1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 #include <linux/random.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "gc.h" 24 #include "iostat.h" 25 #include <trace/events/f2fs.h> 26 27 #define __reverse_ffz(x) __reverse_ffs(~(x)) 28 29 static struct kmem_cache *discard_entry_slab; 30 static struct kmem_cache *discard_cmd_slab; 31 static struct kmem_cache *sit_entry_set_slab; 32 static struct kmem_cache *inmem_entry_slab; 33 34 static unsigned long __reverse_ulong(unsigned char *str) 35 { 36 unsigned long tmp = 0; 37 int shift = 24, idx = 0; 38 39 #if BITS_PER_LONG == 64 40 shift = 56; 41 #endif 42 while (shift >= 0) { 43 tmp |= (unsigned long)str[idx++] << shift; 44 shift -= BITS_PER_BYTE; 45 } 46 return tmp; 47 } 48 49 /* 50 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 51 * MSB and LSB are reversed in a byte by f2fs_set_bit. 52 */ 53 static inline unsigned long __reverse_ffs(unsigned long word) 54 { 55 int num = 0; 56 57 #if BITS_PER_LONG == 64 58 if ((word & 0xffffffff00000000UL) == 0) 59 num += 32; 60 else 61 word >>= 32; 62 #endif 63 if ((word & 0xffff0000) == 0) 64 num += 16; 65 else 66 word >>= 16; 67 68 if ((word & 0xff00) == 0) 69 num += 8; 70 else 71 word >>= 8; 72 73 if ((word & 0xf0) == 0) 74 num += 4; 75 else 76 word >>= 4; 77 78 if ((word & 0xc) == 0) 79 num += 2; 80 else 81 word >>= 2; 82 83 if ((word & 0x2) == 0) 84 num += 1; 85 return num; 86 } 87 88 /* 89 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 90 * f2fs_set_bit makes MSB and LSB reversed in a byte. 91 * @size must be integral times of unsigned long. 92 * Example: 93 * MSB <--> LSB 94 * f2fs_set_bit(0, bitmap) => 1000 0000 95 * f2fs_set_bit(7, bitmap) => 0000 0001 96 */ 97 static unsigned long __find_rev_next_bit(const unsigned long *addr, 98 unsigned long size, unsigned long offset) 99 { 100 const unsigned long *p = addr + BIT_WORD(offset); 101 unsigned long result = size; 102 unsigned long tmp; 103 104 if (offset >= size) 105 return size; 106 107 size -= (offset & ~(BITS_PER_LONG - 1)); 108 offset %= BITS_PER_LONG; 109 110 while (1) { 111 if (*p == 0) 112 goto pass; 113 114 tmp = __reverse_ulong((unsigned char *)p); 115 116 tmp &= ~0UL >> offset; 117 if (size < BITS_PER_LONG) 118 tmp &= (~0UL << (BITS_PER_LONG - size)); 119 if (tmp) 120 goto found; 121 pass: 122 if (size <= BITS_PER_LONG) 123 break; 124 size -= BITS_PER_LONG; 125 offset = 0; 126 p++; 127 } 128 return result; 129 found: 130 return result - size + __reverse_ffs(tmp); 131 } 132 133 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 134 unsigned long size, unsigned long offset) 135 { 136 const unsigned long *p = addr + BIT_WORD(offset); 137 unsigned long result = size; 138 unsigned long tmp; 139 140 if (offset >= size) 141 return size; 142 143 size -= (offset & ~(BITS_PER_LONG - 1)); 144 offset %= BITS_PER_LONG; 145 146 while (1) { 147 if (*p == ~0UL) 148 goto pass; 149 150 tmp = __reverse_ulong((unsigned char *)p); 151 152 if (offset) 153 tmp |= ~0UL << (BITS_PER_LONG - offset); 154 if (size < BITS_PER_LONG) 155 tmp |= ~0UL >> size; 156 if (tmp != ~0UL) 157 goto found; 158 pass: 159 if (size <= BITS_PER_LONG) 160 break; 161 size -= BITS_PER_LONG; 162 offset = 0; 163 p++; 164 } 165 return result; 166 found: 167 return result - size + __reverse_ffz(tmp); 168 } 169 170 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 171 { 172 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 173 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 174 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 175 176 if (f2fs_lfs_mode(sbi)) 177 return false; 178 if (sbi->gc_mode == GC_URGENT_HIGH) 179 return true; 180 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 181 return true; 182 183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 185 } 186 187 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 188 { 189 struct inmem_pages *new; 190 191 set_page_private_atomic(page); 192 193 new = f2fs_kmem_cache_alloc(inmem_entry_slab, 194 GFP_NOFS, true, NULL); 195 196 /* add atomic page indices to the list */ 197 new->page = page; 198 INIT_LIST_HEAD(&new->list); 199 200 /* increase reference count with clean state */ 201 get_page(page); 202 mutex_lock(&F2FS_I(inode)->inmem_lock); 203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 205 mutex_unlock(&F2FS_I(inode)->inmem_lock); 206 207 trace_f2fs_register_inmem_page(page, INMEM); 208 } 209 210 static int __revoke_inmem_pages(struct inode *inode, 211 struct list_head *head, bool drop, bool recover, 212 bool trylock) 213 { 214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 215 struct inmem_pages *cur, *tmp; 216 int err = 0; 217 218 list_for_each_entry_safe(cur, tmp, head, list) { 219 struct page *page = cur->page; 220 221 if (drop) 222 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 223 224 if (trylock) { 225 /* 226 * to avoid deadlock in between page lock and 227 * inmem_lock. 228 */ 229 if (!trylock_page(page)) 230 continue; 231 } else { 232 lock_page(page); 233 } 234 235 f2fs_wait_on_page_writeback(page, DATA, true, true); 236 237 if (recover) { 238 struct dnode_of_data dn; 239 struct node_info ni; 240 241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 242 retry: 243 set_new_dnode(&dn, inode, NULL, NULL, 0); 244 err = f2fs_get_dnode_of_data(&dn, page->index, 245 LOOKUP_NODE); 246 if (err) { 247 if (err == -ENOMEM) { 248 congestion_wait(BLK_RW_ASYNC, 249 DEFAULT_IO_TIMEOUT); 250 cond_resched(); 251 goto retry; 252 } 253 err = -EAGAIN; 254 goto next; 255 } 256 257 err = f2fs_get_node_info(sbi, dn.nid, &ni); 258 if (err) { 259 f2fs_put_dnode(&dn); 260 return err; 261 } 262 263 if (cur->old_addr == NEW_ADDR) { 264 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 265 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 266 } else 267 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 268 cur->old_addr, ni.version, true, true); 269 f2fs_put_dnode(&dn); 270 } 271 next: 272 /* we don't need to invalidate this in the sccessful status */ 273 if (drop || recover) { 274 ClearPageUptodate(page); 275 clear_page_private_gcing(page); 276 } 277 detach_page_private(page); 278 set_page_private(page, 0); 279 f2fs_put_page(page, 1); 280 281 list_del(&cur->list); 282 kmem_cache_free(inmem_entry_slab, cur); 283 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 284 } 285 return err; 286 } 287 288 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 289 { 290 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 291 struct inode *inode; 292 struct f2fs_inode_info *fi; 293 unsigned int count = sbi->atomic_files; 294 unsigned int looped = 0; 295 next: 296 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 297 if (list_empty(head)) { 298 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 299 return; 300 } 301 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 302 inode = igrab(&fi->vfs_inode); 303 if (inode) 304 list_move_tail(&fi->inmem_ilist, head); 305 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 306 307 if (inode) { 308 if (gc_failure) { 309 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) 310 goto skip; 311 } 312 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 313 f2fs_drop_inmem_pages(inode); 314 skip: 315 iput(inode); 316 } 317 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 318 cond_resched(); 319 if (gc_failure) { 320 if (++looped >= count) 321 return; 322 } 323 goto next; 324 } 325 326 void f2fs_drop_inmem_pages(struct inode *inode) 327 { 328 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 329 struct f2fs_inode_info *fi = F2FS_I(inode); 330 331 do { 332 mutex_lock(&fi->inmem_lock); 333 if (list_empty(&fi->inmem_pages)) { 334 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 335 336 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 337 if (!list_empty(&fi->inmem_ilist)) 338 list_del_init(&fi->inmem_ilist); 339 if (f2fs_is_atomic_file(inode)) { 340 clear_inode_flag(inode, FI_ATOMIC_FILE); 341 sbi->atomic_files--; 342 } 343 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 344 345 mutex_unlock(&fi->inmem_lock); 346 break; 347 } 348 __revoke_inmem_pages(inode, &fi->inmem_pages, 349 true, false, true); 350 mutex_unlock(&fi->inmem_lock); 351 } while (1); 352 } 353 354 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 355 { 356 struct f2fs_inode_info *fi = F2FS_I(inode); 357 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 358 struct list_head *head = &fi->inmem_pages; 359 struct inmem_pages *cur = NULL; 360 361 f2fs_bug_on(sbi, !page_private_atomic(page)); 362 363 mutex_lock(&fi->inmem_lock); 364 list_for_each_entry(cur, head, list) { 365 if (cur->page == page) 366 break; 367 } 368 369 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 370 list_del(&cur->list); 371 mutex_unlock(&fi->inmem_lock); 372 373 dec_page_count(sbi, F2FS_INMEM_PAGES); 374 kmem_cache_free(inmem_entry_slab, cur); 375 376 ClearPageUptodate(page); 377 clear_page_private_atomic(page); 378 f2fs_put_page(page, 0); 379 380 detach_page_private(page); 381 set_page_private(page, 0); 382 383 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 384 } 385 386 static int __f2fs_commit_inmem_pages(struct inode *inode) 387 { 388 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 389 struct f2fs_inode_info *fi = F2FS_I(inode); 390 struct inmem_pages *cur, *tmp; 391 struct f2fs_io_info fio = { 392 .sbi = sbi, 393 .ino = inode->i_ino, 394 .type = DATA, 395 .op = REQ_OP_WRITE, 396 .op_flags = REQ_SYNC | REQ_PRIO, 397 .io_type = FS_DATA_IO, 398 }; 399 struct list_head revoke_list; 400 bool submit_bio = false; 401 int err = 0; 402 403 INIT_LIST_HEAD(&revoke_list); 404 405 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 406 struct page *page = cur->page; 407 408 lock_page(page); 409 if (page->mapping == inode->i_mapping) { 410 trace_f2fs_commit_inmem_page(page, INMEM); 411 412 f2fs_wait_on_page_writeback(page, DATA, true, true); 413 414 set_page_dirty(page); 415 if (clear_page_dirty_for_io(page)) { 416 inode_dec_dirty_pages(inode); 417 f2fs_remove_dirty_inode(inode); 418 } 419 retry: 420 fio.page = page; 421 fio.old_blkaddr = NULL_ADDR; 422 fio.encrypted_page = NULL; 423 fio.need_lock = LOCK_DONE; 424 err = f2fs_do_write_data_page(&fio); 425 if (err) { 426 if (err == -ENOMEM) { 427 congestion_wait(BLK_RW_ASYNC, 428 DEFAULT_IO_TIMEOUT); 429 cond_resched(); 430 goto retry; 431 } 432 unlock_page(page); 433 break; 434 } 435 /* record old blkaddr for revoking */ 436 cur->old_addr = fio.old_blkaddr; 437 submit_bio = true; 438 } 439 unlock_page(page); 440 list_move_tail(&cur->list, &revoke_list); 441 } 442 443 if (submit_bio) 444 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 445 446 if (err) { 447 /* 448 * try to revoke all committed pages, but still we could fail 449 * due to no memory or other reason, if that happened, EAGAIN 450 * will be returned, which means in such case, transaction is 451 * already not integrity, caller should use journal to do the 452 * recovery or rewrite & commit last transaction. For other 453 * error number, revoking was done by filesystem itself. 454 */ 455 err = __revoke_inmem_pages(inode, &revoke_list, 456 false, true, false); 457 458 /* drop all uncommitted pages */ 459 __revoke_inmem_pages(inode, &fi->inmem_pages, 460 true, false, false); 461 } else { 462 __revoke_inmem_pages(inode, &revoke_list, 463 false, false, false); 464 } 465 466 return err; 467 } 468 469 int f2fs_commit_inmem_pages(struct inode *inode) 470 { 471 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 472 struct f2fs_inode_info *fi = F2FS_I(inode); 473 int err; 474 475 f2fs_balance_fs(sbi, true); 476 477 down_write(&fi->i_gc_rwsem[WRITE]); 478 479 f2fs_lock_op(sbi); 480 set_inode_flag(inode, FI_ATOMIC_COMMIT); 481 482 mutex_lock(&fi->inmem_lock); 483 err = __f2fs_commit_inmem_pages(inode); 484 mutex_unlock(&fi->inmem_lock); 485 486 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 487 488 f2fs_unlock_op(sbi); 489 up_write(&fi->i_gc_rwsem[WRITE]); 490 491 return err; 492 } 493 494 /* 495 * This function balances dirty node and dentry pages. 496 * In addition, it controls garbage collection. 497 */ 498 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 499 { 500 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 501 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 502 f2fs_stop_checkpoint(sbi, false); 503 } 504 505 /* balance_fs_bg is able to be pending */ 506 if (need && excess_cached_nats(sbi)) 507 f2fs_balance_fs_bg(sbi, false); 508 509 if (!f2fs_is_checkpoint_ready(sbi)) 510 return; 511 512 /* 513 * We should do GC or end up with checkpoint, if there are so many dirty 514 * dir/node pages without enough free segments. 515 */ 516 if (has_not_enough_free_secs(sbi, 0, 0)) { 517 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 518 sbi->gc_thread->f2fs_gc_task) { 519 DEFINE_WAIT(wait); 520 521 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 522 TASK_UNINTERRUPTIBLE); 523 wake_up(&sbi->gc_thread->gc_wait_queue_head); 524 io_schedule(); 525 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 526 } else { 527 down_write(&sbi->gc_lock); 528 f2fs_gc(sbi, false, false, false, NULL_SEGNO); 529 } 530 } 531 } 532 533 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 534 { 535 int factor = rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 536 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 537 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 538 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 539 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 540 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 541 unsigned int threshold = sbi->blocks_per_seg * factor * 542 DEFAULT_DIRTY_THRESHOLD; 543 unsigned int global_threshold = threshold * 3 / 2; 544 545 if (dents >= threshold || qdata >= threshold || 546 nodes >= threshold || meta >= threshold || 547 imeta >= threshold) 548 return true; 549 return dents + qdata + nodes + meta + imeta > global_threshold; 550 } 551 552 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 553 { 554 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 555 return; 556 557 /* try to shrink extent cache when there is no enough memory */ 558 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 559 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 560 561 /* check the # of cached NAT entries */ 562 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 563 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 564 565 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 566 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 567 else 568 f2fs_build_free_nids(sbi, false, false); 569 570 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 571 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 572 goto do_sync; 573 574 /* there is background inflight IO or foreground operation recently */ 575 if (is_inflight_io(sbi, REQ_TIME) || 576 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem))) 577 return; 578 579 /* exceed periodical checkpoint timeout threshold */ 580 if (f2fs_time_over(sbi, CP_TIME)) 581 goto do_sync; 582 583 /* checkpoint is the only way to shrink partial cached entries */ 584 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 585 f2fs_available_free_memory(sbi, INO_ENTRIES)) 586 return; 587 588 do_sync: 589 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 590 struct blk_plug plug; 591 592 mutex_lock(&sbi->flush_lock); 593 594 blk_start_plug(&plug); 595 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 596 blk_finish_plug(&plug); 597 598 mutex_unlock(&sbi->flush_lock); 599 } 600 f2fs_sync_fs(sbi->sb, true); 601 stat_inc_bg_cp_count(sbi->stat_info); 602 } 603 604 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 605 struct block_device *bdev) 606 { 607 int ret = blkdev_issue_flush(bdev); 608 609 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 610 test_opt(sbi, FLUSH_MERGE), ret); 611 return ret; 612 } 613 614 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 615 { 616 int ret = 0; 617 int i; 618 619 if (!f2fs_is_multi_device(sbi)) 620 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 621 622 for (i = 0; i < sbi->s_ndevs; i++) { 623 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 624 continue; 625 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 626 if (ret) 627 break; 628 } 629 return ret; 630 } 631 632 static int issue_flush_thread(void *data) 633 { 634 struct f2fs_sb_info *sbi = data; 635 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 636 wait_queue_head_t *q = &fcc->flush_wait_queue; 637 repeat: 638 if (kthread_should_stop()) 639 return 0; 640 641 if (!llist_empty(&fcc->issue_list)) { 642 struct flush_cmd *cmd, *next; 643 int ret; 644 645 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 646 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 647 648 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 649 650 ret = submit_flush_wait(sbi, cmd->ino); 651 atomic_inc(&fcc->issued_flush); 652 653 llist_for_each_entry_safe(cmd, next, 654 fcc->dispatch_list, llnode) { 655 cmd->ret = ret; 656 complete(&cmd->wait); 657 } 658 fcc->dispatch_list = NULL; 659 } 660 661 wait_event_interruptible(*q, 662 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 663 goto repeat; 664 } 665 666 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 667 { 668 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 669 struct flush_cmd cmd; 670 int ret; 671 672 if (test_opt(sbi, NOBARRIER)) 673 return 0; 674 675 if (!test_opt(sbi, FLUSH_MERGE)) { 676 atomic_inc(&fcc->queued_flush); 677 ret = submit_flush_wait(sbi, ino); 678 atomic_dec(&fcc->queued_flush); 679 atomic_inc(&fcc->issued_flush); 680 return ret; 681 } 682 683 if (atomic_inc_return(&fcc->queued_flush) == 1 || 684 f2fs_is_multi_device(sbi)) { 685 ret = submit_flush_wait(sbi, ino); 686 atomic_dec(&fcc->queued_flush); 687 688 atomic_inc(&fcc->issued_flush); 689 return ret; 690 } 691 692 cmd.ino = ino; 693 init_completion(&cmd.wait); 694 695 llist_add(&cmd.llnode, &fcc->issue_list); 696 697 /* 698 * update issue_list before we wake up issue_flush thread, this 699 * smp_mb() pairs with another barrier in ___wait_event(), see 700 * more details in comments of waitqueue_active(). 701 */ 702 smp_mb(); 703 704 if (waitqueue_active(&fcc->flush_wait_queue)) 705 wake_up(&fcc->flush_wait_queue); 706 707 if (fcc->f2fs_issue_flush) { 708 wait_for_completion(&cmd.wait); 709 atomic_dec(&fcc->queued_flush); 710 } else { 711 struct llist_node *list; 712 713 list = llist_del_all(&fcc->issue_list); 714 if (!list) { 715 wait_for_completion(&cmd.wait); 716 atomic_dec(&fcc->queued_flush); 717 } else { 718 struct flush_cmd *tmp, *next; 719 720 ret = submit_flush_wait(sbi, ino); 721 722 llist_for_each_entry_safe(tmp, next, list, llnode) { 723 if (tmp == &cmd) { 724 cmd.ret = ret; 725 atomic_dec(&fcc->queued_flush); 726 continue; 727 } 728 tmp->ret = ret; 729 complete(&tmp->wait); 730 } 731 } 732 } 733 734 return cmd.ret; 735 } 736 737 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 738 { 739 dev_t dev = sbi->sb->s_bdev->bd_dev; 740 struct flush_cmd_control *fcc; 741 int err = 0; 742 743 if (SM_I(sbi)->fcc_info) { 744 fcc = SM_I(sbi)->fcc_info; 745 if (fcc->f2fs_issue_flush) 746 return err; 747 goto init_thread; 748 } 749 750 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 751 if (!fcc) 752 return -ENOMEM; 753 atomic_set(&fcc->issued_flush, 0); 754 atomic_set(&fcc->queued_flush, 0); 755 init_waitqueue_head(&fcc->flush_wait_queue); 756 init_llist_head(&fcc->issue_list); 757 SM_I(sbi)->fcc_info = fcc; 758 if (!test_opt(sbi, FLUSH_MERGE)) 759 return err; 760 761 init_thread: 762 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 763 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 764 if (IS_ERR(fcc->f2fs_issue_flush)) { 765 err = PTR_ERR(fcc->f2fs_issue_flush); 766 kfree(fcc); 767 SM_I(sbi)->fcc_info = NULL; 768 return err; 769 } 770 771 return err; 772 } 773 774 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 775 { 776 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 777 778 if (fcc && fcc->f2fs_issue_flush) { 779 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 780 781 fcc->f2fs_issue_flush = NULL; 782 kthread_stop(flush_thread); 783 } 784 if (free) { 785 kfree(fcc); 786 SM_I(sbi)->fcc_info = NULL; 787 } 788 } 789 790 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 791 { 792 int ret = 0, i; 793 794 if (!f2fs_is_multi_device(sbi)) 795 return 0; 796 797 if (test_opt(sbi, NOBARRIER)) 798 return 0; 799 800 for (i = 1; i < sbi->s_ndevs; i++) { 801 int count = DEFAULT_RETRY_IO_COUNT; 802 803 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 804 continue; 805 806 do { 807 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 808 if (ret) 809 congestion_wait(BLK_RW_ASYNC, 810 DEFAULT_IO_TIMEOUT); 811 } while (ret && --count); 812 813 if (ret) { 814 f2fs_stop_checkpoint(sbi, false); 815 break; 816 } 817 818 spin_lock(&sbi->dev_lock); 819 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 820 spin_unlock(&sbi->dev_lock); 821 } 822 823 return ret; 824 } 825 826 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 827 enum dirty_type dirty_type) 828 { 829 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 830 831 /* need not be added */ 832 if (IS_CURSEG(sbi, segno)) 833 return; 834 835 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 836 dirty_i->nr_dirty[dirty_type]++; 837 838 if (dirty_type == DIRTY) { 839 struct seg_entry *sentry = get_seg_entry(sbi, segno); 840 enum dirty_type t = sentry->type; 841 842 if (unlikely(t >= DIRTY)) { 843 f2fs_bug_on(sbi, 1); 844 return; 845 } 846 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 847 dirty_i->nr_dirty[t]++; 848 849 if (__is_large_section(sbi)) { 850 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 851 block_t valid_blocks = 852 get_valid_blocks(sbi, segno, true); 853 854 f2fs_bug_on(sbi, unlikely(!valid_blocks || 855 valid_blocks == BLKS_PER_SEC(sbi))); 856 857 if (!IS_CURSEC(sbi, secno)) 858 set_bit(secno, dirty_i->dirty_secmap); 859 } 860 } 861 } 862 863 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 864 enum dirty_type dirty_type) 865 { 866 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 867 block_t valid_blocks; 868 869 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 870 dirty_i->nr_dirty[dirty_type]--; 871 872 if (dirty_type == DIRTY) { 873 struct seg_entry *sentry = get_seg_entry(sbi, segno); 874 enum dirty_type t = sentry->type; 875 876 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 877 dirty_i->nr_dirty[t]--; 878 879 valid_blocks = get_valid_blocks(sbi, segno, true); 880 if (valid_blocks == 0) { 881 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 882 dirty_i->victim_secmap); 883 #ifdef CONFIG_F2FS_CHECK_FS 884 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 885 #endif 886 } 887 if (__is_large_section(sbi)) { 888 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 889 890 if (!valid_blocks || 891 valid_blocks == BLKS_PER_SEC(sbi)) { 892 clear_bit(secno, dirty_i->dirty_secmap); 893 return; 894 } 895 896 if (!IS_CURSEC(sbi, secno)) 897 set_bit(secno, dirty_i->dirty_secmap); 898 } 899 } 900 } 901 902 /* 903 * Should not occur error such as -ENOMEM. 904 * Adding dirty entry into seglist is not critical operation. 905 * If a given segment is one of current working segments, it won't be added. 906 */ 907 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 908 { 909 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 910 unsigned short valid_blocks, ckpt_valid_blocks; 911 unsigned int usable_blocks; 912 913 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 914 return; 915 916 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 917 mutex_lock(&dirty_i->seglist_lock); 918 919 valid_blocks = get_valid_blocks(sbi, segno, false); 920 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 921 922 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 923 ckpt_valid_blocks == usable_blocks)) { 924 __locate_dirty_segment(sbi, segno, PRE); 925 __remove_dirty_segment(sbi, segno, DIRTY); 926 } else if (valid_blocks < usable_blocks) { 927 __locate_dirty_segment(sbi, segno, DIRTY); 928 } else { 929 /* Recovery routine with SSR needs this */ 930 __remove_dirty_segment(sbi, segno, DIRTY); 931 } 932 933 mutex_unlock(&dirty_i->seglist_lock); 934 } 935 936 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 937 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 938 { 939 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 940 unsigned int segno; 941 942 mutex_lock(&dirty_i->seglist_lock); 943 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 944 if (get_valid_blocks(sbi, segno, false)) 945 continue; 946 if (IS_CURSEG(sbi, segno)) 947 continue; 948 __locate_dirty_segment(sbi, segno, PRE); 949 __remove_dirty_segment(sbi, segno, DIRTY); 950 } 951 mutex_unlock(&dirty_i->seglist_lock); 952 } 953 954 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 955 { 956 int ovp_hole_segs = 957 (overprovision_segments(sbi) - reserved_segments(sbi)); 958 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 959 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 960 block_t holes[2] = {0, 0}; /* DATA and NODE */ 961 block_t unusable; 962 struct seg_entry *se; 963 unsigned int segno; 964 965 mutex_lock(&dirty_i->seglist_lock); 966 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 967 se = get_seg_entry(sbi, segno); 968 if (IS_NODESEG(se->type)) 969 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 970 se->valid_blocks; 971 else 972 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 973 se->valid_blocks; 974 } 975 mutex_unlock(&dirty_i->seglist_lock); 976 977 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 978 if (unusable > ovp_holes) 979 return unusable - ovp_holes; 980 return 0; 981 } 982 983 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 984 { 985 int ovp_hole_segs = 986 (overprovision_segments(sbi) - reserved_segments(sbi)); 987 if (unusable > F2FS_OPTION(sbi).unusable_cap) 988 return -EAGAIN; 989 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 990 dirty_segments(sbi) > ovp_hole_segs) 991 return -EAGAIN; 992 return 0; 993 } 994 995 /* This is only used by SBI_CP_DISABLED */ 996 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 997 { 998 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 999 unsigned int segno = 0; 1000 1001 mutex_lock(&dirty_i->seglist_lock); 1002 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 1003 if (get_valid_blocks(sbi, segno, false)) 1004 continue; 1005 if (get_ckpt_valid_blocks(sbi, segno, false)) 1006 continue; 1007 mutex_unlock(&dirty_i->seglist_lock); 1008 return segno; 1009 } 1010 mutex_unlock(&dirty_i->seglist_lock); 1011 return NULL_SEGNO; 1012 } 1013 1014 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 1015 struct block_device *bdev, block_t lstart, 1016 block_t start, block_t len) 1017 { 1018 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1019 struct list_head *pend_list; 1020 struct discard_cmd *dc; 1021 1022 f2fs_bug_on(sbi, !len); 1023 1024 pend_list = &dcc->pend_list[plist_idx(len)]; 1025 1026 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 1027 INIT_LIST_HEAD(&dc->list); 1028 dc->bdev = bdev; 1029 dc->lstart = lstart; 1030 dc->start = start; 1031 dc->len = len; 1032 dc->ref = 0; 1033 dc->state = D_PREP; 1034 dc->queued = 0; 1035 dc->error = 0; 1036 init_completion(&dc->wait); 1037 list_add_tail(&dc->list, pend_list); 1038 spin_lock_init(&dc->lock); 1039 dc->bio_ref = 0; 1040 atomic_inc(&dcc->discard_cmd_cnt); 1041 dcc->undiscard_blks += len; 1042 1043 return dc; 1044 } 1045 1046 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 1047 struct block_device *bdev, block_t lstart, 1048 block_t start, block_t len, 1049 struct rb_node *parent, struct rb_node **p, 1050 bool leftmost) 1051 { 1052 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1053 struct discard_cmd *dc; 1054 1055 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1056 1057 rb_link_node(&dc->rb_node, parent, p); 1058 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1059 1060 return dc; 1061 } 1062 1063 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1064 struct discard_cmd *dc) 1065 { 1066 if (dc->state == D_DONE) 1067 atomic_sub(dc->queued, &dcc->queued_discard); 1068 1069 list_del(&dc->list); 1070 rb_erase_cached(&dc->rb_node, &dcc->root); 1071 dcc->undiscard_blks -= dc->len; 1072 1073 kmem_cache_free(discard_cmd_slab, dc); 1074 1075 atomic_dec(&dcc->discard_cmd_cnt); 1076 } 1077 1078 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1079 struct discard_cmd *dc) 1080 { 1081 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1082 unsigned long flags; 1083 1084 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1085 1086 spin_lock_irqsave(&dc->lock, flags); 1087 if (dc->bio_ref) { 1088 spin_unlock_irqrestore(&dc->lock, flags); 1089 return; 1090 } 1091 spin_unlock_irqrestore(&dc->lock, flags); 1092 1093 f2fs_bug_on(sbi, dc->ref); 1094 1095 if (dc->error == -EOPNOTSUPP) 1096 dc->error = 0; 1097 1098 if (dc->error) 1099 printk_ratelimited( 1100 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1101 KERN_INFO, sbi->sb->s_id, 1102 dc->lstart, dc->start, dc->len, dc->error); 1103 __detach_discard_cmd(dcc, dc); 1104 } 1105 1106 static void f2fs_submit_discard_endio(struct bio *bio) 1107 { 1108 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1109 unsigned long flags; 1110 1111 spin_lock_irqsave(&dc->lock, flags); 1112 if (!dc->error) 1113 dc->error = blk_status_to_errno(bio->bi_status); 1114 dc->bio_ref--; 1115 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1116 dc->state = D_DONE; 1117 complete_all(&dc->wait); 1118 } 1119 spin_unlock_irqrestore(&dc->lock, flags); 1120 bio_put(bio); 1121 } 1122 1123 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1124 block_t start, block_t end) 1125 { 1126 #ifdef CONFIG_F2FS_CHECK_FS 1127 struct seg_entry *sentry; 1128 unsigned int segno; 1129 block_t blk = start; 1130 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1131 unsigned long *map; 1132 1133 while (blk < end) { 1134 segno = GET_SEGNO(sbi, blk); 1135 sentry = get_seg_entry(sbi, segno); 1136 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1137 1138 if (end < START_BLOCK(sbi, segno + 1)) 1139 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1140 else 1141 size = max_blocks; 1142 map = (unsigned long *)(sentry->cur_valid_map); 1143 offset = __find_rev_next_bit(map, size, offset); 1144 f2fs_bug_on(sbi, offset != size); 1145 blk = START_BLOCK(sbi, segno + 1); 1146 } 1147 #endif 1148 } 1149 1150 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1151 struct discard_policy *dpolicy, 1152 int discard_type, unsigned int granularity) 1153 { 1154 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1155 1156 /* common policy */ 1157 dpolicy->type = discard_type; 1158 dpolicy->sync = true; 1159 dpolicy->ordered = false; 1160 dpolicy->granularity = granularity; 1161 1162 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1163 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1164 dpolicy->timeout = false; 1165 1166 if (discard_type == DPOLICY_BG) { 1167 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1168 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1169 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1170 dpolicy->io_aware = true; 1171 dpolicy->sync = false; 1172 dpolicy->ordered = true; 1173 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1174 dpolicy->granularity = 1; 1175 if (atomic_read(&dcc->discard_cmd_cnt)) 1176 dpolicy->max_interval = 1177 DEF_MIN_DISCARD_ISSUE_TIME; 1178 } 1179 } else if (discard_type == DPOLICY_FORCE) { 1180 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1181 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1182 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1183 dpolicy->io_aware = false; 1184 } else if (discard_type == DPOLICY_FSTRIM) { 1185 dpolicy->io_aware = false; 1186 } else if (discard_type == DPOLICY_UMOUNT) { 1187 dpolicy->io_aware = false; 1188 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1189 dpolicy->granularity = 1; 1190 dpolicy->timeout = true; 1191 } 1192 } 1193 1194 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1195 struct block_device *bdev, block_t lstart, 1196 block_t start, block_t len); 1197 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1198 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1199 struct discard_policy *dpolicy, 1200 struct discard_cmd *dc, 1201 unsigned int *issued) 1202 { 1203 struct block_device *bdev = dc->bdev; 1204 struct request_queue *q = bdev_get_queue(bdev); 1205 unsigned int max_discard_blocks = 1206 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1207 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1208 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1209 &(dcc->fstrim_list) : &(dcc->wait_list); 1210 int flag = dpolicy->sync ? REQ_SYNC : 0; 1211 block_t lstart, start, len, total_len; 1212 int err = 0; 1213 1214 if (dc->state != D_PREP) 1215 return 0; 1216 1217 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1218 return 0; 1219 1220 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1221 1222 lstart = dc->lstart; 1223 start = dc->start; 1224 len = dc->len; 1225 total_len = len; 1226 1227 dc->len = 0; 1228 1229 while (total_len && *issued < dpolicy->max_requests && !err) { 1230 struct bio *bio = NULL; 1231 unsigned long flags; 1232 bool last = true; 1233 1234 if (len > max_discard_blocks) { 1235 len = max_discard_blocks; 1236 last = false; 1237 } 1238 1239 (*issued)++; 1240 if (*issued == dpolicy->max_requests) 1241 last = true; 1242 1243 dc->len += len; 1244 1245 if (time_to_inject(sbi, FAULT_DISCARD)) { 1246 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1247 err = -EIO; 1248 goto submit; 1249 } 1250 err = __blkdev_issue_discard(bdev, 1251 SECTOR_FROM_BLOCK(start), 1252 SECTOR_FROM_BLOCK(len), 1253 GFP_NOFS, 0, &bio); 1254 submit: 1255 if (err) { 1256 spin_lock_irqsave(&dc->lock, flags); 1257 if (dc->state == D_PARTIAL) 1258 dc->state = D_SUBMIT; 1259 spin_unlock_irqrestore(&dc->lock, flags); 1260 1261 break; 1262 } 1263 1264 f2fs_bug_on(sbi, !bio); 1265 1266 /* 1267 * should keep before submission to avoid D_DONE 1268 * right away 1269 */ 1270 spin_lock_irqsave(&dc->lock, flags); 1271 if (last) 1272 dc->state = D_SUBMIT; 1273 else 1274 dc->state = D_PARTIAL; 1275 dc->bio_ref++; 1276 spin_unlock_irqrestore(&dc->lock, flags); 1277 1278 atomic_inc(&dcc->queued_discard); 1279 dc->queued++; 1280 list_move_tail(&dc->list, wait_list); 1281 1282 /* sanity check on discard range */ 1283 __check_sit_bitmap(sbi, lstart, lstart + len); 1284 1285 bio->bi_private = dc; 1286 bio->bi_end_io = f2fs_submit_discard_endio; 1287 bio->bi_opf |= flag; 1288 submit_bio(bio); 1289 1290 atomic_inc(&dcc->issued_discard); 1291 1292 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1293 1294 lstart += len; 1295 start += len; 1296 total_len -= len; 1297 len = total_len; 1298 } 1299 1300 if (!err && len) { 1301 dcc->undiscard_blks -= len; 1302 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1303 } 1304 return err; 1305 } 1306 1307 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1308 struct block_device *bdev, block_t lstart, 1309 block_t start, block_t len, 1310 struct rb_node **insert_p, 1311 struct rb_node *insert_parent) 1312 { 1313 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1314 struct rb_node **p; 1315 struct rb_node *parent = NULL; 1316 bool leftmost = true; 1317 1318 if (insert_p && insert_parent) { 1319 parent = insert_parent; 1320 p = insert_p; 1321 goto do_insert; 1322 } 1323 1324 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1325 lstart, &leftmost); 1326 do_insert: 1327 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1328 p, leftmost); 1329 } 1330 1331 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1332 struct discard_cmd *dc) 1333 { 1334 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1335 } 1336 1337 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1338 struct discard_cmd *dc, block_t blkaddr) 1339 { 1340 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1341 struct discard_info di = dc->di; 1342 bool modified = false; 1343 1344 if (dc->state == D_DONE || dc->len == 1) { 1345 __remove_discard_cmd(sbi, dc); 1346 return; 1347 } 1348 1349 dcc->undiscard_blks -= di.len; 1350 1351 if (blkaddr > di.lstart) { 1352 dc->len = blkaddr - dc->lstart; 1353 dcc->undiscard_blks += dc->len; 1354 __relocate_discard_cmd(dcc, dc); 1355 modified = true; 1356 } 1357 1358 if (blkaddr < di.lstart + di.len - 1) { 1359 if (modified) { 1360 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1361 di.start + blkaddr + 1 - di.lstart, 1362 di.lstart + di.len - 1 - blkaddr, 1363 NULL, NULL); 1364 } else { 1365 dc->lstart++; 1366 dc->len--; 1367 dc->start++; 1368 dcc->undiscard_blks += dc->len; 1369 __relocate_discard_cmd(dcc, dc); 1370 } 1371 } 1372 } 1373 1374 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1375 struct block_device *bdev, block_t lstart, 1376 block_t start, block_t len) 1377 { 1378 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1379 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1380 struct discard_cmd *dc; 1381 struct discard_info di = {0}; 1382 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1383 struct request_queue *q = bdev_get_queue(bdev); 1384 unsigned int max_discard_blocks = 1385 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1386 block_t end = lstart + len; 1387 1388 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1389 NULL, lstart, 1390 (struct rb_entry **)&prev_dc, 1391 (struct rb_entry **)&next_dc, 1392 &insert_p, &insert_parent, true, NULL); 1393 if (dc) 1394 prev_dc = dc; 1395 1396 if (!prev_dc) { 1397 di.lstart = lstart; 1398 di.len = next_dc ? next_dc->lstart - lstart : len; 1399 di.len = min(di.len, len); 1400 di.start = start; 1401 } 1402 1403 while (1) { 1404 struct rb_node *node; 1405 bool merged = false; 1406 struct discard_cmd *tdc = NULL; 1407 1408 if (prev_dc) { 1409 di.lstart = prev_dc->lstart + prev_dc->len; 1410 if (di.lstart < lstart) 1411 di.lstart = lstart; 1412 if (di.lstart >= end) 1413 break; 1414 1415 if (!next_dc || next_dc->lstart > end) 1416 di.len = end - di.lstart; 1417 else 1418 di.len = next_dc->lstart - di.lstart; 1419 di.start = start + di.lstart - lstart; 1420 } 1421 1422 if (!di.len) 1423 goto next; 1424 1425 if (prev_dc && prev_dc->state == D_PREP && 1426 prev_dc->bdev == bdev && 1427 __is_discard_back_mergeable(&di, &prev_dc->di, 1428 max_discard_blocks)) { 1429 prev_dc->di.len += di.len; 1430 dcc->undiscard_blks += di.len; 1431 __relocate_discard_cmd(dcc, prev_dc); 1432 di = prev_dc->di; 1433 tdc = prev_dc; 1434 merged = true; 1435 } 1436 1437 if (next_dc && next_dc->state == D_PREP && 1438 next_dc->bdev == bdev && 1439 __is_discard_front_mergeable(&di, &next_dc->di, 1440 max_discard_blocks)) { 1441 next_dc->di.lstart = di.lstart; 1442 next_dc->di.len += di.len; 1443 next_dc->di.start = di.start; 1444 dcc->undiscard_blks += di.len; 1445 __relocate_discard_cmd(dcc, next_dc); 1446 if (tdc) 1447 __remove_discard_cmd(sbi, tdc); 1448 merged = true; 1449 } 1450 1451 if (!merged) { 1452 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1453 di.len, NULL, NULL); 1454 } 1455 next: 1456 prev_dc = next_dc; 1457 if (!prev_dc) 1458 break; 1459 1460 node = rb_next(&prev_dc->rb_node); 1461 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1462 } 1463 } 1464 1465 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1466 struct block_device *bdev, block_t blkstart, block_t blklen) 1467 { 1468 block_t lblkstart = blkstart; 1469 1470 if (!f2fs_bdev_support_discard(bdev)) 1471 return 0; 1472 1473 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1474 1475 if (f2fs_is_multi_device(sbi)) { 1476 int devi = f2fs_target_device_index(sbi, blkstart); 1477 1478 blkstart -= FDEV(devi).start_blk; 1479 } 1480 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1481 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1482 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1483 return 0; 1484 } 1485 1486 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1487 struct discard_policy *dpolicy) 1488 { 1489 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1490 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1491 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1492 struct discard_cmd *dc; 1493 struct blk_plug plug; 1494 unsigned int pos = dcc->next_pos; 1495 unsigned int issued = 0; 1496 bool io_interrupted = false; 1497 1498 mutex_lock(&dcc->cmd_lock); 1499 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1500 NULL, pos, 1501 (struct rb_entry **)&prev_dc, 1502 (struct rb_entry **)&next_dc, 1503 &insert_p, &insert_parent, true, NULL); 1504 if (!dc) 1505 dc = next_dc; 1506 1507 blk_start_plug(&plug); 1508 1509 while (dc) { 1510 struct rb_node *node; 1511 int err = 0; 1512 1513 if (dc->state != D_PREP) 1514 goto next; 1515 1516 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1517 io_interrupted = true; 1518 break; 1519 } 1520 1521 dcc->next_pos = dc->lstart + dc->len; 1522 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1523 1524 if (issued >= dpolicy->max_requests) 1525 break; 1526 next: 1527 node = rb_next(&dc->rb_node); 1528 if (err) 1529 __remove_discard_cmd(sbi, dc); 1530 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1531 } 1532 1533 blk_finish_plug(&plug); 1534 1535 if (!dc) 1536 dcc->next_pos = 0; 1537 1538 mutex_unlock(&dcc->cmd_lock); 1539 1540 if (!issued && io_interrupted) 1541 issued = -1; 1542 1543 return issued; 1544 } 1545 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1546 struct discard_policy *dpolicy); 1547 1548 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1549 struct discard_policy *dpolicy) 1550 { 1551 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1552 struct list_head *pend_list; 1553 struct discard_cmd *dc, *tmp; 1554 struct blk_plug plug; 1555 int i, issued; 1556 bool io_interrupted = false; 1557 1558 if (dpolicy->timeout) 1559 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1560 1561 retry: 1562 issued = 0; 1563 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1564 if (dpolicy->timeout && 1565 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1566 break; 1567 1568 if (i + 1 < dpolicy->granularity) 1569 break; 1570 1571 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1572 return __issue_discard_cmd_orderly(sbi, dpolicy); 1573 1574 pend_list = &dcc->pend_list[i]; 1575 1576 mutex_lock(&dcc->cmd_lock); 1577 if (list_empty(pend_list)) 1578 goto next; 1579 if (unlikely(dcc->rbtree_check)) 1580 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1581 &dcc->root, false)); 1582 blk_start_plug(&plug); 1583 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1584 f2fs_bug_on(sbi, dc->state != D_PREP); 1585 1586 if (dpolicy->timeout && 1587 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1588 break; 1589 1590 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1591 !is_idle(sbi, DISCARD_TIME)) { 1592 io_interrupted = true; 1593 break; 1594 } 1595 1596 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1597 1598 if (issued >= dpolicy->max_requests) 1599 break; 1600 } 1601 blk_finish_plug(&plug); 1602 next: 1603 mutex_unlock(&dcc->cmd_lock); 1604 1605 if (issued >= dpolicy->max_requests || io_interrupted) 1606 break; 1607 } 1608 1609 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1610 __wait_all_discard_cmd(sbi, dpolicy); 1611 goto retry; 1612 } 1613 1614 if (!issued && io_interrupted) 1615 issued = -1; 1616 1617 return issued; 1618 } 1619 1620 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1621 { 1622 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1623 struct list_head *pend_list; 1624 struct discard_cmd *dc, *tmp; 1625 int i; 1626 bool dropped = false; 1627 1628 mutex_lock(&dcc->cmd_lock); 1629 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1630 pend_list = &dcc->pend_list[i]; 1631 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1632 f2fs_bug_on(sbi, dc->state != D_PREP); 1633 __remove_discard_cmd(sbi, dc); 1634 dropped = true; 1635 } 1636 } 1637 mutex_unlock(&dcc->cmd_lock); 1638 1639 return dropped; 1640 } 1641 1642 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1643 { 1644 __drop_discard_cmd(sbi); 1645 } 1646 1647 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1648 struct discard_cmd *dc) 1649 { 1650 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1651 unsigned int len = 0; 1652 1653 wait_for_completion_io(&dc->wait); 1654 mutex_lock(&dcc->cmd_lock); 1655 f2fs_bug_on(sbi, dc->state != D_DONE); 1656 dc->ref--; 1657 if (!dc->ref) { 1658 if (!dc->error) 1659 len = dc->len; 1660 __remove_discard_cmd(sbi, dc); 1661 } 1662 mutex_unlock(&dcc->cmd_lock); 1663 1664 return len; 1665 } 1666 1667 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1668 struct discard_policy *dpolicy, 1669 block_t start, block_t end) 1670 { 1671 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1672 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1673 &(dcc->fstrim_list) : &(dcc->wait_list); 1674 struct discard_cmd *dc, *tmp; 1675 bool need_wait; 1676 unsigned int trimmed = 0; 1677 1678 next: 1679 need_wait = false; 1680 1681 mutex_lock(&dcc->cmd_lock); 1682 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1683 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1684 continue; 1685 if (dc->len < dpolicy->granularity) 1686 continue; 1687 if (dc->state == D_DONE && !dc->ref) { 1688 wait_for_completion_io(&dc->wait); 1689 if (!dc->error) 1690 trimmed += dc->len; 1691 __remove_discard_cmd(sbi, dc); 1692 } else { 1693 dc->ref++; 1694 need_wait = true; 1695 break; 1696 } 1697 } 1698 mutex_unlock(&dcc->cmd_lock); 1699 1700 if (need_wait) { 1701 trimmed += __wait_one_discard_bio(sbi, dc); 1702 goto next; 1703 } 1704 1705 return trimmed; 1706 } 1707 1708 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1709 struct discard_policy *dpolicy) 1710 { 1711 struct discard_policy dp; 1712 unsigned int discard_blks; 1713 1714 if (dpolicy) 1715 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1716 1717 /* wait all */ 1718 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1719 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1720 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1721 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1722 1723 return discard_blks; 1724 } 1725 1726 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1727 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1728 { 1729 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1730 struct discard_cmd *dc; 1731 bool need_wait = false; 1732 1733 mutex_lock(&dcc->cmd_lock); 1734 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1735 NULL, blkaddr); 1736 if (dc) { 1737 if (dc->state == D_PREP) { 1738 __punch_discard_cmd(sbi, dc, blkaddr); 1739 } else { 1740 dc->ref++; 1741 need_wait = true; 1742 } 1743 } 1744 mutex_unlock(&dcc->cmd_lock); 1745 1746 if (need_wait) 1747 __wait_one_discard_bio(sbi, dc); 1748 } 1749 1750 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1751 { 1752 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1753 1754 if (dcc && dcc->f2fs_issue_discard) { 1755 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1756 1757 dcc->f2fs_issue_discard = NULL; 1758 kthread_stop(discard_thread); 1759 } 1760 } 1761 1762 /* This comes from f2fs_put_super */ 1763 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1764 { 1765 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1766 struct discard_policy dpolicy; 1767 bool dropped; 1768 1769 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1770 dcc->discard_granularity); 1771 __issue_discard_cmd(sbi, &dpolicy); 1772 dropped = __drop_discard_cmd(sbi); 1773 1774 /* just to make sure there is no pending discard commands */ 1775 __wait_all_discard_cmd(sbi, NULL); 1776 1777 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1778 return dropped; 1779 } 1780 1781 static int issue_discard_thread(void *data) 1782 { 1783 struct f2fs_sb_info *sbi = data; 1784 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1785 wait_queue_head_t *q = &dcc->discard_wait_queue; 1786 struct discard_policy dpolicy; 1787 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1788 int issued; 1789 1790 set_freezable(); 1791 1792 do { 1793 if (sbi->gc_mode == GC_URGENT_HIGH || 1794 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1795 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1796 else 1797 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1798 dcc->discard_granularity); 1799 1800 if (!atomic_read(&dcc->discard_cmd_cnt)) 1801 wait_ms = dpolicy.max_interval; 1802 1803 wait_event_interruptible_timeout(*q, 1804 kthread_should_stop() || freezing(current) || 1805 dcc->discard_wake, 1806 msecs_to_jiffies(wait_ms)); 1807 1808 if (dcc->discard_wake) 1809 dcc->discard_wake = 0; 1810 1811 /* clean up pending candidates before going to sleep */ 1812 if (atomic_read(&dcc->queued_discard)) 1813 __wait_all_discard_cmd(sbi, NULL); 1814 1815 if (try_to_freeze()) 1816 continue; 1817 if (f2fs_readonly(sbi->sb)) 1818 continue; 1819 if (kthread_should_stop()) 1820 return 0; 1821 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1822 wait_ms = dpolicy.max_interval; 1823 continue; 1824 } 1825 if (!atomic_read(&dcc->discard_cmd_cnt)) 1826 continue; 1827 1828 sb_start_intwrite(sbi->sb); 1829 1830 issued = __issue_discard_cmd(sbi, &dpolicy); 1831 if (issued > 0) { 1832 __wait_all_discard_cmd(sbi, &dpolicy); 1833 wait_ms = dpolicy.min_interval; 1834 } else if (issued == -1) { 1835 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1836 if (!wait_ms) 1837 wait_ms = dpolicy.mid_interval; 1838 } else { 1839 wait_ms = dpolicy.max_interval; 1840 } 1841 1842 sb_end_intwrite(sbi->sb); 1843 1844 } while (!kthread_should_stop()); 1845 return 0; 1846 } 1847 1848 #ifdef CONFIG_BLK_DEV_ZONED 1849 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1850 struct block_device *bdev, block_t blkstart, block_t blklen) 1851 { 1852 sector_t sector, nr_sects; 1853 block_t lblkstart = blkstart; 1854 int devi = 0; 1855 1856 if (f2fs_is_multi_device(sbi)) { 1857 devi = f2fs_target_device_index(sbi, blkstart); 1858 if (blkstart < FDEV(devi).start_blk || 1859 blkstart > FDEV(devi).end_blk) { 1860 f2fs_err(sbi, "Invalid block %x", blkstart); 1861 return -EIO; 1862 } 1863 blkstart -= FDEV(devi).start_blk; 1864 } 1865 1866 /* For sequential zones, reset the zone write pointer */ 1867 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1868 sector = SECTOR_FROM_BLOCK(blkstart); 1869 nr_sects = SECTOR_FROM_BLOCK(blklen); 1870 1871 if (sector & (bdev_zone_sectors(bdev) - 1) || 1872 nr_sects != bdev_zone_sectors(bdev)) { 1873 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1874 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1875 blkstart, blklen); 1876 return -EIO; 1877 } 1878 trace_f2fs_issue_reset_zone(bdev, blkstart); 1879 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1880 sector, nr_sects, GFP_NOFS); 1881 } 1882 1883 /* For conventional zones, use regular discard if supported */ 1884 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1885 } 1886 #endif 1887 1888 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1889 struct block_device *bdev, block_t blkstart, block_t blklen) 1890 { 1891 #ifdef CONFIG_BLK_DEV_ZONED 1892 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1893 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1894 #endif 1895 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1896 } 1897 1898 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1899 block_t blkstart, block_t blklen) 1900 { 1901 sector_t start = blkstart, len = 0; 1902 struct block_device *bdev; 1903 struct seg_entry *se; 1904 unsigned int offset; 1905 block_t i; 1906 int err = 0; 1907 1908 bdev = f2fs_target_device(sbi, blkstart, NULL); 1909 1910 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1911 if (i != start) { 1912 struct block_device *bdev2 = 1913 f2fs_target_device(sbi, i, NULL); 1914 1915 if (bdev2 != bdev) { 1916 err = __issue_discard_async(sbi, bdev, 1917 start, len); 1918 if (err) 1919 return err; 1920 bdev = bdev2; 1921 start = i; 1922 len = 0; 1923 } 1924 } 1925 1926 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1927 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1928 1929 if (f2fs_block_unit_discard(sbi) && 1930 !f2fs_test_and_set_bit(offset, se->discard_map)) 1931 sbi->discard_blks--; 1932 } 1933 1934 if (len) 1935 err = __issue_discard_async(sbi, bdev, start, len); 1936 return err; 1937 } 1938 1939 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1940 bool check_only) 1941 { 1942 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1943 int max_blocks = sbi->blocks_per_seg; 1944 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1945 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1946 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1947 unsigned long *discard_map = (unsigned long *)se->discard_map; 1948 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1949 unsigned int start = 0, end = -1; 1950 bool force = (cpc->reason & CP_DISCARD); 1951 struct discard_entry *de = NULL; 1952 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1953 int i; 1954 1955 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) || 1956 !f2fs_block_unit_discard(sbi)) 1957 return false; 1958 1959 if (!force) { 1960 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1961 SM_I(sbi)->dcc_info->nr_discards >= 1962 SM_I(sbi)->dcc_info->max_discards) 1963 return false; 1964 } 1965 1966 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1967 for (i = 0; i < entries; i++) 1968 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1969 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1970 1971 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1972 SM_I(sbi)->dcc_info->max_discards) { 1973 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1974 if (start >= max_blocks) 1975 break; 1976 1977 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1978 if (force && start && end != max_blocks 1979 && (end - start) < cpc->trim_minlen) 1980 continue; 1981 1982 if (check_only) 1983 return true; 1984 1985 if (!de) { 1986 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1987 GFP_F2FS_ZERO, true, NULL); 1988 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1989 list_add_tail(&de->list, head); 1990 } 1991 1992 for (i = start; i < end; i++) 1993 __set_bit_le(i, (void *)de->discard_map); 1994 1995 SM_I(sbi)->dcc_info->nr_discards += end - start; 1996 } 1997 return false; 1998 } 1999 2000 static void release_discard_addr(struct discard_entry *entry) 2001 { 2002 list_del(&entry->list); 2003 kmem_cache_free(discard_entry_slab, entry); 2004 } 2005 2006 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2007 { 2008 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2009 struct discard_entry *entry, *this; 2010 2011 /* drop caches */ 2012 list_for_each_entry_safe(entry, this, head, list) 2013 release_discard_addr(entry); 2014 } 2015 2016 /* 2017 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2018 */ 2019 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2020 { 2021 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2022 unsigned int segno; 2023 2024 mutex_lock(&dirty_i->seglist_lock); 2025 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2026 __set_test_and_free(sbi, segno, false); 2027 mutex_unlock(&dirty_i->seglist_lock); 2028 } 2029 2030 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2031 struct cp_control *cpc) 2032 { 2033 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2034 struct list_head *head = &dcc->entry_list; 2035 struct discard_entry *entry, *this; 2036 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2037 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2038 unsigned int start = 0, end = -1; 2039 unsigned int secno, start_segno; 2040 bool force = (cpc->reason & CP_DISCARD); 2041 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2042 DISCARD_UNIT_SECTION; 2043 2044 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2045 section_alignment = true; 2046 2047 mutex_lock(&dirty_i->seglist_lock); 2048 2049 while (1) { 2050 int i; 2051 2052 if (section_alignment && end != -1) 2053 end--; 2054 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2055 if (start >= MAIN_SEGS(sbi)) 2056 break; 2057 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2058 start + 1); 2059 2060 if (section_alignment) { 2061 start = rounddown(start, sbi->segs_per_sec); 2062 end = roundup(end, sbi->segs_per_sec); 2063 } 2064 2065 for (i = start; i < end; i++) { 2066 if (test_and_clear_bit(i, prefree_map)) 2067 dirty_i->nr_dirty[PRE]--; 2068 } 2069 2070 if (!f2fs_realtime_discard_enable(sbi)) 2071 continue; 2072 2073 if (force && start >= cpc->trim_start && 2074 (end - 1) <= cpc->trim_end) 2075 continue; 2076 2077 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 2078 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2079 (end - start) << sbi->log_blocks_per_seg); 2080 continue; 2081 } 2082 next: 2083 secno = GET_SEC_FROM_SEG(sbi, start); 2084 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2085 if (!IS_CURSEC(sbi, secno) && 2086 !get_valid_blocks(sbi, start, true)) 2087 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2088 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2089 2090 start = start_segno + sbi->segs_per_sec; 2091 if (start < end) 2092 goto next; 2093 else 2094 end = start - 1; 2095 } 2096 mutex_unlock(&dirty_i->seglist_lock); 2097 2098 if (!f2fs_block_unit_discard(sbi)) 2099 goto wakeup; 2100 2101 /* send small discards */ 2102 list_for_each_entry_safe(entry, this, head, list) { 2103 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2104 bool is_valid = test_bit_le(0, entry->discard_map); 2105 2106 find_next: 2107 if (is_valid) { 2108 next_pos = find_next_zero_bit_le(entry->discard_map, 2109 sbi->blocks_per_seg, cur_pos); 2110 len = next_pos - cur_pos; 2111 2112 if (f2fs_sb_has_blkzoned(sbi) || 2113 (force && len < cpc->trim_minlen)) 2114 goto skip; 2115 2116 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2117 len); 2118 total_len += len; 2119 } else { 2120 next_pos = find_next_bit_le(entry->discard_map, 2121 sbi->blocks_per_seg, cur_pos); 2122 } 2123 skip: 2124 cur_pos = next_pos; 2125 is_valid = !is_valid; 2126 2127 if (cur_pos < sbi->blocks_per_seg) 2128 goto find_next; 2129 2130 release_discard_addr(entry); 2131 dcc->nr_discards -= total_len; 2132 } 2133 2134 wakeup: 2135 wake_up_discard_thread(sbi, false); 2136 } 2137 2138 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2139 { 2140 dev_t dev = sbi->sb->s_bdev->bd_dev; 2141 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2142 int err = 0; 2143 2144 if (!f2fs_realtime_discard_enable(sbi)) 2145 return 0; 2146 2147 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2148 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2149 if (IS_ERR(dcc->f2fs_issue_discard)) 2150 err = PTR_ERR(dcc->f2fs_issue_discard); 2151 2152 return err; 2153 } 2154 2155 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2156 { 2157 struct discard_cmd_control *dcc; 2158 int err = 0, i; 2159 2160 if (SM_I(sbi)->dcc_info) { 2161 dcc = SM_I(sbi)->dcc_info; 2162 goto init_thread; 2163 } 2164 2165 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2166 if (!dcc) 2167 return -ENOMEM; 2168 2169 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2170 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2171 dcc->discard_granularity = sbi->blocks_per_seg; 2172 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2173 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2174 2175 INIT_LIST_HEAD(&dcc->entry_list); 2176 for (i = 0; i < MAX_PLIST_NUM; i++) 2177 INIT_LIST_HEAD(&dcc->pend_list[i]); 2178 INIT_LIST_HEAD(&dcc->wait_list); 2179 INIT_LIST_HEAD(&dcc->fstrim_list); 2180 mutex_init(&dcc->cmd_lock); 2181 atomic_set(&dcc->issued_discard, 0); 2182 atomic_set(&dcc->queued_discard, 0); 2183 atomic_set(&dcc->discard_cmd_cnt, 0); 2184 dcc->nr_discards = 0; 2185 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2186 dcc->undiscard_blks = 0; 2187 dcc->next_pos = 0; 2188 dcc->root = RB_ROOT_CACHED; 2189 dcc->rbtree_check = false; 2190 2191 init_waitqueue_head(&dcc->discard_wait_queue); 2192 SM_I(sbi)->dcc_info = dcc; 2193 init_thread: 2194 err = f2fs_start_discard_thread(sbi); 2195 if (err) { 2196 kfree(dcc); 2197 SM_I(sbi)->dcc_info = NULL; 2198 } 2199 2200 return err; 2201 } 2202 2203 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2204 { 2205 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2206 2207 if (!dcc) 2208 return; 2209 2210 f2fs_stop_discard_thread(sbi); 2211 2212 /* 2213 * Recovery can cache discard commands, so in error path of 2214 * fill_super(), it needs to give a chance to handle them. 2215 */ 2216 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2217 f2fs_issue_discard_timeout(sbi); 2218 2219 kfree(dcc); 2220 SM_I(sbi)->dcc_info = NULL; 2221 } 2222 2223 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2224 { 2225 struct sit_info *sit_i = SIT_I(sbi); 2226 2227 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2228 sit_i->dirty_sentries++; 2229 return false; 2230 } 2231 2232 return true; 2233 } 2234 2235 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2236 unsigned int segno, int modified) 2237 { 2238 struct seg_entry *se = get_seg_entry(sbi, segno); 2239 2240 se->type = type; 2241 if (modified) 2242 __mark_sit_entry_dirty(sbi, segno); 2243 } 2244 2245 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2246 block_t blkaddr) 2247 { 2248 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2249 2250 if (segno == NULL_SEGNO) 2251 return 0; 2252 return get_seg_entry(sbi, segno)->mtime; 2253 } 2254 2255 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2256 unsigned long long old_mtime) 2257 { 2258 struct seg_entry *se; 2259 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2260 unsigned long long ctime = get_mtime(sbi, false); 2261 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2262 2263 if (segno == NULL_SEGNO) 2264 return; 2265 2266 se = get_seg_entry(sbi, segno); 2267 2268 if (!se->mtime) 2269 se->mtime = mtime; 2270 else 2271 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2272 se->valid_blocks + 1); 2273 2274 if (ctime > SIT_I(sbi)->max_mtime) 2275 SIT_I(sbi)->max_mtime = ctime; 2276 } 2277 2278 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2279 { 2280 struct seg_entry *se; 2281 unsigned int segno, offset; 2282 long int new_vblocks; 2283 bool exist; 2284 #ifdef CONFIG_F2FS_CHECK_FS 2285 bool mir_exist; 2286 #endif 2287 2288 segno = GET_SEGNO(sbi, blkaddr); 2289 2290 se = get_seg_entry(sbi, segno); 2291 new_vblocks = se->valid_blocks + del; 2292 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2293 2294 f2fs_bug_on(sbi, (new_vblocks < 0 || 2295 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2296 2297 se->valid_blocks = new_vblocks; 2298 2299 /* Update valid block bitmap */ 2300 if (del > 0) { 2301 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2302 #ifdef CONFIG_F2FS_CHECK_FS 2303 mir_exist = f2fs_test_and_set_bit(offset, 2304 se->cur_valid_map_mir); 2305 if (unlikely(exist != mir_exist)) { 2306 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2307 blkaddr, exist); 2308 f2fs_bug_on(sbi, 1); 2309 } 2310 #endif 2311 if (unlikely(exist)) { 2312 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2313 blkaddr); 2314 f2fs_bug_on(sbi, 1); 2315 se->valid_blocks--; 2316 del = 0; 2317 } 2318 2319 if (f2fs_block_unit_discard(sbi) && 2320 !f2fs_test_and_set_bit(offset, se->discard_map)) 2321 sbi->discard_blks--; 2322 2323 /* 2324 * SSR should never reuse block which is checkpointed 2325 * or newly invalidated. 2326 */ 2327 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2328 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2329 se->ckpt_valid_blocks++; 2330 } 2331 } else { 2332 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2333 #ifdef CONFIG_F2FS_CHECK_FS 2334 mir_exist = f2fs_test_and_clear_bit(offset, 2335 se->cur_valid_map_mir); 2336 if (unlikely(exist != mir_exist)) { 2337 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2338 blkaddr, exist); 2339 f2fs_bug_on(sbi, 1); 2340 } 2341 #endif 2342 if (unlikely(!exist)) { 2343 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2344 blkaddr); 2345 f2fs_bug_on(sbi, 1); 2346 se->valid_blocks++; 2347 del = 0; 2348 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2349 /* 2350 * If checkpoints are off, we must not reuse data that 2351 * was used in the previous checkpoint. If it was used 2352 * before, we must track that to know how much space we 2353 * really have. 2354 */ 2355 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2356 spin_lock(&sbi->stat_lock); 2357 sbi->unusable_block_count++; 2358 spin_unlock(&sbi->stat_lock); 2359 } 2360 } 2361 2362 if (f2fs_block_unit_discard(sbi) && 2363 f2fs_test_and_clear_bit(offset, se->discard_map)) 2364 sbi->discard_blks++; 2365 } 2366 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2367 se->ckpt_valid_blocks += del; 2368 2369 __mark_sit_entry_dirty(sbi, segno); 2370 2371 /* update total number of valid blocks to be written in ckpt area */ 2372 SIT_I(sbi)->written_valid_blocks += del; 2373 2374 if (__is_large_section(sbi)) 2375 get_sec_entry(sbi, segno)->valid_blocks += del; 2376 } 2377 2378 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2379 { 2380 unsigned int segno = GET_SEGNO(sbi, addr); 2381 struct sit_info *sit_i = SIT_I(sbi); 2382 2383 f2fs_bug_on(sbi, addr == NULL_ADDR); 2384 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2385 return; 2386 2387 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2388 f2fs_invalidate_compress_page(sbi, addr); 2389 2390 /* add it into sit main buffer */ 2391 down_write(&sit_i->sentry_lock); 2392 2393 update_segment_mtime(sbi, addr, 0); 2394 update_sit_entry(sbi, addr, -1); 2395 2396 /* add it into dirty seglist */ 2397 locate_dirty_segment(sbi, segno); 2398 2399 up_write(&sit_i->sentry_lock); 2400 } 2401 2402 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2403 { 2404 struct sit_info *sit_i = SIT_I(sbi); 2405 unsigned int segno, offset; 2406 struct seg_entry *se; 2407 bool is_cp = false; 2408 2409 if (!__is_valid_data_blkaddr(blkaddr)) 2410 return true; 2411 2412 down_read(&sit_i->sentry_lock); 2413 2414 segno = GET_SEGNO(sbi, blkaddr); 2415 se = get_seg_entry(sbi, segno); 2416 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2417 2418 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2419 is_cp = true; 2420 2421 up_read(&sit_i->sentry_lock); 2422 2423 return is_cp; 2424 } 2425 2426 /* 2427 * This function should be resided under the curseg_mutex lock 2428 */ 2429 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2430 struct f2fs_summary *sum) 2431 { 2432 struct curseg_info *curseg = CURSEG_I(sbi, type); 2433 void *addr = curseg->sum_blk; 2434 2435 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2436 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2437 } 2438 2439 /* 2440 * Calculate the number of current summary pages for writing 2441 */ 2442 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2443 { 2444 int valid_sum_count = 0; 2445 int i, sum_in_page; 2446 2447 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2448 if (sbi->ckpt->alloc_type[i] == SSR) 2449 valid_sum_count += sbi->blocks_per_seg; 2450 else { 2451 if (for_ra) 2452 valid_sum_count += le16_to_cpu( 2453 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2454 else 2455 valid_sum_count += curseg_blkoff(sbi, i); 2456 } 2457 } 2458 2459 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2460 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2461 if (valid_sum_count <= sum_in_page) 2462 return 1; 2463 else if ((valid_sum_count - sum_in_page) <= 2464 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2465 return 2; 2466 return 3; 2467 } 2468 2469 /* 2470 * Caller should put this summary page 2471 */ 2472 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2473 { 2474 if (unlikely(f2fs_cp_error(sbi))) 2475 return ERR_PTR(-EIO); 2476 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2477 } 2478 2479 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2480 void *src, block_t blk_addr) 2481 { 2482 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2483 2484 memcpy(page_address(page), src, PAGE_SIZE); 2485 set_page_dirty(page); 2486 f2fs_put_page(page, 1); 2487 } 2488 2489 static void write_sum_page(struct f2fs_sb_info *sbi, 2490 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2491 { 2492 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2493 } 2494 2495 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2496 int type, block_t blk_addr) 2497 { 2498 struct curseg_info *curseg = CURSEG_I(sbi, type); 2499 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2500 struct f2fs_summary_block *src = curseg->sum_blk; 2501 struct f2fs_summary_block *dst; 2502 2503 dst = (struct f2fs_summary_block *)page_address(page); 2504 memset(dst, 0, PAGE_SIZE); 2505 2506 mutex_lock(&curseg->curseg_mutex); 2507 2508 down_read(&curseg->journal_rwsem); 2509 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2510 up_read(&curseg->journal_rwsem); 2511 2512 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2513 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2514 2515 mutex_unlock(&curseg->curseg_mutex); 2516 2517 set_page_dirty(page); 2518 f2fs_put_page(page, 1); 2519 } 2520 2521 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2522 struct curseg_info *curseg, int type) 2523 { 2524 unsigned int segno = curseg->segno + 1; 2525 struct free_segmap_info *free_i = FREE_I(sbi); 2526 2527 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2528 return !test_bit(segno, free_i->free_segmap); 2529 return 0; 2530 } 2531 2532 /* 2533 * Find a new segment from the free segments bitmap to right order 2534 * This function should be returned with success, otherwise BUG 2535 */ 2536 static void get_new_segment(struct f2fs_sb_info *sbi, 2537 unsigned int *newseg, bool new_sec, int dir) 2538 { 2539 struct free_segmap_info *free_i = FREE_I(sbi); 2540 unsigned int segno, secno, zoneno; 2541 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2542 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2543 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2544 unsigned int left_start = hint; 2545 bool init = true; 2546 int go_left = 0; 2547 int i; 2548 2549 spin_lock(&free_i->segmap_lock); 2550 2551 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2552 segno = find_next_zero_bit(free_i->free_segmap, 2553 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2554 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2555 goto got_it; 2556 } 2557 find_other_zone: 2558 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2559 if (secno >= MAIN_SECS(sbi)) { 2560 if (dir == ALLOC_RIGHT) { 2561 secno = find_next_zero_bit(free_i->free_secmap, 2562 MAIN_SECS(sbi), 0); 2563 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2564 } else { 2565 go_left = 1; 2566 left_start = hint - 1; 2567 } 2568 } 2569 if (go_left == 0) 2570 goto skip_left; 2571 2572 while (test_bit(left_start, free_i->free_secmap)) { 2573 if (left_start > 0) { 2574 left_start--; 2575 continue; 2576 } 2577 left_start = find_next_zero_bit(free_i->free_secmap, 2578 MAIN_SECS(sbi), 0); 2579 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2580 break; 2581 } 2582 secno = left_start; 2583 skip_left: 2584 segno = GET_SEG_FROM_SEC(sbi, secno); 2585 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2586 2587 /* give up on finding another zone */ 2588 if (!init) 2589 goto got_it; 2590 if (sbi->secs_per_zone == 1) 2591 goto got_it; 2592 if (zoneno == old_zoneno) 2593 goto got_it; 2594 if (dir == ALLOC_LEFT) { 2595 if (!go_left && zoneno + 1 >= total_zones) 2596 goto got_it; 2597 if (go_left && zoneno == 0) 2598 goto got_it; 2599 } 2600 for (i = 0; i < NR_CURSEG_TYPE; i++) 2601 if (CURSEG_I(sbi, i)->zone == zoneno) 2602 break; 2603 2604 if (i < NR_CURSEG_TYPE) { 2605 /* zone is in user, try another */ 2606 if (go_left) 2607 hint = zoneno * sbi->secs_per_zone - 1; 2608 else if (zoneno + 1 >= total_zones) 2609 hint = 0; 2610 else 2611 hint = (zoneno + 1) * sbi->secs_per_zone; 2612 init = false; 2613 goto find_other_zone; 2614 } 2615 got_it: 2616 /* set it as dirty segment in free segmap */ 2617 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2618 __set_inuse(sbi, segno); 2619 *newseg = segno; 2620 spin_unlock(&free_i->segmap_lock); 2621 } 2622 2623 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2624 { 2625 struct curseg_info *curseg = CURSEG_I(sbi, type); 2626 struct summary_footer *sum_footer; 2627 unsigned short seg_type = curseg->seg_type; 2628 2629 curseg->inited = true; 2630 curseg->segno = curseg->next_segno; 2631 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2632 curseg->next_blkoff = 0; 2633 curseg->next_segno = NULL_SEGNO; 2634 2635 sum_footer = &(curseg->sum_blk->footer); 2636 memset(sum_footer, 0, sizeof(struct summary_footer)); 2637 2638 sanity_check_seg_type(sbi, seg_type); 2639 2640 if (IS_DATASEG(seg_type)) 2641 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2642 if (IS_NODESEG(seg_type)) 2643 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2644 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2645 } 2646 2647 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2648 { 2649 struct curseg_info *curseg = CURSEG_I(sbi, type); 2650 unsigned short seg_type = curseg->seg_type; 2651 2652 sanity_check_seg_type(sbi, seg_type); 2653 if (f2fs_need_rand_seg(sbi)) 2654 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec); 2655 2656 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2657 if (__is_large_section(sbi)) 2658 return curseg->segno; 2659 2660 /* inmem log may not locate on any segment after mount */ 2661 if (!curseg->inited) 2662 return 0; 2663 2664 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2665 return 0; 2666 2667 if (test_opt(sbi, NOHEAP) && 2668 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2669 return 0; 2670 2671 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2672 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2673 2674 /* find segments from 0 to reuse freed segments */ 2675 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2676 return 0; 2677 2678 return curseg->segno; 2679 } 2680 2681 /* 2682 * Allocate a current working segment. 2683 * This function always allocates a free segment in LFS manner. 2684 */ 2685 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2686 { 2687 struct curseg_info *curseg = CURSEG_I(sbi, type); 2688 unsigned short seg_type = curseg->seg_type; 2689 unsigned int segno = curseg->segno; 2690 int dir = ALLOC_LEFT; 2691 2692 if (curseg->inited) 2693 write_sum_page(sbi, curseg->sum_blk, 2694 GET_SUM_BLOCK(sbi, segno)); 2695 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2696 dir = ALLOC_RIGHT; 2697 2698 if (test_opt(sbi, NOHEAP)) 2699 dir = ALLOC_RIGHT; 2700 2701 segno = __get_next_segno(sbi, type); 2702 get_new_segment(sbi, &segno, new_sec, dir); 2703 curseg->next_segno = segno; 2704 reset_curseg(sbi, type, 1); 2705 curseg->alloc_type = LFS; 2706 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2707 curseg->fragment_remained_chunk = 2708 prandom_u32() % sbi->max_fragment_chunk + 1; 2709 } 2710 2711 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2712 int segno, block_t start) 2713 { 2714 struct seg_entry *se = get_seg_entry(sbi, segno); 2715 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2716 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2717 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2718 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2719 int i; 2720 2721 for (i = 0; i < entries; i++) 2722 target_map[i] = ckpt_map[i] | cur_map[i]; 2723 2724 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2725 } 2726 2727 /* 2728 * If a segment is written by LFS manner, next block offset is just obtained 2729 * by increasing the current block offset. However, if a segment is written by 2730 * SSR manner, next block offset obtained by calling __next_free_blkoff 2731 */ 2732 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2733 struct curseg_info *seg) 2734 { 2735 if (seg->alloc_type == SSR) { 2736 seg->next_blkoff = 2737 __next_free_blkoff(sbi, seg->segno, 2738 seg->next_blkoff + 1); 2739 } else { 2740 seg->next_blkoff++; 2741 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) { 2742 /* To allocate block chunks in different sizes, use random number */ 2743 if (--seg->fragment_remained_chunk <= 0) { 2744 seg->fragment_remained_chunk = 2745 prandom_u32() % sbi->max_fragment_chunk + 1; 2746 seg->next_blkoff += 2747 prandom_u32() % sbi->max_fragment_hole + 1; 2748 } 2749 } 2750 } 2751 } 2752 2753 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2754 { 2755 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2756 } 2757 2758 /* 2759 * This function always allocates a used segment(from dirty seglist) by SSR 2760 * manner, so it should recover the existing segment information of valid blocks 2761 */ 2762 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush) 2763 { 2764 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2765 struct curseg_info *curseg = CURSEG_I(sbi, type); 2766 unsigned int new_segno = curseg->next_segno; 2767 struct f2fs_summary_block *sum_node; 2768 struct page *sum_page; 2769 2770 if (flush) 2771 write_sum_page(sbi, curseg->sum_blk, 2772 GET_SUM_BLOCK(sbi, curseg->segno)); 2773 2774 __set_test_and_inuse(sbi, new_segno); 2775 2776 mutex_lock(&dirty_i->seglist_lock); 2777 __remove_dirty_segment(sbi, new_segno, PRE); 2778 __remove_dirty_segment(sbi, new_segno, DIRTY); 2779 mutex_unlock(&dirty_i->seglist_lock); 2780 2781 reset_curseg(sbi, type, 1); 2782 curseg->alloc_type = SSR; 2783 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2784 2785 sum_page = f2fs_get_sum_page(sbi, new_segno); 2786 if (IS_ERR(sum_page)) { 2787 /* GC won't be able to use stale summary pages by cp_error */ 2788 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2789 return; 2790 } 2791 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2792 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2793 f2fs_put_page(sum_page, 1); 2794 } 2795 2796 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2797 int alloc_mode, unsigned long long age); 2798 2799 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2800 int target_type, int alloc_mode, 2801 unsigned long long age) 2802 { 2803 struct curseg_info *curseg = CURSEG_I(sbi, type); 2804 2805 curseg->seg_type = target_type; 2806 2807 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2808 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2809 2810 curseg->seg_type = se->type; 2811 change_curseg(sbi, type, true); 2812 } else { 2813 /* allocate cold segment by default */ 2814 curseg->seg_type = CURSEG_COLD_DATA; 2815 new_curseg(sbi, type, true); 2816 } 2817 stat_inc_seg_type(sbi, curseg); 2818 } 2819 2820 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2821 { 2822 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2823 2824 if (!sbi->am.atgc_enabled) 2825 return; 2826 2827 down_read(&SM_I(sbi)->curseg_lock); 2828 2829 mutex_lock(&curseg->curseg_mutex); 2830 down_write(&SIT_I(sbi)->sentry_lock); 2831 2832 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2833 2834 up_write(&SIT_I(sbi)->sentry_lock); 2835 mutex_unlock(&curseg->curseg_mutex); 2836 2837 up_read(&SM_I(sbi)->curseg_lock); 2838 2839 } 2840 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2841 { 2842 __f2fs_init_atgc_curseg(sbi); 2843 } 2844 2845 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2846 { 2847 struct curseg_info *curseg = CURSEG_I(sbi, type); 2848 2849 mutex_lock(&curseg->curseg_mutex); 2850 if (!curseg->inited) 2851 goto out; 2852 2853 if (get_valid_blocks(sbi, curseg->segno, false)) { 2854 write_sum_page(sbi, curseg->sum_blk, 2855 GET_SUM_BLOCK(sbi, curseg->segno)); 2856 } else { 2857 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2858 __set_test_and_free(sbi, curseg->segno, true); 2859 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2860 } 2861 out: 2862 mutex_unlock(&curseg->curseg_mutex); 2863 } 2864 2865 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2866 { 2867 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2868 2869 if (sbi->am.atgc_enabled) 2870 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2871 } 2872 2873 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2874 { 2875 struct curseg_info *curseg = CURSEG_I(sbi, type); 2876 2877 mutex_lock(&curseg->curseg_mutex); 2878 if (!curseg->inited) 2879 goto out; 2880 if (get_valid_blocks(sbi, curseg->segno, false)) 2881 goto out; 2882 2883 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2884 __set_test_and_inuse(sbi, curseg->segno); 2885 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2886 out: 2887 mutex_unlock(&curseg->curseg_mutex); 2888 } 2889 2890 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2891 { 2892 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2893 2894 if (sbi->am.atgc_enabled) 2895 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2896 } 2897 2898 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2899 int alloc_mode, unsigned long long age) 2900 { 2901 struct curseg_info *curseg = CURSEG_I(sbi, type); 2902 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2903 unsigned segno = NULL_SEGNO; 2904 unsigned short seg_type = curseg->seg_type; 2905 int i, cnt; 2906 bool reversed = false; 2907 2908 sanity_check_seg_type(sbi, seg_type); 2909 2910 /* f2fs_need_SSR() already forces to do this */ 2911 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2912 curseg->next_segno = segno; 2913 return 1; 2914 } 2915 2916 /* For node segments, let's do SSR more intensively */ 2917 if (IS_NODESEG(seg_type)) { 2918 if (seg_type >= CURSEG_WARM_NODE) { 2919 reversed = true; 2920 i = CURSEG_COLD_NODE; 2921 } else { 2922 i = CURSEG_HOT_NODE; 2923 } 2924 cnt = NR_CURSEG_NODE_TYPE; 2925 } else { 2926 if (seg_type >= CURSEG_WARM_DATA) { 2927 reversed = true; 2928 i = CURSEG_COLD_DATA; 2929 } else { 2930 i = CURSEG_HOT_DATA; 2931 } 2932 cnt = NR_CURSEG_DATA_TYPE; 2933 } 2934 2935 for (; cnt-- > 0; reversed ? i-- : i++) { 2936 if (i == seg_type) 2937 continue; 2938 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2939 curseg->next_segno = segno; 2940 return 1; 2941 } 2942 } 2943 2944 /* find valid_blocks=0 in dirty list */ 2945 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2946 segno = get_free_segment(sbi); 2947 if (segno != NULL_SEGNO) { 2948 curseg->next_segno = segno; 2949 return 1; 2950 } 2951 } 2952 return 0; 2953 } 2954 2955 /* 2956 * flush out current segment and replace it with new segment 2957 * This function should be returned with success, otherwise BUG 2958 */ 2959 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2960 int type, bool force) 2961 { 2962 struct curseg_info *curseg = CURSEG_I(sbi, type); 2963 2964 if (force) 2965 new_curseg(sbi, type, true); 2966 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2967 curseg->seg_type == CURSEG_WARM_NODE) 2968 new_curseg(sbi, type, false); 2969 else if (curseg->alloc_type == LFS && 2970 is_next_segment_free(sbi, curseg, type) && 2971 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2972 new_curseg(sbi, type, false); 2973 else if (f2fs_need_SSR(sbi) && 2974 get_ssr_segment(sbi, type, SSR, 0)) 2975 change_curseg(sbi, type, true); 2976 else 2977 new_curseg(sbi, type, false); 2978 2979 stat_inc_seg_type(sbi, curseg); 2980 } 2981 2982 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2983 unsigned int start, unsigned int end) 2984 { 2985 struct curseg_info *curseg = CURSEG_I(sbi, type); 2986 unsigned int segno; 2987 2988 down_read(&SM_I(sbi)->curseg_lock); 2989 mutex_lock(&curseg->curseg_mutex); 2990 down_write(&SIT_I(sbi)->sentry_lock); 2991 2992 segno = CURSEG_I(sbi, type)->segno; 2993 if (segno < start || segno > end) 2994 goto unlock; 2995 2996 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2997 change_curseg(sbi, type, true); 2998 else 2999 new_curseg(sbi, type, true); 3000 3001 stat_inc_seg_type(sbi, curseg); 3002 3003 locate_dirty_segment(sbi, segno); 3004 unlock: 3005 up_write(&SIT_I(sbi)->sentry_lock); 3006 3007 if (segno != curseg->segno) 3008 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 3009 type, segno, curseg->segno); 3010 3011 mutex_unlock(&curseg->curseg_mutex); 3012 up_read(&SM_I(sbi)->curseg_lock); 3013 } 3014 3015 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 3016 bool new_sec, bool force) 3017 { 3018 struct curseg_info *curseg = CURSEG_I(sbi, type); 3019 unsigned int old_segno; 3020 3021 if (!curseg->inited) 3022 goto alloc; 3023 3024 if (force || curseg->next_blkoff || 3025 get_valid_blocks(sbi, curseg->segno, new_sec)) 3026 goto alloc; 3027 3028 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 3029 return; 3030 alloc: 3031 old_segno = curseg->segno; 3032 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 3033 locate_dirty_segment(sbi, old_segno); 3034 } 3035 3036 static void __allocate_new_section(struct f2fs_sb_info *sbi, 3037 int type, bool force) 3038 { 3039 __allocate_new_segment(sbi, type, true, force); 3040 } 3041 3042 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3043 { 3044 down_read(&SM_I(sbi)->curseg_lock); 3045 down_write(&SIT_I(sbi)->sentry_lock); 3046 __allocate_new_section(sbi, type, force); 3047 up_write(&SIT_I(sbi)->sentry_lock); 3048 up_read(&SM_I(sbi)->curseg_lock); 3049 } 3050 3051 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3052 { 3053 int i; 3054 3055 down_read(&SM_I(sbi)->curseg_lock); 3056 down_write(&SIT_I(sbi)->sentry_lock); 3057 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3058 __allocate_new_segment(sbi, i, false, false); 3059 up_write(&SIT_I(sbi)->sentry_lock); 3060 up_read(&SM_I(sbi)->curseg_lock); 3061 } 3062 3063 static const struct segment_allocation default_salloc_ops = { 3064 .allocate_segment = allocate_segment_by_default, 3065 }; 3066 3067 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3068 struct cp_control *cpc) 3069 { 3070 __u64 trim_start = cpc->trim_start; 3071 bool has_candidate = false; 3072 3073 down_write(&SIT_I(sbi)->sentry_lock); 3074 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3075 if (add_discard_addrs(sbi, cpc, true)) { 3076 has_candidate = true; 3077 break; 3078 } 3079 } 3080 up_write(&SIT_I(sbi)->sentry_lock); 3081 3082 cpc->trim_start = trim_start; 3083 return has_candidate; 3084 } 3085 3086 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3087 struct discard_policy *dpolicy, 3088 unsigned int start, unsigned int end) 3089 { 3090 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3091 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3092 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3093 struct discard_cmd *dc; 3094 struct blk_plug plug; 3095 int issued; 3096 unsigned int trimmed = 0; 3097 3098 next: 3099 issued = 0; 3100 3101 mutex_lock(&dcc->cmd_lock); 3102 if (unlikely(dcc->rbtree_check)) 3103 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 3104 &dcc->root, false)); 3105 3106 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 3107 NULL, start, 3108 (struct rb_entry **)&prev_dc, 3109 (struct rb_entry **)&next_dc, 3110 &insert_p, &insert_parent, true, NULL); 3111 if (!dc) 3112 dc = next_dc; 3113 3114 blk_start_plug(&plug); 3115 3116 while (dc && dc->lstart <= end) { 3117 struct rb_node *node; 3118 int err = 0; 3119 3120 if (dc->len < dpolicy->granularity) 3121 goto skip; 3122 3123 if (dc->state != D_PREP) { 3124 list_move_tail(&dc->list, &dcc->fstrim_list); 3125 goto skip; 3126 } 3127 3128 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3129 3130 if (issued >= dpolicy->max_requests) { 3131 start = dc->lstart + dc->len; 3132 3133 if (err) 3134 __remove_discard_cmd(sbi, dc); 3135 3136 blk_finish_plug(&plug); 3137 mutex_unlock(&dcc->cmd_lock); 3138 trimmed += __wait_all_discard_cmd(sbi, NULL); 3139 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 3140 goto next; 3141 } 3142 skip: 3143 node = rb_next(&dc->rb_node); 3144 if (err) 3145 __remove_discard_cmd(sbi, dc); 3146 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3147 3148 if (fatal_signal_pending(current)) 3149 break; 3150 } 3151 3152 blk_finish_plug(&plug); 3153 mutex_unlock(&dcc->cmd_lock); 3154 3155 return trimmed; 3156 } 3157 3158 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3159 { 3160 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3161 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3162 unsigned int start_segno, end_segno; 3163 block_t start_block, end_block; 3164 struct cp_control cpc; 3165 struct discard_policy dpolicy; 3166 unsigned long long trimmed = 0; 3167 int err = 0; 3168 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3169 3170 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3171 return -EINVAL; 3172 3173 if (end < MAIN_BLKADDR(sbi)) 3174 goto out; 3175 3176 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3177 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3178 return -EFSCORRUPTED; 3179 } 3180 3181 /* start/end segment number in main_area */ 3182 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3183 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3184 GET_SEGNO(sbi, end); 3185 if (need_align) { 3186 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3187 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3188 } 3189 3190 cpc.reason = CP_DISCARD; 3191 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3192 cpc.trim_start = start_segno; 3193 cpc.trim_end = end_segno; 3194 3195 if (sbi->discard_blks == 0) 3196 goto out; 3197 3198 down_write(&sbi->gc_lock); 3199 err = f2fs_write_checkpoint(sbi, &cpc); 3200 up_write(&sbi->gc_lock); 3201 if (err) 3202 goto out; 3203 3204 /* 3205 * We filed discard candidates, but actually we don't need to wait for 3206 * all of them, since they'll be issued in idle time along with runtime 3207 * discard option. User configuration looks like using runtime discard 3208 * or periodic fstrim instead of it. 3209 */ 3210 if (f2fs_realtime_discard_enable(sbi)) 3211 goto out; 3212 3213 start_block = START_BLOCK(sbi, start_segno); 3214 end_block = START_BLOCK(sbi, end_segno + 1); 3215 3216 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3217 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3218 start_block, end_block); 3219 3220 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3221 start_block, end_block); 3222 out: 3223 if (!err) 3224 range->len = F2FS_BLK_TO_BYTES(trimmed); 3225 return err; 3226 } 3227 3228 static bool __has_curseg_space(struct f2fs_sb_info *sbi, 3229 struct curseg_info *curseg) 3230 { 3231 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, 3232 curseg->segno); 3233 } 3234 3235 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3236 { 3237 switch (hint) { 3238 case WRITE_LIFE_SHORT: 3239 return CURSEG_HOT_DATA; 3240 case WRITE_LIFE_EXTREME: 3241 return CURSEG_COLD_DATA; 3242 default: 3243 return CURSEG_WARM_DATA; 3244 } 3245 } 3246 3247 /* This returns write hints for each segment type. This hints will be 3248 * passed down to block layer. There are mapping tables which depend on 3249 * the mount option 'whint_mode'. 3250 * 3251 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 3252 * 3253 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 3254 * 3255 * User F2FS Block 3256 * ---- ---- ----- 3257 * META WRITE_LIFE_NOT_SET 3258 * HOT_NODE " 3259 * WARM_NODE " 3260 * COLD_NODE " 3261 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3262 * extension list " " 3263 * 3264 * -- buffered io 3265 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3266 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3267 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3268 * WRITE_LIFE_NONE " " 3269 * WRITE_LIFE_MEDIUM " " 3270 * WRITE_LIFE_LONG " " 3271 * 3272 * -- direct io 3273 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3274 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3275 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3276 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3277 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3278 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3279 * 3280 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 3281 * 3282 * User F2FS Block 3283 * ---- ---- ----- 3284 * META WRITE_LIFE_MEDIUM; 3285 * HOT_NODE WRITE_LIFE_NOT_SET 3286 * WARM_NODE " 3287 * COLD_NODE WRITE_LIFE_NONE 3288 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3289 * extension list " " 3290 * 3291 * -- buffered io 3292 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3293 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3294 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 3295 * WRITE_LIFE_NONE " " 3296 * WRITE_LIFE_MEDIUM " " 3297 * WRITE_LIFE_LONG " " 3298 * 3299 * -- direct io 3300 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3301 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3302 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3303 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3304 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3305 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3306 */ 3307 3308 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3309 enum page_type type, enum temp_type temp) 3310 { 3311 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 3312 if (type == DATA) { 3313 if (temp == WARM) 3314 return WRITE_LIFE_NOT_SET; 3315 else if (temp == HOT) 3316 return WRITE_LIFE_SHORT; 3317 else if (temp == COLD) 3318 return WRITE_LIFE_EXTREME; 3319 } else { 3320 return WRITE_LIFE_NOT_SET; 3321 } 3322 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 3323 if (type == DATA) { 3324 if (temp == WARM) 3325 return WRITE_LIFE_LONG; 3326 else if (temp == HOT) 3327 return WRITE_LIFE_SHORT; 3328 else if (temp == COLD) 3329 return WRITE_LIFE_EXTREME; 3330 } else if (type == NODE) { 3331 if (temp == WARM || temp == HOT) 3332 return WRITE_LIFE_NOT_SET; 3333 else if (temp == COLD) 3334 return WRITE_LIFE_NONE; 3335 } else if (type == META) { 3336 return WRITE_LIFE_MEDIUM; 3337 } 3338 } 3339 return WRITE_LIFE_NOT_SET; 3340 } 3341 3342 static int __get_segment_type_2(struct f2fs_io_info *fio) 3343 { 3344 if (fio->type == DATA) 3345 return CURSEG_HOT_DATA; 3346 else 3347 return CURSEG_HOT_NODE; 3348 } 3349 3350 static int __get_segment_type_4(struct f2fs_io_info *fio) 3351 { 3352 if (fio->type == DATA) { 3353 struct inode *inode = fio->page->mapping->host; 3354 3355 if (S_ISDIR(inode->i_mode)) 3356 return CURSEG_HOT_DATA; 3357 else 3358 return CURSEG_COLD_DATA; 3359 } else { 3360 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3361 return CURSEG_WARM_NODE; 3362 else 3363 return CURSEG_COLD_NODE; 3364 } 3365 } 3366 3367 static int __get_segment_type_6(struct f2fs_io_info *fio) 3368 { 3369 if (fio->type == DATA) { 3370 struct inode *inode = fio->page->mapping->host; 3371 3372 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3373 return CURSEG_COLD_DATA_PINNED; 3374 3375 if (page_private_gcing(fio->page)) { 3376 if (fio->sbi->am.atgc_enabled && 3377 (fio->io_type == FS_DATA_IO) && 3378 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3379 return CURSEG_ALL_DATA_ATGC; 3380 else 3381 return CURSEG_COLD_DATA; 3382 } 3383 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3384 return CURSEG_COLD_DATA; 3385 if (file_is_hot(inode) || 3386 is_inode_flag_set(inode, FI_HOT_DATA) || 3387 f2fs_is_atomic_file(inode) || 3388 f2fs_is_volatile_file(inode)) 3389 return CURSEG_HOT_DATA; 3390 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3391 } else { 3392 if (IS_DNODE(fio->page)) 3393 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3394 CURSEG_HOT_NODE; 3395 return CURSEG_COLD_NODE; 3396 } 3397 } 3398 3399 static int __get_segment_type(struct f2fs_io_info *fio) 3400 { 3401 int type = 0; 3402 3403 switch (F2FS_OPTION(fio->sbi).active_logs) { 3404 case 2: 3405 type = __get_segment_type_2(fio); 3406 break; 3407 case 4: 3408 type = __get_segment_type_4(fio); 3409 break; 3410 case 6: 3411 type = __get_segment_type_6(fio); 3412 break; 3413 default: 3414 f2fs_bug_on(fio->sbi, true); 3415 } 3416 3417 if (IS_HOT(type)) 3418 fio->temp = HOT; 3419 else if (IS_WARM(type)) 3420 fio->temp = WARM; 3421 else 3422 fio->temp = COLD; 3423 return type; 3424 } 3425 3426 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3427 block_t old_blkaddr, block_t *new_blkaddr, 3428 struct f2fs_summary *sum, int type, 3429 struct f2fs_io_info *fio) 3430 { 3431 struct sit_info *sit_i = SIT_I(sbi); 3432 struct curseg_info *curseg = CURSEG_I(sbi, type); 3433 unsigned long long old_mtime; 3434 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3435 struct seg_entry *se = NULL; 3436 3437 down_read(&SM_I(sbi)->curseg_lock); 3438 3439 mutex_lock(&curseg->curseg_mutex); 3440 down_write(&sit_i->sentry_lock); 3441 3442 if (from_gc) { 3443 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3444 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3445 sanity_check_seg_type(sbi, se->type); 3446 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3447 } 3448 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3449 3450 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3451 3452 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3453 3454 /* 3455 * __add_sum_entry should be resided under the curseg_mutex 3456 * because, this function updates a summary entry in the 3457 * current summary block. 3458 */ 3459 __add_sum_entry(sbi, type, sum); 3460 3461 __refresh_next_blkoff(sbi, curseg); 3462 3463 stat_inc_block_count(sbi, curseg); 3464 3465 if (from_gc) { 3466 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3467 } else { 3468 update_segment_mtime(sbi, old_blkaddr, 0); 3469 old_mtime = 0; 3470 } 3471 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3472 3473 /* 3474 * SIT information should be updated before segment allocation, 3475 * since SSR needs latest valid block information. 3476 */ 3477 update_sit_entry(sbi, *new_blkaddr, 1); 3478 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3479 update_sit_entry(sbi, old_blkaddr, -1); 3480 3481 if (!__has_curseg_space(sbi, curseg)) { 3482 if (from_gc) 3483 get_atssr_segment(sbi, type, se->type, 3484 AT_SSR, se->mtime); 3485 else 3486 sit_i->s_ops->allocate_segment(sbi, type, false); 3487 } 3488 /* 3489 * segment dirty status should be updated after segment allocation, 3490 * so we just need to update status only one time after previous 3491 * segment being closed. 3492 */ 3493 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3494 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3495 3496 up_write(&sit_i->sentry_lock); 3497 3498 if (page && IS_NODESEG(type)) { 3499 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3500 3501 f2fs_inode_chksum_set(sbi, page); 3502 } 3503 3504 if (fio) { 3505 struct f2fs_bio_info *io; 3506 3507 if (F2FS_IO_ALIGNED(sbi)) 3508 fio->retry = false; 3509 3510 INIT_LIST_HEAD(&fio->list); 3511 fio->in_list = true; 3512 io = sbi->write_io[fio->type] + fio->temp; 3513 spin_lock(&io->io_lock); 3514 list_add_tail(&fio->list, &io->io_list); 3515 spin_unlock(&io->io_lock); 3516 } 3517 3518 mutex_unlock(&curseg->curseg_mutex); 3519 3520 up_read(&SM_I(sbi)->curseg_lock); 3521 } 3522 3523 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3524 block_t blkaddr, unsigned int blkcnt) 3525 { 3526 if (!f2fs_is_multi_device(sbi)) 3527 return; 3528 3529 while (1) { 3530 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3531 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3532 3533 /* update device state for fsync */ 3534 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3535 3536 /* update device state for checkpoint */ 3537 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3538 spin_lock(&sbi->dev_lock); 3539 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3540 spin_unlock(&sbi->dev_lock); 3541 } 3542 3543 if (blkcnt <= blks) 3544 break; 3545 blkcnt -= blks; 3546 blkaddr += blks; 3547 } 3548 } 3549 3550 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3551 { 3552 int type = __get_segment_type(fio); 3553 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3554 3555 if (keep_order) 3556 down_read(&fio->sbi->io_order_lock); 3557 reallocate: 3558 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3559 &fio->new_blkaddr, sum, type, fio); 3560 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) { 3561 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3562 fio->old_blkaddr, fio->old_blkaddr); 3563 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr); 3564 } 3565 3566 /* writeout dirty page into bdev */ 3567 f2fs_submit_page_write(fio); 3568 if (fio->retry) { 3569 fio->old_blkaddr = fio->new_blkaddr; 3570 goto reallocate; 3571 } 3572 3573 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3574 3575 if (keep_order) 3576 up_read(&fio->sbi->io_order_lock); 3577 } 3578 3579 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3580 enum iostat_type io_type) 3581 { 3582 struct f2fs_io_info fio = { 3583 .sbi = sbi, 3584 .type = META, 3585 .temp = HOT, 3586 .op = REQ_OP_WRITE, 3587 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3588 .old_blkaddr = page->index, 3589 .new_blkaddr = page->index, 3590 .page = page, 3591 .encrypted_page = NULL, 3592 .in_list = false, 3593 }; 3594 3595 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3596 fio.op_flags &= ~REQ_META; 3597 3598 set_page_writeback(page); 3599 ClearPageError(page); 3600 f2fs_submit_page_write(&fio); 3601 3602 stat_inc_meta_count(sbi, page->index); 3603 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3604 } 3605 3606 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3607 { 3608 struct f2fs_summary sum; 3609 3610 set_summary(&sum, nid, 0, 0); 3611 do_write_page(&sum, fio); 3612 3613 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3614 } 3615 3616 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3617 struct f2fs_io_info *fio) 3618 { 3619 struct f2fs_sb_info *sbi = fio->sbi; 3620 struct f2fs_summary sum; 3621 3622 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3623 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3624 do_write_page(&sum, fio); 3625 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3626 3627 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3628 } 3629 3630 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3631 { 3632 int err; 3633 struct f2fs_sb_info *sbi = fio->sbi; 3634 unsigned int segno; 3635 3636 fio->new_blkaddr = fio->old_blkaddr; 3637 /* i/o temperature is needed for passing down write hints */ 3638 __get_segment_type(fio); 3639 3640 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3641 3642 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3643 set_sbi_flag(sbi, SBI_NEED_FSCK); 3644 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3645 __func__, segno); 3646 err = -EFSCORRUPTED; 3647 goto drop_bio; 3648 } 3649 3650 if (f2fs_cp_error(sbi)) { 3651 err = -EIO; 3652 goto drop_bio; 3653 } 3654 3655 invalidate_mapping_pages(META_MAPPING(sbi), 3656 fio->new_blkaddr, fio->new_blkaddr); 3657 3658 stat_inc_inplace_blocks(fio->sbi); 3659 3660 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3661 err = f2fs_merge_page_bio(fio); 3662 else 3663 err = f2fs_submit_page_bio(fio); 3664 if (!err) { 3665 f2fs_update_device_state(fio->sbi, fio->ino, 3666 fio->new_blkaddr, 1); 3667 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3668 } 3669 3670 return err; 3671 drop_bio: 3672 if (fio->bio && *(fio->bio)) { 3673 struct bio *bio = *(fio->bio); 3674 3675 bio->bi_status = BLK_STS_IOERR; 3676 bio_endio(bio); 3677 *(fio->bio) = NULL; 3678 } 3679 return err; 3680 } 3681 3682 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3683 unsigned int segno) 3684 { 3685 int i; 3686 3687 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3688 if (CURSEG_I(sbi, i)->segno == segno) 3689 break; 3690 } 3691 return i; 3692 } 3693 3694 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3695 block_t old_blkaddr, block_t new_blkaddr, 3696 bool recover_curseg, bool recover_newaddr, 3697 bool from_gc) 3698 { 3699 struct sit_info *sit_i = SIT_I(sbi); 3700 struct curseg_info *curseg; 3701 unsigned int segno, old_cursegno; 3702 struct seg_entry *se; 3703 int type; 3704 unsigned short old_blkoff; 3705 unsigned char old_alloc_type; 3706 3707 segno = GET_SEGNO(sbi, new_blkaddr); 3708 se = get_seg_entry(sbi, segno); 3709 type = se->type; 3710 3711 down_write(&SM_I(sbi)->curseg_lock); 3712 3713 if (!recover_curseg) { 3714 /* for recovery flow */ 3715 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3716 if (old_blkaddr == NULL_ADDR) 3717 type = CURSEG_COLD_DATA; 3718 else 3719 type = CURSEG_WARM_DATA; 3720 } 3721 } else { 3722 if (IS_CURSEG(sbi, segno)) { 3723 /* se->type is volatile as SSR allocation */ 3724 type = __f2fs_get_curseg(sbi, segno); 3725 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3726 } else { 3727 type = CURSEG_WARM_DATA; 3728 } 3729 } 3730 3731 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3732 curseg = CURSEG_I(sbi, type); 3733 3734 mutex_lock(&curseg->curseg_mutex); 3735 down_write(&sit_i->sentry_lock); 3736 3737 old_cursegno = curseg->segno; 3738 old_blkoff = curseg->next_blkoff; 3739 old_alloc_type = curseg->alloc_type; 3740 3741 /* change the current segment */ 3742 if (segno != curseg->segno) { 3743 curseg->next_segno = segno; 3744 change_curseg(sbi, type, true); 3745 } 3746 3747 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3748 __add_sum_entry(sbi, type, sum); 3749 3750 if (!recover_curseg || recover_newaddr) { 3751 if (!from_gc) 3752 update_segment_mtime(sbi, new_blkaddr, 0); 3753 update_sit_entry(sbi, new_blkaddr, 1); 3754 } 3755 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3756 invalidate_mapping_pages(META_MAPPING(sbi), 3757 old_blkaddr, old_blkaddr); 3758 f2fs_invalidate_compress_page(sbi, old_blkaddr); 3759 if (!from_gc) 3760 update_segment_mtime(sbi, old_blkaddr, 0); 3761 update_sit_entry(sbi, old_blkaddr, -1); 3762 } 3763 3764 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3765 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3766 3767 locate_dirty_segment(sbi, old_cursegno); 3768 3769 if (recover_curseg) { 3770 if (old_cursegno != curseg->segno) { 3771 curseg->next_segno = old_cursegno; 3772 change_curseg(sbi, type, true); 3773 } 3774 curseg->next_blkoff = old_blkoff; 3775 curseg->alloc_type = old_alloc_type; 3776 } 3777 3778 up_write(&sit_i->sentry_lock); 3779 mutex_unlock(&curseg->curseg_mutex); 3780 up_write(&SM_I(sbi)->curseg_lock); 3781 } 3782 3783 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3784 block_t old_addr, block_t new_addr, 3785 unsigned char version, bool recover_curseg, 3786 bool recover_newaddr) 3787 { 3788 struct f2fs_summary sum; 3789 3790 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3791 3792 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3793 recover_curseg, recover_newaddr, false); 3794 3795 f2fs_update_data_blkaddr(dn, new_addr); 3796 } 3797 3798 void f2fs_wait_on_page_writeback(struct page *page, 3799 enum page_type type, bool ordered, bool locked) 3800 { 3801 if (PageWriteback(page)) { 3802 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3803 3804 /* submit cached LFS IO */ 3805 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3806 /* sbumit cached IPU IO */ 3807 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3808 if (ordered) { 3809 wait_on_page_writeback(page); 3810 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3811 } else { 3812 wait_for_stable_page(page); 3813 } 3814 } 3815 } 3816 3817 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3818 { 3819 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3820 struct page *cpage; 3821 3822 if (!f2fs_post_read_required(inode)) 3823 return; 3824 3825 if (!__is_valid_data_blkaddr(blkaddr)) 3826 return; 3827 3828 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3829 if (cpage) { 3830 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3831 f2fs_put_page(cpage, 1); 3832 } 3833 } 3834 3835 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3836 block_t len) 3837 { 3838 block_t i; 3839 3840 for (i = 0; i < len; i++) 3841 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3842 } 3843 3844 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3845 { 3846 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3847 struct curseg_info *seg_i; 3848 unsigned char *kaddr; 3849 struct page *page; 3850 block_t start; 3851 int i, j, offset; 3852 3853 start = start_sum_block(sbi); 3854 3855 page = f2fs_get_meta_page(sbi, start++); 3856 if (IS_ERR(page)) 3857 return PTR_ERR(page); 3858 kaddr = (unsigned char *)page_address(page); 3859 3860 /* Step 1: restore nat cache */ 3861 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3862 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3863 3864 /* Step 2: restore sit cache */ 3865 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3866 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3867 offset = 2 * SUM_JOURNAL_SIZE; 3868 3869 /* Step 3: restore summary entries */ 3870 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3871 unsigned short blk_off; 3872 unsigned int segno; 3873 3874 seg_i = CURSEG_I(sbi, i); 3875 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3876 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3877 seg_i->next_segno = segno; 3878 reset_curseg(sbi, i, 0); 3879 seg_i->alloc_type = ckpt->alloc_type[i]; 3880 seg_i->next_blkoff = blk_off; 3881 3882 if (seg_i->alloc_type == SSR) 3883 blk_off = sbi->blocks_per_seg; 3884 3885 for (j = 0; j < blk_off; j++) { 3886 struct f2fs_summary *s; 3887 3888 s = (struct f2fs_summary *)(kaddr + offset); 3889 seg_i->sum_blk->entries[j] = *s; 3890 offset += SUMMARY_SIZE; 3891 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3892 SUM_FOOTER_SIZE) 3893 continue; 3894 3895 f2fs_put_page(page, 1); 3896 page = NULL; 3897 3898 page = f2fs_get_meta_page(sbi, start++); 3899 if (IS_ERR(page)) 3900 return PTR_ERR(page); 3901 kaddr = (unsigned char *)page_address(page); 3902 offset = 0; 3903 } 3904 } 3905 f2fs_put_page(page, 1); 3906 return 0; 3907 } 3908 3909 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3910 { 3911 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3912 struct f2fs_summary_block *sum; 3913 struct curseg_info *curseg; 3914 struct page *new; 3915 unsigned short blk_off; 3916 unsigned int segno = 0; 3917 block_t blk_addr = 0; 3918 int err = 0; 3919 3920 /* get segment number and block addr */ 3921 if (IS_DATASEG(type)) { 3922 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3923 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3924 CURSEG_HOT_DATA]); 3925 if (__exist_node_summaries(sbi)) 3926 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3927 else 3928 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3929 } else { 3930 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3931 CURSEG_HOT_NODE]); 3932 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3933 CURSEG_HOT_NODE]); 3934 if (__exist_node_summaries(sbi)) 3935 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3936 type - CURSEG_HOT_NODE); 3937 else 3938 blk_addr = GET_SUM_BLOCK(sbi, segno); 3939 } 3940 3941 new = f2fs_get_meta_page(sbi, blk_addr); 3942 if (IS_ERR(new)) 3943 return PTR_ERR(new); 3944 sum = (struct f2fs_summary_block *)page_address(new); 3945 3946 if (IS_NODESEG(type)) { 3947 if (__exist_node_summaries(sbi)) { 3948 struct f2fs_summary *ns = &sum->entries[0]; 3949 int i; 3950 3951 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3952 ns->version = 0; 3953 ns->ofs_in_node = 0; 3954 } 3955 } else { 3956 err = f2fs_restore_node_summary(sbi, segno, sum); 3957 if (err) 3958 goto out; 3959 } 3960 } 3961 3962 /* set uncompleted segment to curseg */ 3963 curseg = CURSEG_I(sbi, type); 3964 mutex_lock(&curseg->curseg_mutex); 3965 3966 /* update journal info */ 3967 down_write(&curseg->journal_rwsem); 3968 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3969 up_write(&curseg->journal_rwsem); 3970 3971 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3972 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3973 curseg->next_segno = segno; 3974 reset_curseg(sbi, type, 0); 3975 curseg->alloc_type = ckpt->alloc_type[type]; 3976 curseg->next_blkoff = blk_off; 3977 mutex_unlock(&curseg->curseg_mutex); 3978 out: 3979 f2fs_put_page(new, 1); 3980 return err; 3981 } 3982 3983 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3984 { 3985 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3986 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3987 int type = CURSEG_HOT_DATA; 3988 int err; 3989 3990 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3991 int npages = f2fs_npages_for_summary_flush(sbi, true); 3992 3993 if (npages >= 2) 3994 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3995 META_CP, true); 3996 3997 /* restore for compacted data summary */ 3998 err = read_compacted_summaries(sbi); 3999 if (err) 4000 return err; 4001 type = CURSEG_HOT_NODE; 4002 } 4003 4004 if (__exist_node_summaries(sbi)) 4005 f2fs_ra_meta_pages(sbi, 4006 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 4007 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 4008 4009 for (; type <= CURSEG_COLD_NODE; type++) { 4010 err = read_normal_summaries(sbi, type); 4011 if (err) 4012 return err; 4013 } 4014 4015 /* sanity check for summary blocks */ 4016 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 4017 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 4018 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 4019 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 4020 return -EINVAL; 4021 } 4022 4023 return 0; 4024 } 4025 4026 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 4027 { 4028 struct page *page; 4029 unsigned char *kaddr; 4030 struct f2fs_summary *summary; 4031 struct curseg_info *seg_i; 4032 int written_size = 0; 4033 int i, j; 4034 4035 page = f2fs_grab_meta_page(sbi, blkaddr++); 4036 kaddr = (unsigned char *)page_address(page); 4037 memset(kaddr, 0, PAGE_SIZE); 4038 4039 /* Step 1: write nat cache */ 4040 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4041 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 4042 written_size += SUM_JOURNAL_SIZE; 4043 4044 /* Step 2: write sit cache */ 4045 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4046 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 4047 written_size += SUM_JOURNAL_SIZE; 4048 4049 /* Step 3: write summary entries */ 4050 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4051 unsigned short blkoff; 4052 4053 seg_i = CURSEG_I(sbi, i); 4054 if (sbi->ckpt->alloc_type[i] == SSR) 4055 blkoff = sbi->blocks_per_seg; 4056 else 4057 blkoff = curseg_blkoff(sbi, i); 4058 4059 for (j = 0; j < blkoff; j++) { 4060 if (!page) { 4061 page = f2fs_grab_meta_page(sbi, blkaddr++); 4062 kaddr = (unsigned char *)page_address(page); 4063 memset(kaddr, 0, PAGE_SIZE); 4064 written_size = 0; 4065 } 4066 summary = (struct f2fs_summary *)(kaddr + written_size); 4067 *summary = seg_i->sum_blk->entries[j]; 4068 written_size += SUMMARY_SIZE; 4069 4070 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 4071 SUM_FOOTER_SIZE) 4072 continue; 4073 4074 set_page_dirty(page); 4075 f2fs_put_page(page, 1); 4076 page = NULL; 4077 } 4078 } 4079 if (page) { 4080 set_page_dirty(page); 4081 f2fs_put_page(page, 1); 4082 } 4083 } 4084 4085 static void write_normal_summaries(struct f2fs_sb_info *sbi, 4086 block_t blkaddr, int type) 4087 { 4088 int i, end; 4089 4090 if (IS_DATASEG(type)) 4091 end = type + NR_CURSEG_DATA_TYPE; 4092 else 4093 end = type + NR_CURSEG_NODE_TYPE; 4094 4095 for (i = type; i < end; i++) 4096 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4097 } 4098 4099 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4100 { 4101 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4102 write_compacted_summaries(sbi, start_blk); 4103 else 4104 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4105 } 4106 4107 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4108 { 4109 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4110 } 4111 4112 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4113 unsigned int val, int alloc) 4114 { 4115 int i; 4116 4117 if (type == NAT_JOURNAL) { 4118 for (i = 0; i < nats_in_cursum(journal); i++) { 4119 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4120 return i; 4121 } 4122 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4123 return update_nats_in_cursum(journal, 1); 4124 } else if (type == SIT_JOURNAL) { 4125 for (i = 0; i < sits_in_cursum(journal); i++) 4126 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4127 return i; 4128 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4129 return update_sits_in_cursum(journal, 1); 4130 } 4131 return -1; 4132 } 4133 4134 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4135 unsigned int segno) 4136 { 4137 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4138 } 4139 4140 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4141 unsigned int start) 4142 { 4143 struct sit_info *sit_i = SIT_I(sbi); 4144 struct page *page; 4145 pgoff_t src_off, dst_off; 4146 4147 src_off = current_sit_addr(sbi, start); 4148 dst_off = next_sit_addr(sbi, src_off); 4149 4150 page = f2fs_grab_meta_page(sbi, dst_off); 4151 seg_info_to_sit_page(sbi, page, start); 4152 4153 set_page_dirty(page); 4154 set_to_next_sit(sit_i, start); 4155 4156 return page; 4157 } 4158 4159 static struct sit_entry_set *grab_sit_entry_set(void) 4160 { 4161 struct sit_entry_set *ses = 4162 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4163 GFP_NOFS, true, NULL); 4164 4165 ses->entry_cnt = 0; 4166 INIT_LIST_HEAD(&ses->set_list); 4167 return ses; 4168 } 4169 4170 static void release_sit_entry_set(struct sit_entry_set *ses) 4171 { 4172 list_del(&ses->set_list); 4173 kmem_cache_free(sit_entry_set_slab, ses); 4174 } 4175 4176 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4177 struct list_head *head) 4178 { 4179 struct sit_entry_set *next = ses; 4180 4181 if (list_is_last(&ses->set_list, head)) 4182 return; 4183 4184 list_for_each_entry_continue(next, head, set_list) 4185 if (ses->entry_cnt <= next->entry_cnt) 4186 break; 4187 4188 list_move_tail(&ses->set_list, &next->set_list); 4189 } 4190 4191 static void add_sit_entry(unsigned int segno, struct list_head *head) 4192 { 4193 struct sit_entry_set *ses; 4194 unsigned int start_segno = START_SEGNO(segno); 4195 4196 list_for_each_entry(ses, head, set_list) { 4197 if (ses->start_segno == start_segno) { 4198 ses->entry_cnt++; 4199 adjust_sit_entry_set(ses, head); 4200 return; 4201 } 4202 } 4203 4204 ses = grab_sit_entry_set(); 4205 4206 ses->start_segno = start_segno; 4207 ses->entry_cnt++; 4208 list_add(&ses->set_list, head); 4209 } 4210 4211 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4212 { 4213 struct f2fs_sm_info *sm_info = SM_I(sbi); 4214 struct list_head *set_list = &sm_info->sit_entry_set; 4215 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4216 unsigned int segno; 4217 4218 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4219 add_sit_entry(segno, set_list); 4220 } 4221 4222 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4223 { 4224 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4225 struct f2fs_journal *journal = curseg->journal; 4226 int i; 4227 4228 down_write(&curseg->journal_rwsem); 4229 for (i = 0; i < sits_in_cursum(journal); i++) { 4230 unsigned int segno; 4231 bool dirtied; 4232 4233 segno = le32_to_cpu(segno_in_journal(journal, i)); 4234 dirtied = __mark_sit_entry_dirty(sbi, segno); 4235 4236 if (!dirtied) 4237 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4238 } 4239 update_sits_in_cursum(journal, -i); 4240 up_write(&curseg->journal_rwsem); 4241 } 4242 4243 /* 4244 * CP calls this function, which flushes SIT entries including sit_journal, 4245 * and moves prefree segs to free segs. 4246 */ 4247 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4248 { 4249 struct sit_info *sit_i = SIT_I(sbi); 4250 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4251 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4252 struct f2fs_journal *journal = curseg->journal; 4253 struct sit_entry_set *ses, *tmp; 4254 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4255 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4256 struct seg_entry *se; 4257 4258 down_write(&sit_i->sentry_lock); 4259 4260 if (!sit_i->dirty_sentries) 4261 goto out; 4262 4263 /* 4264 * add and account sit entries of dirty bitmap in sit entry 4265 * set temporarily 4266 */ 4267 add_sits_in_set(sbi); 4268 4269 /* 4270 * if there are no enough space in journal to store dirty sit 4271 * entries, remove all entries from journal and add and account 4272 * them in sit entry set. 4273 */ 4274 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4275 !to_journal) 4276 remove_sits_in_journal(sbi); 4277 4278 /* 4279 * there are two steps to flush sit entries: 4280 * #1, flush sit entries to journal in current cold data summary block. 4281 * #2, flush sit entries to sit page. 4282 */ 4283 list_for_each_entry_safe(ses, tmp, head, set_list) { 4284 struct page *page = NULL; 4285 struct f2fs_sit_block *raw_sit = NULL; 4286 unsigned int start_segno = ses->start_segno; 4287 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4288 (unsigned long)MAIN_SEGS(sbi)); 4289 unsigned int segno = start_segno; 4290 4291 if (to_journal && 4292 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4293 to_journal = false; 4294 4295 if (to_journal) { 4296 down_write(&curseg->journal_rwsem); 4297 } else { 4298 page = get_next_sit_page(sbi, start_segno); 4299 raw_sit = page_address(page); 4300 } 4301 4302 /* flush dirty sit entries in region of current sit set */ 4303 for_each_set_bit_from(segno, bitmap, end) { 4304 int offset, sit_offset; 4305 4306 se = get_seg_entry(sbi, segno); 4307 #ifdef CONFIG_F2FS_CHECK_FS 4308 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4309 SIT_VBLOCK_MAP_SIZE)) 4310 f2fs_bug_on(sbi, 1); 4311 #endif 4312 4313 /* add discard candidates */ 4314 if (!(cpc->reason & CP_DISCARD)) { 4315 cpc->trim_start = segno; 4316 add_discard_addrs(sbi, cpc, false); 4317 } 4318 4319 if (to_journal) { 4320 offset = f2fs_lookup_journal_in_cursum(journal, 4321 SIT_JOURNAL, segno, 1); 4322 f2fs_bug_on(sbi, offset < 0); 4323 segno_in_journal(journal, offset) = 4324 cpu_to_le32(segno); 4325 seg_info_to_raw_sit(se, 4326 &sit_in_journal(journal, offset)); 4327 check_block_count(sbi, segno, 4328 &sit_in_journal(journal, offset)); 4329 } else { 4330 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4331 seg_info_to_raw_sit(se, 4332 &raw_sit->entries[sit_offset]); 4333 check_block_count(sbi, segno, 4334 &raw_sit->entries[sit_offset]); 4335 } 4336 4337 __clear_bit(segno, bitmap); 4338 sit_i->dirty_sentries--; 4339 ses->entry_cnt--; 4340 } 4341 4342 if (to_journal) 4343 up_write(&curseg->journal_rwsem); 4344 else 4345 f2fs_put_page(page, 1); 4346 4347 f2fs_bug_on(sbi, ses->entry_cnt); 4348 release_sit_entry_set(ses); 4349 } 4350 4351 f2fs_bug_on(sbi, !list_empty(head)); 4352 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4353 out: 4354 if (cpc->reason & CP_DISCARD) { 4355 __u64 trim_start = cpc->trim_start; 4356 4357 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4358 add_discard_addrs(sbi, cpc, false); 4359 4360 cpc->trim_start = trim_start; 4361 } 4362 up_write(&sit_i->sentry_lock); 4363 4364 set_prefree_as_free_segments(sbi); 4365 } 4366 4367 static int build_sit_info(struct f2fs_sb_info *sbi) 4368 { 4369 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4370 struct sit_info *sit_i; 4371 unsigned int sit_segs, start; 4372 char *src_bitmap, *bitmap; 4373 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4374 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4375 4376 /* allocate memory for SIT information */ 4377 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4378 if (!sit_i) 4379 return -ENOMEM; 4380 4381 SM_I(sbi)->sit_info = sit_i; 4382 4383 sit_i->sentries = 4384 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4385 MAIN_SEGS(sbi)), 4386 GFP_KERNEL); 4387 if (!sit_i->sentries) 4388 return -ENOMEM; 4389 4390 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4391 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4392 GFP_KERNEL); 4393 if (!sit_i->dirty_sentries_bitmap) 4394 return -ENOMEM; 4395 4396 #ifdef CONFIG_F2FS_CHECK_FS 4397 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4398 #else 4399 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4400 #endif 4401 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4402 if (!sit_i->bitmap) 4403 return -ENOMEM; 4404 4405 bitmap = sit_i->bitmap; 4406 4407 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4408 sit_i->sentries[start].cur_valid_map = bitmap; 4409 bitmap += SIT_VBLOCK_MAP_SIZE; 4410 4411 sit_i->sentries[start].ckpt_valid_map = bitmap; 4412 bitmap += SIT_VBLOCK_MAP_SIZE; 4413 4414 #ifdef CONFIG_F2FS_CHECK_FS 4415 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4416 bitmap += SIT_VBLOCK_MAP_SIZE; 4417 #endif 4418 4419 if (discard_map) { 4420 sit_i->sentries[start].discard_map = bitmap; 4421 bitmap += SIT_VBLOCK_MAP_SIZE; 4422 } 4423 } 4424 4425 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4426 if (!sit_i->tmp_map) 4427 return -ENOMEM; 4428 4429 if (__is_large_section(sbi)) { 4430 sit_i->sec_entries = 4431 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4432 MAIN_SECS(sbi)), 4433 GFP_KERNEL); 4434 if (!sit_i->sec_entries) 4435 return -ENOMEM; 4436 } 4437 4438 /* get information related with SIT */ 4439 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4440 4441 /* setup SIT bitmap from ckeckpoint pack */ 4442 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4443 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4444 4445 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4446 if (!sit_i->sit_bitmap) 4447 return -ENOMEM; 4448 4449 #ifdef CONFIG_F2FS_CHECK_FS 4450 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4451 sit_bitmap_size, GFP_KERNEL); 4452 if (!sit_i->sit_bitmap_mir) 4453 return -ENOMEM; 4454 4455 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4456 main_bitmap_size, GFP_KERNEL); 4457 if (!sit_i->invalid_segmap) 4458 return -ENOMEM; 4459 #endif 4460 4461 /* init SIT information */ 4462 sit_i->s_ops = &default_salloc_ops; 4463 4464 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4465 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4466 sit_i->written_valid_blocks = 0; 4467 sit_i->bitmap_size = sit_bitmap_size; 4468 sit_i->dirty_sentries = 0; 4469 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4470 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4471 sit_i->mounted_time = ktime_get_boottime_seconds(); 4472 init_rwsem(&sit_i->sentry_lock); 4473 return 0; 4474 } 4475 4476 static int build_free_segmap(struct f2fs_sb_info *sbi) 4477 { 4478 struct free_segmap_info *free_i; 4479 unsigned int bitmap_size, sec_bitmap_size; 4480 4481 /* allocate memory for free segmap information */ 4482 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4483 if (!free_i) 4484 return -ENOMEM; 4485 4486 SM_I(sbi)->free_info = free_i; 4487 4488 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4489 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4490 if (!free_i->free_segmap) 4491 return -ENOMEM; 4492 4493 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4494 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4495 if (!free_i->free_secmap) 4496 return -ENOMEM; 4497 4498 /* set all segments as dirty temporarily */ 4499 memset(free_i->free_segmap, 0xff, bitmap_size); 4500 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4501 4502 /* init free segmap information */ 4503 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4504 free_i->free_segments = 0; 4505 free_i->free_sections = 0; 4506 spin_lock_init(&free_i->segmap_lock); 4507 return 0; 4508 } 4509 4510 static int build_curseg(struct f2fs_sb_info *sbi) 4511 { 4512 struct curseg_info *array; 4513 int i; 4514 4515 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4516 sizeof(*array)), GFP_KERNEL); 4517 if (!array) 4518 return -ENOMEM; 4519 4520 SM_I(sbi)->curseg_array = array; 4521 4522 for (i = 0; i < NO_CHECK_TYPE; i++) { 4523 mutex_init(&array[i].curseg_mutex); 4524 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4525 if (!array[i].sum_blk) 4526 return -ENOMEM; 4527 init_rwsem(&array[i].journal_rwsem); 4528 array[i].journal = f2fs_kzalloc(sbi, 4529 sizeof(struct f2fs_journal), GFP_KERNEL); 4530 if (!array[i].journal) 4531 return -ENOMEM; 4532 if (i < NR_PERSISTENT_LOG) 4533 array[i].seg_type = CURSEG_HOT_DATA + i; 4534 else if (i == CURSEG_COLD_DATA_PINNED) 4535 array[i].seg_type = CURSEG_COLD_DATA; 4536 else if (i == CURSEG_ALL_DATA_ATGC) 4537 array[i].seg_type = CURSEG_COLD_DATA; 4538 array[i].segno = NULL_SEGNO; 4539 array[i].next_blkoff = 0; 4540 array[i].inited = false; 4541 } 4542 return restore_curseg_summaries(sbi); 4543 } 4544 4545 static int build_sit_entries(struct f2fs_sb_info *sbi) 4546 { 4547 struct sit_info *sit_i = SIT_I(sbi); 4548 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4549 struct f2fs_journal *journal = curseg->journal; 4550 struct seg_entry *se; 4551 struct f2fs_sit_entry sit; 4552 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4553 unsigned int i, start, end; 4554 unsigned int readed, start_blk = 0; 4555 int err = 0; 4556 block_t total_node_blocks = 0; 4557 4558 do { 4559 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4560 META_SIT, true); 4561 4562 start = start_blk * sit_i->sents_per_block; 4563 end = (start_blk + readed) * sit_i->sents_per_block; 4564 4565 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4566 struct f2fs_sit_block *sit_blk; 4567 struct page *page; 4568 4569 se = &sit_i->sentries[start]; 4570 page = get_current_sit_page(sbi, start); 4571 if (IS_ERR(page)) 4572 return PTR_ERR(page); 4573 sit_blk = (struct f2fs_sit_block *)page_address(page); 4574 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4575 f2fs_put_page(page, 1); 4576 4577 err = check_block_count(sbi, start, &sit); 4578 if (err) 4579 return err; 4580 seg_info_from_raw_sit(se, &sit); 4581 if (IS_NODESEG(se->type)) 4582 total_node_blocks += se->valid_blocks; 4583 4584 if (f2fs_block_unit_discard(sbi)) { 4585 /* build discard map only one time */ 4586 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4587 memset(se->discard_map, 0xff, 4588 SIT_VBLOCK_MAP_SIZE); 4589 } else { 4590 memcpy(se->discard_map, 4591 se->cur_valid_map, 4592 SIT_VBLOCK_MAP_SIZE); 4593 sbi->discard_blks += 4594 sbi->blocks_per_seg - 4595 se->valid_blocks; 4596 } 4597 } 4598 4599 if (__is_large_section(sbi)) 4600 get_sec_entry(sbi, start)->valid_blocks += 4601 se->valid_blocks; 4602 } 4603 start_blk += readed; 4604 } while (start_blk < sit_blk_cnt); 4605 4606 down_read(&curseg->journal_rwsem); 4607 for (i = 0; i < sits_in_cursum(journal); i++) { 4608 unsigned int old_valid_blocks; 4609 4610 start = le32_to_cpu(segno_in_journal(journal, i)); 4611 if (start >= MAIN_SEGS(sbi)) { 4612 f2fs_err(sbi, "Wrong journal entry on segno %u", 4613 start); 4614 err = -EFSCORRUPTED; 4615 break; 4616 } 4617 4618 se = &sit_i->sentries[start]; 4619 sit = sit_in_journal(journal, i); 4620 4621 old_valid_blocks = se->valid_blocks; 4622 if (IS_NODESEG(se->type)) 4623 total_node_blocks -= old_valid_blocks; 4624 4625 err = check_block_count(sbi, start, &sit); 4626 if (err) 4627 break; 4628 seg_info_from_raw_sit(se, &sit); 4629 if (IS_NODESEG(se->type)) 4630 total_node_blocks += se->valid_blocks; 4631 4632 if (f2fs_block_unit_discard(sbi)) { 4633 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4634 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4635 } else { 4636 memcpy(se->discard_map, se->cur_valid_map, 4637 SIT_VBLOCK_MAP_SIZE); 4638 sbi->discard_blks += old_valid_blocks; 4639 sbi->discard_blks -= se->valid_blocks; 4640 } 4641 } 4642 4643 if (__is_large_section(sbi)) { 4644 get_sec_entry(sbi, start)->valid_blocks += 4645 se->valid_blocks; 4646 get_sec_entry(sbi, start)->valid_blocks -= 4647 old_valid_blocks; 4648 } 4649 } 4650 up_read(&curseg->journal_rwsem); 4651 4652 if (!err && total_node_blocks != valid_node_count(sbi)) { 4653 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4654 total_node_blocks, valid_node_count(sbi)); 4655 err = -EFSCORRUPTED; 4656 } 4657 4658 return err; 4659 } 4660 4661 static void init_free_segmap(struct f2fs_sb_info *sbi) 4662 { 4663 unsigned int start; 4664 int type; 4665 struct seg_entry *sentry; 4666 4667 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4668 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4669 continue; 4670 sentry = get_seg_entry(sbi, start); 4671 if (!sentry->valid_blocks) 4672 __set_free(sbi, start); 4673 else 4674 SIT_I(sbi)->written_valid_blocks += 4675 sentry->valid_blocks; 4676 } 4677 4678 /* set use the current segments */ 4679 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4680 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4681 4682 __set_test_and_inuse(sbi, curseg_t->segno); 4683 } 4684 } 4685 4686 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4687 { 4688 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4689 struct free_segmap_info *free_i = FREE_I(sbi); 4690 unsigned int segno = 0, offset = 0, secno; 4691 block_t valid_blocks, usable_blks_in_seg; 4692 block_t blks_per_sec = BLKS_PER_SEC(sbi); 4693 4694 while (1) { 4695 /* find dirty segment based on free segmap */ 4696 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4697 if (segno >= MAIN_SEGS(sbi)) 4698 break; 4699 offset = segno + 1; 4700 valid_blocks = get_valid_blocks(sbi, segno, false); 4701 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4702 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4703 continue; 4704 if (valid_blocks > usable_blks_in_seg) { 4705 f2fs_bug_on(sbi, 1); 4706 continue; 4707 } 4708 mutex_lock(&dirty_i->seglist_lock); 4709 __locate_dirty_segment(sbi, segno, DIRTY); 4710 mutex_unlock(&dirty_i->seglist_lock); 4711 } 4712 4713 if (!__is_large_section(sbi)) 4714 return; 4715 4716 mutex_lock(&dirty_i->seglist_lock); 4717 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4718 valid_blocks = get_valid_blocks(sbi, segno, true); 4719 secno = GET_SEC_FROM_SEG(sbi, segno); 4720 4721 if (!valid_blocks || valid_blocks == blks_per_sec) 4722 continue; 4723 if (IS_CURSEC(sbi, secno)) 4724 continue; 4725 set_bit(secno, dirty_i->dirty_secmap); 4726 } 4727 mutex_unlock(&dirty_i->seglist_lock); 4728 } 4729 4730 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4731 { 4732 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4733 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4734 4735 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4736 if (!dirty_i->victim_secmap) 4737 return -ENOMEM; 4738 return 0; 4739 } 4740 4741 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4742 { 4743 struct dirty_seglist_info *dirty_i; 4744 unsigned int bitmap_size, i; 4745 4746 /* allocate memory for dirty segments list information */ 4747 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4748 GFP_KERNEL); 4749 if (!dirty_i) 4750 return -ENOMEM; 4751 4752 SM_I(sbi)->dirty_info = dirty_i; 4753 mutex_init(&dirty_i->seglist_lock); 4754 4755 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4756 4757 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4758 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4759 GFP_KERNEL); 4760 if (!dirty_i->dirty_segmap[i]) 4761 return -ENOMEM; 4762 } 4763 4764 if (__is_large_section(sbi)) { 4765 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4766 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4767 bitmap_size, GFP_KERNEL); 4768 if (!dirty_i->dirty_secmap) 4769 return -ENOMEM; 4770 } 4771 4772 init_dirty_segmap(sbi); 4773 return init_victim_secmap(sbi); 4774 } 4775 4776 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4777 { 4778 int i; 4779 4780 /* 4781 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4782 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4783 */ 4784 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4785 struct curseg_info *curseg = CURSEG_I(sbi, i); 4786 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4787 unsigned int blkofs = curseg->next_blkoff; 4788 4789 if (f2fs_sb_has_readonly(sbi) && 4790 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4791 continue; 4792 4793 sanity_check_seg_type(sbi, curseg->seg_type); 4794 4795 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4796 goto out; 4797 4798 if (curseg->alloc_type == SSR) 4799 continue; 4800 4801 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4802 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4803 continue; 4804 out: 4805 f2fs_err(sbi, 4806 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4807 i, curseg->segno, curseg->alloc_type, 4808 curseg->next_blkoff, blkofs); 4809 return -EFSCORRUPTED; 4810 } 4811 } 4812 return 0; 4813 } 4814 4815 #ifdef CONFIG_BLK_DEV_ZONED 4816 4817 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4818 struct f2fs_dev_info *fdev, 4819 struct blk_zone *zone) 4820 { 4821 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4822 block_t zone_block, wp_block, last_valid_block; 4823 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4824 int i, s, b, ret; 4825 struct seg_entry *se; 4826 4827 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4828 return 0; 4829 4830 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4831 wp_segno = GET_SEGNO(sbi, wp_block); 4832 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4833 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4834 zone_segno = GET_SEGNO(sbi, zone_block); 4835 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4836 4837 if (zone_segno >= MAIN_SEGS(sbi)) 4838 return 0; 4839 4840 /* 4841 * Skip check of zones cursegs point to, since 4842 * fix_curseg_write_pointer() checks them. 4843 */ 4844 for (i = 0; i < NO_CHECK_TYPE; i++) 4845 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4846 CURSEG_I(sbi, i)->segno)) 4847 return 0; 4848 4849 /* 4850 * Get last valid block of the zone. 4851 */ 4852 last_valid_block = zone_block - 1; 4853 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4854 segno = zone_segno + s; 4855 se = get_seg_entry(sbi, segno); 4856 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4857 if (f2fs_test_bit(b, se->cur_valid_map)) { 4858 last_valid_block = START_BLOCK(sbi, segno) + b; 4859 break; 4860 } 4861 if (last_valid_block >= zone_block) 4862 break; 4863 } 4864 4865 /* 4866 * If last valid block is beyond the write pointer, report the 4867 * inconsistency. This inconsistency does not cause write error 4868 * because the zone will not be selected for write operation until 4869 * it get discarded. Just report it. 4870 */ 4871 if (last_valid_block >= wp_block) { 4872 f2fs_notice(sbi, "Valid block beyond write pointer: " 4873 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4874 GET_SEGNO(sbi, last_valid_block), 4875 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4876 wp_segno, wp_blkoff); 4877 return 0; 4878 } 4879 4880 /* 4881 * If there is no valid block in the zone and if write pointer is 4882 * not at zone start, reset the write pointer. 4883 */ 4884 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4885 f2fs_notice(sbi, 4886 "Zone without valid block has non-zero write " 4887 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4888 wp_segno, wp_blkoff); 4889 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4890 zone->len >> log_sectors_per_block); 4891 if (ret) { 4892 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4893 fdev->path, ret); 4894 return ret; 4895 } 4896 } 4897 4898 return 0; 4899 } 4900 4901 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4902 block_t zone_blkaddr) 4903 { 4904 int i; 4905 4906 for (i = 0; i < sbi->s_ndevs; i++) { 4907 if (!bdev_is_zoned(FDEV(i).bdev)) 4908 continue; 4909 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4910 zone_blkaddr <= FDEV(i).end_blk)) 4911 return &FDEV(i); 4912 } 4913 4914 return NULL; 4915 } 4916 4917 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4918 void *data) 4919 { 4920 memcpy(data, zone, sizeof(struct blk_zone)); 4921 return 0; 4922 } 4923 4924 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4925 { 4926 struct curseg_info *cs = CURSEG_I(sbi, type); 4927 struct f2fs_dev_info *zbd; 4928 struct blk_zone zone; 4929 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4930 block_t cs_zone_block, wp_block; 4931 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4932 sector_t zone_sector; 4933 int err; 4934 4935 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4936 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4937 4938 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4939 if (!zbd) 4940 return 0; 4941 4942 /* report zone for the sector the curseg points to */ 4943 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4944 << log_sectors_per_block; 4945 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4946 report_one_zone_cb, &zone); 4947 if (err != 1) { 4948 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4949 zbd->path, err); 4950 return err; 4951 } 4952 4953 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4954 return 0; 4955 4956 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4957 wp_segno = GET_SEGNO(sbi, wp_block); 4958 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4959 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4960 4961 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4962 wp_sector_off == 0) 4963 return 0; 4964 4965 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4966 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4967 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4968 4969 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4970 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4971 4972 f2fs_allocate_new_section(sbi, type, true); 4973 4974 /* check consistency of the zone curseg pointed to */ 4975 if (check_zone_write_pointer(sbi, zbd, &zone)) 4976 return -EIO; 4977 4978 /* check newly assigned zone */ 4979 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4980 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4981 4982 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4983 if (!zbd) 4984 return 0; 4985 4986 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4987 << log_sectors_per_block; 4988 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4989 report_one_zone_cb, &zone); 4990 if (err != 1) { 4991 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4992 zbd->path, err); 4993 return err; 4994 } 4995 4996 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4997 return 0; 4998 4999 if (zone.wp != zone.start) { 5000 f2fs_notice(sbi, 5001 "New zone for curseg[%d] is not yet discarded. " 5002 "Reset the zone: curseg[0x%x,0x%x]", 5003 type, cs->segno, cs->next_blkoff); 5004 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 5005 zone_sector >> log_sectors_per_block, 5006 zone.len >> log_sectors_per_block); 5007 if (err) { 5008 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5009 zbd->path, err); 5010 return err; 5011 } 5012 } 5013 5014 return 0; 5015 } 5016 5017 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5018 { 5019 int i, ret; 5020 5021 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5022 ret = fix_curseg_write_pointer(sbi, i); 5023 if (ret) 5024 return ret; 5025 } 5026 5027 return 0; 5028 } 5029 5030 struct check_zone_write_pointer_args { 5031 struct f2fs_sb_info *sbi; 5032 struct f2fs_dev_info *fdev; 5033 }; 5034 5035 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 5036 void *data) 5037 { 5038 struct check_zone_write_pointer_args *args; 5039 5040 args = (struct check_zone_write_pointer_args *)data; 5041 5042 return check_zone_write_pointer(args->sbi, args->fdev, zone); 5043 } 5044 5045 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5046 { 5047 int i, ret; 5048 struct check_zone_write_pointer_args args; 5049 5050 for (i = 0; i < sbi->s_ndevs; i++) { 5051 if (!bdev_is_zoned(FDEV(i).bdev)) 5052 continue; 5053 5054 args.sbi = sbi; 5055 args.fdev = &FDEV(i); 5056 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5057 check_zone_write_pointer_cb, &args); 5058 if (ret < 0) 5059 return ret; 5060 } 5061 5062 return 0; 5063 } 5064 5065 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, 5066 unsigned int dev_idx) 5067 { 5068 if (!bdev_is_zoned(FDEV(dev_idx).bdev)) 5069 return true; 5070 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); 5071 } 5072 5073 /* Return the zone index in the given device */ 5074 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, 5075 int dev_idx) 5076 { 5077 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5078 5079 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> 5080 sbi->log_blocks_per_blkz; 5081 } 5082 5083 /* 5084 * Return the usable segments in a section based on the zone's 5085 * corresponding zone capacity. Zone is equal to a section. 5086 */ 5087 static inline unsigned int f2fs_usable_zone_segs_in_sec( 5088 struct f2fs_sb_info *sbi, unsigned int segno) 5089 { 5090 unsigned int dev_idx, zone_idx, unusable_segs_in_sec; 5091 5092 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); 5093 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); 5094 5095 /* Conventional zone's capacity is always equal to zone size */ 5096 if (is_conv_zone(sbi, zone_idx, dev_idx)) 5097 return sbi->segs_per_sec; 5098 5099 /* 5100 * If the zone_capacity_blocks array is NULL, then zone capacity 5101 * is equal to the zone size for all zones 5102 */ 5103 if (!FDEV(dev_idx).zone_capacity_blocks) 5104 return sbi->segs_per_sec; 5105 5106 /* Get the segment count beyond zone capacity block */ 5107 unusable_segs_in_sec = (sbi->blocks_per_blkz - 5108 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >> 5109 sbi->log_blocks_per_seg; 5110 return sbi->segs_per_sec - unusable_segs_in_sec; 5111 } 5112 5113 /* 5114 * Return the number of usable blocks in a segment. The number of blocks 5115 * returned is always equal to the number of blocks in a segment for 5116 * segments fully contained within a sequential zone capacity or a 5117 * conventional zone. For segments partially contained in a sequential 5118 * zone capacity, the number of usable blocks up to the zone capacity 5119 * is returned. 0 is returned in all other cases. 5120 */ 5121 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5122 struct f2fs_sb_info *sbi, unsigned int segno) 5123 { 5124 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5125 unsigned int zone_idx, dev_idx, secno; 5126 5127 secno = GET_SEC_FROM_SEG(sbi, segno); 5128 seg_start = START_BLOCK(sbi, segno); 5129 dev_idx = f2fs_target_device_index(sbi, seg_start); 5130 zone_idx = get_zone_idx(sbi, secno, dev_idx); 5131 5132 /* 5133 * Conventional zone's capacity is always equal to zone size, 5134 * so, blocks per segment is unchanged. 5135 */ 5136 if (is_conv_zone(sbi, zone_idx, dev_idx)) 5137 return sbi->blocks_per_seg; 5138 5139 if (!FDEV(dev_idx).zone_capacity_blocks) 5140 return sbi->blocks_per_seg; 5141 5142 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5143 sec_cap_blkaddr = sec_start_blkaddr + 5144 FDEV(dev_idx).zone_capacity_blocks[zone_idx]; 5145 5146 /* 5147 * If segment starts before zone capacity and spans beyond 5148 * zone capacity, then usable blocks are from seg start to 5149 * zone capacity. If the segment starts after the zone capacity, 5150 * then there are no usable blocks. 5151 */ 5152 if (seg_start >= sec_cap_blkaddr) 5153 return 0; 5154 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 5155 return sec_cap_blkaddr - seg_start; 5156 5157 return sbi->blocks_per_seg; 5158 } 5159 #else 5160 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5161 { 5162 return 0; 5163 } 5164 5165 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5166 { 5167 return 0; 5168 } 5169 5170 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5171 unsigned int segno) 5172 { 5173 return 0; 5174 } 5175 5176 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, 5177 unsigned int segno) 5178 { 5179 return 0; 5180 } 5181 #endif 5182 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5183 unsigned int segno) 5184 { 5185 if (f2fs_sb_has_blkzoned(sbi)) 5186 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5187 5188 return sbi->blocks_per_seg; 5189 } 5190 5191 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5192 unsigned int segno) 5193 { 5194 if (f2fs_sb_has_blkzoned(sbi)) 5195 return f2fs_usable_zone_segs_in_sec(sbi, segno); 5196 5197 return sbi->segs_per_sec; 5198 } 5199 5200 /* 5201 * Update min, max modified time for cost-benefit GC algorithm 5202 */ 5203 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5204 { 5205 struct sit_info *sit_i = SIT_I(sbi); 5206 unsigned int segno; 5207 5208 down_write(&sit_i->sentry_lock); 5209 5210 sit_i->min_mtime = ULLONG_MAX; 5211 5212 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5213 unsigned int i; 5214 unsigned long long mtime = 0; 5215 5216 for (i = 0; i < sbi->segs_per_sec; i++) 5217 mtime += get_seg_entry(sbi, segno + i)->mtime; 5218 5219 mtime = div_u64(mtime, sbi->segs_per_sec); 5220 5221 if (sit_i->min_mtime > mtime) 5222 sit_i->min_mtime = mtime; 5223 } 5224 sit_i->max_mtime = get_mtime(sbi, false); 5225 sit_i->dirty_max_mtime = 0; 5226 up_write(&sit_i->sentry_lock); 5227 } 5228 5229 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5230 { 5231 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5232 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5233 struct f2fs_sm_info *sm_info; 5234 int err; 5235 5236 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5237 if (!sm_info) 5238 return -ENOMEM; 5239 5240 /* init sm info */ 5241 sbi->sm_info = sm_info; 5242 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5243 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5244 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5245 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5246 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5247 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5248 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5249 sm_info->rec_prefree_segments = sm_info->main_segments * 5250 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5251 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5252 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5253 5254 if (!f2fs_lfs_mode(sbi)) 5255 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 5256 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5257 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5258 sm_info->min_seq_blocks = sbi->blocks_per_seg; 5259 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5260 sm_info->min_ssr_sections = reserved_sections(sbi); 5261 5262 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5263 5264 init_rwsem(&sm_info->curseg_lock); 5265 5266 if (!f2fs_readonly(sbi->sb)) { 5267 err = f2fs_create_flush_cmd_control(sbi); 5268 if (err) 5269 return err; 5270 } 5271 5272 err = create_discard_cmd_control(sbi); 5273 if (err) 5274 return err; 5275 5276 err = build_sit_info(sbi); 5277 if (err) 5278 return err; 5279 err = build_free_segmap(sbi); 5280 if (err) 5281 return err; 5282 err = build_curseg(sbi); 5283 if (err) 5284 return err; 5285 5286 /* reinit free segmap based on SIT */ 5287 err = build_sit_entries(sbi); 5288 if (err) 5289 return err; 5290 5291 init_free_segmap(sbi); 5292 err = build_dirty_segmap(sbi); 5293 if (err) 5294 return err; 5295 5296 err = sanity_check_curseg(sbi); 5297 if (err) 5298 return err; 5299 5300 init_min_max_mtime(sbi); 5301 return 0; 5302 } 5303 5304 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5305 enum dirty_type dirty_type) 5306 { 5307 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5308 5309 mutex_lock(&dirty_i->seglist_lock); 5310 kvfree(dirty_i->dirty_segmap[dirty_type]); 5311 dirty_i->nr_dirty[dirty_type] = 0; 5312 mutex_unlock(&dirty_i->seglist_lock); 5313 } 5314 5315 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5316 { 5317 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5318 5319 kvfree(dirty_i->victim_secmap); 5320 } 5321 5322 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5323 { 5324 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5325 int i; 5326 5327 if (!dirty_i) 5328 return; 5329 5330 /* discard pre-free/dirty segments list */ 5331 for (i = 0; i < NR_DIRTY_TYPE; i++) 5332 discard_dirty_segmap(sbi, i); 5333 5334 if (__is_large_section(sbi)) { 5335 mutex_lock(&dirty_i->seglist_lock); 5336 kvfree(dirty_i->dirty_secmap); 5337 mutex_unlock(&dirty_i->seglist_lock); 5338 } 5339 5340 destroy_victim_secmap(sbi); 5341 SM_I(sbi)->dirty_info = NULL; 5342 kfree(dirty_i); 5343 } 5344 5345 static void destroy_curseg(struct f2fs_sb_info *sbi) 5346 { 5347 struct curseg_info *array = SM_I(sbi)->curseg_array; 5348 int i; 5349 5350 if (!array) 5351 return; 5352 SM_I(sbi)->curseg_array = NULL; 5353 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5354 kfree(array[i].sum_blk); 5355 kfree(array[i].journal); 5356 } 5357 kfree(array); 5358 } 5359 5360 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5361 { 5362 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5363 5364 if (!free_i) 5365 return; 5366 SM_I(sbi)->free_info = NULL; 5367 kvfree(free_i->free_segmap); 5368 kvfree(free_i->free_secmap); 5369 kfree(free_i); 5370 } 5371 5372 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5373 { 5374 struct sit_info *sit_i = SIT_I(sbi); 5375 5376 if (!sit_i) 5377 return; 5378 5379 if (sit_i->sentries) 5380 kvfree(sit_i->bitmap); 5381 kfree(sit_i->tmp_map); 5382 5383 kvfree(sit_i->sentries); 5384 kvfree(sit_i->sec_entries); 5385 kvfree(sit_i->dirty_sentries_bitmap); 5386 5387 SM_I(sbi)->sit_info = NULL; 5388 kvfree(sit_i->sit_bitmap); 5389 #ifdef CONFIG_F2FS_CHECK_FS 5390 kvfree(sit_i->sit_bitmap_mir); 5391 kvfree(sit_i->invalid_segmap); 5392 #endif 5393 kfree(sit_i); 5394 } 5395 5396 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5397 { 5398 struct f2fs_sm_info *sm_info = SM_I(sbi); 5399 5400 if (!sm_info) 5401 return; 5402 f2fs_destroy_flush_cmd_control(sbi, true); 5403 destroy_discard_cmd_control(sbi); 5404 destroy_dirty_segmap(sbi); 5405 destroy_curseg(sbi); 5406 destroy_free_segmap(sbi); 5407 destroy_sit_info(sbi); 5408 sbi->sm_info = NULL; 5409 kfree(sm_info); 5410 } 5411 5412 int __init f2fs_create_segment_manager_caches(void) 5413 { 5414 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5415 sizeof(struct discard_entry)); 5416 if (!discard_entry_slab) 5417 goto fail; 5418 5419 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5420 sizeof(struct discard_cmd)); 5421 if (!discard_cmd_slab) 5422 goto destroy_discard_entry; 5423 5424 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5425 sizeof(struct sit_entry_set)); 5426 if (!sit_entry_set_slab) 5427 goto destroy_discard_cmd; 5428 5429 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry", 5430 sizeof(struct inmem_pages)); 5431 if (!inmem_entry_slab) 5432 goto destroy_sit_entry_set; 5433 return 0; 5434 5435 destroy_sit_entry_set: 5436 kmem_cache_destroy(sit_entry_set_slab); 5437 destroy_discard_cmd: 5438 kmem_cache_destroy(discard_cmd_slab); 5439 destroy_discard_entry: 5440 kmem_cache_destroy(discard_entry_slab); 5441 fail: 5442 return -ENOMEM; 5443 } 5444 5445 void f2fs_destroy_segment_manager_caches(void) 5446 { 5447 kmem_cache_destroy(sit_entry_set_slab); 5448 kmem_cache_destroy(discard_cmd_slab); 5449 kmem_cache_destroy(discard_entry_slab); 5450 kmem_cache_destroy(inmem_entry_slab); 5451 } 5452