xref: /openbmc/linux/fs/f2fs/segment.c (revision e65e175b07bef5974045cc42238de99057669ca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	clear_inode_flag(fi->cow_inode, FI_COW_FILE);
196 	iput(fi->cow_inode);
197 	fi->cow_inode = NULL;
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	stat_dec_atomic_inode(inode);
203 
204 	if (clean) {
205 		truncate_inode_pages_final(inode->i_mapping);
206 		f2fs_i_size_write(inode, fi->original_i_size);
207 	}
208 }
209 
210 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
211 			block_t new_addr, block_t *old_addr, bool recover)
212 {
213 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
214 	struct dnode_of_data dn;
215 	struct node_info ni;
216 	int err;
217 
218 retry:
219 	set_new_dnode(&dn, inode, NULL, NULL, 0);
220 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
221 	if (err) {
222 		if (err == -ENOMEM) {
223 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
224 			goto retry;
225 		}
226 		return err;
227 	}
228 
229 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
230 	if (err) {
231 		f2fs_put_dnode(&dn);
232 		return err;
233 	}
234 
235 	if (recover) {
236 		/* dn.data_blkaddr is always valid */
237 		if (!__is_valid_data_blkaddr(new_addr)) {
238 			if (new_addr == NULL_ADDR)
239 				dec_valid_block_count(sbi, inode, 1);
240 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
241 			f2fs_update_data_blkaddr(&dn, new_addr);
242 		} else {
243 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
244 				new_addr, ni.version, true, true);
245 		}
246 	} else {
247 		blkcnt_t count = 1;
248 
249 		*old_addr = dn.data_blkaddr;
250 		f2fs_truncate_data_blocks_range(&dn, 1);
251 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
252 		inc_valid_block_count(sbi, inode, &count);
253 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
254 					ni.version, true, false);
255 	}
256 
257 	f2fs_put_dnode(&dn);
258 	return 0;
259 }
260 
261 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
262 					bool revoke)
263 {
264 	struct revoke_entry *cur, *tmp;
265 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
266 
267 	list_for_each_entry_safe(cur, tmp, head, list) {
268 		if (revoke)
269 			__replace_atomic_write_block(inode, cur->index,
270 						cur->old_addr, NULL, true);
271 
272 		list_del(&cur->list);
273 		kmem_cache_free(revoke_entry_slab, cur);
274 	}
275 
276 	if (!revoke && truncate)
277 		f2fs_do_truncate_blocks(inode, 0, false);
278 }
279 
280 static int __f2fs_commit_atomic_write(struct inode *inode)
281 {
282 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
283 	struct f2fs_inode_info *fi = F2FS_I(inode);
284 	struct inode *cow_inode = fi->cow_inode;
285 	struct revoke_entry *new;
286 	struct list_head revoke_list;
287 	block_t blkaddr;
288 	struct dnode_of_data dn;
289 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
290 	pgoff_t off = 0, blen, index;
291 	int ret = 0, i;
292 
293 	INIT_LIST_HEAD(&revoke_list);
294 
295 	while (len) {
296 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
297 
298 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
299 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
300 		if (ret && ret != -ENOENT) {
301 			goto out;
302 		} else if (ret == -ENOENT) {
303 			ret = 0;
304 			if (dn.max_level == 0)
305 				goto out;
306 			goto next;
307 		}
308 
309 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
310 				len);
311 		index = off;
312 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
313 			blkaddr = f2fs_data_blkaddr(&dn);
314 
315 			if (!__is_valid_data_blkaddr(blkaddr)) {
316 				continue;
317 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
318 					DATA_GENERIC_ENHANCE)) {
319 				f2fs_put_dnode(&dn);
320 				ret = -EFSCORRUPTED;
321 				f2fs_handle_error(sbi,
322 						ERROR_INVALID_BLKADDR);
323 				goto out;
324 			}
325 
326 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
327 							true, NULL);
328 
329 			ret = __replace_atomic_write_block(inode, index, blkaddr,
330 							&new->old_addr, false);
331 			if (ret) {
332 				f2fs_put_dnode(&dn);
333 				kmem_cache_free(revoke_entry_slab, new);
334 				goto out;
335 			}
336 
337 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
338 			new->index = index;
339 			list_add_tail(&new->list, &revoke_list);
340 		}
341 		f2fs_put_dnode(&dn);
342 next:
343 		off += blen;
344 		len -= blen;
345 	}
346 
347 out:
348 	if (ret) {
349 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
350 	} else {
351 		sbi->committed_atomic_block += fi->atomic_write_cnt;
352 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
353 	}
354 
355 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
356 
357 	return ret;
358 }
359 
360 int f2fs_commit_atomic_write(struct inode *inode)
361 {
362 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
363 	struct f2fs_inode_info *fi = F2FS_I(inode);
364 	int err;
365 
366 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
367 	if (err)
368 		return err;
369 
370 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
371 	f2fs_lock_op(sbi);
372 
373 	err = __f2fs_commit_atomic_write(inode);
374 
375 	f2fs_unlock_op(sbi);
376 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
377 
378 	return err;
379 }
380 
381 /*
382  * This function balances dirty node and dentry pages.
383  * In addition, it controls garbage collection.
384  */
385 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
386 {
387 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
388 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
389 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
390 	}
391 
392 	/* balance_fs_bg is able to be pending */
393 	if (need && excess_cached_nats(sbi))
394 		f2fs_balance_fs_bg(sbi, false);
395 
396 	if (!f2fs_is_checkpoint_ready(sbi))
397 		return;
398 
399 	/*
400 	 * We should do GC or end up with checkpoint, if there are so many dirty
401 	 * dir/node pages without enough free segments.
402 	 */
403 	if (has_not_enough_free_secs(sbi, 0, 0)) {
404 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
405 					sbi->gc_thread->f2fs_gc_task) {
406 			DEFINE_WAIT(wait);
407 
408 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
409 						TASK_UNINTERRUPTIBLE);
410 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
411 			io_schedule();
412 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
413 		} else {
414 			struct f2fs_gc_control gc_control = {
415 				.victim_segno = NULL_SEGNO,
416 				.init_gc_type = BG_GC,
417 				.no_bg_gc = true,
418 				.should_migrate_blocks = false,
419 				.err_gc_skipped = false,
420 				.nr_free_secs = 1 };
421 			f2fs_down_write(&sbi->gc_lock);
422 			f2fs_gc(sbi, &gc_control);
423 		}
424 	}
425 }
426 
427 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
428 {
429 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
430 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
431 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
432 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
433 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
434 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
435 	unsigned int threshold = sbi->blocks_per_seg * factor *
436 					DEFAULT_DIRTY_THRESHOLD;
437 	unsigned int global_threshold = threshold * 3 / 2;
438 
439 	if (dents >= threshold || qdata >= threshold ||
440 		nodes >= threshold || meta >= threshold ||
441 		imeta >= threshold)
442 		return true;
443 	return dents + qdata + nodes + meta + imeta >  global_threshold;
444 }
445 
446 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
447 {
448 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
449 		return;
450 
451 	/* try to shrink extent cache when there is no enough memory */
452 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
453 		f2fs_shrink_read_extent_tree(sbi,
454 				READ_EXTENT_CACHE_SHRINK_NUMBER);
455 
456 	/* try to shrink age extent cache when there is no enough memory */
457 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
458 		f2fs_shrink_age_extent_tree(sbi,
459 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
460 
461 	/* check the # of cached NAT entries */
462 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
463 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
464 
465 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
466 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
467 	else
468 		f2fs_build_free_nids(sbi, false, false);
469 
470 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
471 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
472 		goto do_sync;
473 
474 	/* there is background inflight IO or foreground operation recently */
475 	if (is_inflight_io(sbi, REQ_TIME) ||
476 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
477 		return;
478 
479 	/* exceed periodical checkpoint timeout threshold */
480 	if (f2fs_time_over(sbi, CP_TIME))
481 		goto do_sync;
482 
483 	/* checkpoint is the only way to shrink partial cached entries */
484 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
485 		f2fs_available_free_memory(sbi, INO_ENTRIES))
486 		return;
487 
488 do_sync:
489 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
490 		struct blk_plug plug;
491 
492 		mutex_lock(&sbi->flush_lock);
493 
494 		blk_start_plug(&plug);
495 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
496 		blk_finish_plug(&plug);
497 
498 		mutex_unlock(&sbi->flush_lock);
499 	}
500 	f2fs_sync_fs(sbi->sb, 1);
501 	stat_inc_bg_cp_count(sbi->stat_info);
502 }
503 
504 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
505 				struct block_device *bdev)
506 {
507 	int ret = blkdev_issue_flush(bdev);
508 
509 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
510 				test_opt(sbi, FLUSH_MERGE), ret);
511 	return ret;
512 }
513 
514 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
515 {
516 	int ret = 0;
517 	int i;
518 
519 	if (!f2fs_is_multi_device(sbi))
520 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
521 
522 	for (i = 0; i < sbi->s_ndevs; i++) {
523 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
524 			continue;
525 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
526 		if (ret)
527 			break;
528 	}
529 	return ret;
530 }
531 
532 static int issue_flush_thread(void *data)
533 {
534 	struct f2fs_sb_info *sbi = data;
535 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
536 	wait_queue_head_t *q = &fcc->flush_wait_queue;
537 repeat:
538 	if (kthread_should_stop())
539 		return 0;
540 
541 	if (!llist_empty(&fcc->issue_list)) {
542 		struct flush_cmd *cmd, *next;
543 		int ret;
544 
545 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
546 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
547 
548 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
549 
550 		ret = submit_flush_wait(sbi, cmd->ino);
551 		atomic_inc(&fcc->issued_flush);
552 
553 		llist_for_each_entry_safe(cmd, next,
554 					  fcc->dispatch_list, llnode) {
555 			cmd->ret = ret;
556 			complete(&cmd->wait);
557 		}
558 		fcc->dispatch_list = NULL;
559 	}
560 
561 	wait_event_interruptible(*q,
562 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
563 	goto repeat;
564 }
565 
566 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
567 {
568 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
569 	struct flush_cmd cmd;
570 	int ret;
571 
572 	if (test_opt(sbi, NOBARRIER))
573 		return 0;
574 
575 	if (!test_opt(sbi, FLUSH_MERGE)) {
576 		atomic_inc(&fcc->queued_flush);
577 		ret = submit_flush_wait(sbi, ino);
578 		atomic_dec(&fcc->queued_flush);
579 		atomic_inc(&fcc->issued_flush);
580 		return ret;
581 	}
582 
583 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
584 	    f2fs_is_multi_device(sbi)) {
585 		ret = submit_flush_wait(sbi, ino);
586 		atomic_dec(&fcc->queued_flush);
587 
588 		atomic_inc(&fcc->issued_flush);
589 		return ret;
590 	}
591 
592 	cmd.ino = ino;
593 	init_completion(&cmd.wait);
594 
595 	llist_add(&cmd.llnode, &fcc->issue_list);
596 
597 	/*
598 	 * update issue_list before we wake up issue_flush thread, this
599 	 * smp_mb() pairs with another barrier in ___wait_event(), see
600 	 * more details in comments of waitqueue_active().
601 	 */
602 	smp_mb();
603 
604 	if (waitqueue_active(&fcc->flush_wait_queue))
605 		wake_up(&fcc->flush_wait_queue);
606 
607 	if (fcc->f2fs_issue_flush) {
608 		wait_for_completion(&cmd.wait);
609 		atomic_dec(&fcc->queued_flush);
610 	} else {
611 		struct llist_node *list;
612 
613 		list = llist_del_all(&fcc->issue_list);
614 		if (!list) {
615 			wait_for_completion(&cmd.wait);
616 			atomic_dec(&fcc->queued_flush);
617 		} else {
618 			struct flush_cmd *tmp, *next;
619 
620 			ret = submit_flush_wait(sbi, ino);
621 
622 			llist_for_each_entry_safe(tmp, next, list, llnode) {
623 				if (tmp == &cmd) {
624 					cmd.ret = ret;
625 					atomic_dec(&fcc->queued_flush);
626 					continue;
627 				}
628 				tmp->ret = ret;
629 				complete(&tmp->wait);
630 			}
631 		}
632 	}
633 
634 	return cmd.ret;
635 }
636 
637 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
638 {
639 	dev_t dev = sbi->sb->s_bdev->bd_dev;
640 	struct flush_cmd_control *fcc;
641 
642 	if (SM_I(sbi)->fcc_info) {
643 		fcc = SM_I(sbi)->fcc_info;
644 		if (fcc->f2fs_issue_flush)
645 			return 0;
646 		goto init_thread;
647 	}
648 
649 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
650 	if (!fcc)
651 		return -ENOMEM;
652 	atomic_set(&fcc->issued_flush, 0);
653 	atomic_set(&fcc->queued_flush, 0);
654 	init_waitqueue_head(&fcc->flush_wait_queue);
655 	init_llist_head(&fcc->issue_list);
656 	SM_I(sbi)->fcc_info = fcc;
657 	if (!test_opt(sbi, FLUSH_MERGE))
658 		return 0;
659 
660 init_thread:
661 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
662 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
663 	if (IS_ERR(fcc->f2fs_issue_flush)) {
664 		int err = PTR_ERR(fcc->f2fs_issue_flush);
665 
666 		kfree(fcc);
667 		SM_I(sbi)->fcc_info = NULL;
668 		return err;
669 	}
670 
671 	return 0;
672 }
673 
674 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
675 {
676 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
677 
678 	if (fcc && fcc->f2fs_issue_flush) {
679 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
680 
681 		fcc->f2fs_issue_flush = NULL;
682 		kthread_stop(flush_thread);
683 	}
684 	if (free) {
685 		kfree(fcc);
686 		SM_I(sbi)->fcc_info = NULL;
687 	}
688 }
689 
690 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
691 {
692 	int ret = 0, i;
693 
694 	if (!f2fs_is_multi_device(sbi))
695 		return 0;
696 
697 	if (test_opt(sbi, NOBARRIER))
698 		return 0;
699 
700 	for (i = 1; i < sbi->s_ndevs; i++) {
701 		int count = DEFAULT_RETRY_IO_COUNT;
702 
703 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
704 			continue;
705 
706 		do {
707 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
708 			if (ret)
709 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
710 		} while (ret && --count);
711 
712 		if (ret) {
713 			f2fs_stop_checkpoint(sbi, false,
714 					STOP_CP_REASON_FLUSH_FAIL);
715 			break;
716 		}
717 
718 		spin_lock(&sbi->dev_lock);
719 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
720 		spin_unlock(&sbi->dev_lock);
721 	}
722 
723 	return ret;
724 }
725 
726 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
727 		enum dirty_type dirty_type)
728 {
729 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
730 
731 	/* need not be added */
732 	if (IS_CURSEG(sbi, segno))
733 		return;
734 
735 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
736 		dirty_i->nr_dirty[dirty_type]++;
737 
738 	if (dirty_type == DIRTY) {
739 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
740 		enum dirty_type t = sentry->type;
741 
742 		if (unlikely(t >= DIRTY)) {
743 			f2fs_bug_on(sbi, 1);
744 			return;
745 		}
746 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
747 			dirty_i->nr_dirty[t]++;
748 
749 		if (__is_large_section(sbi)) {
750 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
751 			block_t valid_blocks =
752 				get_valid_blocks(sbi, segno, true);
753 
754 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
755 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
756 
757 			if (!IS_CURSEC(sbi, secno))
758 				set_bit(secno, dirty_i->dirty_secmap);
759 		}
760 	}
761 }
762 
763 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
764 		enum dirty_type dirty_type)
765 {
766 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
767 	block_t valid_blocks;
768 
769 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
770 		dirty_i->nr_dirty[dirty_type]--;
771 
772 	if (dirty_type == DIRTY) {
773 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
774 		enum dirty_type t = sentry->type;
775 
776 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
777 			dirty_i->nr_dirty[t]--;
778 
779 		valid_blocks = get_valid_blocks(sbi, segno, true);
780 		if (valid_blocks == 0) {
781 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
782 						dirty_i->victim_secmap);
783 #ifdef CONFIG_F2FS_CHECK_FS
784 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
785 #endif
786 		}
787 		if (__is_large_section(sbi)) {
788 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
789 
790 			if (!valid_blocks ||
791 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
792 				clear_bit(secno, dirty_i->dirty_secmap);
793 				return;
794 			}
795 
796 			if (!IS_CURSEC(sbi, secno))
797 				set_bit(secno, dirty_i->dirty_secmap);
798 		}
799 	}
800 }
801 
802 /*
803  * Should not occur error such as -ENOMEM.
804  * Adding dirty entry into seglist is not critical operation.
805  * If a given segment is one of current working segments, it won't be added.
806  */
807 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
808 {
809 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
810 	unsigned short valid_blocks, ckpt_valid_blocks;
811 	unsigned int usable_blocks;
812 
813 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
814 		return;
815 
816 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
817 	mutex_lock(&dirty_i->seglist_lock);
818 
819 	valid_blocks = get_valid_blocks(sbi, segno, false);
820 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
821 
822 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
823 		ckpt_valid_blocks == usable_blocks)) {
824 		__locate_dirty_segment(sbi, segno, PRE);
825 		__remove_dirty_segment(sbi, segno, DIRTY);
826 	} else if (valid_blocks < usable_blocks) {
827 		__locate_dirty_segment(sbi, segno, DIRTY);
828 	} else {
829 		/* Recovery routine with SSR needs this */
830 		__remove_dirty_segment(sbi, segno, DIRTY);
831 	}
832 
833 	mutex_unlock(&dirty_i->seglist_lock);
834 }
835 
836 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
837 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
838 {
839 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
840 	unsigned int segno;
841 
842 	mutex_lock(&dirty_i->seglist_lock);
843 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
844 		if (get_valid_blocks(sbi, segno, false))
845 			continue;
846 		if (IS_CURSEG(sbi, segno))
847 			continue;
848 		__locate_dirty_segment(sbi, segno, PRE);
849 		__remove_dirty_segment(sbi, segno, DIRTY);
850 	}
851 	mutex_unlock(&dirty_i->seglist_lock);
852 }
853 
854 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
855 {
856 	int ovp_hole_segs =
857 		(overprovision_segments(sbi) - reserved_segments(sbi));
858 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
859 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
860 	block_t holes[2] = {0, 0};	/* DATA and NODE */
861 	block_t unusable;
862 	struct seg_entry *se;
863 	unsigned int segno;
864 
865 	mutex_lock(&dirty_i->seglist_lock);
866 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
867 		se = get_seg_entry(sbi, segno);
868 		if (IS_NODESEG(se->type))
869 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
870 							se->valid_blocks;
871 		else
872 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
873 							se->valid_blocks;
874 	}
875 	mutex_unlock(&dirty_i->seglist_lock);
876 
877 	unusable = max(holes[DATA], holes[NODE]);
878 	if (unusable > ovp_holes)
879 		return unusable - ovp_holes;
880 	return 0;
881 }
882 
883 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
884 {
885 	int ovp_hole_segs =
886 		(overprovision_segments(sbi) - reserved_segments(sbi));
887 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
888 		return -EAGAIN;
889 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
890 		dirty_segments(sbi) > ovp_hole_segs)
891 		return -EAGAIN;
892 	return 0;
893 }
894 
895 /* This is only used by SBI_CP_DISABLED */
896 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
897 {
898 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
899 	unsigned int segno = 0;
900 
901 	mutex_lock(&dirty_i->seglist_lock);
902 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
903 		if (get_valid_blocks(sbi, segno, false))
904 			continue;
905 		if (get_ckpt_valid_blocks(sbi, segno, false))
906 			continue;
907 		mutex_unlock(&dirty_i->seglist_lock);
908 		return segno;
909 	}
910 	mutex_unlock(&dirty_i->seglist_lock);
911 	return NULL_SEGNO;
912 }
913 
914 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
915 		struct block_device *bdev, block_t lstart,
916 		block_t start, block_t len)
917 {
918 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
919 	struct list_head *pend_list;
920 	struct discard_cmd *dc;
921 
922 	f2fs_bug_on(sbi, !len);
923 
924 	pend_list = &dcc->pend_list[plist_idx(len)];
925 
926 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
927 	INIT_LIST_HEAD(&dc->list);
928 	dc->bdev = bdev;
929 	dc->lstart = lstart;
930 	dc->start = start;
931 	dc->len = len;
932 	dc->ref = 0;
933 	dc->state = D_PREP;
934 	dc->queued = 0;
935 	dc->error = 0;
936 	init_completion(&dc->wait);
937 	list_add_tail(&dc->list, pend_list);
938 	spin_lock_init(&dc->lock);
939 	dc->bio_ref = 0;
940 	atomic_inc(&dcc->discard_cmd_cnt);
941 	dcc->undiscard_blks += len;
942 
943 	return dc;
944 }
945 
946 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
947 				struct block_device *bdev, block_t lstart,
948 				block_t start, block_t len,
949 				struct rb_node *parent, struct rb_node **p,
950 				bool leftmost)
951 {
952 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
953 	struct discard_cmd *dc;
954 
955 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
956 
957 	rb_link_node(&dc->rb_node, parent, p);
958 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
959 
960 	return dc;
961 }
962 
963 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
964 							struct discard_cmd *dc)
965 {
966 	if (dc->state == D_DONE)
967 		atomic_sub(dc->queued, &dcc->queued_discard);
968 
969 	list_del(&dc->list);
970 	rb_erase_cached(&dc->rb_node, &dcc->root);
971 	dcc->undiscard_blks -= dc->len;
972 
973 	kmem_cache_free(discard_cmd_slab, dc);
974 
975 	atomic_dec(&dcc->discard_cmd_cnt);
976 }
977 
978 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
979 							struct discard_cmd *dc)
980 {
981 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
982 	unsigned long flags;
983 
984 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
985 
986 	spin_lock_irqsave(&dc->lock, flags);
987 	if (dc->bio_ref) {
988 		spin_unlock_irqrestore(&dc->lock, flags);
989 		return;
990 	}
991 	spin_unlock_irqrestore(&dc->lock, flags);
992 
993 	f2fs_bug_on(sbi, dc->ref);
994 
995 	if (dc->error == -EOPNOTSUPP)
996 		dc->error = 0;
997 
998 	if (dc->error)
999 		printk_ratelimited(
1000 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1001 			KERN_INFO, sbi->sb->s_id,
1002 			dc->lstart, dc->start, dc->len, dc->error);
1003 	__detach_discard_cmd(dcc, dc);
1004 }
1005 
1006 static void f2fs_submit_discard_endio(struct bio *bio)
1007 {
1008 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1009 	unsigned long flags;
1010 
1011 	spin_lock_irqsave(&dc->lock, flags);
1012 	if (!dc->error)
1013 		dc->error = blk_status_to_errno(bio->bi_status);
1014 	dc->bio_ref--;
1015 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1016 		dc->state = D_DONE;
1017 		complete_all(&dc->wait);
1018 	}
1019 	spin_unlock_irqrestore(&dc->lock, flags);
1020 	bio_put(bio);
1021 }
1022 
1023 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1024 				block_t start, block_t end)
1025 {
1026 #ifdef CONFIG_F2FS_CHECK_FS
1027 	struct seg_entry *sentry;
1028 	unsigned int segno;
1029 	block_t blk = start;
1030 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1031 	unsigned long *map;
1032 
1033 	while (blk < end) {
1034 		segno = GET_SEGNO(sbi, blk);
1035 		sentry = get_seg_entry(sbi, segno);
1036 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1037 
1038 		if (end < START_BLOCK(sbi, segno + 1))
1039 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1040 		else
1041 			size = max_blocks;
1042 		map = (unsigned long *)(sentry->cur_valid_map);
1043 		offset = __find_rev_next_bit(map, size, offset);
1044 		f2fs_bug_on(sbi, offset != size);
1045 		blk = START_BLOCK(sbi, segno + 1);
1046 	}
1047 #endif
1048 }
1049 
1050 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1051 				struct discard_policy *dpolicy,
1052 				int discard_type, unsigned int granularity)
1053 {
1054 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1055 
1056 	/* common policy */
1057 	dpolicy->type = discard_type;
1058 	dpolicy->sync = true;
1059 	dpolicy->ordered = false;
1060 	dpolicy->granularity = granularity;
1061 
1062 	dpolicy->max_requests = dcc->max_discard_request;
1063 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1064 	dpolicy->timeout = false;
1065 
1066 	if (discard_type == DPOLICY_BG) {
1067 		dpolicy->min_interval = dcc->min_discard_issue_time;
1068 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1069 		dpolicy->max_interval = dcc->max_discard_issue_time;
1070 		dpolicy->io_aware = true;
1071 		dpolicy->sync = false;
1072 		dpolicy->ordered = true;
1073 		if (utilization(sbi) > dcc->discard_urgent_util) {
1074 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1075 			if (atomic_read(&dcc->discard_cmd_cnt))
1076 				dpolicy->max_interval =
1077 					dcc->min_discard_issue_time;
1078 		}
1079 	} else if (discard_type == DPOLICY_FORCE) {
1080 		dpolicy->min_interval = dcc->min_discard_issue_time;
1081 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1082 		dpolicy->max_interval = dcc->max_discard_issue_time;
1083 		dpolicy->io_aware = false;
1084 	} else if (discard_type == DPOLICY_FSTRIM) {
1085 		dpolicy->io_aware = false;
1086 	} else if (discard_type == DPOLICY_UMOUNT) {
1087 		dpolicy->io_aware = false;
1088 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1089 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1090 		dpolicy->timeout = true;
1091 	}
1092 }
1093 
1094 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1095 				struct block_device *bdev, block_t lstart,
1096 				block_t start, block_t len);
1097 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1098 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1099 						struct discard_policy *dpolicy,
1100 						struct discard_cmd *dc,
1101 						unsigned int *issued)
1102 {
1103 	struct block_device *bdev = dc->bdev;
1104 	unsigned int max_discard_blocks =
1105 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1106 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1107 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1108 					&(dcc->fstrim_list) : &(dcc->wait_list);
1109 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1110 	block_t lstart, start, len, total_len;
1111 	int err = 0;
1112 
1113 	if (dc->state != D_PREP)
1114 		return 0;
1115 
1116 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1117 		return 0;
1118 
1119 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1120 
1121 	lstart = dc->lstart;
1122 	start = dc->start;
1123 	len = dc->len;
1124 	total_len = len;
1125 
1126 	dc->len = 0;
1127 
1128 	while (total_len && *issued < dpolicy->max_requests && !err) {
1129 		struct bio *bio = NULL;
1130 		unsigned long flags;
1131 		bool last = true;
1132 
1133 		if (len > max_discard_blocks) {
1134 			len = max_discard_blocks;
1135 			last = false;
1136 		}
1137 
1138 		(*issued)++;
1139 		if (*issued == dpolicy->max_requests)
1140 			last = true;
1141 
1142 		dc->len += len;
1143 
1144 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1145 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1146 			err = -EIO;
1147 		} else {
1148 			err = __blkdev_issue_discard(bdev,
1149 					SECTOR_FROM_BLOCK(start),
1150 					SECTOR_FROM_BLOCK(len),
1151 					GFP_NOFS, &bio);
1152 		}
1153 		if (err) {
1154 			spin_lock_irqsave(&dc->lock, flags);
1155 			if (dc->state == D_PARTIAL)
1156 				dc->state = D_SUBMIT;
1157 			spin_unlock_irqrestore(&dc->lock, flags);
1158 
1159 			break;
1160 		}
1161 
1162 		f2fs_bug_on(sbi, !bio);
1163 
1164 		/*
1165 		 * should keep before submission to avoid D_DONE
1166 		 * right away
1167 		 */
1168 		spin_lock_irqsave(&dc->lock, flags);
1169 		if (last)
1170 			dc->state = D_SUBMIT;
1171 		else
1172 			dc->state = D_PARTIAL;
1173 		dc->bio_ref++;
1174 		spin_unlock_irqrestore(&dc->lock, flags);
1175 
1176 		atomic_inc(&dcc->queued_discard);
1177 		dc->queued++;
1178 		list_move_tail(&dc->list, wait_list);
1179 
1180 		/* sanity check on discard range */
1181 		__check_sit_bitmap(sbi, lstart, lstart + len);
1182 
1183 		bio->bi_private = dc;
1184 		bio->bi_end_io = f2fs_submit_discard_endio;
1185 		bio->bi_opf |= flag;
1186 		submit_bio(bio);
1187 
1188 		atomic_inc(&dcc->issued_discard);
1189 
1190 		f2fs_update_iostat(sbi, NULL, FS_DISCARD, len * F2FS_BLKSIZE);
1191 
1192 		lstart += len;
1193 		start += len;
1194 		total_len -= len;
1195 		len = total_len;
1196 	}
1197 
1198 	if (!err && len) {
1199 		dcc->undiscard_blks -= len;
1200 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1201 	}
1202 	return err;
1203 }
1204 
1205 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1206 				struct block_device *bdev, block_t lstart,
1207 				block_t start, block_t len,
1208 				struct rb_node **insert_p,
1209 				struct rb_node *insert_parent)
1210 {
1211 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1212 	struct rb_node **p;
1213 	struct rb_node *parent = NULL;
1214 	bool leftmost = true;
1215 
1216 	if (insert_p && insert_parent) {
1217 		parent = insert_parent;
1218 		p = insert_p;
1219 		goto do_insert;
1220 	}
1221 
1222 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1223 							lstart, &leftmost);
1224 do_insert:
1225 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1226 								p, leftmost);
1227 }
1228 
1229 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1230 						struct discard_cmd *dc)
1231 {
1232 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1233 }
1234 
1235 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1236 				struct discard_cmd *dc, block_t blkaddr)
1237 {
1238 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1239 	struct discard_info di = dc->di;
1240 	bool modified = false;
1241 
1242 	if (dc->state == D_DONE || dc->len == 1) {
1243 		__remove_discard_cmd(sbi, dc);
1244 		return;
1245 	}
1246 
1247 	dcc->undiscard_blks -= di.len;
1248 
1249 	if (blkaddr > di.lstart) {
1250 		dc->len = blkaddr - dc->lstart;
1251 		dcc->undiscard_blks += dc->len;
1252 		__relocate_discard_cmd(dcc, dc);
1253 		modified = true;
1254 	}
1255 
1256 	if (blkaddr < di.lstart + di.len - 1) {
1257 		if (modified) {
1258 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1259 					di.start + blkaddr + 1 - di.lstart,
1260 					di.lstart + di.len - 1 - blkaddr,
1261 					NULL, NULL);
1262 		} else {
1263 			dc->lstart++;
1264 			dc->len--;
1265 			dc->start++;
1266 			dcc->undiscard_blks += dc->len;
1267 			__relocate_discard_cmd(dcc, dc);
1268 		}
1269 	}
1270 }
1271 
1272 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1273 				struct block_device *bdev, block_t lstart,
1274 				block_t start, block_t len)
1275 {
1276 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1277 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1278 	struct discard_cmd *dc;
1279 	struct discard_info di = {0};
1280 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1281 	unsigned int max_discard_blocks =
1282 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1283 	block_t end = lstart + len;
1284 
1285 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1286 					NULL, lstart,
1287 					(struct rb_entry **)&prev_dc,
1288 					(struct rb_entry **)&next_dc,
1289 					&insert_p, &insert_parent, true, NULL);
1290 	if (dc)
1291 		prev_dc = dc;
1292 
1293 	if (!prev_dc) {
1294 		di.lstart = lstart;
1295 		di.len = next_dc ? next_dc->lstart - lstart : len;
1296 		di.len = min(di.len, len);
1297 		di.start = start;
1298 	}
1299 
1300 	while (1) {
1301 		struct rb_node *node;
1302 		bool merged = false;
1303 		struct discard_cmd *tdc = NULL;
1304 
1305 		if (prev_dc) {
1306 			di.lstart = prev_dc->lstart + prev_dc->len;
1307 			if (di.lstart < lstart)
1308 				di.lstart = lstart;
1309 			if (di.lstart >= end)
1310 				break;
1311 
1312 			if (!next_dc || next_dc->lstart > end)
1313 				di.len = end - di.lstart;
1314 			else
1315 				di.len = next_dc->lstart - di.lstart;
1316 			di.start = start + di.lstart - lstart;
1317 		}
1318 
1319 		if (!di.len)
1320 			goto next;
1321 
1322 		if (prev_dc && prev_dc->state == D_PREP &&
1323 			prev_dc->bdev == bdev &&
1324 			__is_discard_back_mergeable(&di, &prev_dc->di,
1325 							max_discard_blocks)) {
1326 			prev_dc->di.len += di.len;
1327 			dcc->undiscard_blks += di.len;
1328 			__relocate_discard_cmd(dcc, prev_dc);
1329 			di = prev_dc->di;
1330 			tdc = prev_dc;
1331 			merged = true;
1332 		}
1333 
1334 		if (next_dc && next_dc->state == D_PREP &&
1335 			next_dc->bdev == bdev &&
1336 			__is_discard_front_mergeable(&di, &next_dc->di,
1337 							max_discard_blocks)) {
1338 			next_dc->di.lstart = di.lstart;
1339 			next_dc->di.len += di.len;
1340 			next_dc->di.start = di.start;
1341 			dcc->undiscard_blks += di.len;
1342 			__relocate_discard_cmd(dcc, next_dc);
1343 			if (tdc)
1344 				__remove_discard_cmd(sbi, tdc);
1345 			merged = true;
1346 		}
1347 
1348 		if (!merged) {
1349 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1350 							di.len, NULL, NULL);
1351 		}
1352  next:
1353 		prev_dc = next_dc;
1354 		if (!prev_dc)
1355 			break;
1356 
1357 		node = rb_next(&prev_dc->rb_node);
1358 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1359 	}
1360 }
1361 
1362 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1363 		struct block_device *bdev, block_t blkstart, block_t blklen)
1364 {
1365 	block_t lblkstart = blkstart;
1366 
1367 	if (!f2fs_bdev_support_discard(bdev))
1368 		return;
1369 
1370 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1371 
1372 	if (f2fs_is_multi_device(sbi)) {
1373 		int devi = f2fs_target_device_index(sbi, blkstart);
1374 
1375 		blkstart -= FDEV(devi).start_blk;
1376 	}
1377 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1378 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1379 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1380 }
1381 
1382 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1383 					struct discard_policy *dpolicy)
1384 {
1385 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1386 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1387 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1388 	struct discard_cmd *dc;
1389 	struct blk_plug plug;
1390 	unsigned int pos = dcc->next_pos;
1391 	unsigned int issued = 0;
1392 	bool io_interrupted = false;
1393 
1394 	mutex_lock(&dcc->cmd_lock);
1395 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1396 					NULL, pos,
1397 					(struct rb_entry **)&prev_dc,
1398 					(struct rb_entry **)&next_dc,
1399 					&insert_p, &insert_parent, true, NULL);
1400 	if (!dc)
1401 		dc = next_dc;
1402 
1403 	blk_start_plug(&plug);
1404 
1405 	while (dc) {
1406 		struct rb_node *node;
1407 		int err = 0;
1408 
1409 		if (dc->state != D_PREP)
1410 			goto next;
1411 
1412 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1413 			io_interrupted = true;
1414 			break;
1415 		}
1416 
1417 		dcc->next_pos = dc->lstart + dc->len;
1418 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1419 
1420 		if (issued >= dpolicy->max_requests)
1421 			break;
1422 next:
1423 		node = rb_next(&dc->rb_node);
1424 		if (err)
1425 			__remove_discard_cmd(sbi, dc);
1426 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1427 	}
1428 
1429 	blk_finish_plug(&plug);
1430 
1431 	if (!dc)
1432 		dcc->next_pos = 0;
1433 
1434 	mutex_unlock(&dcc->cmd_lock);
1435 
1436 	if (!issued && io_interrupted)
1437 		issued = -1;
1438 
1439 	return issued;
1440 }
1441 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1442 					struct discard_policy *dpolicy);
1443 
1444 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1445 					struct discard_policy *dpolicy)
1446 {
1447 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1448 	struct list_head *pend_list;
1449 	struct discard_cmd *dc, *tmp;
1450 	struct blk_plug plug;
1451 	int i, issued;
1452 	bool io_interrupted = false;
1453 
1454 	if (dpolicy->timeout)
1455 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1456 
1457 retry:
1458 	issued = 0;
1459 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1460 		if (dpolicy->timeout &&
1461 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1462 			break;
1463 
1464 		if (i + 1 < dpolicy->granularity)
1465 			break;
1466 
1467 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered)
1468 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1469 
1470 		pend_list = &dcc->pend_list[i];
1471 
1472 		mutex_lock(&dcc->cmd_lock);
1473 		if (list_empty(pend_list))
1474 			goto next;
1475 		if (unlikely(dcc->rbtree_check))
1476 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1477 							&dcc->root, false));
1478 		blk_start_plug(&plug);
1479 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1480 			f2fs_bug_on(sbi, dc->state != D_PREP);
1481 
1482 			if (dpolicy->timeout &&
1483 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1484 				break;
1485 
1486 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1487 						!is_idle(sbi, DISCARD_TIME)) {
1488 				io_interrupted = true;
1489 				break;
1490 			}
1491 
1492 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1493 
1494 			if (issued >= dpolicy->max_requests)
1495 				break;
1496 		}
1497 		blk_finish_plug(&plug);
1498 next:
1499 		mutex_unlock(&dcc->cmd_lock);
1500 
1501 		if (issued >= dpolicy->max_requests || io_interrupted)
1502 			break;
1503 	}
1504 
1505 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1506 		__wait_all_discard_cmd(sbi, dpolicy);
1507 		goto retry;
1508 	}
1509 
1510 	if (!issued && io_interrupted)
1511 		issued = -1;
1512 
1513 	return issued;
1514 }
1515 
1516 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1517 {
1518 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519 	struct list_head *pend_list;
1520 	struct discard_cmd *dc, *tmp;
1521 	int i;
1522 	bool dropped = false;
1523 
1524 	mutex_lock(&dcc->cmd_lock);
1525 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1526 		pend_list = &dcc->pend_list[i];
1527 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1528 			f2fs_bug_on(sbi, dc->state != D_PREP);
1529 			__remove_discard_cmd(sbi, dc);
1530 			dropped = true;
1531 		}
1532 	}
1533 	mutex_unlock(&dcc->cmd_lock);
1534 
1535 	return dropped;
1536 }
1537 
1538 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1539 {
1540 	__drop_discard_cmd(sbi);
1541 }
1542 
1543 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1544 							struct discard_cmd *dc)
1545 {
1546 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1547 	unsigned int len = 0;
1548 
1549 	wait_for_completion_io(&dc->wait);
1550 	mutex_lock(&dcc->cmd_lock);
1551 	f2fs_bug_on(sbi, dc->state != D_DONE);
1552 	dc->ref--;
1553 	if (!dc->ref) {
1554 		if (!dc->error)
1555 			len = dc->len;
1556 		__remove_discard_cmd(sbi, dc);
1557 	}
1558 	mutex_unlock(&dcc->cmd_lock);
1559 
1560 	return len;
1561 }
1562 
1563 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1564 						struct discard_policy *dpolicy,
1565 						block_t start, block_t end)
1566 {
1567 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1568 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1569 					&(dcc->fstrim_list) : &(dcc->wait_list);
1570 	struct discard_cmd *dc = NULL, *iter, *tmp;
1571 	unsigned int trimmed = 0;
1572 
1573 next:
1574 	dc = NULL;
1575 
1576 	mutex_lock(&dcc->cmd_lock);
1577 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1578 		if (iter->lstart + iter->len <= start || end <= iter->lstart)
1579 			continue;
1580 		if (iter->len < dpolicy->granularity)
1581 			continue;
1582 		if (iter->state == D_DONE && !iter->ref) {
1583 			wait_for_completion_io(&iter->wait);
1584 			if (!iter->error)
1585 				trimmed += iter->len;
1586 			__remove_discard_cmd(sbi, iter);
1587 		} else {
1588 			iter->ref++;
1589 			dc = iter;
1590 			break;
1591 		}
1592 	}
1593 	mutex_unlock(&dcc->cmd_lock);
1594 
1595 	if (dc) {
1596 		trimmed += __wait_one_discard_bio(sbi, dc);
1597 		goto next;
1598 	}
1599 
1600 	return trimmed;
1601 }
1602 
1603 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1604 						struct discard_policy *dpolicy)
1605 {
1606 	struct discard_policy dp;
1607 	unsigned int discard_blks;
1608 
1609 	if (dpolicy)
1610 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1611 
1612 	/* wait all */
1613 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1614 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1615 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1616 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1617 
1618 	return discard_blks;
1619 }
1620 
1621 /* This should be covered by global mutex, &sit_i->sentry_lock */
1622 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1623 {
1624 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1625 	struct discard_cmd *dc;
1626 	bool need_wait = false;
1627 
1628 	mutex_lock(&dcc->cmd_lock);
1629 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1630 							NULL, blkaddr);
1631 	if (dc) {
1632 		if (dc->state == D_PREP) {
1633 			__punch_discard_cmd(sbi, dc, blkaddr);
1634 		} else {
1635 			dc->ref++;
1636 			need_wait = true;
1637 		}
1638 	}
1639 	mutex_unlock(&dcc->cmd_lock);
1640 
1641 	if (need_wait)
1642 		__wait_one_discard_bio(sbi, dc);
1643 }
1644 
1645 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1646 {
1647 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1648 
1649 	if (dcc && dcc->f2fs_issue_discard) {
1650 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1651 
1652 		dcc->f2fs_issue_discard = NULL;
1653 		kthread_stop(discard_thread);
1654 	}
1655 }
1656 
1657 /* This comes from f2fs_put_super */
1658 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1659 {
1660 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1661 	struct discard_policy dpolicy;
1662 	bool dropped;
1663 
1664 	if (!atomic_read(&dcc->discard_cmd_cnt))
1665 		return false;
1666 
1667 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1668 					dcc->discard_granularity);
1669 	__issue_discard_cmd(sbi, &dpolicy);
1670 	dropped = __drop_discard_cmd(sbi);
1671 
1672 	/* just to make sure there is no pending discard commands */
1673 	__wait_all_discard_cmd(sbi, NULL);
1674 
1675 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1676 	return dropped;
1677 }
1678 
1679 static int issue_discard_thread(void *data)
1680 {
1681 	struct f2fs_sb_info *sbi = data;
1682 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1683 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1684 	struct discard_policy dpolicy;
1685 	unsigned int wait_ms = dcc->min_discard_issue_time;
1686 	int issued;
1687 
1688 	set_freezable();
1689 
1690 	do {
1691 		wait_event_interruptible_timeout(*q,
1692 				kthread_should_stop() || freezing(current) ||
1693 				dcc->discard_wake,
1694 				msecs_to_jiffies(wait_ms));
1695 
1696 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1697 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1698 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1699 		else
1700 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1701 						dcc->discard_granularity);
1702 
1703 		if (dcc->discard_wake)
1704 			dcc->discard_wake = 0;
1705 
1706 		/* clean up pending candidates before going to sleep */
1707 		if (atomic_read(&dcc->queued_discard))
1708 			__wait_all_discard_cmd(sbi, NULL);
1709 
1710 		if (try_to_freeze())
1711 			continue;
1712 		if (f2fs_readonly(sbi->sb))
1713 			continue;
1714 		if (kthread_should_stop())
1715 			return 0;
1716 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1717 			!atomic_read(&dcc->discard_cmd_cnt)) {
1718 			wait_ms = dpolicy.max_interval;
1719 			continue;
1720 		}
1721 
1722 		sb_start_intwrite(sbi->sb);
1723 
1724 		issued = __issue_discard_cmd(sbi, &dpolicy);
1725 		if (issued > 0) {
1726 			__wait_all_discard_cmd(sbi, &dpolicy);
1727 			wait_ms = dpolicy.min_interval;
1728 		} else if (issued == -1) {
1729 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1730 			if (!wait_ms)
1731 				wait_ms = dpolicy.mid_interval;
1732 		} else {
1733 			wait_ms = dpolicy.max_interval;
1734 		}
1735 		if (!atomic_read(&dcc->discard_cmd_cnt))
1736 			wait_ms = dpolicy.max_interval;
1737 
1738 		sb_end_intwrite(sbi->sb);
1739 
1740 	} while (!kthread_should_stop());
1741 	return 0;
1742 }
1743 
1744 #ifdef CONFIG_BLK_DEV_ZONED
1745 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1746 		struct block_device *bdev, block_t blkstart, block_t blklen)
1747 {
1748 	sector_t sector, nr_sects;
1749 	block_t lblkstart = blkstart;
1750 	int devi = 0;
1751 
1752 	if (f2fs_is_multi_device(sbi)) {
1753 		devi = f2fs_target_device_index(sbi, blkstart);
1754 		if (blkstart < FDEV(devi).start_blk ||
1755 		    blkstart > FDEV(devi).end_blk) {
1756 			f2fs_err(sbi, "Invalid block %x", blkstart);
1757 			return -EIO;
1758 		}
1759 		blkstart -= FDEV(devi).start_blk;
1760 	}
1761 
1762 	/* For sequential zones, reset the zone write pointer */
1763 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1764 		sector = SECTOR_FROM_BLOCK(blkstart);
1765 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1766 
1767 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1768 				nr_sects != bdev_zone_sectors(bdev)) {
1769 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1770 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1771 				 blkstart, blklen);
1772 			return -EIO;
1773 		}
1774 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1775 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1776 					sector, nr_sects, GFP_NOFS);
1777 	}
1778 
1779 	/* For conventional zones, use regular discard if supported */
1780 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1781 	return 0;
1782 }
1783 #endif
1784 
1785 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1786 		struct block_device *bdev, block_t blkstart, block_t blklen)
1787 {
1788 #ifdef CONFIG_BLK_DEV_ZONED
1789 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1790 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1791 #endif
1792 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1793 	return 0;
1794 }
1795 
1796 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1797 				block_t blkstart, block_t blklen)
1798 {
1799 	sector_t start = blkstart, len = 0;
1800 	struct block_device *bdev;
1801 	struct seg_entry *se;
1802 	unsigned int offset;
1803 	block_t i;
1804 	int err = 0;
1805 
1806 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1807 
1808 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1809 		if (i != start) {
1810 			struct block_device *bdev2 =
1811 				f2fs_target_device(sbi, i, NULL);
1812 
1813 			if (bdev2 != bdev) {
1814 				err = __issue_discard_async(sbi, bdev,
1815 						start, len);
1816 				if (err)
1817 					return err;
1818 				bdev = bdev2;
1819 				start = i;
1820 				len = 0;
1821 			}
1822 		}
1823 
1824 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1825 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1826 
1827 		if (f2fs_block_unit_discard(sbi) &&
1828 				!f2fs_test_and_set_bit(offset, se->discard_map))
1829 			sbi->discard_blks--;
1830 	}
1831 
1832 	if (len)
1833 		err = __issue_discard_async(sbi, bdev, start, len);
1834 	return err;
1835 }
1836 
1837 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1838 							bool check_only)
1839 {
1840 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1841 	int max_blocks = sbi->blocks_per_seg;
1842 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1843 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1844 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1845 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1846 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1847 	unsigned int start = 0, end = -1;
1848 	bool force = (cpc->reason & CP_DISCARD);
1849 	struct discard_entry *de = NULL;
1850 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1851 	int i;
1852 
1853 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1854 			!f2fs_block_unit_discard(sbi))
1855 		return false;
1856 
1857 	if (!force) {
1858 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1859 			SM_I(sbi)->dcc_info->nr_discards >=
1860 				SM_I(sbi)->dcc_info->max_discards)
1861 			return false;
1862 	}
1863 
1864 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1865 	for (i = 0; i < entries; i++)
1866 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1867 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1868 
1869 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1870 				SM_I(sbi)->dcc_info->max_discards) {
1871 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1872 		if (start >= max_blocks)
1873 			break;
1874 
1875 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1876 		if (force && start && end != max_blocks
1877 					&& (end - start) < cpc->trim_minlen)
1878 			continue;
1879 
1880 		if (check_only)
1881 			return true;
1882 
1883 		if (!de) {
1884 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1885 						GFP_F2FS_ZERO, true, NULL);
1886 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1887 			list_add_tail(&de->list, head);
1888 		}
1889 
1890 		for (i = start; i < end; i++)
1891 			__set_bit_le(i, (void *)de->discard_map);
1892 
1893 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1894 	}
1895 	return false;
1896 }
1897 
1898 static void release_discard_addr(struct discard_entry *entry)
1899 {
1900 	list_del(&entry->list);
1901 	kmem_cache_free(discard_entry_slab, entry);
1902 }
1903 
1904 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1905 {
1906 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1907 	struct discard_entry *entry, *this;
1908 
1909 	/* drop caches */
1910 	list_for_each_entry_safe(entry, this, head, list)
1911 		release_discard_addr(entry);
1912 }
1913 
1914 /*
1915  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1916  */
1917 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1918 {
1919 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1920 	unsigned int segno;
1921 
1922 	mutex_lock(&dirty_i->seglist_lock);
1923 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1924 		__set_test_and_free(sbi, segno, false);
1925 	mutex_unlock(&dirty_i->seglist_lock);
1926 }
1927 
1928 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1929 						struct cp_control *cpc)
1930 {
1931 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1932 	struct list_head *head = &dcc->entry_list;
1933 	struct discard_entry *entry, *this;
1934 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1935 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1936 	unsigned int start = 0, end = -1;
1937 	unsigned int secno, start_segno;
1938 	bool force = (cpc->reason & CP_DISCARD);
1939 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1940 						DISCARD_UNIT_SECTION;
1941 
1942 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1943 		section_alignment = true;
1944 
1945 	mutex_lock(&dirty_i->seglist_lock);
1946 
1947 	while (1) {
1948 		int i;
1949 
1950 		if (section_alignment && end != -1)
1951 			end--;
1952 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1953 		if (start >= MAIN_SEGS(sbi))
1954 			break;
1955 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1956 								start + 1);
1957 
1958 		if (section_alignment) {
1959 			start = rounddown(start, sbi->segs_per_sec);
1960 			end = roundup(end, sbi->segs_per_sec);
1961 		}
1962 
1963 		for (i = start; i < end; i++) {
1964 			if (test_and_clear_bit(i, prefree_map))
1965 				dirty_i->nr_dirty[PRE]--;
1966 		}
1967 
1968 		if (!f2fs_realtime_discard_enable(sbi))
1969 			continue;
1970 
1971 		if (force && start >= cpc->trim_start &&
1972 					(end - 1) <= cpc->trim_end)
1973 				continue;
1974 
1975 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1976 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1977 				(end - start) << sbi->log_blocks_per_seg);
1978 			continue;
1979 		}
1980 next:
1981 		secno = GET_SEC_FROM_SEG(sbi, start);
1982 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1983 		if (!IS_CURSEC(sbi, secno) &&
1984 			!get_valid_blocks(sbi, start, true))
1985 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1986 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1987 
1988 		start = start_segno + sbi->segs_per_sec;
1989 		if (start < end)
1990 			goto next;
1991 		else
1992 			end = start - 1;
1993 	}
1994 	mutex_unlock(&dirty_i->seglist_lock);
1995 
1996 	if (!f2fs_block_unit_discard(sbi))
1997 		goto wakeup;
1998 
1999 	/* send small discards */
2000 	list_for_each_entry_safe(entry, this, head, list) {
2001 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2002 		bool is_valid = test_bit_le(0, entry->discard_map);
2003 
2004 find_next:
2005 		if (is_valid) {
2006 			next_pos = find_next_zero_bit_le(entry->discard_map,
2007 					sbi->blocks_per_seg, cur_pos);
2008 			len = next_pos - cur_pos;
2009 
2010 			if (f2fs_sb_has_blkzoned(sbi) ||
2011 			    (force && len < cpc->trim_minlen))
2012 				goto skip;
2013 
2014 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2015 									len);
2016 			total_len += len;
2017 		} else {
2018 			next_pos = find_next_bit_le(entry->discard_map,
2019 					sbi->blocks_per_seg, cur_pos);
2020 		}
2021 skip:
2022 		cur_pos = next_pos;
2023 		is_valid = !is_valid;
2024 
2025 		if (cur_pos < sbi->blocks_per_seg)
2026 			goto find_next;
2027 
2028 		release_discard_addr(entry);
2029 		dcc->nr_discards -= total_len;
2030 	}
2031 
2032 wakeup:
2033 	wake_up_discard_thread(sbi, false);
2034 }
2035 
2036 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2037 {
2038 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2039 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2040 	int err = 0;
2041 
2042 	if (!f2fs_realtime_discard_enable(sbi))
2043 		return 0;
2044 
2045 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2046 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2047 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2048 		err = PTR_ERR(dcc->f2fs_issue_discard);
2049 		dcc->f2fs_issue_discard = NULL;
2050 	}
2051 
2052 	return err;
2053 }
2054 
2055 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2056 {
2057 	struct discard_cmd_control *dcc;
2058 	int err = 0, i;
2059 
2060 	if (SM_I(sbi)->dcc_info) {
2061 		dcc = SM_I(sbi)->dcc_info;
2062 		goto init_thread;
2063 	}
2064 
2065 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2066 	if (!dcc)
2067 		return -ENOMEM;
2068 
2069 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2070 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2071 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2072 		dcc->discard_granularity = sbi->blocks_per_seg;
2073 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2074 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2075 
2076 	INIT_LIST_HEAD(&dcc->entry_list);
2077 	for (i = 0; i < MAX_PLIST_NUM; i++)
2078 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2079 	INIT_LIST_HEAD(&dcc->wait_list);
2080 	INIT_LIST_HEAD(&dcc->fstrim_list);
2081 	mutex_init(&dcc->cmd_lock);
2082 	atomic_set(&dcc->issued_discard, 0);
2083 	atomic_set(&dcc->queued_discard, 0);
2084 	atomic_set(&dcc->discard_cmd_cnt, 0);
2085 	dcc->nr_discards = 0;
2086 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2087 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2088 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2089 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2090 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2091 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2092 	dcc->undiscard_blks = 0;
2093 	dcc->next_pos = 0;
2094 	dcc->root = RB_ROOT_CACHED;
2095 	dcc->rbtree_check = false;
2096 
2097 	init_waitqueue_head(&dcc->discard_wait_queue);
2098 	SM_I(sbi)->dcc_info = dcc;
2099 init_thread:
2100 	err = f2fs_start_discard_thread(sbi);
2101 	if (err) {
2102 		kfree(dcc);
2103 		SM_I(sbi)->dcc_info = NULL;
2104 	}
2105 
2106 	return err;
2107 }
2108 
2109 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2110 {
2111 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2112 
2113 	if (!dcc)
2114 		return;
2115 
2116 	f2fs_stop_discard_thread(sbi);
2117 
2118 	/*
2119 	 * Recovery can cache discard commands, so in error path of
2120 	 * fill_super(), it needs to give a chance to handle them.
2121 	 */
2122 	f2fs_issue_discard_timeout(sbi);
2123 
2124 	kfree(dcc);
2125 	SM_I(sbi)->dcc_info = NULL;
2126 }
2127 
2128 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2129 {
2130 	struct sit_info *sit_i = SIT_I(sbi);
2131 
2132 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2133 		sit_i->dirty_sentries++;
2134 		return false;
2135 	}
2136 
2137 	return true;
2138 }
2139 
2140 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2141 					unsigned int segno, int modified)
2142 {
2143 	struct seg_entry *se = get_seg_entry(sbi, segno);
2144 
2145 	se->type = type;
2146 	if (modified)
2147 		__mark_sit_entry_dirty(sbi, segno);
2148 }
2149 
2150 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2151 								block_t blkaddr)
2152 {
2153 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2154 
2155 	if (segno == NULL_SEGNO)
2156 		return 0;
2157 	return get_seg_entry(sbi, segno)->mtime;
2158 }
2159 
2160 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2161 						unsigned long long old_mtime)
2162 {
2163 	struct seg_entry *se;
2164 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2165 	unsigned long long ctime = get_mtime(sbi, false);
2166 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2167 
2168 	if (segno == NULL_SEGNO)
2169 		return;
2170 
2171 	se = get_seg_entry(sbi, segno);
2172 
2173 	if (!se->mtime)
2174 		se->mtime = mtime;
2175 	else
2176 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2177 						se->valid_blocks + 1);
2178 
2179 	if (ctime > SIT_I(sbi)->max_mtime)
2180 		SIT_I(sbi)->max_mtime = ctime;
2181 }
2182 
2183 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2184 {
2185 	struct seg_entry *se;
2186 	unsigned int segno, offset;
2187 	long int new_vblocks;
2188 	bool exist;
2189 #ifdef CONFIG_F2FS_CHECK_FS
2190 	bool mir_exist;
2191 #endif
2192 
2193 	segno = GET_SEGNO(sbi, blkaddr);
2194 
2195 	se = get_seg_entry(sbi, segno);
2196 	new_vblocks = se->valid_blocks + del;
2197 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2198 
2199 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2200 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2201 
2202 	se->valid_blocks = new_vblocks;
2203 
2204 	/* Update valid block bitmap */
2205 	if (del > 0) {
2206 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2207 #ifdef CONFIG_F2FS_CHECK_FS
2208 		mir_exist = f2fs_test_and_set_bit(offset,
2209 						se->cur_valid_map_mir);
2210 		if (unlikely(exist != mir_exist)) {
2211 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2212 				 blkaddr, exist);
2213 			f2fs_bug_on(sbi, 1);
2214 		}
2215 #endif
2216 		if (unlikely(exist)) {
2217 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2218 				 blkaddr);
2219 			f2fs_bug_on(sbi, 1);
2220 			se->valid_blocks--;
2221 			del = 0;
2222 		}
2223 
2224 		if (f2fs_block_unit_discard(sbi) &&
2225 				!f2fs_test_and_set_bit(offset, se->discard_map))
2226 			sbi->discard_blks--;
2227 
2228 		/*
2229 		 * SSR should never reuse block which is checkpointed
2230 		 * or newly invalidated.
2231 		 */
2232 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2233 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2234 				se->ckpt_valid_blocks++;
2235 		}
2236 	} else {
2237 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2238 #ifdef CONFIG_F2FS_CHECK_FS
2239 		mir_exist = f2fs_test_and_clear_bit(offset,
2240 						se->cur_valid_map_mir);
2241 		if (unlikely(exist != mir_exist)) {
2242 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2243 				 blkaddr, exist);
2244 			f2fs_bug_on(sbi, 1);
2245 		}
2246 #endif
2247 		if (unlikely(!exist)) {
2248 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2249 				 blkaddr);
2250 			f2fs_bug_on(sbi, 1);
2251 			se->valid_blocks++;
2252 			del = 0;
2253 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2254 			/*
2255 			 * If checkpoints are off, we must not reuse data that
2256 			 * was used in the previous checkpoint. If it was used
2257 			 * before, we must track that to know how much space we
2258 			 * really have.
2259 			 */
2260 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2261 				spin_lock(&sbi->stat_lock);
2262 				sbi->unusable_block_count++;
2263 				spin_unlock(&sbi->stat_lock);
2264 			}
2265 		}
2266 
2267 		if (f2fs_block_unit_discard(sbi) &&
2268 			f2fs_test_and_clear_bit(offset, se->discard_map))
2269 			sbi->discard_blks++;
2270 	}
2271 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2272 		se->ckpt_valid_blocks += del;
2273 
2274 	__mark_sit_entry_dirty(sbi, segno);
2275 
2276 	/* update total number of valid blocks to be written in ckpt area */
2277 	SIT_I(sbi)->written_valid_blocks += del;
2278 
2279 	if (__is_large_section(sbi))
2280 		get_sec_entry(sbi, segno)->valid_blocks += del;
2281 }
2282 
2283 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2284 {
2285 	unsigned int segno = GET_SEGNO(sbi, addr);
2286 	struct sit_info *sit_i = SIT_I(sbi);
2287 
2288 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2289 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2290 		return;
2291 
2292 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2293 	f2fs_invalidate_compress_page(sbi, addr);
2294 
2295 	/* add it into sit main buffer */
2296 	down_write(&sit_i->sentry_lock);
2297 
2298 	update_segment_mtime(sbi, addr, 0);
2299 	update_sit_entry(sbi, addr, -1);
2300 
2301 	/* add it into dirty seglist */
2302 	locate_dirty_segment(sbi, segno);
2303 
2304 	up_write(&sit_i->sentry_lock);
2305 }
2306 
2307 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2308 {
2309 	struct sit_info *sit_i = SIT_I(sbi);
2310 	unsigned int segno, offset;
2311 	struct seg_entry *se;
2312 	bool is_cp = false;
2313 
2314 	if (!__is_valid_data_blkaddr(blkaddr))
2315 		return true;
2316 
2317 	down_read(&sit_i->sentry_lock);
2318 
2319 	segno = GET_SEGNO(sbi, blkaddr);
2320 	se = get_seg_entry(sbi, segno);
2321 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2322 
2323 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2324 		is_cp = true;
2325 
2326 	up_read(&sit_i->sentry_lock);
2327 
2328 	return is_cp;
2329 }
2330 
2331 /*
2332  * This function should be resided under the curseg_mutex lock
2333  */
2334 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2335 					struct f2fs_summary *sum)
2336 {
2337 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2338 	void *addr = curseg->sum_blk;
2339 
2340 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2341 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2342 }
2343 
2344 /*
2345  * Calculate the number of current summary pages for writing
2346  */
2347 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2348 {
2349 	int valid_sum_count = 0;
2350 	int i, sum_in_page;
2351 
2352 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2353 		if (sbi->ckpt->alloc_type[i] == SSR)
2354 			valid_sum_count += sbi->blocks_per_seg;
2355 		else {
2356 			if (for_ra)
2357 				valid_sum_count += le16_to_cpu(
2358 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2359 			else
2360 				valid_sum_count += curseg_blkoff(sbi, i);
2361 		}
2362 	}
2363 
2364 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2365 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2366 	if (valid_sum_count <= sum_in_page)
2367 		return 1;
2368 	else if ((valid_sum_count - sum_in_page) <=
2369 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2370 		return 2;
2371 	return 3;
2372 }
2373 
2374 /*
2375  * Caller should put this summary page
2376  */
2377 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2378 {
2379 	if (unlikely(f2fs_cp_error(sbi)))
2380 		return ERR_PTR(-EIO);
2381 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2382 }
2383 
2384 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2385 					void *src, block_t blk_addr)
2386 {
2387 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2388 
2389 	memcpy(page_address(page), src, PAGE_SIZE);
2390 	set_page_dirty(page);
2391 	f2fs_put_page(page, 1);
2392 }
2393 
2394 static void write_sum_page(struct f2fs_sb_info *sbi,
2395 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2396 {
2397 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2398 }
2399 
2400 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2401 						int type, block_t blk_addr)
2402 {
2403 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2404 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2405 	struct f2fs_summary_block *src = curseg->sum_blk;
2406 	struct f2fs_summary_block *dst;
2407 
2408 	dst = (struct f2fs_summary_block *)page_address(page);
2409 	memset(dst, 0, PAGE_SIZE);
2410 
2411 	mutex_lock(&curseg->curseg_mutex);
2412 
2413 	down_read(&curseg->journal_rwsem);
2414 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2415 	up_read(&curseg->journal_rwsem);
2416 
2417 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2418 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2419 
2420 	mutex_unlock(&curseg->curseg_mutex);
2421 
2422 	set_page_dirty(page);
2423 	f2fs_put_page(page, 1);
2424 }
2425 
2426 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2427 				struct curseg_info *curseg, int type)
2428 {
2429 	unsigned int segno = curseg->segno + 1;
2430 	struct free_segmap_info *free_i = FREE_I(sbi);
2431 
2432 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2433 		return !test_bit(segno, free_i->free_segmap);
2434 	return 0;
2435 }
2436 
2437 /*
2438  * Find a new segment from the free segments bitmap to right order
2439  * This function should be returned with success, otherwise BUG
2440  */
2441 static void get_new_segment(struct f2fs_sb_info *sbi,
2442 			unsigned int *newseg, bool new_sec, int dir)
2443 {
2444 	struct free_segmap_info *free_i = FREE_I(sbi);
2445 	unsigned int segno, secno, zoneno;
2446 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2447 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2448 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2449 	unsigned int left_start = hint;
2450 	bool init = true;
2451 	int go_left = 0;
2452 	int i;
2453 
2454 	spin_lock(&free_i->segmap_lock);
2455 
2456 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2457 		segno = find_next_zero_bit(free_i->free_segmap,
2458 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2459 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2460 			goto got_it;
2461 	}
2462 find_other_zone:
2463 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2464 	if (secno >= MAIN_SECS(sbi)) {
2465 		if (dir == ALLOC_RIGHT) {
2466 			secno = find_first_zero_bit(free_i->free_secmap,
2467 							MAIN_SECS(sbi));
2468 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2469 		} else {
2470 			go_left = 1;
2471 			left_start = hint - 1;
2472 		}
2473 	}
2474 	if (go_left == 0)
2475 		goto skip_left;
2476 
2477 	while (test_bit(left_start, free_i->free_secmap)) {
2478 		if (left_start > 0) {
2479 			left_start--;
2480 			continue;
2481 		}
2482 		left_start = find_first_zero_bit(free_i->free_secmap,
2483 							MAIN_SECS(sbi));
2484 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2485 		break;
2486 	}
2487 	secno = left_start;
2488 skip_left:
2489 	segno = GET_SEG_FROM_SEC(sbi, secno);
2490 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2491 
2492 	/* give up on finding another zone */
2493 	if (!init)
2494 		goto got_it;
2495 	if (sbi->secs_per_zone == 1)
2496 		goto got_it;
2497 	if (zoneno == old_zoneno)
2498 		goto got_it;
2499 	if (dir == ALLOC_LEFT) {
2500 		if (!go_left && zoneno + 1 >= total_zones)
2501 			goto got_it;
2502 		if (go_left && zoneno == 0)
2503 			goto got_it;
2504 	}
2505 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2506 		if (CURSEG_I(sbi, i)->zone == zoneno)
2507 			break;
2508 
2509 	if (i < NR_CURSEG_TYPE) {
2510 		/* zone is in user, try another */
2511 		if (go_left)
2512 			hint = zoneno * sbi->secs_per_zone - 1;
2513 		else if (zoneno + 1 >= total_zones)
2514 			hint = 0;
2515 		else
2516 			hint = (zoneno + 1) * sbi->secs_per_zone;
2517 		init = false;
2518 		goto find_other_zone;
2519 	}
2520 got_it:
2521 	/* set it as dirty segment in free segmap */
2522 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2523 	__set_inuse(sbi, segno);
2524 	*newseg = segno;
2525 	spin_unlock(&free_i->segmap_lock);
2526 }
2527 
2528 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2529 {
2530 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2531 	struct summary_footer *sum_footer;
2532 	unsigned short seg_type = curseg->seg_type;
2533 
2534 	curseg->inited = true;
2535 	curseg->segno = curseg->next_segno;
2536 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2537 	curseg->next_blkoff = 0;
2538 	curseg->next_segno = NULL_SEGNO;
2539 
2540 	sum_footer = &(curseg->sum_blk->footer);
2541 	memset(sum_footer, 0, sizeof(struct summary_footer));
2542 
2543 	sanity_check_seg_type(sbi, seg_type);
2544 
2545 	if (IS_DATASEG(seg_type))
2546 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2547 	if (IS_NODESEG(seg_type))
2548 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2549 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2550 }
2551 
2552 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2553 {
2554 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2555 	unsigned short seg_type = curseg->seg_type;
2556 
2557 	sanity_check_seg_type(sbi, seg_type);
2558 	if (f2fs_need_rand_seg(sbi))
2559 		return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2560 
2561 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2562 	if (__is_large_section(sbi))
2563 		return curseg->segno;
2564 
2565 	/* inmem log may not locate on any segment after mount */
2566 	if (!curseg->inited)
2567 		return 0;
2568 
2569 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2570 		return 0;
2571 
2572 	if (test_opt(sbi, NOHEAP) &&
2573 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2574 		return 0;
2575 
2576 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2577 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2578 
2579 	/* find segments from 0 to reuse freed segments */
2580 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2581 		return 0;
2582 
2583 	return curseg->segno;
2584 }
2585 
2586 /*
2587  * Allocate a current working segment.
2588  * This function always allocates a free segment in LFS manner.
2589  */
2590 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2591 {
2592 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2593 	unsigned short seg_type = curseg->seg_type;
2594 	unsigned int segno = curseg->segno;
2595 	int dir = ALLOC_LEFT;
2596 
2597 	if (curseg->inited)
2598 		write_sum_page(sbi, curseg->sum_blk,
2599 				GET_SUM_BLOCK(sbi, segno));
2600 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2601 		dir = ALLOC_RIGHT;
2602 
2603 	if (test_opt(sbi, NOHEAP))
2604 		dir = ALLOC_RIGHT;
2605 
2606 	segno = __get_next_segno(sbi, type);
2607 	get_new_segment(sbi, &segno, new_sec, dir);
2608 	curseg->next_segno = segno;
2609 	reset_curseg(sbi, type, 1);
2610 	curseg->alloc_type = LFS;
2611 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2612 		curseg->fragment_remained_chunk =
2613 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2614 }
2615 
2616 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2617 					int segno, block_t start)
2618 {
2619 	struct seg_entry *se = get_seg_entry(sbi, segno);
2620 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2621 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2622 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2623 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2624 	int i;
2625 
2626 	for (i = 0; i < entries; i++)
2627 		target_map[i] = ckpt_map[i] | cur_map[i];
2628 
2629 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2630 }
2631 
2632 /*
2633  * If a segment is written by LFS manner, next block offset is just obtained
2634  * by increasing the current block offset. However, if a segment is written by
2635  * SSR manner, next block offset obtained by calling __next_free_blkoff
2636  */
2637 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2638 				struct curseg_info *seg)
2639 {
2640 	if (seg->alloc_type == SSR) {
2641 		seg->next_blkoff =
2642 			__next_free_blkoff(sbi, seg->segno,
2643 						seg->next_blkoff + 1);
2644 	} else {
2645 		seg->next_blkoff++;
2646 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2647 			/* To allocate block chunks in different sizes, use random number */
2648 			if (--seg->fragment_remained_chunk <= 0) {
2649 				seg->fragment_remained_chunk =
2650 				   get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2651 				seg->next_blkoff +=
2652 				   get_random_u32_inclusive(1, sbi->max_fragment_hole);
2653 			}
2654 		}
2655 	}
2656 }
2657 
2658 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2659 {
2660 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2661 }
2662 
2663 /*
2664  * This function always allocates a used segment(from dirty seglist) by SSR
2665  * manner, so it should recover the existing segment information of valid blocks
2666  */
2667 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2668 {
2669 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2670 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2671 	unsigned int new_segno = curseg->next_segno;
2672 	struct f2fs_summary_block *sum_node;
2673 	struct page *sum_page;
2674 
2675 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2676 
2677 	__set_test_and_inuse(sbi, new_segno);
2678 
2679 	mutex_lock(&dirty_i->seglist_lock);
2680 	__remove_dirty_segment(sbi, new_segno, PRE);
2681 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2682 	mutex_unlock(&dirty_i->seglist_lock);
2683 
2684 	reset_curseg(sbi, type, 1);
2685 	curseg->alloc_type = SSR;
2686 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2687 
2688 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2689 	if (IS_ERR(sum_page)) {
2690 		/* GC won't be able to use stale summary pages by cp_error */
2691 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2692 		return;
2693 	}
2694 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2695 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2696 	f2fs_put_page(sum_page, 1);
2697 }
2698 
2699 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2700 				int alloc_mode, unsigned long long age);
2701 
2702 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2703 					int target_type, int alloc_mode,
2704 					unsigned long long age)
2705 {
2706 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2707 
2708 	curseg->seg_type = target_type;
2709 
2710 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2711 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2712 
2713 		curseg->seg_type = se->type;
2714 		change_curseg(sbi, type);
2715 	} else {
2716 		/* allocate cold segment by default */
2717 		curseg->seg_type = CURSEG_COLD_DATA;
2718 		new_curseg(sbi, type, true);
2719 	}
2720 	stat_inc_seg_type(sbi, curseg);
2721 }
2722 
2723 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2724 {
2725 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2726 
2727 	if (!sbi->am.atgc_enabled)
2728 		return;
2729 
2730 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2731 
2732 	mutex_lock(&curseg->curseg_mutex);
2733 	down_write(&SIT_I(sbi)->sentry_lock);
2734 
2735 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2736 
2737 	up_write(&SIT_I(sbi)->sentry_lock);
2738 	mutex_unlock(&curseg->curseg_mutex);
2739 
2740 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2741 
2742 }
2743 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2744 {
2745 	__f2fs_init_atgc_curseg(sbi);
2746 }
2747 
2748 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2749 {
2750 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2751 
2752 	mutex_lock(&curseg->curseg_mutex);
2753 	if (!curseg->inited)
2754 		goto out;
2755 
2756 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2757 		write_sum_page(sbi, curseg->sum_blk,
2758 				GET_SUM_BLOCK(sbi, curseg->segno));
2759 	} else {
2760 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2761 		__set_test_and_free(sbi, curseg->segno, true);
2762 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2763 	}
2764 out:
2765 	mutex_unlock(&curseg->curseg_mutex);
2766 }
2767 
2768 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2769 {
2770 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2771 
2772 	if (sbi->am.atgc_enabled)
2773 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2774 }
2775 
2776 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2777 {
2778 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2779 
2780 	mutex_lock(&curseg->curseg_mutex);
2781 	if (!curseg->inited)
2782 		goto out;
2783 	if (get_valid_blocks(sbi, curseg->segno, false))
2784 		goto out;
2785 
2786 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2787 	__set_test_and_inuse(sbi, curseg->segno);
2788 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2789 out:
2790 	mutex_unlock(&curseg->curseg_mutex);
2791 }
2792 
2793 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2794 {
2795 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2796 
2797 	if (sbi->am.atgc_enabled)
2798 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2799 }
2800 
2801 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2802 				int alloc_mode, unsigned long long age)
2803 {
2804 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2805 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2806 	unsigned segno = NULL_SEGNO;
2807 	unsigned short seg_type = curseg->seg_type;
2808 	int i, cnt;
2809 	bool reversed = false;
2810 
2811 	sanity_check_seg_type(sbi, seg_type);
2812 
2813 	/* f2fs_need_SSR() already forces to do this */
2814 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2815 		curseg->next_segno = segno;
2816 		return 1;
2817 	}
2818 
2819 	/* For node segments, let's do SSR more intensively */
2820 	if (IS_NODESEG(seg_type)) {
2821 		if (seg_type >= CURSEG_WARM_NODE) {
2822 			reversed = true;
2823 			i = CURSEG_COLD_NODE;
2824 		} else {
2825 			i = CURSEG_HOT_NODE;
2826 		}
2827 		cnt = NR_CURSEG_NODE_TYPE;
2828 	} else {
2829 		if (seg_type >= CURSEG_WARM_DATA) {
2830 			reversed = true;
2831 			i = CURSEG_COLD_DATA;
2832 		} else {
2833 			i = CURSEG_HOT_DATA;
2834 		}
2835 		cnt = NR_CURSEG_DATA_TYPE;
2836 	}
2837 
2838 	for (; cnt-- > 0; reversed ? i-- : i++) {
2839 		if (i == seg_type)
2840 			continue;
2841 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2842 			curseg->next_segno = segno;
2843 			return 1;
2844 		}
2845 	}
2846 
2847 	/* find valid_blocks=0 in dirty list */
2848 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2849 		segno = get_free_segment(sbi);
2850 		if (segno != NULL_SEGNO) {
2851 			curseg->next_segno = segno;
2852 			return 1;
2853 		}
2854 	}
2855 	return 0;
2856 }
2857 
2858 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
2859 {
2860 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2861 
2862 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2863 	    curseg->seg_type == CURSEG_WARM_NODE)
2864 		return true;
2865 	if (curseg->alloc_type == LFS &&
2866 	    is_next_segment_free(sbi, curseg, type) &&
2867 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2868 		return true;
2869 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
2870 		return true;
2871 	return false;
2872 }
2873 
2874 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2875 					unsigned int start, unsigned int end)
2876 {
2877 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2878 	unsigned int segno;
2879 
2880 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2881 	mutex_lock(&curseg->curseg_mutex);
2882 	down_write(&SIT_I(sbi)->sentry_lock);
2883 
2884 	segno = CURSEG_I(sbi, type)->segno;
2885 	if (segno < start || segno > end)
2886 		goto unlock;
2887 
2888 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2889 		change_curseg(sbi, type);
2890 	else
2891 		new_curseg(sbi, type, true);
2892 
2893 	stat_inc_seg_type(sbi, curseg);
2894 
2895 	locate_dirty_segment(sbi, segno);
2896 unlock:
2897 	up_write(&SIT_I(sbi)->sentry_lock);
2898 
2899 	if (segno != curseg->segno)
2900 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2901 			    type, segno, curseg->segno);
2902 
2903 	mutex_unlock(&curseg->curseg_mutex);
2904 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2905 }
2906 
2907 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2908 						bool new_sec, bool force)
2909 {
2910 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2911 	unsigned int old_segno;
2912 
2913 	if (!curseg->inited)
2914 		goto alloc;
2915 
2916 	if (force || curseg->next_blkoff ||
2917 		get_valid_blocks(sbi, curseg->segno, new_sec))
2918 		goto alloc;
2919 
2920 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2921 		return;
2922 alloc:
2923 	old_segno = curseg->segno;
2924 	new_curseg(sbi, type, true);
2925 	stat_inc_seg_type(sbi, curseg);
2926 	locate_dirty_segment(sbi, old_segno);
2927 }
2928 
2929 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2930 						int type, bool force)
2931 {
2932 	__allocate_new_segment(sbi, type, true, force);
2933 }
2934 
2935 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2936 {
2937 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2938 	down_write(&SIT_I(sbi)->sentry_lock);
2939 	__allocate_new_section(sbi, type, force);
2940 	up_write(&SIT_I(sbi)->sentry_lock);
2941 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2942 }
2943 
2944 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2945 {
2946 	int i;
2947 
2948 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2949 	down_write(&SIT_I(sbi)->sentry_lock);
2950 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2951 		__allocate_new_segment(sbi, i, false, false);
2952 	up_write(&SIT_I(sbi)->sentry_lock);
2953 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2954 }
2955 
2956 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2957 						struct cp_control *cpc)
2958 {
2959 	__u64 trim_start = cpc->trim_start;
2960 	bool has_candidate = false;
2961 
2962 	down_write(&SIT_I(sbi)->sentry_lock);
2963 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2964 		if (add_discard_addrs(sbi, cpc, true)) {
2965 			has_candidate = true;
2966 			break;
2967 		}
2968 	}
2969 	up_write(&SIT_I(sbi)->sentry_lock);
2970 
2971 	cpc->trim_start = trim_start;
2972 	return has_candidate;
2973 }
2974 
2975 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2976 					struct discard_policy *dpolicy,
2977 					unsigned int start, unsigned int end)
2978 {
2979 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2980 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2981 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2982 	struct discard_cmd *dc;
2983 	struct blk_plug plug;
2984 	int issued;
2985 	unsigned int trimmed = 0;
2986 
2987 next:
2988 	issued = 0;
2989 
2990 	mutex_lock(&dcc->cmd_lock);
2991 	if (unlikely(dcc->rbtree_check))
2992 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2993 							&dcc->root, false));
2994 
2995 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2996 					NULL, start,
2997 					(struct rb_entry **)&prev_dc,
2998 					(struct rb_entry **)&next_dc,
2999 					&insert_p, &insert_parent, true, NULL);
3000 	if (!dc)
3001 		dc = next_dc;
3002 
3003 	blk_start_plug(&plug);
3004 
3005 	while (dc && dc->lstart <= end) {
3006 		struct rb_node *node;
3007 		int err = 0;
3008 
3009 		if (dc->len < dpolicy->granularity)
3010 			goto skip;
3011 
3012 		if (dc->state != D_PREP) {
3013 			list_move_tail(&dc->list, &dcc->fstrim_list);
3014 			goto skip;
3015 		}
3016 
3017 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3018 
3019 		if (issued >= dpolicy->max_requests) {
3020 			start = dc->lstart + dc->len;
3021 
3022 			if (err)
3023 				__remove_discard_cmd(sbi, dc);
3024 
3025 			blk_finish_plug(&plug);
3026 			mutex_unlock(&dcc->cmd_lock);
3027 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3028 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3029 			goto next;
3030 		}
3031 skip:
3032 		node = rb_next(&dc->rb_node);
3033 		if (err)
3034 			__remove_discard_cmd(sbi, dc);
3035 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3036 
3037 		if (fatal_signal_pending(current))
3038 			break;
3039 	}
3040 
3041 	blk_finish_plug(&plug);
3042 	mutex_unlock(&dcc->cmd_lock);
3043 
3044 	return trimmed;
3045 }
3046 
3047 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3048 {
3049 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3050 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3051 	unsigned int start_segno, end_segno;
3052 	block_t start_block, end_block;
3053 	struct cp_control cpc;
3054 	struct discard_policy dpolicy;
3055 	unsigned long long trimmed = 0;
3056 	int err = 0;
3057 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3058 
3059 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3060 		return -EINVAL;
3061 
3062 	if (end < MAIN_BLKADDR(sbi))
3063 		goto out;
3064 
3065 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3066 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3067 		return -EFSCORRUPTED;
3068 	}
3069 
3070 	/* start/end segment number in main_area */
3071 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3072 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3073 						GET_SEGNO(sbi, end);
3074 	if (need_align) {
3075 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3076 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3077 	}
3078 
3079 	cpc.reason = CP_DISCARD;
3080 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3081 	cpc.trim_start = start_segno;
3082 	cpc.trim_end = end_segno;
3083 
3084 	if (sbi->discard_blks == 0)
3085 		goto out;
3086 
3087 	f2fs_down_write(&sbi->gc_lock);
3088 	err = f2fs_write_checkpoint(sbi, &cpc);
3089 	f2fs_up_write(&sbi->gc_lock);
3090 	if (err)
3091 		goto out;
3092 
3093 	/*
3094 	 * We filed discard candidates, but actually we don't need to wait for
3095 	 * all of them, since they'll be issued in idle time along with runtime
3096 	 * discard option. User configuration looks like using runtime discard
3097 	 * or periodic fstrim instead of it.
3098 	 */
3099 	if (f2fs_realtime_discard_enable(sbi))
3100 		goto out;
3101 
3102 	start_block = START_BLOCK(sbi, start_segno);
3103 	end_block = START_BLOCK(sbi, end_segno + 1);
3104 
3105 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3106 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3107 					start_block, end_block);
3108 
3109 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3110 					start_block, end_block);
3111 out:
3112 	if (!err)
3113 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3114 	return err;
3115 }
3116 
3117 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3118 					struct curseg_info *curseg)
3119 {
3120 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3121 							curseg->segno);
3122 }
3123 
3124 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3125 {
3126 	switch (hint) {
3127 	case WRITE_LIFE_SHORT:
3128 		return CURSEG_HOT_DATA;
3129 	case WRITE_LIFE_EXTREME:
3130 		return CURSEG_COLD_DATA;
3131 	default:
3132 		return CURSEG_WARM_DATA;
3133 	}
3134 }
3135 
3136 static int __get_segment_type_2(struct f2fs_io_info *fio)
3137 {
3138 	if (fio->type == DATA)
3139 		return CURSEG_HOT_DATA;
3140 	else
3141 		return CURSEG_HOT_NODE;
3142 }
3143 
3144 static int __get_segment_type_4(struct f2fs_io_info *fio)
3145 {
3146 	if (fio->type == DATA) {
3147 		struct inode *inode = fio->page->mapping->host;
3148 
3149 		if (S_ISDIR(inode->i_mode))
3150 			return CURSEG_HOT_DATA;
3151 		else
3152 			return CURSEG_COLD_DATA;
3153 	} else {
3154 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3155 			return CURSEG_WARM_NODE;
3156 		else
3157 			return CURSEG_COLD_NODE;
3158 	}
3159 }
3160 
3161 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3162 {
3163 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3164 	struct extent_info ei;
3165 
3166 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3167 		if (!ei.age)
3168 			return NO_CHECK_TYPE;
3169 		if (ei.age <= sbi->hot_data_age_threshold)
3170 			return CURSEG_HOT_DATA;
3171 		if (ei.age <= sbi->warm_data_age_threshold)
3172 			return CURSEG_WARM_DATA;
3173 		return CURSEG_COLD_DATA;
3174 	}
3175 	return NO_CHECK_TYPE;
3176 }
3177 
3178 static int __get_segment_type_6(struct f2fs_io_info *fio)
3179 {
3180 	if (fio->type == DATA) {
3181 		struct inode *inode = fio->page->mapping->host;
3182 		int type;
3183 
3184 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3185 			return CURSEG_COLD_DATA_PINNED;
3186 
3187 		if (page_private_gcing(fio->page)) {
3188 			if (fio->sbi->am.atgc_enabled &&
3189 				(fio->io_type == FS_DATA_IO) &&
3190 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3191 				return CURSEG_ALL_DATA_ATGC;
3192 			else
3193 				return CURSEG_COLD_DATA;
3194 		}
3195 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3196 			return CURSEG_COLD_DATA;
3197 
3198 		type = __get_age_segment_type(inode, fio->page->index);
3199 		if (type != NO_CHECK_TYPE)
3200 			return type;
3201 
3202 		if (file_is_hot(inode) ||
3203 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3204 				f2fs_is_cow_file(inode))
3205 			return CURSEG_HOT_DATA;
3206 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3207 	} else {
3208 		if (IS_DNODE(fio->page))
3209 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3210 						CURSEG_HOT_NODE;
3211 		return CURSEG_COLD_NODE;
3212 	}
3213 }
3214 
3215 static int __get_segment_type(struct f2fs_io_info *fio)
3216 {
3217 	int type = 0;
3218 
3219 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3220 	case 2:
3221 		type = __get_segment_type_2(fio);
3222 		break;
3223 	case 4:
3224 		type = __get_segment_type_4(fio);
3225 		break;
3226 	case 6:
3227 		type = __get_segment_type_6(fio);
3228 		break;
3229 	default:
3230 		f2fs_bug_on(fio->sbi, true);
3231 	}
3232 
3233 	if (IS_HOT(type))
3234 		fio->temp = HOT;
3235 	else if (IS_WARM(type))
3236 		fio->temp = WARM;
3237 	else
3238 		fio->temp = COLD;
3239 	return type;
3240 }
3241 
3242 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3243 		block_t old_blkaddr, block_t *new_blkaddr,
3244 		struct f2fs_summary *sum, int type,
3245 		struct f2fs_io_info *fio)
3246 {
3247 	struct sit_info *sit_i = SIT_I(sbi);
3248 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3249 	unsigned long long old_mtime;
3250 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3251 	struct seg_entry *se = NULL;
3252 
3253 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3254 
3255 	mutex_lock(&curseg->curseg_mutex);
3256 	down_write(&sit_i->sentry_lock);
3257 
3258 	if (from_gc) {
3259 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3260 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3261 		sanity_check_seg_type(sbi, se->type);
3262 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3263 	}
3264 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3265 
3266 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3267 
3268 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3269 
3270 	/*
3271 	 * __add_sum_entry should be resided under the curseg_mutex
3272 	 * because, this function updates a summary entry in the
3273 	 * current summary block.
3274 	 */
3275 	__add_sum_entry(sbi, type, sum);
3276 
3277 	__refresh_next_blkoff(sbi, curseg);
3278 
3279 	stat_inc_block_count(sbi, curseg);
3280 
3281 	if (from_gc) {
3282 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3283 	} else {
3284 		update_segment_mtime(sbi, old_blkaddr, 0);
3285 		old_mtime = 0;
3286 	}
3287 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3288 
3289 	/*
3290 	 * SIT information should be updated before segment allocation,
3291 	 * since SSR needs latest valid block information.
3292 	 */
3293 	update_sit_entry(sbi, *new_blkaddr, 1);
3294 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3295 		update_sit_entry(sbi, old_blkaddr, -1);
3296 
3297 	if (!__has_curseg_space(sbi, curseg)) {
3298 		/*
3299 		 * Flush out current segment and replace it with new segment.
3300 		 */
3301 		if (from_gc) {
3302 			get_atssr_segment(sbi, type, se->type,
3303 						AT_SSR, se->mtime);
3304 		} else {
3305 			if (need_new_seg(sbi, type))
3306 				new_curseg(sbi, type, false);
3307 			else
3308 				change_curseg(sbi, type);
3309 			stat_inc_seg_type(sbi, curseg);
3310 		}
3311 	}
3312 	/*
3313 	 * segment dirty status should be updated after segment allocation,
3314 	 * so we just need to update status only one time after previous
3315 	 * segment being closed.
3316 	 */
3317 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3318 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3319 
3320 	if (IS_DATASEG(type))
3321 		atomic64_inc(&sbi->allocated_data_blocks);
3322 
3323 	up_write(&sit_i->sentry_lock);
3324 
3325 	if (page && IS_NODESEG(type)) {
3326 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3327 
3328 		f2fs_inode_chksum_set(sbi, page);
3329 	}
3330 
3331 	if (fio) {
3332 		struct f2fs_bio_info *io;
3333 
3334 		if (F2FS_IO_ALIGNED(sbi))
3335 			fio->retry = false;
3336 
3337 		INIT_LIST_HEAD(&fio->list);
3338 		fio->in_list = true;
3339 		io = sbi->write_io[fio->type] + fio->temp;
3340 		spin_lock(&io->io_lock);
3341 		list_add_tail(&fio->list, &io->io_list);
3342 		spin_unlock(&io->io_lock);
3343 	}
3344 
3345 	mutex_unlock(&curseg->curseg_mutex);
3346 
3347 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3348 }
3349 
3350 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3351 					block_t blkaddr, unsigned int blkcnt)
3352 {
3353 	if (!f2fs_is_multi_device(sbi))
3354 		return;
3355 
3356 	while (1) {
3357 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3358 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3359 
3360 		/* update device state for fsync */
3361 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3362 
3363 		/* update device state for checkpoint */
3364 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3365 			spin_lock(&sbi->dev_lock);
3366 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3367 			spin_unlock(&sbi->dev_lock);
3368 		}
3369 
3370 		if (blkcnt <= blks)
3371 			break;
3372 		blkcnt -= blks;
3373 		blkaddr += blks;
3374 	}
3375 }
3376 
3377 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3378 {
3379 	int type = __get_segment_type(fio);
3380 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3381 
3382 	if (keep_order)
3383 		f2fs_down_read(&fio->sbi->io_order_lock);
3384 reallocate:
3385 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3386 			&fio->new_blkaddr, sum, type, fio);
3387 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3388 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3389 					fio->old_blkaddr, fio->old_blkaddr);
3390 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3391 	}
3392 
3393 	/* writeout dirty page into bdev */
3394 	f2fs_submit_page_write(fio);
3395 	if (fio->retry) {
3396 		fio->old_blkaddr = fio->new_blkaddr;
3397 		goto reallocate;
3398 	}
3399 
3400 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3401 
3402 	if (keep_order)
3403 		f2fs_up_read(&fio->sbi->io_order_lock);
3404 }
3405 
3406 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3407 					enum iostat_type io_type)
3408 {
3409 	struct f2fs_io_info fio = {
3410 		.sbi = sbi,
3411 		.type = META,
3412 		.temp = HOT,
3413 		.op = REQ_OP_WRITE,
3414 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3415 		.old_blkaddr = page->index,
3416 		.new_blkaddr = page->index,
3417 		.page = page,
3418 		.encrypted_page = NULL,
3419 		.in_list = false,
3420 	};
3421 
3422 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3423 		fio.op_flags &= ~REQ_META;
3424 
3425 	set_page_writeback(page);
3426 	ClearPageError(page);
3427 	f2fs_submit_page_write(&fio);
3428 
3429 	stat_inc_meta_count(sbi, page->index);
3430 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3431 }
3432 
3433 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3434 {
3435 	struct f2fs_summary sum;
3436 
3437 	set_summary(&sum, nid, 0, 0);
3438 	do_write_page(&sum, fio);
3439 
3440 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3441 }
3442 
3443 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3444 					struct f2fs_io_info *fio)
3445 {
3446 	struct f2fs_sb_info *sbi = fio->sbi;
3447 	struct f2fs_summary sum;
3448 
3449 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3450 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3451 		f2fs_update_age_extent_cache(dn);
3452 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3453 	do_write_page(&sum, fio);
3454 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3455 
3456 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3457 }
3458 
3459 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3460 {
3461 	int err;
3462 	struct f2fs_sb_info *sbi = fio->sbi;
3463 	unsigned int segno;
3464 
3465 	fio->new_blkaddr = fio->old_blkaddr;
3466 	/* i/o temperature is needed for passing down write hints */
3467 	__get_segment_type(fio);
3468 
3469 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3470 
3471 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3472 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3473 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3474 			  __func__, segno);
3475 		err = -EFSCORRUPTED;
3476 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3477 		goto drop_bio;
3478 	}
3479 
3480 	if (f2fs_cp_error(sbi)) {
3481 		err = -EIO;
3482 		goto drop_bio;
3483 	}
3484 
3485 	if (fio->post_read)
3486 		invalidate_mapping_pages(META_MAPPING(sbi),
3487 				fio->new_blkaddr, fio->new_blkaddr);
3488 
3489 	stat_inc_inplace_blocks(fio->sbi);
3490 
3491 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3492 		err = f2fs_merge_page_bio(fio);
3493 	else
3494 		err = f2fs_submit_page_bio(fio);
3495 	if (!err) {
3496 		f2fs_update_device_state(fio->sbi, fio->ino,
3497 						fio->new_blkaddr, 1);
3498 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3499 						fio->io_type, F2FS_BLKSIZE);
3500 	}
3501 
3502 	return err;
3503 drop_bio:
3504 	if (fio->bio && *(fio->bio)) {
3505 		struct bio *bio = *(fio->bio);
3506 
3507 		bio->bi_status = BLK_STS_IOERR;
3508 		bio_endio(bio);
3509 		*(fio->bio) = NULL;
3510 	}
3511 	return err;
3512 }
3513 
3514 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3515 						unsigned int segno)
3516 {
3517 	int i;
3518 
3519 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3520 		if (CURSEG_I(sbi, i)->segno == segno)
3521 			break;
3522 	}
3523 	return i;
3524 }
3525 
3526 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3527 				block_t old_blkaddr, block_t new_blkaddr,
3528 				bool recover_curseg, bool recover_newaddr,
3529 				bool from_gc)
3530 {
3531 	struct sit_info *sit_i = SIT_I(sbi);
3532 	struct curseg_info *curseg;
3533 	unsigned int segno, old_cursegno;
3534 	struct seg_entry *se;
3535 	int type;
3536 	unsigned short old_blkoff;
3537 	unsigned char old_alloc_type;
3538 
3539 	segno = GET_SEGNO(sbi, new_blkaddr);
3540 	se = get_seg_entry(sbi, segno);
3541 	type = se->type;
3542 
3543 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3544 
3545 	if (!recover_curseg) {
3546 		/* for recovery flow */
3547 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3548 			if (old_blkaddr == NULL_ADDR)
3549 				type = CURSEG_COLD_DATA;
3550 			else
3551 				type = CURSEG_WARM_DATA;
3552 		}
3553 	} else {
3554 		if (IS_CURSEG(sbi, segno)) {
3555 			/* se->type is volatile as SSR allocation */
3556 			type = __f2fs_get_curseg(sbi, segno);
3557 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3558 		} else {
3559 			type = CURSEG_WARM_DATA;
3560 		}
3561 	}
3562 
3563 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3564 	curseg = CURSEG_I(sbi, type);
3565 
3566 	mutex_lock(&curseg->curseg_mutex);
3567 	down_write(&sit_i->sentry_lock);
3568 
3569 	old_cursegno = curseg->segno;
3570 	old_blkoff = curseg->next_blkoff;
3571 	old_alloc_type = curseg->alloc_type;
3572 
3573 	/* change the current segment */
3574 	if (segno != curseg->segno) {
3575 		curseg->next_segno = segno;
3576 		change_curseg(sbi, type);
3577 	}
3578 
3579 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3580 	__add_sum_entry(sbi, type, sum);
3581 
3582 	if (!recover_curseg || recover_newaddr) {
3583 		if (!from_gc)
3584 			update_segment_mtime(sbi, new_blkaddr, 0);
3585 		update_sit_entry(sbi, new_blkaddr, 1);
3586 	}
3587 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3588 		invalidate_mapping_pages(META_MAPPING(sbi),
3589 					old_blkaddr, old_blkaddr);
3590 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3591 		if (!from_gc)
3592 			update_segment_mtime(sbi, old_blkaddr, 0);
3593 		update_sit_entry(sbi, old_blkaddr, -1);
3594 	}
3595 
3596 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3597 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3598 
3599 	locate_dirty_segment(sbi, old_cursegno);
3600 
3601 	if (recover_curseg) {
3602 		if (old_cursegno != curseg->segno) {
3603 			curseg->next_segno = old_cursegno;
3604 			change_curseg(sbi, type);
3605 		}
3606 		curseg->next_blkoff = old_blkoff;
3607 		curseg->alloc_type = old_alloc_type;
3608 	}
3609 
3610 	up_write(&sit_i->sentry_lock);
3611 	mutex_unlock(&curseg->curseg_mutex);
3612 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3613 }
3614 
3615 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3616 				block_t old_addr, block_t new_addr,
3617 				unsigned char version, bool recover_curseg,
3618 				bool recover_newaddr)
3619 {
3620 	struct f2fs_summary sum;
3621 
3622 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3623 
3624 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3625 					recover_curseg, recover_newaddr, false);
3626 
3627 	f2fs_update_data_blkaddr(dn, new_addr);
3628 }
3629 
3630 void f2fs_wait_on_page_writeback(struct page *page,
3631 				enum page_type type, bool ordered, bool locked)
3632 {
3633 	if (PageWriteback(page)) {
3634 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3635 
3636 		/* submit cached LFS IO */
3637 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3638 		/* sbumit cached IPU IO */
3639 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3640 		if (ordered) {
3641 			wait_on_page_writeback(page);
3642 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3643 		} else {
3644 			wait_for_stable_page(page);
3645 		}
3646 	}
3647 }
3648 
3649 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3650 {
3651 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3652 	struct page *cpage;
3653 
3654 	if (!f2fs_post_read_required(inode))
3655 		return;
3656 
3657 	if (!__is_valid_data_blkaddr(blkaddr))
3658 		return;
3659 
3660 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3661 	if (cpage) {
3662 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3663 		f2fs_put_page(cpage, 1);
3664 	}
3665 }
3666 
3667 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3668 								block_t len)
3669 {
3670 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3671 	block_t i;
3672 
3673 	if (!f2fs_post_read_required(inode))
3674 		return;
3675 
3676 	for (i = 0; i < len; i++)
3677 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3678 
3679 	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3680 }
3681 
3682 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3683 {
3684 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3685 	struct curseg_info *seg_i;
3686 	unsigned char *kaddr;
3687 	struct page *page;
3688 	block_t start;
3689 	int i, j, offset;
3690 
3691 	start = start_sum_block(sbi);
3692 
3693 	page = f2fs_get_meta_page(sbi, start++);
3694 	if (IS_ERR(page))
3695 		return PTR_ERR(page);
3696 	kaddr = (unsigned char *)page_address(page);
3697 
3698 	/* Step 1: restore nat cache */
3699 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3700 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3701 
3702 	/* Step 2: restore sit cache */
3703 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3704 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3705 	offset = 2 * SUM_JOURNAL_SIZE;
3706 
3707 	/* Step 3: restore summary entries */
3708 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3709 		unsigned short blk_off;
3710 		unsigned int segno;
3711 
3712 		seg_i = CURSEG_I(sbi, i);
3713 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3714 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3715 		seg_i->next_segno = segno;
3716 		reset_curseg(sbi, i, 0);
3717 		seg_i->alloc_type = ckpt->alloc_type[i];
3718 		seg_i->next_blkoff = blk_off;
3719 
3720 		if (seg_i->alloc_type == SSR)
3721 			blk_off = sbi->blocks_per_seg;
3722 
3723 		for (j = 0; j < blk_off; j++) {
3724 			struct f2fs_summary *s;
3725 
3726 			s = (struct f2fs_summary *)(kaddr + offset);
3727 			seg_i->sum_blk->entries[j] = *s;
3728 			offset += SUMMARY_SIZE;
3729 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3730 						SUM_FOOTER_SIZE)
3731 				continue;
3732 
3733 			f2fs_put_page(page, 1);
3734 			page = NULL;
3735 
3736 			page = f2fs_get_meta_page(sbi, start++);
3737 			if (IS_ERR(page))
3738 				return PTR_ERR(page);
3739 			kaddr = (unsigned char *)page_address(page);
3740 			offset = 0;
3741 		}
3742 	}
3743 	f2fs_put_page(page, 1);
3744 	return 0;
3745 }
3746 
3747 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3748 {
3749 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3750 	struct f2fs_summary_block *sum;
3751 	struct curseg_info *curseg;
3752 	struct page *new;
3753 	unsigned short blk_off;
3754 	unsigned int segno = 0;
3755 	block_t blk_addr = 0;
3756 	int err = 0;
3757 
3758 	/* get segment number and block addr */
3759 	if (IS_DATASEG(type)) {
3760 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3761 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3762 							CURSEG_HOT_DATA]);
3763 		if (__exist_node_summaries(sbi))
3764 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3765 		else
3766 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3767 	} else {
3768 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3769 							CURSEG_HOT_NODE]);
3770 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3771 							CURSEG_HOT_NODE]);
3772 		if (__exist_node_summaries(sbi))
3773 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3774 							type - CURSEG_HOT_NODE);
3775 		else
3776 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3777 	}
3778 
3779 	new = f2fs_get_meta_page(sbi, blk_addr);
3780 	if (IS_ERR(new))
3781 		return PTR_ERR(new);
3782 	sum = (struct f2fs_summary_block *)page_address(new);
3783 
3784 	if (IS_NODESEG(type)) {
3785 		if (__exist_node_summaries(sbi)) {
3786 			struct f2fs_summary *ns = &sum->entries[0];
3787 			int i;
3788 
3789 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3790 				ns->version = 0;
3791 				ns->ofs_in_node = 0;
3792 			}
3793 		} else {
3794 			err = f2fs_restore_node_summary(sbi, segno, sum);
3795 			if (err)
3796 				goto out;
3797 		}
3798 	}
3799 
3800 	/* set uncompleted segment to curseg */
3801 	curseg = CURSEG_I(sbi, type);
3802 	mutex_lock(&curseg->curseg_mutex);
3803 
3804 	/* update journal info */
3805 	down_write(&curseg->journal_rwsem);
3806 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3807 	up_write(&curseg->journal_rwsem);
3808 
3809 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3810 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3811 	curseg->next_segno = segno;
3812 	reset_curseg(sbi, type, 0);
3813 	curseg->alloc_type = ckpt->alloc_type[type];
3814 	curseg->next_blkoff = blk_off;
3815 	mutex_unlock(&curseg->curseg_mutex);
3816 out:
3817 	f2fs_put_page(new, 1);
3818 	return err;
3819 }
3820 
3821 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3822 {
3823 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3824 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3825 	int type = CURSEG_HOT_DATA;
3826 	int err;
3827 
3828 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3829 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3830 
3831 		if (npages >= 2)
3832 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3833 							META_CP, true);
3834 
3835 		/* restore for compacted data summary */
3836 		err = read_compacted_summaries(sbi);
3837 		if (err)
3838 			return err;
3839 		type = CURSEG_HOT_NODE;
3840 	}
3841 
3842 	if (__exist_node_summaries(sbi))
3843 		f2fs_ra_meta_pages(sbi,
3844 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3845 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3846 
3847 	for (; type <= CURSEG_COLD_NODE; type++) {
3848 		err = read_normal_summaries(sbi, type);
3849 		if (err)
3850 			return err;
3851 	}
3852 
3853 	/* sanity check for summary blocks */
3854 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3855 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3856 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3857 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3858 		return -EINVAL;
3859 	}
3860 
3861 	return 0;
3862 }
3863 
3864 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3865 {
3866 	struct page *page;
3867 	unsigned char *kaddr;
3868 	struct f2fs_summary *summary;
3869 	struct curseg_info *seg_i;
3870 	int written_size = 0;
3871 	int i, j;
3872 
3873 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3874 	kaddr = (unsigned char *)page_address(page);
3875 	memset(kaddr, 0, PAGE_SIZE);
3876 
3877 	/* Step 1: write nat cache */
3878 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3879 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3880 	written_size += SUM_JOURNAL_SIZE;
3881 
3882 	/* Step 2: write sit cache */
3883 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3884 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3885 	written_size += SUM_JOURNAL_SIZE;
3886 
3887 	/* Step 3: write summary entries */
3888 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3889 		unsigned short blkoff;
3890 
3891 		seg_i = CURSEG_I(sbi, i);
3892 		if (sbi->ckpt->alloc_type[i] == SSR)
3893 			blkoff = sbi->blocks_per_seg;
3894 		else
3895 			blkoff = curseg_blkoff(sbi, i);
3896 
3897 		for (j = 0; j < blkoff; j++) {
3898 			if (!page) {
3899 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3900 				kaddr = (unsigned char *)page_address(page);
3901 				memset(kaddr, 0, PAGE_SIZE);
3902 				written_size = 0;
3903 			}
3904 			summary = (struct f2fs_summary *)(kaddr + written_size);
3905 			*summary = seg_i->sum_blk->entries[j];
3906 			written_size += SUMMARY_SIZE;
3907 
3908 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3909 							SUM_FOOTER_SIZE)
3910 				continue;
3911 
3912 			set_page_dirty(page);
3913 			f2fs_put_page(page, 1);
3914 			page = NULL;
3915 		}
3916 	}
3917 	if (page) {
3918 		set_page_dirty(page);
3919 		f2fs_put_page(page, 1);
3920 	}
3921 }
3922 
3923 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3924 					block_t blkaddr, int type)
3925 {
3926 	int i, end;
3927 
3928 	if (IS_DATASEG(type))
3929 		end = type + NR_CURSEG_DATA_TYPE;
3930 	else
3931 		end = type + NR_CURSEG_NODE_TYPE;
3932 
3933 	for (i = type; i < end; i++)
3934 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3935 }
3936 
3937 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3938 {
3939 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3940 		write_compacted_summaries(sbi, start_blk);
3941 	else
3942 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3943 }
3944 
3945 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3946 {
3947 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3948 }
3949 
3950 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3951 					unsigned int val, int alloc)
3952 {
3953 	int i;
3954 
3955 	if (type == NAT_JOURNAL) {
3956 		for (i = 0; i < nats_in_cursum(journal); i++) {
3957 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3958 				return i;
3959 		}
3960 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3961 			return update_nats_in_cursum(journal, 1);
3962 	} else if (type == SIT_JOURNAL) {
3963 		for (i = 0; i < sits_in_cursum(journal); i++)
3964 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3965 				return i;
3966 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3967 			return update_sits_in_cursum(journal, 1);
3968 	}
3969 	return -1;
3970 }
3971 
3972 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3973 					unsigned int segno)
3974 {
3975 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3976 }
3977 
3978 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3979 					unsigned int start)
3980 {
3981 	struct sit_info *sit_i = SIT_I(sbi);
3982 	struct page *page;
3983 	pgoff_t src_off, dst_off;
3984 
3985 	src_off = current_sit_addr(sbi, start);
3986 	dst_off = next_sit_addr(sbi, src_off);
3987 
3988 	page = f2fs_grab_meta_page(sbi, dst_off);
3989 	seg_info_to_sit_page(sbi, page, start);
3990 
3991 	set_page_dirty(page);
3992 	set_to_next_sit(sit_i, start);
3993 
3994 	return page;
3995 }
3996 
3997 static struct sit_entry_set *grab_sit_entry_set(void)
3998 {
3999 	struct sit_entry_set *ses =
4000 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4001 						GFP_NOFS, true, NULL);
4002 
4003 	ses->entry_cnt = 0;
4004 	INIT_LIST_HEAD(&ses->set_list);
4005 	return ses;
4006 }
4007 
4008 static void release_sit_entry_set(struct sit_entry_set *ses)
4009 {
4010 	list_del(&ses->set_list);
4011 	kmem_cache_free(sit_entry_set_slab, ses);
4012 }
4013 
4014 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4015 						struct list_head *head)
4016 {
4017 	struct sit_entry_set *next = ses;
4018 
4019 	if (list_is_last(&ses->set_list, head))
4020 		return;
4021 
4022 	list_for_each_entry_continue(next, head, set_list)
4023 		if (ses->entry_cnt <= next->entry_cnt) {
4024 			list_move_tail(&ses->set_list, &next->set_list);
4025 			return;
4026 		}
4027 
4028 	list_move_tail(&ses->set_list, head);
4029 }
4030 
4031 static void add_sit_entry(unsigned int segno, struct list_head *head)
4032 {
4033 	struct sit_entry_set *ses;
4034 	unsigned int start_segno = START_SEGNO(segno);
4035 
4036 	list_for_each_entry(ses, head, set_list) {
4037 		if (ses->start_segno == start_segno) {
4038 			ses->entry_cnt++;
4039 			adjust_sit_entry_set(ses, head);
4040 			return;
4041 		}
4042 	}
4043 
4044 	ses = grab_sit_entry_set();
4045 
4046 	ses->start_segno = start_segno;
4047 	ses->entry_cnt++;
4048 	list_add(&ses->set_list, head);
4049 }
4050 
4051 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4052 {
4053 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4054 	struct list_head *set_list = &sm_info->sit_entry_set;
4055 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4056 	unsigned int segno;
4057 
4058 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4059 		add_sit_entry(segno, set_list);
4060 }
4061 
4062 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4063 {
4064 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4065 	struct f2fs_journal *journal = curseg->journal;
4066 	int i;
4067 
4068 	down_write(&curseg->journal_rwsem);
4069 	for (i = 0; i < sits_in_cursum(journal); i++) {
4070 		unsigned int segno;
4071 		bool dirtied;
4072 
4073 		segno = le32_to_cpu(segno_in_journal(journal, i));
4074 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4075 
4076 		if (!dirtied)
4077 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4078 	}
4079 	update_sits_in_cursum(journal, -i);
4080 	up_write(&curseg->journal_rwsem);
4081 }
4082 
4083 /*
4084  * CP calls this function, which flushes SIT entries including sit_journal,
4085  * and moves prefree segs to free segs.
4086  */
4087 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4088 {
4089 	struct sit_info *sit_i = SIT_I(sbi);
4090 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4091 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4092 	struct f2fs_journal *journal = curseg->journal;
4093 	struct sit_entry_set *ses, *tmp;
4094 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4095 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4096 	struct seg_entry *se;
4097 
4098 	down_write(&sit_i->sentry_lock);
4099 
4100 	if (!sit_i->dirty_sentries)
4101 		goto out;
4102 
4103 	/*
4104 	 * add and account sit entries of dirty bitmap in sit entry
4105 	 * set temporarily
4106 	 */
4107 	add_sits_in_set(sbi);
4108 
4109 	/*
4110 	 * if there are no enough space in journal to store dirty sit
4111 	 * entries, remove all entries from journal and add and account
4112 	 * them in sit entry set.
4113 	 */
4114 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4115 								!to_journal)
4116 		remove_sits_in_journal(sbi);
4117 
4118 	/*
4119 	 * there are two steps to flush sit entries:
4120 	 * #1, flush sit entries to journal in current cold data summary block.
4121 	 * #2, flush sit entries to sit page.
4122 	 */
4123 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4124 		struct page *page = NULL;
4125 		struct f2fs_sit_block *raw_sit = NULL;
4126 		unsigned int start_segno = ses->start_segno;
4127 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4128 						(unsigned long)MAIN_SEGS(sbi));
4129 		unsigned int segno = start_segno;
4130 
4131 		if (to_journal &&
4132 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4133 			to_journal = false;
4134 
4135 		if (to_journal) {
4136 			down_write(&curseg->journal_rwsem);
4137 		} else {
4138 			page = get_next_sit_page(sbi, start_segno);
4139 			raw_sit = page_address(page);
4140 		}
4141 
4142 		/* flush dirty sit entries in region of current sit set */
4143 		for_each_set_bit_from(segno, bitmap, end) {
4144 			int offset, sit_offset;
4145 
4146 			se = get_seg_entry(sbi, segno);
4147 #ifdef CONFIG_F2FS_CHECK_FS
4148 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4149 						SIT_VBLOCK_MAP_SIZE))
4150 				f2fs_bug_on(sbi, 1);
4151 #endif
4152 
4153 			/* add discard candidates */
4154 			if (!(cpc->reason & CP_DISCARD)) {
4155 				cpc->trim_start = segno;
4156 				add_discard_addrs(sbi, cpc, false);
4157 			}
4158 
4159 			if (to_journal) {
4160 				offset = f2fs_lookup_journal_in_cursum(journal,
4161 							SIT_JOURNAL, segno, 1);
4162 				f2fs_bug_on(sbi, offset < 0);
4163 				segno_in_journal(journal, offset) =
4164 							cpu_to_le32(segno);
4165 				seg_info_to_raw_sit(se,
4166 					&sit_in_journal(journal, offset));
4167 				check_block_count(sbi, segno,
4168 					&sit_in_journal(journal, offset));
4169 			} else {
4170 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4171 				seg_info_to_raw_sit(se,
4172 						&raw_sit->entries[sit_offset]);
4173 				check_block_count(sbi, segno,
4174 						&raw_sit->entries[sit_offset]);
4175 			}
4176 
4177 			__clear_bit(segno, bitmap);
4178 			sit_i->dirty_sentries--;
4179 			ses->entry_cnt--;
4180 		}
4181 
4182 		if (to_journal)
4183 			up_write(&curseg->journal_rwsem);
4184 		else
4185 			f2fs_put_page(page, 1);
4186 
4187 		f2fs_bug_on(sbi, ses->entry_cnt);
4188 		release_sit_entry_set(ses);
4189 	}
4190 
4191 	f2fs_bug_on(sbi, !list_empty(head));
4192 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4193 out:
4194 	if (cpc->reason & CP_DISCARD) {
4195 		__u64 trim_start = cpc->trim_start;
4196 
4197 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4198 			add_discard_addrs(sbi, cpc, false);
4199 
4200 		cpc->trim_start = trim_start;
4201 	}
4202 	up_write(&sit_i->sentry_lock);
4203 
4204 	set_prefree_as_free_segments(sbi);
4205 }
4206 
4207 static int build_sit_info(struct f2fs_sb_info *sbi)
4208 {
4209 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4210 	struct sit_info *sit_i;
4211 	unsigned int sit_segs, start;
4212 	char *src_bitmap, *bitmap;
4213 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4214 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4215 
4216 	/* allocate memory for SIT information */
4217 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4218 	if (!sit_i)
4219 		return -ENOMEM;
4220 
4221 	SM_I(sbi)->sit_info = sit_i;
4222 
4223 	sit_i->sentries =
4224 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4225 					      MAIN_SEGS(sbi)),
4226 			      GFP_KERNEL);
4227 	if (!sit_i->sentries)
4228 		return -ENOMEM;
4229 
4230 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4231 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4232 								GFP_KERNEL);
4233 	if (!sit_i->dirty_sentries_bitmap)
4234 		return -ENOMEM;
4235 
4236 #ifdef CONFIG_F2FS_CHECK_FS
4237 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4238 #else
4239 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4240 #endif
4241 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4242 	if (!sit_i->bitmap)
4243 		return -ENOMEM;
4244 
4245 	bitmap = sit_i->bitmap;
4246 
4247 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4248 		sit_i->sentries[start].cur_valid_map = bitmap;
4249 		bitmap += SIT_VBLOCK_MAP_SIZE;
4250 
4251 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4252 		bitmap += SIT_VBLOCK_MAP_SIZE;
4253 
4254 #ifdef CONFIG_F2FS_CHECK_FS
4255 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4256 		bitmap += SIT_VBLOCK_MAP_SIZE;
4257 #endif
4258 
4259 		if (discard_map) {
4260 			sit_i->sentries[start].discard_map = bitmap;
4261 			bitmap += SIT_VBLOCK_MAP_SIZE;
4262 		}
4263 	}
4264 
4265 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4266 	if (!sit_i->tmp_map)
4267 		return -ENOMEM;
4268 
4269 	if (__is_large_section(sbi)) {
4270 		sit_i->sec_entries =
4271 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4272 						      MAIN_SECS(sbi)),
4273 				      GFP_KERNEL);
4274 		if (!sit_i->sec_entries)
4275 			return -ENOMEM;
4276 	}
4277 
4278 	/* get information related with SIT */
4279 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4280 
4281 	/* setup SIT bitmap from ckeckpoint pack */
4282 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4283 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4284 
4285 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4286 	if (!sit_i->sit_bitmap)
4287 		return -ENOMEM;
4288 
4289 #ifdef CONFIG_F2FS_CHECK_FS
4290 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4291 					sit_bitmap_size, GFP_KERNEL);
4292 	if (!sit_i->sit_bitmap_mir)
4293 		return -ENOMEM;
4294 
4295 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4296 					main_bitmap_size, GFP_KERNEL);
4297 	if (!sit_i->invalid_segmap)
4298 		return -ENOMEM;
4299 #endif
4300 
4301 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4302 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4303 	sit_i->written_valid_blocks = 0;
4304 	sit_i->bitmap_size = sit_bitmap_size;
4305 	sit_i->dirty_sentries = 0;
4306 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4307 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4308 	sit_i->mounted_time = ktime_get_boottime_seconds();
4309 	init_rwsem(&sit_i->sentry_lock);
4310 	return 0;
4311 }
4312 
4313 static int build_free_segmap(struct f2fs_sb_info *sbi)
4314 {
4315 	struct free_segmap_info *free_i;
4316 	unsigned int bitmap_size, sec_bitmap_size;
4317 
4318 	/* allocate memory for free segmap information */
4319 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4320 	if (!free_i)
4321 		return -ENOMEM;
4322 
4323 	SM_I(sbi)->free_info = free_i;
4324 
4325 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4326 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4327 	if (!free_i->free_segmap)
4328 		return -ENOMEM;
4329 
4330 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4331 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4332 	if (!free_i->free_secmap)
4333 		return -ENOMEM;
4334 
4335 	/* set all segments as dirty temporarily */
4336 	memset(free_i->free_segmap, 0xff, bitmap_size);
4337 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4338 
4339 	/* init free segmap information */
4340 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4341 	free_i->free_segments = 0;
4342 	free_i->free_sections = 0;
4343 	spin_lock_init(&free_i->segmap_lock);
4344 	return 0;
4345 }
4346 
4347 static int build_curseg(struct f2fs_sb_info *sbi)
4348 {
4349 	struct curseg_info *array;
4350 	int i;
4351 
4352 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4353 					sizeof(*array)), GFP_KERNEL);
4354 	if (!array)
4355 		return -ENOMEM;
4356 
4357 	SM_I(sbi)->curseg_array = array;
4358 
4359 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4360 		mutex_init(&array[i].curseg_mutex);
4361 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4362 		if (!array[i].sum_blk)
4363 			return -ENOMEM;
4364 		init_rwsem(&array[i].journal_rwsem);
4365 		array[i].journal = f2fs_kzalloc(sbi,
4366 				sizeof(struct f2fs_journal), GFP_KERNEL);
4367 		if (!array[i].journal)
4368 			return -ENOMEM;
4369 		if (i < NR_PERSISTENT_LOG)
4370 			array[i].seg_type = CURSEG_HOT_DATA + i;
4371 		else if (i == CURSEG_COLD_DATA_PINNED)
4372 			array[i].seg_type = CURSEG_COLD_DATA;
4373 		else if (i == CURSEG_ALL_DATA_ATGC)
4374 			array[i].seg_type = CURSEG_COLD_DATA;
4375 		array[i].segno = NULL_SEGNO;
4376 		array[i].next_blkoff = 0;
4377 		array[i].inited = false;
4378 	}
4379 	return restore_curseg_summaries(sbi);
4380 }
4381 
4382 static int build_sit_entries(struct f2fs_sb_info *sbi)
4383 {
4384 	struct sit_info *sit_i = SIT_I(sbi);
4385 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4386 	struct f2fs_journal *journal = curseg->journal;
4387 	struct seg_entry *se;
4388 	struct f2fs_sit_entry sit;
4389 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4390 	unsigned int i, start, end;
4391 	unsigned int readed, start_blk = 0;
4392 	int err = 0;
4393 	block_t sit_valid_blocks[2] = {0, 0};
4394 
4395 	do {
4396 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4397 							META_SIT, true);
4398 
4399 		start = start_blk * sit_i->sents_per_block;
4400 		end = (start_blk + readed) * sit_i->sents_per_block;
4401 
4402 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4403 			struct f2fs_sit_block *sit_blk;
4404 			struct page *page;
4405 
4406 			se = &sit_i->sentries[start];
4407 			page = get_current_sit_page(sbi, start);
4408 			if (IS_ERR(page))
4409 				return PTR_ERR(page);
4410 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4411 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4412 			f2fs_put_page(page, 1);
4413 
4414 			err = check_block_count(sbi, start, &sit);
4415 			if (err)
4416 				return err;
4417 			seg_info_from_raw_sit(se, &sit);
4418 
4419 			if (se->type >= NR_PERSISTENT_LOG) {
4420 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4421 							se->type, start);
4422 				f2fs_handle_error(sbi,
4423 						ERROR_INCONSISTENT_SUM_TYPE);
4424 				return -EFSCORRUPTED;
4425 			}
4426 
4427 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4428 
4429 			if (f2fs_block_unit_discard(sbi)) {
4430 				/* build discard map only one time */
4431 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4432 					memset(se->discard_map, 0xff,
4433 						SIT_VBLOCK_MAP_SIZE);
4434 				} else {
4435 					memcpy(se->discard_map,
4436 						se->cur_valid_map,
4437 						SIT_VBLOCK_MAP_SIZE);
4438 					sbi->discard_blks +=
4439 						sbi->blocks_per_seg -
4440 						se->valid_blocks;
4441 				}
4442 			}
4443 
4444 			if (__is_large_section(sbi))
4445 				get_sec_entry(sbi, start)->valid_blocks +=
4446 							se->valid_blocks;
4447 		}
4448 		start_blk += readed;
4449 	} while (start_blk < sit_blk_cnt);
4450 
4451 	down_read(&curseg->journal_rwsem);
4452 	for (i = 0; i < sits_in_cursum(journal); i++) {
4453 		unsigned int old_valid_blocks;
4454 
4455 		start = le32_to_cpu(segno_in_journal(journal, i));
4456 		if (start >= MAIN_SEGS(sbi)) {
4457 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4458 				 start);
4459 			err = -EFSCORRUPTED;
4460 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4461 			break;
4462 		}
4463 
4464 		se = &sit_i->sentries[start];
4465 		sit = sit_in_journal(journal, i);
4466 
4467 		old_valid_blocks = se->valid_blocks;
4468 
4469 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4470 
4471 		err = check_block_count(sbi, start, &sit);
4472 		if (err)
4473 			break;
4474 		seg_info_from_raw_sit(se, &sit);
4475 
4476 		if (se->type >= NR_PERSISTENT_LOG) {
4477 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4478 							se->type, start);
4479 			err = -EFSCORRUPTED;
4480 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4481 			break;
4482 		}
4483 
4484 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4485 
4486 		if (f2fs_block_unit_discard(sbi)) {
4487 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4488 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4489 			} else {
4490 				memcpy(se->discard_map, se->cur_valid_map,
4491 							SIT_VBLOCK_MAP_SIZE);
4492 				sbi->discard_blks += old_valid_blocks;
4493 				sbi->discard_blks -= se->valid_blocks;
4494 			}
4495 		}
4496 
4497 		if (__is_large_section(sbi)) {
4498 			get_sec_entry(sbi, start)->valid_blocks +=
4499 							se->valid_blocks;
4500 			get_sec_entry(sbi, start)->valid_blocks -=
4501 							old_valid_blocks;
4502 		}
4503 	}
4504 	up_read(&curseg->journal_rwsem);
4505 
4506 	if (err)
4507 		return err;
4508 
4509 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4510 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4511 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4512 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4513 		return -EFSCORRUPTED;
4514 	}
4515 
4516 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4517 				valid_user_blocks(sbi)) {
4518 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4519 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4520 			 valid_user_blocks(sbi));
4521 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4522 		return -EFSCORRUPTED;
4523 	}
4524 
4525 	return 0;
4526 }
4527 
4528 static void init_free_segmap(struct f2fs_sb_info *sbi)
4529 {
4530 	unsigned int start;
4531 	int type;
4532 	struct seg_entry *sentry;
4533 
4534 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4535 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4536 			continue;
4537 		sentry = get_seg_entry(sbi, start);
4538 		if (!sentry->valid_blocks)
4539 			__set_free(sbi, start);
4540 		else
4541 			SIT_I(sbi)->written_valid_blocks +=
4542 						sentry->valid_blocks;
4543 	}
4544 
4545 	/* set use the current segments */
4546 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4547 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4548 
4549 		__set_test_and_inuse(sbi, curseg_t->segno);
4550 	}
4551 }
4552 
4553 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4554 {
4555 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4556 	struct free_segmap_info *free_i = FREE_I(sbi);
4557 	unsigned int segno = 0, offset = 0, secno;
4558 	block_t valid_blocks, usable_blks_in_seg;
4559 
4560 	while (1) {
4561 		/* find dirty segment based on free segmap */
4562 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4563 		if (segno >= MAIN_SEGS(sbi))
4564 			break;
4565 		offset = segno + 1;
4566 		valid_blocks = get_valid_blocks(sbi, segno, false);
4567 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4568 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4569 			continue;
4570 		if (valid_blocks > usable_blks_in_seg) {
4571 			f2fs_bug_on(sbi, 1);
4572 			continue;
4573 		}
4574 		mutex_lock(&dirty_i->seglist_lock);
4575 		__locate_dirty_segment(sbi, segno, DIRTY);
4576 		mutex_unlock(&dirty_i->seglist_lock);
4577 	}
4578 
4579 	if (!__is_large_section(sbi))
4580 		return;
4581 
4582 	mutex_lock(&dirty_i->seglist_lock);
4583 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4584 		valid_blocks = get_valid_blocks(sbi, segno, true);
4585 		secno = GET_SEC_FROM_SEG(sbi, segno);
4586 
4587 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4588 			continue;
4589 		if (IS_CURSEC(sbi, secno))
4590 			continue;
4591 		set_bit(secno, dirty_i->dirty_secmap);
4592 	}
4593 	mutex_unlock(&dirty_i->seglist_lock);
4594 }
4595 
4596 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4597 {
4598 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4599 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4600 
4601 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4602 	if (!dirty_i->victim_secmap)
4603 		return -ENOMEM;
4604 
4605 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4606 	if (!dirty_i->pinned_secmap)
4607 		return -ENOMEM;
4608 
4609 	dirty_i->pinned_secmap_cnt = 0;
4610 	dirty_i->enable_pin_section = true;
4611 	return 0;
4612 }
4613 
4614 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4615 {
4616 	struct dirty_seglist_info *dirty_i;
4617 	unsigned int bitmap_size, i;
4618 
4619 	/* allocate memory for dirty segments list information */
4620 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4621 								GFP_KERNEL);
4622 	if (!dirty_i)
4623 		return -ENOMEM;
4624 
4625 	SM_I(sbi)->dirty_info = dirty_i;
4626 	mutex_init(&dirty_i->seglist_lock);
4627 
4628 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4629 
4630 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4631 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4632 								GFP_KERNEL);
4633 		if (!dirty_i->dirty_segmap[i])
4634 			return -ENOMEM;
4635 	}
4636 
4637 	if (__is_large_section(sbi)) {
4638 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4639 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4640 						bitmap_size, GFP_KERNEL);
4641 		if (!dirty_i->dirty_secmap)
4642 			return -ENOMEM;
4643 	}
4644 
4645 	init_dirty_segmap(sbi);
4646 	return init_victim_secmap(sbi);
4647 }
4648 
4649 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4650 {
4651 	int i;
4652 
4653 	/*
4654 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4655 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4656 	 */
4657 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4658 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4659 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4660 		unsigned int blkofs = curseg->next_blkoff;
4661 
4662 		if (f2fs_sb_has_readonly(sbi) &&
4663 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4664 			continue;
4665 
4666 		sanity_check_seg_type(sbi, curseg->seg_type);
4667 
4668 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4669 			f2fs_err(sbi,
4670 				 "Current segment has invalid alloc_type:%d",
4671 				 curseg->alloc_type);
4672 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4673 			return -EFSCORRUPTED;
4674 		}
4675 
4676 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4677 			goto out;
4678 
4679 		if (curseg->alloc_type == SSR)
4680 			continue;
4681 
4682 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4683 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4684 				continue;
4685 out:
4686 			f2fs_err(sbi,
4687 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4688 				 i, curseg->segno, curseg->alloc_type,
4689 				 curseg->next_blkoff, blkofs);
4690 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4691 			return -EFSCORRUPTED;
4692 		}
4693 	}
4694 	return 0;
4695 }
4696 
4697 #ifdef CONFIG_BLK_DEV_ZONED
4698 
4699 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4700 				    struct f2fs_dev_info *fdev,
4701 				    struct blk_zone *zone)
4702 {
4703 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4704 	block_t zone_block, wp_block, last_valid_block;
4705 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4706 	int i, s, b, ret;
4707 	struct seg_entry *se;
4708 
4709 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4710 		return 0;
4711 
4712 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4713 	wp_segno = GET_SEGNO(sbi, wp_block);
4714 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4715 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4716 	zone_segno = GET_SEGNO(sbi, zone_block);
4717 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4718 
4719 	if (zone_segno >= MAIN_SEGS(sbi))
4720 		return 0;
4721 
4722 	/*
4723 	 * Skip check of zones cursegs point to, since
4724 	 * fix_curseg_write_pointer() checks them.
4725 	 */
4726 	for (i = 0; i < NO_CHECK_TYPE; i++)
4727 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4728 						   CURSEG_I(sbi, i)->segno))
4729 			return 0;
4730 
4731 	/*
4732 	 * Get last valid block of the zone.
4733 	 */
4734 	last_valid_block = zone_block - 1;
4735 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4736 		segno = zone_segno + s;
4737 		se = get_seg_entry(sbi, segno);
4738 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4739 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4740 				last_valid_block = START_BLOCK(sbi, segno) + b;
4741 				break;
4742 			}
4743 		if (last_valid_block >= zone_block)
4744 			break;
4745 	}
4746 
4747 	/*
4748 	 * If last valid block is beyond the write pointer, report the
4749 	 * inconsistency. This inconsistency does not cause write error
4750 	 * because the zone will not be selected for write operation until
4751 	 * it get discarded. Just report it.
4752 	 */
4753 	if (last_valid_block >= wp_block) {
4754 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4755 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4756 			    GET_SEGNO(sbi, last_valid_block),
4757 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4758 			    wp_segno, wp_blkoff);
4759 		return 0;
4760 	}
4761 
4762 	/*
4763 	 * If there is no valid block in the zone and if write pointer is
4764 	 * not at zone start, reset the write pointer.
4765 	 */
4766 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4767 		f2fs_notice(sbi,
4768 			    "Zone without valid block has non-zero write "
4769 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4770 			    wp_segno, wp_blkoff);
4771 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4772 					zone->len >> log_sectors_per_block);
4773 		if (ret) {
4774 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4775 				 fdev->path, ret);
4776 			return ret;
4777 		}
4778 	}
4779 
4780 	return 0;
4781 }
4782 
4783 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4784 						  block_t zone_blkaddr)
4785 {
4786 	int i;
4787 
4788 	for (i = 0; i < sbi->s_ndevs; i++) {
4789 		if (!bdev_is_zoned(FDEV(i).bdev))
4790 			continue;
4791 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4792 				zone_blkaddr <= FDEV(i).end_blk))
4793 			return &FDEV(i);
4794 	}
4795 
4796 	return NULL;
4797 }
4798 
4799 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4800 			      void *data)
4801 {
4802 	memcpy(data, zone, sizeof(struct blk_zone));
4803 	return 0;
4804 }
4805 
4806 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4807 {
4808 	struct curseg_info *cs = CURSEG_I(sbi, type);
4809 	struct f2fs_dev_info *zbd;
4810 	struct blk_zone zone;
4811 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4812 	block_t cs_zone_block, wp_block;
4813 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4814 	sector_t zone_sector;
4815 	int err;
4816 
4817 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4818 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4819 
4820 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4821 	if (!zbd)
4822 		return 0;
4823 
4824 	/* report zone for the sector the curseg points to */
4825 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4826 		<< log_sectors_per_block;
4827 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4828 				  report_one_zone_cb, &zone);
4829 	if (err != 1) {
4830 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4831 			 zbd->path, err);
4832 		return err;
4833 	}
4834 
4835 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4836 		return 0;
4837 
4838 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4839 	wp_segno = GET_SEGNO(sbi, wp_block);
4840 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4841 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4842 
4843 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4844 		wp_sector_off == 0)
4845 		return 0;
4846 
4847 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4848 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4849 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4850 
4851 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4852 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4853 
4854 	f2fs_allocate_new_section(sbi, type, true);
4855 
4856 	/* check consistency of the zone curseg pointed to */
4857 	if (check_zone_write_pointer(sbi, zbd, &zone))
4858 		return -EIO;
4859 
4860 	/* check newly assigned zone */
4861 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4862 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4863 
4864 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4865 	if (!zbd)
4866 		return 0;
4867 
4868 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4869 		<< log_sectors_per_block;
4870 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4871 				  report_one_zone_cb, &zone);
4872 	if (err != 1) {
4873 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4874 			 zbd->path, err);
4875 		return err;
4876 	}
4877 
4878 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4879 		return 0;
4880 
4881 	if (zone.wp != zone.start) {
4882 		f2fs_notice(sbi,
4883 			    "New zone for curseg[%d] is not yet discarded. "
4884 			    "Reset the zone: curseg[0x%x,0x%x]",
4885 			    type, cs->segno, cs->next_blkoff);
4886 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4887 				zone_sector >> log_sectors_per_block,
4888 				zone.len >> log_sectors_per_block);
4889 		if (err) {
4890 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4891 				 zbd->path, err);
4892 			return err;
4893 		}
4894 	}
4895 
4896 	return 0;
4897 }
4898 
4899 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4900 {
4901 	int i, ret;
4902 
4903 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4904 		ret = fix_curseg_write_pointer(sbi, i);
4905 		if (ret)
4906 			return ret;
4907 	}
4908 
4909 	return 0;
4910 }
4911 
4912 struct check_zone_write_pointer_args {
4913 	struct f2fs_sb_info *sbi;
4914 	struct f2fs_dev_info *fdev;
4915 };
4916 
4917 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4918 				      void *data)
4919 {
4920 	struct check_zone_write_pointer_args *args;
4921 
4922 	args = (struct check_zone_write_pointer_args *)data;
4923 
4924 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4925 }
4926 
4927 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4928 {
4929 	int i, ret;
4930 	struct check_zone_write_pointer_args args;
4931 
4932 	for (i = 0; i < sbi->s_ndevs; i++) {
4933 		if (!bdev_is_zoned(FDEV(i).bdev))
4934 			continue;
4935 
4936 		args.sbi = sbi;
4937 		args.fdev = &FDEV(i);
4938 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4939 					  check_zone_write_pointer_cb, &args);
4940 		if (ret < 0)
4941 			return ret;
4942 	}
4943 
4944 	return 0;
4945 }
4946 
4947 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4948 						unsigned int dev_idx)
4949 {
4950 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4951 		return true;
4952 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4953 }
4954 
4955 /* Return the zone index in the given device */
4956 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4957 					int dev_idx)
4958 {
4959 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4960 
4961 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4962 						sbi->log_blocks_per_blkz;
4963 }
4964 
4965 /*
4966  * Return the usable segments in a section based on the zone's
4967  * corresponding zone capacity. Zone is equal to a section.
4968  */
4969 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4970 		struct f2fs_sb_info *sbi, unsigned int segno)
4971 {
4972 	unsigned int dev_idx, zone_idx;
4973 
4974 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4975 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4976 
4977 	/* Conventional zone's capacity is always equal to zone size */
4978 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4979 		return sbi->segs_per_sec;
4980 
4981 	if (!sbi->unusable_blocks_per_sec)
4982 		return sbi->segs_per_sec;
4983 
4984 	/* Get the segment count beyond zone capacity block */
4985 	return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4986 						sbi->log_blocks_per_seg);
4987 }
4988 
4989 /*
4990  * Return the number of usable blocks in a segment. The number of blocks
4991  * returned is always equal to the number of blocks in a segment for
4992  * segments fully contained within a sequential zone capacity or a
4993  * conventional zone. For segments partially contained in a sequential
4994  * zone capacity, the number of usable blocks up to the zone capacity
4995  * is returned. 0 is returned in all other cases.
4996  */
4997 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4998 			struct f2fs_sb_info *sbi, unsigned int segno)
4999 {
5000 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5001 	unsigned int zone_idx, dev_idx, secno;
5002 
5003 	secno = GET_SEC_FROM_SEG(sbi, segno);
5004 	seg_start = START_BLOCK(sbi, segno);
5005 	dev_idx = f2fs_target_device_index(sbi, seg_start);
5006 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5007 
5008 	/*
5009 	 * Conventional zone's capacity is always equal to zone size,
5010 	 * so, blocks per segment is unchanged.
5011 	 */
5012 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5013 		return sbi->blocks_per_seg;
5014 
5015 	if (!sbi->unusable_blocks_per_sec)
5016 		return sbi->blocks_per_seg;
5017 
5018 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5019 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5020 
5021 	/*
5022 	 * If segment starts before zone capacity and spans beyond
5023 	 * zone capacity, then usable blocks are from seg start to
5024 	 * zone capacity. If the segment starts after the zone capacity,
5025 	 * then there are no usable blocks.
5026 	 */
5027 	if (seg_start >= sec_cap_blkaddr)
5028 		return 0;
5029 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5030 		return sec_cap_blkaddr - seg_start;
5031 
5032 	return sbi->blocks_per_seg;
5033 }
5034 #else
5035 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5036 {
5037 	return 0;
5038 }
5039 
5040 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5041 {
5042 	return 0;
5043 }
5044 
5045 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5046 							unsigned int segno)
5047 {
5048 	return 0;
5049 }
5050 
5051 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5052 							unsigned int segno)
5053 {
5054 	return 0;
5055 }
5056 #endif
5057 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5058 					unsigned int segno)
5059 {
5060 	if (f2fs_sb_has_blkzoned(sbi))
5061 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5062 
5063 	return sbi->blocks_per_seg;
5064 }
5065 
5066 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5067 					unsigned int segno)
5068 {
5069 	if (f2fs_sb_has_blkzoned(sbi))
5070 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5071 
5072 	return sbi->segs_per_sec;
5073 }
5074 
5075 /*
5076  * Update min, max modified time for cost-benefit GC algorithm
5077  */
5078 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5079 {
5080 	struct sit_info *sit_i = SIT_I(sbi);
5081 	unsigned int segno;
5082 
5083 	down_write(&sit_i->sentry_lock);
5084 
5085 	sit_i->min_mtime = ULLONG_MAX;
5086 
5087 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5088 		unsigned int i;
5089 		unsigned long long mtime = 0;
5090 
5091 		for (i = 0; i < sbi->segs_per_sec; i++)
5092 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5093 
5094 		mtime = div_u64(mtime, sbi->segs_per_sec);
5095 
5096 		if (sit_i->min_mtime > mtime)
5097 			sit_i->min_mtime = mtime;
5098 	}
5099 	sit_i->max_mtime = get_mtime(sbi, false);
5100 	sit_i->dirty_max_mtime = 0;
5101 	up_write(&sit_i->sentry_lock);
5102 }
5103 
5104 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5105 {
5106 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5107 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5108 	struct f2fs_sm_info *sm_info;
5109 	int err;
5110 
5111 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5112 	if (!sm_info)
5113 		return -ENOMEM;
5114 
5115 	/* init sm info */
5116 	sbi->sm_info = sm_info;
5117 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5118 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5119 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5120 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5121 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5122 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5123 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5124 	sm_info->rec_prefree_segments = sm_info->main_segments *
5125 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5126 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5127 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5128 
5129 	if (!f2fs_lfs_mode(sbi))
5130 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5131 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5132 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5133 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5134 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5135 	sm_info->min_ssr_sections = reserved_sections(sbi);
5136 
5137 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5138 
5139 	init_f2fs_rwsem(&sm_info->curseg_lock);
5140 
5141 	if (!f2fs_readonly(sbi->sb)) {
5142 		err = f2fs_create_flush_cmd_control(sbi);
5143 		if (err)
5144 			return err;
5145 	}
5146 
5147 	err = create_discard_cmd_control(sbi);
5148 	if (err)
5149 		return err;
5150 
5151 	err = build_sit_info(sbi);
5152 	if (err)
5153 		return err;
5154 	err = build_free_segmap(sbi);
5155 	if (err)
5156 		return err;
5157 	err = build_curseg(sbi);
5158 	if (err)
5159 		return err;
5160 
5161 	/* reinit free segmap based on SIT */
5162 	err = build_sit_entries(sbi);
5163 	if (err)
5164 		return err;
5165 
5166 	init_free_segmap(sbi);
5167 	err = build_dirty_segmap(sbi);
5168 	if (err)
5169 		return err;
5170 
5171 	err = sanity_check_curseg(sbi);
5172 	if (err)
5173 		return err;
5174 
5175 	init_min_max_mtime(sbi);
5176 	return 0;
5177 }
5178 
5179 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5180 		enum dirty_type dirty_type)
5181 {
5182 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5183 
5184 	mutex_lock(&dirty_i->seglist_lock);
5185 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5186 	dirty_i->nr_dirty[dirty_type] = 0;
5187 	mutex_unlock(&dirty_i->seglist_lock);
5188 }
5189 
5190 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5191 {
5192 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5193 
5194 	kvfree(dirty_i->pinned_secmap);
5195 	kvfree(dirty_i->victim_secmap);
5196 }
5197 
5198 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5199 {
5200 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5201 	int i;
5202 
5203 	if (!dirty_i)
5204 		return;
5205 
5206 	/* discard pre-free/dirty segments list */
5207 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5208 		discard_dirty_segmap(sbi, i);
5209 
5210 	if (__is_large_section(sbi)) {
5211 		mutex_lock(&dirty_i->seglist_lock);
5212 		kvfree(dirty_i->dirty_secmap);
5213 		mutex_unlock(&dirty_i->seglist_lock);
5214 	}
5215 
5216 	destroy_victim_secmap(sbi);
5217 	SM_I(sbi)->dirty_info = NULL;
5218 	kfree(dirty_i);
5219 }
5220 
5221 static void destroy_curseg(struct f2fs_sb_info *sbi)
5222 {
5223 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5224 	int i;
5225 
5226 	if (!array)
5227 		return;
5228 	SM_I(sbi)->curseg_array = NULL;
5229 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5230 		kfree(array[i].sum_blk);
5231 		kfree(array[i].journal);
5232 	}
5233 	kfree(array);
5234 }
5235 
5236 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5237 {
5238 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5239 
5240 	if (!free_i)
5241 		return;
5242 	SM_I(sbi)->free_info = NULL;
5243 	kvfree(free_i->free_segmap);
5244 	kvfree(free_i->free_secmap);
5245 	kfree(free_i);
5246 }
5247 
5248 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5249 {
5250 	struct sit_info *sit_i = SIT_I(sbi);
5251 
5252 	if (!sit_i)
5253 		return;
5254 
5255 	if (sit_i->sentries)
5256 		kvfree(sit_i->bitmap);
5257 	kfree(sit_i->tmp_map);
5258 
5259 	kvfree(sit_i->sentries);
5260 	kvfree(sit_i->sec_entries);
5261 	kvfree(sit_i->dirty_sentries_bitmap);
5262 
5263 	SM_I(sbi)->sit_info = NULL;
5264 	kvfree(sit_i->sit_bitmap);
5265 #ifdef CONFIG_F2FS_CHECK_FS
5266 	kvfree(sit_i->sit_bitmap_mir);
5267 	kvfree(sit_i->invalid_segmap);
5268 #endif
5269 	kfree(sit_i);
5270 }
5271 
5272 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5273 {
5274 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5275 
5276 	if (!sm_info)
5277 		return;
5278 	f2fs_destroy_flush_cmd_control(sbi, true);
5279 	destroy_discard_cmd_control(sbi);
5280 	destroy_dirty_segmap(sbi);
5281 	destroy_curseg(sbi);
5282 	destroy_free_segmap(sbi);
5283 	destroy_sit_info(sbi);
5284 	sbi->sm_info = NULL;
5285 	kfree(sm_info);
5286 }
5287 
5288 int __init f2fs_create_segment_manager_caches(void)
5289 {
5290 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5291 			sizeof(struct discard_entry));
5292 	if (!discard_entry_slab)
5293 		goto fail;
5294 
5295 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5296 			sizeof(struct discard_cmd));
5297 	if (!discard_cmd_slab)
5298 		goto destroy_discard_entry;
5299 
5300 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5301 			sizeof(struct sit_entry_set));
5302 	if (!sit_entry_set_slab)
5303 		goto destroy_discard_cmd;
5304 
5305 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5306 			sizeof(struct revoke_entry));
5307 	if (!revoke_entry_slab)
5308 		goto destroy_sit_entry_set;
5309 	return 0;
5310 
5311 destroy_sit_entry_set:
5312 	kmem_cache_destroy(sit_entry_set_slab);
5313 destroy_discard_cmd:
5314 	kmem_cache_destroy(discard_cmd_slab);
5315 destroy_discard_entry:
5316 	kmem_cache_destroy(discard_entry_slab);
5317 fail:
5318 	return -ENOMEM;
5319 }
5320 
5321 void f2fs_destroy_segment_manager_caches(void)
5322 {
5323 	kmem_cache_destroy(sit_entry_set_slab);
5324 	kmem_cache_destroy(discard_cmd_slab);
5325 	kmem_cache_destroy(discard_entry_slab);
5326 	kmem_cache_destroy(revoke_entry_slab);
5327 }
5328