1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/vmalloc.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 /* 33 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 34 * MSB and LSB are reversed in a byte by f2fs_set_bit. 35 */ 36 static inline unsigned long __reverse_ffs(unsigned long word) 37 { 38 int num = 0; 39 40 #if BITS_PER_LONG == 64 41 if ((word & 0xffffffff) == 0) { 42 num += 32; 43 word >>= 32; 44 } 45 #endif 46 if ((word & 0xffff) == 0) { 47 num += 16; 48 word >>= 16; 49 } 50 if ((word & 0xff) == 0) { 51 num += 8; 52 word >>= 8; 53 } 54 if ((word & 0xf0) == 0) 55 num += 4; 56 else 57 word >>= 4; 58 if ((word & 0xc) == 0) 59 num += 2; 60 else 61 word >>= 2; 62 if ((word & 0x2) == 0) 63 num += 1; 64 return num; 65 } 66 67 /* 68 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 69 * f2fs_set_bit makes MSB and LSB reversed in a byte. 70 * Example: 71 * LSB <--> MSB 72 * f2fs_set_bit(0, bitmap) => 0000 0001 73 * f2fs_set_bit(7, bitmap) => 1000 0000 74 */ 75 static unsigned long __find_rev_next_bit(const unsigned long *addr, 76 unsigned long size, unsigned long offset) 77 { 78 while (!f2fs_test_bit(offset, (unsigned char *)addr)) 79 offset++; 80 81 if (offset > size) 82 offset = size; 83 84 return offset; 85 #if 0 86 const unsigned long *p = addr + BIT_WORD(offset); 87 unsigned long result = offset & ~(BITS_PER_LONG - 1); 88 unsigned long tmp; 89 unsigned long mask, submask; 90 unsigned long quot, rest; 91 92 if (offset >= size) 93 return size; 94 95 size -= result; 96 offset %= BITS_PER_LONG; 97 if (!offset) 98 goto aligned; 99 100 tmp = *(p++); 101 quot = (offset >> 3) << 3; 102 rest = offset & 0x7; 103 mask = ~0UL << quot; 104 submask = (unsigned char)(0xff << rest) >> rest; 105 submask <<= quot; 106 mask &= submask; 107 tmp &= mask; 108 if (size < BITS_PER_LONG) 109 goto found_first; 110 if (tmp) 111 goto found_middle; 112 113 size -= BITS_PER_LONG; 114 result += BITS_PER_LONG; 115 aligned: 116 while (size & ~(BITS_PER_LONG-1)) { 117 tmp = *(p++); 118 if (tmp) 119 goto found_middle; 120 result += BITS_PER_LONG; 121 size -= BITS_PER_LONG; 122 } 123 if (!size) 124 return result; 125 tmp = *p; 126 found_first: 127 tmp &= (~0UL >> (BITS_PER_LONG - size)); 128 if (tmp == 0UL) /* Are any bits set? */ 129 return result + size; /* Nope. */ 130 found_middle: 131 return result + __reverse_ffs(tmp); 132 #endif 133 } 134 135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 136 unsigned long size, unsigned long offset) 137 { 138 while (f2fs_test_bit(offset, (unsigned char *)addr)) 139 offset++; 140 141 if (offset > size) 142 offset = size; 143 144 return offset; 145 #if 0 146 const unsigned long *p = addr + BIT_WORD(offset); 147 unsigned long result = offset & ~(BITS_PER_LONG - 1); 148 unsigned long tmp; 149 unsigned long mask, submask; 150 unsigned long quot, rest; 151 152 if (offset >= size) 153 return size; 154 155 size -= result; 156 offset %= BITS_PER_LONG; 157 if (!offset) 158 goto aligned; 159 160 tmp = *(p++); 161 quot = (offset >> 3) << 3; 162 rest = offset & 0x7; 163 mask = ~(~0UL << quot); 164 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest); 165 submask <<= quot; 166 mask += submask; 167 tmp |= mask; 168 if (size < BITS_PER_LONG) 169 goto found_first; 170 if (~tmp) 171 goto found_middle; 172 173 size -= BITS_PER_LONG; 174 result += BITS_PER_LONG; 175 aligned: 176 while (size & ~(BITS_PER_LONG - 1)) { 177 tmp = *(p++); 178 if (~tmp) 179 goto found_middle; 180 result += BITS_PER_LONG; 181 size -= BITS_PER_LONG; 182 } 183 if (!size) 184 return result; 185 tmp = *p; 186 187 found_first: 188 tmp |= ~0UL << size; 189 if (tmp == ~0UL) /* Are any bits zero? */ 190 return result + size; /* Nope. */ 191 found_middle: 192 return result + __reverse_ffz(tmp); 193 #endif 194 } 195 196 void register_inmem_page(struct inode *inode, struct page *page) 197 { 198 struct f2fs_inode_info *fi = F2FS_I(inode); 199 struct inmem_pages *new; 200 int err; 201 202 SetPagePrivate(page); 203 f2fs_trace_pid(page); 204 205 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 206 207 /* add atomic page indices to the list */ 208 new->page = page; 209 INIT_LIST_HEAD(&new->list); 210 retry: 211 /* increase reference count with clean state */ 212 mutex_lock(&fi->inmem_lock); 213 err = radix_tree_insert(&fi->inmem_root, page->index, new); 214 if (err == -EEXIST) { 215 mutex_unlock(&fi->inmem_lock); 216 kmem_cache_free(inmem_entry_slab, new); 217 return; 218 } else if (err) { 219 mutex_unlock(&fi->inmem_lock); 220 goto retry; 221 } 222 get_page(page); 223 list_add_tail(&new->list, &fi->inmem_pages); 224 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 225 mutex_unlock(&fi->inmem_lock); 226 227 trace_f2fs_register_inmem_page(page, INMEM); 228 } 229 230 void commit_inmem_pages(struct inode *inode, bool abort) 231 { 232 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 233 struct f2fs_inode_info *fi = F2FS_I(inode); 234 struct inmem_pages *cur, *tmp; 235 bool submit_bio = false; 236 struct f2fs_io_info fio = { 237 .sbi = sbi, 238 .type = DATA, 239 .rw = WRITE_SYNC | REQ_PRIO, 240 .encrypted_page = NULL, 241 }; 242 243 /* 244 * The abort is true only when f2fs_evict_inode is called. 245 * Basically, the f2fs_evict_inode doesn't produce any data writes, so 246 * that we don't need to call f2fs_balance_fs. 247 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this 248 * inode becomes free by iget_locked in f2fs_iget. 249 */ 250 if (!abort) { 251 f2fs_balance_fs(sbi); 252 f2fs_lock_op(sbi); 253 } 254 255 mutex_lock(&fi->inmem_lock); 256 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 257 if (!abort) { 258 lock_page(cur->page); 259 if (cur->page->mapping == inode->i_mapping) { 260 set_page_dirty(cur->page); 261 f2fs_wait_on_page_writeback(cur->page, DATA); 262 if (clear_page_dirty_for_io(cur->page)) 263 inode_dec_dirty_pages(inode); 264 trace_f2fs_commit_inmem_page(cur->page, INMEM); 265 fio.page = cur->page; 266 do_write_data_page(&fio); 267 submit_bio = true; 268 } 269 f2fs_put_page(cur->page, 1); 270 } else { 271 trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP); 272 put_page(cur->page); 273 } 274 radix_tree_delete(&fi->inmem_root, cur->page->index); 275 list_del(&cur->list); 276 kmem_cache_free(inmem_entry_slab, cur); 277 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 278 } 279 mutex_unlock(&fi->inmem_lock); 280 281 if (!abort) { 282 f2fs_unlock_op(sbi); 283 if (submit_bio) 284 f2fs_submit_merged_bio(sbi, DATA, WRITE); 285 } 286 } 287 288 /* 289 * This function balances dirty node and dentry pages. 290 * In addition, it controls garbage collection. 291 */ 292 void f2fs_balance_fs(struct f2fs_sb_info *sbi) 293 { 294 /* 295 * We should do GC or end up with checkpoint, if there are so many dirty 296 * dir/node pages without enough free segments. 297 */ 298 if (has_not_enough_free_secs(sbi, 0)) { 299 mutex_lock(&sbi->gc_mutex); 300 f2fs_gc(sbi); 301 } 302 } 303 304 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 305 { 306 /* try to shrink extent cache when there is no enough memory */ 307 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 308 309 /* check the # of cached NAT entries and prefree segments */ 310 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) || 311 excess_prefree_segs(sbi) || 312 !available_free_memory(sbi, INO_ENTRIES)) 313 f2fs_sync_fs(sbi->sb, true); 314 } 315 316 static int issue_flush_thread(void *data) 317 { 318 struct f2fs_sb_info *sbi = data; 319 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 320 wait_queue_head_t *q = &fcc->flush_wait_queue; 321 repeat: 322 if (kthread_should_stop()) 323 return 0; 324 325 if (!llist_empty(&fcc->issue_list)) { 326 struct bio *bio = bio_alloc(GFP_NOIO, 0); 327 struct flush_cmd *cmd, *next; 328 int ret; 329 330 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 331 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 332 333 bio->bi_bdev = sbi->sb->s_bdev; 334 ret = submit_bio_wait(WRITE_FLUSH, bio); 335 336 llist_for_each_entry_safe(cmd, next, 337 fcc->dispatch_list, llnode) { 338 cmd->ret = ret; 339 complete(&cmd->wait); 340 } 341 bio_put(bio); 342 fcc->dispatch_list = NULL; 343 } 344 345 wait_event_interruptible(*q, 346 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 347 goto repeat; 348 } 349 350 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 351 { 352 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 353 struct flush_cmd cmd; 354 355 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 356 test_opt(sbi, FLUSH_MERGE)); 357 358 if (test_opt(sbi, NOBARRIER)) 359 return 0; 360 361 if (!test_opt(sbi, FLUSH_MERGE)) 362 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL); 363 364 init_completion(&cmd.wait); 365 366 llist_add(&cmd.llnode, &fcc->issue_list); 367 368 if (!fcc->dispatch_list) 369 wake_up(&fcc->flush_wait_queue); 370 371 wait_for_completion(&cmd.wait); 372 373 return cmd.ret; 374 } 375 376 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 377 { 378 dev_t dev = sbi->sb->s_bdev->bd_dev; 379 struct flush_cmd_control *fcc; 380 int err = 0; 381 382 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 383 if (!fcc) 384 return -ENOMEM; 385 init_waitqueue_head(&fcc->flush_wait_queue); 386 init_llist_head(&fcc->issue_list); 387 SM_I(sbi)->cmd_control_info = fcc; 388 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 389 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 390 if (IS_ERR(fcc->f2fs_issue_flush)) { 391 err = PTR_ERR(fcc->f2fs_issue_flush); 392 kfree(fcc); 393 SM_I(sbi)->cmd_control_info = NULL; 394 return err; 395 } 396 397 return err; 398 } 399 400 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 401 { 402 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 403 404 if (fcc && fcc->f2fs_issue_flush) 405 kthread_stop(fcc->f2fs_issue_flush); 406 kfree(fcc); 407 SM_I(sbi)->cmd_control_info = NULL; 408 } 409 410 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 411 enum dirty_type dirty_type) 412 { 413 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 414 415 /* need not be added */ 416 if (IS_CURSEG(sbi, segno)) 417 return; 418 419 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 420 dirty_i->nr_dirty[dirty_type]++; 421 422 if (dirty_type == DIRTY) { 423 struct seg_entry *sentry = get_seg_entry(sbi, segno); 424 enum dirty_type t = sentry->type; 425 426 if (unlikely(t >= DIRTY)) { 427 f2fs_bug_on(sbi, 1); 428 return; 429 } 430 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 431 dirty_i->nr_dirty[t]++; 432 } 433 } 434 435 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 436 enum dirty_type dirty_type) 437 { 438 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 439 440 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 441 dirty_i->nr_dirty[dirty_type]--; 442 443 if (dirty_type == DIRTY) { 444 struct seg_entry *sentry = get_seg_entry(sbi, segno); 445 enum dirty_type t = sentry->type; 446 447 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 448 dirty_i->nr_dirty[t]--; 449 450 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 451 clear_bit(GET_SECNO(sbi, segno), 452 dirty_i->victim_secmap); 453 } 454 } 455 456 /* 457 * Should not occur error such as -ENOMEM. 458 * Adding dirty entry into seglist is not critical operation. 459 * If a given segment is one of current working segments, it won't be added. 460 */ 461 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 462 { 463 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 464 unsigned short valid_blocks; 465 466 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 467 return; 468 469 mutex_lock(&dirty_i->seglist_lock); 470 471 valid_blocks = get_valid_blocks(sbi, segno, 0); 472 473 if (valid_blocks == 0) { 474 __locate_dirty_segment(sbi, segno, PRE); 475 __remove_dirty_segment(sbi, segno, DIRTY); 476 } else if (valid_blocks < sbi->blocks_per_seg) { 477 __locate_dirty_segment(sbi, segno, DIRTY); 478 } else { 479 /* Recovery routine with SSR needs this */ 480 __remove_dirty_segment(sbi, segno, DIRTY); 481 } 482 483 mutex_unlock(&dirty_i->seglist_lock); 484 } 485 486 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 487 block_t blkstart, block_t blklen) 488 { 489 sector_t start = SECTOR_FROM_BLOCK(blkstart); 490 sector_t len = SECTOR_FROM_BLOCK(blklen); 491 struct seg_entry *se; 492 unsigned int offset; 493 block_t i; 494 495 for (i = blkstart; i < blkstart + blklen; i++) { 496 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 497 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 498 499 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 500 sbi->discard_blks--; 501 } 502 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 503 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 504 } 505 506 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 507 { 508 int err = -ENOTSUPP; 509 510 if (test_opt(sbi, DISCARD)) { 511 struct seg_entry *se = get_seg_entry(sbi, 512 GET_SEGNO(sbi, blkaddr)); 513 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 514 515 if (f2fs_test_bit(offset, se->discard_map)) 516 return; 517 518 err = f2fs_issue_discard(sbi, blkaddr, 1); 519 } 520 521 if (err) 522 update_meta_page(sbi, NULL, blkaddr); 523 } 524 525 static void __add_discard_entry(struct f2fs_sb_info *sbi, 526 struct cp_control *cpc, struct seg_entry *se, 527 unsigned int start, unsigned int end) 528 { 529 struct list_head *head = &SM_I(sbi)->discard_list; 530 struct discard_entry *new, *last; 531 532 if (!list_empty(head)) { 533 last = list_last_entry(head, struct discard_entry, list); 534 if (START_BLOCK(sbi, cpc->trim_start) + start == 535 last->blkaddr + last->len) { 536 last->len += end - start; 537 goto done; 538 } 539 } 540 541 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 542 INIT_LIST_HEAD(&new->list); 543 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 544 new->len = end - start; 545 list_add_tail(&new->list, head); 546 done: 547 SM_I(sbi)->nr_discards += end - start; 548 } 549 550 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 551 { 552 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 553 int max_blocks = sbi->blocks_per_seg; 554 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 555 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 556 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 557 unsigned long *discard_map = (unsigned long *)se->discard_map; 558 unsigned long *dmap = SIT_I(sbi)->tmp_map; 559 unsigned int start = 0, end = -1; 560 bool force = (cpc->reason == CP_DISCARD); 561 int i; 562 563 if (se->valid_blocks == max_blocks) 564 return; 565 566 if (!force) { 567 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 568 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 569 return; 570 } 571 572 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 573 for (i = 0; i < entries; i++) 574 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 575 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 576 577 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 578 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 579 if (start >= max_blocks) 580 break; 581 582 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 583 __add_discard_entry(sbi, cpc, se, start, end); 584 } 585 } 586 587 void release_discard_addrs(struct f2fs_sb_info *sbi) 588 { 589 struct list_head *head = &(SM_I(sbi)->discard_list); 590 struct discard_entry *entry, *this; 591 592 /* drop caches */ 593 list_for_each_entry_safe(entry, this, head, list) { 594 list_del(&entry->list); 595 kmem_cache_free(discard_entry_slab, entry); 596 } 597 } 598 599 /* 600 * Should call clear_prefree_segments after checkpoint is done. 601 */ 602 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 603 { 604 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 605 unsigned int segno; 606 607 mutex_lock(&dirty_i->seglist_lock); 608 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 609 __set_test_and_free(sbi, segno); 610 mutex_unlock(&dirty_i->seglist_lock); 611 } 612 613 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 614 { 615 struct list_head *head = &(SM_I(sbi)->discard_list); 616 struct discard_entry *entry, *this; 617 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 618 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 619 unsigned int start = 0, end = -1; 620 621 mutex_lock(&dirty_i->seglist_lock); 622 623 while (1) { 624 int i; 625 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 626 if (start >= MAIN_SEGS(sbi)) 627 break; 628 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 629 start + 1); 630 631 for (i = start; i < end; i++) 632 clear_bit(i, prefree_map); 633 634 dirty_i->nr_dirty[PRE] -= end - start; 635 636 if (!test_opt(sbi, DISCARD)) 637 continue; 638 639 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 640 (end - start) << sbi->log_blocks_per_seg); 641 } 642 mutex_unlock(&dirty_i->seglist_lock); 643 644 /* send small discards */ 645 list_for_each_entry_safe(entry, this, head, list) { 646 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen) 647 goto skip; 648 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 649 cpc->trimmed += entry->len; 650 skip: 651 list_del(&entry->list); 652 SM_I(sbi)->nr_discards -= entry->len; 653 kmem_cache_free(discard_entry_slab, entry); 654 } 655 } 656 657 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 658 { 659 struct sit_info *sit_i = SIT_I(sbi); 660 661 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 662 sit_i->dirty_sentries++; 663 return false; 664 } 665 666 return true; 667 } 668 669 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 670 unsigned int segno, int modified) 671 { 672 struct seg_entry *se = get_seg_entry(sbi, segno); 673 se->type = type; 674 if (modified) 675 __mark_sit_entry_dirty(sbi, segno); 676 } 677 678 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 679 { 680 struct seg_entry *se; 681 unsigned int segno, offset; 682 long int new_vblocks; 683 684 segno = GET_SEGNO(sbi, blkaddr); 685 686 se = get_seg_entry(sbi, segno); 687 new_vblocks = se->valid_blocks + del; 688 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 689 690 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 691 (new_vblocks > sbi->blocks_per_seg))); 692 693 se->valid_blocks = new_vblocks; 694 se->mtime = get_mtime(sbi); 695 SIT_I(sbi)->max_mtime = se->mtime; 696 697 /* Update valid block bitmap */ 698 if (del > 0) { 699 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 700 f2fs_bug_on(sbi, 1); 701 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 702 sbi->discard_blks--; 703 } else { 704 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 705 f2fs_bug_on(sbi, 1); 706 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 707 sbi->discard_blks++; 708 } 709 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 710 se->ckpt_valid_blocks += del; 711 712 __mark_sit_entry_dirty(sbi, segno); 713 714 /* update total number of valid blocks to be written in ckpt area */ 715 SIT_I(sbi)->written_valid_blocks += del; 716 717 if (sbi->segs_per_sec > 1) 718 get_sec_entry(sbi, segno)->valid_blocks += del; 719 } 720 721 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 722 { 723 update_sit_entry(sbi, new, 1); 724 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 725 update_sit_entry(sbi, old, -1); 726 727 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 728 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 729 } 730 731 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 732 { 733 unsigned int segno = GET_SEGNO(sbi, addr); 734 struct sit_info *sit_i = SIT_I(sbi); 735 736 f2fs_bug_on(sbi, addr == NULL_ADDR); 737 if (addr == NEW_ADDR) 738 return; 739 740 /* add it into sit main buffer */ 741 mutex_lock(&sit_i->sentry_lock); 742 743 update_sit_entry(sbi, addr, -1); 744 745 /* add it into dirty seglist */ 746 locate_dirty_segment(sbi, segno); 747 748 mutex_unlock(&sit_i->sentry_lock); 749 } 750 751 /* 752 * This function should be resided under the curseg_mutex lock 753 */ 754 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 755 struct f2fs_summary *sum) 756 { 757 struct curseg_info *curseg = CURSEG_I(sbi, type); 758 void *addr = curseg->sum_blk; 759 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 760 memcpy(addr, sum, sizeof(struct f2fs_summary)); 761 } 762 763 /* 764 * Calculate the number of current summary pages for writing 765 */ 766 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 767 { 768 int valid_sum_count = 0; 769 int i, sum_in_page; 770 771 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 772 if (sbi->ckpt->alloc_type[i] == SSR) 773 valid_sum_count += sbi->blocks_per_seg; 774 else { 775 if (for_ra) 776 valid_sum_count += le16_to_cpu( 777 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 778 else 779 valid_sum_count += curseg_blkoff(sbi, i); 780 } 781 } 782 783 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - 784 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 785 if (valid_sum_count <= sum_in_page) 786 return 1; 787 else if ((valid_sum_count - sum_in_page) <= 788 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 789 return 2; 790 return 3; 791 } 792 793 /* 794 * Caller should put this summary page 795 */ 796 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 797 { 798 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 799 } 800 801 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 802 { 803 struct page *page = grab_meta_page(sbi, blk_addr); 804 void *dst = page_address(page); 805 806 if (src) 807 memcpy(dst, src, PAGE_CACHE_SIZE); 808 else 809 memset(dst, 0, PAGE_CACHE_SIZE); 810 set_page_dirty(page); 811 f2fs_put_page(page, 1); 812 } 813 814 static void write_sum_page(struct f2fs_sb_info *sbi, 815 struct f2fs_summary_block *sum_blk, block_t blk_addr) 816 { 817 update_meta_page(sbi, (void *)sum_blk, blk_addr); 818 } 819 820 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 821 { 822 struct curseg_info *curseg = CURSEG_I(sbi, type); 823 unsigned int segno = curseg->segno + 1; 824 struct free_segmap_info *free_i = FREE_I(sbi); 825 826 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 827 return !test_bit(segno, free_i->free_segmap); 828 return 0; 829 } 830 831 /* 832 * Find a new segment from the free segments bitmap to right order 833 * This function should be returned with success, otherwise BUG 834 */ 835 static void get_new_segment(struct f2fs_sb_info *sbi, 836 unsigned int *newseg, bool new_sec, int dir) 837 { 838 struct free_segmap_info *free_i = FREE_I(sbi); 839 unsigned int segno, secno, zoneno; 840 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 841 unsigned int hint = *newseg / sbi->segs_per_sec; 842 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 843 unsigned int left_start = hint; 844 bool init = true; 845 int go_left = 0; 846 int i; 847 848 spin_lock(&free_i->segmap_lock); 849 850 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 851 segno = find_next_zero_bit(free_i->free_segmap, 852 MAIN_SEGS(sbi), *newseg + 1); 853 if (segno - *newseg < sbi->segs_per_sec - 854 (*newseg % sbi->segs_per_sec)) 855 goto got_it; 856 } 857 find_other_zone: 858 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 859 if (secno >= MAIN_SECS(sbi)) { 860 if (dir == ALLOC_RIGHT) { 861 secno = find_next_zero_bit(free_i->free_secmap, 862 MAIN_SECS(sbi), 0); 863 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 864 } else { 865 go_left = 1; 866 left_start = hint - 1; 867 } 868 } 869 if (go_left == 0) 870 goto skip_left; 871 872 while (test_bit(left_start, free_i->free_secmap)) { 873 if (left_start > 0) { 874 left_start--; 875 continue; 876 } 877 left_start = find_next_zero_bit(free_i->free_secmap, 878 MAIN_SECS(sbi), 0); 879 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 880 break; 881 } 882 secno = left_start; 883 skip_left: 884 hint = secno; 885 segno = secno * sbi->segs_per_sec; 886 zoneno = secno / sbi->secs_per_zone; 887 888 /* give up on finding another zone */ 889 if (!init) 890 goto got_it; 891 if (sbi->secs_per_zone == 1) 892 goto got_it; 893 if (zoneno == old_zoneno) 894 goto got_it; 895 if (dir == ALLOC_LEFT) { 896 if (!go_left && zoneno + 1 >= total_zones) 897 goto got_it; 898 if (go_left && zoneno == 0) 899 goto got_it; 900 } 901 for (i = 0; i < NR_CURSEG_TYPE; i++) 902 if (CURSEG_I(sbi, i)->zone == zoneno) 903 break; 904 905 if (i < NR_CURSEG_TYPE) { 906 /* zone is in user, try another */ 907 if (go_left) 908 hint = zoneno * sbi->secs_per_zone - 1; 909 else if (zoneno + 1 >= total_zones) 910 hint = 0; 911 else 912 hint = (zoneno + 1) * sbi->secs_per_zone; 913 init = false; 914 goto find_other_zone; 915 } 916 got_it: 917 /* set it as dirty segment in free segmap */ 918 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 919 __set_inuse(sbi, segno); 920 *newseg = segno; 921 spin_unlock(&free_i->segmap_lock); 922 } 923 924 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 925 { 926 struct curseg_info *curseg = CURSEG_I(sbi, type); 927 struct summary_footer *sum_footer; 928 929 curseg->segno = curseg->next_segno; 930 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 931 curseg->next_blkoff = 0; 932 curseg->next_segno = NULL_SEGNO; 933 934 sum_footer = &(curseg->sum_blk->footer); 935 memset(sum_footer, 0, sizeof(struct summary_footer)); 936 if (IS_DATASEG(type)) 937 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 938 if (IS_NODESEG(type)) 939 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 940 __set_sit_entry_type(sbi, type, curseg->segno, modified); 941 } 942 943 /* 944 * Allocate a current working segment. 945 * This function always allocates a free segment in LFS manner. 946 */ 947 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 948 { 949 struct curseg_info *curseg = CURSEG_I(sbi, type); 950 unsigned int segno = curseg->segno; 951 int dir = ALLOC_LEFT; 952 953 write_sum_page(sbi, curseg->sum_blk, 954 GET_SUM_BLOCK(sbi, segno)); 955 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 956 dir = ALLOC_RIGHT; 957 958 if (test_opt(sbi, NOHEAP)) 959 dir = ALLOC_RIGHT; 960 961 get_new_segment(sbi, &segno, new_sec, dir); 962 curseg->next_segno = segno; 963 reset_curseg(sbi, type, 1); 964 curseg->alloc_type = LFS; 965 } 966 967 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 968 struct curseg_info *seg, block_t start) 969 { 970 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 971 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 972 unsigned long *target_map = SIT_I(sbi)->tmp_map; 973 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 974 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 975 int i, pos; 976 977 for (i = 0; i < entries; i++) 978 target_map[i] = ckpt_map[i] | cur_map[i]; 979 980 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 981 982 seg->next_blkoff = pos; 983 } 984 985 /* 986 * If a segment is written by LFS manner, next block offset is just obtained 987 * by increasing the current block offset. However, if a segment is written by 988 * SSR manner, next block offset obtained by calling __next_free_blkoff 989 */ 990 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 991 struct curseg_info *seg) 992 { 993 if (seg->alloc_type == SSR) 994 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 995 else 996 seg->next_blkoff++; 997 } 998 999 /* 1000 * This function always allocates a used segment(from dirty seglist) by SSR 1001 * manner, so it should recover the existing segment information of valid blocks 1002 */ 1003 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1004 { 1005 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1006 struct curseg_info *curseg = CURSEG_I(sbi, type); 1007 unsigned int new_segno = curseg->next_segno; 1008 struct f2fs_summary_block *sum_node; 1009 struct page *sum_page; 1010 1011 write_sum_page(sbi, curseg->sum_blk, 1012 GET_SUM_BLOCK(sbi, curseg->segno)); 1013 __set_test_and_inuse(sbi, new_segno); 1014 1015 mutex_lock(&dirty_i->seglist_lock); 1016 __remove_dirty_segment(sbi, new_segno, PRE); 1017 __remove_dirty_segment(sbi, new_segno, DIRTY); 1018 mutex_unlock(&dirty_i->seglist_lock); 1019 1020 reset_curseg(sbi, type, 1); 1021 curseg->alloc_type = SSR; 1022 __next_free_blkoff(sbi, curseg, 0); 1023 1024 if (reuse) { 1025 sum_page = get_sum_page(sbi, new_segno); 1026 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1027 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1028 f2fs_put_page(sum_page, 1); 1029 } 1030 } 1031 1032 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1033 { 1034 struct curseg_info *curseg = CURSEG_I(sbi, type); 1035 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1036 1037 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 1038 return v_ops->get_victim(sbi, 1039 &(curseg)->next_segno, BG_GC, type, SSR); 1040 1041 /* For data segments, let's do SSR more intensively */ 1042 for (; type >= CURSEG_HOT_DATA; type--) 1043 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1044 BG_GC, type, SSR)) 1045 return 1; 1046 return 0; 1047 } 1048 1049 /* 1050 * flush out current segment and replace it with new segment 1051 * This function should be returned with success, otherwise BUG 1052 */ 1053 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1054 int type, bool force) 1055 { 1056 struct curseg_info *curseg = CURSEG_I(sbi, type); 1057 1058 if (force) 1059 new_curseg(sbi, type, true); 1060 else if (type == CURSEG_WARM_NODE) 1061 new_curseg(sbi, type, false); 1062 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1063 new_curseg(sbi, type, false); 1064 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1065 change_curseg(sbi, type, true); 1066 else 1067 new_curseg(sbi, type, false); 1068 1069 stat_inc_seg_type(sbi, curseg); 1070 } 1071 1072 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) 1073 { 1074 struct curseg_info *curseg = CURSEG_I(sbi, type); 1075 unsigned int old_segno; 1076 1077 old_segno = curseg->segno; 1078 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 1079 locate_dirty_segment(sbi, old_segno); 1080 } 1081 1082 void allocate_new_segments(struct f2fs_sb_info *sbi) 1083 { 1084 int i; 1085 1086 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 1087 __allocate_new_segments(sbi, i); 1088 } 1089 1090 static const struct segment_allocation default_salloc_ops = { 1091 .allocate_segment = allocate_segment_by_default, 1092 }; 1093 1094 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1095 { 1096 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1097 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1098 unsigned int start_segno, end_segno; 1099 struct cp_control cpc; 1100 1101 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1102 return -EINVAL; 1103 1104 cpc.trimmed = 0; 1105 if (end <= MAIN_BLKADDR(sbi)) 1106 goto out; 1107 1108 /* start/end segment number in main_area */ 1109 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1110 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1111 GET_SEGNO(sbi, end); 1112 cpc.reason = CP_DISCARD; 1113 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1114 1115 /* do checkpoint to issue discard commands safely */ 1116 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1117 cpc.trim_start = start_segno; 1118 1119 if (sbi->discard_blks == 0) 1120 break; 1121 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1122 cpc.trim_end = end_segno; 1123 else 1124 cpc.trim_end = min_t(unsigned int, 1125 rounddown(start_segno + 1126 BATCHED_TRIM_SEGMENTS(sbi), 1127 sbi->segs_per_sec) - 1, end_segno); 1128 1129 mutex_lock(&sbi->gc_mutex); 1130 write_checkpoint(sbi, &cpc); 1131 mutex_unlock(&sbi->gc_mutex); 1132 } 1133 out: 1134 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1135 return 0; 1136 } 1137 1138 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1139 { 1140 struct curseg_info *curseg = CURSEG_I(sbi, type); 1141 if (curseg->next_blkoff < sbi->blocks_per_seg) 1142 return true; 1143 return false; 1144 } 1145 1146 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1147 { 1148 if (p_type == DATA) 1149 return CURSEG_HOT_DATA; 1150 else 1151 return CURSEG_HOT_NODE; 1152 } 1153 1154 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1155 { 1156 if (p_type == DATA) { 1157 struct inode *inode = page->mapping->host; 1158 1159 if (S_ISDIR(inode->i_mode)) 1160 return CURSEG_HOT_DATA; 1161 else 1162 return CURSEG_COLD_DATA; 1163 } else { 1164 if (IS_DNODE(page) && is_cold_node(page)) 1165 return CURSEG_WARM_NODE; 1166 else 1167 return CURSEG_COLD_NODE; 1168 } 1169 } 1170 1171 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1172 { 1173 if (p_type == DATA) { 1174 struct inode *inode = page->mapping->host; 1175 1176 if (S_ISDIR(inode->i_mode)) 1177 return CURSEG_HOT_DATA; 1178 else if (is_cold_data(page) || file_is_cold(inode)) 1179 return CURSEG_COLD_DATA; 1180 else 1181 return CURSEG_WARM_DATA; 1182 } else { 1183 if (IS_DNODE(page)) 1184 return is_cold_node(page) ? CURSEG_WARM_NODE : 1185 CURSEG_HOT_NODE; 1186 else 1187 return CURSEG_COLD_NODE; 1188 } 1189 } 1190 1191 static int __get_segment_type(struct page *page, enum page_type p_type) 1192 { 1193 switch (F2FS_P_SB(page)->active_logs) { 1194 case 2: 1195 return __get_segment_type_2(page, p_type); 1196 case 4: 1197 return __get_segment_type_4(page, p_type); 1198 } 1199 /* NR_CURSEG_TYPE(6) logs by default */ 1200 f2fs_bug_on(F2FS_P_SB(page), 1201 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1202 return __get_segment_type_6(page, p_type); 1203 } 1204 1205 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1206 block_t old_blkaddr, block_t *new_blkaddr, 1207 struct f2fs_summary *sum, int type) 1208 { 1209 struct sit_info *sit_i = SIT_I(sbi); 1210 struct curseg_info *curseg; 1211 bool direct_io = (type == CURSEG_DIRECT_IO); 1212 1213 type = direct_io ? CURSEG_WARM_DATA : type; 1214 1215 curseg = CURSEG_I(sbi, type); 1216 1217 mutex_lock(&curseg->curseg_mutex); 1218 mutex_lock(&sit_i->sentry_lock); 1219 1220 /* direct_io'ed data is aligned to the segment for better performance */ 1221 if (direct_io && curseg->next_blkoff) 1222 __allocate_new_segments(sbi, type); 1223 1224 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1225 1226 /* 1227 * __add_sum_entry should be resided under the curseg_mutex 1228 * because, this function updates a summary entry in the 1229 * current summary block. 1230 */ 1231 __add_sum_entry(sbi, type, sum); 1232 1233 __refresh_next_blkoff(sbi, curseg); 1234 1235 stat_inc_block_count(sbi, curseg); 1236 1237 if (!__has_curseg_space(sbi, type)) 1238 sit_i->s_ops->allocate_segment(sbi, type, false); 1239 /* 1240 * SIT information should be updated before segment allocation, 1241 * since SSR needs latest valid block information. 1242 */ 1243 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1244 1245 mutex_unlock(&sit_i->sentry_lock); 1246 1247 if (page && IS_NODESEG(type)) 1248 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1249 1250 mutex_unlock(&curseg->curseg_mutex); 1251 } 1252 1253 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1254 { 1255 int type = __get_segment_type(fio->page, fio->type); 1256 1257 allocate_data_block(fio->sbi, fio->page, fio->blk_addr, 1258 &fio->blk_addr, sum, type); 1259 1260 /* writeout dirty page into bdev */ 1261 f2fs_submit_page_mbio(fio); 1262 } 1263 1264 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1265 { 1266 struct f2fs_io_info fio = { 1267 .sbi = sbi, 1268 .type = META, 1269 .rw = WRITE_SYNC | REQ_META | REQ_PRIO, 1270 .blk_addr = page->index, 1271 .page = page, 1272 .encrypted_page = NULL, 1273 }; 1274 1275 set_page_writeback(page); 1276 f2fs_submit_page_mbio(&fio); 1277 } 1278 1279 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1280 { 1281 struct f2fs_summary sum; 1282 1283 set_summary(&sum, nid, 0, 0); 1284 do_write_page(&sum, fio); 1285 } 1286 1287 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1288 { 1289 struct f2fs_sb_info *sbi = fio->sbi; 1290 struct f2fs_summary sum; 1291 struct node_info ni; 1292 1293 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1294 get_node_info(sbi, dn->nid, &ni); 1295 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1296 do_write_page(&sum, fio); 1297 dn->data_blkaddr = fio->blk_addr; 1298 } 1299 1300 void rewrite_data_page(struct f2fs_io_info *fio) 1301 { 1302 stat_inc_inplace_blocks(fio->sbi); 1303 f2fs_submit_page_mbio(fio); 1304 } 1305 1306 static void __f2fs_replace_block(struct f2fs_sb_info *sbi, 1307 struct f2fs_summary *sum, 1308 block_t old_blkaddr, block_t new_blkaddr, 1309 bool recover_curseg) 1310 { 1311 struct sit_info *sit_i = SIT_I(sbi); 1312 struct curseg_info *curseg; 1313 unsigned int segno, old_cursegno; 1314 struct seg_entry *se; 1315 int type; 1316 unsigned short old_blkoff; 1317 1318 segno = GET_SEGNO(sbi, new_blkaddr); 1319 se = get_seg_entry(sbi, segno); 1320 type = se->type; 1321 1322 if (!recover_curseg) { 1323 /* for recovery flow */ 1324 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1325 if (old_blkaddr == NULL_ADDR) 1326 type = CURSEG_COLD_DATA; 1327 else 1328 type = CURSEG_WARM_DATA; 1329 } 1330 } else { 1331 if (!IS_CURSEG(sbi, segno)) 1332 type = CURSEG_WARM_DATA; 1333 } 1334 1335 curseg = CURSEG_I(sbi, type); 1336 1337 mutex_lock(&curseg->curseg_mutex); 1338 mutex_lock(&sit_i->sentry_lock); 1339 1340 old_cursegno = curseg->segno; 1341 old_blkoff = curseg->next_blkoff; 1342 1343 /* change the current segment */ 1344 if (segno != curseg->segno) { 1345 curseg->next_segno = segno; 1346 change_curseg(sbi, type, true); 1347 } 1348 1349 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1350 __add_sum_entry(sbi, type, sum); 1351 1352 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1353 locate_dirty_segment(sbi, old_cursegno); 1354 1355 if (recover_curseg) { 1356 if (old_cursegno != curseg->segno) { 1357 curseg->next_segno = old_cursegno; 1358 change_curseg(sbi, type, true); 1359 } 1360 curseg->next_blkoff = old_blkoff; 1361 } 1362 1363 mutex_unlock(&sit_i->sentry_lock); 1364 mutex_unlock(&curseg->curseg_mutex); 1365 } 1366 1367 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1368 block_t old_addr, block_t new_addr, 1369 unsigned char version, bool recover_curseg) 1370 { 1371 struct f2fs_summary sum; 1372 1373 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1374 1375 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg); 1376 1377 dn->data_blkaddr = new_addr; 1378 set_data_blkaddr(dn); 1379 f2fs_update_extent_cache(dn); 1380 } 1381 1382 static inline bool is_merged_page(struct f2fs_sb_info *sbi, 1383 struct page *page, enum page_type type) 1384 { 1385 enum page_type btype = PAGE_TYPE_OF_BIO(type); 1386 struct f2fs_bio_info *io = &sbi->write_io[btype]; 1387 struct bio_vec *bvec; 1388 struct page *target; 1389 int i; 1390 1391 down_read(&io->io_rwsem); 1392 if (!io->bio) { 1393 up_read(&io->io_rwsem); 1394 return false; 1395 } 1396 1397 bio_for_each_segment_all(bvec, io->bio, i) { 1398 1399 if (bvec->bv_page->mapping) { 1400 target = bvec->bv_page; 1401 } else { 1402 struct f2fs_crypto_ctx *ctx; 1403 1404 /* encrypted page */ 1405 ctx = (struct f2fs_crypto_ctx *)page_private( 1406 bvec->bv_page); 1407 target = ctx->w.control_page; 1408 } 1409 1410 if (page == target) { 1411 up_read(&io->io_rwsem); 1412 return true; 1413 } 1414 } 1415 1416 up_read(&io->io_rwsem); 1417 return false; 1418 } 1419 1420 void f2fs_wait_on_page_writeback(struct page *page, 1421 enum page_type type) 1422 { 1423 if (PageWriteback(page)) { 1424 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1425 1426 if (is_merged_page(sbi, page, type)) 1427 f2fs_submit_merged_bio(sbi, type, WRITE); 1428 wait_on_page_writeback(page); 1429 } 1430 } 1431 1432 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1433 { 1434 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1435 struct curseg_info *seg_i; 1436 unsigned char *kaddr; 1437 struct page *page; 1438 block_t start; 1439 int i, j, offset; 1440 1441 start = start_sum_block(sbi); 1442 1443 page = get_meta_page(sbi, start++); 1444 kaddr = (unsigned char *)page_address(page); 1445 1446 /* Step 1: restore nat cache */ 1447 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1448 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); 1449 1450 /* Step 2: restore sit cache */ 1451 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1452 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, 1453 SUM_JOURNAL_SIZE); 1454 offset = 2 * SUM_JOURNAL_SIZE; 1455 1456 /* Step 3: restore summary entries */ 1457 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1458 unsigned short blk_off; 1459 unsigned int segno; 1460 1461 seg_i = CURSEG_I(sbi, i); 1462 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1463 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1464 seg_i->next_segno = segno; 1465 reset_curseg(sbi, i, 0); 1466 seg_i->alloc_type = ckpt->alloc_type[i]; 1467 seg_i->next_blkoff = blk_off; 1468 1469 if (seg_i->alloc_type == SSR) 1470 blk_off = sbi->blocks_per_seg; 1471 1472 for (j = 0; j < blk_off; j++) { 1473 struct f2fs_summary *s; 1474 s = (struct f2fs_summary *)(kaddr + offset); 1475 seg_i->sum_blk->entries[j] = *s; 1476 offset += SUMMARY_SIZE; 1477 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1478 SUM_FOOTER_SIZE) 1479 continue; 1480 1481 f2fs_put_page(page, 1); 1482 page = NULL; 1483 1484 page = get_meta_page(sbi, start++); 1485 kaddr = (unsigned char *)page_address(page); 1486 offset = 0; 1487 } 1488 } 1489 f2fs_put_page(page, 1); 1490 return 0; 1491 } 1492 1493 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1494 { 1495 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1496 struct f2fs_summary_block *sum; 1497 struct curseg_info *curseg; 1498 struct page *new; 1499 unsigned short blk_off; 1500 unsigned int segno = 0; 1501 block_t blk_addr = 0; 1502 1503 /* get segment number and block addr */ 1504 if (IS_DATASEG(type)) { 1505 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1506 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1507 CURSEG_HOT_DATA]); 1508 if (__exist_node_summaries(sbi)) 1509 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1510 else 1511 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1512 } else { 1513 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1514 CURSEG_HOT_NODE]); 1515 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1516 CURSEG_HOT_NODE]); 1517 if (__exist_node_summaries(sbi)) 1518 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1519 type - CURSEG_HOT_NODE); 1520 else 1521 blk_addr = GET_SUM_BLOCK(sbi, segno); 1522 } 1523 1524 new = get_meta_page(sbi, blk_addr); 1525 sum = (struct f2fs_summary_block *)page_address(new); 1526 1527 if (IS_NODESEG(type)) { 1528 if (__exist_node_summaries(sbi)) { 1529 struct f2fs_summary *ns = &sum->entries[0]; 1530 int i; 1531 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1532 ns->version = 0; 1533 ns->ofs_in_node = 0; 1534 } 1535 } else { 1536 int err; 1537 1538 err = restore_node_summary(sbi, segno, sum); 1539 if (err) { 1540 f2fs_put_page(new, 1); 1541 return err; 1542 } 1543 } 1544 } 1545 1546 /* set uncompleted segment to curseg */ 1547 curseg = CURSEG_I(sbi, type); 1548 mutex_lock(&curseg->curseg_mutex); 1549 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); 1550 curseg->next_segno = segno; 1551 reset_curseg(sbi, type, 0); 1552 curseg->alloc_type = ckpt->alloc_type[type]; 1553 curseg->next_blkoff = blk_off; 1554 mutex_unlock(&curseg->curseg_mutex); 1555 f2fs_put_page(new, 1); 1556 return 0; 1557 } 1558 1559 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1560 { 1561 int type = CURSEG_HOT_DATA; 1562 int err; 1563 1564 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1565 int npages = npages_for_summary_flush(sbi, true); 1566 1567 if (npages >= 2) 1568 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1569 META_CP); 1570 1571 /* restore for compacted data summary */ 1572 if (read_compacted_summaries(sbi)) 1573 return -EINVAL; 1574 type = CURSEG_HOT_NODE; 1575 } 1576 1577 if (__exist_node_summaries(sbi)) 1578 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1579 NR_CURSEG_TYPE - type, META_CP); 1580 1581 for (; type <= CURSEG_COLD_NODE; type++) { 1582 err = read_normal_summaries(sbi, type); 1583 if (err) 1584 return err; 1585 } 1586 1587 return 0; 1588 } 1589 1590 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1591 { 1592 struct page *page; 1593 unsigned char *kaddr; 1594 struct f2fs_summary *summary; 1595 struct curseg_info *seg_i; 1596 int written_size = 0; 1597 int i, j; 1598 1599 page = grab_meta_page(sbi, blkaddr++); 1600 kaddr = (unsigned char *)page_address(page); 1601 1602 /* Step 1: write nat cache */ 1603 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1604 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); 1605 written_size += SUM_JOURNAL_SIZE; 1606 1607 /* Step 2: write sit cache */ 1608 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1609 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, 1610 SUM_JOURNAL_SIZE); 1611 written_size += SUM_JOURNAL_SIZE; 1612 1613 /* Step 3: write summary entries */ 1614 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1615 unsigned short blkoff; 1616 seg_i = CURSEG_I(sbi, i); 1617 if (sbi->ckpt->alloc_type[i] == SSR) 1618 blkoff = sbi->blocks_per_seg; 1619 else 1620 blkoff = curseg_blkoff(sbi, i); 1621 1622 for (j = 0; j < blkoff; j++) { 1623 if (!page) { 1624 page = grab_meta_page(sbi, blkaddr++); 1625 kaddr = (unsigned char *)page_address(page); 1626 written_size = 0; 1627 } 1628 summary = (struct f2fs_summary *)(kaddr + written_size); 1629 *summary = seg_i->sum_blk->entries[j]; 1630 written_size += SUMMARY_SIZE; 1631 1632 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1633 SUM_FOOTER_SIZE) 1634 continue; 1635 1636 set_page_dirty(page); 1637 f2fs_put_page(page, 1); 1638 page = NULL; 1639 } 1640 } 1641 if (page) { 1642 set_page_dirty(page); 1643 f2fs_put_page(page, 1); 1644 } 1645 } 1646 1647 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1648 block_t blkaddr, int type) 1649 { 1650 int i, end; 1651 if (IS_DATASEG(type)) 1652 end = type + NR_CURSEG_DATA_TYPE; 1653 else 1654 end = type + NR_CURSEG_NODE_TYPE; 1655 1656 for (i = type; i < end; i++) { 1657 struct curseg_info *sum = CURSEG_I(sbi, i); 1658 mutex_lock(&sum->curseg_mutex); 1659 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); 1660 mutex_unlock(&sum->curseg_mutex); 1661 } 1662 } 1663 1664 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1665 { 1666 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1667 write_compacted_summaries(sbi, start_blk); 1668 else 1669 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1670 } 1671 1672 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1673 { 1674 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1675 } 1676 1677 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, 1678 unsigned int val, int alloc) 1679 { 1680 int i; 1681 1682 if (type == NAT_JOURNAL) { 1683 for (i = 0; i < nats_in_cursum(sum); i++) { 1684 if (le32_to_cpu(nid_in_journal(sum, i)) == val) 1685 return i; 1686 } 1687 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) 1688 return update_nats_in_cursum(sum, 1); 1689 } else if (type == SIT_JOURNAL) { 1690 for (i = 0; i < sits_in_cursum(sum); i++) 1691 if (le32_to_cpu(segno_in_journal(sum, i)) == val) 1692 return i; 1693 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) 1694 return update_sits_in_cursum(sum, 1); 1695 } 1696 return -1; 1697 } 1698 1699 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1700 unsigned int segno) 1701 { 1702 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1703 } 1704 1705 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1706 unsigned int start) 1707 { 1708 struct sit_info *sit_i = SIT_I(sbi); 1709 struct page *src_page, *dst_page; 1710 pgoff_t src_off, dst_off; 1711 void *src_addr, *dst_addr; 1712 1713 src_off = current_sit_addr(sbi, start); 1714 dst_off = next_sit_addr(sbi, src_off); 1715 1716 /* get current sit block page without lock */ 1717 src_page = get_meta_page(sbi, src_off); 1718 dst_page = grab_meta_page(sbi, dst_off); 1719 f2fs_bug_on(sbi, PageDirty(src_page)); 1720 1721 src_addr = page_address(src_page); 1722 dst_addr = page_address(dst_page); 1723 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1724 1725 set_page_dirty(dst_page); 1726 f2fs_put_page(src_page, 1); 1727 1728 set_to_next_sit(sit_i, start); 1729 1730 return dst_page; 1731 } 1732 1733 static struct sit_entry_set *grab_sit_entry_set(void) 1734 { 1735 struct sit_entry_set *ses = 1736 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC); 1737 1738 ses->entry_cnt = 0; 1739 INIT_LIST_HEAD(&ses->set_list); 1740 return ses; 1741 } 1742 1743 static void release_sit_entry_set(struct sit_entry_set *ses) 1744 { 1745 list_del(&ses->set_list); 1746 kmem_cache_free(sit_entry_set_slab, ses); 1747 } 1748 1749 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1750 struct list_head *head) 1751 { 1752 struct sit_entry_set *next = ses; 1753 1754 if (list_is_last(&ses->set_list, head)) 1755 return; 1756 1757 list_for_each_entry_continue(next, head, set_list) 1758 if (ses->entry_cnt <= next->entry_cnt) 1759 break; 1760 1761 list_move_tail(&ses->set_list, &next->set_list); 1762 } 1763 1764 static void add_sit_entry(unsigned int segno, struct list_head *head) 1765 { 1766 struct sit_entry_set *ses; 1767 unsigned int start_segno = START_SEGNO(segno); 1768 1769 list_for_each_entry(ses, head, set_list) { 1770 if (ses->start_segno == start_segno) { 1771 ses->entry_cnt++; 1772 adjust_sit_entry_set(ses, head); 1773 return; 1774 } 1775 } 1776 1777 ses = grab_sit_entry_set(); 1778 1779 ses->start_segno = start_segno; 1780 ses->entry_cnt++; 1781 list_add(&ses->set_list, head); 1782 } 1783 1784 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1785 { 1786 struct f2fs_sm_info *sm_info = SM_I(sbi); 1787 struct list_head *set_list = &sm_info->sit_entry_set; 1788 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1789 unsigned int segno; 1790 1791 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1792 add_sit_entry(segno, set_list); 1793 } 1794 1795 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1796 { 1797 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1798 struct f2fs_summary_block *sum = curseg->sum_blk; 1799 int i; 1800 1801 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { 1802 unsigned int segno; 1803 bool dirtied; 1804 1805 segno = le32_to_cpu(segno_in_journal(sum, i)); 1806 dirtied = __mark_sit_entry_dirty(sbi, segno); 1807 1808 if (!dirtied) 1809 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1810 } 1811 update_sits_in_cursum(sum, -sits_in_cursum(sum)); 1812 } 1813 1814 /* 1815 * CP calls this function, which flushes SIT entries including sit_journal, 1816 * and moves prefree segs to free segs. 1817 */ 1818 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1819 { 1820 struct sit_info *sit_i = SIT_I(sbi); 1821 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1822 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1823 struct f2fs_summary_block *sum = curseg->sum_blk; 1824 struct sit_entry_set *ses, *tmp; 1825 struct list_head *head = &SM_I(sbi)->sit_entry_set; 1826 bool to_journal = true; 1827 struct seg_entry *se; 1828 1829 mutex_lock(&curseg->curseg_mutex); 1830 mutex_lock(&sit_i->sentry_lock); 1831 1832 if (!sit_i->dirty_sentries) 1833 goto out; 1834 1835 /* 1836 * add and account sit entries of dirty bitmap in sit entry 1837 * set temporarily 1838 */ 1839 add_sits_in_set(sbi); 1840 1841 /* 1842 * if there are no enough space in journal to store dirty sit 1843 * entries, remove all entries from journal and add and account 1844 * them in sit entry set. 1845 */ 1846 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL)) 1847 remove_sits_in_journal(sbi); 1848 1849 /* 1850 * there are two steps to flush sit entries: 1851 * #1, flush sit entries to journal in current cold data summary block. 1852 * #2, flush sit entries to sit page. 1853 */ 1854 list_for_each_entry_safe(ses, tmp, head, set_list) { 1855 struct page *page = NULL; 1856 struct f2fs_sit_block *raw_sit = NULL; 1857 unsigned int start_segno = ses->start_segno; 1858 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 1859 (unsigned long)MAIN_SEGS(sbi)); 1860 unsigned int segno = start_segno; 1861 1862 if (to_journal && 1863 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL)) 1864 to_journal = false; 1865 1866 if (!to_journal) { 1867 page = get_next_sit_page(sbi, start_segno); 1868 raw_sit = page_address(page); 1869 } 1870 1871 /* flush dirty sit entries in region of current sit set */ 1872 for_each_set_bit_from(segno, bitmap, end) { 1873 int offset, sit_offset; 1874 1875 se = get_seg_entry(sbi, segno); 1876 1877 /* add discard candidates */ 1878 if (cpc->reason != CP_DISCARD) { 1879 cpc->trim_start = segno; 1880 add_discard_addrs(sbi, cpc); 1881 } 1882 1883 if (to_journal) { 1884 offset = lookup_journal_in_cursum(sum, 1885 SIT_JOURNAL, segno, 1); 1886 f2fs_bug_on(sbi, offset < 0); 1887 segno_in_journal(sum, offset) = 1888 cpu_to_le32(segno); 1889 seg_info_to_raw_sit(se, 1890 &sit_in_journal(sum, offset)); 1891 } else { 1892 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1893 seg_info_to_raw_sit(se, 1894 &raw_sit->entries[sit_offset]); 1895 } 1896 1897 __clear_bit(segno, bitmap); 1898 sit_i->dirty_sentries--; 1899 ses->entry_cnt--; 1900 } 1901 1902 if (!to_journal) 1903 f2fs_put_page(page, 1); 1904 1905 f2fs_bug_on(sbi, ses->entry_cnt); 1906 release_sit_entry_set(ses); 1907 } 1908 1909 f2fs_bug_on(sbi, !list_empty(head)); 1910 f2fs_bug_on(sbi, sit_i->dirty_sentries); 1911 out: 1912 if (cpc->reason == CP_DISCARD) { 1913 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 1914 add_discard_addrs(sbi, cpc); 1915 } 1916 mutex_unlock(&sit_i->sentry_lock); 1917 mutex_unlock(&curseg->curseg_mutex); 1918 1919 set_prefree_as_free_segments(sbi); 1920 } 1921 1922 static int build_sit_info(struct f2fs_sb_info *sbi) 1923 { 1924 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1925 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1926 struct sit_info *sit_i; 1927 unsigned int sit_segs, start; 1928 char *src_bitmap, *dst_bitmap; 1929 unsigned int bitmap_size; 1930 1931 /* allocate memory for SIT information */ 1932 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 1933 if (!sit_i) 1934 return -ENOMEM; 1935 1936 SM_I(sbi)->sit_info = sit_i; 1937 1938 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry)); 1939 if (!sit_i->sentries) 1940 return -ENOMEM; 1941 1942 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1943 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1944 if (!sit_i->dirty_sentries_bitmap) 1945 return -ENOMEM; 1946 1947 for (start = 0; start < MAIN_SEGS(sbi); start++) { 1948 sit_i->sentries[start].cur_valid_map 1949 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1950 sit_i->sentries[start].ckpt_valid_map 1951 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1952 sit_i->sentries[start].discard_map 1953 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1954 if (!sit_i->sentries[start].cur_valid_map || 1955 !sit_i->sentries[start].ckpt_valid_map || 1956 !sit_i->sentries[start].discard_map) 1957 return -ENOMEM; 1958 } 1959 1960 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1961 if (!sit_i->tmp_map) 1962 return -ENOMEM; 1963 1964 if (sbi->segs_per_sec > 1) { 1965 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) * 1966 sizeof(struct sec_entry)); 1967 if (!sit_i->sec_entries) 1968 return -ENOMEM; 1969 } 1970 1971 /* get information related with SIT */ 1972 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 1973 1974 /* setup SIT bitmap from ckeckpoint pack */ 1975 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 1976 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 1977 1978 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 1979 if (!dst_bitmap) 1980 return -ENOMEM; 1981 1982 /* init SIT information */ 1983 sit_i->s_ops = &default_salloc_ops; 1984 1985 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 1986 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 1987 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 1988 sit_i->sit_bitmap = dst_bitmap; 1989 sit_i->bitmap_size = bitmap_size; 1990 sit_i->dirty_sentries = 0; 1991 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 1992 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 1993 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 1994 mutex_init(&sit_i->sentry_lock); 1995 return 0; 1996 } 1997 1998 static int build_free_segmap(struct f2fs_sb_info *sbi) 1999 { 2000 struct free_segmap_info *free_i; 2001 unsigned int bitmap_size, sec_bitmap_size; 2002 2003 /* allocate memory for free segmap information */ 2004 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2005 if (!free_i) 2006 return -ENOMEM; 2007 2008 SM_I(sbi)->free_info = free_i; 2009 2010 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2011 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); 2012 if (!free_i->free_segmap) 2013 return -ENOMEM; 2014 2015 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2016 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); 2017 if (!free_i->free_secmap) 2018 return -ENOMEM; 2019 2020 /* set all segments as dirty temporarily */ 2021 memset(free_i->free_segmap, 0xff, bitmap_size); 2022 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2023 2024 /* init free segmap information */ 2025 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2026 free_i->free_segments = 0; 2027 free_i->free_sections = 0; 2028 spin_lock_init(&free_i->segmap_lock); 2029 return 0; 2030 } 2031 2032 static int build_curseg(struct f2fs_sb_info *sbi) 2033 { 2034 struct curseg_info *array; 2035 int i; 2036 2037 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2038 if (!array) 2039 return -ENOMEM; 2040 2041 SM_I(sbi)->curseg_array = array; 2042 2043 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2044 mutex_init(&array[i].curseg_mutex); 2045 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 2046 if (!array[i].sum_blk) 2047 return -ENOMEM; 2048 array[i].segno = NULL_SEGNO; 2049 array[i].next_blkoff = 0; 2050 } 2051 return restore_curseg_summaries(sbi); 2052 } 2053 2054 static void build_sit_entries(struct f2fs_sb_info *sbi) 2055 { 2056 struct sit_info *sit_i = SIT_I(sbi); 2057 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2058 struct f2fs_summary_block *sum = curseg->sum_blk; 2059 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2060 unsigned int i, start, end; 2061 unsigned int readed, start_blk = 0; 2062 int nrpages = MAX_BIO_BLOCKS(sbi); 2063 2064 do { 2065 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT); 2066 2067 start = start_blk * sit_i->sents_per_block; 2068 end = (start_blk + readed) * sit_i->sents_per_block; 2069 2070 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2071 struct seg_entry *se = &sit_i->sentries[start]; 2072 struct f2fs_sit_block *sit_blk; 2073 struct f2fs_sit_entry sit; 2074 struct page *page; 2075 2076 mutex_lock(&curseg->curseg_mutex); 2077 for (i = 0; i < sits_in_cursum(sum); i++) { 2078 if (le32_to_cpu(segno_in_journal(sum, i)) 2079 == start) { 2080 sit = sit_in_journal(sum, i); 2081 mutex_unlock(&curseg->curseg_mutex); 2082 goto got_it; 2083 } 2084 } 2085 mutex_unlock(&curseg->curseg_mutex); 2086 2087 page = get_current_sit_page(sbi, start); 2088 sit_blk = (struct f2fs_sit_block *)page_address(page); 2089 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2090 f2fs_put_page(page, 1); 2091 got_it: 2092 check_block_count(sbi, start, &sit); 2093 seg_info_from_raw_sit(se, &sit); 2094 2095 /* build discard map only one time */ 2096 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 2097 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks; 2098 2099 if (sbi->segs_per_sec > 1) { 2100 struct sec_entry *e = get_sec_entry(sbi, start); 2101 e->valid_blocks += se->valid_blocks; 2102 } 2103 } 2104 start_blk += readed; 2105 } while (start_blk < sit_blk_cnt); 2106 } 2107 2108 static void init_free_segmap(struct f2fs_sb_info *sbi) 2109 { 2110 unsigned int start; 2111 int type; 2112 2113 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2114 struct seg_entry *sentry = get_seg_entry(sbi, start); 2115 if (!sentry->valid_blocks) 2116 __set_free(sbi, start); 2117 } 2118 2119 /* set use the current segments */ 2120 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2121 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2122 __set_test_and_inuse(sbi, curseg_t->segno); 2123 } 2124 } 2125 2126 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2127 { 2128 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2129 struct free_segmap_info *free_i = FREE_I(sbi); 2130 unsigned int segno = 0, offset = 0; 2131 unsigned short valid_blocks; 2132 2133 while (1) { 2134 /* find dirty segment based on free segmap */ 2135 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2136 if (segno >= MAIN_SEGS(sbi)) 2137 break; 2138 offset = segno + 1; 2139 valid_blocks = get_valid_blocks(sbi, segno, 0); 2140 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2141 continue; 2142 if (valid_blocks > sbi->blocks_per_seg) { 2143 f2fs_bug_on(sbi, 1); 2144 continue; 2145 } 2146 mutex_lock(&dirty_i->seglist_lock); 2147 __locate_dirty_segment(sbi, segno, DIRTY); 2148 mutex_unlock(&dirty_i->seglist_lock); 2149 } 2150 } 2151 2152 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2153 { 2154 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2155 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2156 2157 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL); 2158 if (!dirty_i->victim_secmap) 2159 return -ENOMEM; 2160 return 0; 2161 } 2162 2163 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2164 { 2165 struct dirty_seglist_info *dirty_i; 2166 unsigned int bitmap_size, i; 2167 2168 /* allocate memory for dirty segments list information */ 2169 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2170 if (!dirty_i) 2171 return -ENOMEM; 2172 2173 SM_I(sbi)->dirty_info = dirty_i; 2174 mutex_init(&dirty_i->seglist_lock); 2175 2176 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2177 2178 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2179 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); 2180 if (!dirty_i->dirty_segmap[i]) 2181 return -ENOMEM; 2182 } 2183 2184 init_dirty_segmap(sbi); 2185 return init_victim_secmap(sbi); 2186 } 2187 2188 /* 2189 * Update min, max modified time for cost-benefit GC algorithm 2190 */ 2191 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2192 { 2193 struct sit_info *sit_i = SIT_I(sbi); 2194 unsigned int segno; 2195 2196 mutex_lock(&sit_i->sentry_lock); 2197 2198 sit_i->min_mtime = LLONG_MAX; 2199 2200 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2201 unsigned int i; 2202 unsigned long long mtime = 0; 2203 2204 for (i = 0; i < sbi->segs_per_sec; i++) 2205 mtime += get_seg_entry(sbi, segno + i)->mtime; 2206 2207 mtime = div_u64(mtime, sbi->segs_per_sec); 2208 2209 if (sit_i->min_mtime > mtime) 2210 sit_i->min_mtime = mtime; 2211 } 2212 sit_i->max_mtime = get_mtime(sbi); 2213 mutex_unlock(&sit_i->sentry_lock); 2214 } 2215 2216 int build_segment_manager(struct f2fs_sb_info *sbi) 2217 { 2218 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2219 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2220 struct f2fs_sm_info *sm_info; 2221 int err; 2222 2223 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2224 if (!sm_info) 2225 return -ENOMEM; 2226 2227 /* init sm info */ 2228 sbi->sm_info = sm_info; 2229 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2230 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2231 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2232 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2233 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2234 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2235 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2236 sm_info->rec_prefree_segments = sm_info->main_segments * 2237 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2238 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2239 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2240 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2241 2242 INIT_LIST_HEAD(&sm_info->discard_list); 2243 sm_info->nr_discards = 0; 2244 sm_info->max_discards = 0; 2245 2246 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2247 2248 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2249 2250 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2251 err = create_flush_cmd_control(sbi); 2252 if (err) 2253 return err; 2254 } 2255 2256 err = build_sit_info(sbi); 2257 if (err) 2258 return err; 2259 err = build_free_segmap(sbi); 2260 if (err) 2261 return err; 2262 err = build_curseg(sbi); 2263 if (err) 2264 return err; 2265 2266 /* reinit free segmap based on SIT */ 2267 build_sit_entries(sbi); 2268 2269 init_free_segmap(sbi); 2270 err = build_dirty_segmap(sbi); 2271 if (err) 2272 return err; 2273 2274 init_min_max_mtime(sbi); 2275 return 0; 2276 } 2277 2278 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2279 enum dirty_type dirty_type) 2280 { 2281 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2282 2283 mutex_lock(&dirty_i->seglist_lock); 2284 kfree(dirty_i->dirty_segmap[dirty_type]); 2285 dirty_i->nr_dirty[dirty_type] = 0; 2286 mutex_unlock(&dirty_i->seglist_lock); 2287 } 2288 2289 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2290 { 2291 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2292 kfree(dirty_i->victim_secmap); 2293 } 2294 2295 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2296 { 2297 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2298 int i; 2299 2300 if (!dirty_i) 2301 return; 2302 2303 /* discard pre-free/dirty segments list */ 2304 for (i = 0; i < NR_DIRTY_TYPE; i++) 2305 discard_dirty_segmap(sbi, i); 2306 2307 destroy_victim_secmap(sbi); 2308 SM_I(sbi)->dirty_info = NULL; 2309 kfree(dirty_i); 2310 } 2311 2312 static void destroy_curseg(struct f2fs_sb_info *sbi) 2313 { 2314 struct curseg_info *array = SM_I(sbi)->curseg_array; 2315 int i; 2316 2317 if (!array) 2318 return; 2319 SM_I(sbi)->curseg_array = NULL; 2320 for (i = 0; i < NR_CURSEG_TYPE; i++) 2321 kfree(array[i].sum_blk); 2322 kfree(array); 2323 } 2324 2325 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2326 { 2327 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2328 if (!free_i) 2329 return; 2330 SM_I(sbi)->free_info = NULL; 2331 kfree(free_i->free_segmap); 2332 kfree(free_i->free_secmap); 2333 kfree(free_i); 2334 } 2335 2336 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2337 { 2338 struct sit_info *sit_i = SIT_I(sbi); 2339 unsigned int start; 2340 2341 if (!sit_i) 2342 return; 2343 2344 if (sit_i->sentries) { 2345 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2346 kfree(sit_i->sentries[start].cur_valid_map); 2347 kfree(sit_i->sentries[start].ckpt_valid_map); 2348 kfree(sit_i->sentries[start].discard_map); 2349 } 2350 } 2351 kfree(sit_i->tmp_map); 2352 2353 vfree(sit_i->sentries); 2354 vfree(sit_i->sec_entries); 2355 kfree(sit_i->dirty_sentries_bitmap); 2356 2357 SM_I(sbi)->sit_info = NULL; 2358 kfree(sit_i->sit_bitmap); 2359 kfree(sit_i); 2360 } 2361 2362 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2363 { 2364 struct f2fs_sm_info *sm_info = SM_I(sbi); 2365 2366 if (!sm_info) 2367 return; 2368 destroy_flush_cmd_control(sbi); 2369 destroy_dirty_segmap(sbi); 2370 destroy_curseg(sbi); 2371 destroy_free_segmap(sbi); 2372 destroy_sit_info(sbi); 2373 sbi->sm_info = NULL; 2374 kfree(sm_info); 2375 } 2376 2377 int __init create_segment_manager_caches(void) 2378 { 2379 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2380 sizeof(struct discard_entry)); 2381 if (!discard_entry_slab) 2382 goto fail; 2383 2384 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2385 sizeof(struct sit_entry_set)); 2386 if (!sit_entry_set_slab) 2387 goto destory_discard_entry; 2388 2389 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2390 sizeof(struct inmem_pages)); 2391 if (!inmem_entry_slab) 2392 goto destroy_sit_entry_set; 2393 return 0; 2394 2395 destroy_sit_entry_set: 2396 kmem_cache_destroy(sit_entry_set_slab); 2397 destory_discard_entry: 2398 kmem_cache_destroy(discard_entry_slab); 2399 fail: 2400 return -ENOMEM; 2401 } 2402 2403 void destroy_segment_manager_caches(void) 2404 { 2405 kmem_cache_destroy(sit_entry_set_slab); 2406 kmem_cache_destroy(discard_entry_slab); 2407 kmem_cache_destroy(inmem_entry_slab); 2408 } 2409