1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include <trace/events/f2fs.h> 24 25 #define __reverse_ffz(x) __reverse_ffs(~(x)) 26 27 static struct kmem_cache *discard_entry_slab; 28 static struct kmem_cache *discard_cmd_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 static unsigned long __reverse_ulong(unsigned char *str) 33 { 34 unsigned long tmp = 0; 35 int shift = 24, idx = 0; 36 37 #if BITS_PER_LONG == 64 38 shift = 56; 39 #endif 40 while (shift >= 0) { 41 tmp |= (unsigned long)str[idx++] << shift; 42 shift -= BITS_PER_BYTE; 43 } 44 return tmp; 45 } 46 47 /* 48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 49 * MSB and LSB are reversed in a byte by f2fs_set_bit. 50 */ 51 static inline unsigned long __reverse_ffs(unsigned long word) 52 { 53 int num = 0; 54 55 #if BITS_PER_LONG == 64 56 if ((word & 0xffffffff00000000UL) == 0) 57 num += 32; 58 else 59 word >>= 32; 60 #endif 61 if ((word & 0xffff0000) == 0) 62 num += 16; 63 else 64 word >>= 16; 65 66 if ((word & 0xff00) == 0) 67 num += 8; 68 else 69 word >>= 8; 70 71 if ((word & 0xf0) == 0) 72 num += 4; 73 else 74 word >>= 4; 75 76 if ((word & 0xc) == 0) 77 num += 2; 78 else 79 word >>= 2; 80 81 if ((word & 0x2) == 0) 82 num += 1; 83 return num; 84 } 85 86 /* 87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 88 * f2fs_set_bit makes MSB and LSB reversed in a byte. 89 * @size must be integral times of unsigned long. 90 * Example: 91 * MSB <--> LSB 92 * f2fs_set_bit(0, bitmap) => 1000 0000 93 * f2fs_set_bit(7, bitmap) => 0000 0001 94 */ 95 static unsigned long __find_rev_next_bit(const unsigned long *addr, 96 unsigned long size, unsigned long offset) 97 { 98 const unsigned long *p = addr + BIT_WORD(offset); 99 unsigned long result = size; 100 unsigned long tmp; 101 102 if (offset >= size) 103 return size; 104 105 size -= (offset & ~(BITS_PER_LONG - 1)); 106 offset %= BITS_PER_LONG; 107 108 while (1) { 109 if (*p == 0) 110 goto pass; 111 112 tmp = __reverse_ulong((unsigned char *)p); 113 114 tmp &= ~0UL >> offset; 115 if (size < BITS_PER_LONG) 116 tmp &= (~0UL << (BITS_PER_LONG - size)); 117 if (tmp) 118 goto found; 119 pass: 120 if (size <= BITS_PER_LONG) 121 break; 122 size -= BITS_PER_LONG; 123 offset = 0; 124 p++; 125 } 126 return result; 127 found: 128 return result - size + __reverse_ffs(tmp); 129 } 130 131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 132 unsigned long size, unsigned long offset) 133 { 134 const unsigned long *p = addr + BIT_WORD(offset); 135 unsigned long result = size; 136 unsigned long tmp; 137 138 if (offset >= size) 139 return size; 140 141 size -= (offset & ~(BITS_PER_LONG - 1)); 142 offset %= BITS_PER_LONG; 143 144 while (1) { 145 if (*p == ~0UL) 146 goto pass; 147 148 tmp = __reverse_ulong((unsigned char *)p); 149 150 if (offset) 151 tmp |= ~0UL << (BITS_PER_LONG - offset); 152 if (size < BITS_PER_LONG) 153 tmp |= ~0UL >> size; 154 if (tmp != ~0UL) 155 goto found; 156 pass: 157 if (size <= BITS_PER_LONG) 158 break; 159 size -= BITS_PER_LONG; 160 offset = 0; 161 p++; 162 } 163 return result; 164 found: 165 return result - size + __reverse_ffz(tmp); 166 } 167 168 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 169 { 170 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 171 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 172 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 173 174 if (f2fs_lfs_mode(sbi)) 175 return false; 176 if (sbi->gc_mode == GC_URGENT_HIGH) 177 return true; 178 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 179 return true; 180 181 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 182 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 183 } 184 185 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 186 { 187 struct inmem_pages *new; 188 189 f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE); 190 191 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 192 193 /* add atomic page indices to the list */ 194 new->page = page; 195 INIT_LIST_HEAD(&new->list); 196 197 /* increase reference count with clean state */ 198 get_page(page); 199 mutex_lock(&F2FS_I(inode)->inmem_lock); 200 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 201 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 202 mutex_unlock(&F2FS_I(inode)->inmem_lock); 203 204 trace_f2fs_register_inmem_page(page, INMEM); 205 } 206 207 static int __revoke_inmem_pages(struct inode *inode, 208 struct list_head *head, bool drop, bool recover, 209 bool trylock) 210 { 211 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 212 struct inmem_pages *cur, *tmp; 213 int err = 0; 214 215 list_for_each_entry_safe(cur, tmp, head, list) { 216 struct page *page = cur->page; 217 218 if (drop) 219 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 220 221 if (trylock) { 222 /* 223 * to avoid deadlock in between page lock and 224 * inmem_lock. 225 */ 226 if (!trylock_page(page)) 227 continue; 228 } else { 229 lock_page(page); 230 } 231 232 f2fs_wait_on_page_writeback(page, DATA, true, true); 233 234 if (recover) { 235 struct dnode_of_data dn; 236 struct node_info ni; 237 238 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 239 retry: 240 set_new_dnode(&dn, inode, NULL, NULL, 0); 241 err = f2fs_get_dnode_of_data(&dn, page->index, 242 LOOKUP_NODE); 243 if (err) { 244 if (err == -ENOMEM) { 245 congestion_wait(BLK_RW_ASYNC, 246 DEFAULT_IO_TIMEOUT); 247 cond_resched(); 248 goto retry; 249 } 250 err = -EAGAIN; 251 goto next; 252 } 253 254 err = f2fs_get_node_info(sbi, dn.nid, &ni); 255 if (err) { 256 f2fs_put_dnode(&dn); 257 return err; 258 } 259 260 if (cur->old_addr == NEW_ADDR) { 261 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 262 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 263 } else 264 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 265 cur->old_addr, ni.version, true, true); 266 f2fs_put_dnode(&dn); 267 } 268 next: 269 /* we don't need to invalidate this in the sccessful status */ 270 if (drop || recover) { 271 ClearPageUptodate(page); 272 clear_cold_data(page); 273 } 274 f2fs_clear_page_private(page); 275 f2fs_put_page(page, 1); 276 277 list_del(&cur->list); 278 kmem_cache_free(inmem_entry_slab, cur); 279 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 280 } 281 return err; 282 } 283 284 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 285 { 286 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 287 struct inode *inode; 288 struct f2fs_inode_info *fi; 289 unsigned int count = sbi->atomic_files; 290 unsigned int looped = 0; 291 next: 292 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 293 if (list_empty(head)) { 294 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 295 return; 296 } 297 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 298 inode = igrab(&fi->vfs_inode); 299 if (inode) 300 list_move_tail(&fi->inmem_ilist, head); 301 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 302 303 if (inode) { 304 if (gc_failure) { 305 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) 306 goto skip; 307 } 308 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 309 f2fs_drop_inmem_pages(inode); 310 skip: 311 iput(inode); 312 } 313 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 314 cond_resched(); 315 if (gc_failure) { 316 if (++looped >= count) 317 return; 318 } 319 goto next; 320 } 321 322 void f2fs_drop_inmem_pages(struct inode *inode) 323 { 324 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 325 struct f2fs_inode_info *fi = F2FS_I(inode); 326 327 while (!list_empty(&fi->inmem_pages)) { 328 mutex_lock(&fi->inmem_lock); 329 __revoke_inmem_pages(inode, &fi->inmem_pages, 330 true, false, true); 331 mutex_unlock(&fi->inmem_lock); 332 } 333 334 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 335 336 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 337 if (!list_empty(&fi->inmem_ilist)) 338 list_del_init(&fi->inmem_ilist); 339 if (f2fs_is_atomic_file(inode)) { 340 clear_inode_flag(inode, FI_ATOMIC_FILE); 341 sbi->atomic_files--; 342 } 343 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 344 } 345 346 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 347 { 348 struct f2fs_inode_info *fi = F2FS_I(inode); 349 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 350 struct list_head *head = &fi->inmem_pages; 351 struct inmem_pages *cur = NULL; 352 353 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 354 355 mutex_lock(&fi->inmem_lock); 356 list_for_each_entry(cur, head, list) { 357 if (cur->page == page) 358 break; 359 } 360 361 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 362 list_del(&cur->list); 363 mutex_unlock(&fi->inmem_lock); 364 365 dec_page_count(sbi, F2FS_INMEM_PAGES); 366 kmem_cache_free(inmem_entry_slab, cur); 367 368 ClearPageUptodate(page); 369 f2fs_clear_page_private(page); 370 f2fs_put_page(page, 0); 371 372 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 373 } 374 375 static int __f2fs_commit_inmem_pages(struct inode *inode) 376 { 377 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 378 struct f2fs_inode_info *fi = F2FS_I(inode); 379 struct inmem_pages *cur, *tmp; 380 struct f2fs_io_info fio = { 381 .sbi = sbi, 382 .ino = inode->i_ino, 383 .type = DATA, 384 .op = REQ_OP_WRITE, 385 .op_flags = REQ_SYNC | REQ_PRIO, 386 .io_type = FS_DATA_IO, 387 }; 388 struct list_head revoke_list; 389 bool submit_bio = false; 390 int err = 0; 391 392 INIT_LIST_HEAD(&revoke_list); 393 394 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 395 struct page *page = cur->page; 396 397 lock_page(page); 398 if (page->mapping == inode->i_mapping) { 399 trace_f2fs_commit_inmem_page(page, INMEM); 400 401 f2fs_wait_on_page_writeback(page, DATA, true, true); 402 403 set_page_dirty(page); 404 if (clear_page_dirty_for_io(page)) { 405 inode_dec_dirty_pages(inode); 406 f2fs_remove_dirty_inode(inode); 407 } 408 retry: 409 fio.page = page; 410 fio.old_blkaddr = NULL_ADDR; 411 fio.encrypted_page = NULL; 412 fio.need_lock = LOCK_DONE; 413 err = f2fs_do_write_data_page(&fio); 414 if (err) { 415 if (err == -ENOMEM) { 416 congestion_wait(BLK_RW_ASYNC, 417 DEFAULT_IO_TIMEOUT); 418 cond_resched(); 419 goto retry; 420 } 421 unlock_page(page); 422 break; 423 } 424 /* record old blkaddr for revoking */ 425 cur->old_addr = fio.old_blkaddr; 426 submit_bio = true; 427 } 428 unlock_page(page); 429 list_move_tail(&cur->list, &revoke_list); 430 } 431 432 if (submit_bio) 433 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 434 435 if (err) { 436 /* 437 * try to revoke all committed pages, but still we could fail 438 * due to no memory or other reason, if that happened, EAGAIN 439 * will be returned, which means in such case, transaction is 440 * already not integrity, caller should use journal to do the 441 * recovery or rewrite & commit last transaction. For other 442 * error number, revoking was done by filesystem itself. 443 */ 444 err = __revoke_inmem_pages(inode, &revoke_list, 445 false, true, false); 446 447 /* drop all uncommitted pages */ 448 __revoke_inmem_pages(inode, &fi->inmem_pages, 449 true, false, false); 450 } else { 451 __revoke_inmem_pages(inode, &revoke_list, 452 false, false, false); 453 } 454 455 return err; 456 } 457 458 int f2fs_commit_inmem_pages(struct inode *inode) 459 { 460 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 461 struct f2fs_inode_info *fi = F2FS_I(inode); 462 int err; 463 464 f2fs_balance_fs(sbi, true); 465 466 down_write(&fi->i_gc_rwsem[WRITE]); 467 468 f2fs_lock_op(sbi); 469 set_inode_flag(inode, FI_ATOMIC_COMMIT); 470 471 mutex_lock(&fi->inmem_lock); 472 err = __f2fs_commit_inmem_pages(inode); 473 mutex_unlock(&fi->inmem_lock); 474 475 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 476 477 f2fs_unlock_op(sbi); 478 up_write(&fi->i_gc_rwsem[WRITE]); 479 480 return err; 481 } 482 483 /* 484 * This function balances dirty node and dentry pages. 485 * In addition, it controls garbage collection. 486 */ 487 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 488 { 489 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 490 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 491 f2fs_stop_checkpoint(sbi, false); 492 } 493 494 /* balance_fs_bg is able to be pending */ 495 if (need && excess_cached_nats(sbi)) 496 f2fs_balance_fs_bg(sbi, false); 497 498 if (!f2fs_is_checkpoint_ready(sbi)) 499 return; 500 501 /* 502 * We should do GC or end up with checkpoint, if there are so many dirty 503 * dir/node pages without enough free segments. 504 */ 505 if (has_not_enough_free_secs(sbi, 0, 0)) { 506 down_write(&sbi->gc_lock); 507 f2fs_gc(sbi, false, false, NULL_SEGNO); 508 } 509 } 510 511 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 512 { 513 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 514 return; 515 516 /* try to shrink extent cache when there is no enough memory */ 517 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 518 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 519 520 /* check the # of cached NAT entries */ 521 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 522 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 523 524 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 525 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 526 else 527 f2fs_build_free_nids(sbi, false, false); 528 529 if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) || 530 excess_prefree_segs(sbi)) 531 goto do_sync; 532 533 /* there is background inflight IO or foreground operation recently */ 534 if (is_inflight_io(sbi, REQ_TIME) || 535 (!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem))) 536 return; 537 538 /* exceed periodical checkpoint timeout threshold */ 539 if (f2fs_time_over(sbi, CP_TIME)) 540 goto do_sync; 541 542 /* checkpoint is the only way to shrink partial cached entries */ 543 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) || 544 f2fs_available_free_memory(sbi, INO_ENTRIES)) 545 return; 546 547 do_sync: 548 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 549 struct blk_plug plug; 550 551 mutex_lock(&sbi->flush_lock); 552 553 blk_start_plug(&plug); 554 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 555 blk_finish_plug(&plug); 556 557 mutex_unlock(&sbi->flush_lock); 558 } 559 f2fs_sync_fs(sbi->sb, true); 560 stat_inc_bg_cp_count(sbi->stat_info); 561 } 562 563 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 564 struct block_device *bdev) 565 { 566 int ret = blkdev_issue_flush(bdev); 567 568 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 569 test_opt(sbi, FLUSH_MERGE), ret); 570 return ret; 571 } 572 573 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 574 { 575 int ret = 0; 576 int i; 577 578 if (!f2fs_is_multi_device(sbi)) 579 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 580 581 for (i = 0; i < sbi->s_ndevs; i++) { 582 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 583 continue; 584 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 585 if (ret) 586 break; 587 } 588 return ret; 589 } 590 591 static int issue_flush_thread(void *data) 592 { 593 struct f2fs_sb_info *sbi = data; 594 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 595 wait_queue_head_t *q = &fcc->flush_wait_queue; 596 repeat: 597 if (kthread_should_stop()) 598 return 0; 599 600 if (!llist_empty(&fcc->issue_list)) { 601 struct flush_cmd *cmd, *next; 602 int ret; 603 604 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 605 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 606 607 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 608 609 ret = submit_flush_wait(sbi, cmd->ino); 610 atomic_inc(&fcc->issued_flush); 611 612 llist_for_each_entry_safe(cmd, next, 613 fcc->dispatch_list, llnode) { 614 cmd->ret = ret; 615 complete(&cmd->wait); 616 } 617 fcc->dispatch_list = NULL; 618 } 619 620 wait_event_interruptible(*q, 621 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 622 goto repeat; 623 } 624 625 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 626 { 627 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 628 struct flush_cmd cmd; 629 int ret; 630 631 if (test_opt(sbi, NOBARRIER)) 632 return 0; 633 634 if (!test_opt(sbi, FLUSH_MERGE)) { 635 atomic_inc(&fcc->queued_flush); 636 ret = submit_flush_wait(sbi, ino); 637 atomic_dec(&fcc->queued_flush); 638 atomic_inc(&fcc->issued_flush); 639 return ret; 640 } 641 642 if (atomic_inc_return(&fcc->queued_flush) == 1 || 643 f2fs_is_multi_device(sbi)) { 644 ret = submit_flush_wait(sbi, ino); 645 atomic_dec(&fcc->queued_flush); 646 647 atomic_inc(&fcc->issued_flush); 648 return ret; 649 } 650 651 cmd.ino = ino; 652 init_completion(&cmd.wait); 653 654 llist_add(&cmd.llnode, &fcc->issue_list); 655 656 /* update issue_list before we wake up issue_flush thread */ 657 smp_mb(); 658 659 if (waitqueue_active(&fcc->flush_wait_queue)) 660 wake_up(&fcc->flush_wait_queue); 661 662 if (fcc->f2fs_issue_flush) { 663 wait_for_completion(&cmd.wait); 664 atomic_dec(&fcc->queued_flush); 665 } else { 666 struct llist_node *list; 667 668 list = llist_del_all(&fcc->issue_list); 669 if (!list) { 670 wait_for_completion(&cmd.wait); 671 atomic_dec(&fcc->queued_flush); 672 } else { 673 struct flush_cmd *tmp, *next; 674 675 ret = submit_flush_wait(sbi, ino); 676 677 llist_for_each_entry_safe(tmp, next, list, llnode) { 678 if (tmp == &cmd) { 679 cmd.ret = ret; 680 atomic_dec(&fcc->queued_flush); 681 continue; 682 } 683 tmp->ret = ret; 684 complete(&tmp->wait); 685 } 686 } 687 } 688 689 return cmd.ret; 690 } 691 692 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 693 { 694 dev_t dev = sbi->sb->s_bdev->bd_dev; 695 struct flush_cmd_control *fcc; 696 int err = 0; 697 698 if (SM_I(sbi)->fcc_info) { 699 fcc = SM_I(sbi)->fcc_info; 700 if (fcc->f2fs_issue_flush) 701 return err; 702 goto init_thread; 703 } 704 705 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 706 if (!fcc) 707 return -ENOMEM; 708 atomic_set(&fcc->issued_flush, 0); 709 atomic_set(&fcc->queued_flush, 0); 710 init_waitqueue_head(&fcc->flush_wait_queue); 711 init_llist_head(&fcc->issue_list); 712 SM_I(sbi)->fcc_info = fcc; 713 if (!test_opt(sbi, FLUSH_MERGE)) 714 return err; 715 716 init_thread: 717 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 718 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 719 if (IS_ERR(fcc->f2fs_issue_flush)) { 720 err = PTR_ERR(fcc->f2fs_issue_flush); 721 kfree(fcc); 722 SM_I(sbi)->fcc_info = NULL; 723 return err; 724 } 725 726 return err; 727 } 728 729 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 730 { 731 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 732 733 if (fcc && fcc->f2fs_issue_flush) { 734 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 735 736 fcc->f2fs_issue_flush = NULL; 737 kthread_stop(flush_thread); 738 } 739 if (free) { 740 kfree(fcc); 741 SM_I(sbi)->fcc_info = NULL; 742 } 743 } 744 745 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 746 { 747 int ret = 0, i; 748 749 if (!f2fs_is_multi_device(sbi)) 750 return 0; 751 752 if (test_opt(sbi, NOBARRIER)) 753 return 0; 754 755 for (i = 1; i < sbi->s_ndevs; i++) { 756 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 757 continue; 758 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 759 if (ret) 760 break; 761 762 spin_lock(&sbi->dev_lock); 763 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 764 spin_unlock(&sbi->dev_lock); 765 } 766 767 return ret; 768 } 769 770 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 771 enum dirty_type dirty_type) 772 { 773 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 774 775 /* need not be added */ 776 if (IS_CURSEG(sbi, segno)) 777 return; 778 779 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 780 dirty_i->nr_dirty[dirty_type]++; 781 782 if (dirty_type == DIRTY) { 783 struct seg_entry *sentry = get_seg_entry(sbi, segno); 784 enum dirty_type t = sentry->type; 785 786 if (unlikely(t >= DIRTY)) { 787 f2fs_bug_on(sbi, 1); 788 return; 789 } 790 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 791 dirty_i->nr_dirty[t]++; 792 793 if (__is_large_section(sbi)) { 794 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 795 block_t valid_blocks = 796 get_valid_blocks(sbi, segno, true); 797 798 f2fs_bug_on(sbi, unlikely(!valid_blocks || 799 valid_blocks == BLKS_PER_SEC(sbi))); 800 801 if (!IS_CURSEC(sbi, secno)) 802 set_bit(secno, dirty_i->dirty_secmap); 803 } 804 } 805 } 806 807 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 808 enum dirty_type dirty_type) 809 { 810 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 811 block_t valid_blocks; 812 813 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 814 dirty_i->nr_dirty[dirty_type]--; 815 816 if (dirty_type == DIRTY) { 817 struct seg_entry *sentry = get_seg_entry(sbi, segno); 818 enum dirty_type t = sentry->type; 819 820 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 821 dirty_i->nr_dirty[t]--; 822 823 valid_blocks = get_valid_blocks(sbi, segno, true); 824 if (valid_blocks == 0) { 825 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 826 dirty_i->victim_secmap); 827 #ifdef CONFIG_F2FS_CHECK_FS 828 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 829 #endif 830 } 831 if (__is_large_section(sbi)) { 832 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 833 834 if (!valid_blocks || 835 valid_blocks == BLKS_PER_SEC(sbi)) { 836 clear_bit(secno, dirty_i->dirty_secmap); 837 return; 838 } 839 840 if (!IS_CURSEC(sbi, secno)) 841 set_bit(secno, dirty_i->dirty_secmap); 842 } 843 } 844 } 845 846 /* 847 * Should not occur error such as -ENOMEM. 848 * Adding dirty entry into seglist is not critical operation. 849 * If a given segment is one of current working segments, it won't be added. 850 */ 851 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 852 { 853 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 854 unsigned short valid_blocks, ckpt_valid_blocks; 855 unsigned int usable_blocks; 856 857 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 858 return; 859 860 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 861 mutex_lock(&dirty_i->seglist_lock); 862 863 valid_blocks = get_valid_blocks(sbi, segno, false); 864 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 865 866 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 867 ckpt_valid_blocks == usable_blocks)) { 868 __locate_dirty_segment(sbi, segno, PRE); 869 __remove_dirty_segment(sbi, segno, DIRTY); 870 } else if (valid_blocks < usable_blocks) { 871 __locate_dirty_segment(sbi, segno, DIRTY); 872 } else { 873 /* Recovery routine with SSR needs this */ 874 __remove_dirty_segment(sbi, segno, DIRTY); 875 } 876 877 mutex_unlock(&dirty_i->seglist_lock); 878 } 879 880 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 881 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 882 { 883 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 884 unsigned int segno; 885 886 mutex_lock(&dirty_i->seglist_lock); 887 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 888 if (get_valid_blocks(sbi, segno, false)) 889 continue; 890 if (IS_CURSEG(sbi, segno)) 891 continue; 892 __locate_dirty_segment(sbi, segno, PRE); 893 __remove_dirty_segment(sbi, segno, DIRTY); 894 } 895 mutex_unlock(&dirty_i->seglist_lock); 896 } 897 898 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 899 { 900 int ovp_hole_segs = 901 (overprovision_segments(sbi) - reserved_segments(sbi)); 902 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 903 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 904 block_t holes[2] = {0, 0}; /* DATA and NODE */ 905 block_t unusable; 906 struct seg_entry *se; 907 unsigned int segno; 908 909 mutex_lock(&dirty_i->seglist_lock); 910 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 911 se = get_seg_entry(sbi, segno); 912 if (IS_NODESEG(se->type)) 913 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 914 se->valid_blocks; 915 else 916 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 917 se->valid_blocks; 918 } 919 mutex_unlock(&dirty_i->seglist_lock); 920 921 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 922 if (unusable > ovp_holes) 923 return unusable - ovp_holes; 924 return 0; 925 } 926 927 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 928 { 929 int ovp_hole_segs = 930 (overprovision_segments(sbi) - reserved_segments(sbi)); 931 if (unusable > F2FS_OPTION(sbi).unusable_cap) 932 return -EAGAIN; 933 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 934 dirty_segments(sbi) > ovp_hole_segs) 935 return -EAGAIN; 936 return 0; 937 } 938 939 /* This is only used by SBI_CP_DISABLED */ 940 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 941 { 942 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 943 unsigned int segno = 0; 944 945 mutex_lock(&dirty_i->seglist_lock); 946 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 947 if (get_valid_blocks(sbi, segno, false)) 948 continue; 949 if (get_ckpt_valid_blocks(sbi, segno)) 950 continue; 951 mutex_unlock(&dirty_i->seglist_lock); 952 return segno; 953 } 954 mutex_unlock(&dirty_i->seglist_lock); 955 return NULL_SEGNO; 956 } 957 958 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 959 struct block_device *bdev, block_t lstart, 960 block_t start, block_t len) 961 { 962 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 963 struct list_head *pend_list; 964 struct discard_cmd *dc; 965 966 f2fs_bug_on(sbi, !len); 967 968 pend_list = &dcc->pend_list[plist_idx(len)]; 969 970 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 971 INIT_LIST_HEAD(&dc->list); 972 dc->bdev = bdev; 973 dc->lstart = lstart; 974 dc->start = start; 975 dc->len = len; 976 dc->ref = 0; 977 dc->state = D_PREP; 978 dc->queued = 0; 979 dc->error = 0; 980 init_completion(&dc->wait); 981 list_add_tail(&dc->list, pend_list); 982 spin_lock_init(&dc->lock); 983 dc->bio_ref = 0; 984 atomic_inc(&dcc->discard_cmd_cnt); 985 dcc->undiscard_blks += len; 986 987 return dc; 988 } 989 990 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 991 struct block_device *bdev, block_t lstart, 992 block_t start, block_t len, 993 struct rb_node *parent, struct rb_node **p, 994 bool leftmost) 995 { 996 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 997 struct discard_cmd *dc; 998 999 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1000 1001 rb_link_node(&dc->rb_node, parent, p); 1002 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1003 1004 return dc; 1005 } 1006 1007 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1008 struct discard_cmd *dc) 1009 { 1010 if (dc->state == D_DONE) 1011 atomic_sub(dc->queued, &dcc->queued_discard); 1012 1013 list_del(&dc->list); 1014 rb_erase_cached(&dc->rb_node, &dcc->root); 1015 dcc->undiscard_blks -= dc->len; 1016 1017 kmem_cache_free(discard_cmd_slab, dc); 1018 1019 atomic_dec(&dcc->discard_cmd_cnt); 1020 } 1021 1022 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1023 struct discard_cmd *dc) 1024 { 1025 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1026 unsigned long flags; 1027 1028 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1029 1030 spin_lock_irqsave(&dc->lock, flags); 1031 if (dc->bio_ref) { 1032 spin_unlock_irqrestore(&dc->lock, flags); 1033 return; 1034 } 1035 spin_unlock_irqrestore(&dc->lock, flags); 1036 1037 f2fs_bug_on(sbi, dc->ref); 1038 1039 if (dc->error == -EOPNOTSUPP) 1040 dc->error = 0; 1041 1042 if (dc->error) 1043 printk_ratelimited( 1044 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1045 KERN_INFO, sbi->sb->s_id, 1046 dc->lstart, dc->start, dc->len, dc->error); 1047 __detach_discard_cmd(dcc, dc); 1048 } 1049 1050 static void f2fs_submit_discard_endio(struct bio *bio) 1051 { 1052 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1053 unsigned long flags; 1054 1055 spin_lock_irqsave(&dc->lock, flags); 1056 if (!dc->error) 1057 dc->error = blk_status_to_errno(bio->bi_status); 1058 dc->bio_ref--; 1059 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1060 dc->state = D_DONE; 1061 complete_all(&dc->wait); 1062 } 1063 spin_unlock_irqrestore(&dc->lock, flags); 1064 bio_put(bio); 1065 } 1066 1067 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1068 block_t start, block_t end) 1069 { 1070 #ifdef CONFIG_F2FS_CHECK_FS 1071 struct seg_entry *sentry; 1072 unsigned int segno; 1073 block_t blk = start; 1074 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1075 unsigned long *map; 1076 1077 while (blk < end) { 1078 segno = GET_SEGNO(sbi, blk); 1079 sentry = get_seg_entry(sbi, segno); 1080 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1081 1082 if (end < START_BLOCK(sbi, segno + 1)) 1083 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1084 else 1085 size = max_blocks; 1086 map = (unsigned long *)(sentry->cur_valid_map); 1087 offset = __find_rev_next_bit(map, size, offset); 1088 f2fs_bug_on(sbi, offset != size); 1089 blk = START_BLOCK(sbi, segno + 1); 1090 } 1091 #endif 1092 } 1093 1094 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1095 struct discard_policy *dpolicy, 1096 int discard_type, unsigned int granularity) 1097 { 1098 /* common policy */ 1099 dpolicy->type = discard_type; 1100 dpolicy->sync = true; 1101 dpolicy->ordered = false; 1102 dpolicy->granularity = granularity; 1103 1104 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1105 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1106 dpolicy->timeout = false; 1107 1108 if (discard_type == DPOLICY_BG) { 1109 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1110 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1111 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1112 dpolicy->io_aware = true; 1113 dpolicy->sync = false; 1114 dpolicy->ordered = true; 1115 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1116 dpolicy->granularity = 1; 1117 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1118 } 1119 } else if (discard_type == DPOLICY_FORCE) { 1120 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1121 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1122 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1123 dpolicy->io_aware = false; 1124 } else if (discard_type == DPOLICY_FSTRIM) { 1125 dpolicy->io_aware = false; 1126 } else if (discard_type == DPOLICY_UMOUNT) { 1127 dpolicy->io_aware = false; 1128 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1129 dpolicy->granularity = 1; 1130 dpolicy->timeout = true; 1131 } 1132 } 1133 1134 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1135 struct block_device *bdev, block_t lstart, 1136 block_t start, block_t len); 1137 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1138 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1139 struct discard_policy *dpolicy, 1140 struct discard_cmd *dc, 1141 unsigned int *issued) 1142 { 1143 struct block_device *bdev = dc->bdev; 1144 struct request_queue *q = bdev_get_queue(bdev); 1145 unsigned int max_discard_blocks = 1146 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1147 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1148 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1149 &(dcc->fstrim_list) : &(dcc->wait_list); 1150 int flag = dpolicy->sync ? REQ_SYNC : 0; 1151 block_t lstart, start, len, total_len; 1152 int err = 0; 1153 1154 if (dc->state != D_PREP) 1155 return 0; 1156 1157 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1158 return 0; 1159 1160 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1161 1162 lstart = dc->lstart; 1163 start = dc->start; 1164 len = dc->len; 1165 total_len = len; 1166 1167 dc->len = 0; 1168 1169 while (total_len && *issued < dpolicy->max_requests && !err) { 1170 struct bio *bio = NULL; 1171 unsigned long flags; 1172 bool last = true; 1173 1174 if (len > max_discard_blocks) { 1175 len = max_discard_blocks; 1176 last = false; 1177 } 1178 1179 (*issued)++; 1180 if (*issued == dpolicy->max_requests) 1181 last = true; 1182 1183 dc->len += len; 1184 1185 if (time_to_inject(sbi, FAULT_DISCARD)) { 1186 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1187 err = -EIO; 1188 goto submit; 1189 } 1190 err = __blkdev_issue_discard(bdev, 1191 SECTOR_FROM_BLOCK(start), 1192 SECTOR_FROM_BLOCK(len), 1193 GFP_NOFS, 0, &bio); 1194 submit: 1195 if (err) { 1196 spin_lock_irqsave(&dc->lock, flags); 1197 if (dc->state == D_PARTIAL) 1198 dc->state = D_SUBMIT; 1199 spin_unlock_irqrestore(&dc->lock, flags); 1200 1201 break; 1202 } 1203 1204 f2fs_bug_on(sbi, !bio); 1205 1206 /* 1207 * should keep before submission to avoid D_DONE 1208 * right away 1209 */ 1210 spin_lock_irqsave(&dc->lock, flags); 1211 if (last) 1212 dc->state = D_SUBMIT; 1213 else 1214 dc->state = D_PARTIAL; 1215 dc->bio_ref++; 1216 spin_unlock_irqrestore(&dc->lock, flags); 1217 1218 atomic_inc(&dcc->queued_discard); 1219 dc->queued++; 1220 list_move_tail(&dc->list, wait_list); 1221 1222 /* sanity check on discard range */ 1223 __check_sit_bitmap(sbi, lstart, lstart + len); 1224 1225 bio->bi_private = dc; 1226 bio->bi_end_io = f2fs_submit_discard_endio; 1227 bio->bi_opf |= flag; 1228 submit_bio(bio); 1229 1230 atomic_inc(&dcc->issued_discard); 1231 1232 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1233 1234 lstart += len; 1235 start += len; 1236 total_len -= len; 1237 len = total_len; 1238 } 1239 1240 if (!err && len) { 1241 dcc->undiscard_blks -= len; 1242 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1243 } 1244 return err; 1245 } 1246 1247 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1248 struct block_device *bdev, block_t lstart, 1249 block_t start, block_t len, 1250 struct rb_node **insert_p, 1251 struct rb_node *insert_parent) 1252 { 1253 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1254 struct rb_node **p; 1255 struct rb_node *parent = NULL; 1256 bool leftmost = true; 1257 1258 if (insert_p && insert_parent) { 1259 parent = insert_parent; 1260 p = insert_p; 1261 goto do_insert; 1262 } 1263 1264 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1265 lstart, &leftmost); 1266 do_insert: 1267 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1268 p, leftmost); 1269 } 1270 1271 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1272 struct discard_cmd *dc) 1273 { 1274 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1275 } 1276 1277 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1278 struct discard_cmd *dc, block_t blkaddr) 1279 { 1280 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1281 struct discard_info di = dc->di; 1282 bool modified = false; 1283 1284 if (dc->state == D_DONE || dc->len == 1) { 1285 __remove_discard_cmd(sbi, dc); 1286 return; 1287 } 1288 1289 dcc->undiscard_blks -= di.len; 1290 1291 if (blkaddr > di.lstart) { 1292 dc->len = blkaddr - dc->lstart; 1293 dcc->undiscard_blks += dc->len; 1294 __relocate_discard_cmd(dcc, dc); 1295 modified = true; 1296 } 1297 1298 if (blkaddr < di.lstart + di.len - 1) { 1299 if (modified) { 1300 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1301 di.start + blkaddr + 1 - di.lstart, 1302 di.lstart + di.len - 1 - blkaddr, 1303 NULL, NULL); 1304 } else { 1305 dc->lstart++; 1306 dc->len--; 1307 dc->start++; 1308 dcc->undiscard_blks += dc->len; 1309 __relocate_discard_cmd(dcc, dc); 1310 } 1311 } 1312 } 1313 1314 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1315 struct block_device *bdev, block_t lstart, 1316 block_t start, block_t len) 1317 { 1318 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1319 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1320 struct discard_cmd *dc; 1321 struct discard_info di = {0}; 1322 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1323 struct request_queue *q = bdev_get_queue(bdev); 1324 unsigned int max_discard_blocks = 1325 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1326 block_t end = lstart + len; 1327 1328 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1329 NULL, lstart, 1330 (struct rb_entry **)&prev_dc, 1331 (struct rb_entry **)&next_dc, 1332 &insert_p, &insert_parent, true, NULL); 1333 if (dc) 1334 prev_dc = dc; 1335 1336 if (!prev_dc) { 1337 di.lstart = lstart; 1338 di.len = next_dc ? next_dc->lstart - lstart : len; 1339 di.len = min(di.len, len); 1340 di.start = start; 1341 } 1342 1343 while (1) { 1344 struct rb_node *node; 1345 bool merged = false; 1346 struct discard_cmd *tdc = NULL; 1347 1348 if (prev_dc) { 1349 di.lstart = prev_dc->lstart + prev_dc->len; 1350 if (di.lstart < lstart) 1351 di.lstart = lstart; 1352 if (di.lstart >= end) 1353 break; 1354 1355 if (!next_dc || next_dc->lstart > end) 1356 di.len = end - di.lstart; 1357 else 1358 di.len = next_dc->lstart - di.lstart; 1359 di.start = start + di.lstart - lstart; 1360 } 1361 1362 if (!di.len) 1363 goto next; 1364 1365 if (prev_dc && prev_dc->state == D_PREP && 1366 prev_dc->bdev == bdev && 1367 __is_discard_back_mergeable(&di, &prev_dc->di, 1368 max_discard_blocks)) { 1369 prev_dc->di.len += di.len; 1370 dcc->undiscard_blks += di.len; 1371 __relocate_discard_cmd(dcc, prev_dc); 1372 di = prev_dc->di; 1373 tdc = prev_dc; 1374 merged = true; 1375 } 1376 1377 if (next_dc && next_dc->state == D_PREP && 1378 next_dc->bdev == bdev && 1379 __is_discard_front_mergeable(&di, &next_dc->di, 1380 max_discard_blocks)) { 1381 next_dc->di.lstart = di.lstart; 1382 next_dc->di.len += di.len; 1383 next_dc->di.start = di.start; 1384 dcc->undiscard_blks += di.len; 1385 __relocate_discard_cmd(dcc, next_dc); 1386 if (tdc) 1387 __remove_discard_cmd(sbi, tdc); 1388 merged = true; 1389 } 1390 1391 if (!merged) { 1392 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1393 di.len, NULL, NULL); 1394 } 1395 next: 1396 prev_dc = next_dc; 1397 if (!prev_dc) 1398 break; 1399 1400 node = rb_next(&prev_dc->rb_node); 1401 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1402 } 1403 } 1404 1405 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1406 struct block_device *bdev, block_t blkstart, block_t blklen) 1407 { 1408 block_t lblkstart = blkstart; 1409 1410 if (!f2fs_bdev_support_discard(bdev)) 1411 return 0; 1412 1413 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1414 1415 if (f2fs_is_multi_device(sbi)) { 1416 int devi = f2fs_target_device_index(sbi, blkstart); 1417 1418 blkstart -= FDEV(devi).start_blk; 1419 } 1420 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1421 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1422 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1423 return 0; 1424 } 1425 1426 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1427 struct discard_policy *dpolicy) 1428 { 1429 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1430 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1431 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1432 struct discard_cmd *dc; 1433 struct blk_plug plug; 1434 unsigned int pos = dcc->next_pos; 1435 unsigned int issued = 0; 1436 bool io_interrupted = false; 1437 1438 mutex_lock(&dcc->cmd_lock); 1439 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1440 NULL, pos, 1441 (struct rb_entry **)&prev_dc, 1442 (struct rb_entry **)&next_dc, 1443 &insert_p, &insert_parent, true, NULL); 1444 if (!dc) 1445 dc = next_dc; 1446 1447 blk_start_plug(&plug); 1448 1449 while (dc) { 1450 struct rb_node *node; 1451 int err = 0; 1452 1453 if (dc->state != D_PREP) 1454 goto next; 1455 1456 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1457 io_interrupted = true; 1458 break; 1459 } 1460 1461 dcc->next_pos = dc->lstart + dc->len; 1462 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1463 1464 if (issued >= dpolicy->max_requests) 1465 break; 1466 next: 1467 node = rb_next(&dc->rb_node); 1468 if (err) 1469 __remove_discard_cmd(sbi, dc); 1470 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1471 } 1472 1473 blk_finish_plug(&plug); 1474 1475 if (!dc) 1476 dcc->next_pos = 0; 1477 1478 mutex_unlock(&dcc->cmd_lock); 1479 1480 if (!issued && io_interrupted) 1481 issued = -1; 1482 1483 return issued; 1484 } 1485 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1486 struct discard_policy *dpolicy); 1487 1488 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1489 struct discard_policy *dpolicy) 1490 { 1491 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1492 struct list_head *pend_list; 1493 struct discard_cmd *dc, *tmp; 1494 struct blk_plug plug; 1495 int i, issued; 1496 bool io_interrupted = false; 1497 1498 if (dpolicy->timeout) 1499 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1500 1501 retry: 1502 issued = 0; 1503 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1504 if (dpolicy->timeout && 1505 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1506 break; 1507 1508 if (i + 1 < dpolicy->granularity) 1509 break; 1510 1511 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1512 return __issue_discard_cmd_orderly(sbi, dpolicy); 1513 1514 pend_list = &dcc->pend_list[i]; 1515 1516 mutex_lock(&dcc->cmd_lock); 1517 if (list_empty(pend_list)) 1518 goto next; 1519 if (unlikely(dcc->rbtree_check)) 1520 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1521 &dcc->root, false)); 1522 blk_start_plug(&plug); 1523 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1524 f2fs_bug_on(sbi, dc->state != D_PREP); 1525 1526 if (dpolicy->timeout && 1527 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1528 break; 1529 1530 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1531 !is_idle(sbi, DISCARD_TIME)) { 1532 io_interrupted = true; 1533 break; 1534 } 1535 1536 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1537 1538 if (issued >= dpolicy->max_requests) 1539 break; 1540 } 1541 blk_finish_plug(&plug); 1542 next: 1543 mutex_unlock(&dcc->cmd_lock); 1544 1545 if (issued >= dpolicy->max_requests || io_interrupted) 1546 break; 1547 } 1548 1549 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1550 __wait_all_discard_cmd(sbi, dpolicy); 1551 goto retry; 1552 } 1553 1554 if (!issued && io_interrupted) 1555 issued = -1; 1556 1557 return issued; 1558 } 1559 1560 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1561 { 1562 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1563 struct list_head *pend_list; 1564 struct discard_cmd *dc, *tmp; 1565 int i; 1566 bool dropped = false; 1567 1568 mutex_lock(&dcc->cmd_lock); 1569 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1570 pend_list = &dcc->pend_list[i]; 1571 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1572 f2fs_bug_on(sbi, dc->state != D_PREP); 1573 __remove_discard_cmd(sbi, dc); 1574 dropped = true; 1575 } 1576 } 1577 mutex_unlock(&dcc->cmd_lock); 1578 1579 return dropped; 1580 } 1581 1582 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1583 { 1584 __drop_discard_cmd(sbi); 1585 } 1586 1587 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1588 struct discard_cmd *dc) 1589 { 1590 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1591 unsigned int len = 0; 1592 1593 wait_for_completion_io(&dc->wait); 1594 mutex_lock(&dcc->cmd_lock); 1595 f2fs_bug_on(sbi, dc->state != D_DONE); 1596 dc->ref--; 1597 if (!dc->ref) { 1598 if (!dc->error) 1599 len = dc->len; 1600 __remove_discard_cmd(sbi, dc); 1601 } 1602 mutex_unlock(&dcc->cmd_lock); 1603 1604 return len; 1605 } 1606 1607 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1608 struct discard_policy *dpolicy, 1609 block_t start, block_t end) 1610 { 1611 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1612 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1613 &(dcc->fstrim_list) : &(dcc->wait_list); 1614 struct discard_cmd *dc, *tmp; 1615 bool need_wait; 1616 unsigned int trimmed = 0; 1617 1618 next: 1619 need_wait = false; 1620 1621 mutex_lock(&dcc->cmd_lock); 1622 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1623 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1624 continue; 1625 if (dc->len < dpolicy->granularity) 1626 continue; 1627 if (dc->state == D_DONE && !dc->ref) { 1628 wait_for_completion_io(&dc->wait); 1629 if (!dc->error) 1630 trimmed += dc->len; 1631 __remove_discard_cmd(sbi, dc); 1632 } else { 1633 dc->ref++; 1634 need_wait = true; 1635 break; 1636 } 1637 } 1638 mutex_unlock(&dcc->cmd_lock); 1639 1640 if (need_wait) { 1641 trimmed += __wait_one_discard_bio(sbi, dc); 1642 goto next; 1643 } 1644 1645 return trimmed; 1646 } 1647 1648 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1649 struct discard_policy *dpolicy) 1650 { 1651 struct discard_policy dp; 1652 unsigned int discard_blks; 1653 1654 if (dpolicy) 1655 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1656 1657 /* wait all */ 1658 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1659 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1660 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1661 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1662 1663 return discard_blks; 1664 } 1665 1666 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1667 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1668 { 1669 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1670 struct discard_cmd *dc; 1671 bool need_wait = false; 1672 1673 mutex_lock(&dcc->cmd_lock); 1674 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1675 NULL, blkaddr); 1676 if (dc) { 1677 if (dc->state == D_PREP) { 1678 __punch_discard_cmd(sbi, dc, blkaddr); 1679 } else { 1680 dc->ref++; 1681 need_wait = true; 1682 } 1683 } 1684 mutex_unlock(&dcc->cmd_lock); 1685 1686 if (need_wait) 1687 __wait_one_discard_bio(sbi, dc); 1688 } 1689 1690 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1691 { 1692 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1693 1694 if (dcc && dcc->f2fs_issue_discard) { 1695 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1696 1697 dcc->f2fs_issue_discard = NULL; 1698 kthread_stop(discard_thread); 1699 } 1700 } 1701 1702 /* This comes from f2fs_put_super */ 1703 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1704 { 1705 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1706 struct discard_policy dpolicy; 1707 bool dropped; 1708 1709 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1710 dcc->discard_granularity); 1711 __issue_discard_cmd(sbi, &dpolicy); 1712 dropped = __drop_discard_cmd(sbi); 1713 1714 /* just to make sure there is no pending discard commands */ 1715 __wait_all_discard_cmd(sbi, NULL); 1716 1717 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1718 return dropped; 1719 } 1720 1721 static int issue_discard_thread(void *data) 1722 { 1723 struct f2fs_sb_info *sbi = data; 1724 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1725 wait_queue_head_t *q = &dcc->discard_wait_queue; 1726 struct discard_policy dpolicy; 1727 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1728 int issued; 1729 1730 set_freezable(); 1731 1732 do { 1733 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1734 dcc->discard_granularity); 1735 1736 wait_event_interruptible_timeout(*q, 1737 kthread_should_stop() || freezing(current) || 1738 dcc->discard_wake, 1739 msecs_to_jiffies(wait_ms)); 1740 1741 if (dcc->discard_wake) 1742 dcc->discard_wake = 0; 1743 1744 /* clean up pending candidates before going to sleep */ 1745 if (atomic_read(&dcc->queued_discard)) 1746 __wait_all_discard_cmd(sbi, NULL); 1747 1748 if (try_to_freeze()) 1749 continue; 1750 if (f2fs_readonly(sbi->sb)) 1751 continue; 1752 if (kthread_should_stop()) 1753 return 0; 1754 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1755 wait_ms = dpolicy.max_interval; 1756 continue; 1757 } 1758 1759 if (sbi->gc_mode == GC_URGENT_HIGH) 1760 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1761 1762 sb_start_intwrite(sbi->sb); 1763 1764 issued = __issue_discard_cmd(sbi, &dpolicy); 1765 if (issued > 0) { 1766 __wait_all_discard_cmd(sbi, &dpolicy); 1767 wait_ms = dpolicy.min_interval; 1768 } else if (issued == -1){ 1769 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1770 if (!wait_ms) 1771 wait_ms = dpolicy.mid_interval; 1772 } else { 1773 wait_ms = dpolicy.max_interval; 1774 } 1775 1776 sb_end_intwrite(sbi->sb); 1777 1778 } while (!kthread_should_stop()); 1779 return 0; 1780 } 1781 1782 #ifdef CONFIG_BLK_DEV_ZONED 1783 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1784 struct block_device *bdev, block_t blkstart, block_t blklen) 1785 { 1786 sector_t sector, nr_sects; 1787 block_t lblkstart = blkstart; 1788 int devi = 0; 1789 1790 if (f2fs_is_multi_device(sbi)) { 1791 devi = f2fs_target_device_index(sbi, blkstart); 1792 if (blkstart < FDEV(devi).start_blk || 1793 blkstart > FDEV(devi).end_blk) { 1794 f2fs_err(sbi, "Invalid block %x", blkstart); 1795 return -EIO; 1796 } 1797 blkstart -= FDEV(devi).start_blk; 1798 } 1799 1800 /* For sequential zones, reset the zone write pointer */ 1801 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1802 sector = SECTOR_FROM_BLOCK(blkstart); 1803 nr_sects = SECTOR_FROM_BLOCK(blklen); 1804 1805 if (sector & (bdev_zone_sectors(bdev) - 1) || 1806 nr_sects != bdev_zone_sectors(bdev)) { 1807 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1808 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1809 blkstart, blklen); 1810 return -EIO; 1811 } 1812 trace_f2fs_issue_reset_zone(bdev, blkstart); 1813 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1814 sector, nr_sects, GFP_NOFS); 1815 } 1816 1817 /* For conventional zones, use regular discard if supported */ 1818 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1819 } 1820 #endif 1821 1822 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1823 struct block_device *bdev, block_t blkstart, block_t blklen) 1824 { 1825 #ifdef CONFIG_BLK_DEV_ZONED 1826 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1827 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1828 #endif 1829 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1830 } 1831 1832 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1833 block_t blkstart, block_t blklen) 1834 { 1835 sector_t start = blkstart, len = 0; 1836 struct block_device *bdev; 1837 struct seg_entry *se; 1838 unsigned int offset; 1839 block_t i; 1840 int err = 0; 1841 1842 bdev = f2fs_target_device(sbi, blkstart, NULL); 1843 1844 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1845 if (i != start) { 1846 struct block_device *bdev2 = 1847 f2fs_target_device(sbi, i, NULL); 1848 1849 if (bdev2 != bdev) { 1850 err = __issue_discard_async(sbi, bdev, 1851 start, len); 1852 if (err) 1853 return err; 1854 bdev = bdev2; 1855 start = i; 1856 len = 0; 1857 } 1858 } 1859 1860 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1861 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1862 1863 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1864 sbi->discard_blks--; 1865 } 1866 1867 if (len) 1868 err = __issue_discard_async(sbi, bdev, start, len); 1869 return err; 1870 } 1871 1872 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1873 bool check_only) 1874 { 1875 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1876 int max_blocks = sbi->blocks_per_seg; 1877 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1878 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1879 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1880 unsigned long *discard_map = (unsigned long *)se->discard_map; 1881 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1882 unsigned int start = 0, end = -1; 1883 bool force = (cpc->reason & CP_DISCARD); 1884 struct discard_entry *de = NULL; 1885 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1886 int i; 1887 1888 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1889 return false; 1890 1891 if (!force) { 1892 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1893 SM_I(sbi)->dcc_info->nr_discards >= 1894 SM_I(sbi)->dcc_info->max_discards) 1895 return false; 1896 } 1897 1898 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1899 for (i = 0; i < entries; i++) 1900 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1901 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1902 1903 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1904 SM_I(sbi)->dcc_info->max_discards) { 1905 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1906 if (start >= max_blocks) 1907 break; 1908 1909 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1910 if (force && start && end != max_blocks 1911 && (end - start) < cpc->trim_minlen) 1912 continue; 1913 1914 if (check_only) 1915 return true; 1916 1917 if (!de) { 1918 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1919 GFP_F2FS_ZERO); 1920 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1921 list_add_tail(&de->list, head); 1922 } 1923 1924 for (i = start; i < end; i++) 1925 __set_bit_le(i, (void *)de->discard_map); 1926 1927 SM_I(sbi)->dcc_info->nr_discards += end - start; 1928 } 1929 return false; 1930 } 1931 1932 static void release_discard_addr(struct discard_entry *entry) 1933 { 1934 list_del(&entry->list); 1935 kmem_cache_free(discard_entry_slab, entry); 1936 } 1937 1938 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1939 { 1940 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1941 struct discard_entry *entry, *this; 1942 1943 /* drop caches */ 1944 list_for_each_entry_safe(entry, this, head, list) 1945 release_discard_addr(entry); 1946 } 1947 1948 /* 1949 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1950 */ 1951 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1952 { 1953 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1954 unsigned int segno; 1955 1956 mutex_lock(&dirty_i->seglist_lock); 1957 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1958 __set_test_and_free(sbi, segno, false); 1959 mutex_unlock(&dirty_i->seglist_lock); 1960 } 1961 1962 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1963 struct cp_control *cpc) 1964 { 1965 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1966 struct list_head *head = &dcc->entry_list; 1967 struct discard_entry *entry, *this; 1968 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1969 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1970 unsigned int start = 0, end = -1; 1971 unsigned int secno, start_segno; 1972 bool force = (cpc->reason & CP_DISCARD); 1973 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 1974 1975 mutex_lock(&dirty_i->seglist_lock); 1976 1977 while (1) { 1978 int i; 1979 1980 if (need_align && end != -1) 1981 end--; 1982 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1983 if (start >= MAIN_SEGS(sbi)) 1984 break; 1985 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1986 start + 1); 1987 1988 if (need_align) { 1989 start = rounddown(start, sbi->segs_per_sec); 1990 end = roundup(end, sbi->segs_per_sec); 1991 } 1992 1993 for (i = start; i < end; i++) { 1994 if (test_and_clear_bit(i, prefree_map)) 1995 dirty_i->nr_dirty[PRE]--; 1996 } 1997 1998 if (!f2fs_realtime_discard_enable(sbi)) 1999 continue; 2000 2001 if (force && start >= cpc->trim_start && 2002 (end - 1) <= cpc->trim_end) 2003 continue; 2004 2005 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 2006 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2007 (end - start) << sbi->log_blocks_per_seg); 2008 continue; 2009 } 2010 next: 2011 secno = GET_SEC_FROM_SEG(sbi, start); 2012 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2013 if (!IS_CURSEC(sbi, secno) && 2014 !get_valid_blocks(sbi, start, true)) 2015 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2016 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2017 2018 start = start_segno + sbi->segs_per_sec; 2019 if (start < end) 2020 goto next; 2021 else 2022 end = start - 1; 2023 } 2024 mutex_unlock(&dirty_i->seglist_lock); 2025 2026 /* send small discards */ 2027 list_for_each_entry_safe(entry, this, head, list) { 2028 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2029 bool is_valid = test_bit_le(0, entry->discard_map); 2030 2031 find_next: 2032 if (is_valid) { 2033 next_pos = find_next_zero_bit_le(entry->discard_map, 2034 sbi->blocks_per_seg, cur_pos); 2035 len = next_pos - cur_pos; 2036 2037 if (f2fs_sb_has_blkzoned(sbi) || 2038 (force && len < cpc->trim_minlen)) 2039 goto skip; 2040 2041 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2042 len); 2043 total_len += len; 2044 } else { 2045 next_pos = find_next_bit_le(entry->discard_map, 2046 sbi->blocks_per_seg, cur_pos); 2047 } 2048 skip: 2049 cur_pos = next_pos; 2050 is_valid = !is_valid; 2051 2052 if (cur_pos < sbi->blocks_per_seg) 2053 goto find_next; 2054 2055 release_discard_addr(entry); 2056 dcc->nr_discards -= total_len; 2057 } 2058 2059 wake_up_discard_thread(sbi, false); 2060 } 2061 2062 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2063 { 2064 dev_t dev = sbi->sb->s_bdev->bd_dev; 2065 struct discard_cmd_control *dcc; 2066 int err = 0, i; 2067 2068 if (SM_I(sbi)->dcc_info) { 2069 dcc = SM_I(sbi)->dcc_info; 2070 goto init_thread; 2071 } 2072 2073 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2074 if (!dcc) 2075 return -ENOMEM; 2076 2077 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2078 INIT_LIST_HEAD(&dcc->entry_list); 2079 for (i = 0; i < MAX_PLIST_NUM; i++) 2080 INIT_LIST_HEAD(&dcc->pend_list[i]); 2081 INIT_LIST_HEAD(&dcc->wait_list); 2082 INIT_LIST_HEAD(&dcc->fstrim_list); 2083 mutex_init(&dcc->cmd_lock); 2084 atomic_set(&dcc->issued_discard, 0); 2085 atomic_set(&dcc->queued_discard, 0); 2086 atomic_set(&dcc->discard_cmd_cnt, 0); 2087 dcc->nr_discards = 0; 2088 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2089 dcc->undiscard_blks = 0; 2090 dcc->next_pos = 0; 2091 dcc->root = RB_ROOT_CACHED; 2092 dcc->rbtree_check = false; 2093 2094 init_waitqueue_head(&dcc->discard_wait_queue); 2095 SM_I(sbi)->dcc_info = dcc; 2096 init_thread: 2097 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2098 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2099 if (IS_ERR(dcc->f2fs_issue_discard)) { 2100 err = PTR_ERR(dcc->f2fs_issue_discard); 2101 kfree(dcc); 2102 SM_I(sbi)->dcc_info = NULL; 2103 return err; 2104 } 2105 2106 return err; 2107 } 2108 2109 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2110 { 2111 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2112 2113 if (!dcc) 2114 return; 2115 2116 f2fs_stop_discard_thread(sbi); 2117 2118 /* 2119 * Recovery can cache discard commands, so in error path of 2120 * fill_super(), it needs to give a chance to handle them. 2121 */ 2122 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2123 f2fs_issue_discard_timeout(sbi); 2124 2125 kfree(dcc); 2126 SM_I(sbi)->dcc_info = NULL; 2127 } 2128 2129 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2130 { 2131 struct sit_info *sit_i = SIT_I(sbi); 2132 2133 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2134 sit_i->dirty_sentries++; 2135 return false; 2136 } 2137 2138 return true; 2139 } 2140 2141 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2142 unsigned int segno, int modified) 2143 { 2144 struct seg_entry *se = get_seg_entry(sbi, segno); 2145 se->type = type; 2146 if (modified) 2147 __mark_sit_entry_dirty(sbi, segno); 2148 } 2149 2150 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2151 block_t blkaddr) 2152 { 2153 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2154 2155 if (segno == NULL_SEGNO) 2156 return 0; 2157 return get_seg_entry(sbi, segno)->mtime; 2158 } 2159 2160 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2161 unsigned long long old_mtime) 2162 { 2163 struct seg_entry *se; 2164 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2165 unsigned long long ctime = get_mtime(sbi, false); 2166 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2167 2168 if (segno == NULL_SEGNO) 2169 return; 2170 2171 se = get_seg_entry(sbi, segno); 2172 2173 if (!se->mtime) 2174 se->mtime = mtime; 2175 else 2176 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2177 se->valid_blocks + 1); 2178 2179 if (ctime > SIT_I(sbi)->max_mtime) 2180 SIT_I(sbi)->max_mtime = ctime; 2181 } 2182 2183 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2184 { 2185 struct seg_entry *se; 2186 unsigned int segno, offset; 2187 long int new_vblocks; 2188 bool exist; 2189 #ifdef CONFIG_F2FS_CHECK_FS 2190 bool mir_exist; 2191 #endif 2192 2193 segno = GET_SEGNO(sbi, blkaddr); 2194 2195 se = get_seg_entry(sbi, segno); 2196 new_vblocks = se->valid_blocks + del; 2197 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2198 2199 f2fs_bug_on(sbi, (new_vblocks < 0 || 2200 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2201 2202 se->valid_blocks = new_vblocks; 2203 2204 /* Update valid block bitmap */ 2205 if (del > 0) { 2206 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2207 #ifdef CONFIG_F2FS_CHECK_FS 2208 mir_exist = f2fs_test_and_set_bit(offset, 2209 se->cur_valid_map_mir); 2210 if (unlikely(exist != mir_exist)) { 2211 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2212 blkaddr, exist); 2213 f2fs_bug_on(sbi, 1); 2214 } 2215 #endif 2216 if (unlikely(exist)) { 2217 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2218 blkaddr); 2219 f2fs_bug_on(sbi, 1); 2220 se->valid_blocks--; 2221 del = 0; 2222 } 2223 2224 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2225 sbi->discard_blks--; 2226 2227 /* 2228 * SSR should never reuse block which is checkpointed 2229 * or newly invalidated. 2230 */ 2231 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2232 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2233 se->ckpt_valid_blocks++; 2234 } 2235 } else { 2236 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2237 #ifdef CONFIG_F2FS_CHECK_FS 2238 mir_exist = f2fs_test_and_clear_bit(offset, 2239 se->cur_valid_map_mir); 2240 if (unlikely(exist != mir_exist)) { 2241 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2242 blkaddr, exist); 2243 f2fs_bug_on(sbi, 1); 2244 } 2245 #endif 2246 if (unlikely(!exist)) { 2247 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2248 blkaddr); 2249 f2fs_bug_on(sbi, 1); 2250 se->valid_blocks++; 2251 del = 0; 2252 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2253 /* 2254 * If checkpoints are off, we must not reuse data that 2255 * was used in the previous checkpoint. If it was used 2256 * before, we must track that to know how much space we 2257 * really have. 2258 */ 2259 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2260 spin_lock(&sbi->stat_lock); 2261 sbi->unusable_block_count++; 2262 spin_unlock(&sbi->stat_lock); 2263 } 2264 } 2265 2266 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2267 sbi->discard_blks++; 2268 } 2269 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2270 se->ckpt_valid_blocks += del; 2271 2272 __mark_sit_entry_dirty(sbi, segno); 2273 2274 /* update total number of valid blocks to be written in ckpt area */ 2275 SIT_I(sbi)->written_valid_blocks += del; 2276 2277 if (__is_large_section(sbi)) 2278 get_sec_entry(sbi, segno)->valid_blocks += del; 2279 } 2280 2281 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2282 { 2283 unsigned int segno = GET_SEGNO(sbi, addr); 2284 struct sit_info *sit_i = SIT_I(sbi); 2285 2286 f2fs_bug_on(sbi, addr == NULL_ADDR); 2287 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2288 return; 2289 2290 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2291 2292 /* add it into sit main buffer */ 2293 down_write(&sit_i->sentry_lock); 2294 2295 update_segment_mtime(sbi, addr, 0); 2296 update_sit_entry(sbi, addr, -1); 2297 2298 /* add it into dirty seglist */ 2299 locate_dirty_segment(sbi, segno); 2300 2301 up_write(&sit_i->sentry_lock); 2302 } 2303 2304 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2305 { 2306 struct sit_info *sit_i = SIT_I(sbi); 2307 unsigned int segno, offset; 2308 struct seg_entry *se; 2309 bool is_cp = false; 2310 2311 if (!__is_valid_data_blkaddr(blkaddr)) 2312 return true; 2313 2314 down_read(&sit_i->sentry_lock); 2315 2316 segno = GET_SEGNO(sbi, blkaddr); 2317 se = get_seg_entry(sbi, segno); 2318 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2319 2320 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2321 is_cp = true; 2322 2323 up_read(&sit_i->sentry_lock); 2324 2325 return is_cp; 2326 } 2327 2328 /* 2329 * This function should be resided under the curseg_mutex lock 2330 */ 2331 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2332 struct f2fs_summary *sum) 2333 { 2334 struct curseg_info *curseg = CURSEG_I(sbi, type); 2335 void *addr = curseg->sum_blk; 2336 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2337 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2338 } 2339 2340 /* 2341 * Calculate the number of current summary pages for writing 2342 */ 2343 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2344 { 2345 int valid_sum_count = 0; 2346 int i, sum_in_page; 2347 2348 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2349 if (sbi->ckpt->alloc_type[i] == SSR) 2350 valid_sum_count += sbi->blocks_per_seg; 2351 else { 2352 if (for_ra) 2353 valid_sum_count += le16_to_cpu( 2354 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2355 else 2356 valid_sum_count += curseg_blkoff(sbi, i); 2357 } 2358 } 2359 2360 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2361 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2362 if (valid_sum_count <= sum_in_page) 2363 return 1; 2364 else if ((valid_sum_count - sum_in_page) <= 2365 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2366 return 2; 2367 return 3; 2368 } 2369 2370 /* 2371 * Caller should put this summary page 2372 */ 2373 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2374 { 2375 if (unlikely(f2fs_cp_error(sbi))) 2376 return ERR_PTR(-EIO); 2377 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2378 } 2379 2380 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2381 void *src, block_t blk_addr) 2382 { 2383 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2384 2385 memcpy(page_address(page), src, PAGE_SIZE); 2386 set_page_dirty(page); 2387 f2fs_put_page(page, 1); 2388 } 2389 2390 static void write_sum_page(struct f2fs_sb_info *sbi, 2391 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2392 { 2393 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2394 } 2395 2396 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2397 int type, block_t blk_addr) 2398 { 2399 struct curseg_info *curseg = CURSEG_I(sbi, type); 2400 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2401 struct f2fs_summary_block *src = curseg->sum_blk; 2402 struct f2fs_summary_block *dst; 2403 2404 dst = (struct f2fs_summary_block *)page_address(page); 2405 memset(dst, 0, PAGE_SIZE); 2406 2407 mutex_lock(&curseg->curseg_mutex); 2408 2409 down_read(&curseg->journal_rwsem); 2410 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2411 up_read(&curseg->journal_rwsem); 2412 2413 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2414 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2415 2416 mutex_unlock(&curseg->curseg_mutex); 2417 2418 set_page_dirty(page); 2419 f2fs_put_page(page, 1); 2420 } 2421 2422 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2423 struct curseg_info *curseg, int type) 2424 { 2425 unsigned int segno = curseg->segno + 1; 2426 struct free_segmap_info *free_i = FREE_I(sbi); 2427 2428 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2429 return !test_bit(segno, free_i->free_segmap); 2430 return 0; 2431 } 2432 2433 /* 2434 * Find a new segment from the free segments bitmap to right order 2435 * This function should be returned with success, otherwise BUG 2436 */ 2437 static void get_new_segment(struct f2fs_sb_info *sbi, 2438 unsigned int *newseg, bool new_sec, int dir) 2439 { 2440 struct free_segmap_info *free_i = FREE_I(sbi); 2441 unsigned int segno, secno, zoneno; 2442 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2443 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2444 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2445 unsigned int left_start = hint; 2446 bool init = true; 2447 int go_left = 0; 2448 int i; 2449 2450 spin_lock(&free_i->segmap_lock); 2451 2452 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2453 segno = find_next_zero_bit(free_i->free_segmap, 2454 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2455 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2456 goto got_it; 2457 } 2458 find_other_zone: 2459 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2460 if (secno >= MAIN_SECS(sbi)) { 2461 if (dir == ALLOC_RIGHT) { 2462 secno = find_next_zero_bit(free_i->free_secmap, 2463 MAIN_SECS(sbi), 0); 2464 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2465 } else { 2466 go_left = 1; 2467 left_start = hint - 1; 2468 } 2469 } 2470 if (go_left == 0) 2471 goto skip_left; 2472 2473 while (test_bit(left_start, free_i->free_secmap)) { 2474 if (left_start > 0) { 2475 left_start--; 2476 continue; 2477 } 2478 left_start = find_next_zero_bit(free_i->free_secmap, 2479 MAIN_SECS(sbi), 0); 2480 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2481 break; 2482 } 2483 secno = left_start; 2484 skip_left: 2485 segno = GET_SEG_FROM_SEC(sbi, secno); 2486 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2487 2488 /* give up on finding another zone */ 2489 if (!init) 2490 goto got_it; 2491 if (sbi->secs_per_zone == 1) 2492 goto got_it; 2493 if (zoneno == old_zoneno) 2494 goto got_it; 2495 if (dir == ALLOC_LEFT) { 2496 if (!go_left && zoneno + 1 >= total_zones) 2497 goto got_it; 2498 if (go_left && zoneno == 0) 2499 goto got_it; 2500 } 2501 for (i = 0; i < NR_CURSEG_TYPE; i++) 2502 if (CURSEG_I(sbi, i)->zone == zoneno) 2503 break; 2504 2505 if (i < NR_CURSEG_TYPE) { 2506 /* zone is in user, try another */ 2507 if (go_left) 2508 hint = zoneno * sbi->secs_per_zone - 1; 2509 else if (zoneno + 1 >= total_zones) 2510 hint = 0; 2511 else 2512 hint = (zoneno + 1) * sbi->secs_per_zone; 2513 init = false; 2514 goto find_other_zone; 2515 } 2516 got_it: 2517 /* set it as dirty segment in free segmap */ 2518 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2519 __set_inuse(sbi, segno); 2520 *newseg = segno; 2521 spin_unlock(&free_i->segmap_lock); 2522 } 2523 2524 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2525 { 2526 struct curseg_info *curseg = CURSEG_I(sbi, type); 2527 struct summary_footer *sum_footer; 2528 unsigned short seg_type = curseg->seg_type; 2529 2530 curseg->inited = true; 2531 curseg->segno = curseg->next_segno; 2532 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2533 curseg->next_blkoff = 0; 2534 curseg->next_segno = NULL_SEGNO; 2535 2536 sum_footer = &(curseg->sum_blk->footer); 2537 memset(sum_footer, 0, sizeof(struct summary_footer)); 2538 2539 sanity_check_seg_type(sbi, seg_type); 2540 2541 if (IS_DATASEG(seg_type)) 2542 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2543 if (IS_NODESEG(seg_type)) 2544 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2545 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2546 } 2547 2548 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2549 { 2550 struct curseg_info *curseg = CURSEG_I(sbi, type); 2551 unsigned short seg_type = curseg->seg_type; 2552 2553 sanity_check_seg_type(sbi, seg_type); 2554 2555 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2556 if (__is_large_section(sbi)) 2557 return curseg->segno; 2558 2559 /* inmem log may not locate on any segment after mount */ 2560 if (!curseg->inited) 2561 return 0; 2562 2563 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2564 return 0; 2565 2566 if (test_opt(sbi, NOHEAP) && 2567 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2568 return 0; 2569 2570 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2571 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2572 2573 /* find segments from 0 to reuse freed segments */ 2574 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2575 return 0; 2576 2577 return curseg->segno; 2578 } 2579 2580 /* 2581 * Allocate a current working segment. 2582 * This function always allocates a free segment in LFS manner. 2583 */ 2584 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2585 { 2586 struct curseg_info *curseg = CURSEG_I(sbi, type); 2587 unsigned short seg_type = curseg->seg_type; 2588 unsigned int segno = curseg->segno; 2589 int dir = ALLOC_LEFT; 2590 2591 if (curseg->inited) 2592 write_sum_page(sbi, curseg->sum_blk, 2593 GET_SUM_BLOCK(sbi, segno)); 2594 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2595 dir = ALLOC_RIGHT; 2596 2597 if (test_opt(sbi, NOHEAP)) 2598 dir = ALLOC_RIGHT; 2599 2600 segno = __get_next_segno(sbi, type); 2601 get_new_segment(sbi, &segno, new_sec, dir); 2602 curseg->next_segno = segno; 2603 reset_curseg(sbi, type, 1); 2604 curseg->alloc_type = LFS; 2605 } 2606 2607 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2608 struct curseg_info *seg, block_t start) 2609 { 2610 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2611 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2612 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2613 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2614 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2615 int i, pos; 2616 2617 for (i = 0; i < entries; i++) 2618 target_map[i] = ckpt_map[i] | cur_map[i]; 2619 2620 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2621 2622 seg->next_blkoff = pos; 2623 } 2624 2625 /* 2626 * If a segment is written by LFS manner, next block offset is just obtained 2627 * by increasing the current block offset. However, if a segment is written by 2628 * SSR manner, next block offset obtained by calling __next_free_blkoff 2629 */ 2630 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2631 struct curseg_info *seg) 2632 { 2633 if (seg->alloc_type == SSR) 2634 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2635 else 2636 seg->next_blkoff++; 2637 } 2638 2639 /* 2640 * This function always allocates a used segment(from dirty seglist) by SSR 2641 * manner, so it should recover the existing segment information of valid blocks 2642 */ 2643 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush) 2644 { 2645 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2646 struct curseg_info *curseg = CURSEG_I(sbi, type); 2647 unsigned int new_segno = curseg->next_segno; 2648 struct f2fs_summary_block *sum_node; 2649 struct page *sum_page; 2650 2651 if (flush) 2652 write_sum_page(sbi, curseg->sum_blk, 2653 GET_SUM_BLOCK(sbi, curseg->segno)); 2654 2655 __set_test_and_inuse(sbi, new_segno); 2656 2657 mutex_lock(&dirty_i->seglist_lock); 2658 __remove_dirty_segment(sbi, new_segno, PRE); 2659 __remove_dirty_segment(sbi, new_segno, DIRTY); 2660 mutex_unlock(&dirty_i->seglist_lock); 2661 2662 reset_curseg(sbi, type, 1); 2663 curseg->alloc_type = SSR; 2664 __next_free_blkoff(sbi, curseg, 0); 2665 2666 sum_page = f2fs_get_sum_page(sbi, new_segno); 2667 if (IS_ERR(sum_page)) { 2668 /* GC won't be able to use stale summary pages by cp_error */ 2669 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2670 return; 2671 } 2672 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2673 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2674 f2fs_put_page(sum_page, 1); 2675 } 2676 2677 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2678 int alloc_mode, unsigned long long age); 2679 2680 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2681 int target_type, int alloc_mode, 2682 unsigned long long age) 2683 { 2684 struct curseg_info *curseg = CURSEG_I(sbi, type); 2685 2686 curseg->seg_type = target_type; 2687 2688 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2689 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2690 2691 curseg->seg_type = se->type; 2692 change_curseg(sbi, type, true); 2693 } else { 2694 /* allocate cold segment by default */ 2695 curseg->seg_type = CURSEG_COLD_DATA; 2696 new_curseg(sbi, type, true); 2697 } 2698 stat_inc_seg_type(sbi, curseg); 2699 } 2700 2701 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2702 { 2703 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2704 2705 if (!sbi->am.atgc_enabled) 2706 return; 2707 2708 down_read(&SM_I(sbi)->curseg_lock); 2709 2710 mutex_lock(&curseg->curseg_mutex); 2711 down_write(&SIT_I(sbi)->sentry_lock); 2712 2713 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2714 2715 up_write(&SIT_I(sbi)->sentry_lock); 2716 mutex_unlock(&curseg->curseg_mutex); 2717 2718 up_read(&SM_I(sbi)->curseg_lock); 2719 2720 } 2721 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2722 { 2723 __f2fs_init_atgc_curseg(sbi); 2724 } 2725 2726 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2727 { 2728 struct curseg_info *curseg = CURSEG_I(sbi, type); 2729 2730 mutex_lock(&curseg->curseg_mutex); 2731 if (!curseg->inited) 2732 goto out; 2733 2734 if (get_valid_blocks(sbi, curseg->segno, false)) { 2735 write_sum_page(sbi, curseg->sum_blk, 2736 GET_SUM_BLOCK(sbi, curseg->segno)); 2737 } else { 2738 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2739 __set_test_and_free(sbi, curseg->segno, true); 2740 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2741 } 2742 out: 2743 mutex_unlock(&curseg->curseg_mutex); 2744 } 2745 2746 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2747 { 2748 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2749 2750 if (sbi->am.atgc_enabled) 2751 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2752 } 2753 2754 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2755 { 2756 struct curseg_info *curseg = CURSEG_I(sbi, type); 2757 2758 mutex_lock(&curseg->curseg_mutex); 2759 if (!curseg->inited) 2760 goto out; 2761 if (get_valid_blocks(sbi, curseg->segno, false)) 2762 goto out; 2763 2764 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2765 __set_test_and_inuse(sbi, curseg->segno); 2766 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2767 out: 2768 mutex_unlock(&curseg->curseg_mutex); 2769 } 2770 2771 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2772 { 2773 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2774 2775 if (sbi->am.atgc_enabled) 2776 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2777 } 2778 2779 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2780 int alloc_mode, unsigned long long age) 2781 { 2782 struct curseg_info *curseg = CURSEG_I(sbi, type); 2783 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2784 unsigned segno = NULL_SEGNO; 2785 unsigned short seg_type = curseg->seg_type; 2786 int i, cnt; 2787 bool reversed = false; 2788 2789 sanity_check_seg_type(sbi, seg_type); 2790 2791 /* f2fs_need_SSR() already forces to do this */ 2792 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2793 curseg->next_segno = segno; 2794 return 1; 2795 } 2796 2797 /* For node segments, let's do SSR more intensively */ 2798 if (IS_NODESEG(seg_type)) { 2799 if (seg_type >= CURSEG_WARM_NODE) { 2800 reversed = true; 2801 i = CURSEG_COLD_NODE; 2802 } else { 2803 i = CURSEG_HOT_NODE; 2804 } 2805 cnt = NR_CURSEG_NODE_TYPE; 2806 } else { 2807 if (seg_type >= CURSEG_WARM_DATA) { 2808 reversed = true; 2809 i = CURSEG_COLD_DATA; 2810 } else { 2811 i = CURSEG_HOT_DATA; 2812 } 2813 cnt = NR_CURSEG_DATA_TYPE; 2814 } 2815 2816 for (; cnt-- > 0; reversed ? i-- : i++) { 2817 if (i == seg_type) 2818 continue; 2819 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2820 curseg->next_segno = segno; 2821 return 1; 2822 } 2823 } 2824 2825 /* find valid_blocks=0 in dirty list */ 2826 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2827 segno = get_free_segment(sbi); 2828 if (segno != NULL_SEGNO) { 2829 curseg->next_segno = segno; 2830 return 1; 2831 } 2832 } 2833 return 0; 2834 } 2835 2836 /* 2837 * flush out current segment and replace it with new segment 2838 * This function should be returned with success, otherwise BUG 2839 */ 2840 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2841 int type, bool force) 2842 { 2843 struct curseg_info *curseg = CURSEG_I(sbi, type); 2844 2845 if (force) 2846 new_curseg(sbi, type, true); 2847 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2848 curseg->seg_type == CURSEG_WARM_NODE) 2849 new_curseg(sbi, type, false); 2850 else if (curseg->alloc_type == LFS && 2851 is_next_segment_free(sbi, curseg, type) && 2852 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2853 new_curseg(sbi, type, false); 2854 else if (f2fs_need_SSR(sbi) && 2855 get_ssr_segment(sbi, type, SSR, 0)) 2856 change_curseg(sbi, type, true); 2857 else 2858 new_curseg(sbi, type, false); 2859 2860 stat_inc_seg_type(sbi, curseg); 2861 } 2862 2863 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2864 unsigned int start, unsigned int end) 2865 { 2866 struct curseg_info *curseg = CURSEG_I(sbi, type); 2867 unsigned int segno; 2868 2869 down_read(&SM_I(sbi)->curseg_lock); 2870 mutex_lock(&curseg->curseg_mutex); 2871 down_write(&SIT_I(sbi)->sentry_lock); 2872 2873 segno = CURSEG_I(sbi, type)->segno; 2874 if (segno < start || segno > end) 2875 goto unlock; 2876 2877 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2878 change_curseg(sbi, type, true); 2879 else 2880 new_curseg(sbi, type, true); 2881 2882 stat_inc_seg_type(sbi, curseg); 2883 2884 locate_dirty_segment(sbi, segno); 2885 unlock: 2886 up_write(&SIT_I(sbi)->sentry_lock); 2887 2888 if (segno != curseg->segno) 2889 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2890 type, segno, curseg->segno); 2891 2892 mutex_unlock(&curseg->curseg_mutex); 2893 up_read(&SM_I(sbi)->curseg_lock); 2894 } 2895 2896 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type) 2897 { 2898 struct curseg_info *curseg = CURSEG_I(sbi, type); 2899 unsigned int old_segno; 2900 2901 if (!curseg->inited) 2902 goto alloc; 2903 2904 if (!curseg->next_blkoff && 2905 !get_valid_blocks(sbi, curseg->segno, false) && 2906 !get_ckpt_valid_blocks(sbi, curseg->segno)) 2907 return; 2908 2909 alloc: 2910 old_segno = curseg->segno; 2911 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 2912 locate_dirty_segment(sbi, old_segno); 2913 } 2914 2915 void f2fs_allocate_new_segment(struct f2fs_sb_info *sbi, int type) 2916 { 2917 down_write(&SIT_I(sbi)->sentry_lock); 2918 __allocate_new_segment(sbi, type); 2919 up_write(&SIT_I(sbi)->sentry_lock); 2920 } 2921 2922 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2923 { 2924 int i; 2925 2926 down_write(&SIT_I(sbi)->sentry_lock); 2927 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 2928 __allocate_new_segment(sbi, i); 2929 up_write(&SIT_I(sbi)->sentry_lock); 2930 } 2931 2932 static const struct segment_allocation default_salloc_ops = { 2933 .allocate_segment = allocate_segment_by_default, 2934 }; 2935 2936 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2937 struct cp_control *cpc) 2938 { 2939 __u64 trim_start = cpc->trim_start; 2940 bool has_candidate = false; 2941 2942 down_write(&SIT_I(sbi)->sentry_lock); 2943 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2944 if (add_discard_addrs(sbi, cpc, true)) { 2945 has_candidate = true; 2946 break; 2947 } 2948 } 2949 up_write(&SIT_I(sbi)->sentry_lock); 2950 2951 cpc->trim_start = trim_start; 2952 return has_candidate; 2953 } 2954 2955 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2956 struct discard_policy *dpolicy, 2957 unsigned int start, unsigned int end) 2958 { 2959 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2960 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2961 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2962 struct discard_cmd *dc; 2963 struct blk_plug plug; 2964 int issued; 2965 unsigned int trimmed = 0; 2966 2967 next: 2968 issued = 0; 2969 2970 mutex_lock(&dcc->cmd_lock); 2971 if (unlikely(dcc->rbtree_check)) 2972 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2973 &dcc->root, false)); 2974 2975 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2976 NULL, start, 2977 (struct rb_entry **)&prev_dc, 2978 (struct rb_entry **)&next_dc, 2979 &insert_p, &insert_parent, true, NULL); 2980 if (!dc) 2981 dc = next_dc; 2982 2983 blk_start_plug(&plug); 2984 2985 while (dc && dc->lstart <= end) { 2986 struct rb_node *node; 2987 int err = 0; 2988 2989 if (dc->len < dpolicy->granularity) 2990 goto skip; 2991 2992 if (dc->state != D_PREP) { 2993 list_move_tail(&dc->list, &dcc->fstrim_list); 2994 goto skip; 2995 } 2996 2997 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2998 2999 if (issued >= dpolicy->max_requests) { 3000 start = dc->lstart + dc->len; 3001 3002 if (err) 3003 __remove_discard_cmd(sbi, dc); 3004 3005 blk_finish_plug(&plug); 3006 mutex_unlock(&dcc->cmd_lock); 3007 trimmed += __wait_all_discard_cmd(sbi, NULL); 3008 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 3009 goto next; 3010 } 3011 skip: 3012 node = rb_next(&dc->rb_node); 3013 if (err) 3014 __remove_discard_cmd(sbi, dc); 3015 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3016 3017 if (fatal_signal_pending(current)) 3018 break; 3019 } 3020 3021 blk_finish_plug(&plug); 3022 mutex_unlock(&dcc->cmd_lock); 3023 3024 return trimmed; 3025 } 3026 3027 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3028 { 3029 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3030 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3031 unsigned int start_segno, end_segno; 3032 block_t start_block, end_block; 3033 struct cp_control cpc; 3034 struct discard_policy dpolicy; 3035 unsigned long long trimmed = 0; 3036 int err = 0; 3037 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3038 3039 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3040 return -EINVAL; 3041 3042 if (end < MAIN_BLKADDR(sbi)) 3043 goto out; 3044 3045 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3046 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3047 return -EFSCORRUPTED; 3048 } 3049 3050 /* start/end segment number in main_area */ 3051 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3052 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3053 GET_SEGNO(sbi, end); 3054 if (need_align) { 3055 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3056 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3057 } 3058 3059 cpc.reason = CP_DISCARD; 3060 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3061 cpc.trim_start = start_segno; 3062 cpc.trim_end = end_segno; 3063 3064 if (sbi->discard_blks == 0) 3065 goto out; 3066 3067 down_write(&sbi->gc_lock); 3068 err = f2fs_write_checkpoint(sbi, &cpc); 3069 up_write(&sbi->gc_lock); 3070 if (err) 3071 goto out; 3072 3073 /* 3074 * We filed discard candidates, but actually we don't need to wait for 3075 * all of them, since they'll be issued in idle time along with runtime 3076 * discard option. User configuration looks like using runtime discard 3077 * or periodic fstrim instead of it. 3078 */ 3079 if (f2fs_realtime_discard_enable(sbi)) 3080 goto out; 3081 3082 start_block = START_BLOCK(sbi, start_segno); 3083 end_block = START_BLOCK(sbi, end_segno + 1); 3084 3085 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3086 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3087 start_block, end_block); 3088 3089 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3090 start_block, end_block); 3091 out: 3092 if (!err) 3093 range->len = F2FS_BLK_TO_BYTES(trimmed); 3094 return err; 3095 } 3096 3097 static bool __has_curseg_space(struct f2fs_sb_info *sbi, 3098 struct curseg_info *curseg) 3099 { 3100 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, 3101 curseg->segno); 3102 } 3103 3104 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3105 { 3106 switch (hint) { 3107 case WRITE_LIFE_SHORT: 3108 return CURSEG_HOT_DATA; 3109 case WRITE_LIFE_EXTREME: 3110 return CURSEG_COLD_DATA; 3111 default: 3112 return CURSEG_WARM_DATA; 3113 } 3114 } 3115 3116 /* This returns write hints for each segment type. This hints will be 3117 * passed down to block layer. There are mapping tables which depend on 3118 * the mount option 'whint_mode'. 3119 * 3120 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 3121 * 3122 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 3123 * 3124 * User F2FS Block 3125 * ---- ---- ----- 3126 * META WRITE_LIFE_NOT_SET 3127 * HOT_NODE " 3128 * WARM_NODE " 3129 * COLD_NODE " 3130 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3131 * extension list " " 3132 * 3133 * -- buffered io 3134 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3135 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3136 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3137 * WRITE_LIFE_NONE " " 3138 * WRITE_LIFE_MEDIUM " " 3139 * WRITE_LIFE_LONG " " 3140 * 3141 * -- direct io 3142 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3143 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3144 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3145 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3146 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3147 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3148 * 3149 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 3150 * 3151 * User F2FS Block 3152 * ---- ---- ----- 3153 * META WRITE_LIFE_MEDIUM; 3154 * HOT_NODE WRITE_LIFE_NOT_SET 3155 * WARM_NODE " 3156 * COLD_NODE WRITE_LIFE_NONE 3157 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 3158 * extension list " " 3159 * 3160 * -- buffered io 3161 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3162 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3163 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 3164 * WRITE_LIFE_NONE " " 3165 * WRITE_LIFE_MEDIUM " " 3166 * WRITE_LIFE_LONG " " 3167 * 3168 * -- direct io 3169 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 3170 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 3171 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 3172 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 3173 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 3174 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 3175 */ 3176 3177 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 3178 enum page_type type, enum temp_type temp) 3179 { 3180 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 3181 if (type == DATA) { 3182 if (temp == WARM) 3183 return WRITE_LIFE_NOT_SET; 3184 else if (temp == HOT) 3185 return WRITE_LIFE_SHORT; 3186 else if (temp == COLD) 3187 return WRITE_LIFE_EXTREME; 3188 } else { 3189 return WRITE_LIFE_NOT_SET; 3190 } 3191 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 3192 if (type == DATA) { 3193 if (temp == WARM) 3194 return WRITE_LIFE_LONG; 3195 else if (temp == HOT) 3196 return WRITE_LIFE_SHORT; 3197 else if (temp == COLD) 3198 return WRITE_LIFE_EXTREME; 3199 } else if (type == NODE) { 3200 if (temp == WARM || temp == HOT) 3201 return WRITE_LIFE_NOT_SET; 3202 else if (temp == COLD) 3203 return WRITE_LIFE_NONE; 3204 } else if (type == META) { 3205 return WRITE_LIFE_MEDIUM; 3206 } 3207 } 3208 return WRITE_LIFE_NOT_SET; 3209 } 3210 3211 static int __get_segment_type_2(struct f2fs_io_info *fio) 3212 { 3213 if (fio->type == DATA) 3214 return CURSEG_HOT_DATA; 3215 else 3216 return CURSEG_HOT_NODE; 3217 } 3218 3219 static int __get_segment_type_4(struct f2fs_io_info *fio) 3220 { 3221 if (fio->type == DATA) { 3222 struct inode *inode = fio->page->mapping->host; 3223 3224 if (S_ISDIR(inode->i_mode)) 3225 return CURSEG_HOT_DATA; 3226 else 3227 return CURSEG_COLD_DATA; 3228 } else { 3229 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3230 return CURSEG_WARM_NODE; 3231 else 3232 return CURSEG_COLD_NODE; 3233 } 3234 } 3235 3236 static int __get_segment_type_6(struct f2fs_io_info *fio) 3237 { 3238 if (fio->type == DATA) { 3239 struct inode *inode = fio->page->mapping->host; 3240 3241 if (is_cold_data(fio->page)) { 3242 if (fio->sbi->am.atgc_enabled) 3243 return CURSEG_ALL_DATA_ATGC; 3244 else 3245 return CURSEG_COLD_DATA; 3246 } 3247 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3248 return CURSEG_COLD_DATA; 3249 if (file_is_hot(inode) || 3250 is_inode_flag_set(inode, FI_HOT_DATA) || 3251 f2fs_is_atomic_file(inode) || 3252 f2fs_is_volatile_file(inode)) 3253 return CURSEG_HOT_DATA; 3254 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3255 } else { 3256 if (IS_DNODE(fio->page)) 3257 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3258 CURSEG_HOT_NODE; 3259 return CURSEG_COLD_NODE; 3260 } 3261 } 3262 3263 static int __get_segment_type(struct f2fs_io_info *fio) 3264 { 3265 int type = 0; 3266 3267 switch (F2FS_OPTION(fio->sbi).active_logs) { 3268 case 2: 3269 type = __get_segment_type_2(fio); 3270 break; 3271 case 4: 3272 type = __get_segment_type_4(fio); 3273 break; 3274 case 6: 3275 type = __get_segment_type_6(fio); 3276 break; 3277 default: 3278 f2fs_bug_on(fio->sbi, true); 3279 } 3280 3281 if (IS_HOT(type)) 3282 fio->temp = HOT; 3283 else if (IS_WARM(type)) 3284 fio->temp = WARM; 3285 else 3286 fio->temp = COLD; 3287 return type; 3288 } 3289 3290 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3291 block_t old_blkaddr, block_t *new_blkaddr, 3292 struct f2fs_summary *sum, int type, 3293 struct f2fs_io_info *fio) 3294 { 3295 struct sit_info *sit_i = SIT_I(sbi); 3296 struct curseg_info *curseg = CURSEG_I(sbi, type); 3297 unsigned long long old_mtime; 3298 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3299 struct seg_entry *se = NULL; 3300 3301 down_read(&SM_I(sbi)->curseg_lock); 3302 3303 mutex_lock(&curseg->curseg_mutex); 3304 down_write(&sit_i->sentry_lock); 3305 3306 if (from_gc) { 3307 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3308 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3309 sanity_check_seg_type(sbi, se->type); 3310 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3311 } 3312 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3313 3314 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3315 3316 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3317 3318 /* 3319 * __add_sum_entry should be resided under the curseg_mutex 3320 * because, this function updates a summary entry in the 3321 * current summary block. 3322 */ 3323 __add_sum_entry(sbi, type, sum); 3324 3325 __refresh_next_blkoff(sbi, curseg); 3326 3327 stat_inc_block_count(sbi, curseg); 3328 3329 if (from_gc) { 3330 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3331 } else { 3332 update_segment_mtime(sbi, old_blkaddr, 0); 3333 old_mtime = 0; 3334 } 3335 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3336 3337 /* 3338 * SIT information should be updated before segment allocation, 3339 * since SSR needs latest valid block information. 3340 */ 3341 update_sit_entry(sbi, *new_blkaddr, 1); 3342 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3343 update_sit_entry(sbi, old_blkaddr, -1); 3344 3345 if (!__has_curseg_space(sbi, curseg)) { 3346 if (from_gc) 3347 get_atssr_segment(sbi, type, se->type, 3348 AT_SSR, se->mtime); 3349 else 3350 sit_i->s_ops->allocate_segment(sbi, type, false); 3351 } 3352 /* 3353 * segment dirty status should be updated after segment allocation, 3354 * so we just need to update status only one time after previous 3355 * segment being closed. 3356 */ 3357 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3358 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3359 3360 up_write(&sit_i->sentry_lock); 3361 3362 if (page && IS_NODESEG(type)) { 3363 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3364 3365 f2fs_inode_chksum_set(sbi, page); 3366 } 3367 3368 if (F2FS_IO_ALIGNED(sbi)) 3369 fio->retry = false; 3370 3371 if (fio) { 3372 struct f2fs_bio_info *io; 3373 3374 INIT_LIST_HEAD(&fio->list); 3375 fio->in_list = true; 3376 io = sbi->write_io[fio->type] + fio->temp; 3377 spin_lock(&io->io_lock); 3378 list_add_tail(&fio->list, &io->io_list); 3379 spin_unlock(&io->io_lock); 3380 } 3381 3382 mutex_unlock(&curseg->curseg_mutex); 3383 3384 up_read(&SM_I(sbi)->curseg_lock); 3385 } 3386 3387 static void update_device_state(struct f2fs_io_info *fio) 3388 { 3389 struct f2fs_sb_info *sbi = fio->sbi; 3390 unsigned int devidx; 3391 3392 if (!f2fs_is_multi_device(sbi)) 3393 return; 3394 3395 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3396 3397 /* update device state for fsync */ 3398 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3399 3400 /* update device state for checkpoint */ 3401 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3402 spin_lock(&sbi->dev_lock); 3403 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3404 spin_unlock(&sbi->dev_lock); 3405 } 3406 } 3407 3408 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3409 { 3410 int type = __get_segment_type(fio); 3411 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3412 3413 if (keep_order) 3414 down_read(&fio->sbi->io_order_lock); 3415 reallocate: 3416 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3417 &fio->new_blkaddr, sum, type, fio); 3418 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3419 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3420 fio->old_blkaddr, fio->old_blkaddr); 3421 3422 /* writeout dirty page into bdev */ 3423 f2fs_submit_page_write(fio); 3424 if (fio->retry) { 3425 fio->old_blkaddr = fio->new_blkaddr; 3426 goto reallocate; 3427 } 3428 3429 update_device_state(fio); 3430 3431 if (keep_order) 3432 up_read(&fio->sbi->io_order_lock); 3433 } 3434 3435 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3436 enum iostat_type io_type) 3437 { 3438 struct f2fs_io_info fio = { 3439 .sbi = sbi, 3440 .type = META, 3441 .temp = HOT, 3442 .op = REQ_OP_WRITE, 3443 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3444 .old_blkaddr = page->index, 3445 .new_blkaddr = page->index, 3446 .page = page, 3447 .encrypted_page = NULL, 3448 .in_list = false, 3449 }; 3450 3451 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3452 fio.op_flags &= ~REQ_META; 3453 3454 set_page_writeback(page); 3455 ClearPageError(page); 3456 f2fs_submit_page_write(&fio); 3457 3458 stat_inc_meta_count(sbi, page->index); 3459 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3460 } 3461 3462 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3463 { 3464 struct f2fs_summary sum; 3465 3466 set_summary(&sum, nid, 0, 0); 3467 do_write_page(&sum, fio); 3468 3469 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3470 } 3471 3472 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3473 struct f2fs_io_info *fio) 3474 { 3475 struct f2fs_sb_info *sbi = fio->sbi; 3476 struct f2fs_summary sum; 3477 3478 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3479 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3480 do_write_page(&sum, fio); 3481 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3482 3483 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3484 } 3485 3486 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3487 { 3488 int err; 3489 struct f2fs_sb_info *sbi = fio->sbi; 3490 unsigned int segno; 3491 3492 fio->new_blkaddr = fio->old_blkaddr; 3493 /* i/o temperature is needed for passing down write hints */ 3494 __get_segment_type(fio); 3495 3496 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3497 3498 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3499 set_sbi_flag(sbi, SBI_NEED_FSCK); 3500 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3501 __func__, segno); 3502 return -EFSCORRUPTED; 3503 } 3504 3505 stat_inc_inplace_blocks(fio->sbi); 3506 3507 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3508 err = f2fs_merge_page_bio(fio); 3509 else 3510 err = f2fs_submit_page_bio(fio); 3511 if (!err) { 3512 update_device_state(fio); 3513 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3514 } 3515 3516 return err; 3517 } 3518 3519 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3520 unsigned int segno) 3521 { 3522 int i; 3523 3524 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3525 if (CURSEG_I(sbi, i)->segno == segno) 3526 break; 3527 } 3528 return i; 3529 } 3530 3531 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3532 block_t old_blkaddr, block_t new_blkaddr, 3533 bool recover_curseg, bool recover_newaddr, 3534 bool from_gc) 3535 { 3536 struct sit_info *sit_i = SIT_I(sbi); 3537 struct curseg_info *curseg; 3538 unsigned int segno, old_cursegno; 3539 struct seg_entry *se; 3540 int type; 3541 unsigned short old_blkoff; 3542 3543 segno = GET_SEGNO(sbi, new_blkaddr); 3544 se = get_seg_entry(sbi, segno); 3545 type = se->type; 3546 3547 down_write(&SM_I(sbi)->curseg_lock); 3548 3549 if (!recover_curseg) { 3550 /* for recovery flow */ 3551 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3552 if (old_blkaddr == NULL_ADDR) 3553 type = CURSEG_COLD_DATA; 3554 else 3555 type = CURSEG_WARM_DATA; 3556 } 3557 } else { 3558 if (IS_CURSEG(sbi, segno)) { 3559 /* se->type is volatile as SSR allocation */ 3560 type = __f2fs_get_curseg(sbi, segno); 3561 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3562 } else { 3563 type = CURSEG_WARM_DATA; 3564 } 3565 } 3566 3567 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3568 curseg = CURSEG_I(sbi, type); 3569 3570 mutex_lock(&curseg->curseg_mutex); 3571 down_write(&sit_i->sentry_lock); 3572 3573 old_cursegno = curseg->segno; 3574 old_blkoff = curseg->next_blkoff; 3575 3576 /* change the current segment */ 3577 if (segno != curseg->segno) { 3578 curseg->next_segno = segno; 3579 change_curseg(sbi, type, true); 3580 } 3581 3582 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3583 __add_sum_entry(sbi, type, sum); 3584 3585 if (!recover_curseg || recover_newaddr) { 3586 if (!from_gc) 3587 update_segment_mtime(sbi, new_blkaddr, 0); 3588 update_sit_entry(sbi, new_blkaddr, 1); 3589 } 3590 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3591 invalidate_mapping_pages(META_MAPPING(sbi), 3592 old_blkaddr, old_blkaddr); 3593 if (!from_gc) 3594 update_segment_mtime(sbi, old_blkaddr, 0); 3595 update_sit_entry(sbi, old_blkaddr, -1); 3596 } 3597 3598 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3599 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3600 3601 locate_dirty_segment(sbi, old_cursegno); 3602 3603 if (recover_curseg) { 3604 if (old_cursegno != curseg->segno) { 3605 curseg->next_segno = old_cursegno; 3606 change_curseg(sbi, type, true); 3607 } 3608 curseg->next_blkoff = old_blkoff; 3609 } 3610 3611 up_write(&sit_i->sentry_lock); 3612 mutex_unlock(&curseg->curseg_mutex); 3613 up_write(&SM_I(sbi)->curseg_lock); 3614 } 3615 3616 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3617 block_t old_addr, block_t new_addr, 3618 unsigned char version, bool recover_curseg, 3619 bool recover_newaddr) 3620 { 3621 struct f2fs_summary sum; 3622 3623 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3624 3625 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3626 recover_curseg, recover_newaddr, false); 3627 3628 f2fs_update_data_blkaddr(dn, new_addr); 3629 } 3630 3631 void f2fs_wait_on_page_writeback(struct page *page, 3632 enum page_type type, bool ordered, bool locked) 3633 { 3634 if (PageWriteback(page)) { 3635 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3636 3637 /* submit cached LFS IO */ 3638 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3639 /* sbumit cached IPU IO */ 3640 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3641 if (ordered) { 3642 wait_on_page_writeback(page); 3643 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3644 } else { 3645 wait_for_stable_page(page); 3646 } 3647 } 3648 } 3649 3650 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3651 { 3652 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3653 struct page *cpage; 3654 3655 if (!f2fs_post_read_required(inode)) 3656 return; 3657 3658 if (!__is_valid_data_blkaddr(blkaddr)) 3659 return; 3660 3661 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3662 if (cpage) { 3663 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3664 f2fs_put_page(cpage, 1); 3665 } 3666 } 3667 3668 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3669 block_t len) 3670 { 3671 block_t i; 3672 3673 for (i = 0; i < len; i++) 3674 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3675 } 3676 3677 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3678 { 3679 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3680 struct curseg_info *seg_i; 3681 unsigned char *kaddr; 3682 struct page *page; 3683 block_t start; 3684 int i, j, offset; 3685 3686 start = start_sum_block(sbi); 3687 3688 page = f2fs_get_meta_page(sbi, start++); 3689 if (IS_ERR(page)) 3690 return PTR_ERR(page); 3691 kaddr = (unsigned char *)page_address(page); 3692 3693 /* Step 1: restore nat cache */ 3694 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3695 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3696 3697 /* Step 2: restore sit cache */ 3698 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3699 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3700 offset = 2 * SUM_JOURNAL_SIZE; 3701 3702 /* Step 3: restore summary entries */ 3703 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3704 unsigned short blk_off; 3705 unsigned int segno; 3706 3707 seg_i = CURSEG_I(sbi, i); 3708 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3709 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3710 seg_i->next_segno = segno; 3711 reset_curseg(sbi, i, 0); 3712 seg_i->alloc_type = ckpt->alloc_type[i]; 3713 seg_i->next_blkoff = blk_off; 3714 3715 if (seg_i->alloc_type == SSR) 3716 blk_off = sbi->blocks_per_seg; 3717 3718 for (j = 0; j < blk_off; j++) { 3719 struct f2fs_summary *s; 3720 s = (struct f2fs_summary *)(kaddr + offset); 3721 seg_i->sum_blk->entries[j] = *s; 3722 offset += SUMMARY_SIZE; 3723 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3724 SUM_FOOTER_SIZE) 3725 continue; 3726 3727 f2fs_put_page(page, 1); 3728 page = NULL; 3729 3730 page = f2fs_get_meta_page(sbi, start++); 3731 if (IS_ERR(page)) 3732 return PTR_ERR(page); 3733 kaddr = (unsigned char *)page_address(page); 3734 offset = 0; 3735 } 3736 } 3737 f2fs_put_page(page, 1); 3738 return 0; 3739 } 3740 3741 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3742 { 3743 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3744 struct f2fs_summary_block *sum; 3745 struct curseg_info *curseg; 3746 struct page *new; 3747 unsigned short blk_off; 3748 unsigned int segno = 0; 3749 block_t blk_addr = 0; 3750 int err = 0; 3751 3752 /* get segment number and block addr */ 3753 if (IS_DATASEG(type)) { 3754 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3755 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3756 CURSEG_HOT_DATA]); 3757 if (__exist_node_summaries(sbi)) 3758 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3759 else 3760 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3761 } else { 3762 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3763 CURSEG_HOT_NODE]); 3764 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3765 CURSEG_HOT_NODE]); 3766 if (__exist_node_summaries(sbi)) 3767 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3768 type - CURSEG_HOT_NODE); 3769 else 3770 blk_addr = GET_SUM_BLOCK(sbi, segno); 3771 } 3772 3773 new = f2fs_get_meta_page(sbi, blk_addr); 3774 if (IS_ERR(new)) 3775 return PTR_ERR(new); 3776 sum = (struct f2fs_summary_block *)page_address(new); 3777 3778 if (IS_NODESEG(type)) { 3779 if (__exist_node_summaries(sbi)) { 3780 struct f2fs_summary *ns = &sum->entries[0]; 3781 int i; 3782 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3783 ns->version = 0; 3784 ns->ofs_in_node = 0; 3785 } 3786 } else { 3787 err = f2fs_restore_node_summary(sbi, segno, sum); 3788 if (err) 3789 goto out; 3790 } 3791 } 3792 3793 /* set uncompleted segment to curseg */ 3794 curseg = CURSEG_I(sbi, type); 3795 mutex_lock(&curseg->curseg_mutex); 3796 3797 /* update journal info */ 3798 down_write(&curseg->journal_rwsem); 3799 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3800 up_write(&curseg->journal_rwsem); 3801 3802 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3803 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3804 curseg->next_segno = segno; 3805 reset_curseg(sbi, type, 0); 3806 curseg->alloc_type = ckpt->alloc_type[type]; 3807 curseg->next_blkoff = blk_off; 3808 mutex_unlock(&curseg->curseg_mutex); 3809 out: 3810 f2fs_put_page(new, 1); 3811 return err; 3812 } 3813 3814 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3815 { 3816 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3817 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3818 int type = CURSEG_HOT_DATA; 3819 int err; 3820 3821 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3822 int npages = f2fs_npages_for_summary_flush(sbi, true); 3823 3824 if (npages >= 2) 3825 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3826 META_CP, true); 3827 3828 /* restore for compacted data summary */ 3829 err = read_compacted_summaries(sbi); 3830 if (err) 3831 return err; 3832 type = CURSEG_HOT_NODE; 3833 } 3834 3835 if (__exist_node_summaries(sbi)) 3836 f2fs_ra_meta_pages(sbi, 3837 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 3838 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 3839 3840 for (; type <= CURSEG_COLD_NODE; type++) { 3841 err = read_normal_summaries(sbi, type); 3842 if (err) 3843 return err; 3844 } 3845 3846 /* sanity check for summary blocks */ 3847 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3848 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3849 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", 3850 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3851 return -EINVAL; 3852 } 3853 3854 return 0; 3855 } 3856 3857 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3858 { 3859 struct page *page; 3860 unsigned char *kaddr; 3861 struct f2fs_summary *summary; 3862 struct curseg_info *seg_i; 3863 int written_size = 0; 3864 int i, j; 3865 3866 page = f2fs_grab_meta_page(sbi, blkaddr++); 3867 kaddr = (unsigned char *)page_address(page); 3868 memset(kaddr, 0, PAGE_SIZE); 3869 3870 /* Step 1: write nat cache */ 3871 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3872 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3873 written_size += SUM_JOURNAL_SIZE; 3874 3875 /* Step 2: write sit cache */ 3876 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3877 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3878 written_size += SUM_JOURNAL_SIZE; 3879 3880 /* Step 3: write summary entries */ 3881 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3882 unsigned short blkoff; 3883 seg_i = CURSEG_I(sbi, i); 3884 if (sbi->ckpt->alloc_type[i] == SSR) 3885 blkoff = sbi->blocks_per_seg; 3886 else 3887 blkoff = curseg_blkoff(sbi, i); 3888 3889 for (j = 0; j < blkoff; j++) { 3890 if (!page) { 3891 page = f2fs_grab_meta_page(sbi, blkaddr++); 3892 kaddr = (unsigned char *)page_address(page); 3893 memset(kaddr, 0, PAGE_SIZE); 3894 written_size = 0; 3895 } 3896 summary = (struct f2fs_summary *)(kaddr + written_size); 3897 *summary = seg_i->sum_blk->entries[j]; 3898 written_size += SUMMARY_SIZE; 3899 3900 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3901 SUM_FOOTER_SIZE) 3902 continue; 3903 3904 set_page_dirty(page); 3905 f2fs_put_page(page, 1); 3906 page = NULL; 3907 } 3908 } 3909 if (page) { 3910 set_page_dirty(page); 3911 f2fs_put_page(page, 1); 3912 } 3913 } 3914 3915 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3916 block_t blkaddr, int type) 3917 { 3918 int i, end; 3919 if (IS_DATASEG(type)) 3920 end = type + NR_CURSEG_DATA_TYPE; 3921 else 3922 end = type + NR_CURSEG_NODE_TYPE; 3923 3924 for (i = type; i < end; i++) 3925 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3926 } 3927 3928 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3929 { 3930 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3931 write_compacted_summaries(sbi, start_blk); 3932 else 3933 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3934 } 3935 3936 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3937 { 3938 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3939 } 3940 3941 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3942 unsigned int val, int alloc) 3943 { 3944 int i; 3945 3946 if (type == NAT_JOURNAL) { 3947 for (i = 0; i < nats_in_cursum(journal); i++) { 3948 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3949 return i; 3950 } 3951 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3952 return update_nats_in_cursum(journal, 1); 3953 } else if (type == SIT_JOURNAL) { 3954 for (i = 0; i < sits_in_cursum(journal); i++) 3955 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3956 return i; 3957 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3958 return update_sits_in_cursum(journal, 1); 3959 } 3960 return -1; 3961 } 3962 3963 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3964 unsigned int segno) 3965 { 3966 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 3967 } 3968 3969 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3970 unsigned int start) 3971 { 3972 struct sit_info *sit_i = SIT_I(sbi); 3973 struct page *page; 3974 pgoff_t src_off, dst_off; 3975 3976 src_off = current_sit_addr(sbi, start); 3977 dst_off = next_sit_addr(sbi, src_off); 3978 3979 page = f2fs_grab_meta_page(sbi, dst_off); 3980 seg_info_to_sit_page(sbi, page, start); 3981 3982 set_page_dirty(page); 3983 set_to_next_sit(sit_i, start); 3984 3985 return page; 3986 } 3987 3988 static struct sit_entry_set *grab_sit_entry_set(void) 3989 { 3990 struct sit_entry_set *ses = 3991 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3992 3993 ses->entry_cnt = 0; 3994 INIT_LIST_HEAD(&ses->set_list); 3995 return ses; 3996 } 3997 3998 static void release_sit_entry_set(struct sit_entry_set *ses) 3999 { 4000 list_del(&ses->set_list); 4001 kmem_cache_free(sit_entry_set_slab, ses); 4002 } 4003 4004 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4005 struct list_head *head) 4006 { 4007 struct sit_entry_set *next = ses; 4008 4009 if (list_is_last(&ses->set_list, head)) 4010 return; 4011 4012 list_for_each_entry_continue(next, head, set_list) 4013 if (ses->entry_cnt <= next->entry_cnt) 4014 break; 4015 4016 list_move_tail(&ses->set_list, &next->set_list); 4017 } 4018 4019 static void add_sit_entry(unsigned int segno, struct list_head *head) 4020 { 4021 struct sit_entry_set *ses; 4022 unsigned int start_segno = START_SEGNO(segno); 4023 4024 list_for_each_entry(ses, head, set_list) { 4025 if (ses->start_segno == start_segno) { 4026 ses->entry_cnt++; 4027 adjust_sit_entry_set(ses, head); 4028 return; 4029 } 4030 } 4031 4032 ses = grab_sit_entry_set(); 4033 4034 ses->start_segno = start_segno; 4035 ses->entry_cnt++; 4036 list_add(&ses->set_list, head); 4037 } 4038 4039 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4040 { 4041 struct f2fs_sm_info *sm_info = SM_I(sbi); 4042 struct list_head *set_list = &sm_info->sit_entry_set; 4043 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4044 unsigned int segno; 4045 4046 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4047 add_sit_entry(segno, set_list); 4048 } 4049 4050 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4051 { 4052 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4053 struct f2fs_journal *journal = curseg->journal; 4054 int i; 4055 4056 down_write(&curseg->journal_rwsem); 4057 for (i = 0; i < sits_in_cursum(journal); i++) { 4058 unsigned int segno; 4059 bool dirtied; 4060 4061 segno = le32_to_cpu(segno_in_journal(journal, i)); 4062 dirtied = __mark_sit_entry_dirty(sbi, segno); 4063 4064 if (!dirtied) 4065 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4066 } 4067 update_sits_in_cursum(journal, -i); 4068 up_write(&curseg->journal_rwsem); 4069 } 4070 4071 /* 4072 * CP calls this function, which flushes SIT entries including sit_journal, 4073 * and moves prefree segs to free segs. 4074 */ 4075 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4076 { 4077 struct sit_info *sit_i = SIT_I(sbi); 4078 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4079 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4080 struct f2fs_journal *journal = curseg->journal; 4081 struct sit_entry_set *ses, *tmp; 4082 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4083 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4084 struct seg_entry *se; 4085 4086 down_write(&sit_i->sentry_lock); 4087 4088 if (!sit_i->dirty_sentries) 4089 goto out; 4090 4091 /* 4092 * add and account sit entries of dirty bitmap in sit entry 4093 * set temporarily 4094 */ 4095 add_sits_in_set(sbi); 4096 4097 /* 4098 * if there are no enough space in journal to store dirty sit 4099 * entries, remove all entries from journal and add and account 4100 * them in sit entry set. 4101 */ 4102 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4103 !to_journal) 4104 remove_sits_in_journal(sbi); 4105 4106 /* 4107 * there are two steps to flush sit entries: 4108 * #1, flush sit entries to journal in current cold data summary block. 4109 * #2, flush sit entries to sit page. 4110 */ 4111 list_for_each_entry_safe(ses, tmp, head, set_list) { 4112 struct page *page = NULL; 4113 struct f2fs_sit_block *raw_sit = NULL; 4114 unsigned int start_segno = ses->start_segno; 4115 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4116 (unsigned long)MAIN_SEGS(sbi)); 4117 unsigned int segno = start_segno; 4118 4119 if (to_journal && 4120 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4121 to_journal = false; 4122 4123 if (to_journal) { 4124 down_write(&curseg->journal_rwsem); 4125 } else { 4126 page = get_next_sit_page(sbi, start_segno); 4127 raw_sit = page_address(page); 4128 } 4129 4130 /* flush dirty sit entries in region of current sit set */ 4131 for_each_set_bit_from(segno, bitmap, end) { 4132 int offset, sit_offset; 4133 4134 se = get_seg_entry(sbi, segno); 4135 #ifdef CONFIG_F2FS_CHECK_FS 4136 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4137 SIT_VBLOCK_MAP_SIZE)) 4138 f2fs_bug_on(sbi, 1); 4139 #endif 4140 4141 /* add discard candidates */ 4142 if (!(cpc->reason & CP_DISCARD)) { 4143 cpc->trim_start = segno; 4144 add_discard_addrs(sbi, cpc, false); 4145 } 4146 4147 if (to_journal) { 4148 offset = f2fs_lookup_journal_in_cursum(journal, 4149 SIT_JOURNAL, segno, 1); 4150 f2fs_bug_on(sbi, offset < 0); 4151 segno_in_journal(journal, offset) = 4152 cpu_to_le32(segno); 4153 seg_info_to_raw_sit(se, 4154 &sit_in_journal(journal, offset)); 4155 check_block_count(sbi, segno, 4156 &sit_in_journal(journal, offset)); 4157 } else { 4158 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4159 seg_info_to_raw_sit(se, 4160 &raw_sit->entries[sit_offset]); 4161 check_block_count(sbi, segno, 4162 &raw_sit->entries[sit_offset]); 4163 } 4164 4165 __clear_bit(segno, bitmap); 4166 sit_i->dirty_sentries--; 4167 ses->entry_cnt--; 4168 } 4169 4170 if (to_journal) 4171 up_write(&curseg->journal_rwsem); 4172 else 4173 f2fs_put_page(page, 1); 4174 4175 f2fs_bug_on(sbi, ses->entry_cnt); 4176 release_sit_entry_set(ses); 4177 } 4178 4179 f2fs_bug_on(sbi, !list_empty(head)); 4180 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4181 out: 4182 if (cpc->reason & CP_DISCARD) { 4183 __u64 trim_start = cpc->trim_start; 4184 4185 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4186 add_discard_addrs(sbi, cpc, false); 4187 4188 cpc->trim_start = trim_start; 4189 } 4190 up_write(&sit_i->sentry_lock); 4191 4192 set_prefree_as_free_segments(sbi); 4193 } 4194 4195 static int build_sit_info(struct f2fs_sb_info *sbi) 4196 { 4197 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4198 struct sit_info *sit_i; 4199 unsigned int sit_segs, start; 4200 char *src_bitmap, *bitmap; 4201 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4202 4203 /* allocate memory for SIT information */ 4204 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4205 if (!sit_i) 4206 return -ENOMEM; 4207 4208 SM_I(sbi)->sit_info = sit_i; 4209 4210 sit_i->sentries = 4211 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4212 MAIN_SEGS(sbi)), 4213 GFP_KERNEL); 4214 if (!sit_i->sentries) 4215 return -ENOMEM; 4216 4217 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4218 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4219 GFP_KERNEL); 4220 if (!sit_i->dirty_sentries_bitmap) 4221 return -ENOMEM; 4222 4223 #ifdef CONFIG_F2FS_CHECK_FS 4224 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; 4225 #else 4226 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; 4227 #endif 4228 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4229 if (!sit_i->bitmap) 4230 return -ENOMEM; 4231 4232 bitmap = sit_i->bitmap; 4233 4234 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4235 sit_i->sentries[start].cur_valid_map = bitmap; 4236 bitmap += SIT_VBLOCK_MAP_SIZE; 4237 4238 sit_i->sentries[start].ckpt_valid_map = bitmap; 4239 bitmap += SIT_VBLOCK_MAP_SIZE; 4240 4241 #ifdef CONFIG_F2FS_CHECK_FS 4242 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4243 bitmap += SIT_VBLOCK_MAP_SIZE; 4244 #endif 4245 4246 sit_i->sentries[start].discard_map = bitmap; 4247 bitmap += SIT_VBLOCK_MAP_SIZE; 4248 } 4249 4250 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4251 if (!sit_i->tmp_map) 4252 return -ENOMEM; 4253 4254 if (__is_large_section(sbi)) { 4255 sit_i->sec_entries = 4256 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4257 MAIN_SECS(sbi)), 4258 GFP_KERNEL); 4259 if (!sit_i->sec_entries) 4260 return -ENOMEM; 4261 } 4262 4263 /* get information related with SIT */ 4264 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4265 4266 /* setup SIT bitmap from ckeckpoint pack */ 4267 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4268 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4269 4270 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4271 if (!sit_i->sit_bitmap) 4272 return -ENOMEM; 4273 4274 #ifdef CONFIG_F2FS_CHECK_FS 4275 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4276 sit_bitmap_size, GFP_KERNEL); 4277 if (!sit_i->sit_bitmap_mir) 4278 return -ENOMEM; 4279 4280 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4281 main_bitmap_size, GFP_KERNEL); 4282 if (!sit_i->invalid_segmap) 4283 return -ENOMEM; 4284 #endif 4285 4286 /* init SIT information */ 4287 sit_i->s_ops = &default_salloc_ops; 4288 4289 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4290 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4291 sit_i->written_valid_blocks = 0; 4292 sit_i->bitmap_size = sit_bitmap_size; 4293 sit_i->dirty_sentries = 0; 4294 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4295 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4296 sit_i->mounted_time = ktime_get_boottime_seconds(); 4297 init_rwsem(&sit_i->sentry_lock); 4298 return 0; 4299 } 4300 4301 static int build_free_segmap(struct f2fs_sb_info *sbi) 4302 { 4303 struct free_segmap_info *free_i; 4304 unsigned int bitmap_size, sec_bitmap_size; 4305 4306 /* allocate memory for free segmap information */ 4307 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4308 if (!free_i) 4309 return -ENOMEM; 4310 4311 SM_I(sbi)->free_info = free_i; 4312 4313 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4314 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4315 if (!free_i->free_segmap) 4316 return -ENOMEM; 4317 4318 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4319 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4320 if (!free_i->free_secmap) 4321 return -ENOMEM; 4322 4323 /* set all segments as dirty temporarily */ 4324 memset(free_i->free_segmap, 0xff, bitmap_size); 4325 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4326 4327 /* init free segmap information */ 4328 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4329 free_i->free_segments = 0; 4330 free_i->free_sections = 0; 4331 spin_lock_init(&free_i->segmap_lock); 4332 return 0; 4333 } 4334 4335 static int build_curseg(struct f2fs_sb_info *sbi) 4336 { 4337 struct curseg_info *array; 4338 int i; 4339 4340 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4341 sizeof(*array)), GFP_KERNEL); 4342 if (!array) 4343 return -ENOMEM; 4344 4345 SM_I(sbi)->curseg_array = array; 4346 4347 for (i = 0; i < NO_CHECK_TYPE; i++) { 4348 mutex_init(&array[i].curseg_mutex); 4349 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4350 if (!array[i].sum_blk) 4351 return -ENOMEM; 4352 init_rwsem(&array[i].journal_rwsem); 4353 array[i].journal = f2fs_kzalloc(sbi, 4354 sizeof(struct f2fs_journal), GFP_KERNEL); 4355 if (!array[i].journal) 4356 return -ENOMEM; 4357 if (i < NR_PERSISTENT_LOG) 4358 array[i].seg_type = CURSEG_HOT_DATA + i; 4359 else if (i == CURSEG_COLD_DATA_PINNED) 4360 array[i].seg_type = CURSEG_COLD_DATA; 4361 else if (i == CURSEG_ALL_DATA_ATGC) 4362 array[i].seg_type = CURSEG_COLD_DATA; 4363 array[i].segno = NULL_SEGNO; 4364 array[i].next_blkoff = 0; 4365 array[i].inited = false; 4366 } 4367 return restore_curseg_summaries(sbi); 4368 } 4369 4370 static int build_sit_entries(struct f2fs_sb_info *sbi) 4371 { 4372 struct sit_info *sit_i = SIT_I(sbi); 4373 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4374 struct f2fs_journal *journal = curseg->journal; 4375 struct seg_entry *se; 4376 struct f2fs_sit_entry sit; 4377 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4378 unsigned int i, start, end; 4379 unsigned int readed, start_blk = 0; 4380 int err = 0; 4381 block_t total_node_blocks = 0; 4382 4383 do { 4384 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4385 META_SIT, true); 4386 4387 start = start_blk * sit_i->sents_per_block; 4388 end = (start_blk + readed) * sit_i->sents_per_block; 4389 4390 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4391 struct f2fs_sit_block *sit_blk; 4392 struct page *page; 4393 4394 se = &sit_i->sentries[start]; 4395 page = get_current_sit_page(sbi, start); 4396 if (IS_ERR(page)) 4397 return PTR_ERR(page); 4398 sit_blk = (struct f2fs_sit_block *)page_address(page); 4399 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4400 f2fs_put_page(page, 1); 4401 4402 err = check_block_count(sbi, start, &sit); 4403 if (err) 4404 return err; 4405 seg_info_from_raw_sit(se, &sit); 4406 if (IS_NODESEG(se->type)) 4407 total_node_blocks += se->valid_blocks; 4408 4409 /* build discard map only one time */ 4410 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4411 memset(se->discard_map, 0xff, 4412 SIT_VBLOCK_MAP_SIZE); 4413 } else { 4414 memcpy(se->discard_map, 4415 se->cur_valid_map, 4416 SIT_VBLOCK_MAP_SIZE); 4417 sbi->discard_blks += 4418 sbi->blocks_per_seg - 4419 se->valid_blocks; 4420 } 4421 4422 if (__is_large_section(sbi)) 4423 get_sec_entry(sbi, start)->valid_blocks += 4424 se->valid_blocks; 4425 } 4426 start_blk += readed; 4427 } while (start_blk < sit_blk_cnt); 4428 4429 down_read(&curseg->journal_rwsem); 4430 for (i = 0; i < sits_in_cursum(journal); i++) { 4431 unsigned int old_valid_blocks; 4432 4433 start = le32_to_cpu(segno_in_journal(journal, i)); 4434 if (start >= MAIN_SEGS(sbi)) { 4435 f2fs_err(sbi, "Wrong journal entry on segno %u", 4436 start); 4437 err = -EFSCORRUPTED; 4438 break; 4439 } 4440 4441 se = &sit_i->sentries[start]; 4442 sit = sit_in_journal(journal, i); 4443 4444 old_valid_blocks = se->valid_blocks; 4445 if (IS_NODESEG(se->type)) 4446 total_node_blocks -= old_valid_blocks; 4447 4448 err = check_block_count(sbi, start, &sit); 4449 if (err) 4450 break; 4451 seg_info_from_raw_sit(se, &sit); 4452 if (IS_NODESEG(se->type)) 4453 total_node_blocks += se->valid_blocks; 4454 4455 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4456 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4457 } else { 4458 memcpy(se->discard_map, se->cur_valid_map, 4459 SIT_VBLOCK_MAP_SIZE); 4460 sbi->discard_blks += old_valid_blocks; 4461 sbi->discard_blks -= se->valid_blocks; 4462 } 4463 4464 if (__is_large_section(sbi)) { 4465 get_sec_entry(sbi, start)->valid_blocks += 4466 se->valid_blocks; 4467 get_sec_entry(sbi, start)->valid_blocks -= 4468 old_valid_blocks; 4469 } 4470 } 4471 up_read(&curseg->journal_rwsem); 4472 4473 if (!err && total_node_blocks != valid_node_count(sbi)) { 4474 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4475 total_node_blocks, valid_node_count(sbi)); 4476 err = -EFSCORRUPTED; 4477 } 4478 4479 return err; 4480 } 4481 4482 static void init_free_segmap(struct f2fs_sb_info *sbi) 4483 { 4484 unsigned int start; 4485 int type; 4486 struct seg_entry *sentry; 4487 4488 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4489 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4490 continue; 4491 sentry = get_seg_entry(sbi, start); 4492 if (!sentry->valid_blocks) 4493 __set_free(sbi, start); 4494 else 4495 SIT_I(sbi)->written_valid_blocks += 4496 sentry->valid_blocks; 4497 } 4498 4499 /* set use the current segments */ 4500 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4501 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4502 __set_test_and_inuse(sbi, curseg_t->segno); 4503 } 4504 } 4505 4506 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4507 { 4508 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4509 struct free_segmap_info *free_i = FREE_I(sbi); 4510 unsigned int segno = 0, offset = 0, secno; 4511 block_t valid_blocks, usable_blks_in_seg; 4512 block_t blks_per_sec = BLKS_PER_SEC(sbi); 4513 4514 while (1) { 4515 /* find dirty segment based on free segmap */ 4516 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4517 if (segno >= MAIN_SEGS(sbi)) 4518 break; 4519 offset = segno + 1; 4520 valid_blocks = get_valid_blocks(sbi, segno, false); 4521 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4522 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4523 continue; 4524 if (valid_blocks > usable_blks_in_seg) { 4525 f2fs_bug_on(sbi, 1); 4526 continue; 4527 } 4528 mutex_lock(&dirty_i->seglist_lock); 4529 __locate_dirty_segment(sbi, segno, DIRTY); 4530 mutex_unlock(&dirty_i->seglist_lock); 4531 } 4532 4533 if (!__is_large_section(sbi)) 4534 return; 4535 4536 mutex_lock(&dirty_i->seglist_lock); 4537 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4538 valid_blocks = get_valid_blocks(sbi, segno, true); 4539 secno = GET_SEC_FROM_SEG(sbi, segno); 4540 4541 if (!valid_blocks || valid_blocks == blks_per_sec) 4542 continue; 4543 if (IS_CURSEC(sbi, secno)) 4544 continue; 4545 set_bit(secno, dirty_i->dirty_secmap); 4546 } 4547 mutex_unlock(&dirty_i->seglist_lock); 4548 } 4549 4550 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4551 { 4552 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4553 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4554 4555 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4556 if (!dirty_i->victim_secmap) 4557 return -ENOMEM; 4558 return 0; 4559 } 4560 4561 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4562 { 4563 struct dirty_seglist_info *dirty_i; 4564 unsigned int bitmap_size, i; 4565 4566 /* allocate memory for dirty segments list information */ 4567 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4568 GFP_KERNEL); 4569 if (!dirty_i) 4570 return -ENOMEM; 4571 4572 SM_I(sbi)->dirty_info = dirty_i; 4573 mutex_init(&dirty_i->seglist_lock); 4574 4575 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4576 4577 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4578 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4579 GFP_KERNEL); 4580 if (!dirty_i->dirty_segmap[i]) 4581 return -ENOMEM; 4582 } 4583 4584 if (__is_large_section(sbi)) { 4585 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4586 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4587 bitmap_size, GFP_KERNEL); 4588 if (!dirty_i->dirty_secmap) 4589 return -ENOMEM; 4590 } 4591 4592 init_dirty_segmap(sbi); 4593 return init_victim_secmap(sbi); 4594 } 4595 4596 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4597 { 4598 int i; 4599 4600 /* 4601 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4602 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4603 */ 4604 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4605 struct curseg_info *curseg = CURSEG_I(sbi, i); 4606 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4607 unsigned int blkofs = curseg->next_blkoff; 4608 4609 sanity_check_seg_type(sbi, curseg->seg_type); 4610 4611 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4612 goto out; 4613 4614 if (curseg->alloc_type == SSR) 4615 continue; 4616 4617 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4618 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4619 continue; 4620 out: 4621 f2fs_err(sbi, 4622 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4623 i, curseg->segno, curseg->alloc_type, 4624 curseg->next_blkoff, blkofs); 4625 return -EFSCORRUPTED; 4626 } 4627 } 4628 return 0; 4629 } 4630 4631 #ifdef CONFIG_BLK_DEV_ZONED 4632 4633 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4634 struct f2fs_dev_info *fdev, 4635 struct blk_zone *zone) 4636 { 4637 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4638 block_t zone_block, wp_block, last_valid_block; 4639 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4640 int i, s, b, ret; 4641 struct seg_entry *se; 4642 4643 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4644 return 0; 4645 4646 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4647 wp_segno = GET_SEGNO(sbi, wp_block); 4648 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4649 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4650 zone_segno = GET_SEGNO(sbi, zone_block); 4651 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4652 4653 if (zone_segno >= MAIN_SEGS(sbi)) 4654 return 0; 4655 4656 /* 4657 * Skip check of zones cursegs point to, since 4658 * fix_curseg_write_pointer() checks them. 4659 */ 4660 for (i = 0; i < NO_CHECK_TYPE; i++) 4661 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4662 CURSEG_I(sbi, i)->segno)) 4663 return 0; 4664 4665 /* 4666 * Get last valid block of the zone. 4667 */ 4668 last_valid_block = zone_block - 1; 4669 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4670 segno = zone_segno + s; 4671 se = get_seg_entry(sbi, segno); 4672 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4673 if (f2fs_test_bit(b, se->cur_valid_map)) { 4674 last_valid_block = START_BLOCK(sbi, segno) + b; 4675 break; 4676 } 4677 if (last_valid_block >= zone_block) 4678 break; 4679 } 4680 4681 /* 4682 * If last valid block is beyond the write pointer, report the 4683 * inconsistency. This inconsistency does not cause write error 4684 * because the zone will not be selected for write operation until 4685 * it get discarded. Just report it. 4686 */ 4687 if (last_valid_block >= wp_block) { 4688 f2fs_notice(sbi, "Valid block beyond write pointer: " 4689 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4690 GET_SEGNO(sbi, last_valid_block), 4691 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4692 wp_segno, wp_blkoff); 4693 return 0; 4694 } 4695 4696 /* 4697 * If there is no valid block in the zone and if write pointer is 4698 * not at zone start, reset the write pointer. 4699 */ 4700 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4701 f2fs_notice(sbi, 4702 "Zone without valid block has non-zero write " 4703 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4704 wp_segno, wp_blkoff); 4705 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4706 zone->len >> log_sectors_per_block); 4707 if (ret) { 4708 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4709 fdev->path, ret); 4710 return ret; 4711 } 4712 } 4713 4714 return 0; 4715 } 4716 4717 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4718 block_t zone_blkaddr) 4719 { 4720 int i; 4721 4722 for (i = 0; i < sbi->s_ndevs; i++) { 4723 if (!bdev_is_zoned(FDEV(i).bdev)) 4724 continue; 4725 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4726 zone_blkaddr <= FDEV(i).end_blk)) 4727 return &FDEV(i); 4728 } 4729 4730 return NULL; 4731 } 4732 4733 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4734 void *data) { 4735 memcpy(data, zone, sizeof(struct blk_zone)); 4736 return 0; 4737 } 4738 4739 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4740 { 4741 struct curseg_info *cs = CURSEG_I(sbi, type); 4742 struct f2fs_dev_info *zbd; 4743 struct blk_zone zone; 4744 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4745 block_t cs_zone_block, wp_block; 4746 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4747 sector_t zone_sector; 4748 int err; 4749 4750 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4751 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4752 4753 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4754 if (!zbd) 4755 return 0; 4756 4757 /* report zone for the sector the curseg points to */ 4758 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4759 << log_sectors_per_block; 4760 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4761 report_one_zone_cb, &zone); 4762 if (err != 1) { 4763 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4764 zbd->path, err); 4765 return err; 4766 } 4767 4768 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4769 return 0; 4770 4771 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4772 wp_segno = GET_SEGNO(sbi, wp_block); 4773 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4774 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4775 4776 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4777 wp_sector_off == 0) 4778 return 0; 4779 4780 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4781 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4782 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4783 4784 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4785 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4786 allocate_segment_by_default(sbi, type, true); 4787 4788 /* check consistency of the zone curseg pointed to */ 4789 if (check_zone_write_pointer(sbi, zbd, &zone)) 4790 return -EIO; 4791 4792 /* check newly assigned zone */ 4793 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4794 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4795 4796 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4797 if (!zbd) 4798 return 0; 4799 4800 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4801 << log_sectors_per_block; 4802 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4803 report_one_zone_cb, &zone); 4804 if (err != 1) { 4805 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4806 zbd->path, err); 4807 return err; 4808 } 4809 4810 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4811 return 0; 4812 4813 if (zone.wp != zone.start) { 4814 f2fs_notice(sbi, 4815 "New zone for curseg[%d] is not yet discarded. " 4816 "Reset the zone: curseg[0x%x,0x%x]", 4817 type, cs->segno, cs->next_blkoff); 4818 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4819 zone_sector >> log_sectors_per_block, 4820 zone.len >> log_sectors_per_block); 4821 if (err) { 4822 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4823 zbd->path, err); 4824 return err; 4825 } 4826 } 4827 4828 return 0; 4829 } 4830 4831 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4832 { 4833 int i, ret; 4834 4835 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4836 ret = fix_curseg_write_pointer(sbi, i); 4837 if (ret) 4838 return ret; 4839 } 4840 4841 return 0; 4842 } 4843 4844 struct check_zone_write_pointer_args { 4845 struct f2fs_sb_info *sbi; 4846 struct f2fs_dev_info *fdev; 4847 }; 4848 4849 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4850 void *data) { 4851 struct check_zone_write_pointer_args *args; 4852 args = (struct check_zone_write_pointer_args *)data; 4853 4854 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4855 } 4856 4857 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4858 { 4859 int i, ret; 4860 struct check_zone_write_pointer_args args; 4861 4862 for (i = 0; i < sbi->s_ndevs; i++) { 4863 if (!bdev_is_zoned(FDEV(i).bdev)) 4864 continue; 4865 4866 args.sbi = sbi; 4867 args.fdev = &FDEV(i); 4868 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4869 check_zone_write_pointer_cb, &args); 4870 if (ret < 0) 4871 return ret; 4872 } 4873 4874 return 0; 4875 } 4876 4877 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, 4878 unsigned int dev_idx) 4879 { 4880 if (!bdev_is_zoned(FDEV(dev_idx).bdev)) 4881 return true; 4882 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); 4883 } 4884 4885 /* Return the zone index in the given device */ 4886 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, 4887 int dev_idx) 4888 { 4889 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4890 4891 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> 4892 sbi->log_blocks_per_blkz; 4893 } 4894 4895 /* 4896 * Return the usable segments in a section based on the zone's 4897 * corresponding zone capacity. Zone is equal to a section. 4898 */ 4899 static inline unsigned int f2fs_usable_zone_segs_in_sec( 4900 struct f2fs_sb_info *sbi, unsigned int segno) 4901 { 4902 unsigned int dev_idx, zone_idx, unusable_segs_in_sec; 4903 4904 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); 4905 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); 4906 4907 /* Conventional zone's capacity is always equal to zone size */ 4908 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4909 return sbi->segs_per_sec; 4910 4911 /* 4912 * If the zone_capacity_blocks array is NULL, then zone capacity 4913 * is equal to the zone size for all zones 4914 */ 4915 if (!FDEV(dev_idx).zone_capacity_blocks) 4916 return sbi->segs_per_sec; 4917 4918 /* Get the segment count beyond zone capacity block */ 4919 unusable_segs_in_sec = (sbi->blocks_per_blkz - 4920 FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >> 4921 sbi->log_blocks_per_seg; 4922 return sbi->segs_per_sec - unusable_segs_in_sec; 4923 } 4924 4925 /* 4926 * Return the number of usable blocks in a segment. The number of blocks 4927 * returned is always equal to the number of blocks in a segment for 4928 * segments fully contained within a sequential zone capacity or a 4929 * conventional zone. For segments partially contained in a sequential 4930 * zone capacity, the number of usable blocks up to the zone capacity 4931 * is returned. 0 is returned in all other cases. 4932 */ 4933 static inline unsigned int f2fs_usable_zone_blks_in_seg( 4934 struct f2fs_sb_info *sbi, unsigned int segno) 4935 { 4936 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 4937 unsigned int zone_idx, dev_idx, secno; 4938 4939 secno = GET_SEC_FROM_SEG(sbi, segno); 4940 seg_start = START_BLOCK(sbi, segno); 4941 dev_idx = f2fs_target_device_index(sbi, seg_start); 4942 zone_idx = get_zone_idx(sbi, secno, dev_idx); 4943 4944 /* 4945 * Conventional zone's capacity is always equal to zone size, 4946 * so, blocks per segment is unchanged. 4947 */ 4948 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4949 return sbi->blocks_per_seg; 4950 4951 if (!FDEV(dev_idx).zone_capacity_blocks) 4952 return sbi->blocks_per_seg; 4953 4954 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4955 sec_cap_blkaddr = sec_start_blkaddr + 4956 FDEV(dev_idx).zone_capacity_blocks[zone_idx]; 4957 4958 /* 4959 * If segment starts before zone capacity and spans beyond 4960 * zone capacity, then usable blocks are from seg start to 4961 * zone capacity. If the segment starts after the zone capacity, 4962 * then there are no usable blocks. 4963 */ 4964 if (seg_start >= sec_cap_blkaddr) 4965 return 0; 4966 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 4967 return sec_cap_blkaddr - seg_start; 4968 4969 return sbi->blocks_per_seg; 4970 } 4971 #else 4972 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4973 { 4974 return 0; 4975 } 4976 4977 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4978 { 4979 return 0; 4980 } 4981 4982 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 4983 unsigned int segno) 4984 { 4985 return 0; 4986 } 4987 4988 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, 4989 unsigned int segno) 4990 { 4991 return 0; 4992 } 4993 #endif 4994 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 4995 unsigned int segno) 4996 { 4997 if (f2fs_sb_has_blkzoned(sbi)) 4998 return f2fs_usable_zone_blks_in_seg(sbi, segno); 4999 5000 return sbi->blocks_per_seg; 5001 } 5002 5003 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5004 unsigned int segno) 5005 { 5006 if (f2fs_sb_has_blkzoned(sbi)) 5007 return f2fs_usable_zone_segs_in_sec(sbi, segno); 5008 5009 return sbi->segs_per_sec; 5010 } 5011 5012 /* 5013 * Update min, max modified time for cost-benefit GC algorithm 5014 */ 5015 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5016 { 5017 struct sit_info *sit_i = SIT_I(sbi); 5018 unsigned int segno; 5019 5020 down_write(&sit_i->sentry_lock); 5021 5022 sit_i->min_mtime = ULLONG_MAX; 5023 5024 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5025 unsigned int i; 5026 unsigned long long mtime = 0; 5027 5028 for (i = 0; i < sbi->segs_per_sec; i++) 5029 mtime += get_seg_entry(sbi, segno + i)->mtime; 5030 5031 mtime = div_u64(mtime, sbi->segs_per_sec); 5032 5033 if (sit_i->min_mtime > mtime) 5034 sit_i->min_mtime = mtime; 5035 } 5036 sit_i->max_mtime = get_mtime(sbi, false); 5037 sit_i->dirty_max_mtime = 0; 5038 up_write(&sit_i->sentry_lock); 5039 } 5040 5041 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5042 { 5043 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5044 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5045 struct f2fs_sm_info *sm_info; 5046 int err; 5047 5048 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5049 if (!sm_info) 5050 return -ENOMEM; 5051 5052 /* init sm info */ 5053 sbi->sm_info = sm_info; 5054 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5055 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5056 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5057 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5058 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5059 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5060 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5061 sm_info->rec_prefree_segments = sm_info->main_segments * 5062 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5063 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5064 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5065 5066 if (!f2fs_lfs_mode(sbi)) 5067 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 5068 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5069 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5070 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 5071 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5072 sm_info->min_ssr_sections = reserved_sections(sbi); 5073 5074 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5075 5076 init_rwsem(&sm_info->curseg_lock); 5077 5078 if (!f2fs_readonly(sbi->sb)) { 5079 err = f2fs_create_flush_cmd_control(sbi); 5080 if (err) 5081 return err; 5082 } 5083 5084 err = create_discard_cmd_control(sbi); 5085 if (err) 5086 return err; 5087 5088 err = build_sit_info(sbi); 5089 if (err) 5090 return err; 5091 err = build_free_segmap(sbi); 5092 if (err) 5093 return err; 5094 err = build_curseg(sbi); 5095 if (err) 5096 return err; 5097 5098 /* reinit free segmap based on SIT */ 5099 err = build_sit_entries(sbi); 5100 if (err) 5101 return err; 5102 5103 init_free_segmap(sbi); 5104 err = build_dirty_segmap(sbi); 5105 if (err) 5106 return err; 5107 5108 err = sanity_check_curseg(sbi); 5109 if (err) 5110 return err; 5111 5112 init_min_max_mtime(sbi); 5113 return 0; 5114 } 5115 5116 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5117 enum dirty_type dirty_type) 5118 { 5119 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5120 5121 mutex_lock(&dirty_i->seglist_lock); 5122 kvfree(dirty_i->dirty_segmap[dirty_type]); 5123 dirty_i->nr_dirty[dirty_type] = 0; 5124 mutex_unlock(&dirty_i->seglist_lock); 5125 } 5126 5127 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5128 { 5129 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5130 kvfree(dirty_i->victim_secmap); 5131 } 5132 5133 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5134 { 5135 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5136 int i; 5137 5138 if (!dirty_i) 5139 return; 5140 5141 /* discard pre-free/dirty segments list */ 5142 for (i = 0; i < NR_DIRTY_TYPE; i++) 5143 discard_dirty_segmap(sbi, i); 5144 5145 if (__is_large_section(sbi)) { 5146 mutex_lock(&dirty_i->seglist_lock); 5147 kvfree(dirty_i->dirty_secmap); 5148 mutex_unlock(&dirty_i->seglist_lock); 5149 } 5150 5151 destroy_victim_secmap(sbi); 5152 SM_I(sbi)->dirty_info = NULL; 5153 kfree(dirty_i); 5154 } 5155 5156 static void destroy_curseg(struct f2fs_sb_info *sbi) 5157 { 5158 struct curseg_info *array = SM_I(sbi)->curseg_array; 5159 int i; 5160 5161 if (!array) 5162 return; 5163 SM_I(sbi)->curseg_array = NULL; 5164 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5165 kfree(array[i].sum_blk); 5166 kfree(array[i].journal); 5167 } 5168 kfree(array); 5169 } 5170 5171 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5172 { 5173 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5174 if (!free_i) 5175 return; 5176 SM_I(sbi)->free_info = NULL; 5177 kvfree(free_i->free_segmap); 5178 kvfree(free_i->free_secmap); 5179 kfree(free_i); 5180 } 5181 5182 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5183 { 5184 struct sit_info *sit_i = SIT_I(sbi); 5185 5186 if (!sit_i) 5187 return; 5188 5189 if (sit_i->sentries) 5190 kvfree(sit_i->bitmap); 5191 kfree(sit_i->tmp_map); 5192 5193 kvfree(sit_i->sentries); 5194 kvfree(sit_i->sec_entries); 5195 kvfree(sit_i->dirty_sentries_bitmap); 5196 5197 SM_I(sbi)->sit_info = NULL; 5198 kvfree(sit_i->sit_bitmap); 5199 #ifdef CONFIG_F2FS_CHECK_FS 5200 kvfree(sit_i->sit_bitmap_mir); 5201 kvfree(sit_i->invalid_segmap); 5202 #endif 5203 kfree(sit_i); 5204 } 5205 5206 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5207 { 5208 struct f2fs_sm_info *sm_info = SM_I(sbi); 5209 5210 if (!sm_info) 5211 return; 5212 f2fs_destroy_flush_cmd_control(sbi, true); 5213 destroy_discard_cmd_control(sbi); 5214 destroy_dirty_segmap(sbi); 5215 destroy_curseg(sbi); 5216 destroy_free_segmap(sbi); 5217 destroy_sit_info(sbi); 5218 sbi->sm_info = NULL; 5219 kfree(sm_info); 5220 } 5221 5222 int __init f2fs_create_segment_manager_caches(void) 5223 { 5224 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5225 sizeof(struct discard_entry)); 5226 if (!discard_entry_slab) 5227 goto fail; 5228 5229 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5230 sizeof(struct discard_cmd)); 5231 if (!discard_cmd_slab) 5232 goto destroy_discard_entry; 5233 5234 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5235 sizeof(struct sit_entry_set)); 5236 if (!sit_entry_set_slab) 5237 goto destroy_discard_cmd; 5238 5239 inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry", 5240 sizeof(struct inmem_pages)); 5241 if (!inmem_entry_slab) 5242 goto destroy_sit_entry_set; 5243 return 0; 5244 5245 destroy_sit_entry_set: 5246 kmem_cache_destroy(sit_entry_set_slab); 5247 destroy_discard_cmd: 5248 kmem_cache_destroy(discard_cmd_slab); 5249 destroy_discard_entry: 5250 kmem_cache_destroy(discard_entry_slab); 5251 fail: 5252 return -ENOMEM; 5253 } 5254 5255 void f2fs_destroy_segment_manager_caches(void) 5256 { 5257 kmem_cache_destroy(sit_entry_set_slab); 5258 kmem_cache_destroy(discard_cmd_slab); 5259 kmem_cache_destroy(discard_entry_slab); 5260 kmem_cache_destroy(inmem_entry_slab); 5261 } 5262