi; 3619 struct f2fs_summary sum; 3620 3621 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3622 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3623 do_write_page(&sum, fio); 3624 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3625 3626 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3627 } 3628 3629 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3630 { 3631 int err; 3632 struct f2fs_sb_info *sbi = fio->sbi; 3633 unsigned int segno; 3634 3635 fio->new_blkaddr = fio->old_blkaddr; 3636 /* i/o temperature is needed for passing down write hints */ 3637 __get_segment_type(fio); 3638 3639 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3640 3641 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3642 set_sbi_flag(sbi, SBI_NEED_FSCK); 3643 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3644 __func__, segno); 3645 err = -EFSCORRUPTED; 3646 goto drop_bio; 3647 } 3648 3649 if (f2fs_cp_error(sbi)) { 3650 err = -EIO; 3651 goto drop_bio; 3652 } 3653 3654 invalidate_mapping_pages(META_MAPPING(sbi), 3655 fio->new_blkaddr, fio->new_blkaddr); 3656 3657 stat_inc_inplace_blocks(fio->sbi); 3658 3659 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3660 err = f2fs_merge_page_bio(fio); 3661 else 3662 err = f2fs_submit_page_bio(fio); 3663 if (!err) { 3664 f2fs_update_device_state(fio->sbi, fio->ino, 3665 fio->new_blkaddr, 1); 3666 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3667 } 3668 3669 return err; 3670 drop_bio: 3671 if (fio->bio && *(fio->bio)) { 3672 struct bio *bio = *(fio->bio); 3673 3674 bio->bi_status = BLK_STS_IOERR; 3675 bio_endio(bio); 3676 *(fio->bio) = NULL; 3677 } 3678 return err; 3679 } 3680 3681 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3682 unsigned int segno) 3683 { 3684 int i; 3685 3686 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3687 if (CURSEG_I(sbi, i)->segno == segno) 3688 break; 3689 } 3690 return i; 3691 } 3692 3693 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3694 block_t old_blkaddr, block_t new_blkaddr, 3695 bool recover_curseg, bool recover_newaddr, 3696 bool from_gc) 3697 { 3698 struct sit_info *sit_i = SIT_I(sbi); 3699 struct curseg_info *curseg; 3700 unsigned int segno, old_cursegno; 3701 struct seg_entry *se; 3702 int type; 3703 unsigned short old_blkoff; 3704 unsigned char old_alloc_type; 3705 3706 segno = GET_SEGNO(sbi, new_blkaddr); 3707 se = get_seg_entry(sbi, segno); 3708 type = se->type; 3709 3710 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3711 3712 if (!recover_curseg) { 3713 /* for recovery flow */ 3714 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3715 if (old_blkaddr == NULL_ADDR) 3716 type = CURSEG_COLD_DATA; 3717 else 3718 type = CURSEG_WARM_DATA; 3719 } 3720 } else { 3721 if (IS_CURSEG(sbi, segno)) { 3722 /* se->type is volatile as SSR allocation */ 3723 type = __f2fs_get_curseg(sbi, segno); 3724 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3725 } else { 3726 type = CURSEG_WARM_DATA; 3727 } 3728 } 3729 3730 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3731 curseg = CURSEG_I(sbi, type); 3732 3733 mutex_lock(&curseg->curseg_mutex); 3734 down_write(&sit_i->sentry_lock); 3735 3736 old_cursegno = curseg->segno; 3737 old_blkoff = curseg->next_blkoff; 3738 old_alloc_type = curseg->alloc_type; 3739 3740 /* change the current segment */ 3741 if (segno != curseg->segno) { 3742 curseg->next_segno = segno; 3743 change_curseg(sbi, type, true); 3744 } 3745 3746 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3747 __add_sum_entry(sbi, type, sum); 3748 3749 if (!recover_curseg || recover_newaddr) { 3750 if (!from_gc) 3751 update_segment_mtime(sbi, new_blkaddr, 0); 3752 update_sit_entry(sbi, new_blkaddr, 1); 3753 } 3754 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3755 invalidate_mapping_pages(META_MAPPING(sbi), 3756 old_blkaddr, old_blkaddr); 3757 f2fs_invalidate_compress_page(sbi, old_blkaddr); 3758 if (!from_gc) 3759 update_segment_mtime(sbi, old_blkaddr, 0); 3760 update_sit_entry(sbi, old_blkaddr, -1); 3761 } 3762 3763 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3764 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3765 3766 locate_dirty_segment(sbi, old_cursegno); 3767 3768 if (recover_curseg) { 3769 if (old_cursegno != curseg->segno) { 3770 curseg->next_segno = old_cursegno; 3771 change_curseg(sbi, type, true); 3772 } 3773 curseg->next_blkoff = old_blkoff; 3774 curseg->alloc_type = old_alloc_type; 3775 } 3776 3777 up_write(&sit_i->sentry_lock); 3778 mutex_unlock(&curseg->curseg_mutex); 3779 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3780 } 3781 3782 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3783 block_t old_addr, block_t new_addr, 3784 unsigned char version, bool recover_curseg, 3785 bool recover_newaddr) 3786 { 3787 struct f2fs_summary sum; 3788 3789 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3790 3791 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3792 recover_curseg, recover_newaddr, false); 3793 3794 f2fs_update_data_blkaddr(dn, new_addr); 3795 } 3796 3797 void f2fs_wait_on_page_writeback(struct page *page, 3798 enum page_type type, bool ordered, bool locked) 3799 { 3800 if (PageWriteback(page)) { 3801 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3802 3803 /* submit cached LFS IO */ 3804 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3805 /* sbumit cached IPU IO */ 3806 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3807 if (ordered) { 3808 wait_on_page_writeback(page); 3809 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3810 } else { 3811 wait_for_stable_page(page); 3812 } 3813 } 3814 } 3815 3816 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3817 { 3818 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3819 struct page *cpage; 3820 3821 if (!f2fs_post_read_required(inode)) 3822 return; 3823 3824 if (!__is_valid_data_blkaddr(blkaddr)) 3825 return; 3826 3827 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3828 if (cpage) { 3829 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3830 f2fs_put_page(cpage, 1); 3831 } 3832 } 3833 3834 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3835 block_t len) 3836 { 3837 block_t i; 3838 3839 for (i = 0; i < len; i++) 3840 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3841 } 3842 3843 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3844 { 3845 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3846 struct curseg_info *seg_i; 3847 unsigned char *kaddr; 3848 struct page *page; 3849 block_t start; 3850 int i, j, offset; 3851 3852 start = start_sum_block(sbi); 3853 3854 page = f2fs_get_meta_page(sbi, start++); 3855 if (IS_ERR(page)) 3856 return PTR_ERR(page); 3857 kaddr = (unsigned char *)page_address(page); 3858 3859 /* Step 1: restore nat cache */ 3860 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3861 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3862 3863 /* Step 2: restore sit cache */ 3864 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3865 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3866 offset = 2 * SUM_JOURNAL_SIZE; 3867 3868 /* Step 3: restore summary entries */ 3869 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3870 unsigned short blk_off; 3871 unsigned int segno; 3872 3873 seg_i = CURSEG_I(sbi, i); 3874 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3875 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3876 seg_i->next_segno = segno; 3877 reset_curseg(sbi, i, 0); 3878 seg_i->alloc_type = ckpt->alloc_type[i]; 3879 seg_i->next_blkoff = blk_off; 3880 3881 if (seg_i->alloc_type == SSR) 3882 blk_off = sbi->blocks_per_seg; 3883 3884 for (j = 0; j < blk_off; j++) { 3885 struct f2fs_summary *s; 3886 3887 s = (struct f2fs_summary *)(kaddr + offset); 3888 seg_i->sum_blk->entries[j] = *s; 3889 offset += SUMMARY_SIZE; 3890 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3891 SUM_FOOTER_SIZE) 3892 continue; 3893 3894 f2fs_put_page(page, 1); 3895 page = NULL; 3896 3897 page = f2fs_get_meta_page(sbi, start++); 3898 if (IS_ERR(page)) 3899 return PTR_ERR(page); 3900 kaddr = (unsigned char *)page_address(page); 3901 offset = 0; 3902 } 3903 } 3904 f2fs_put_page(page, 1); 3905 return 0; 3906 } 3907 3908 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3909 { 3910 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3911 struct f2fs_summary_block *sum; 3912 struct curseg_info *curseg; 3913 struct page *new; 3914 unsigned short blk_off; 3915 unsigned int segno = 0; 3916 block_t blk_addr = 0; 3917 int err = 0; 3918 3919 /* get segment number and block addr */ 3920 if (IS_DATASEG(type)) { 3921 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3922 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3923 CURSEG_HOT_DATA]); 3924 if (__exist_node_summaries(sbi)) 3925 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3926 else 3927 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3928 } else { 3929 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3930 CURSEG_HOT_NODE]); 3931 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3932 CURSEG_HOT_NODE]); 3933 if (__exist_node_summaries(sbi)) 3934 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3935 type - CURSEG_HOT_NODE); 3936 else 3937 blk_addr = GET_SUM_BLOCK(sbi, segno); 3938 } 3939 3940 new = f2fs_get_meta_page(sbi, blk_addr); 3941 if (IS_ERR(new)) 3942 return PTR_ERR(new); 3943 sum = (struct f2fs_summary_block *)page_address(new); 3944 3945 if (IS_NODESEG(type)) { 3946 if (__exist_node_summaries(sbi)) { 3947 struct f2fs_summary *ns = &sum->entries[0]; 3948 int i; 3949 3950 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3951 ns->version = 0; 3952 ns->ofs_in_node = 0; 3953 } 3954 } else { 3955 err = f2fs_restore_node_summary(sbi, segno, sum); 3956 if (err) 3957 goto out; 3958 } 3959 } 3960 3961 /* set uncompleted segment to curseg */ 3962 curseg = CURSEG_I(sbi, type); 3963 mutex_lock(&curseg->curseg_mutex); 3964 3965 /* update journal info */ 3966 down_write(&curseg->journal_rwsem); 3967 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3968 up_write(&curseg->journal_rwsem); 3969 3970 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3971 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3972 curseg->next_segno = segno; 3973 reset_curseg(sbi, type, 0); 3974 curseg->alloc_type = ckpt->alloc_type[type]; 3975 curseg->next_blkoff = blk_off; 3976 mutex_unlock(&curseg->curseg_mutex); 3977 out: 3978 f2fs_put_page(new, 1); 3979 return err; 3980 } 3981 3982 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3983 { 3984 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3985 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3986 int type = CURSEG_HOT_DATA; 3987 int err; 3988 3989 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3990 int npages = f2fs_npages_for_summary_flush(sbi, true); 3991 3992 if (npages >= 2) 3993 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3994 META_CP, true); 3995 3996 /* restore for compacted data summary */ 3997 err = read_compacted_summaries(sbi); 3998 if (err) 3999 return err; 4000 type = CURSEG_HOT_NODE; 4001 } 4002 4003 if (__exist_node_summaries(sbi)) 4004 f2fs_ra_meta_pages(sbi, 4005 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 4006 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 4007 4008 for (; type <= CURSEG_COLD_NODE; type++) { 4009 err = read_normal_summaries(sbi, type); 4010 if (err) 4011 return err; 4012 } 4013 4014 /* sanity check for summary blocks */ 4015 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 4016 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 4017 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 4018 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 4019 return -EINVAL; 4020 } 4021 4022 return 0; 4023 } 4024 4025 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 4026 { 4027 struct page *page; 4028 unsigned char *kaddr; 4029 struct f2fs_summary *summary; 4030 struct curseg_info *seg_i; 4031 int written_size = 0; 4032 int i, j; 4033 4034 page = f2fs_grab_meta_page(sbi, blkaddr++); 4035 kaddr = (unsigned char *)page_address(page); 4036 memset(kaddr, 0, PAGE_SIZE); 4037 4038 /* Step 1: write nat cache */ 4039 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4040 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 4041 written_size += SUM_JOURNAL_SIZE; 4042 4043 /* Step 2: write sit cache */ 4044 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4045 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 4046 written_size += SUM_JOURNAL_SIZE; 4047 4048 /* Step 3: write summary entries */ 4049 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4050 unsigned short blkoff; 4051 4052 seg_i = CURSEG_I(sbi, i); 4053 if (sbi->ckpt->alloc_type[i] == SSR) 4054 blkoff = sbi->blocks_per_seg; 4055 else 4056 blkoff = curseg_blkoff(sbi, i); 4057 4058 for (j = 0; j < blkoff; j++) { 4059 if (!page) { 4060 page = f2fs_grab_meta_page(sbi, blkaddr++); 4061 kaddr = (unsigned char *)page_address(page); 4062 memset(kaddr, 0, PAGE_SIZE); 4063 written_size = 0; 4064 } 4065 summary = (struct f2fs_summary *)(kaddr + written_size); 4066 *summary = seg_i->sum_blk->entries[j]; 4067 written_size += SUMMARY_SIZE; 4068 4069 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 4070 SUM_FOOTER_SIZE) 4071 continue; 4072 4073 set_page_dirty(page); 4074 f2fs_put_page(page, 1); 4075 page = NULL; 4076 } 4077 } 4078 if (page) { 4079 set_page_dirty(page); 4080 f2fs_put_page(page, 1); 4081 } 4082 } 4083 4084 static void write_normal_summaries(struct f2fs_sb_info *sbi, 4085 block_t blkaddr, int type) 4086 { 4087 int i, end; 4088 4089 if (IS_DATASEG(type)) 4090 end = type + NR_CURSEG_DATA_TYPE; 4091 else 4092 end = type + NR_CURSEG_NODE_TYPE; 4093 4094 for (i = type; i < end; i++) 4095 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4096 } 4097 4098 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4099 { 4100 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4101 write_compacted_summaries(sbi, start_blk); 4102 else 4103 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4104 } 4105 4106 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4107 { 4108 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4109 } 4110 4111 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4112 unsigned int val, int alloc) 4113 { 4114 int i; 4115 4116 if (type == NAT_JOURNAL) { 4117 for (i = 0; i < nats_in_cursum(journal); i++) { 4118 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4119 return i; 4120 } 4121 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4122 return update_nats_in_cursum(journal, 1); 4123 } else if (type == SIT_JOURNAL) { 4124 for (i = 0; i < sits_in_cursum(journal); i++) 4125 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4126 return i; 4127 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4128 return update_sits_in_cursum(journal, 1); 4129 } 4130 return -1; 4131 } 4132 4133 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4134 unsigned int segno) 4135 { 4136 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4137 } 4138 4139 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4140 unsigned int start) 4141 { 4142 struct sit_info *sit_i = SIT_I(sbi); 4143 struct page *page; 4144 pgoff_t src_off, dst_off; 4145 4146 src_off = current_sit_addr(sbi, start); 4147 dst_off = next_sit_addr(sbi, src_off); 4148 4149 page = f2fs_grab_meta_page(sbi, dst_off); 4150 seg_info_to_sit_page(sbi, page, start); 4151 4152 set_page_dirty(page); 4153 set_to_next_sit(sit_i, start); 4154 4155 return page; 4156 } 4157 4158 static struct sit_entry_set *grab_sit_entry_set(void) 4159 { 4160 struct sit_entry_set *ses = 4161 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4162 GFP_NOFS, true, NULL); 4163 4164 ses->entry_cnt = 0; 4165 INIT_LIST_HEAD(&ses->set_list); 4166 return ses; 4167 } 4168 4169 static void release_sit_entry_set(struct sit_entry_set *ses) 4170 { 4171 list_del(&ses->set_list); 4172 kmem_cache_free(sit_entry_set_slab, ses); 4173 } 4174 4175 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4176 struct list_head *head) 4177 { 4178 struct sit_entry_set *next = ses; 4179 4180 if (list_is_last(&ses->set_list, head)) 4181 return; 4182 4183 list_for_each_entry_continue(next, head, set_list) 4184 if (ses->entry_cnt <= next->entry_cnt) 4185 break; 4186 4187 list_move_tail(&ses->set_list, &next->set_list); 4188 } 4189 4190 static void add_sit_entry(unsigned int segno, struct list_head *head) 4191 { 4192 struct sit_entry_set *ses; 4193 unsigned int start_segno = START_SEGNO(segno); 4194 4195 list_for_each_entry(ses, head, set_list) { 4196 if (ses->start_segno == start_segno) { 4197 ses->entry_cnt++; 4198 adjust_sit_entry_set(ses, head); 4199 return; 4200 } 4201 } 4202 4203 ses = grab_sit_entry_set(); 4204 4205 ses->start_segno = start_segno; 4206 ses->entry_cnt++; 4207 list_add(&ses->set_list, head); 4208 } 4209 4210 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4211 { 4212 struct f2fs_sm_info *sm_info = SM_I(sbi); 4213 struct list_head *set_list = &sm_info->sit_entry_set; 4214 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4215 unsigned int segno; 4216 4217 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4218 add_sit_entry(segno, set_list); 4219 } 4220 4221 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4222 { 4223 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4224 struct f2fs_journal *journal = curseg->journal; 4225 int i; 4226 4227 down_write(&curseg->journal_rwsem); 4228 for (i = 0; i < sits_in_cursum(journal); i++) { 4229 unsigned int segno; 4230 bool dirtied; 4231 4232 segno = le32_to_cpu(segno_in_journal(journal, i)); 4233 dirtied = __mark_sit_entry_dirty(sbi, segno); 4234 4235 if (!dirtied) 4236 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4237 } 4238 update_sits_in_cursum(journal, -i); 4239 up_write(&curseg->journal_rwsem); 4240 } 4241 4242 /* 4243 * CP calls this function, which flushes SIT entries including sit_journal, 4244 * and moves prefree segs to free segs. 4245 */ 4246 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4247 { 4248 struct sit_info *sit_i = SIT_I(sbi); 4249 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4250 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4251 struct f2fs_journal *journal = curseg->journal; 4252 struct sit_entry_set *ses, *tmp; 4253 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4254 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4255 struct seg_entry *se; 4256 4257 down_write(&sit_i->sentry_lock); 4258 4259 if (!sit_i->dirty_sentries) 4260 goto out; 4261 4262 /* 4263 * add and account sit entries of dirty bitmap in sit entry 4264 * set temporarily 4265 */ 4266 add_sits_in_set(sbi); 4267 4268 /* 4269 * if there are no enough space in journal to store dirty sit 4270 * entries, remove all entries from journal and add and account 4271 * them in sit entry set. 4272 */ 4273 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4274 !to_journal) 4275 remove_sits_in_journal(sbi); 4276 4277 /* 4278 * there are two steps to flush sit entries: 4279 * #1, flush sit entries to journal in current cold data summary block. 4280 * #2, flush sit entries to sit page. 4281 */ 4282 list_for_each_entry_safe(ses, tmp, head, set_list) { 4283 struct page *page = NULL; 4284 struct f2fs_sit_block *raw_sit = NULL; 4285 unsigned int start_segno = ses->start_segno; 4286 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4287 (unsigned long)MAIN_SEGS(sbi)); 4288 unsigned int segno = start_segno; 4289 4290 if (to_journal && 4291 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4292 to_journal = false; 4293 4294 if (to_journal) { 4295 down_write(&curseg->journal_rwsem); 4296 } else { 4297 page = get_next_sit_page(sbi, start_segno); 4298 raw_sit = page_address(page); 4299 } 4300 4301 /* flush dirty sit entries in region of current sit set */ 4302 for_each_set_bit_from(segno, bitmap, end) { 4303 int offset, sit_offset; 4304 4305 se = get_seg_entry(sbi, segno); 4306 #ifdef CONFIG_F2FS_CHECK_FS 4307 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4308 SIT_VBLOCK_MAP_SIZE)) 4309 f2fs_bug_on(sbi, 1); 4310 #endif 4311 4312 /* add discard candidates */ 4313 if (!(cpc->reason & CP_DISCARD)) { 4314 cpc->trim_start = segno; 4315 add_discard_addrs(sbi, cpc, false); 4316 } 4317 4318 if (to_journal) { 4319 offset = f2fs_lookup_journal_in_cursum(journal, 4320 SIT_JOURNAL, segno, 1); 4321 f2fs_bug_on(sbi, offset < 0); 4322 segno_in_journal(journal, offset) = 4323 cpu_to_le32(segno); 4324 seg_info_to_raw_sit(se, 4325 &sit_in_journal(journal, offset)); 4326 check_block_count(sbi, segno, 4327 &sit_in_journal(journal, offset)); 4328 } else { 4329 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4330 seg_info_to_raw_sit(se, 4331 &raw_sit->entries[sit_offset]); 4332 check_block_count(sbi, segno, 4333 &raw_sit->entries[sit_offset]); 4334 } 4335 4336 __clear_bit(segno, bitmap); 4337 sit_i->dirty_sentries--; 4338 ses->entry_cnt--; 4339 } 4340 4341 if (to_journal) 4342 up_write(&curseg->journal_rwsem); 4343 else 4344 f2fs_put_page(page, 1); 4345 4346 f2fs_bug_on(sbi, ses->entry_cnt); 4347 release_sit_entry_set(ses); 4348 } 4349 4350 f2fs_bug_on(sbi, !list_empty(head)); 4351 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4352 out: 4353 if (cpc->reason & CP_DISCARD) { 4354 __u64 trim_start = cpc->trim_start; 4355 4356 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4357 add_discard_addrs(sbi, cpc, false); 4358 4359 cpc->trim_start = trim_start; 4360 } 4361 up_write(&sit_i->sentry_lock); 4362 4363 set_prefree_as_free_segments(sbi); 4364 } 4365 4366 static int build_sit_info(struct f2fs_sb_info *sbi) 4367 { 4368 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4369 struct sit_info *sit_i; 4370 unsigned int sit_segs, start; 4371 char *src_bitmap, *bitmap; 4372 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4373 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4374 4375 /* allocate memory for SIT information */ 4376 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4377 if (!sit_i) 4378 return -ENOMEM; 4379 4380 SM_I(sbi)->sit_info = sit_i; 4381 4382 sit_i->sentries = 4383 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4384 MAIN_SEGS(sbi)), 4385 GFP_KERNEL); 4386 if (!sit_i->sentries) 4387 return -ENOMEM; 4388 4389 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4390 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4391 GFP_KERNEL); 4392 if (!sit_i->dirty_sentries_bitmap) 4393 return -ENOMEM; 4394 4395 #ifdef CONFIG_F2FS_CHECK_FS 4396 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4397 #else 4398 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4399 #endif 4400 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4401 if (!sit_i->bitmap) 4402 return -ENOMEM; 4403 4404 bitmap = sit_i->bitmap; 4405 4406 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4407 sit_i->sentries[start].cur_valid_map = bitmap; 4408 bitmap += SIT_VBLOCK_MAP_SIZE; 4409 4410 sit_i->sentries[start].ckpt_valid_map = bitmap; 4411 bitmap += SIT_VBLOCK_MAP_SIZE; 4412 4413 #ifdef CONFIG_F2FS_CHECK_FS 4414 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4415 bitmap += SIT_VBLOCK_MAP_SIZE; 4416 #endif 4417 4418 if (discard_map) { 4419 sit_i->sentries[start].discard_map = bitmap; 4420 bitmap += SIT_VBLOCK_MAP_SIZE; 4421 } 4422 } 4423 4424 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4425 if (!sit_i->tmp_map) 4426 return -ENOMEM; 4427 4428 if (__is_large_section(sbi)) { 4429 sit_i->sec_entries = 4430 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4431 MAIN_SECS(sbi)), 4432 GFP_KERNEL); 4433 if (!sit_i->sec_entries) 4434 return -ENOMEM; 4435 } 4436 4437 /* get information related with SIT */ 4438 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4439 4440 /* setup SIT bitmap from ckeckpoint pack */ 4441 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4442 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4443 4444 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4445 if (!sit_i->sit_bitmap) 4446 return -ENOMEM; 4447 4448 #ifdef CONFIG_F2FS_CHECK_FS 4449 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4450 sit_bitmap_size, GFP_KERNEL); 4451 if (!sit_i->sit_bitmap_mir) 4452 return -ENOMEM; 4453 4454 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4455 main_bitmap_size, GFP_KERNEL); 4456 if (!sit_i->invalid_segmap) 4457 return -ENOMEM; 4458 #endif 4459 4460 /* init SIT information */ 4461 sit_i->s_ops = &default_salloc_ops; 4462 4463 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4464 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4465 sit_i->written_valid_blocks = 0; 4466 sit_i->bitmap_size = sit_bitmap_size; 4467 sit_i->dirty_sentries = 0; 4468 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4469 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4470 sit_i->mounted_time = ktime_get_boottime_seconds(); 4471 init_rwsem(&sit_i->sentry_lock); 4472 return 0; 4473 } 4474 4475 static int build_free_segmap(struct f2fs_sb_info *sbi) 4476 { 4477 struct free_segmap_info *free_i; 4478 unsigned int bitmap_size, sec_bitmap_size; 4479 4480 /* allocate memory for free segmap information */ 4481 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4482 if (!free_i) 4483 return -ENOMEM; 4484 4485 SM_I(sbi)->free_info = free_i; 4486 4487 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4488 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4489 if (!free_i->free_segmap) 4490 return -ENOMEM; 4491 4492 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4493 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4494 if (!free_i->free_secmap) 4495 return -ENOMEM; 4496 4497 /* set all segments as dirty temporarily */ 4498 memset(free_i->free_segmap, 0xff, bitmap_size); 4499 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4500 4501 /* init free segmap information */ 4502 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4503 free_i->free_segments = 0; 4504 free_i->free_sections = 0; 4505 spin_lock_init(&free_i->segmap_lock); 4506 return 0; 4507 } 4508 4509 static int build_curseg(struct f2fs_sb_info *sbi) 4510 { 4511 struct curseg_info *array; 4512 int i; 4513 4514 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4515 sizeof(*array)), GFP_KERNEL); 4516 if (!array) 4517 return -ENOMEM; 4518 4519 SM_I(sbi)->curseg_array = array; 4520 4521 for (i = 0; i < NO_CHECK_TYPE; i++) { 4522 mutex_init(&array[i].curseg_mutex); 4523 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4524 if (!array[i].sum_blk) 4525 return -ENOMEM; 4526 init_rwsem(&array[i].journal_rwsem); 4527 array[i].journal = f2fs_kzalloc(sbi, 4528 sizeof(struct f2fs_journal), GFP_KERNEL); 4529 if (!array[i].journal) 4530 return -ENOMEM; 4531 if (i < NR_PERSISTENT_LOG) 4532 array[i].seg_type = CURSEG_HOT_DATA + i; 4533 else if (i == CURSEG_COLD_DATA_PINNED) 4534 array[i].seg_type = CURSEG_COLD_DATA; 4535 else if (i == CURSEG_ALL_DATA_ATGC) 4536 array[i].seg_type = CURSEG_COLD_DATA; 4537 array[i].segno = NULL_SEGNO; 4538 array[i].next_blkoff = 0; 4539 array[i].inited = false; 4540 } 4541 return restore_curseg_summaries(sbi); 4542 } 4543 4544 static int build_sit_entries(struct f2fs_sb_info *sbi) 4545 { 4546 struct sit_info *sit_i = SIT_I(sbi); 4547 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4548 struct f2fs_journal *journal = curseg->journal; 4549 struct seg_entry *se; 4550 struct f2fs_sit_entry sit; 4551 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4552 unsigned int i, start, end; 4553 unsigned int readed, start_blk = 0; 4554 int err = 0; 4555 block_t total_node_blocks = 0; 4556 4557 do { 4558 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4559 META_SIT, true); 4560 4561 start = start_blk * sit_i->sents_per_block; 4562 end = (start_blk + readed) * sit_i->sents_per_block; 4563 4564 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4565 struct f2fs_sit_block *sit_blk; 4566 struct page *page; 4567 4568 se = &sit_i->sentries[start]; 4569 page = get_current_sit_page(sbi, start); 4570 if (IS_ERR(page)) 4571 return PTR_ERR(page); 4572 sit_blk = (struct f2fs_sit_block *)page_address(page); 4573 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4574 f2fs_put_page(page, 1); 4575 4576 err = check_block_count(sbi, start, &sit); 4577 if (err) 4578 return err; 4579 seg_info_from_raw_sit(se, &sit); 4580 if (IS_NODESEG(se->type)) 4581 total_node_blocks += se->valid_blocks; 4582 4583 if (f2fs_block_unit_discard(sbi)) { 4584 /* build discard map only one time */ 4585 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4586 memset(se->discard_map, 0xff, 4587 SIT_VBLOCK_MAP_SIZE); 4588 } else { 4589 memcpy(se->discard_map, 4590 se->cur_valid_map, 4591 SIT_VBLOCK_MAP_SIZE); 4592 sbi->discard_blks += 4593 sbi->blocks_per_seg - 4594 se->valid_blocks; 4595 } 4596 } 4597 4598 if (__is_large_section(sbi)) 4599 get_sec_entry(sbi, start)->valid_blocks += 4600 se->valid_blocks; 4601 } 4602 start_blk += readed; 4603 } while (start_blk < sit_blk_cnt); 4604 4605 down_read(&curseg->journal_rwsem); 4606 for (i = 0; i < sits_in_cursum(journal); i++) { 4607 unsigned int old_valid_blocks; 4608 4609 start = le32_to_cpu(segno_in_journal(journal, i)); 4610 if (start >= MAIN_SEGS(sbi)) { 4611 f2fs_err(sbi, "Wrong journal entry on segno %u", 4612 start); 4613 err = -EFSCORRUPTED; 4614 break; 4615 } 4616 4617 se = &sit_i->sentries[start]; 4618 sit = sit_in_journal(journal, i); 4619 4620 old_valid_blocks = se->valid_blocks; 4621 if (IS_NODESEG(se->type)) 4622 total_node_blocks -= old_valid_blocks; 4623 4624 err = check_block_count(sbi, start, &sit); 4625 if (err) 4626 break; 4627 seg_info_from_raw_sit(se, &sit); 4628 if (IS_NODESEG(se->type)) 4629 total_node_blocks += se->valid_blocks; 4630 4631 if (f2fs_block_unit_discard(sbi)) { 4632 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4633 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4634 } else { 4635 memcpy(se->discard_map, se->cur_valid_map, 4636 SIT_VBLOCK_MAP_SIZE); 4637 sbi->discard_blks += old_valid_blocks; 4638 sbi->discard_blks -= se->valid_blocks; 4639 } 4640 } 4641 4642 if (__is_large_section(sbi)) { 4643 get_sec_entry(sbi, start)->valid_blocks += 4644 se->valid_blocks; 4645 get_sec_entry(sbi, start)->valid_blocks -= 4646 old_valid_blocks; 4647 } 4648 } 4649 up_read(&curseg->journal_rwsem); 4650 4651 if (!err && total_node_blocks != valid_node_count(sbi)) { 4652 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4653 total_node_blocks, valid_node_count(sbi)); 4654 err = -EFSCORRUPTED; 4655 } 4656 4657 return err; 4658 } 4659 4660 static void init_free_segmap(struct f2fs_sb_info *sbi) 4661 { 4662 unsigned int start; 4663 int type; 4664 struct seg_entry *sentry; 4665 4666 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4667 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4668 continue; 4669 sentry = get_seg_entry(sbi, start); 4670 if (!sentry->valid_blocks) 4671 __set_free(sbi, start); 4672 else 4673 SIT_I(sbi)->written_valid_blocks += 4674 sentry->valid_blocks; 4675 } 4676 4677 /* set use the current segments */ 4678 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4679 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4680 4681 __set_test_and_inuse(sbi, curseg_t->segno); 4682 } 4683 } 4684 4685 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4686 { 4687 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4688 struct free_segmap_info *free_i = FREE_I(sbi); 4689 unsigned int segno = 0, offset = 0, secno; 4690 block_t valid_blocks, usable_blks_in_seg; 4691 block_t blks_per_sec = BLKS_PER_SEC(sbi); 4692 4693 while (1) { 4694 /* find dirty segment based on free segmap */ 4695 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4696 if (segno >= MAIN_SEGS(sbi)) 4697 break; 4698 offset = segno + 1; 4699 valid_blocks = get_valid_blocks(sbi, segno, false); 4700 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4701 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4702 continue; 4703 if (valid_blocks > usable_blks_in_seg) { 4704 f2fs_bug_on(sbi, 1); 4705 continue; 4706 } 4707 mutex_lock(&dirty_i->seglist_lock); 4708 __locate_dirty_segment(sbi, segno, DIRTY); 4709 mutex_unlock(&dirty_i->seglist_lock); 4710 } 4711 4712 if (!__is_large_section(sbi)) 4713 return; 4714 4715 mutex_lock(&dirty_i->seglist_lock); 4716 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4717 valid_blocks = get_valid_blocks(sbi, segno, true); 4718 secno = GET_SEC_FROM_SEG(sbi, segno); 4719 4720 if (!valid_blocks || valid_blocks == blks_per_sec) 4721 continue; 4722 if (IS_CURSEC(sbi, secno)) 4723 continue; 4724 set_bit(secno, dirty_i->dirty_secmap); 4725 } 4726 mutex_unlock(&dirty_i->seglist_lock); 4727 } 4728 4729 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4730 { 4731 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4732 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4733 4734 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4735 if (!dirty_i->victim_secmap) 4736 return -ENOMEM; 4737 return 0; 4738 } 4739 4740 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4741 { 4742 struct dirty_seglist_info *dirty_i; 4743 unsigned int bitmap_size, i; 4744 4745 /* allocate memory for dirty segments list information */ 4746 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4747 GFP_KERNEL); 4748 if (!dirty_i) 4749 return -ENOMEM; 4750 4751 SM_I(sbi)->dirty_info = dirty_i; 4752 mutex_init(&dirty_i->seglist_lock); 4753 4754 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4755 4756 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4757 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4758 GFP_KERNEL); 4759 if (!dirty_i->dirty_segmap[i]) 4760 return -ENOMEM; 4761 } 4762 4763 if (__is_large_section(sbi)) { 4764 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4765 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4766 bitmap_size, GFP_KERNEL); 4767 if (!dirty_i->dirty_secmap) 4768 return -ENOMEM; 4769 } 4770 4771 init_dirty_segmap(sbi); 4772 return init_victim_secmap(sbi); 4773 } 4774 4775 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4776 { 4777 int i; 4778 4779 /* 4780 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4781 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4782 */ 4783 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4784 struct curseg_info *curseg = CURSEG_I(sbi, i); 4785 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4786 unsigned int blkofs = curseg->next_blkoff; 4787 4788 if (f2fs_sb_has_readonly(sbi) && 4789 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4790 continue; 4791 4792 sanity_check_seg_type(sbi, curseg->seg_type); 4793 4794 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 4795 f2fs_err(sbi, 4796 "Current segment has invalid alloc_type:%d", 4797 curseg->alloc_type); 4798 return -EFSCORRUPTED; 4799 } 4800 4801 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4802 goto out; 4803 4804 if (curseg->alloc_type == SSR) 4805 continue; 4806 4807 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4808 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4809 continue; 4810 out: 4811 f2fs_err(sbi, 4812 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4813 i, curseg->segno, curseg->alloc_type, 4814 curseg->next_blkoff, blkofs); 4815 return -EFSCORRUPTED; 4816 } 4817 } 4818 return 0; 4819 } 4820 4821 #ifdef CONFIG_BLK_DEV_ZONED 4822 4823 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4824 struct f2fs_dev_info *fdev, 4825 struct blk_zone *zone) 4826 { 4827 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4828 block_t zone_block, wp_block, last_valid_block; 4829 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4830 int i, s, b, ret; 4831 struct seg_entry *se; 4832 4833 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4834 return 0; 4835 4836 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4837 wp_segno = GET_SEGNO(sbi, wp_block); 4838 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4839 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4840 zone_segno = GET_SEGNO(sbi, zone_block); 4841 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4842 4843 if (zone_segno >= MAIN_SEGS(sbi)) 4844 return 0; 4845 4846 /* 4847 * Skip check of zones cursegs point to, since 4848 * fix_curseg_write_pointer() checks them. 4849 */ 4850 for (i = 0; i < NO_CHECK_TYPE; i++) 4851 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4852 CURSEG_I(sbi, i)->segno)) 4853 return 0; 4854 4855 /* 4856 * Get last valid block of the zone. 4857 */ 4858 last_valid_block = zone_block - 1; 4859 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4860 segno = zone_segno + s; 4861 se = get_seg_entry(sbi, segno); 4862 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4863 if (f2fs_test_bit(b, se->cur_valid_map)) { 4864 last_valid_block = START_BLOCK(sbi, segno) + b; 4865 break; 4866 } 4867 if (last_valid_block >= zone_block) 4868 break; 4869 } 4870 4871 /* 4872 * If last valid block is beyond the write pointer, report the 4873 * inconsistency. This inconsistency does not cause write error 4874 * because the zone will not be selected for write operation until 4875 * it get discarded. Just report it. 4876 */ 4877 if (last_valid_block >= wp_block) { 4878 f2fs_notice(sbi, "Valid block beyond write pointer: " 4879 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4880 GET_SEGNO(sbi, last_valid_block), 4881 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4882 wp_segno, wp_blkoff); 4883 return 0; 4884 } 4885 4886 /* 4887 * If there is no valid block in the zone and if write pointer is 4888 * not at zone start, reset the write pointer. 4889 */ 4890 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4891 f2fs_notice(sbi, 4892 "Zone without valid block has non-zero write " 4893 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4894 wp_segno, wp_blkoff); 4895 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4896 zone->len >> log_sectors_per_block); 4897 if (ret) { 4898 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4899 fdev->path, ret); 4900 return ret; 4901 } 4902 } 4903 4904 return 0; 4905 } 4906 4907 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4908 block_t zone_blkaddr) 4909 { 4910 int i; 4911 4912 for (i = 0; i < sbi->s_ndevs; i++) { 4913 if (!bdev_is_zoned(FDEV(i).bdev)) 4914 continue; 4915 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4916 zone_blkaddr <= FDEV(i).end_blk)) 4917 return &FDEV(i); 4918 } 4919 4920 return NULL; 4921 } 4922 4923 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4924 void *data) 4925 { 4926 memcpy(data, zone, sizeof(struct blk_zone)); 4927 return 0; 4928 } 4929 4930 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4931 { 4932 struct curseg_info *cs = CURSEG_I(sbi, type); 4933 struct f2fs_dev_info *zbd; 4934 struct blk_zone zone; 4935 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4936 block_t cs_zone_block, wp_block; 4937 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4938 sector_t zone_sector; 4939 int err; 4940 4941 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4942 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4943 4944 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4945 if (!zbd) 4946 return 0; 4947 4948 /* report zone for the sector the curseg points to */ 4949 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4950 << log_sectors_per_block; 4951 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4952 report_one_zone_cb, &zone); 4953 if (err != 1) { 4954 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4955 zbd->path, err); 4956 return err; 4957 } 4958 4959 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4960 return 0; 4961 4962 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4963 wp_segno = GET_SEGNO(sbi, wp_block); 4964 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4965 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4966 4967 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4968 wp_sector_off == 0) 4969 return 0; 4970 4971 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4972 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4973 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4974 4975 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4976 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4977 4978 f2fs_allocate_new_section(sbi, type, true); 4979 4980 /* check consistency of the zone curseg pointed to */ 4981 if (check_zone_write_pointer(sbi, zbd, &zone)) 4982 return -EIO; 4983 4984 /* check newly assigned zone */ 4985 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4986 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4987 4988 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4989 if (!zbd) 4990 return 0; 4991 4992 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4993 << log_sectors_per_block; 4994 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4995 report_one_zone_cb, &zone); 4996 if (err != 1) { 4997 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4998 zbd->path, err); 4999 return err; 5000 } 5001 5002 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5003 return 0; 5004 5005 if (zone.wp != zone.start) { 5006 f2fs_notice(sbi, 5007 "New zone for curseg[%d] is not yet discarded. " 5008 "Reset the zone: curseg[0x%x,0x%x]", 5009 type, cs->segno, cs->next_blkoff); 5010 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 5011 zone_sector >> log_sectors_per_block, 5012 zone.len >> log_sectors_per_block); 5013 if (err) { 5014 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5015 zbd->path, err); 5016 return err; 5017 } 5018 } 5019 5020 return 0; 5021 } 5022 5023 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5024 { 5025 int i, ret; 5026 5027 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5028 ret = fix_curseg_write_pointer(sbi, i); 5029 if (ret) 5030 return ret; 5031 } 5032 5033 return 0; 5034 } 5035 5036 struct check_zone_write_pointer_args { 5037 struct f2fs_sb_info *sbi; 5038 struct f2fs_dev_info *fdev; 5039 }; 5040 5041 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 5042 void *data) 5043 { 5044 struct check_zone_write_pointer_args *args; 5045 5046 args = (struct check_zone_write_pointer_args *)data; 5047 5048 return check_zone_write_pointer(args->sbi, args->fdev, zone); 5049 } 5050 5051 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5052 { 5053 int i, ret; 5054 struct check_zone_write_pointer_args args; 5055 5056 for (i = 0; i < sbi->s_ndevs; i++) { 5057 if (!bdev_is_zoned(FDEV(i).bdev)) 5058 continue; 5059 5060 args.sbi = sbi; 5061 args.fdev = &FDEV(i); 5062 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5063 check_zone_write_pointer_cb, &args); 5064 if (ret < 0) 5065 return ret; 5066 } 5067 5068 return 0; 5069 } 5070 5071 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, 5072 unsigned int dev_idx) 5073 { 5074 if (!bdev_is_zoned(FDEV(dev_idx).bdev)) 5075 return true; 5076 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); 5077 } 5078 5079 /* Return the zone index in the given device */ 5080 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, 5081 int dev_idx) 5082 { 5083 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5084 5085 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> 5086 sbi->log_blocks_per_blkz; 5087 } 5088 5089 /* 5090 * Return the usable segments in a section based on the zone's 5091 * corresponding zone capacity. Zone is equal to a section. 5092 */ 5093 static inline unsigned int f2fs_usable_zone_segs_in_sec( 5094 struct f2fs_sb_info *sbi, unsigned int segno) 5095 { 5096 unsigned int dev_idx, zone_idx, unusable_segs_in_sec; 5097 5098 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); 5099 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); 5100 5101 /* Conventional zone's capacity is always equal to zone size */ 5102 if (is_conv_zone(sbi, zone_idx, dev_idx)) 5103 return sbi->segs_per_sec; 5104 5105 /* 5106 * If the zone_capacity_blocks array is NULL, then zone capacity 5107 * is equal to the zone size for all zones 5108 */ 5109 if (!FDEV(dev_idx).zone_capacity_blocks) 5110 return sbi->segs_per_sec; 5111 5112 /* Get the segment count beyond zone capacity block */ 5113 unusable_segs_in_sec = (sbi->blocks_per_blkz - 5114 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >> 5115 sbi->log_blocks_per_seg; 5116 return sbi->segs_per_sec - unusable_segs_in_sec; 5117 } 5118 5119 /* 5120 * Return the number of usable blocks in a segment. The number of blocks 5121 * returned is always equal to the number of blocks in a segment for 5122 * segments fully contained within a sequential zone capacity or a 5123 * conventional zone. For segments partially contained in a sequential 5124 * zone capacity, the number of usable blocks up to the zone capacity 5125 * is returned. 0 is returned in all other cases. 5126 */ 5127 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5128 struct f2fs_sb_info *sbi, unsigned int segno) 5129 { 5130 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5131 unsigned int zone_idx, dev_idx, secno; 5132 5133 secno = GET_SEC_FROM_SEG(sbi, segno); 5134 seg_start = START_BLOCK(sbi, segno); 5135 dev_idx = f2fs_target_device_index(sbi, seg_start); 5136 zone_idx = get_zone_idx(sbi, secno, dev_idx); 5137 5138 /* 5139 * Conventional zone's capacity is always equal to zone size, 5140 * so, blocks per segment is unchanged. 5141 */ 5142 if (is_conv_zone(sbi, zone_idx, dev_idx)) 5143 return sbi->blocks_per_seg; 5144 5145 if (!FDEV(dev_idx).zone_capacity_blocks) 5146 return sbi->blocks_per_seg; 5147 5148 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5149 sec_cap_blkaddr = sec_start_blkaddr + 5150 FDEV(dev_idx).zone_capacity_blocks[zone_idx]; 5151 5152 /* 5153 * If segment starts before zone capacity and spans beyond 5154 * zone capacity, then usable blocks are from seg start to 5155 * zone capacity. If the segment starts after the zone capacity, 5156 * then there are no usable blocks. 5157 */ 5158 if (seg_start >= sec_cap_blkaddr) 5159 return 0; 5160 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 5161 return sec_cap_blkaddr - seg_start; 5162 5163 return sbi->blocks_per_seg; 5164 } 5165 #else 5166 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5167 { 5168 return 0; 5169 } 5170 5171 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5172 { 5173 return 0; 5174 } 5175 5176 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5177 unsigned int segno) 5178 { 5179 return 0; 5180 } 5181 5182 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, 5183 unsigned int segno) 5184 { 5185 return 0; 5186 } 5187 #endif 5188 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5189 unsigned int segno) 5190 { 5191 if (f2fs_sb_has_blkzoned(sbi)) 5192 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5193 5194 return sbi->blocks_per_seg; 5195 } 5196 5197 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5198 unsigned int segno) 5199 { 5200 if (f2fs_sb_has_blkzoned(sbi)) 5201 return f2fs_usable_zone_segs_in_sec(sbi, segno); 5202 5203 return sbi->segs_per_sec; 5204 } 5205 5206 /* 5207 * Update min, max modified time for cost-benefit GC algorithm 5208 */ 5209 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5210 { 5211 struct sit_info *sit_i = SIT_I(sbi); 5212 unsigned int segno; 5213 5214 down_write(&sit_i->sentry_lock); 5215 5216 sit_i->min_mtime = ULLONG_MAX; 5217 5218 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5219 unsigned int i; 5220 unsigned long long mtime = 0; 5221 5222 for (i = 0; i < sbi->segs_per_sec; i++) 5223 mtime += get_seg_entry(sbi, segno + i)->mtime; 5224 5225 mtime = div_u64(mtime, sbi->segs_per_sec); 5226 5227 if (sit_i->min_mtime > mtime) 5228 sit_i->min_mtime = mtime; 5229 } 5230 sit_i->max_mtime = get_mtime(sbi, false); 5231 sit_i->dirty_max_mtime = 0; 5232 up_write(&sit_i->sentry_lock); 5233 } 5234 5235 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5236 { 5237 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5238 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5239 struct f2fs_sm_info *sm_info; 5240 int err; 5241 5242 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5243 if (!sm_info) 5244 return -ENOMEM; 5245 5246 /* init sm info */ 5247 sbi->sm_info = sm_info; 5248 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5249 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5250 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5251 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5252 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5253 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5254 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5255 sm_info->rec_prefree_segments = sm_info->main_segments * 5256 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5257 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5258 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5259 5260 if (!f2fs_lfs_mode(sbi)) 5261 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 5262 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5263 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5264 sm_info->min_seq_blocks = sbi->blocks_per_seg; 5265 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5266 sm_info->min_ssr_sections = reserved_sections(sbi); 5267 5268 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5269 5270 init_f2fs_rwsem(&sm_info->curseg_lock); 5271 5272 if (!f2fs_readonly(sbi->sb)) { 5273 err = f2fs_create_flush_cmd_control(sbi); 5274 if (err) 5275 return err; 5276 } 5277 5278 err = create_discard_cmd_control(sbi); 5279 if (err) 5280 return err; 5281 5282 err = build_sit_info(sbi); 5283 if (err) 5284 return err; 5285 err = build_free_segmap(sbi); 5286 if (err) 5287 return err; 5288 err = build_curseg(sbi); 5289 if (err) 5290 return err; 5291 5292 /* reinit free segmap based on SIT */ 5293 err = build_sit_entries(sbi); 5294 if (err) 5295 return err; 5296 5297 init_free_segmap(sbi); 5298 err = build_dirty_segmap(sbi); 5299 if (err) 5300 return err; 5301 5302 err = sanity_check_curseg(sbi); 5303 if (err) 5304 return err; 5305 5306 init_min_max_mtime(sbi); 5307 return 0; 5308 } 5309 5310 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5311 enum dirty_type dirty_type) 5312 { 5313 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5314 5315 mutex_lock(&dirty_i->seglist_lock); 5316 kvfree(dirty_i->dirty_segmap[dirty_type]); 5317 dirty_i->nr_dirty[dirty_type] = 0; 5318 mutex_unlock(&dirty_i->seglist_lock); 5319 } 5320 5321 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5322 { 5323 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5324 5325 kvfree(dirty_i->victim_secmap); 5326 } 5327 5328 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5329 { 5330 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5331 int i; 5332 5333 if (!dirty_i) 5334 return; 5335 5336 /* discard pre-free/dirty segments list */ 5337 for (i = 0; i < NR_DIRTY_TYPE; i++) 5338 discard_dirty_segmap(sbi, i); 5339 5340 if (__is_large_section(sbi)) { 5341 mutex_lock(&dirty_i->seglist_lock); 5342 kvfree(dirty_i->dirty_secmap); 5343 mutex_unlock(&dirty_i->seglist_lock); 5344 } 5345 5346 destroy_victim_secmap(sbi); 5347 SM_I(sbi)->dirty_info = NULL; 5348 kfree(dirty_i); 5349 } 5350 5351 static void destroy_curseg(struct f2fs_sb_info *sbi) 5352 { 5353 struct curseg_info *array = SM_I(sbi)->curseg_array; 5354 int i; 5355 5356 if (!array) 5357 return; 5358 SM_I(sbi)->curseg_array = NULL; 5359 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5360 kfree(array[i].sum_blk); 5361 kfree(array[i].journal); 5362 } 5363 kfree(array); 5364 } 5365 5366 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5367 { 5368 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5369 5370 if (!free_i) 5371 return; 5372 SM_I(sbi)->free_info = NULL; 5373 kvfree(free_i->free_segmap); 5374 kvfree(free_i->free_secmap); 5375 kfree(free_i); 5376 } 5377 5378 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5379 { 5380 struct sit_info *sit_i = SIT_I(sbi); 5381 5382 if (!sit_i) 5383 return; 5384 5385 if (sit_i->sentries) 5386 kvfree(sit_i->bitmap); 5387 kfree(sit_i->tmp_map); 5388 5389 kvfree(sit_i->sentries); 5390 kvfree(sit_i->sec_entries); 5391 kvfree(sit_i->dirty_sentries_bitmap); 5392 5393 SM_I(sbi)->sit_info = NULL; 5394 kvfree(sit_i->sit_bitmap); 5395 #ifdef CONFIG_F2FS_CHECK_FS 5396 kvfree(sit_i->sit_bitmap_mir); 5397 kvfree(sit_i->invalid_segmap); 5398 #endif 5399 kfree(sit_i); 5400 } 5401 5402 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5403 { 5404 struct f2fs_sm_info *sm_info = SM_I(sbi); 5405 5406 if (!sm_info) 5407 return; 5408 f2fs_destroy_flush_cmd_control(sbi, true); 5409 destroy_discard_cmd_control(sbi); 5410 destroy_dirty_segmap(sbi); 5411 destroy_curseg(sbi); 5412 destroy_free_segmap(sbi); 5413 destroy_sit_info(sbi); 5414 sbi->sm_info = NULL; 5415 kfree(sm_info); 5416 } 5417 5418 int __init f2fs_create_segment_manager_caches(void) 5419 { 5420 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5421 sizeof(struct discard_entry)); 5422 if (!discard_entry_slab) 5423 goto fail; 5424 5425 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5426 sizeof(struct discard_cmd)); 5427 if (!discard_cmd_slab) 5428 goto destroy_discard_entry; 5429 5430 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5431 sizeof(struct sit_entry_set)); 5432 if (!sit_entry_set_slab) 5433 goto destroy_discard_cmd; 5434 5435 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry", 5436 sizeof(struct inmem_pages)); 5437 if (!inmem_entry_slab) 5438 goto destroy_sit_entry_set; 5439 return 0; 5440 5441 destroy_sit_entry_set: 5442 kmem_cache_destroy(sit_entry_set_slab); 5443 destroy_discard_cmd: 5444 kmem_cache_destroy(discard_cmd_slab); 5445 destroy_discard_entry: 5446 kmem_cache_destroy(discard_entry_slab); 5447 fail: 5448 return -ENOMEM; 5449 } 5450 5451 void f2fs_destroy_segment_manager_caches(void) 5452 { 5453 kmem_cache_destroy(sit_entry_set_slab); 5454 kmem_cache_destroy(discard_cmd_slab); 5455 kmem_cache_destroy(discard_entry_slab); 5456 kmem_cache_destroy(inmem_entry_slab); 5457 } 5458