xref: /openbmc/linux/fs/f2fs/segment.c (revision e149ca29)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 	unsigned long tmp = 0;
36 	int shift = 24, idx = 0;
37 
38 #if BITS_PER_LONG == 64
39 	shift = 56;
40 #endif
41 	while (shift >= 0) {
42 		tmp |= (unsigned long)str[idx++] << shift;
43 		shift -= BITS_PER_BYTE;
44 	}
45 	return tmp;
46 }
47 
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 	int num = 0;
55 
56 #if BITS_PER_LONG == 64
57 	if ((word & 0xffffffff00000000UL) == 0)
58 		num += 32;
59 	else
60 		word >>= 32;
61 #endif
62 	if ((word & 0xffff0000) == 0)
63 		num += 16;
64 	else
65 		word >>= 16;
66 
67 	if ((word & 0xff00) == 0)
68 		num += 8;
69 	else
70 		word >>= 8;
71 
72 	if ((word & 0xf0) == 0)
73 		num += 4;
74 	else
75 		word >>= 4;
76 
77 	if ((word & 0xc) == 0)
78 		num += 2;
79 	else
80 		word >>= 2;
81 
82 	if ((word & 0x2) == 0)
83 		num += 1;
84 	return num;
85 }
86 
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 			unsigned long size, unsigned long offset)
98 {
99 	const unsigned long *p = addr + BIT_WORD(offset);
100 	unsigned long result = size;
101 	unsigned long tmp;
102 
103 	if (offset >= size)
104 		return size;
105 
106 	size -= (offset & ~(BITS_PER_LONG - 1));
107 	offset %= BITS_PER_LONG;
108 
109 	while (1) {
110 		if (*p == 0)
111 			goto pass;
112 
113 		tmp = __reverse_ulong((unsigned char *)p);
114 
115 		tmp &= ~0UL >> offset;
116 		if (size < BITS_PER_LONG)
117 			tmp &= (~0UL << (BITS_PER_LONG - size));
118 		if (tmp)
119 			goto found;
120 pass:
121 		if (size <= BITS_PER_LONG)
122 			break;
123 		size -= BITS_PER_LONG;
124 		offset = 0;
125 		p++;
126 	}
127 	return result;
128 found:
129 	return result - size + __reverse_ffs(tmp);
130 }
131 
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 			unsigned long size, unsigned long offset)
134 {
135 	const unsigned long *p = addr + BIT_WORD(offset);
136 	unsigned long result = size;
137 	unsigned long tmp;
138 
139 	if (offset >= size)
140 		return size;
141 
142 	size -= (offset & ~(BITS_PER_LONG - 1));
143 	offset %= BITS_PER_LONG;
144 
145 	while (1) {
146 		if (*p == ~0UL)
147 			goto pass;
148 
149 		tmp = __reverse_ulong((unsigned char *)p);
150 
151 		if (offset)
152 			tmp |= ~0UL << (BITS_PER_LONG - offset);
153 		if (size < BITS_PER_LONG)
154 			tmp |= ~0UL >> size;
155 		if (tmp != ~0UL)
156 			goto found;
157 pass:
158 		if (size <= BITS_PER_LONG)
159 			break;
160 		size -= BITS_PER_LONG;
161 		offset = 0;
162 		p++;
163 	}
164 	return result;
165 found:
166 	return result - size + __reverse_ffz(tmp);
167 }
168 
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174 
175 	if (f2fs_lfs_mode(sbi))
176 		return false;
177 	if (sbi->gc_mode == GC_URGENT)
178 		return true;
179 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 		return true;
181 
182 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185 
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 	struct inmem_pages *new;
189 
190 	f2fs_trace_pid(page);
191 
192 	f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
193 
194 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195 
196 	/* add atomic page indices to the list */
197 	new->page = page;
198 	INIT_LIST_HEAD(&new->list);
199 
200 	/* increase reference count with clean state */
201 	get_page(page);
202 	mutex_lock(&F2FS_I(inode)->inmem_lock);
203 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 	mutex_unlock(&F2FS_I(inode)->inmem_lock);
206 
207 	trace_f2fs_register_inmem_page(page, INMEM);
208 }
209 
210 static int __revoke_inmem_pages(struct inode *inode,
211 				struct list_head *head, bool drop, bool recover,
212 				bool trylock)
213 {
214 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 	struct inmem_pages *cur, *tmp;
216 	int err = 0;
217 
218 	list_for_each_entry_safe(cur, tmp, head, list) {
219 		struct page *page = cur->page;
220 
221 		if (drop)
222 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223 
224 		if (trylock) {
225 			/*
226 			 * to avoid deadlock in between page lock and
227 			 * inmem_lock.
228 			 */
229 			if (!trylock_page(page))
230 				continue;
231 		} else {
232 			lock_page(page);
233 		}
234 
235 		f2fs_wait_on_page_writeback(page, DATA, true, true);
236 
237 		if (recover) {
238 			struct dnode_of_data dn;
239 			struct node_info ni;
240 
241 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243 			set_new_dnode(&dn, inode, NULL, NULL, 0);
244 			err = f2fs_get_dnode_of_data(&dn, page->index,
245 								LOOKUP_NODE);
246 			if (err) {
247 				if (err == -ENOMEM) {
248 					congestion_wait(BLK_RW_ASYNC,
249 							DEFAULT_IO_TIMEOUT);
250 					cond_resched();
251 					goto retry;
252 				}
253 				err = -EAGAIN;
254 				goto next;
255 			}
256 
257 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
258 			if (err) {
259 				f2fs_put_dnode(&dn);
260 				return err;
261 			}
262 
263 			if (cur->old_addr == NEW_ADDR) {
264 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266 			} else
267 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268 					cur->old_addr, ni.version, true, true);
269 			f2fs_put_dnode(&dn);
270 		}
271 next:
272 		/* we don't need to invalidate this in the sccessful status */
273 		if (drop || recover) {
274 			ClearPageUptodate(page);
275 			clear_cold_data(page);
276 		}
277 		f2fs_clear_page_private(page);
278 		f2fs_put_page(page, 1);
279 
280 		list_del(&cur->list);
281 		kmem_cache_free(inmem_entry_slab, cur);
282 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283 	}
284 	return err;
285 }
286 
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290 	struct inode *inode;
291 	struct f2fs_inode_info *fi;
292 	unsigned int count = sbi->atomic_files;
293 	unsigned int looped = 0;
294 next:
295 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 	if (list_empty(head)) {
297 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 		return;
299 	}
300 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 	inode = igrab(&fi->vfs_inode);
302 	if (inode)
303 		list_move_tail(&fi->inmem_ilist, head);
304 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305 
306 	if (inode) {
307 		if (gc_failure) {
308 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309 				goto skip;
310 		}
311 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 		f2fs_drop_inmem_pages(inode);
313 skip:
314 		iput(inode);
315 	}
316 	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317 	cond_resched();
318 	if (gc_failure) {
319 		if (++looped >= count)
320 			return;
321 	}
322 	goto next;
323 }
324 
325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 	struct f2fs_inode_info *fi = F2FS_I(inode);
329 
330 	while (!list_empty(&fi->inmem_pages)) {
331 		mutex_lock(&fi->inmem_lock);
332 		__revoke_inmem_pages(inode, &fi->inmem_pages,
333 						true, false, true);
334 		mutex_unlock(&fi->inmem_lock);
335 	}
336 
337 	fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
338 
339 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
340 	if (!list_empty(&fi->inmem_ilist))
341 		list_del_init(&fi->inmem_ilist);
342 	if (f2fs_is_atomic_file(inode)) {
343 		clear_inode_flag(inode, FI_ATOMIC_FILE);
344 		sbi->atomic_files--;
345 	}
346 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
347 }
348 
349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
350 {
351 	struct f2fs_inode_info *fi = F2FS_I(inode);
352 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
353 	struct list_head *head = &fi->inmem_pages;
354 	struct inmem_pages *cur = NULL;
355 
356 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
357 
358 	mutex_lock(&fi->inmem_lock);
359 	list_for_each_entry(cur, head, list) {
360 		if (cur->page == page)
361 			break;
362 	}
363 
364 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
365 	list_del(&cur->list);
366 	mutex_unlock(&fi->inmem_lock);
367 
368 	dec_page_count(sbi, F2FS_INMEM_PAGES);
369 	kmem_cache_free(inmem_entry_slab, cur);
370 
371 	ClearPageUptodate(page);
372 	f2fs_clear_page_private(page);
373 	f2fs_put_page(page, 0);
374 
375 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
376 }
377 
378 static int __f2fs_commit_inmem_pages(struct inode *inode)
379 {
380 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381 	struct f2fs_inode_info *fi = F2FS_I(inode);
382 	struct inmem_pages *cur, *tmp;
383 	struct f2fs_io_info fio = {
384 		.sbi = sbi,
385 		.ino = inode->i_ino,
386 		.type = DATA,
387 		.op = REQ_OP_WRITE,
388 		.op_flags = REQ_SYNC | REQ_PRIO,
389 		.io_type = FS_DATA_IO,
390 	};
391 	struct list_head revoke_list;
392 	bool submit_bio = false;
393 	int err = 0;
394 
395 	INIT_LIST_HEAD(&revoke_list);
396 
397 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
398 		struct page *page = cur->page;
399 
400 		lock_page(page);
401 		if (page->mapping == inode->i_mapping) {
402 			trace_f2fs_commit_inmem_page(page, INMEM);
403 
404 			f2fs_wait_on_page_writeback(page, DATA, true, true);
405 
406 			set_page_dirty(page);
407 			if (clear_page_dirty_for_io(page)) {
408 				inode_dec_dirty_pages(inode);
409 				f2fs_remove_dirty_inode(inode);
410 			}
411 retry:
412 			fio.page = page;
413 			fio.old_blkaddr = NULL_ADDR;
414 			fio.encrypted_page = NULL;
415 			fio.need_lock = LOCK_DONE;
416 			err = f2fs_do_write_data_page(&fio);
417 			if (err) {
418 				if (err == -ENOMEM) {
419 					congestion_wait(BLK_RW_ASYNC,
420 							DEFAULT_IO_TIMEOUT);
421 					cond_resched();
422 					goto retry;
423 				}
424 				unlock_page(page);
425 				break;
426 			}
427 			/* record old blkaddr for revoking */
428 			cur->old_addr = fio.old_blkaddr;
429 			submit_bio = true;
430 		}
431 		unlock_page(page);
432 		list_move_tail(&cur->list, &revoke_list);
433 	}
434 
435 	if (submit_bio)
436 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
437 
438 	if (err) {
439 		/*
440 		 * try to revoke all committed pages, but still we could fail
441 		 * due to no memory or other reason, if that happened, EAGAIN
442 		 * will be returned, which means in such case, transaction is
443 		 * already not integrity, caller should use journal to do the
444 		 * recovery or rewrite & commit last transaction. For other
445 		 * error number, revoking was done by filesystem itself.
446 		 */
447 		err = __revoke_inmem_pages(inode, &revoke_list,
448 						false, true, false);
449 
450 		/* drop all uncommitted pages */
451 		__revoke_inmem_pages(inode, &fi->inmem_pages,
452 						true, false, false);
453 	} else {
454 		__revoke_inmem_pages(inode, &revoke_list,
455 						false, false, false);
456 	}
457 
458 	return err;
459 }
460 
461 int f2fs_commit_inmem_pages(struct inode *inode)
462 {
463 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
464 	struct f2fs_inode_info *fi = F2FS_I(inode);
465 	int err;
466 
467 	f2fs_balance_fs(sbi, true);
468 
469 	down_write(&fi->i_gc_rwsem[WRITE]);
470 
471 	f2fs_lock_op(sbi);
472 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
473 
474 	mutex_lock(&fi->inmem_lock);
475 	err = __f2fs_commit_inmem_pages(inode);
476 	mutex_unlock(&fi->inmem_lock);
477 
478 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
479 
480 	f2fs_unlock_op(sbi);
481 	up_write(&fi->i_gc_rwsem[WRITE]);
482 
483 	return err;
484 }
485 
486 /*
487  * This function balances dirty node and dentry pages.
488  * In addition, it controls garbage collection.
489  */
490 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
491 {
492 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
493 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
494 		f2fs_stop_checkpoint(sbi, false);
495 	}
496 
497 	/* balance_fs_bg is able to be pending */
498 	if (need && excess_cached_nats(sbi))
499 		f2fs_balance_fs_bg(sbi, false);
500 
501 	if (!f2fs_is_checkpoint_ready(sbi))
502 		return;
503 
504 	/*
505 	 * We should do GC or end up with checkpoint, if there are so many dirty
506 	 * dir/node pages without enough free segments.
507 	 */
508 	if (has_not_enough_free_secs(sbi, 0, 0)) {
509 		down_write(&sbi->gc_lock);
510 		f2fs_gc(sbi, false, false, NULL_SEGNO);
511 	}
512 }
513 
514 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
515 {
516 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
517 		return;
518 
519 	/* try to shrink extent cache when there is no enough memory */
520 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
521 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
522 
523 	/* check the # of cached NAT entries */
524 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
525 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
526 
527 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
528 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
529 	else
530 		f2fs_build_free_nids(sbi, false, false);
531 
532 	if (!is_idle(sbi, REQ_TIME) &&
533 		(!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi)))
534 		return;
535 
536 	/* checkpoint is the only way to shrink partial cached entries */
537 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
538 			!f2fs_available_free_memory(sbi, INO_ENTRIES) ||
539 			excess_prefree_segs(sbi) ||
540 			excess_dirty_nats(sbi) ||
541 			excess_dirty_nodes(sbi) ||
542 			f2fs_time_over(sbi, CP_TIME)) {
543 		if (test_opt(sbi, DATA_FLUSH) && from_bg) {
544 			struct blk_plug plug;
545 
546 			mutex_lock(&sbi->flush_lock);
547 
548 			blk_start_plug(&plug);
549 			f2fs_sync_dirty_inodes(sbi, FILE_INODE);
550 			blk_finish_plug(&plug);
551 
552 			mutex_unlock(&sbi->flush_lock);
553 		}
554 		f2fs_sync_fs(sbi->sb, true);
555 		stat_inc_bg_cp_count(sbi->stat_info);
556 	}
557 }
558 
559 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
560 				struct block_device *bdev)
561 {
562 	struct bio *bio;
563 	int ret;
564 
565 	bio = f2fs_bio_alloc(sbi, 0, false);
566 	if (!bio)
567 		return -ENOMEM;
568 
569 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
570 	bio_set_dev(bio, bdev);
571 	ret = submit_bio_wait(bio);
572 	bio_put(bio);
573 
574 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
575 				test_opt(sbi, FLUSH_MERGE), ret);
576 	return ret;
577 }
578 
579 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
580 {
581 	int ret = 0;
582 	int i;
583 
584 	if (!f2fs_is_multi_device(sbi))
585 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
586 
587 	for (i = 0; i < sbi->s_ndevs; i++) {
588 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
589 			continue;
590 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
591 		if (ret)
592 			break;
593 	}
594 	return ret;
595 }
596 
597 static int issue_flush_thread(void *data)
598 {
599 	struct f2fs_sb_info *sbi = data;
600 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
601 	wait_queue_head_t *q = &fcc->flush_wait_queue;
602 repeat:
603 	if (kthread_should_stop())
604 		return 0;
605 
606 	sb_start_intwrite(sbi->sb);
607 
608 	if (!llist_empty(&fcc->issue_list)) {
609 		struct flush_cmd *cmd, *next;
610 		int ret;
611 
612 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
613 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
614 
615 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
616 
617 		ret = submit_flush_wait(sbi, cmd->ino);
618 		atomic_inc(&fcc->issued_flush);
619 
620 		llist_for_each_entry_safe(cmd, next,
621 					  fcc->dispatch_list, llnode) {
622 			cmd->ret = ret;
623 			complete(&cmd->wait);
624 		}
625 		fcc->dispatch_list = NULL;
626 	}
627 
628 	sb_end_intwrite(sbi->sb);
629 
630 	wait_event_interruptible(*q,
631 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
632 	goto repeat;
633 }
634 
635 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
636 {
637 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
638 	struct flush_cmd cmd;
639 	int ret;
640 
641 	if (test_opt(sbi, NOBARRIER))
642 		return 0;
643 
644 	if (!test_opt(sbi, FLUSH_MERGE)) {
645 		atomic_inc(&fcc->queued_flush);
646 		ret = submit_flush_wait(sbi, ino);
647 		atomic_dec(&fcc->queued_flush);
648 		atomic_inc(&fcc->issued_flush);
649 		return ret;
650 	}
651 
652 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
653 	    f2fs_is_multi_device(sbi)) {
654 		ret = submit_flush_wait(sbi, ino);
655 		atomic_dec(&fcc->queued_flush);
656 
657 		atomic_inc(&fcc->issued_flush);
658 		return ret;
659 	}
660 
661 	cmd.ino = ino;
662 	init_completion(&cmd.wait);
663 
664 	llist_add(&cmd.llnode, &fcc->issue_list);
665 
666 	/* update issue_list before we wake up issue_flush thread */
667 	smp_mb();
668 
669 	if (waitqueue_active(&fcc->flush_wait_queue))
670 		wake_up(&fcc->flush_wait_queue);
671 
672 	if (fcc->f2fs_issue_flush) {
673 		wait_for_completion(&cmd.wait);
674 		atomic_dec(&fcc->queued_flush);
675 	} else {
676 		struct llist_node *list;
677 
678 		list = llist_del_all(&fcc->issue_list);
679 		if (!list) {
680 			wait_for_completion(&cmd.wait);
681 			atomic_dec(&fcc->queued_flush);
682 		} else {
683 			struct flush_cmd *tmp, *next;
684 
685 			ret = submit_flush_wait(sbi, ino);
686 
687 			llist_for_each_entry_safe(tmp, next, list, llnode) {
688 				if (tmp == &cmd) {
689 					cmd.ret = ret;
690 					atomic_dec(&fcc->queued_flush);
691 					continue;
692 				}
693 				tmp->ret = ret;
694 				complete(&tmp->wait);
695 			}
696 		}
697 	}
698 
699 	return cmd.ret;
700 }
701 
702 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
703 {
704 	dev_t dev = sbi->sb->s_bdev->bd_dev;
705 	struct flush_cmd_control *fcc;
706 	int err = 0;
707 
708 	if (SM_I(sbi)->fcc_info) {
709 		fcc = SM_I(sbi)->fcc_info;
710 		if (fcc->f2fs_issue_flush)
711 			return err;
712 		goto init_thread;
713 	}
714 
715 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
716 	if (!fcc)
717 		return -ENOMEM;
718 	atomic_set(&fcc->issued_flush, 0);
719 	atomic_set(&fcc->queued_flush, 0);
720 	init_waitqueue_head(&fcc->flush_wait_queue);
721 	init_llist_head(&fcc->issue_list);
722 	SM_I(sbi)->fcc_info = fcc;
723 	if (!test_opt(sbi, FLUSH_MERGE))
724 		return err;
725 
726 init_thread:
727 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
728 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
729 	if (IS_ERR(fcc->f2fs_issue_flush)) {
730 		err = PTR_ERR(fcc->f2fs_issue_flush);
731 		kvfree(fcc);
732 		SM_I(sbi)->fcc_info = NULL;
733 		return err;
734 	}
735 
736 	return err;
737 }
738 
739 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
740 {
741 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
742 
743 	if (fcc && fcc->f2fs_issue_flush) {
744 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
745 
746 		fcc->f2fs_issue_flush = NULL;
747 		kthread_stop(flush_thread);
748 	}
749 	if (free) {
750 		kvfree(fcc);
751 		SM_I(sbi)->fcc_info = NULL;
752 	}
753 }
754 
755 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
756 {
757 	int ret = 0, i;
758 
759 	if (!f2fs_is_multi_device(sbi))
760 		return 0;
761 
762 	for (i = 1; i < sbi->s_ndevs; i++) {
763 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
764 			continue;
765 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
766 		if (ret)
767 			break;
768 
769 		spin_lock(&sbi->dev_lock);
770 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
771 		spin_unlock(&sbi->dev_lock);
772 	}
773 
774 	return ret;
775 }
776 
777 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
778 		enum dirty_type dirty_type)
779 {
780 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
781 
782 	/* need not be added */
783 	if (IS_CURSEG(sbi, segno))
784 		return;
785 
786 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
787 		dirty_i->nr_dirty[dirty_type]++;
788 
789 	if (dirty_type == DIRTY) {
790 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
791 		enum dirty_type t = sentry->type;
792 
793 		if (unlikely(t >= DIRTY)) {
794 			f2fs_bug_on(sbi, 1);
795 			return;
796 		}
797 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
798 			dirty_i->nr_dirty[t]++;
799 	}
800 }
801 
802 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
803 		enum dirty_type dirty_type)
804 {
805 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
806 
807 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
808 		dirty_i->nr_dirty[dirty_type]--;
809 
810 	if (dirty_type == DIRTY) {
811 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
812 		enum dirty_type t = sentry->type;
813 
814 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
815 			dirty_i->nr_dirty[t]--;
816 
817 		if (get_valid_blocks(sbi, segno, true) == 0) {
818 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
819 						dirty_i->victim_secmap);
820 #ifdef CONFIG_F2FS_CHECK_FS
821 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
822 #endif
823 		}
824 	}
825 }
826 
827 /*
828  * Should not occur error such as -ENOMEM.
829  * Adding dirty entry into seglist is not critical operation.
830  * If a given segment is one of current working segments, it won't be added.
831  */
832 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
833 {
834 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
835 	unsigned short valid_blocks, ckpt_valid_blocks;
836 
837 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
838 		return;
839 
840 	mutex_lock(&dirty_i->seglist_lock);
841 
842 	valid_blocks = get_valid_blocks(sbi, segno, false);
843 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno);
844 
845 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
846 				ckpt_valid_blocks == sbi->blocks_per_seg)) {
847 		__locate_dirty_segment(sbi, segno, PRE);
848 		__remove_dirty_segment(sbi, segno, DIRTY);
849 	} else if (valid_blocks < sbi->blocks_per_seg) {
850 		__locate_dirty_segment(sbi, segno, DIRTY);
851 	} else {
852 		/* Recovery routine with SSR needs this */
853 		__remove_dirty_segment(sbi, segno, DIRTY);
854 	}
855 
856 	mutex_unlock(&dirty_i->seglist_lock);
857 }
858 
859 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
860 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
861 {
862 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
863 	unsigned int segno;
864 
865 	mutex_lock(&dirty_i->seglist_lock);
866 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
867 		if (get_valid_blocks(sbi, segno, false))
868 			continue;
869 		if (IS_CURSEG(sbi, segno))
870 			continue;
871 		__locate_dirty_segment(sbi, segno, PRE);
872 		__remove_dirty_segment(sbi, segno, DIRTY);
873 	}
874 	mutex_unlock(&dirty_i->seglist_lock);
875 }
876 
877 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
878 {
879 	int ovp_hole_segs =
880 		(overprovision_segments(sbi) - reserved_segments(sbi));
881 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
882 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
883 	block_t holes[2] = {0, 0};	/* DATA and NODE */
884 	block_t unusable;
885 	struct seg_entry *se;
886 	unsigned int segno;
887 
888 	mutex_lock(&dirty_i->seglist_lock);
889 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
890 		se = get_seg_entry(sbi, segno);
891 		if (IS_NODESEG(se->type))
892 			holes[NODE] += sbi->blocks_per_seg - se->valid_blocks;
893 		else
894 			holes[DATA] += sbi->blocks_per_seg - se->valid_blocks;
895 	}
896 	mutex_unlock(&dirty_i->seglist_lock);
897 
898 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
899 	if (unusable > ovp_holes)
900 		return unusable - ovp_holes;
901 	return 0;
902 }
903 
904 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
905 {
906 	int ovp_hole_segs =
907 		(overprovision_segments(sbi) - reserved_segments(sbi));
908 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
909 		return -EAGAIN;
910 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
911 		dirty_segments(sbi) > ovp_hole_segs)
912 		return -EAGAIN;
913 	return 0;
914 }
915 
916 /* This is only used by SBI_CP_DISABLED */
917 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
918 {
919 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
920 	unsigned int segno = 0;
921 
922 	mutex_lock(&dirty_i->seglist_lock);
923 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
924 		if (get_valid_blocks(sbi, segno, false))
925 			continue;
926 		if (get_ckpt_valid_blocks(sbi, segno))
927 			continue;
928 		mutex_unlock(&dirty_i->seglist_lock);
929 		return segno;
930 	}
931 	mutex_unlock(&dirty_i->seglist_lock);
932 	return NULL_SEGNO;
933 }
934 
935 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
936 		struct block_device *bdev, block_t lstart,
937 		block_t start, block_t len)
938 {
939 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
940 	struct list_head *pend_list;
941 	struct discard_cmd *dc;
942 
943 	f2fs_bug_on(sbi, !len);
944 
945 	pend_list = &dcc->pend_list[plist_idx(len)];
946 
947 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
948 	INIT_LIST_HEAD(&dc->list);
949 	dc->bdev = bdev;
950 	dc->lstart = lstart;
951 	dc->start = start;
952 	dc->len = len;
953 	dc->ref = 0;
954 	dc->state = D_PREP;
955 	dc->queued = 0;
956 	dc->error = 0;
957 	init_completion(&dc->wait);
958 	list_add_tail(&dc->list, pend_list);
959 	spin_lock_init(&dc->lock);
960 	dc->bio_ref = 0;
961 	atomic_inc(&dcc->discard_cmd_cnt);
962 	dcc->undiscard_blks += len;
963 
964 	return dc;
965 }
966 
967 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
968 				struct block_device *bdev, block_t lstart,
969 				block_t start, block_t len,
970 				struct rb_node *parent, struct rb_node **p,
971 				bool leftmost)
972 {
973 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
974 	struct discard_cmd *dc;
975 
976 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
977 
978 	rb_link_node(&dc->rb_node, parent, p);
979 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
980 
981 	return dc;
982 }
983 
984 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
985 							struct discard_cmd *dc)
986 {
987 	if (dc->state == D_DONE)
988 		atomic_sub(dc->queued, &dcc->queued_discard);
989 
990 	list_del(&dc->list);
991 	rb_erase_cached(&dc->rb_node, &dcc->root);
992 	dcc->undiscard_blks -= dc->len;
993 
994 	kmem_cache_free(discard_cmd_slab, dc);
995 
996 	atomic_dec(&dcc->discard_cmd_cnt);
997 }
998 
999 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1000 							struct discard_cmd *dc)
1001 {
1002 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1003 	unsigned long flags;
1004 
1005 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1006 
1007 	spin_lock_irqsave(&dc->lock, flags);
1008 	if (dc->bio_ref) {
1009 		spin_unlock_irqrestore(&dc->lock, flags);
1010 		return;
1011 	}
1012 	spin_unlock_irqrestore(&dc->lock, flags);
1013 
1014 	f2fs_bug_on(sbi, dc->ref);
1015 
1016 	if (dc->error == -EOPNOTSUPP)
1017 		dc->error = 0;
1018 
1019 	if (dc->error)
1020 		printk_ratelimited(
1021 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1022 			KERN_INFO, sbi->sb->s_id,
1023 			dc->lstart, dc->start, dc->len, dc->error);
1024 	__detach_discard_cmd(dcc, dc);
1025 }
1026 
1027 static void f2fs_submit_discard_endio(struct bio *bio)
1028 {
1029 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1030 	unsigned long flags;
1031 
1032 	dc->error = blk_status_to_errno(bio->bi_status);
1033 
1034 	spin_lock_irqsave(&dc->lock, flags);
1035 	dc->bio_ref--;
1036 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1037 		dc->state = D_DONE;
1038 		complete_all(&dc->wait);
1039 	}
1040 	spin_unlock_irqrestore(&dc->lock, flags);
1041 	bio_put(bio);
1042 }
1043 
1044 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1045 				block_t start, block_t end)
1046 {
1047 #ifdef CONFIG_F2FS_CHECK_FS
1048 	struct seg_entry *sentry;
1049 	unsigned int segno;
1050 	block_t blk = start;
1051 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1052 	unsigned long *map;
1053 
1054 	while (blk < end) {
1055 		segno = GET_SEGNO(sbi, blk);
1056 		sentry = get_seg_entry(sbi, segno);
1057 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1058 
1059 		if (end < START_BLOCK(sbi, segno + 1))
1060 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1061 		else
1062 			size = max_blocks;
1063 		map = (unsigned long *)(sentry->cur_valid_map);
1064 		offset = __find_rev_next_bit(map, size, offset);
1065 		f2fs_bug_on(sbi, offset != size);
1066 		blk = START_BLOCK(sbi, segno + 1);
1067 	}
1068 #endif
1069 }
1070 
1071 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1072 				struct discard_policy *dpolicy,
1073 				int discard_type, unsigned int granularity)
1074 {
1075 	/* common policy */
1076 	dpolicy->type = discard_type;
1077 	dpolicy->sync = true;
1078 	dpolicy->ordered = false;
1079 	dpolicy->granularity = granularity;
1080 
1081 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1082 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1083 	dpolicy->timeout = false;
1084 
1085 	if (discard_type == DPOLICY_BG) {
1086 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1087 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1088 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1089 		dpolicy->io_aware = true;
1090 		dpolicy->sync = false;
1091 		dpolicy->ordered = true;
1092 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1093 			dpolicy->granularity = 1;
1094 			dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1095 		}
1096 	} else if (discard_type == DPOLICY_FORCE) {
1097 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1098 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1099 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1100 		dpolicy->io_aware = false;
1101 	} else if (discard_type == DPOLICY_FSTRIM) {
1102 		dpolicy->io_aware = false;
1103 	} else if (discard_type == DPOLICY_UMOUNT) {
1104 		dpolicy->max_requests = UINT_MAX;
1105 		dpolicy->io_aware = false;
1106 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1107 		dpolicy->granularity = 1;
1108 		dpolicy->timeout = true;
1109 	}
1110 }
1111 
1112 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1113 				struct block_device *bdev, block_t lstart,
1114 				block_t start, block_t len);
1115 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1116 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1117 						struct discard_policy *dpolicy,
1118 						struct discard_cmd *dc,
1119 						unsigned int *issued)
1120 {
1121 	struct block_device *bdev = dc->bdev;
1122 	struct request_queue *q = bdev_get_queue(bdev);
1123 	unsigned int max_discard_blocks =
1124 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1125 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1126 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1127 					&(dcc->fstrim_list) : &(dcc->wait_list);
1128 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1129 	block_t lstart, start, len, total_len;
1130 	int err = 0;
1131 
1132 	if (dc->state != D_PREP)
1133 		return 0;
1134 
1135 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1136 		return 0;
1137 
1138 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1139 
1140 	lstart = dc->lstart;
1141 	start = dc->start;
1142 	len = dc->len;
1143 	total_len = len;
1144 
1145 	dc->len = 0;
1146 
1147 	while (total_len && *issued < dpolicy->max_requests && !err) {
1148 		struct bio *bio = NULL;
1149 		unsigned long flags;
1150 		bool last = true;
1151 
1152 		if (len > max_discard_blocks) {
1153 			len = max_discard_blocks;
1154 			last = false;
1155 		}
1156 
1157 		(*issued)++;
1158 		if (*issued == dpolicy->max_requests)
1159 			last = true;
1160 
1161 		dc->len += len;
1162 
1163 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1164 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1165 			err = -EIO;
1166 			goto submit;
1167 		}
1168 		err = __blkdev_issue_discard(bdev,
1169 					SECTOR_FROM_BLOCK(start),
1170 					SECTOR_FROM_BLOCK(len),
1171 					GFP_NOFS, 0, &bio);
1172 submit:
1173 		if (err) {
1174 			spin_lock_irqsave(&dc->lock, flags);
1175 			if (dc->state == D_PARTIAL)
1176 				dc->state = D_SUBMIT;
1177 			spin_unlock_irqrestore(&dc->lock, flags);
1178 
1179 			break;
1180 		}
1181 
1182 		f2fs_bug_on(sbi, !bio);
1183 
1184 		/*
1185 		 * should keep before submission to avoid D_DONE
1186 		 * right away
1187 		 */
1188 		spin_lock_irqsave(&dc->lock, flags);
1189 		if (last)
1190 			dc->state = D_SUBMIT;
1191 		else
1192 			dc->state = D_PARTIAL;
1193 		dc->bio_ref++;
1194 		spin_unlock_irqrestore(&dc->lock, flags);
1195 
1196 		atomic_inc(&dcc->queued_discard);
1197 		dc->queued++;
1198 		list_move_tail(&dc->list, wait_list);
1199 
1200 		/* sanity check on discard range */
1201 		__check_sit_bitmap(sbi, lstart, lstart + len);
1202 
1203 		bio->bi_private = dc;
1204 		bio->bi_end_io = f2fs_submit_discard_endio;
1205 		bio->bi_opf |= flag;
1206 		submit_bio(bio);
1207 
1208 		atomic_inc(&dcc->issued_discard);
1209 
1210 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1211 
1212 		lstart += len;
1213 		start += len;
1214 		total_len -= len;
1215 		len = total_len;
1216 	}
1217 
1218 	if (!err && len)
1219 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1220 	return err;
1221 }
1222 
1223 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
1224 				struct block_device *bdev, block_t lstart,
1225 				block_t start, block_t len,
1226 				struct rb_node **insert_p,
1227 				struct rb_node *insert_parent)
1228 {
1229 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1230 	struct rb_node **p;
1231 	struct rb_node *parent = NULL;
1232 	struct discard_cmd *dc = NULL;
1233 	bool leftmost = true;
1234 
1235 	if (insert_p && insert_parent) {
1236 		parent = insert_parent;
1237 		p = insert_p;
1238 		goto do_insert;
1239 	}
1240 
1241 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1242 							lstart, &leftmost);
1243 do_insert:
1244 	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1245 								p, leftmost);
1246 	if (!dc)
1247 		return NULL;
1248 
1249 	return dc;
1250 }
1251 
1252 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1253 						struct discard_cmd *dc)
1254 {
1255 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1256 }
1257 
1258 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1259 				struct discard_cmd *dc, block_t blkaddr)
1260 {
1261 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1262 	struct discard_info di = dc->di;
1263 	bool modified = false;
1264 
1265 	if (dc->state == D_DONE || dc->len == 1) {
1266 		__remove_discard_cmd(sbi, dc);
1267 		return;
1268 	}
1269 
1270 	dcc->undiscard_blks -= di.len;
1271 
1272 	if (blkaddr > di.lstart) {
1273 		dc->len = blkaddr - dc->lstart;
1274 		dcc->undiscard_blks += dc->len;
1275 		__relocate_discard_cmd(dcc, dc);
1276 		modified = true;
1277 	}
1278 
1279 	if (blkaddr < di.lstart + di.len - 1) {
1280 		if (modified) {
1281 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1282 					di.start + blkaddr + 1 - di.lstart,
1283 					di.lstart + di.len - 1 - blkaddr,
1284 					NULL, NULL);
1285 		} else {
1286 			dc->lstart++;
1287 			dc->len--;
1288 			dc->start++;
1289 			dcc->undiscard_blks += dc->len;
1290 			__relocate_discard_cmd(dcc, dc);
1291 		}
1292 	}
1293 }
1294 
1295 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1296 				struct block_device *bdev, block_t lstart,
1297 				block_t start, block_t len)
1298 {
1299 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1300 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1301 	struct discard_cmd *dc;
1302 	struct discard_info di = {0};
1303 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1304 	struct request_queue *q = bdev_get_queue(bdev);
1305 	unsigned int max_discard_blocks =
1306 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1307 	block_t end = lstart + len;
1308 
1309 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1310 					NULL, lstart,
1311 					(struct rb_entry **)&prev_dc,
1312 					(struct rb_entry **)&next_dc,
1313 					&insert_p, &insert_parent, true, NULL);
1314 	if (dc)
1315 		prev_dc = dc;
1316 
1317 	if (!prev_dc) {
1318 		di.lstart = lstart;
1319 		di.len = next_dc ? next_dc->lstart - lstart : len;
1320 		di.len = min(di.len, len);
1321 		di.start = start;
1322 	}
1323 
1324 	while (1) {
1325 		struct rb_node *node;
1326 		bool merged = false;
1327 		struct discard_cmd *tdc = NULL;
1328 
1329 		if (prev_dc) {
1330 			di.lstart = prev_dc->lstart + prev_dc->len;
1331 			if (di.lstart < lstart)
1332 				di.lstart = lstart;
1333 			if (di.lstart >= end)
1334 				break;
1335 
1336 			if (!next_dc || next_dc->lstart > end)
1337 				di.len = end - di.lstart;
1338 			else
1339 				di.len = next_dc->lstart - di.lstart;
1340 			di.start = start + di.lstart - lstart;
1341 		}
1342 
1343 		if (!di.len)
1344 			goto next;
1345 
1346 		if (prev_dc && prev_dc->state == D_PREP &&
1347 			prev_dc->bdev == bdev &&
1348 			__is_discard_back_mergeable(&di, &prev_dc->di,
1349 							max_discard_blocks)) {
1350 			prev_dc->di.len += di.len;
1351 			dcc->undiscard_blks += di.len;
1352 			__relocate_discard_cmd(dcc, prev_dc);
1353 			di = prev_dc->di;
1354 			tdc = prev_dc;
1355 			merged = true;
1356 		}
1357 
1358 		if (next_dc && next_dc->state == D_PREP &&
1359 			next_dc->bdev == bdev &&
1360 			__is_discard_front_mergeable(&di, &next_dc->di,
1361 							max_discard_blocks)) {
1362 			next_dc->di.lstart = di.lstart;
1363 			next_dc->di.len += di.len;
1364 			next_dc->di.start = di.start;
1365 			dcc->undiscard_blks += di.len;
1366 			__relocate_discard_cmd(dcc, next_dc);
1367 			if (tdc)
1368 				__remove_discard_cmd(sbi, tdc);
1369 			merged = true;
1370 		}
1371 
1372 		if (!merged) {
1373 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1374 							di.len, NULL, NULL);
1375 		}
1376  next:
1377 		prev_dc = next_dc;
1378 		if (!prev_dc)
1379 			break;
1380 
1381 		node = rb_next(&prev_dc->rb_node);
1382 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1383 	}
1384 }
1385 
1386 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1387 		struct block_device *bdev, block_t blkstart, block_t blklen)
1388 {
1389 	block_t lblkstart = blkstart;
1390 
1391 	if (!f2fs_bdev_support_discard(bdev))
1392 		return 0;
1393 
1394 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1395 
1396 	if (f2fs_is_multi_device(sbi)) {
1397 		int devi = f2fs_target_device_index(sbi, blkstart);
1398 
1399 		blkstart -= FDEV(devi).start_blk;
1400 	}
1401 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1402 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1403 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1404 	return 0;
1405 }
1406 
1407 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1408 					struct discard_policy *dpolicy)
1409 {
1410 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1411 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1412 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1413 	struct discard_cmd *dc;
1414 	struct blk_plug plug;
1415 	unsigned int pos = dcc->next_pos;
1416 	unsigned int issued = 0;
1417 	bool io_interrupted = false;
1418 
1419 	mutex_lock(&dcc->cmd_lock);
1420 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1421 					NULL, pos,
1422 					(struct rb_entry **)&prev_dc,
1423 					(struct rb_entry **)&next_dc,
1424 					&insert_p, &insert_parent, true, NULL);
1425 	if (!dc)
1426 		dc = next_dc;
1427 
1428 	blk_start_plug(&plug);
1429 
1430 	while (dc) {
1431 		struct rb_node *node;
1432 		int err = 0;
1433 
1434 		if (dc->state != D_PREP)
1435 			goto next;
1436 
1437 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1438 			io_interrupted = true;
1439 			break;
1440 		}
1441 
1442 		dcc->next_pos = dc->lstart + dc->len;
1443 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1444 
1445 		if (issued >= dpolicy->max_requests)
1446 			break;
1447 next:
1448 		node = rb_next(&dc->rb_node);
1449 		if (err)
1450 			__remove_discard_cmd(sbi, dc);
1451 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1452 	}
1453 
1454 	blk_finish_plug(&plug);
1455 
1456 	if (!dc)
1457 		dcc->next_pos = 0;
1458 
1459 	mutex_unlock(&dcc->cmd_lock);
1460 
1461 	if (!issued && io_interrupted)
1462 		issued = -1;
1463 
1464 	return issued;
1465 }
1466 
1467 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1468 					struct discard_policy *dpolicy)
1469 {
1470 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1471 	struct list_head *pend_list;
1472 	struct discard_cmd *dc, *tmp;
1473 	struct blk_plug plug;
1474 	int i, issued = 0;
1475 	bool io_interrupted = false;
1476 
1477 	if (dpolicy->timeout)
1478 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1479 
1480 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1481 		if (dpolicy->timeout &&
1482 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1483 			break;
1484 
1485 		if (i + 1 < dpolicy->granularity)
1486 			break;
1487 
1488 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1489 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1490 
1491 		pend_list = &dcc->pend_list[i];
1492 
1493 		mutex_lock(&dcc->cmd_lock);
1494 		if (list_empty(pend_list))
1495 			goto next;
1496 		if (unlikely(dcc->rbtree_check))
1497 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1498 								&dcc->root));
1499 		blk_start_plug(&plug);
1500 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1501 			f2fs_bug_on(sbi, dc->state != D_PREP);
1502 
1503 			if (dpolicy->timeout &&
1504 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1505 				break;
1506 
1507 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1508 						!is_idle(sbi, DISCARD_TIME)) {
1509 				io_interrupted = true;
1510 				break;
1511 			}
1512 
1513 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1514 
1515 			if (issued >= dpolicy->max_requests)
1516 				break;
1517 		}
1518 		blk_finish_plug(&plug);
1519 next:
1520 		mutex_unlock(&dcc->cmd_lock);
1521 
1522 		if (issued >= dpolicy->max_requests || io_interrupted)
1523 			break;
1524 	}
1525 
1526 	if (!issued && io_interrupted)
1527 		issued = -1;
1528 
1529 	return issued;
1530 }
1531 
1532 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1533 {
1534 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1535 	struct list_head *pend_list;
1536 	struct discard_cmd *dc, *tmp;
1537 	int i;
1538 	bool dropped = false;
1539 
1540 	mutex_lock(&dcc->cmd_lock);
1541 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1542 		pend_list = &dcc->pend_list[i];
1543 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1544 			f2fs_bug_on(sbi, dc->state != D_PREP);
1545 			__remove_discard_cmd(sbi, dc);
1546 			dropped = true;
1547 		}
1548 	}
1549 	mutex_unlock(&dcc->cmd_lock);
1550 
1551 	return dropped;
1552 }
1553 
1554 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1555 {
1556 	__drop_discard_cmd(sbi);
1557 }
1558 
1559 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1560 							struct discard_cmd *dc)
1561 {
1562 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1563 	unsigned int len = 0;
1564 
1565 	wait_for_completion_io(&dc->wait);
1566 	mutex_lock(&dcc->cmd_lock);
1567 	f2fs_bug_on(sbi, dc->state != D_DONE);
1568 	dc->ref--;
1569 	if (!dc->ref) {
1570 		if (!dc->error)
1571 			len = dc->len;
1572 		__remove_discard_cmd(sbi, dc);
1573 	}
1574 	mutex_unlock(&dcc->cmd_lock);
1575 
1576 	return len;
1577 }
1578 
1579 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1580 						struct discard_policy *dpolicy,
1581 						block_t start, block_t end)
1582 {
1583 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1584 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1585 					&(dcc->fstrim_list) : &(dcc->wait_list);
1586 	struct discard_cmd *dc, *tmp;
1587 	bool need_wait;
1588 	unsigned int trimmed = 0;
1589 
1590 next:
1591 	need_wait = false;
1592 
1593 	mutex_lock(&dcc->cmd_lock);
1594 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1595 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1596 			continue;
1597 		if (dc->len < dpolicy->granularity)
1598 			continue;
1599 		if (dc->state == D_DONE && !dc->ref) {
1600 			wait_for_completion_io(&dc->wait);
1601 			if (!dc->error)
1602 				trimmed += dc->len;
1603 			__remove_discard_cmd(sbi, dc);
1604 		} else {
1605 			dc->ref++;
1606 			need_wait = true;
1607 			break;
1608 		}
1609 	}
1610 	mutex_unlock(&dcc->cmd_lock);
1611 
1612 	if (need_wait) {
1613 		trimmed += __wait_one_discard_bio(sbi, dc);
1614 		goto next;
1615 	}
1616 
1617 	return trimmed;
1618 }
1619 
1620 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1621 						struct discard_policy *dpolicy)
1622 {
1623 	struct discard_policy dp;
1624 	unsigned int discard_blks;
1625 
1626 	if (dpolicy)
1627 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1628 
1629 	/* wait all */
1630 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1631 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1632 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1633 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1634 
1635 	return discard_blks;
1636 }
1637 
1638 /* This should be covered by global mutex, &sit_i->sentry_lock */
1639 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1640 {
1641 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1642 	struct discard_cmd *dc;
1643 	bool need_wait = false;
1644 
1645 	mutex_lock(&dcc->cmd_lock);
1646 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1647 							NULL, blkaddr);
1648 	if (dc) {
1649 		if (dc->state == D_PREP) {
1650 			__punch_discard_cmd(sbi, dc, blkaddr);
1651 		} else {
1652 			dc->ref++;
1653 			need_wait = true;
1654 		}
1655 	}
1656 	mutex_unlock(&dcc->cmd_lock);
1657 
1658 	if (need_wait)
1659 		__wait_one_discard_bio(sbi, dc);
1660 }
1661 
1662 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1663 {
1664 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1665 
1666 	if (dcc && dcc->f2fs_issue_discard) {
1667 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1668 
1669 		dcc->f2fs_issue_discard = NULL;
1670 		kthread_stop(discard_thread);
1671 	}
1672 }
1673 
1674 /* This comes from f2fs_put_super */
1675 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1676 {
1677 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1678 	struct discard_policy dpolicy;
1679 	bool dropped;
1680 
1681 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1682 					dcc->discard_granularity);
1683 	__issue_discard_cmd(sbi, &dpolicy);
1684 	dropped = __drop_discard_cmd(sbi);
1685 
1686 	/* just to make sure there is no pending discard commands */
1687 	__wait_all_discard_cmd(sbi, NULL);
1688 
1689 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1690 	return dropped;
1691 }
1692 
1693 static int issue_discard_thread(void *data)
1694 {
1695 	struct f2fs_sb_info *sbi = data;
1696 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1698 	struct discard_policy dpolicy;
1699 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1700 	int issued;
1701 
1702 	set_freezable();
1703 
1704 	do {
1705 		__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1706 					dcc->discard_granularity);
1707 
1708 		wait_event_interruptible_timeout(*q,
1709 				kthread_should_stop() || freezing(current) ||
1710 				dcc->discard_wake,
1711 				msecs_to_jiffies(wait_ms));
1712 
1713 		if (dcc->discard_wake)
1714 			dcc->discard_wake = 0;
1715 
1716 		/* clean up pending candidates before going to sleep */
1717 		if (atomic_read(&dcc->queued_discard))
1718 			__wait_all_discard_cmd(sbi, NULL);
1719 
1720 		if (try_to_freeze())
1721 			continue;
1722 		if (f2fs_readonly(sbi->sb))
1723 			continue;
1724 		if (kthread_should_stop())
1725 			return 0;
1726 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1727 			wait_ms = dpolicy.max_interval;
1728 			continue;
1729 		}
1730 
1731 		if (sbi->gc_mode == GC_URGENT)
1732 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1733 
1734 		sb_start_intwrite(sbi->sb);
1735 
1736 		issued = __issue_discard_cmd(sbi, &dpolicy);
1737 		if (issued > 0) {
1738 			__wait_all_discard_cmd(sbi, &dpolicy);
1739 			wait_ms = dpolicy.min_interval;
1740 		} else if (issued == -1){
1741 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1742 			if (!wait_ms)
1743 				wait_ms = dpolicy.mid_interval;
1744 		} else {
1745 			wait_ms = dpolicy.max_interval;
1746 		}
1747 
1748 		sb_end_intwrite(sbi->sb);
1749 
1750 	} while (!kthread_should_stop());
1751 	return 0;
1752 }
1753 
1754 #ifdef CONFIG_BLK_DEV_ZONED
1755 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1756 		struct block_device *bdev, block_t blkstart, block_t blklen)
1757 {
1758 	sector_t sector, nr_sects;
1759 	block_t lblkstart = blkstart;
1760 	int devi = 0;
1761 
1762 	if (f2fs_is_multi_device(sbi)) {
1763 		devi = f2fs_target_device_index(sbi, blkstart);
1764 		if (blkstart < FDEV(devi).start_blk ||
1765 		    blkstart > FDEV(devi).end_blk) {
1766 			f2fs_err(sbi, "Invalid block %x", blkstart);
1767 			return -EIO;
1768 		}
1769 		blkstart -= FDEV(devi).start_blk;
1770 	}
1771 
1772 	/* For sequential zones, reset the zone write pointer */
1773 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1774 		sector = SECTOR_FROM_BLOCK(blkstart);
1775 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1776 
1777 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1778 				nr_sects != bdev_zone_sectors(bdev)) {
1779 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1780 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1781 				 blkstart, blklen);
1782 			return -EIO;
1783 		}
1784 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1785 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1786 					sector, nr_sects, GFP_NOFS);
1787 	}
1788 
1789 	/* For conventional zones, use regular discard if supported */
1790 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1791 }
1792 #endif
1793 
1794 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1795 		struct block_device *bdev, block_t blkstart, block_t blklen)
1796 {
1797 #ifdef CONFIG_BLK_DEV_ZONED
1798 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1799 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1800 #endif
1801 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1802 }
1803 
1804 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1805 				block_t blkstart, block_t blklen)
1806 {
1807 	sector_t start = blkstart, len = 0;
1808 	struct block_device *bdev;
1809 	struct seg_entry *se;
1810 	unsigned int offset;
1811 	block_t i;
1812 	int err = 0;
1813 
1814 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1815 
1816 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1817 		if (i != start) {
1818 			struct block_device *bdev2 =
1819 				f2fs_target_device(sbi, i, NULL);
1820 
1821 			if (bdev2 != bdev) {
1822 				err = __issue_discard_async(sbi, bdev,
1823 						start, len);
1824 				if (err)
1825 					return err;
1826 				bdev = bdev2;
1827 				start = i;
1828 				len = 0;
1829 			}
1830 		}
1831 
1832 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1833 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1834 
1835 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1836 			sbi->discard_blks--;
1837 	}
1838 
1839 	if (len)
1840 		err = __issue_discard_async(sbi, bdev, start, len);
1841 	return err;
1842 }
1843 
1844 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1845 							bool check_only)
1846 {
1847 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1848 	int max_blocks = sbi->blocks_per_seg;
1849 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1850 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1851 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1852 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1853 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1854 	unsigned int start = 0, end = -1;
1855 	bool force = (cpc->reason & CP_DISCARD);
1856 	struct discard_entry *de = NULL;
1857 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1858 	int i;
1859 
1860 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1861 		return false;
1862 
1863 	if (!force) {
1864 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1865 			SM_I(sbi)->dcc_info->nr_discards >=
1866 				SM_I(sbi)->dcc_info->max_discards)
1867 			return false;
1868 	}
1869 
1870 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1871 	for (i = 0; i < entries; i++)
1872 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1873 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1874 
1875 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1876 				SM_I(sbi)->dcc_info->max_discards) {
1877 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1878 		if (start >= max_blocks)
1879 			break;
1880 
1881 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1882 		if (force && start && end != max_blocks
1883 					&& (end - start) < cpc->trim_minlen)
1884 			continue;
1885 
1886 		if (check_only)
1887 			return true;
1888 
1889 		if (!de) {
1890 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1891 								GFP_F2FS_ZERO);
1892 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1893 			list_add_tail(&de->list, head);
1894 		}
1895 
1896 		for (i = start; i < end; i++)
1897 			__set_bit_le(i, (void *)de->discard_map);
1898 
1899 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1900 	}
1901 	return false;
1902 }
1903 
1904 static void release_discard_addr(struct discard_entry *entry)
1905 {
1906 	list_del(&entry->list);
1907 	kmem_cache_free(discard_entry_slab, entry);
1908 }
1909 
1910 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1911 {
1912 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1913 	struct discard_entry *entry, *this;
1914 
1915 	/* drop caches */
1916 	list_for_each_entry_safe(entry, this, head, list)
1917 		release_discard_addr(entry);
1918 }
1919 
1920 /*
1921  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1922  */
1923 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1924 {
1925 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1926 	unsigned int segno;
1927 
1928 	mutex_lock(&dirty_i->seglist_lock);
1929 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1930 		__set_test_and_free(sbi, segno);
1931 	mutex_unlock(&dirty_i->seglist_lock);
1932 }
1933 
1934 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1935 						struct cp_control *cpc)
1936 {
1937 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1938 	struct list_head *head = &dcc->entry_list;
1939 	struct discard_entry *entry, *this;
1940 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1941 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1942 	unsigned int start = 0, end = -1;
1943 	unsigned int secno, start_segno;
1944 	bool force = (cpc->reason & CP_DISCARD);
1945 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
1946 
1947 	mutex_lock(&dirty_i->seglist_lock);
1948 
1949 	while (1) {
1950 		int i;
1951 
1952 		if (need_align && end != -1)
1953 			end--;
1954 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1955 		if (start >= MAIN_SEGS(sbi))
1956 			break;
1957 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1958 								start + 1);
1959 
1960 		if (need_align) {
1961 			start = rounddown(start, sbi->segs_per_sec);
1962 			end = roundup(end, sbi->segs_per_sec);
1963 		}
1964 
1965 		for (i = start; i < end; i++) {
1966 			if (test_and_clear_bit(i, prefree_map))
1967 				dirty_i->nr_dirty[PRE]--;
1968 		}
1969 
1970 		if (!f2fs_realtime_discard_enable(sbi))
1971 			continue;
1972 
1973 		if (force && start >= cpc->trim_start &&
1974 					(end - 1) <= cpc->trim_end)
1975 				continue;
1976 
1977 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1978 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1979 				(end - start) << sbi->log_blocks_per_seg);
1980 			continue;
1981 		}
1982 next:
1983 		secno = GET_SEC_FROM_SEG(sbi, start);
1984 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1985 		if (!IS_CURSEC(sbi, secno) &&
1986 			!get_valid_blocks(sbi, start, true))
1987 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1988 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1989 
1990 		start = start_segno + sbi->segs_per_sec;
1991 		if (start < end)
1992 			goto next;
1993 		else
1994 			end = start - 1;
1995 	}
1996 	mutex_unlock(&dirty_i->seglist_lock);
1997 
1998 	/* send small discards */
1999 	list_for_each_entry_safe(entry, this, head, list) {
2000 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2001 		bool is_valid = test_bit_le(0, entry->discard_map);
2002 
2003 find_next:
2004 		if (is_valid) {
2005 			next_pos = find_next_zero_bit_le(entry->discard_map,
2006 					sbi->blocks_per_seg, cur_pos);
2007 			len = next_pos - cur_pos;
2008 
2009 			if (f2fs_sb_has_blkzoned(sbi) ||
2010 			    (force && len < cpc->trim_minlen))
2011 				goto skip;
2012 
2013 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2014 									len);
2015 			total_len += len;
2016 		} else {
2017 			next_pos = find_next_bit_le(entry->discard_map,
2018 					sbi->blocks_per_seg, cur_pos);
2019 		}
2020 skip:
2021 		cur_pos = next_pos;
2022 		is_valid = !is_valid;
2023 
2024 		if (cur_pos < sbi->blocks_per_seg)
2025 			goto find_next;
2026 
2027 		release_discard_addr(entry);
2028 		dcc->nr_discards -= total_len;
2029 	}
2030 
2031 	wake_up_discard_thread(sbi, false);
2032 }
2033 
2034 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2035 {
2036 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2037 	struct discard_cmd_control *dcc;
2038 	int err = 0, i;
2039 
2040 	if (SM_I(sbi)->dcc_info) {
2041 		dcc = SM_I(sbi)->dcc_info;
2042 		goto init_thread;
2043 	}
2044 
2045 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2046 	if (!dcc)
2047 		return -ENOMEM;
2048 
2049 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2050 	INIT_LIST_HEAD(&dcc->entry_list);
2051 	for (i = 0; i < MAX_PLIST_NUM; i++)
2052 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2053 	INIT_LIST_HEAD(&dcc->wait_list);
2054 	INIT_LIST_HEAD(&dcc->fstrim_list);
2055 	mutex_init(&dcc->cmd_lock);
2056 	atomic_set(&dcc->issued_discard, 0);
2057 	atomic_set(&dcc->queued_discard, 0);
2058 	atomic_set(&dcc->discard_cmd_cnt, 0);
2059 	dcc->nr_discards = 0;
2060 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2061 	dcc->undiscard_blks = 0;
2062 	dcc->next_pos = 0;
2063 	dcc->root = RB_ROOT_CACHED;
2064 	dcc->rbtree_check = false;
2065 
2066 	init_waitqueue_head(&dcc->discard_wait_queue);
2067 	SM_I(sbi)->dcc_info = dcc;
2068 init_thread:
2069 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2070 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2071 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2072 		err = PTR_ERR(dcc->f2fs_issue_discard);
2073 		kvfree(dcc);
2074 		SM_I(sbi)->dcc_info = NULL;
2075 		return err;
2076 	}
2077 
2078 	return err;
2079 }
2080 
2081 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2082 {
2083 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2084 
2085 	if (!dcc)
2086 		return;
2087 
2088 	f2fs_stop_discard_thread(sbi);
2089 
2090 	/*
2091 	 * Recovery can cache discard commands, so in error path of
2092 	 * fill_super(), it needs to give a chance to handle them.
2093 	 */
2094 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2095 		f2fs_issue_discard_timeout(sbi);
2096 
2097 	kvfree(dcc);
2098 	SM_I(sbi)->dcc_info = NULL;
2099 }
2100 
2101 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2102 {
2103 	struct sit_info *sit_i = SIT_I(sbi);
2104 
2105 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2106 		sit_i->dirty_sentries++;
2107 		return false;
2108 	}
2109 
2110 	return true;
2111 }
2112 
2113 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2114 					unsigned int segno, int modified)
2115 {
2116 	struct seg_entry *se = get_seg_entry(sbi, segno);
2117 	se->type = type;
2118 	if (modified)
2119 		__mark_sit_entry_dirty(sbi, segno);
2120 }
2121 
2122 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2123 {
2124 	struct seg_entry *se;
2125 	unsigned int segno, offset;
2126 	long int new_vblocks;
2127 	bool exist;
2128 #ifdef CONFIG_F2FS_CHECK_FS
2129 	bool mir_exist;
2130 #endif
2131 
2132 	segno = GET_SEGNO(sbi, blkaddr);
2133 
2134 	se = get_seg_entry(sbi, segno);
2135 	new_vblocks = se->valid_blocks + del;
2136 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2137 
2138 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
2139 				(new_vblocks > sbi->blocks_per_seg)));
2140 
2141 	se->valid_blocks = new_vblocks;
2142 	se->mtime = get_mtime(sbi, false);
2143 	if (se->mtime > SIT_I(sbi)->max_mtime)
2144 		SIT_I(sbi)->max_mtime = se->mtime;
2145 
2146 	/* Update valid block bitmap */
2147 	if (del > 0) {
2148 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2149 #ifdef CONFIG_F2FS_CHECK_FS
2150 		mir_exist = f2fs_test_and_set_bit(offset,
2151 						se->cur_valid_map_mir);
2152 		if (unlikely(exist != mir_exist)) {
2153 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2154 				 blkaddr, exist);
2155 			f2fs_bug_on(sbi, 1);
2156 		}
2157 #endif
2158 		if (unlikely(exist)) {
2159 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2160 				 blkaddr);
2161 			f2fs_bug_on(sbi, 1);
2162 			se->valid_blocks--;
2163 			del = 0;
2164 		}
2165 
2166 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2167 			sbi->discard_blks--;
2168 
2169 		/*
2170 		 * SSR should never reuse block which is checkpointed
2171 		 * or newly invalidated.
2172 		 */
2173 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2174 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2175 				se->ckpt_valid_blocks++;
2176 		}
2177 	} else {
2178 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2179 #ifdef CONFIG_F2FS_CHECK_FS
2180 		mir_exist = f2fs_test_and_clear_bit(offset,
2181 						se->cur_valid_map_mir);
2182 		if (unlikely(exist != mir_exist)) {
2183 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2184 				 blkaddr, exist);
2185 			f2fs_bug_on(sbi, 1);
2186 		}
2187 #endif
2188 		if (unlikely(!exist)) {
2189 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2190 				 blkaddr);
2191 			f2fs_bug_on(sbi, 1);
2192 			se->valid_blocks++;
2193 			del = 0;
2194 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2195 			/*
2196 			 * If checkpoints are off, we must not reuse data that
2197 			 * was used in the previous checkpoint. If it was used
2198 			 * before, we must track that to know how much space we
2199 			 * really have.
2200 			 */
2201 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2202 				spin_lock(&sbi->stat_lock);
2203 				sbi->unusable_block_count++;
2204 				spin_unlock(&sbi->stat_lock);
2205 			}
2206 		}
2207 
2208 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2209 			sbi->discard_blks++;
2210 	}
2211 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2212 		se->ckpt_valid_blocks += del;
2213 
2214 	__mark_sit_entry_dirty(sbi, segno);
2215 
2216 	/* update total number of valid blocks to be written in ckpt area */
2217 	SIT_I(sbi)->written_valid_blocks += del;
2218 
2219 	if (__is_large_section(sbi))
2220 		get_sec_entry(sbi, segno)->valid_blocks += del;
2221 }
2222 
2223 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2224 {
2225 	unsigned int segno = GET_SEGNO(sbi, addr);
2226 	struct sit_info *sit_i = SIT_I(sbi);
2227 
2228 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2229 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2230 		return;
2231 
2232 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2233 
2234 	/* add it into sit main buffer */
2235 	down_write(&sit_i->sentry_lock);
2236 
2237 	update_sit_entry(sbi, addr, -1);
2238 
2239 	/* add it into dirty seglist */
2240 	locate_dirty_segment(sbi, segno);
2241 
2242 	up_write(&sit_i->sentry_lock);
2243 }
2244 
2245 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2246 {
2247 	struct sit_info *sit_i = SIT_I(sbi);
2248 	unsigned int segno, offset;
2249 	struct seg_entry *se;
2250 	bool is_cp = false;
2251 
2252 	if (!__is_valid_data_blkaddr(blkaddr))
2253 		return true;
2254 
2255 	down_read(&sit_i->sentry_lock);
2256 
2257 	segno = GET_SEGNO(sbi, blkaddr);
2258 	se = get_seg_entry(sbi, segno);
2259 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2260 
2261 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2262 		is_cp = true;
2263 
2264 	up_read(&sit_i->sentry_lock);
2265 
2266 	return is_cp;
2267 }
2268 
2269 /*
2270  * This function should be resided under the curseg_mutex lock
2271  */
2272 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2273 					struct f2fs_summary *sum)
2274 {
2275 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2276 	void *addr = curseg->sum_blk;
2277 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2278 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2279 }
2280 
2281 /*
2282  * Calculate the number of current summary pages for writing
2283  */
2284 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2285 {
2286 	int valid_sum_count = 0;
2287 	int i, sum_in_page;
2288 
2289 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2290 		if (sbi->ckpt->alloc_type[i] == SSR)
2291 			valid_sum_count += sbi->blocks_per_seg;
2292 		else {
2293 			if (for_ra)
2294 				valid_sum_count += le16_to_cpu(
2295 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2296 			else
2297 				valid_sum_count += curseg_blkoff(sbi, i);
2298 		}
2299 	}
2300 
2301 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2302 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2303 	if (valid_sum_count <= sum_in_page)
2304 		return 1;
2305 	else if ((valid_sum_count - sum_in_page) <=
2306 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2307 		return 2;
2308 	return 3;
2309 }
2310 
2311 /*
2312  * Caller should put this summary page
2313  */
2314 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2315 {
2316 	return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno));
2317 }
2318 
2319 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2320 					void *src, block_t blk_addr)
2321 {
2322 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2323 
2324 	memcpy(page_address(page), src, PAGE_SIZE);
2325 	set_page_dirty(page);
2326 	f2fs_put_page(page, 1);
2327 }
2328 
2329 static void write_sum_page(struct f2fs_sb_info *sbi,
2330 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2331 {
2332 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2333 }
2334 
2335 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2336 						int type, block_t blk_addr)
2337 {
2338 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2339 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2340 	struct f2fs_summary_block *src = curseg->sum_blk;
2341 	struct f2fs_summary_block *dst;
2342 
2343 	dst = (struct f2fs_summary_block *)page_address(page);
2344 	memset(dst, 0, PAGE_SIZE);
2345 
2346 	mutex_lock(&curseg->curseg_mutex);
2347 
2348 	down_read(&curseg->journal_rwsem);
2349 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2350 	up_read(&curseg->journal_rwsem);
2351 
2352 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2353 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2354 
2355 	mutex_unlock(&curseg->curseg_mutex);
2356 
2357 	set_page_dirty(page);
2358 	f2fs_put_page(page, 1);
2359 }
2360 
2361 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2362 {
2363 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2364 	unsigned int segno = curseg->segno + 1;
2365 	struct free_segmap_info *free_i = FREE_I(sbi);
2366 
2367 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2368 		return !test_bit(segno, free_i->free_segmap);
2369 	return 0;
2370 }
2371 
2372 /*
2373  * Find a new segment from the free segments bitmap to right order
2374  * This function should be returned with success, otherwise BUG
2375  */
2376 static void get_new_segment(struct f2fs_sb_info *sbi,
2377 			unsigned int *newseg, bool new_sec, int dir)
2378 {
2379 	struct free_segmap_info *free_i = FREE_I(sbi);
2380 	unsigned int segno, secno, zoneno;
2381 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2382 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2383 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2384 	unsigned int left_start = hint;
2385 	bool init = true;
2386 	int go_left = 0;
2387 	int i;
2388 
2389 	spin_lock(&free_i->segmap_lock);
2390 
2391 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2392 		segno = find_next_zero_bit(free_i->free_segmap,
2393 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2394 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2395 			goto got_it;
2396 	}
2397 find_other_zone:
2398 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2399 	if (secno >= MAIN_SECS(sbi)) {
2400 		if (dir == ALLOC_RIGHT) {
2401 			secno = find_next_zero_bit(free_i->free_secmap,
2402 							MAIN_SECS(sbi), 0);
2403 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2404 		} else {
2405 			go_left = 1;
2406 			left_start = hint - 1;
2407 		}
2408 	}
2409 	if (go_left == 0)
2410 		goto skip_left;
2411 
2412 	while (test_bit(left_start, free_i->free_secmap)) {
2413 		if (left_start > 0) {
2414 			left_start--;
2415 			continue;
2416 		}
2417 		left_start = find_next_zero_bit(free_i->free_secmap,
2418 							MAIN_SECS(sbi), 0);
2419 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2420 		break;
2421 	}
2422 	secno = left_start;
2423 skip_left:
2424 	segno = GET_SEG_FROM_SEC(sbi, secno);
2425 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2426 
2427 	/* give up on finding another zone */
2428 	if (!init)
2429 		goto got_it;
2430 	if (sbi->secs_per_zone == 1)
2431 		goto got_it;
2432 	if (zoneno == old_zoneno)
2433 		goto got_it;
2434 	if (dir == ALLOC_LEFT) {
2435 		if (!go_left && zoneno + 1 >= total_zones)
2436 			goto got_it;
2437 		if (go_left && zoneno == 0)
2438 			goto got_it;
2439 	}
2440 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2441 		if (CURSEG_I(sbi, i)->zone == zoneno)
2442 			break;
2443 
2444 	if (i < NR_CURSEG_TYPE) {
2445 		/* zone is in user, try another */
2446 		if (go_left)
2447 			hint = zoneno * sbi->secs_per_zone - 1;
2448 		else if (zoneno + 1 >= total_zones)
2449 			hint = 0;
2450 		else
2451 			hint = (zoneno + 1) * sbi->secs_per_zone;
2452 		init = false;
2453 		goto find_other_zone;
2454 	}
2455 got_it:
2456 	/* set it as dirty segment in free segmap */
2457 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2458 	__set_inuse(sbi, segno);
2459 	*newseg = segno;
2460 	spin_unlock(&free_i->segmap_lock);
2461 }
2462 
2463 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2464 {
2465 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2466 	struct summary_footer *sum_footer;
2467 
2468 	curseg->segno = curseg->next_segno;
2469 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2470 	curseg->next_blkoff = 0;
2471 	curseg->next_segno = NULL_SEGNO;
2472 
2473 	sum_footer = &(curseg->sum_blk->footer);
2474 	memset(sum_footer, 0, sizeof(struct summary_footer));
2475 	if (IS_DATASEG(type))
2476 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2477 	if (IS_NODESEG(type))
2478 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2479 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
2480 }
2481 
2482 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2483 {
2484 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2485 	if (__is_large_section(sbi))
2486 		return CURSEG_I(sbi, type)->segno;
2487 
2488 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2489 		return 0;
2490 
2491 	if (test_opt(sbi, NOHEAP) &&
2492 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2493 		return 0;
2494 
2495 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2496 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2497 
2498 	/* find segments from 0 to reuse freed segments */
2499 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2500 		return 0;
2501 
2502 	return CURSEG_I(sbi, type)->segno;
2503 }
2504 
2505 /*
2506  * Allocate a current working segment.
2507  * This function always allocates a free segment in LFS manner.
2508  */
2509 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2510 {
2511 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2512 	unsigned int segno = curseg->segno;
2513 	int dir = ALLOC_LEFT;
2514 
2515 	write_sum_page(sbi, curseg->sum_blk,
2516 				GET_SUM_BLOCK(sbi, segno));
2517 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2518 		dir = ALLOC_RIGHT;
2519 
2520 	if (test_opt(sbi, NOHEAP))
2521 		dir = ALLOC_RIGHT;
2522 
2523 	segno = __get_next_segno(sbi, type);
2524 	get_new_segment(sbi, &segno, new_sec, dir);
2525 	curseg->next_segno = segno;
2526 	reset_curseg(sbi, type, 1);
2527 	curseg->alloc_type = LFS;
2528 }
2529 
2530 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2531 			struct curseg_info *seg, block_t start)
2532 {
2533 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2534 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2535 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2536 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2537 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2538 	int i, pos;
2539 
2540 	for (i = 0; i < entries; i++)
2541 		target_map[i] = ckpt_map[i] | cur_map[i];
2542 
2543 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2544 
2545 	seg->next_blkoff = pos;
2546 }
2547 
2548 /*
2549  * If a segment is written by LFS manner, next block offset is just obtained
2550  * by increasing the current block offset. However, if a segment is written by
2551  * SSR manner, next block offset obtained by calling __next_free_blkoff
2552  */
2553 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2554 				struct curseg_info *seg)
2555 {
2556 	if (seg->alloc_type == SSR)
2557 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2558 	else
2559 		seg->next_blkoff++;
2560 }
2561 
2562 /*
2563  * This function always allocates a used segment(from dirty seglist) by SSR
2564  * manner, so it should recover the existing segment information of valid blocks
2565  */
2566 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2567 {
2568 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2569 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2570 	unsigned int new_segno = curseg->next_segno;
2571 	struct f2fs_summary_block *sum_node;
2572 	struct page *sum_page;
2573 
2574 	write_sum_page(sbi, curseg->sum_blk,
2575 				GET_SUM_BLOCK(sbi, curseg->segno));
2576 	__set_test_and_inuse(sbi, new_segno);
2577 
2578 	mutex_lock(&dirty_i->seglist_lock);
2579 	__remove_dirty_segment(sbi, new_segno, PRE);
2580 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2581 	mutex_unlock(&dirty_i->seglist_lock);
2582 
2583 	reset_curseg(sbi, type, 1);
2584 	curseg->alloc_type = SSR;
2585 	__next_free_blkoff(sbi, curseg, 0);
2586 
2587 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2588 	f2fs_bug_on(sbi, IS_ERR(sum_page));
2589 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2590 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2591 	f2fs_put_page(sum_page, 1);
2592 }
2593 
2594 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2595 {
2596 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2597 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2598 	unsigned segno = NULL_SEGNO;
2599 	int i, cnt;
2600 	bool reversed = false;
2601 
2602 	/* f2fs_need_SSR() already forces to do this */
2603 	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2604 		curseg->next_segno = segno;
2605 		return 1;
2606 	}
2607 
2608 	/* For node segments, let's do SSR more intensively */
2609 	if (IS_NODESEG(type)) {
2610 		if (type >= CURSEG_WARM_NODE) {
2611 			reversed = true;
2612 			i = CURSEG_COLD_NODE;
2613 		} else {
2614 			i = CURSEG_HOT_NODE;
2615 		}
2616 		cnt = NR_CURSEG_NODE_TYPE;
2617 	} else {
2618 		if (type >= CURSEG_WARM_DATA) {
2619 			reversed = true;
2620 			i = CURSEG_COLD_DATA;
2621 		} else {
2622 			i = CURSEG_HOT_DATA;
2623 		}
2624 		cnt = NR_CURSEG_DATA_TYPE;
2625 	}
2626 
2627 	for (; cnt-- > 0; reversed ? i-- : i++) {
2628 		if (i == type)
2629 			continue;
2630 		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2631 			curseg->next_segno = segno;
2632 			return 1;
2633 		}
2634 	}
2635 
2636 	/* find valid_blocks=0 in dirty list */
2637 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2638 		segno = get_free_segment(sbi);
2639 		if (segno != NULL_SEGNO) {
2640 			curseg->next_segno = segno;
2641 			return 1;
2642 		}
2643 	}
2644 	return 0;
2645 }
2646 
2647 /*
2648  * flush out current segment and replace it with new segment
2649  * This function should be returned with success, otherwise BUG
2650  */
2651 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2652 						int type, bool force)
2653 {
2654 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2655 
2656 	if (force)
2657 		new_curseg(sbi, type, true);
2658 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2659 					type == CURSEG_WARM_NODE)
2660 		new_curseg(sbi, type, false);
2661 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) &&
2662 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2663 		new_curseg(sbi, type, false);
2664 	else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2665 		change_curseg(sbi, type);
2666 	else
2667 		new_curseg(sbi, type, false);
2668 
2669 	stat_inc_seg_type(sbi, curseg);
2670 }
2671 
2672 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2673 					unsigned int start, unsigned int end)
2674 {
2675 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2676 	unsigned int segno;
2677 
2678 	down_read(&SM_I(sbi)->curseg_lock);
2679 	mutex_lock(&curseg->curseg_mutex);
2680 	down_write(&SIT_I(sbi)->sentry_lock);
2681 
2682 	segno = CURSEG_I(sbi, type)->segno;
2683 	if (segno < start || segno > end)
2684 		goto unlock;
2685 
2686 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type))
2687 		change_curseg(sbi, type);
2688 	else
2689 		new_curseg(sbi, type, true);
2690 
2691 	stat_inc_seg_type(sbi, curseg);
2692 
2693 	locate_dirty_segment(sbi, segno);
2694 unlock:
2695 	up_write(&SIT_I(sbi)->sentry_lock);
2696 
2697 	if (segno != curseg->segno)
2698 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2699 			    type, segno, curseg->segno);
2700 
2701 	mutex_unlock(&curseg->curseg_mutex);
2702 	up_read(&SM_I(sbi)->curseg_lock);
2703 }
2704 
2705 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type)
2706 {
2707 	struct curseg_info *curseg;
2708 	unsigned int old_segno;
2709 	int i;
2710 
2711 	down_write(&SIT_I(sbi)->sentry_lock);
2712 
2713 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2714 		if (type != NO_CHECK_TYPE && i != type)
2715 			continue;
2716 
2717 		curseg = CURSEG_I(sbi, i);
2718 		if (type == NO_CHECK_TYPE || curseg->next_blkoff ||
2719 				get_valid_blocks(sbi, curseg->segno, false) ||
2720 				get_ckpt_valid_blocks(sbi, curseg->segno)) {
2721 			old_segno = curseg->segno;
2722 			SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2723 			locate_dirty_segment(sbi, old_segno);
2724 		}
2725 	}
2726 
2727 	up_write(&SIT_I(sbi)->sentry_lock);
2728 }
2729 
2730 static const struct segment_allocation default_salloc_ops = {
2731 	.allocate_segment = allocate_segment_by_default,
2732 };
2733 
2734 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2735 						struct cp_control *cpc)
2736 {
2737 	__u64 trim_start = cpc->trim_start;
2738 	bool has_candidate = false;
2739 
2740 	down_write(&SIT_I(sbi)->sentry_lock);
2741 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2742 		if (add_discard_addrs(sbi, cpc, true)) {
2743 			has_candidate = true;
2744 			break;
2745 		}
2746 	}
2747 	up_write(&SIT_I(sbi)->sentry_lock);
2748 
2749 	cpc->trim_start = trim_start;
2750 	return has_candidate;
2751 }
2752 
2753 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2754 					struct discard_policy *dpolicy,
2755 					unsigned int start, unsigned int end)
2756 {
2757 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2758 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2759 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2760 	struct discard_cmd *dc;
2761 	struct blk_plug plug;
2762 	int issued;
2763 	unsigned int trimmed = 0;
2764 
2765 next:
2766 	issued = 0;
2767 
2768 	mutex_lock(&dcc->cmd_lock);
2769 	if (unlikely(dcc->rbtree_check))
2770 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2771 								&dcc->root));
2772 
2773 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2774 					NULL, start,
2775 					(struct rb_entry **)&prev_dc,
2776 					(struct rb_entry **)&next_dc,
2777 					&insert_p, &insert_parent, true, NULL);
2778 	if (!dc)
2779 		dc = next_dc;
2780 
2781 	blk_start_plug(&plug);
2782 
2783 	while (dc && dc->lstart <= end) {
2784 		struct rb_node *node;
2785 		int err = 0;
2786 
2787 		if (dc->len < dpolicy->granularity)
2788 			goto skip;
2789 
2790 		if (dc->state != D_PREP) {
2791 			list_move_tail(&dc->list, &dcc->fstrim_list);
2792 			goto skip;
2793 		}
2794 
2795 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2796 
2797 		if (issued >= dpolicy->max_requests) {
2798 			start = dc->lstart + dc->len;
2799 
2800 			if (err)
2801 				__remove_discard_cmd(sbi, dc);
2802 
2803 			blk_finish_plug(&plug);
2804 			mutex_unlock(&dcc->cmd_lock);
2805 			trimmed += __wait_all_discard_cmd(sbi, NULL);
2806 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2807 			goto next;
2808 		}
2809 skip:
2810 		node = rb_next(&dc->rb_node);
2811 		if (err)
2812 			__remove_discard_cmd(sbi, dc);
2813 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
2814 
2815 		if (fatal_signal_pending(current))
2816 			break;
2817 	}
2818 
2819 	blk_finish_plug(&plug);
2820 	mutex_unlock(&dcc->cmd_lock);
2821 
2822 	return trimmed;
2823 }
2824 
2825 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2826 {
2827 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2828 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2829 	unsigned int start_segno, end_segno;
2830 	block_t start_block, end_block;
2831 	struct cp_control cpc;
2832 	struct discard_policy dpolicy;
2833 	unsigned long long trimmed = 0;
2834 	int err = 0;
2835 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2836 
2837 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2838 		return -EINVAL;
2839 
2840 	if (end < MAIN_BLKADDR(sbi))
2841 		goto out;
2842 
2843 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2844 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
2845 		return -EFSCORRUPTED;
2846 	}
2847 
2848 	/* start/end segment number in main_area */
2849 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2850 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2851 						GET_SEGNO(sbi, end);
2852 	if (need_align) {
2853 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
2854 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
2855 	}
2856 
2857 	cpc.reason = CP_DISCARD;
2858 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2859 	cpc.trim_start = start_segno;
2860 	cpc.trim_end = end_segno;
2861 
2862 	if (sbi->discard_blks == 0)
2863 		goto out;
2864 
2865 	down_write(&sbi->gc_lock);
2866 	err = f2fs_write_checkpoint(sbi, &cpc);
2867 	up_write(&sbi->gc_lock);
2868 	if (err)
2869 		goto out;
2870 
2871 	/*
2872 	 * We filed discard candidates, but actually we don't need to wait for
2873 	 * all of them, since they'll be issued in idle time along with runtime
2874 	 * discard option. User configuration looks like using runtime discard
2875 	 * or periodic fstrim instead of it.
2876 	 */
2877 	if (f2fs_realtime_discard_enable(sbi))
2878 		goto out;
2879 
2880 	start_block = START_BLOCK(sbi, start_segno);
2881 	end_block = START_BLOCK(sbi, end_segno + 1);
2882 
2883 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2884 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
2885 					start_block, end_block);
2886 
2887 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
2888 					start_block, end_block);
2889 out:
2890 	if (!err)
2891 		range->len = F2FS_BLK_TO_BYTES(trimmed);
2892 	return err;
2893 }
2894 
2895 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2896 {
2897 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2898 	if (curseg->next_blkoff < sbi->blocks_per_seg)
2899 		return true;
2900 	return false;
2901 }
2902 
2903 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
2904 {
2905 	switch (hint) {
2906 	case WRITE_LIFE_SHORT:
2907 		return CURSEG_HOT_DATA;
2908 	case WRITE_LIFE_EXTREME:
2909 		return CURSEG_COLD_DATA;
2910 	default:
2911 		return CURSEG_WARM_DATA;
2912 	}
2913 }
2914 
2915 /* This returns write hints for each segment type. This hints will be
2916  * passed down to block layer. There are mapping tables which depend on
2917  * the mount option 'whint_mode'.
2918  *
2919  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2920  *
2921  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2922  *
2923  * User                  F2FS                     Block
2924  * ----                  ----                     -----
2925  *                       META                     WRITE_LIFE_NOT_SET
2926  *                       HOT_NODE                 "
2927  *                       WARM_NODE                "
2928  *                       COLD_NODE                "
2929  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2930  * extension list        "                        "
2931  *
2932  * -- buffered io
2933  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2934  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2935  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2936  * WRITE_LIFE_NONE       "                        "
2937  * WRITE_LIFE_MEDIUM     "                        "
2938  * WRITE_LIFE_LONG       "                        "
2939  *
2940  * -- direct io
2941  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2942  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2943  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2944  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2945  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2946  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2947  *
2948  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2949  *
2950  * User                  F2FS                     Block
2951  * ----                  ----                     -----
2952  *                       META                     WRITE_LIFE_MEDIUM;
2953  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2954  *                       WARM_NODE                "
2955  *                       COLD_NODE                WRITE_LIFE_NONE
2956  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2957  * extension list        "                        "
2958  *
2959  * -- buffered io
2960  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2961  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2962  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2963  * WRITE_LIFE_NONE       "                        "
2964  * WRITE_LIFE_MEDIUM     "                        "
2965  * WRITE_LIFE_LONG       "                        "
2966  *
2967  * -- direct io
2968  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2969  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2970  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2971  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2972  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2973  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2974  */
2975 
2976 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2977 				enum page_type type, enum temp_type temp)
2978 {
2979 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2980 		if (type == DATA) {
2981 			if (temp == WARM)
2982 				return WRITE_LIFE_NOT_SET;
2983 			else if (temp == HOT)
2984 				return WRITE_LIFE_SHORT;
2985 			else if (temp == COLD)
2986 				return WRITE_LIFE_EXTREME;
2987 		} else {
2988 			return WRITE_LIFE_NOT_SET;
2989 		}
2990 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2991 		if (type == DATA) {
2992 			if (temp == WARM)
2993 				return WRITE_LIFE_LONG;
2994 			else if (temp == HOT)
2995 				return WRITE_LIFE_SHORT;
2996 			else if (temp == COLD)
2997 				return WRITE_LIFE_EXTREME;
2998 		} else if (type == NODE) {
2999 			if (temp == WARM || temp == HOT)
3000 				return WRITE_LIFE_NOT_SET;
3001 			else if (temp == COLD)
3002 				return WRITE_LIFE_NONE;
3003 		} else if (type == META) {
3004 			return WRITE_LIFE_MEDIUM;
3005 		}
3006 	}
3007 	return WRITE_LIFE_NOT_SET;
3008 }
3009 
3010 static int __get_segment_type_2(struct f2fs_io_info *fio)
3011 {
3012 	if (fio->type == DATA)
3013 		return CURSEG_HOT_DATA;
3014 	else
3015 		return CURSEG_HOT_NODE;
3016 }
3017 
3018 static int __get_segment_type_4(struct f2fs_io_info *fio)
3019 {
3020 	if (fio->type == DATA) {
3021 		struct inode *inode = fio->page->mapping->host;
3022 
3023 		if (S_ISDIR(inode->i_mode))
3024 			return CURSEG_HOT_DATA;
3025 		else
3026 			return CURSEG_COLD_DATA;
3027 	} else {
3028 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3029 			return CURSEG_WARM_NODE;
3030 		else
3031 			return CURSEG_COLD_NODE;
3032 	}
3033 }
3034 
3035 static int __get_segment_type_6(struct f2fs_io_info *fio)
3036 {
3037 	if (fio->type == DATA) {
3038 		struct inode *inode = fio->page->mapping->host;
3039 
3040 		if (is_cold_data(fio->page) || file_is_cold(inode) ||
3041 				f2fs_compressed_file(inode))
3042 			return CURSEG_COLD_DATA;
3043 		if (file_is_hot(inode) ||
3044 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3045 				f2fs_is_atomic_file(inode) ||
3046 				f2fs_is_volatile_file(inode))
3047 			return CURSEG_HOT_DATA;
3048 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3049 	} else {
3050 		if (IS_DNODE(fio->page))
3051 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3052 						CURSEG_HOT_NODE;
3053 		return CURSEG_COLD_NODE;
3054 	}
3055 }
3056 
3057 static int __get_segment_type(struct f2fs_io_info *fio)
3058 {
3059 	int type = 0;
3060 
3061 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3062 	case 2:
3063 		type = __get_segment_type_2(fio);
3064 		break;
3065 	case 4:
3066 		type = __get_segment_type_4(fio);
3067 		break;
3068 	case 6:
3069 		type = __get_segment_type_6(fio);
3070 		break;
3071 	default:
3072 		f2fs_bug_on(fio->sbi, true);
3073 	}
3074 
3075 	if (IS_HOT(type))
3076 		fio->temp = HOT;
3077 	else if (IS_WARM(type))
3078 		fio->temp = WARM;
3079 	else
3080 		fio->temp = COLD;
3081 	return type;
3082 }
3083 
3084 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3085 		block_t old_blkaddr, block_t *new_blkaddr,
3086 		struct f2fs_summary *sum, int type,
3087 		struct f2fs_io_info *fio, bool add_list)
3088 {
3089 	struct sit_info *sit_i = SIT_I(sbi);
3090 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3091 	bool put_pin_sem = false;
3092 
3093 	if (type == CURSEG_COLD_DATA) {
3094 		/* GC during CURSEG_COLD_DATA_PINNED allocation */
3095 		if (down_read_trylock(&sbi->pin_sem)) {
3096 			put_pin_sem = true;
3097 		} else {
3098 			type = CURSEG_WARM_DATA;
3099 			curseg = CURSEG_I(sbi, type);
3100 		}
3101 	} else if (type == CURSEG_COLD_DATA_PINNED) {
3102 		type = CURSEG_COLD_DATA;
3103 	}
3104 
3105 	down_read(&SM_I(sbi)->curseg_lock);
3106 
3107 	mutex_lock(&curseg->curseg_mutex);
3108 	down_write(&sit_i->sentry_lock);
3109 
3110 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3111 
3112 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3113 
3114 	/*
3115 	 * __add_sum_entry should be resided under the curseg_mutex
3116 	 * because, this function updates a summary entry in the
3117 	 * current summary block.
3118 	 */
3119 	__add_sum_entry(sbi, type, sum);
3120 
3121 	__refresh_next_blkoff(sbi, curseg);
3122 
3123 	stat_inc_block_count(sbi, curseg);
3124 
3125 	/*
3126 	 * SIT information should be updated before segment allocation,
3127 	 * since SSR needs latest valid block information.
3128 	 */
3129 	update_sit_entry(sbi, *new_blkaddr, 1);
3130 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3131 		update_sit_entry(sbi, old_blkaddr, -1);
3132 
3133 	if (!__has_curseg_space(sbi, type))
3134 		sit_i->s_ops->allocate_segment(sbi, type, false);
3135 
3136 	/*
3137 	 * segment dirty status should be updated after segment allocation,
3138 	 * so we just need to update status only one time after previous
3139 	 * segment being closed.
3140 	 */
3141 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3142 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3143 
3144 	up_write(&sit_i->sentry_lock);
3145 
3146 	if (page && IS_NODESEG(type)) {
3147 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3148 
3149 		f2fs_inode_chksum_set(sbi, page);
3150 	}
3151 
3152 	if (F2FS_IO_ALIGNED(sbi))
3153 		fio->retry = false;
3154 
3155 	if (add_list) {
3156 		struct f2fs_bio_info *io;
3157 
3158 		INIT_LIST_HEAD(&fio->list);
3159 		fio->in_list = true;
3160 		io = sbi->write_io[fio->type] + fio->temp;
3161 		spin_lock(&io->io_lock);
3162 		list_add_tail(&fio->list, &io->io_list);
3163 		spin_unlock(&io->io_lock);
3164 	}
3165 
3166 	mutex_unlock(&curseg->curseg_mutex);
3167 
3168 	up_read(&SM_I(sbi)->curseg_lock);
3169 
3170 	if (put_pin_sem)
3171 		up_read(&sbi->pin_sem);
3172 }
3173 
3174 static void update_device_state(struct f2fs_io_info *fio)
3175 {
3176 	struct f2fs_sb_info *sbi = fio->sbi;
3177 	unsigned int devidx;
3178 
3179 	if (!f2fs_is_multi_device(sbi))
3180 		return;
3181 
3182 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3183 
3184 	/* update device state for fsync */
3185 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3186 
3187 	/* update device state for checkpoint */
3188 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3189 		spin_lock(&sbi->dev_lock);
3190 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3191 		spin_unlock(&sbi->dev_lock);
3192 	}
3193 }
3194 
3195 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3196 {
3197 	int type = __get_segment_type(fio);
3198 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3199 
3200 	if (keep_order)
3201 		down_read(&fio->sbi->io_order_lock);
3202 reallocate:
3203 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3204 			&fio->new_blkaddr, sum, type, fio, true);
3205 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3206 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3207 					fio->old_blkaddr, fio->old_blkaddr);
3208 
3209 	/* writeout dirty page into bdev */
3210 	f2fs_submit_page_write(fio);
3211 	if (fio->retry) {
3212 		fio->old_blkaddr = fio->new_blkaddr;
3213 		goto reallocate;
3214 	}
3215 
3216 	update_device_state(fio);
3217 
3218 	if (keep_order)
3219 		up_read(&fio->sbi->io_order_lock);
3220 }
3221 
3222 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3223 					enum iostat_type io_type)
3224 {
3225 	struct f2fs_io_info fio = {
3226 		.sbi = sbi,
3227 		.type = META,
3228 		.temp = HOT,
3229 		.op = REQ_OP_WRITE,
3230 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3231 		.old_blkaddr = page->index,
3232 		.new_blkaddr = page->index,
3233 		.page = page,
3234 		.encrypted_page = NULL,
3235 		.in_list = false,
3236 	};
3237 
3238 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3239 		fio.op_flags &= ~REQ_META;
3240 
3241 	set_page_writeback(page);
3242 	ClearPageError(page);
3243 	f2fs_submit_page_write(&fio);
3244 
3245 	stat_inc_meta_count(sbi, page->index);
3246 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3247 }
3248 
3249 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3250 {
3251 	struct f2fs_summary sum;
3252 
3253 	set_summary(&sum, nid, 0, 0);
3254 	do_write_page(&sum, fio);
3255 
3256 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3257 }
3258 
3259 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3260 					struct f2fs_io_info *fio)
3261 {
3262 	struct f2fs_sb_info *sbi = fio->sbi;
3263 	struct f2fs_summary sum;
3264 
3265 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3266 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3267 	do_write_page(&sum, fio);
3268 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3269 
3270 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3271 }
3272 
3273 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3274 {
3275 	int err;
3276 	struct f2fs_sb_info *sbi = fio->sbi;
3277 	unsigned int segno;
3278 
3279 	fio->new_blkaddr = fio->old_blkaddr;
3280 	/* i/o temperature is needed for passing down write hints */
3281 	__get_segment_type(fio);
3282 
3283 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3284 
3285 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3286 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3287 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3288 			  __func__, segno);
3289 		return -EFSCORRUPTED;
3290 	}
3291 
3292 	stat_inc_inplace_blocks(fio->sbi);
3293 
3294 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3295 		err = f2fs_merge_page_bio(fio);
3296 	else
3297 		err = f2fs_submit_page_bio(fio);
3298 	if (!err) {
3299 		update_device_state(fio);
3300 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3301 	}
3302 
3303 	return err;
3304 }
3305 
3306 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3307 						unsigned int segno)
3308 {
3309 	int i;
3310 
3311 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3312 		if (CURSEG_I(sbi, i)->segno == segno)
3313 			break;
3314 	}
3315 	return i;
3316 }
3317 
3318 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3319 				block_t old_blkaddr, block_t new_blkaddr,
3320 				bool recover_curseg, bool recover_newaddr)
3321 {
3322 	struct sit_info *sit_i = SIT_I(sbi);
3323 	struct curseg_info *curseg;
3324 	unsigned int segno, old_cursegno;
3325 	struct seg_entry *se;
3326 	int type;
3327 	unsigned short old_blkoff;
3328 
3329 	segno = GET_SEGNO(sbi, new_blkaddr);
3330 	se = get_seg_entry(sbi, segno);
3331 	type = se->type;
3332 
3333 	down_write(&SM_I(sbi)->curseg_lock);
3334 
3335 	if (!recover_curseg) {
3336 		/* for recovery flow */
3337 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3338 			if (old_blkaddr == NULL_ADDR)
3339 				type = CURSEG_COLD_DATA;
3340 			else
3341 				type = CURSEG_WARM_DATA;
3342 		}
3343 	} else {
3344 		if (IS_CURSEG(sbi, segno)) {
3345 			/* se->type is volatile as SSR allocation */
3346 			type = __f2fs_get_curseg(sbi, segno);
3347 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3348 		} else {
3349 			type = CURSEG_WARM_DATA;
3350 		}
3351 	}
3352 
3353 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3354 	curseg = CURSEG_I(sbi, type);
3355 
3356 	mutex_lock(&curseg->curseg_mutex);
3357 	down_write(&sit_i->sentry_lock);
3358 
3359 	old_cursegno = curseg->segno;
3360 	old_blkoff = curseg->next_blkoff;
3361 
3362 	/* change the current segment */
3363 	if (segno != curseg->segno) {
3364 		curseg->next_segno = segno;
3365 		change_curseg(sbi, type);
3366 	}
3367 
3368 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3369 	__add_sum_entry(sbi, type, sum);
3370 
3371 	if (!recover_curseg || recover_newaddr)
3372 		update_sit_entry(sbi, new_blkaddr, 1);
3373 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3374 		invalidate_mapping_pages(META_MAPPING(sbi),
3375 					old_blkaddr, old_blkaddr);
3376 		update_sit_entry(sbi, old_blkaddr, -1);
3377 	}
3378 
3379 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3380 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3381 
3382 	locate_dirty_segment(sbi, old_cursegno);
3383 
3384 	if (recover_curseg) {
3385 		if (old_cursegno != curseg->segno) {
3386 			curseg->next_segno = old_cursegno;
3387 			change_curseg(sbi, type);
3388 		}
3389 		curseg->next_blkoff = old_blkoff;
3390 	}
3391 
3392 	up_write(&sit_i->sentry_lock);
3393 	mutex_unlock(&curseg->curseg_mutex);
3394 	up_write(&SM_I(sbi)->curseg_lock);
3395 }
3396 
3397 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3398 				block_t old_addr, block_t new_addr,
3399 				unsigned char version, bool recover_curseg,
3400 				bool recover_newaddr)
3401 {
3402 	struct f2fs_summary sum;
3403 
3404 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3405 
3406 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3407 					recover_curseg, recover_newaddr);
3408 
3409 	f2fs_update_data_blkaddr(dn, new_addr);
3410 }
3411 
3412 void f2fs_wait_on_page_writeback(struct page *page,
3413 				enum page_type type, bool ordered, bool locked)
3414 {
3415 	if (PageWriteback(page)) {
3416 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3417 
3418 		/* submit cached LFS IO */
3419 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3420 		/* sbumit cached IPU IO */
3421 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3422 		if (ordered) {
3423 			wait_on_page_writeback(page);
3424 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3425 		} else {
3426 			wait_for_stable_page(page);
3427 		}
3428 	}
3429 }
3430 
3431 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3432 {
3433 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3434 	struct page *cpage;
3435 
3436 	if (!f2fs_post_read_required(inode))
3437 		return;
3438 
3439 	if (!__is_valid_data_blkaddr(blkaddr))
3440 		return;
3441 
3442 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3443 	if (cpage) {
3444 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3445 		f2fs_put_page(cpage, 1);
3446 	}
3447 }
3448 
3449 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3450 								block_t len)
3451 {
3452 	block_t i;
3453 
3454 	for (i = 0; i < len; i++)
3455 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3456 }
3457 
3458 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3459 {
3460 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3461 	struct curseg_info *seg_i;
3462 	unsigned char *kaddr;
3463 	struct page *page;
3464 	block_t start;
3465 	int i, j, offset;
3466 
3467 	start = start_sum_block(sbi);
3468 
3469 	page = f2fs_get_meta_page(sbi, start++);
3470 	if (IS_ERR(page))
3471 		return PTR_ERR(page);
3472 	kaddr = (unsigned char *)page_address(page);
3473 
3474 	/* Step 1: restore nat cache */
3475 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3476 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3477 
3478 	/* Step 2: restore sit cache */
3479 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3480 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3481 	offset = 2 * SUM_JOURNAL_SIZE;
3482 
3483 	/* Step 3: restore summary entries */
3484 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3485 		unsigned short blk_off;
3486 		unsigned int segno;
3487 
3488 		seg_i = CURSEG_I(sbi, i);
3489 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3490 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3491 		seg_i->next_segno = segno;
3492 		reset_curseg(sbi, i, 0);
3493 		seg_i->alloc_type = ckpt->alloc_type[i];
3494 		seg_i->next_blkoff = blk_off;
3495 
3496 		if (seg_i->alloc_type == SSR)
3497 			blk_off = sbi->blocks_per_seg;
3498 
3499 		for (j = 0; j < blk_off; j++) {
3500 			struct f2fs_summary *s;
3501 			s = (struct f2fs_summary *)(kaddr + offset);
3502 			seg_i->sum_blk->entries[j] = *s;
3503 			offset += SUMMARY_SIZE;
3504 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3505 						SUM_FOOTER_SIZE)
3506 				continue;
3507 
3508 			f2fs_put_page(page, 1);
3509 			page = NULL;
3510 
3511 			page = f2fs_get_meta_page(sbi, start++);
3512 			if (IS_ERR(page))
3513 				return PTR_ERR(page);
3514 			kaddr = (unsigned char *)page_address(page);
3515 			offset = 0;
3516 		}
3517 	}
3518 	f2fs_put_page(page, 1);
3519 	return 0;
3520 }
3521 
3522 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3523 {
3524 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3525 	struct f2fs_summary_block *sum;
3526 	struct curseg_info *curseg;
3527 	struct page *new;
3528 	unsigned short blk_off;
3529 	unsigned int segno = 0;
3530 	block_t blk_addr = 0;
3531 	int err = 0;
3532 
3533 	/* get segment number and block addr */
3534 	if (IS_DATASEG(type)) {
3535 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3536 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3537 							CURSEG_HOT_DATA]);
3538 		if (__exist_node_summaries(sbi))
3539 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3540 		else
3541 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3542 	} else {
3543 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3544 							CURSEG_HOT_NODE]);
3545 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3546 							CURSEG_HOT_NODE]);
3547 		if (__exist_node_summaries(sbi))
3548 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3549 							type - CURSEG_HOT_NODE);
3550 		else
3551 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3552 	}
3553 
3554 	new = f2fs_get_meta_page(sbi, blk_addr);
3555 	if (IS_ERR(new))
3556 		return PTR_ERR(new);
3557 	sum = (struct f2fs_summary_block *)page_address(new);
3558 
3559 	if (IS_NODESEG(type)) {
3560 		if (__exist_node_summaries(sbi)) {
3561 			struct f2fs_summary *ns = &sum->entries[0];
3562 			int i;
3563 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3564 				ns->version = 0;
3565 				ns->ofs_in_node = 0;
3566 			}
3567 		} else {
3568 			err = f2fs_restore_node_summary(sbi, segno, sum);
3569 			if (err)
3570 				goto out;
3571 		}
3572 	}
3573 
3574 	/* set uncompleted segment to curseg */
3575 	curseg = CURSEG_I(sbi, type);
3576 	mutex_lock(&curseg->curseg_mutex);
3577 
3578 	/* update journal info */
3579 	down_write(&curseg->journal_rwsem);
3580 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3581 	up_write(&curseg->journal_rwsem);
3582 
3583 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3584 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3585 	curseg->next_segno = segno;
3586 	reset_curseg(sbi, type, 0);
3587 	curseg->alloc_type = ckpt->alloc_type[type];
3588 	curseg->next_blkoff = blk_off;
3589 	mutex_unlock(&curseg->curseg_mutex);
3590 out:
3591 	f2fs_put_page(new, 1);
3592 	return err;
3593 }
3594 
3595 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3596 {
3597 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3598 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3599 	int type = CURSEG_HOT_DATA;
3600 	int err;
3601 
3602 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3603 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3604 
3605 		if (npages >= 2)
3606 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3607 							META_CP, true);
3608 
3609 		/* restore for compacted data summary */
3610 		err = read_compacted_summaries(sbi);
3611 		if (err)
3612 			return err;
3613 		type = CURSEG_HOT_NODE;
3614 	}
3615 
3616 	if (__exist_node_summaries(sbi))
3617 		f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3618 					NR_CURSEG_TYPE - type, META_CP, true);
3619 
3620 	for (; type <= CURSEG_COLD_NODE; type++) {
3621 		err = read_normal_summaries(sbi, type);
3622 		if (err)
3623 			return err;
3624 	}
3625 
3626 	/* sanity check for summary blocks */
3627 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3628 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3629 		f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3630 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3631 		return -EINVAL;
3632 	}
3633 
3634 	return 0;
3635 }
3636 
3637 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3638 {
3639 	struct page *page;
3640 	unsigned char *kaddr;
3641 	struct f2fs_summary *summary;
3642 	struct curseg_info *seg_i;
3643 	int written_size = 0;
3644 	int i, j;
3645 
3646 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3647 	kaddr = (unsigned char *)page_address(page);
3648 	memset(kaddr, 0, PAGE_SIZE);
3649 
3650 	/* Step 1: write nat cache */
3651 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3652 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3653 	written_size += SUM_JOURNAL_SIZE;
3654 
3655 	/* Step 2: write sit cache */
3656 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3657 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3658 	written_size += SUM_JOURNAL_SIZE;
3659 
3660 	/* Step 3: write summary entries */
3661 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3662 		unsigned short blkoff;
3663 		seg_i = CURSEG_I(sbi, i);
3664 		if (sbi->ckpt->alloc_type[i] == SSR)
3665 			blkoff = sbi->blocks_per_seg;
3666 		else
3667 			blkoff = curseg_blkoff(sbi, i);
3668 
3669 		for (j = 0; j < blkoff; j++) {
3670 			if (!page) {
3671 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3672 				kaddr = (unsigned char *)page_address(page);
3673 				memset(kaddr, 0, PAGE_SIZE);
3674 				written_size = 0;
3675 			}
3676 			summary = (struct f2fs_summary *)(kaddr + written_size);
3677 			*summary = seg_i->sum_blk->entries[j];
3678 			written_size += SUMMARY_SIZE;
3679 
3680 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3681 							SUM_FOOTER_SIZE)
3682 				continue;
3683 
3684 			set_page_dirty(page);
3685 			f2fs_put_page(page, 1);
3686 			page = NULL;
3687 		}
3688 	}
3689 	if (page) {
3690 		set_page_dirty(page);
3691 		f2fs_put_page(page, 1);
3692 	}
3693 }
3694 
3695 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3696 					block_t blkaddr, int type)
3697 {
3698 	int i, end;
3699 	if (IS_DATASEG(type))
3700 		end = type + NR_CURSEG_DATA_TYPE;
3701 	else
3702 		end = type + NR_CURSEG_NODE_TYPE;
3703 
3704 	for (i = type; i < end; i++)
3705 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3706 }
3707 
3708 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3709 {
3710 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3711 		write_compacted_summaries(sbi, start_blk);
3712 	else
3713 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3714 }
3715 
3716 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3717 {
3718 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3719 }
3720 
3721 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3722 					unsigned int val, int alloc)
3723 {
3724 	int i;
3725 
3726 	if (type == NAT_JOURNAL) {
3727 		for (i = 0; i < nats_in_cursum(journal); i++) {
3728 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3729 				return i;
3730 		}
3731 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3732 			return update_nats_in_cursum(journal, 1);
3733 	} else if (type == SIT_JOURNAL) {
3734 		for (i = 0; i < sits_in_cursum(journal); i++)
3735 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3736 				return i;
3737 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3738 			return update_sits_in_cursum(journal, 1);
3739 	}
3740 	return -1;
3741 }
3742 
3743 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3744 					unsigned int segno)
3745 {
3746 	return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno));
3747 }
3748 
3749 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3750 					unsigned int start)
3751 {
3752 	struct sit_info *sit_i = SIT_I(sbi);
3753 	struct page *page;
3754 	pgoff_t src_off, dst_off;
3755 
3756 	src_off = current_sit_addr(sbi, start);
3757 	dst_off = next_sit_addr(sbi, src_off);
3758 
3759 	page = f2fs_grab_meta_page(sbi, dst_off);
3760 	seg_info_to_sit_page(sbi, page, start);
3761 
3762 	set_page_dirty(page);
3763 	set_to_next_sit(sit_i, start);
3764 
3765 	return page;
3766 }
3767 
3768 static struct sit_entry_set *grab_sit_entry_set(void)
3769 {
3770 	struct sit_entry_set *ses =
3771 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3772 
3773 	ses->entry_cnt = 0;
3774 	INIT_LIST_HEAD(&ses->set_list);
3775 	return ses;
3776 }
3777 
3778 static void release_sit_entry_set(struct sit_entry_set *ses)
3779 {
3780 	list_del(&ses->set_list);
3781 	kmem_cache_free(sit_entry_set_slab, ses);
3782 }
3783 
3784 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3785 						struct list_head *head)
3786 {
3787 	struct sit_entry_set *next = ses;
3788 
3789 	if (list_is_last(&ses->set_list, head))
3790 		return;
3791 
3792 	list_for_each_entry_continue(next, head, set_list)
3793 		if (ses->entry_cnt <= next->entry_cnt)
3794 			break;
3795 
3796 	list_move_tail(&ses->set_list, &next->set_list);
3797 }
3798 
3799 static void add_sit_entry(unsigned int segno, struct list_head *head)
3800 {
3801 	struct sit_entry_set *ses;
3802 	unsigned int start_segno = START_SEGNO(segno);
3803 
3804 	list_for_each_entry(ses, head, set_list) {
3805 		if (ses->start_segno == start_segno) {
3806 			ses->entry_cnt++;
3807 			adjust_sit_entry_set(ses, head);
3808 			return;
3809 		}
3810 	}
3811 
3812 	ses = grab_sit_entry_set();
3813 
3814 	ses->start_segno = start_segno;
3815 	ses->entry_cnt++;
3816 	list_add(&ses->set_list, head);
3817 }
3818 
3819 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3820 {
3821 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3822 	struct list_head *set_list = &sm_info->sit_entry_set;
3823 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3824 	unsigned int segno;
3825 
3826 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3827 		add_sit_entry(segno, set_list);
3828 }
3829 
3830 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3831 {
3832 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3833 	struct f2fs_journal *journal = curseg->journal;
3834 	int i;
3835 
3836 	down_write(&curseg->journal_rwsem);
3837 	for (i = 0; i < sits_in_cursum(journal); i++) {
3838 		unsigned int segno;
3839 		bool dirtied;
3840 
3841 		segno = le32_to_cpu(segno_in_journal(journal, i));
3842 		dirtied = __mark_sit_entry_dirty(sbi, segno);
3843 
3844 		if (!dirtied)
3845 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3846 	}
3847 	update_sits_in_cursum(journal, -i);
3848 	up_write(&curseg->journal_rwsem);
3849 }
3850 
3851 /*
3852  * CP calls this function, which flushes SIT entries including sit_journal,
3853  * and moves prefree segs to free segs.
3854  */
3855 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3856 {
3857 	struct sit_info *sit_i = SIT_I(sbi);
3858 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3859 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3860 	struct f2fs_journal *journal = curseg->journal;
3861 	struct sit_entry_set *ses, *tmp;
3862 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
3863 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
3864 	struct seg_entry *se;
3865 
3866 	down_write(&sit_i->sentry_lock);
3867 
3868 	if (!sit_i->dirty_sentries)
3869 		goto out;
3870 
3871 	/*
3872 	 * add and account sit entries of dirty bitmap in sit entry
3873 	 * set temporarily
3874 	 */
3875 	add_sits_in_set(sbi);
3876 
3877 	/*
3878 	 * if there are no enough space in journal to store dirty sit
3879 	 * entries, remove all entries from journal and add and account
3880 	 * them in sit entry set.
3881 	 */
3882 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
3883 								!to_journal)
3884 		remove_sits_in_journal(sbi);
3885 
3886 	/*
3887 	 * there are two steps to flush sit entries:
3888 	 * #1, flush sit entries to journal in current cold data summary block.
3889 	 * #2, flush sit entries to sit page.
3890 	 */
3891 	list_for_each_entry_safe(ses, tmp, head, set_list) {
3892 		struct page *page = NULL;
3893 		struct f2fs_sit_block *raw_sit = NULL;
3894 		unsigned int start_segno = ses->start_segno;
3895 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3896 						(unsigned long)MAIN_SEGS(sbi));
3897 		unsigned int segno = start_segno;
3898 
3899 		if (to_journal &&
3900 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3901 			to_journal = false;
3902 
3903 		if (to_journal) {
3904 			down_write(&curseg->journal_rwsem);
3905 		} else {
3906 			page = get_next_sit_page(sbi, start_segno);
3907 			raw_sit = page_address(page);
3908 		}
3909 
3910 		/* flush dirty sit entries in region of current sit set */
3911 		for_each_set_bit_from(segno, bitmap, end) {
3912 			int offset, sit_offset;
3913 
3914 			se = get_seg_entry(sbi, segno);
3915 #ifdef CONFIG_F2FS_CHECK_FS
3916 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
3917 						SIT_VBLOCK_MAP_SIZE))
3918 				f2fs_bug_on(sbi, 1);
3919 #endif
3920 
3921 			/* add discard candidates */
3922 			if (!(cpc->reason & CP_DISCARD)) {
3923 				cpc->trim_start = segno;
3924 				add_discard_addrs(sbi, cpc, false);
3925 			}
3926 
3927 			if (to_journal) {
3928 				offset = f2fs_lookup_journal_in_cursum(journal,
3929 							SIT_JOURNAL, segno, 1);
3930 				f2fs_bug_on(sbi, offset < 0);
3931 				segno_in_journal(journal, offset) =
3932 							cpu_to_le32(segno);
3933 				seg_info_to_raw_sit(se,
3934 					&sit_in_journal(journal, offset));
3935 				check_block_count(sbi, segno,
3936 					&sit_in_journal(journal, offset));
3937 			} else {
3938 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3939 				seg_info_to_raw_sit(se,
3940 						&raw_sit->entries[sit_offset]);
3941 				check_block_count(sbi, segno,
3942 						&raw_sit->entries[sit_offset]);
3943 			}
3944 
3945 			__clear_bit(segno, bitmap);
3946 			sit_i->dirty_sentries--;
3947 			ses->entry_cnt--;
3948 		}
3949 
3950 		if (to_journal)
3951 			up_write(&curseg->journal_rwsem);
3952 		else
3953 			f2fs_put_page(page, 1);
3954 
3955 		f2fs_bug_on(sbi, ses->entry_cnt);
3956 		release_sit_entry_set(ses);
3957 	}
3958 
3959 	f2fs_bug_on(sbi, !list_empty(head));
3960 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3961 out:
3962 	if (cpc->reason & CP_DISCARD) {
3963 		__u64 trim_start = cpc->trim_start;
3964 
3965 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3966 			add_discard_addrs(sbi, cpc, false);
3967 
3968 		cpc->trim_start = trim_start;
3969 	}
3970 	up_write(&sit_i->sentry_lock);
3971 
3972 	set_prefree_as_free_segments(sbi);
3973 }
3974 
3975 static int build_sit_info(struct f2fs_sb_info *sbi)
3976 {
3977 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3978 	struct sit_info *sit_i;
3979 	unsigned int sit_segs, start;
3980 	char *src_bitmap, *bitmap;
3981 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
3982 
3983 	/* allocate memory for SIT information */
3984 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3985 	if (!sit_i)
3986 		return -ENOMEM;
3987 
3988 	SM_I(sbi)->sit_info = sit_i;
3989 
3990 	sit_i->sentries =
3991 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
3992 					      MAIN_SEGS(sbi)),
3993 			      GFP_KERNEL);
3994 	if (!sit_i->sentries)
3995 		return -ENOMEM;
3996 
3997 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3998 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
3999 								GFP_KERNEL);
4000 	if (!sit_i->dirty_sentries_bitmap)
4001 		return -ENOMEM;
4002 
4003 #ifdef CONFIG_F2FS_CHECK_FS
4004 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4005 #else
4006 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4007 #endif
4008 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4009 	if (!sit_i->bitmap)
4010 		return -ENOMEM;
4011 
4012 	bitmap = sit_i->bitmap;
4013 
4014 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4015 		sit_i->sentries[start].cur_valid_map = bitmap;
4016 		bitmap += SIT_VBLOCK_MAP_SIZE;
4017 
4018 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4019 		bitmap += SIT_VBLOCK_MAP_SIZE;
4020 
4021 #ifdef CONFIG_F2FS_CHECK_FS
4022 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4023 		bitmap += SIT_VBLOCK_MAP_SIZE;
4024 #endif
4025 
4026 		sit_i->sentries[start].discard_map = bitmap;
4027 		bitmap += SIT_VBLOCK_MAP_SIZE;
4028 	}
4029 
4030 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4031 	if (!sit_i->tmp_map)
4032 		return -ENOMEM;
4033 
4034 	if (__is_large_section(sbi)) {
4035 		sit_i->sec_entries =
4036 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4037 						      MAIN_SECS(sbi)),
4038 				      GFP_KERNEL);
4039 		if (!sit_i->sec_entries)
4040 			return -ENOMEM;
4041 	}
4042 
4043 	/* get information related with SIT */
4044 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4045 
4046 	/* setup SIT bitmap from ckeckpoint pack */
4047 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4048 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4049 
4050 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4051 	if (!sit_i->sit_bitmap)
4052 		return -ENOMEM;
4053 
4054 #ifdef CONFIG_F2FS_CHECK_FS
4055 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4056 					sit_bitmap_size, GFP_KERNEL);
4057 	if (!sit_i->sit_bitmap_mir)
4058 		return -ENOMEM;
4059 
4060 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4061 					main_bitmap_size, GFP_KERNEL);
4062 	if (!sit_i->invalid_segmap)
4063 		return -ENOMEM;
4064 #endif
4065 
4066 	/* init SIT information */
4067 	sit_i->s_ops = &default_salloc_ops;
4068 
4069 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4070 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4071 	sit_i->written_valid_blocks = 0;
4072 	sit_i->bitmap_size = sit_bitmap_size;
4073 	sit_i->dirty_sentries = 0;
4074 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4075 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4076 	sit_i->mounted_time = ktime_get_boottime_seconds();
4077 	init_rwsem(&sit_i->sentry_lock);
4078 	return 0;
4079 }
4080 
4081 static int build_free_segmap(struct f2fs_sb_info *sbi)
4082 {
4083 	struct free_segmap_info *free_i;
4084 	unsigned int bitmap_size, sec_bitmap_size;
4085 
4086 	/* allocate memory for free segmap information */
4087 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4088 	if (!free_i)
4089 		return -ENOMEM;
4090 
4091 	SM_I(sbi)->free_info = free_i;
4092 
4093 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4094 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4095 	if (!free_i->free_segmap)
4096 		return -ENOMEM;
4097 
4098 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4099 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4100 	if (!free_i->free_secmap)
4101 		return -ENOMEM;
4102 
4103 	/* set all segments as dirty temporarily */
4104 	memset(free_i->free_segmap, 0xff, bitmap_size);
4105 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4106 
4107 	/* init free segmap information */
4108 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4109 	free_i->free_segments = 0;
4110 	free_i->free_sections = 0;
4111 	spin_lock_init(&free_i->segmap_lock);
4112 	return 0;
4113 }
4114 
4115 static int build_curseg(struct f2fs_sb_info *sbi)
4116 {
4117 	struct curseg_info *array;
4118 	int i;
4119 
4120 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)),
4121 			     GFP_KERNEL);
4122 	if (!array)
4123 		return -ENOMEM;
4124 
4125 	SM_I(sbi)->curseg_array = array;
4126 
4127 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4128 		mutex_init(&array[i].curseg_mutex);
4129 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4130 		if (!array[i].sum_blk)
4131 			return -ENOMEM;
4132 		init_rwsem(&array[i].journal_rwsem);
4133 		array[i].journal = f2fs_kzalloc(sbi,
4134 				sizeof(struct f2fs_journal), GFP_KERNEL);
4135 		if (!array[i].journal)
4136 			return -ENOMEM;
4137 		array[i].segno = NULL_SEGNO;
4138 		array[i].next_blkoff = 0;
4139 	}
4140 	return restore_curseg_summaries(sbi);
4141 }
4142 
4143 static int build_sit_entries(struct f2fs_sb_info *sbi)
4144 {
4145 	struct sit_info *sit_i = SIT_I(sbi);
4146 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4147 	struct f2fs_journal *journal = curseg->journal;
4148 	struct seg_entry *se;
4149 	struct f2fs_sit_entry sit;
4150 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4151 	unsigned int i, start, end;
4152 	unsigned int readed, start_blk = 0;
4153 	int err = 0;
4154 	block_t total_node_blocks = 0;
4155 
4156 	do {
4157 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
4158 							META_SIT, true);
4159 
4160 		start = start_blk * sit_i->sents_per_block;
4161 		end = (start_blk + readed) * sit_i->sents_per_block;
4162 
4163 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4164 			struct f2fs_sit_block *sit_blk;
4165 			struct page *page;
4166 
4167 			se = &sit_i->sentries[start];
4168 			page = get_current_sit_page(sbi, start);
4169 			if (IS_ERR(page))
4170 				return PTR_ERR(page);
4171 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4172 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4173 			f2fs_put_page(page, 1);
4174 
4175 			err = check_block_count(sbi, start, &sit);
4176 			if (err)
4177 				return err;
4178 			seg_info_from_raw_sit(se, &sit);
4179 			if (IS_NODESEG(se->type))
4180 				total_node_blocks += se->valid_blocks;
4181 
4182 			/* build discard map only one time */
4183 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4184 				memset(se->discard_map, 0xff,
4185 					SIT_VBLOCK_MAP_SIZE);
4186 			} else {
4187 				memcpy(se->discard_map,
4188 					se->cur_valid_map,
4189 					SIT_VBLOCK_MAP_SIZE);
4190 				sbi->discard_blks +=
4191 					sbi->blocks_per_seg -
4192 					se->valid_blocks;
4193 			}
4194 
4195 			if (__is_large_section(sbi))
4196 				get_sec_entry(sbi, start)->valid_blocks +=
4197 							se->valid_blocks;
4198 		}
4199 		start_blk += readed;
4200 	} while (start_blk < sit_blk_cnt);
4201 
4202 	down_read(&curseg->journal_rwsem);
4203 	for (i = 0; i < sits_in_cursum(journal); i++) {
4204 		unsigned int old_valid_blocks;
4205 
4206 		start = le32_to_cpu(segno_in_journal(journal, i));
4207 		if (start >= MAIN_SEGS(sbi)) {
4208 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4209 				 start);
4210 			err = -EFSCORRUPTED;
4211 			break;
4212 		}
4213 
4214 		se = &sit_i->sentries[start];
4215 		sit = sit_in_journal(journal, i);
4216 
4217 		old_valid_blocks = se->valid_blocks;
4218 		if (IS_NODESEG(se->type))
4219 			total_node_blocks -= old_valid_blocks;
4220 
4221 		err = check_block_count(sbi, start, &sit);
4222 		if (err)
4223 			break;
4224 		seg_info_from_raw_sit(se, &sit);
4225 		if (IS_NODESEG(se->type))
4226 			total_node_blocks += se->valid_blocks;
4227 
4228 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4229 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4230 		} else {
4231 			memcpy(se->discard_map, se->cur_valid_map,
4232 						SIT_VBLOCK_MAP_SIZE);
4233 			sbi->discard_blks += old_valid_blocks;
4234 			sbi->discard_blks -= se->valid_blocks;
4235 		}
4236 
4237 		if (__is_large_section(sbi)) {
4238 			get_sec_entry(sbi, start)->valid_blocks +=
4239 							se->valid_blocks;
4240 			get_sec_entry(sbi, start)->valid_blocks -=
4241 							old_valid_blocks;
4242 		}
4243 	}
4244 	up_read(&curseg->journal_rwsem);
4245 
4246 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4247 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4248 			 total_node_blocks, valid_node_count(sbi));
4249 		err = -EFSCORRUPTED;
4250 	}
4251 
4252 	return err;
4253 }
4254 
4255 static void init_free_segmap(struct f2fs_sb_info *sbi)
4256 {
4257 	unsigned int start;
4258 	int type;
4259 
4260 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4261 		struct seg_entry *sentry = get_seg_entry(sbi, start);
4262 		if (!sentry->valid_blocks)
4263 			__set_free(sbi, start);
4264 		else
4265 			SIT_I(sbi)->written_valid_blocks +=
4266 						sentry->valid_blocks;
4267 	}
4268 
4269 	/* set use the current segments */
4270 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4271 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4272 		__set_test_and_inuse(sbi, curseg_t->segno);
4273 	}
4274 }
4275 
4276 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4277 {
4278 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4279 	struct free_segmap_info *free_i = FREE_I(sbi);
4280 	unsigned int segno = 0, offset = 0;
4281 	unsigned short valid_blocks;
4282 
4283 	while (1) {
4284 		/* find dirty segment based on free segmap */
4285 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4286 		if (segno >= MAIN_SEGS(sbi))
4287 			break;
4288 		offset = segno + 1;
4289 		valid_blocks = get_valid_blocks(sbi, segno, false);
4290 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
4291 			continue;
4292 		if (valid_blocks > sbi->blocks_per_seg) {
4293 			f2fs_bug_on(sbi, 1);
4294 			continue;
4295 		}
4296 		mutex_lock(&dirty_i->seglist_lock);
4297 		__locate_dirty_segment(sbi, segno, DIRTY);
4298 		mutex_unlock(&dirty_i->seglist_lock);
4299 	}
4300 }
4301 
4302 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4303 {
4304 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4305 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4306 
4307 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4308 	if (!dirty_i->victim_secmap)
4309 		return -ENOMEM;
4310 	return 0;
4311 }
4312 
4313 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4314 {
4315 	struct dirty_seglist_info *dirty_i;
4316 	unsigned int bitmap_size, i;
4317 
4318 	/* allocate memory for dirty segments list information */
4319 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4320 								GFP_KERNEL);
4321 	if (!dirty_i)
4322 		return -ENOMEM;
4323 
4324 	SM_I(sbi)->dirty_info = dirty_i;
4325 	mutex_init(&dirty_i->seglist_lock);
4326 
4327 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4328 
4329 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4330 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4331 								GFP_KERNEL);
4332 		if (!dirty_i->dirty_segmap[i])
4333 			return -ENOMEM;
4334 	}
4335 
4336 	init_dirty_segmap(sbi);
4337 	return init_victim_secmap(sbi);
4338 }
4339 
4340 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4341 {
4342 	int i;
4343 
4344 	/*
4345 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4346 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4347 	 */
4348 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4349 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4350 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4351 		unsigned int blkofs = curseg->next_blkoff;
4352 
4353 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4354 			goto out;
4355 
4356 		if (curseg->alloc_type == SSR)
4357 			continue;
4358 
4359 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4360 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4361 				continue;
4362 out:
4363 			f2fs_err(sbi,
4364 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4365 				 i, curseg->segno, curseg->alloc_type,
4366 				 curseg->next_blkoff, blkofs);
4367 			return -EFSCORRUPTED;
4368 		}
4369 	}
4370 	return 0;
4371 }
4372 
4373 #ifdef CONFIG_BLK_DEV_ZONED
4374 
4375 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4376 				    struct f2fs_dev_info *fdev,
4377 				    struct blk_zone *zone)
4378 {
4379 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4380 	block_t zone_block, wp_block, last_valid_block;
4381 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4382 	int i, s, b, ret;
4383 	struct seg_entry *se;
4384 
4385 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4386 		return 0;
4387 
4388 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4389 	wp_segno = GET_SEGNO(sbi, wp_block);
4390 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4391 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4392 	zone_segno = GET_SEGNO(sbi, zone_block);
4393 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4394 
4395 	if (zone_segno >= MAIN_SEGS(sbi))
4396 		return 0;
4397 
4398 	/*
4399 	 * Skip check of zones cursegs point to, since
4400 	 * fix_curseg_write_pointer() checks them.
4401 	 */
4402 	for (i = 0; i < NO_CHECK_TYPE; i++)
4403 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4404 						   CURSEG_I(sbi, i)->segno))
4405 			return 0;
4406 
4407 	/*
4408 	 * Get last valid block of the zone.
4409 	 */
4410 	last_valid_block = zone_block - 1;
4411 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4412 		segno = zone_segno + s;
4413 		se = get_seg_entry(sbi, segno);
4414 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4415 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4416 				last_valid_block = START_BLOCK(sbi, segno) + b;
4417 				break;
4418 			}
4419 		if (last_valid_block >= zone_block)
4420 			break;
4421 	}
4422 
4423 	/*
4424 	 * If last valid block is beyond the write pointer, report the
4425 	 * inconsistency. This inconsistency does not cause write error
4426 	 * because the zone will not be selected for write operation until
4427 	 * it get discarded. Just report it.
4428 	 */
4429 	if (last_valid_block >= wp_block) {
4430 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4431 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4432 			    GET_SEGNO(sbi, last_valid_block),
4433 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4434 			    wp_segno, wp_blkoff);
4435 		return 0;
4436 	}
4437 
4438 	/*
4439 	 * If there is no valid block in the zone and if write pointer is
4440 	 * not at zone start, reset the write pointer.
4441 	 */
4442 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4443 		f2fs_notice(sbi,
4444 			    "Zone without valid block has non-zero write "
4445 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4446 			    wp_segno, wp_blkoff);
4447 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4448 					zone->len >> log_sectors_per_block);
4449 		if (ret) {
4450 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4451 				 fdev->path, ret);
4452 			return ret;
4453 		}
4454 	}
4455 
4456 	return 0;
4457 }
4458 
4459 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4460 						  block_t zone_blkaddr)
4461 {
4462 	int i;
4463 
4464 	for (i = 0; i < sbi->s_ndevs; i++) {
4465 		if (!bdev_is_zoned(FDEV(i).bdev))
4466 			continue;
4467 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4468 				zone_blkaddr <= FDEV(i).end_blk))
4469 			return &FDEV(i);
4470 	}
4471 
4472 	return NULL;
4473 }
4474 
4475 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4476 			      void *data) {
4477 	memcpy(data, zone, sizeof(struct blk_zone));
4478 	return 0;
4479 }
4480 
4481 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4482 {
4483 	struct curseg_info *cs = CURSEG_I(sbi, type);
4484 	struct f2fs_dev_info *zbd;
4485 	struct blk_zone zone;
4486 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4487 	block_t cs_zone_block, wp_block;
4488 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4489 	sector_t zone_sector;
4490 	int err;
4491 
4492 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4493 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4494 
4495 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4496 	if (!zbd)
4497 		return 0;
4498 
4499 	/* report zone for the sector the curseg points to */
4500 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4501 		<< log_sectors_per_block;
4502 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4503 				  report_one_zone_cb, &zone);
4504 	if (err != 1) {
4505 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4506 			 zbd->path, err);
4507 		return err;
4508 	}
4509 
4510 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4511 		return 0;
4512 
4513 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4514 	wp_segno = GET_SEGNO(sbi, wp_block);
4515 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4516 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4517 
4518 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4519 		wp_sector_off == 0)
4520 		return 0;
4521 
4522 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4523 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4524 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4525 
4526 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4527 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4528 	allocate_segment_by_default(sbi, type, true);
4529 
4530 	/* check consistency of the zone curseg pointed to */
4531 	if (check_zone_write_pointer(sbi, zbd, &zone))
4532 		return -EIO;
4533 
4534 	/* check newly assigned zone */
4535 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4536 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4537 
4538 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4539 	if (!zbd)
4540 		return 0;
4541 
4542 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4543 		<< log_sectors_per_block;
4544 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4545 				  report_one_zone_cb, &zone);
4546 	if (err != 1) {
4547 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4548 			 zbd->path, err);
4549 		return err;
4550 	}
4551 
4552 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4553 		return 0;
4554 
4555 	if (zone.wp != zone.start) {
4556 		f2fs_notice(sbi,
4557 			    "New zone for curseg[%d] is not yet discarded. "
4558 			    "Reset the zone: curseg[0x%x,0x%x]",
4559 			    type, cs->segno, cs->next_blkoff);
4560 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4561 				zone_sector >> log_sectors_per_block,
4562 				zone.len >> log_sectors_per_block);
4563 		if (err) {
4564 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4565 				 zbd->path, err);
4566 			return err;
4567 		}
4568 	}
4569 
4570 	return 0;
4571 }
4572 
4573 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4574 {
4575 	int i, ret;
4576 
4577 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4578 		ret = fix_curseg_write_pointer(sbi, i);
4579 		if (ret)
4580 			return ret;
4581 	}
4582 
4583 	return 0;
4584 }
4585 
4586 struct check_zone_write_pointer_args {
4587 	struct f2fs_sb_info *sbi;
4588 	struct f2fs_dev_info *fdev;
4589 };
4590 
4591 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4592 				      void *data) {
4593 	struct check_zone_write_pointer_args *args;
4594 	args = (struct check_zone_write_pointer_args *)data;
4595 
4596 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4597 }
4598 
4599 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4600 {
4601 	int i, ret;
4602 	struct check_zone_write_pointer_args args;
4603 
4604 	for (i = 0; i < sbi->s_ndevs; i++) {
4605 		if (!bdev_is_zoned(FDEV(i).bdev))
4606 			continue;
4607 
4608 		args.sbi = sbi;
4609 		args.fdev = &FDEV(i);
4610 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4611 					  check_zone_write_pointer_cb, &args);
4612 		if (ret < 0)
4613 			return ret;
4614 	}
4615 
4616 	return 0;
4617 }
4618 #else
4619 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4620 {
4621 	return 0;
4622 }
4623 
4624 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4625 {
4626 	return 0;
4627 }
4628 #endif
4629 
4630 /*
4631  * Update min, max modified time for cost-benefit GC algorithm
4632  */
4633 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
4634 {
4635 	struct sit_info *sit_i = SIT_I(sbi);
4636 	unsigned int segno;
4637 
4638 	down_write(&sit_i->sentry_lock);
4639 
4640 	sit_i->min_mtime = ULLONG_MAX;
4641 
4642 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4643 		unsigned int i;
4644 		unsigned long long mtime = 0;
4645 
4646 		for (i = 0; i < sbi->segs_per_sec; i++)
4647 			mtime += get_seg_entry(sbi, segno + i)->mtime;
4648 
4649 		mtime = div_u64(mtime, sbi->segs_per_sec);
4650 
4651 		if (sit_i->min_mtime > mtime)
4652 			sit_i->min_mtime = mtime;
4653 	}
4654 	sit_i->max_mtime = get_mtime(sbi, false);
4655 	up_write(&sit_i->sentry_lock);
4656 }
4657 
4658 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
4659 {
4660 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4661 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
4662 	struct f2fs_sm_info *sm_info;
4663 	int err;
4664 
4665 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
4666 	if (!sm_info)
4667 		return -ENOMEM;
4668 
4669 	/* init sm info */
4670 	sbi->sm_info = sm_info;
4671 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
4672 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
4673 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
4674 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
4675 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
4676 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
4677 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
4678 	sm_info->rec_prefree_segments = sm_info->main_segments *
4679 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
4680 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
4681 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
4682 
4683 	if (!f2fs_lfs_mode(sbi))
4684 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
4685 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
4686 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
4687 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
4688 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
4689 	sm_info->min_ssr_sections = reserved_sections(sbi);
4690 
4691 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
4692 
4693 	init_rwsem(&sm_info->curseg_lock);
4694 
4695 	if (!f2fs_readonly(sbi->sb)) {
4696 		err = f2fs_create_flush_cmd_control(sbi);
4697 		if (err)
4698 			return err;
4699 	}
4700 
4701 	err = create_discard_cmd_control(sbi);
4702 	if (err)
4703 		return err;
4704 
4705 	err = build_sit_info(sbi);
4706 	if (err)
4707 		return err;
4708 	err = build_free_segmap(sbi);
4709 	if (err)
4710 		return err;
4711 	err = build_curseg(sbi);
4712 	if (err)
4713 		return err;
4714 
4715 	/* reinit free segmap based on SIT */
4716 	err = build_sit_entries(sbi);
4717 	if (err)
4718 		return err;
4719 
4720 	init_free_segmap(sbi);
4721 	err = build_dirty_segmap(sbi);
4722 	if (err)
4723 		return err;
4724 
4725 	err = sanity_check_curseg(sbi);
4726 	if (err)
4727 		return err;
4728 
4729 	init_min_max_mtime(sbi);
4730 	return 0;
4731 }
4732 
4733 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
4734 		enum dirty_type dirty_type)
4735 {
4736 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4737 
4738 	mutex_lock(&dirty_i->seglist_lock);
4739 	kvfree(dirty_i->dirty_segmap[dirty_type]);
4740 	dirty_i->nr_dirty[dirty_type] = 0;
4741 	mutex_unlock(&dirty_i->seglist_lock);
4742 }
4743 
4744 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
4745 {
4746 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4747 	kvfree(dirty_i->victim_secmap);
4748 }
4749 
4750 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
4751 {
4752 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4753 	int i;
4754 
4755 	if (!dirty_i)
4756 		return;
4757 
4758 	/* discard pre-free/dirty segments list */
4759 	for (i = 0; i < NR_DIRTY_TYPE; i++)
4760 		discard_dirty_segmap(sbi, i);
4761 
4762 	destroy_victim_secmap(sbi);
4763 	SM_I(sbi)->dirty_info = NULL;
4764 	kvfree(dirty_i);
4765 }
4766 
4767 static void destroy_curseg(struct f2fs_sb_info *sbi)
4768 {
4769 	struct curseg_info *array = SM_I(sbi)->curseg_array;
4770 	int i;
4771 
4772 	if (!array)
4773 		return;
4774 	SM_I(sbi)->curseg_array = NULL;
4775 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
4776 		kvfree(array[i].sum_blk);
4777 		kvfree(array[i].journal);
4778 	}
4779 	kvfree(array);
4780 }
4781 
4782 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
4783 {
4784 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
4785 	if (!free_i)
4786 		return;
4787 	SM_I(sbi)->free_info = NULL;
4788 	kvfree(free_i->free_segmap);
4789 	kvfree(free_i->free_secmap);
4790 	kvfree(free_i);
4791 }
4792 
4793 static void destroy_sit_info(struct f2fs_sb_info *sbi)
4794 {
4795 	struct sit_info *sit_i = SIT_I(sbi);
4796 
4797 	if (!sit_i)
4798 		return;
4799 
4800 	if (sit_i->sentries)
4801 		kvfree(sit_i->bitmap);
4802 	kvfree(sit_i->tmp_map);
4803 
4804 	kvfree(sit_i->sentries);
4805 	kvfree(sit_i->sec_entries);
4806 	kvfree(sit_i->dirty_sentries_bitmap);
4807 
4808 	SM_I(sbi)->sit_info = NULL;
4809 	kvfree(sit_i->sit_bitmap);
4810 #ifdef CONFIG_F2FS_CHECK_FS
4811 	kvfree(sit_i->sit_bitmap_mir);
4812 	kvfree(sit_i->invalid_segmap);
4813 #endif
4814 	kvfree(sit_i);
4815 }
4816 
4817 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
4818 {
4819 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4820 
4821 	if (!sm_info)
4822 		return;
4823 	f2fs_destroy_flush_cmd_control(sbi, true);
4824 	destroy_discard_cmd_control(sbi);
4825 	destroy_dirty_segmap(sbi);
4826 	destroy_curseg(sbi);
4827 	destroy_free_segmap(sbi);
4828 	destroy_sit_info(sbi);
4829 	sbi->sm_info = NULL;
4830 	kvfree(sm_info);
4831 }
4832 
4833 int __init f2fs_create_segment_manager_caches(void)
4834 {
4835 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
4836 			sizeof(struct discard_entry));
4837 	if (!discard_entry_slab)
4838 		goto fail;
4839 
4840 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
4841 			sizeof(struct discard_cmd));
4842 	if (!discard_cmd_slab)
4843 		goto destroy_discard_entry;
4844 
4845 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
4846 			sizeof(struct sit_entry_set));
4847 	if (!sit_entry_set_slab)
4848 		goto destroy_discard_cmd;
4849 
4850 	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
4851 			sizeof(struct inmem_pages));
4852 	if (!inmem_entry_slab)
4853 		goto destroy_sit_entry_set;
4854 	return 0;
4855 
4856 destroy_sit_entry_set:
4857 	kmem_cache_destroy(sit_entry_set_slab);
4858 destroy_discard_cmd:
4859 	kmem_cache_destroy(discard_cmd_slab);
4860 destroy_discard_entry:
4861 	kmem_cache_destroy(discard_entry_slab);
4862 fail:
4863 	return -ENOMEM;
4864 }
4865 
4866 void f2fs_destroy_segment_manager_caches(void)
4867 {
4868 	kmem_cache_destroy(sit_entry_set_slab);
4869 	kmem_cache_destroy(discard_cmd_slab);
4870 	kmem_cache_destroy(discard_entry_slab);
4871 	kmem_cache_destroy(inmem_entry_slab);
4872 }
4873