xref: /openbmc/linux/fs/f2fs/segment.c (revision d3597236)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31 
32 /*
33  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
34  * MSB and LSB are reversed in a byte by f2fs_set_bit.
35  */
36 static inline unsigned long __reverse_ffs(unsigned long word)
37 {
38 	int num = 0;
39 
40 #if BITS_PER_LONG == 64
41 	if ((word & 0xffffffff) == 0) {
42 		num += 32;
43 		word >>= 32;
44 	}
45 #endif
46 	if ((word & 0xffff) == 0) {
47 		num += 16;
48 		word >>= 16;
49 	}
50 	if ((word & 0xff) == 0) {
51 		num += 8;
52 		word >>= 8;
53 	}
54 	if ((word & 0xf0) == 0)
55 		num += 4;
56 	else
57 		word >>= 4;
58 	if ((word & 0xc) == 0)
59 		num += 2;
60 	else
61 		word >>= 2;
62 	if ((word & 0x2) == 0)
63 		num += 1;
64 	return num;
65 }
66 
67 /*
68  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
69  * f2fs_set_bit makes MSB and LSB reversed in a byte.
70  * Example:
71  *                             LSB <--> MSB
72  *   f2fs_set_bit(0, bitmap) => 0000 0001
73  *   f2fs_set_bit(7, bitmap) => 1000 0000
74  */
75 static unsigned long __find_rev_next_bit(const unsigned long *addr,
76 			unsigned long size, unsigned long offset)
77 {
78 	while (!f2fs_test_bit(offset, (unsigned char *)addr))
79 		offset++;
80 
81 	if (offset > size)
82 		offset = size;
83 
84 	return offset;
85 #if 0
86 	const unsigned long *p = addr + BIT_WORD(offset);
87 	unsigned long result = offset & ~(BITS_PER_LONG - 1);
88 	unsigned long tmp;
89 	unsigned long mask, submask;
90 	unsigned long quot, rest;
91 
92 	if (offset >= size)
93 		return size;
94 
95 	size -= result;
96 	offset %= BITS_PER_LONG;
97 	if (!offset)
98 		goto aligned;
99 
100 	tmp = *(p++);
101 	quot = (offset >> 3) << 3;
102 	rest = offset & 0x7;
103 	mask = ~0UL << quot;
104 	submask = (unsigned char)(0xff << rest) >> rest;
105 	submask <<= quot;
106 	mask &= submask;
107 	tmp &= mask;
108 	if (size < BITS_PER_LONG)
109 		goto found_first;
110 	if (tmp)
111 		goto found_middle;
112 
113 	size -= BITS_PER_LONG;
114 	result += BITS_PER_LONG;
115 aligned:
116 	while (size & ~(BITS_PER_LONG-1)) {
117 		tmp = *(p++);
118 		if (tmp)
119 			goto found_middle;
120 		result += BITS_PER_LONG;
121 		size -= BITS_PER_LONG;
122 	}
123 	if (!size)
124 		return result;
125 	tmp = *p;
126 found_first:
127 	tmp &= (~0UL >> (BITS_PER_LONG - size));
128 	if (tmp == 0UL)		/* Are any bits set? */
129 		return result + size;   /* Nope. */
130 found_middle:
131 	return result + __reverse_ffs(tmp);
132 #endif
133 }
134 
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 			unsigned long size, unsigned long offset)
137 {
138 	while (f2fs_test_bit(offset, (unsigned char *)addr))
139 		offset++;
140 
141 	if (offset > size)
142 		offset = size;
143 
144 	return offset;
145 #if 0
146 	const unsigned long *p = addr + BIT_WORD(offset);
147 	unsigned long result = offset & ~(BITS_PER_LONG - 1);
148 	unsigned long tmp;
149 	unsigned long mask, submask;
150 	unsigned long quot, rest;
151 
152 	if (offset >= size)
153 		return size;
154 
155 	size -= result;
156 	offset %= BITS_PER_LONG;
157 	if (!offset)
158 		goto aligned;
159 
160 	tmp = *(p++);
161 	quot = (offset >> 3) << 3;
162 	rest = offset & 0x7;
163 	mask = ~(~0UL << quot);
164 	submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
165 	submask <<= quot;
166 	mask += submask;
167 	tmp |= mask;
168 	if (size < BITS_PER_LONG)
169 		goto found_first;
170 	if (~tmp)
171 		goto found_middle;
172 
173 	size -= BITS_PER_LONG;
174 	result += BITS_PER_LONG;
175 aligned:
176 	while (size & ~(BITS_PER_LONG - 1)) {
177 		tmp = *(p++);
178 		if (~tmp)
179 			goto found_middle;
180 		result += BITS_PER_LONG;
181 		size -= BITS_PER_LONG;
182 	}
183 	if (!size)
184 		return result;
185 	tmp = *p;
186 
187 found_first:
188 	tmp |= ~0UL << size;
189 	if (tmp == ~0UL)        /* Are any bits zero? */
190 		return result + size;   /* Nope. */
191 found_middle:
192 	return result + __reverse_ffz(tmp);
193 #endif
194 }
195 
196 void register_inmem_page(struct inode *inode, struct page *page)
197 {
198 	struct f2fs_inode_info *fi = F2FS_I(inode);
199 	struct inmem_pages *new;
200 	int err;
201 
202 	SetPagePrivate(page);
203 	f2fs_trace_pid(page);
204 
205 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
206 
207 	/* add atomic page indices to the list */
208 	new->page = page;
209 	INIT_LIST_HEAD(&new->list);
210 retry:
211 	/* increase reference count with clean state */
212 	mutex_lock(&fi->inmem_lock);
213 	err = radix_tree_insert(&fi->inmem_root, page->index, new);
214 	if (err == -EEXIST) {
215 		mutex_unlock(&fi->inmem_lock);
216 		kmem_cache_free(inmem_entry_slab, new);
217 		return;
218 	} else if (err) {
219 		mutex_unlock(&fi->inmem_lock);
220 		goto retry;
221 	}
222 	get_page(page);
223 	list_add_tail(&new->list, &fi->inmem_pages);
224 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
225 	mutex_unlock(&fi->inmem_lock);
226 
227 	trace_f2fs_register_inmem_page(page, INMEM);
228 }
229 
230 void commit_inmem_pages(struct inode *inode, bool abort)
231 {
232 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
233 	struct f2fs_inode_info *fi = F2FS_I(inode);
234 	struct inmem_pages *cur, *tmp;
235 	bool submit_bio = false;
236 	struct f2fs_io_info fio = {
237 		.sbi = sbi,
238 		.type = DATA,
239 		.rw = WRITE_SYNC | REQ_PRIO,
240 		.encrypted_page = NULL,
241 	};
242 
243 	/*
244 	 * The abort is true only when f2fs_evict_inode is called.
245 	 * Basically, the f2fs_evict_inode doesn't produce any data writes, so
246 	 * that we don't need to call f2fs_balance_fs.
247 	 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
248 	 * inode becomes free by iget_locked in f2fs_iget.
249 	 */
250 	if (!abort) {
251 		f2fs_balance_fs(sbi);
252 		f2fs_lock_op(sbi);
253 	}
254 
255 	mutex_lock(&fi->inmem_lock);
256 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
257 		if (!abort) {
258 			lock_page(cur->page);
259 			if (cur->page->mapping == inode->i_mapping) {
260 				f2fs_wait_on_page_writeback(cur->page, DATA);
261 				if (clear_page_dirty_for_io(cur->page))
262 					inode_dec_dirty_pages(inode);
263 				trace_f2fs_commit_inmem_page(cur->page, INMEM);
264 				fio.page = cur->page;
265 				do_write_data_page(&fio);
266 				submit_bio = true;
267 			}
268 			f2fs_put_page(cur->page, 1);
269 		} else {
270 			trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP);
271 			put_page(cur->page);
272 		}
273 		radix_tree_delete(&fi->inmem_root, cur->page->index);
274 		list_del(&cur->list);
275 		kmem_cache_free(inmem_entry_slab, cur);
276 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
277 	}
278 	mutex_unlock(&fi->inmem_lock);
279 
280 	if (!abort) {
281 		f2fs_unlock_op(sbi);
282 		if (submit_bio)
283 			f2fs_submit_merged_bio(sbi, DATA, WRITE);
284 	}
285 }
286 
287 /*
288  * This function balances dirty node and dentry pages.
289  * In addition, it controls garbage collection.
290  */
291 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
292 {
293 	/*
294 	 * We should do GC or end up with checkpoint, if there are so many dirty
295 	 * dir/node pages without enough free segments.
296 	 */
297 	if (has_not_enough_free_secs(sbi, 0)) {
298 		mutex_lock(&sbi->gc_mutex);
299 		f2fs_gc(sbi);
300 	}
301 }
302 
303 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
304 {
305 	/* try to shrink extent cache when there is no enough memory */
306 	f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
307 
308 	/* check the # of cached NAT entries and prefree segments */
309 	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
310 			excess_prefree_segs(sbi) ||
311 			!available_free_memory(sbi, INO_ENTRIES))
312 		f2fs_sync_fs(sbi->sb, true);
313 }
314 
315 static int issue_flush_thread(void *data)
316 {
317 	struct f2fs_sb_info *sbi = data;
318 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
319 	wait_queue_head_t *q = &fcc->flush_wait_queue;
320 repeat:
321 	if (kthread_should_stop())
322 		return 0;
323 
324 	if (!llist_empty(&fcc->issue_list)) {
325 		struct bio *bio = bio_alloc(GFP_NOIO, 0);
326 		struct flush_cmd *cmd, *next;
327 		int ret;
328 
329 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
330 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
331 
332 		bio->bi_bdev = sbi->sb->s_bdev;
333 		ret = submit_bio_wait(WRITE_FLUSH, bio);
334 
335 		llist_for_each_entry_safe(cmd, next,
336 					  fcc->dispatch_list, llnode) {
337 			cmd->ret = ret;
338 			complete(&cmd->wait);
339 		}
340 		bio_put(bio);
341 		fcc->dispatch_list = NULL;
342 	}
343 
344 	wait_event_interruptible(*q,
345 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
346 	goto repeat;
347 }
348 
349 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
350 {
351 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
352 	struct flush_cmd cmd;
353 
354 	trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
355 					test_opt(sbi, FLUSH_MERGE));
356 
357 	if (test_opt(sbi, NOBARRIER))
358 		return 0;
359 
360 	if (!test_opt(sbi, FLUSH_MERGE))
361 		return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
362 
363 	init_completion(&cmd.wait);
364 
365 	llist_add(&cmd.llnode, &fcc->issue_list);
366 
367 	if (!fcc->dispatch_list)
368 		wake_up(&fcc->flush_wait_queue);
369 
370 	wait_for_completion(&cmd.wait);
371 
372 	return cmd.ret;
373 }
374 
375 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
376 {
377 	dev_t dev = sbi->sb->s_bdev->bd_dev;
378 	struct flush_cmd_control *fcc;
379 	int err = 0;
380 
381 	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
382 	if (!fcc)
383 		return -ENOMEM;
384 	init_waitqueue_head(&fcc->flush_wait_queue);
385 	init_llist_head(&fcc->issue_list);
386 	SM_I(sbi)->cmd_control_info = fcc;
387 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
388 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
389 	if (IS_ERR(fcc->f2fs_issue_flush)) {
390 		err = PTR_ERR(fcc->f2fs_issue_flush);
391 		kfree(fcc);
392 		SM_I(sbi)->cmd_control_info = NULL;
393 		return err;
394 	}
395 
396 	return err;
397 }
398 
399 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
400 {
401 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
402 
403 	if (fcc && fcc->f2fs_issue_flush)
404 		kthread_stop(fcc->f2fs_issue_flush);
405 	kfree(fcc);
406 	SM_I(sbi)->cmd_control_info = NULL;
407 }
408 
409 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
410 		enum dirty_type dirty_type)
411 {
412 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
413 
414 	/* need not be added */
415 	if (IS_CURSEG(sbi, segno))
416 		return;
417 
418 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
419 		dirty_i->nr_dirty[dirty_type]++;
420 
421 	if (dirty_type == DIRTY) {
422 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
423 		enum dirty_type t = sentry->type;
424 
425 		if (unlikely(t >= DIRTY)) {
426 			f2fs_bug_on(sbi, 1);
427 			return;
428 		}
429 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
430 			dirty_i->nr_dirty[t]++;
431 	}
432 }
433 
434 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
435 		enum dirty_type dirty_type)
436 {
437 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
438 
439 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
440 		dirty_i->nr_dirty[dirty_type]--;
441 
442 	if (dirty_type == DIRTY) {
443 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
444 		enum dirty_type t = sentry->type;
445 
446 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
447 			dirty_i->nr_dirty[t]--;
448 
449 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
450 			clear_bit(GET_SECNO(sbi, segno),
451 						dirty_i->victim_secmap);
452 	}
453 }
454 
455 /*
456  * Should not occur error such as -ENOMEM.
457  * Adding dirty entry into seglist is not critical operation.
458  * If a given segment is one of current working segments, it won't be added.
459  */
460 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
461 {
462 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
463 	unsigned short valid_blocks;
464 
465 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
466 		return;
467 
468 	mutex_lock(&dirty_i->seglist_lock);
469 
470 	valid_blocks = get_valid_blocks(sbi, segno, 0);
471 
472 	if (valid_blocks == 0) {
473 		__locate_dirty_segment(sbi, segno, PRE);
474 		__remove_dirty_segment(sbi, segno, DIRTY);
475 	} else if (valid_blocks < sbi->blocks_per_seg) {
476 		__locate_dirty_segment(sbi, segno, DIRTY);
477 	} else {
478 		/* Recovery routine with SSR needs this */
479 		__remove_dirty_segment(sbi, segno, DIRTY);
480 	}
481 
482 	mutex_unlock(&dirty_i->seglist_lock);
483 }
484 
485 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
486 				block_t blkstart, block_t blklen)
487 {
488 	sector_t start = SECTOR_FROM_BLOCK(blkstart);
489 	sector_t len = SECTOR_FROM_BLOCK(blklen);
490 	struct seg_entry *se;
491 	unsigned int offset;
492 	block_t i;
493 
494 	for (i = blkstart; i < blkstart + blklen; i++) {
495 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
496 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
497 
498 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
499 			sbi->discard_blks--;
500 	}
501 	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
502 	return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
503 }
504 
505 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
506 {
507 	int err = -ENOTSUPP;
508 
509 	if (test_opt(sbi, DISCARD)) {
510 		struct seg_entry *se = get_seg_entry(sbi,
511 				GET_SEGNO(sbi, blkaddr));
512 		unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
513 
514 		if (f2fs_test_bit(offset, se->discard_map))
515 			return;
516 
517 		err = f2fs_issue_discard(sbi, blkaddr, 1);
518 	}
519 
520 	if (err)
521 		update_meta_page(sbi, NULL, blkaddr);
522 }
523 
524 static void __add_discard_entry(struct f2fs_sb_info *sbi,
525 		struct cp_control *cpc, struct seg_entry *se,
526 		unsigned int start, unsigned int end)
527 {
528 	struct list_head *head = &SM_I(sbi)->discard_list;
529 	struct discard_entry *new, *last;
530 
531 	if (!list_empty(head)) {
532 		last = list_last_entry(head, struct discard_entry, list);
533 		if (START_BLOCK(sbi, cpc->trim_start) + start ==
534 						last->blkaddr + last->len) {
535 			last->len += end - start;
536 			goto done;
537 		}
538 	}
539 
540 	new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
541 	INIT_LIST_HEAD(&new->list);
542 	new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
543 	new->len = end - start;
544 	list_add_tail(&new->list, head);
545 done:
546 	SM_I(sbi)->nr_discards += end - start;
547 }
548 
549 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
550 {
551 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
552 	int max_blocks = sbi->blocks_per_seg;
553 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
554 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
555 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
556 	unsigned long *discard_map = (unsigned long *)se->discard_map;
557 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
558 	unsigned int start = 0, end = -1;
559 	bool force = (cpc->reason == CP_DISCARD);
560 	int i;
561 
562 	if (se->valid_blocks == max_blocks)
563 		return;
564 
565 	if (!force) {
566 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
567 		    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
568 			return;
569 	}
570 
571 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
572 	for (i = 0; i < entries; i++)
573 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
574 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
575 
576 	while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
577 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
578 		if (start >= max_blocks)
579 			break;
580 
581 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
582 		__add_discard_entry(sbi, cpc, se, start, end);
583 	}
584 }
585 
586 void release_discard_addrs(struct f2fs_sb_info *sbi)
587 {
588 	struct list_head *head = &(SM_I(sbi)->discard_list);
589 	struct discard_entry *entry, *this;
590 
591 	/* drop caches */
592 	list_for_each_entry_safe(entry, this, head, list) {
593 		list_del(&entry->list);
594 		kmem_cache_free(discard_entry_slab, entry);
595 	}
596 }
597 
598 /*
599  * Should call clear_prefree_segments after checkpoint is done.
600  */
601 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
602 {
603 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
604 	unsigned int segno;
605 
606 	mutex_lock(&dirty_i->seglist_lock);
607 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
608 		__set_test_and_free(sbi, segno);
609 	mutex_unlock(&dirty_i->seglist_lock);
610 }
611 
612 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
613 {
614 	struct list_head *head = &(SM_I(sbi)->discard_list);
615 	struct discard_entry *entry, *this;
616 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
617 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
618 	unsigned int start = 0, end = -1;
619 
620 	mutex_lock(&dirty_i->seglist_lock);
621 
622 	while (1) {
623 		int i;
624 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
625 		if (start >= MAIN_SEGS(sbi))
626 			break;
627 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
628 								start + 1);
629 
630 		for (i = start; i < end; i++)
631 			clear_bit(i, prefree_map);
632 
633 		dirty_i->nr_dirty[PRE] -= end - start;
634 
635 		if (!test_opt(sbi, DISCARD))
636 			continue;
637 
638 		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
639 				(end - start) << sbi->log_blocks_per_seg);
640 	}
641 	mutex_unlock(&dirty_i->seglist_lock);
642 
643 	/* send small discards */
644 	list_for_each_entry_safe(entry, this, head, list) {
645 		if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
646 			goto skip;
647 		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
648 		cpc->trimmed += entry->len;
649 skip:
650 		list_del(&entry->list);
651 		SM_I(sbi)->nr_discards -= entry->len;
652 		kmem_cache_free(discard_entry_slab, entry);
653 	}
654 }
655 
656 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
657 {
658 	struct sit_info *sit_i = SIT_I(sbi);
659 
660 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
661 		sit_i->dirty_sentries++;
662 		return false;
663 	}
664 
665 	return true;
666 }
667 
668 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
669 					unsigned int segno, int modified)
670 {
671 	struct seg_entry *se = get_seg_entry(sbi, segno);
672 	se->type = type;
673 	if (modified)
674 		__mark_sit_entry_dirty(sbi, segno);
675 }
676 
677 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
678 {
679 	struct seg_entry *se;
680 	unsigned int segno, offset;
681 	long int new_vblocks;
682 
683 	segno = GET_SEGNO(sbi, blkaddr);
684 
685 	se = get_seg_entry(sbi, segno);
686 	new_vblocks = se->valid_blocks + del;
687 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
688 
689 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
690 				(new_vblocks > sbi->blocks_per_seg)));
691 
692 	se->valid_blocks = new_vblocks;
693 	se->mtime = get_mtime(sbi);
694 	SIT_I(sbi)->max_mtime = se->mtime;
695 
696 	/* Update valid block bitmap */
697 	if (del > 0) {
698 		if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
699 			f2fs_bug_on(sbi, 1);
700 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
701 			sbi->discard_blks--;
702 	} else {
703 		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
704 			f2fs_bug_on(sbi, 1);
705 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
706 			sbi->discard_blks++;
707 	}
708 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
709 		se->ckpt_valid_blocks += del;
710 
711 	__mark_sit_entry_dirty(sbi, segno);
712 
713 	/* update total number of valid blocks to be written in ckpt area */
714 	SIT_I(sbi)->written_valid_blocks += del;
715 
716 	if (sbi->segs_per_sec > 1)
717 		get_sec_entry(sbi, segno)->valid_blocks += del;
718 }
719 
720 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
721 {
722 	update_sit_entry(sbi, new, 1);
723 	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
724 		update_sit_entry(sbi, old, -1);
725 
726 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
727 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
728 }
729 
730 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
731 {
732 	unsigned int segno = GET_SEGNO(sbi, addr);
733 	struct sit_info *sit_i = SIT_I(sbi);
734 
735 	f2fs_bug_on(sbi, addr == NULL_ADDR);
736 	if (addr == NEW_ADDR)
737 		return;
738 
739 	/* add it into sit main buffer */
740 	mutex_lock(&sit_i->sentry_lock);
741 
742 	update_sit_entry(sbi, addr, -1);
743 
744 	/* add it into dirty seglist */
745 	locate_dirty_segment(sbi, segno);
746 
747 	mutex_unlock(&sit_i->sentry_lock);
748 }
749 
750 /*
751  * This function should be resided under the curseg_mutex lock
752  */
753 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
754 					struct f2fs_summary *sum)
755 {
756 	struct curseg_info *curseg = CURSEG_I(sbi, type);
757 	void *addr = curseg->sum_blk;
758 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
759 	memcpy(addr, sum, sizeof(struct f2fs_summary));
760 }
761 
762 /*
763  * Calculate the number of current summary pages for writing
764  */
765 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
766 {
767 	int valid_sum_count = 0;
768 	int i, sum_in_page;
769 
770 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
771 		if (sbi->ckpt->alloc_type[i] == SSR)
772 			valid_sum_count += sbi->blocks_per_seg;
773 		else {
774 			if (for_ra)
775 				valid_sum_count += le16_to_cpu(
776 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
777 			else
778 				valid_sum_count += curseg_blkoff(sbi, i);
779 		}
780 	}
781 
782 	sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
783 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
784 	if (valid_sum_count <= sum_in_page)
785 		return 1;
786 	else if ((valid_sum_count - sum_in_page) <=
787 		(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
788 		return 2;
789 	return 3;
790 }
791 
792 /*
793  * Caller should put this summary page
794  */
795 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
796 {
797 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
798 }
799 
800 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
801 {
802 	struct page *page = grab_meta_page(sbi, blk_addr);
803 	void *dst = page_address(page);
804 
805 	if (src)
806 		memcpy(dst, src, PAGE_CACHE_SIZE);
807 	else
808 		memset(dst, 0, PAGE_CACHE_SIZE);
809 	set_page_dirty(page);
810 	f2fs_put_page(page, 1);
811 }
812 
813 static void write_sum_page(struct f2fs_sb_info *sbi,
814 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
815 {
816 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
817 }
818 
819 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
820 {
821 	struct curseg_info *curseg = CURSEG_I(sbi, type);
822 	unsigned int segno = curseg->segno + 1;
823 	struct free_segmap_info *free_i = FREE_I(sbi);
824 
825 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
826 		return !test_bit(segno, free_i->free_segmap);
827 	return 0;
828 }
829 
830 /*
831  * Find a new segment from the free segments bitmap to right order
832  * This function should be returned with success, otherwise BUG
833  */
834 static void get_new_segment(struct f2fs_sb_info *sbi,
835 			unsigned int *newseg, bool new_sec, int dir)
836 {
837 	struct free_segmap_info *free_i = FREE_I(sbi);
838 	unsigned int segno, secno, zoneno;
839 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
840 	unsigned int hint = *newseg / sbi->segs_per_sec;
841 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
842 	unsigned int left_start = hint;
843 	bool init = true;
844 	int go_left = 0;
845 	int i;
846 
847 	spin_lock(&free_i->segmap_lock);
848 
849 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
850 		segno = find_next_zero_bit(free_i->free_segmap,
851 					MAIN_SEGS(sbi), *newseg + 1);
852 		if (segno - *newseg < sbi->segs_per_sec -
853 					(*newseg % sbi->segs_per_sec))
854 			goto got_it;
855 	}
856 find_other_zone:
857 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
858 	if (secno >= MAIN_SECS(sbi)) {
859 		if (dir == ALLOC_RIGHT) {
860 			secno = find_next_zero_bit(free_i->free_secmap,
861 							MAIN_SECS(sbi), 0);
862 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
863 		} else {
864 			go_left = 1;
865 			left_start = hint - 1;
866 		}
867 	}
868 	if (go_left == 0)
869 		goto skip_left;
870 
871 	while (test_bit(left_start, free_i->free_secmap)) {
872 		if (left_start > 0) {
873 			left_start--;
874 			continue;
875 		}
876 		left_start = find_next_zero_bit(free_i->free_secmap,
877 							MAIN_SECS(sbi), 0);
878 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
879 		break;
880 	}
881 	secno = left_start;
882 skip_left:
883 	hint = secno;
884 	segno = secno * sbi->segs_per_sec;
885 	zoneno = secno / sbi->secs_per_zone;
886 
887 	/* give up on finding another zone */
888 	if (!init)
889 		goto got_it;
890 	if (sbi->secs_per_zone == 1)
891 		goto got_it;
892 	if (zoneno == old_zoneno)
893 		goto got_it;
894 	if (dir == ALLOC_LEFT) {
895 		if (!go_left && zoneno + 1 >= total_zones)
896 			goto got_it;
897 		if (go_left && zoneno == 0)
898 			goto got_it;
899 	}
900 	for (i = 0; i < NR_CURSEG_TYPE; i++)
901 		if (CURSEG_I(sbi, i)->zone == zoneno)
902 			break;
903 
904 	if (i < NR_CURSEG_TYPE) {
905 		/* zone is in user, try another */
906 		if (go_left)
907 			hint = zoneno * sbi->secs_per_zone - 1;
908 		else if (zoneno + 1 >= total_zones)
909 			hint = 0;
910 		else
911 			hint = (zoneno + 1) * sbi->secs_per_zone;
912 		init = false;
913 		goto find_other_zone;
914 	}
915 got_it:
916 	/* set it as dirty segment in free segmap */
917 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
918 	__set_inuse(sbi, segno);
919 	*newseg = segno;
920 	spin_unlock(&free_i->segmap_lock);
921 }
922 
923 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
924 {
925 	struct curseg_info *curseg = CURSEG_I(sbi, type);
926 	struct summary_footer *sum_footer;
927 
928 	curseg->segno = curseg->next_segno;
929 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
930 	curseg->next_blkoff = 0;
931 	curseg->next_segno = NULL_SEGNO;
932 
933 	sum_footer = &(curseg->sum_blk->footer);
934 	memset(sum_footer, 0, sizeof(struct summary_footer));
935 	if (IS_DATASEG(type))
936 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
937 	if (IS_NODESEG(type))
938 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
939 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
940 }
941 
942 /*
943  * Allocate a current working segment.
944  * This function always allocates a free segment in LFS manner.
945  */
946 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
947 {
948 	struct curseg_info *curseg = CURSEG_I(sbi, type);
949 	unsigned int segno = curseg->segno;
950 	int dir = ALLOC_LEFT;
951 
952 	write_sum_page(sbi, curseg->sum_blk,
953 				GET_SUM_BLOCK(sbi, segno));
954 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
955 		dir = ALLOC_RIGHT;
956 
957 	if (test_opt(sbi, NOHEAP))
958 		dir = ALLOC_RIGHT;
959 
960 	get_new_segment(sbi, &segno, new_sec, dir);
961 	curseg->next_segno = segno;
962 	reset_curseg(sbi, type, 1);
963 	curseg->alloc_type = LFS;
964 }
965 
966 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
967 			struct curseg_info *seg, block_t start)
968 {
969 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
970 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
971 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
972 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
973 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
974 	int i, pos;
975 
976 	for (i = 0; i < entries; i++)
977 		target_map[i] = ckpt_map[i] | cur_map[i];
978 
979 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
980 
981 	seg->next_blkoff = pos;
982 }
983 
984 /*
985  * If a segment is written by LFS manner, next block offset is just obtained
986  * by increasing the current block offset. However, if a segment is written by
987  * SSR manner, next block offset obtained by calling __next_free_blkoff
988  */
989 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
990 				struct curseg_info *seg)
991 {
992 	if (seg->alloc_type == SSR)
993 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
994 	else
995 		seg->next_blkoff++;
996 }
997 
998 /*
999  * This function always allocates a used segment(from dirty seglist) by SSR
1000  * manner, so it should recover the existing segment information of valid blocks
1001  */
1002 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1003 {
1004 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1005 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1006 	unsigned int new_segno = curseg->next_segno;
1007 	struct f2fs_summary_block *sum_node;
1008 	struct page *sum_page;
1009 
1010 	write_sum_page(sbi, curseg->sum_blk,
1011 				GET_SUM_BLOCK(sbi, curseg->segno));
1012 	__set_test_and_inuse(sbi, new_segno);
1013 
1014 	mutex_lock(&dirty_i->seglist_lock);
1015 	__remove_dirty_segment(sbi, new_segno, PRE);
1016 	__remove_dirty_segment(sbi, new_segno, DIRTY);
1017 	mutex_unlock(&dirty_i->seglist_lock);
1018 
1019 	reset_curseg(sbi, type, 1);
1020 	curseg->alloc_type = SSR;
1021 	__next_free_blkoff(sbi, curseg, 0);
1022 
1023 	if (reuse) {
1024 		sum_page = get_sum_page(sbi, new_segno);
1025 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1026 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1027 		f2fs_put_page(sum_page, 1);
1028 	}
1029 }
1030 
1031 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1032 {
1033 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1034 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1035 
1036 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1037 		return v_ops->get_victim(sbi,
1038 				&(curseg)->next_segno, BG_GC, type, SSR);
1039 
1040 	/* For data segments, let's do SSR more intensively */
1041 	for (; type >= CURSEG_HOT_DATA; type--)
1042 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1043 						BG_GC, type, SSR))
1044 			return 1;
1045 	return 0;
1046 }
1047 
1048 /*
1049  * flush out current segment and replace it with new segment
1050  * This function should be returned with success, otherwise BUG
1051  */
1052 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1053 						int type, bool force)
1054 {
1055 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1056 
1057 	if (force)
1058 		new_curseg(sbi, type, true);
1059 	else if (type == CURSEG_WARM_NODE)
1060 		new_curseg(sbi, type, false);
1061 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1062 		new_curseg(sbi, type, false);
1063 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1064 		change_curseg(sbi, type, true);
1065 	else
1066 		new_curseg(sbi, type, false);
1067 
1068 	stat_inc_seg_type(sbi, curseg);
1069 }
1070 
1071 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1072 {
1073 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1074 	unsigned int old_segno;
1075 
1076 	old_segno = curseg->segno;
1077 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1078 	locate_dirty_segment(sbi, old_segno);
1079 }
1080 
1081 void allocate_new_segments(struct f2fs_sb_info *sbi)
1082 {
1083 	int i;
1084 
1085 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1086 		__allocate_new_segments(sbi, i);
1087 }
1088 
1089 static const struct segment_allocation default_salloc_ops = {
1090 	.allocate_segment = allocate_segment_by_default,
1091 };
1092 
1093 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1094 {
1095 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
1096 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1097 	unsigned int start_segno, end_segno;
1098 	struct cp_control cpc;
1099 
1100 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1101 		return -EINVAL;
1102 
1103 	cpc.trimmed = 0;
1104 	if (end <= MAIN_BLKADDR(sbi))
1105 		goto out;
1106 
1107 	/* start/end segment number in main_area */
1108 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1109 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1110 						GET_SEGNO(sbi, end);
1111 	cpc.reason = CP_DISCARD;
1112 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1113 
1114 	/* do checkpoint to issue discard commands safely */
1115 	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1116 		cpc.trim_start = start_segno;
1117 
1118 		if (sbi->discard_blks == 0)
1119 			break;
1120 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1121 			cpc.trim_end = end_segno;
1122 		else
1123 			cpc.trim_end = min_t(unsigned int,
1124 				rounddown(start_segno +
1125 				BATCHED_TRIM_SEGMENTS(sbi),
1126 				sbi->segs_per_sec) - 1, end_segno);
1127 
1128 		mutex_lock(&sbi->gc_mutex);
1129 		write_checkpoint(sbi, &cpc);
1130 		mutex_unlock(&sbi->gc_mutex);
1131 	}
1132 out:
1133 	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1134 	return 0;
1135 }
1136 
1137 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1138 {
1139 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1140 	if (curseg->next_blkoff < sbi->blocks_per_seg)
1141 		return true;
1142 	return false;
1143 }
1144 
1145 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1146 {
1147 	if (p_type == DATA)
1148 		return CURSEG_HOT_DATA;
1149 	else
1150 		return CURSEG_HOT_NODE;
1151 }
1152 
1153 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1154 {
1155 	if (p_type == DATA) {
1156 		struct inode *inode = page->mapping->host;
1157 
1158 		if (S_ISDIR(inode->i_mode))
1159 			return CURSEG_HOT_DATA;
1160 		else
1161 			return CURSEG_COLD_DATA;
1162 	} else {
1163 		if (IS_DNODE(page) && is_cold_node(page))
1164 			return CURSEG_WARM_NODE;
1165 		else
1166 			return CURSEG_COLD_NODE;
1167 	}
1168 }
1169 
1170 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1171 {
1172 	if (p_type == DATA) {
1173 		struct inode *inode = page->mapping->host;
1174 
1175 		if (S_ISDIR(inode->i_mode))
1176 			return CURSEG_HOT_DATA;
1177 		else if (is_cold_data(page) || file_is_cold(inode))
1178 			return CURSEG_COLD_DATA;
1179 		else
1180 			return CURSEG_WARM_DATA;
1181 	} else {
1182 		if (IS_DNODE(page))
1183 			return is_cold_node(page) ? CURSEG_WARM_NODE :
1184 						CURSEG_HOT_NODE;
1185 		else
1186 			return CURSEG_COLD_NODE;
1187 	}
1188 }
1189 
1190 static int __get_segment_type(struct page *page, enum page_type p_type)
1191 {
1192 	switch (F2FS_P_SB(page)->active_logs) {
1193 	case 2:
1194 		return __get_segment_type_2(page, p_type);
1195 	case 4:
1196 		return __get_segment_type_4(page, p_type);
1197 	}
1198 	/* NR_CURSEG_TYPE(6) logs by default */
1199 	f2fs_bug_on(F2FS_P_SB(page),
1200 		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1201 	return __get_segment_type_6(page, p_type);
1202 }
1203 
1204 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1205 		block_t old_blkaddr, block_t *new_blkaddr,
1206 		struct f2fs_summary *sum, int type)
1207 {
1208 	struct sit_info *sit_i = SIT_I(sbi);
1209 	struct curseg_info *curseg;
1210 	bool direct_io = (type == CURSEG_DIRECT_IO);
1211 
1212 	type = direct_io ? CURSEG_WARM_DATA : type;
1213 
1214 	curseg = CURSEG_I(sbi, type);
1215 
1216 	mutex_lock(&curseg->curseg_mutex);
1217 	mutex_lock(&sit_i->sentry_lock);
1218 
1219 	/* direct_io'ed data is aligned to the segment for better performance */
1220 	if (direct_io && curseg->next_blkoff)
1221 		__allocate_new_segments(sbi, type);
1222 
1223 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1224 
1225 	/*
1226 	 * __add_sum_entry should be resided under the curseg_mutex
1227 	 * because, this function updates a summary entry in the
1228 	 * current summary block.
1229 	 */
1230 	__add_sum_entry(sbi, type, sum);
1231 
1232 	__refresh_next_blkoff(sbi, curseg);
1233 
1234 	stat_inc_block_count(sbi, curseg);
1235 
1236 	if (!__has_curseg_space(sbi, type))
1237 		sit_i->s_ops->allocate_segment(sbi, type, false);
1238 	/*
1239 	 * SIT information should be updated before segment allocation,
1240 	 * since SSR needs latest valid block information.
1241 	 */
1242 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1243 
1244 	mutex_unlock(&sit_i->sentry_lock);
1245 
1246 	if (page && IS_NODESEG(type))
1247 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1248 
1249 	mutex_unlock(&curseg->curseg_mutex);
1250 }
1251 
1252 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1253 {
1254 	int type = __get_segment_type(fio->page, fio->type);
1255 
1256 	allocate_data_block(fio->sbi, fio->page, fio->blk_addr,
1257 					&fio->blk_addr, sum, type);
1258 
1259 	/* writeout dirty page into bdev */
1260 	f2fs_submit_page_mbio(fio);
1261 }
1262 
1263 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1264 {
1265 	struct f2fs_io_info fio = {
1266 		.sbi = sbi,
1267 		.type = META,
1268 		.rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1269 		.blk_addr = page->index,
1270 		.page = page,
1271 		.encrypted_page = NULL,
1272 	};
1273 
1274 	set_page_writeback(page);
1275 	f2fs_submit_page_mbio(&fio);
1276 }
1277 
1278 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1279 {
1280 	struct f2fs_summary sum;
1281 
1282 	set_summary(&sum, nid, 0, 0);
1283 	do_write_page(&sum, fio);
1284 }
1285 
1286 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1287 {
1288 	struct f2fs_sb_info *sbi = fio->sbi;
1289 	struct f2fs_summary sum;
1290 	struct node_info ni;
1291 
1292 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1293 	get_node_info(sbi, dn->nid, &ni);
1294 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1295 	do_write_page(&sum, fio);
1296 	dn->data_blkaddr = fio->blk_addr;
1297 }
1298 
1299 void rewrite_data_page(struct f2fs_io_info *fio)
1300 {
1301 	stat_inc_inplace_blocks(fio->sbi);
1302 	f2fs_submit_page_mbio(fio);
1303 }
1304 
1305 static void __f2fs_replace_block(struct f2fs_sb_info *sbi,
1306 				struct f2fs_summary *sum,
1307 				block_t old_blkaddr, block_t new_blkaddr,
1308 				bool recover_curseg)
1309 {
1310 	struct sit_info *sit_i = SIT_I(sbi);
1311 	struct curseg_info *curseg;
1312 	unsigned int segno, old_cursegno;
1313 	struct seg_entry *se;
1314 	int type;
1315 	unsigned short old_blkoff;
1316 
1317 	segno = GET_SEGNO(sbi, new_blkaddr);
1318 	se = get_seg_entry(sbi, segno);
1319 	type = se->type;
1320 
1321 	if (!recover_curseg) {
1322 		/* for recovery flow */
1323 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1324 			if (old_blkaddr == NULL_ADDR)
1325 				type = CURSEG_COLD_DATA;
1326 			else
1327 				type = CURSEG_WARM_DATA;
1328 		}
1329 	} else {
1330 		if (!IS_CURSEG(sbi, segno))
1331 			type = CURSEG_WARM_DATA;
1332 	}
1333 
1334 	curseg = CURSEG_I(sbi, type);
1335 
1336 	mutex_lock(&curseg->curseg_mutex);
1337 	mutex_lock(&sit_i->sentry_lock);
1338 
1339 	old_cursegno = curseg->segno;
1340 	old_blkoff = curseg->next_blkoff;
1341 
1342 	/* change the current segment */
1343 	if (segno != curseg->segno) {
1344 		curseg->next_segno = segno;
1345 		change_curseg(sbi, type, true);
1346 	}
1347 
1348 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1349 	__add_sum_entry(sbi, type, sum);
1350 
1351 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1352 	locate_dirty_segment(sbi, old_cursegno);
1353 
1354 	if (recover_curseg) {
1355 		if (old_cursegno != curseg->segno) {
1356 			curseg->next_segno = old_cursegno;
1357 			change_curseg(sbi, type, true);
1358 		}
1359 		curseg->next_blkoff = old_blkoff;
1360 	}
1361 
1362 	mutex_unlock(&sit_i->sentry_lock);
1363 	mutex_unlock(&curseg->curseg_mutex);
1364 }
1365 
1366 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1367 				block_t old_addr, block_t new_addr,
1368 				unsigned char version, bool recover_curseg)
1369 {
1370 	struct f2fs_summary sum;
1371 
1372 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1373 
1374 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg);
1375 
1376 	dn->data_blkaddr = new_addr;
1377 	set_data_blkaddr(dn);
1378 	f2fs_update_extent_cache(dn);
1379 }
1380 
1381 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1382 					struct page *page, enum page_type type)
1383 {
1384 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
1385 	struct f2fs_bio_info *io = &sbi->write_io[btype];
1386 	struct bio_vec *bvec;
1387 	struct page *target;
1388 	int i;
1389 
1390 	down_read(&io->io_rwsem);
1391 	if (!io->bio) {
1392 		up_read(&io->io_rwsem);
1393 		return false;
1394 	}
1395 
1396 	bio_for_each_segment_all(bvec, io->bio, i) {
1397 
1398 		if (bvec->bv_page->mapping) {
1399 			target = bvec->bv_page;
1400 		} else {
1401 			struct f2fs_crypto_ctx *ctx;
1402 
1403 			/* encrypted page */
1404 			ctx = (struct f2fs_crypto_ctx *)page_private(
1405 								bvec->bv_page);
1406 			target = ctx->w.control_page;
1407 		}
1408 
1409 		if (page == target) {
1410 			up_read(&io->io_rwsem);
1411 			return true;
1412 		}
1413 	}
1414 
1415 	up_read(&io->io_rwsem);
1416 	return false;
1417 }
1418 
1419 void f2fs_wait_on_page_writeback(struct page *page,
1420 				enum page_type type)
1421 {
1422 	if (PageWriteback(page)) {
1423 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1424 
1425 		if (is_merged_page(sbi, page, type))
1426 			f2fs_submit_merged_bio(sbi, type, WRITE);
1427 		wait_on_page_writeback(page);
1428 	}
1429 }
1430 
1431 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1432 {
1433 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1434 	struct curseg_info *seg_i;
1435 	unsigned char *kaddr;
1436 	struct page *page;
1437 	block_t start;
1438 	int i, j, offset;
1439 
1440 	start = start_sum_block(sbi);
1441 
1442 	page = get_meta_page(sbi, start++);
1443 	kaddr = (unsigned char *)page_address(page);
1444 
1445 	/* Step 1: restore nat cache */
1446 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1447 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1448 
1449 	/* Step 2: restore sit cache */
1450 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1451 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1452 						SUM_JOURNAL_SIZE);
1453 	offset = 2 * SUM_JOURNAL_SIZE;
1454 
1455 	/* Step 3: restore summary entries */
1456 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1457 		unsigned short blk_off;
1458 		unsigned int segno;
1459 
1460 		seg_i = CURSEG_I(sbi, i);
1461 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1462 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1463 		seg_i->next_segno = segno;
1464 		reset_curseg(sbi, i, 0);
1465 		seg_i->alloc_type = ckpt->alloc_type[i];
1466 		seg_i->next_blkoff = blk_off;
1467 
1468 		if (seg_i->alloc_type == SSR)
1469 			blk_off = sbi->blocks_per_seg;
1470 
1471 		for (j = 0; j < blk_off; j++) {
1472 			struct f2fs_summary *s;
1473 			s = (struct f2fs_summary *)(kaddr + offset);
1474 			seg_i->sum_blk->entries[j] = *s;
1475 			offset += SUMMARY_SIZE;
1476 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1477 						SUM_FOOTER_SIZE)
1478 				continue;
1479 
1480 			f2fs_put_page(page, 1);
1481 			page = NULL;
1482 
1483 			page = get_meta_page(sbi, start++);
1484 			kaddr = (unsigned char *)page_address(page);
1485 			offset = 0;
1486 		}
1487 	}
1488 	f2fs_put_page(page, 1);
1489 	return 0;
1490 }
1491 
1492 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1493 {
1494 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1495 	struct f2fs_summary_block *sum;
1496 	struct curseg_info *curseg;
1497 	struct page *new;
1498 	unsigned short blk_off;
1499 	unsigned int segno = 0;
1500 	block_t blk_addr = 0;
1501 
1502 	/* get segment number and block addr */
1503 	if (IS_DATASEG(type)) {
1504 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1505 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1506 							CURSEG_HOT_DATA]);
1507 		if (__exist_node_summaries(sbi))
1508 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1509 		else
1510 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1511 	} else {
1512 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1513 							CURSEG_HOT_NODE]);
1514 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1515 							CURSEG_HOT_NODE]);
1516 		if (__exist_node_summaries(sbi))
1517 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1518 							type - CURSEG_HOT_NODE);
1519 		else
1520 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1521 	}
1522 
1523 	new = get_meta_page(sbi, blk_addr);
1524 	sum = (struct f2fs_summary_block *)page_address(new);
1525 
1526 	if (IS_NODESEG(type)) {
1527 		if (__exist_node_summaries(sbi)) {
1528 			struct f2fs_summary *ns = &sum->entries[0];
1529 			int i;
1530 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1531 				ns->version = 0;
1532 				ns->ofs_in_node = 0;
1533 			}
1534 		} else {
1535 			int err;
1536 
1537 			err = restore_node_summary(sbi, segno, sum);
1538 			if (err) {
1539 				f2fs_put_page(new, 1);
1540 				return err;
1541 			}
1542 		}
1543 	}
1544 
1545 	/* set uncompleted segment to curseg */
1546 	curseg = CURSEG_I(sbi, type);
1547 	mutex_lock(&curseg->curseg_mutex);
1548 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1549 	curseg->next_segno = segno;
1550 	reset_curseg(sbi, type, 0);
1551 	curseg->alloc_type = ckpt->alloc_type[type];
1552 	curseg->next_blkoff = blk_off;
1553 	mutex_unlock(&curseg->curseg_mutex);
1554 	f2fs_put_page(new, 1);
1555 	return 0;
1556 }
1557 
1558 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1559 {
1560 	int type = CURSEG_HOT_DATA;
1561 	int err;
1562 
1563 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1564 		int npages = npages_for_summary_flush(sbi, true);
1565 
1566 		if (npages >= 2)
1567 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
1568 								META_CP);
1569 
1570 		/* restore for compacted data summary */
1571 		if (read_compacted_summaries(sbi))
1572 			return -EINVAL;
1573 		type = CURSEG_HOT_NODE;
1574 	}
1575 
1576 	if (__exist_node_summaries(sbi))
1577 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1578 					NR_CURSEG_TYPE - type, META_CP);
1579 
1580 	for (; type <= CURSEG_COLD_NODE; type++) {
1581 		err = read_normal_summaries(sbi, type);
1582 		if (err)
1583 			return err;
1584 	}
1585 
1586 	return 0;
1587 }
1588 
1589 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1590 {
1591 	struct page *page;
1592 	unsigned char *kaddr;
1593 	struct f2fs_summary *summary;
1594 	struct curseg_info *seg_i;
1595 	int written_size = 0;
1596 	int i, j;
1597 
1598 	page = grab_meta_page(sbi, blkaddr++);
1599 	kaddr = (unsigned char *)page_address(page);
1600 
1601 	/* Step 1: write nat cache */
1602 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1603 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1604 	written_size += SUM_JOURNAL_SIZE;
1605 
1606 	/* Step 2: write sit cache */
1607 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1608 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1609 						SUM_JOURNAL_SIZE);
1610 	written_size += SUM_JOURNAL_SIZE;
1611 
1612 	/* Step 3: write summary entries */
1613 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1614 		unsigned short blkoff;
1615 		seg_i = CURSEG_I(sbi, i);
1616 		if (sbi->ckpt->alloc_type[i] == SSR)
1617 			blkoff = sbi->blocks_per_seg;
1618 		else
1619 			blkoff = curseg_blkoff(sbi, i);
1620 
1621 		for (j = 0; j < blkoff; j++) {
1622 			if (!page) {
1623 				page = grab_meta_page(sbi, blkaddr++);
1624 				kaddr = (unsigned char *)page_address(page);
1625 				written_size = 0;
1626 			}
1627 			summary = (struct f2fs_summary *)(kaddr + written_size);
1628 			*summary = seg_i->sum_blk->entries[j];
1629 			written_size += SUMMARY_SIZE;
1630 
1631 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1632 							SUM_FOOTER_SIZE)
1633 				continue;
1634 
1635 			set_page_dirty(page);
1636 			f2fs_put_page(page, 1);
1637 			page = NULL;
1638 		}
1639 	}
1640 	if (page) {
1641 		set_page_dirty(page);
1642 		f2fs_put_page(page, 1);
1643 	}
1644 }
1645 
1646 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1647 					block_t blkaddr, int type)
1648 {
1649 	int i, end;
1650 	if (IS_DATASEG(type))
1651 		end = type + NR_CURSEG_DATA_TYPE;
1652 	else
1653 		end = type + NR_CURSEG_NODE_TYPE;
1654 
1655 	for (i = type; i < end; i++) {
1656 		struct curseg_info *sum = CURSEG_I(sbi, i);
1657 		mutex_lock(&sum->curseg_mutex);
1658 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1659 		mutex_unlock(&sum->curseg_mutex);
1660 	}
1661 }
1662 
1663 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1664 {
1665 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1666 		write_compacted_summaries(sbi, start_blk);
1667 	else
1668 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1669 }
1670 
1671 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1672 {
1673 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1674 }
1675 
1676 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1677 					unsigned int val, int alloc)
1678 {
1679 	int i;
1680 
1681 	if (type == NAT_JOURNAL) {
1682 		for (i = 0; i < nats_in_cursum(sum); i++) {
1683 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1684 				return i;
1685 		}
1686 		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1687 			return update_nats_in_cursum(sum, 1);
1688 	} else if (type == SIT_JOURNAL) {
1689 		for (i = 0; i < sits_in_cursum(sum); i++)
1690 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1691 				return i;
1692 		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1693 			return update_sits_in_cursum(sum, 1);
1694 	}
1695 	return -1;
1696 }
1697 
1698 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1699 					unsigned int segno)
1700 {
1701 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
1702 }
1703 
1704 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1705 					unsigned int start)
1706 {
1707 	struct sit_info *sit_i = SIT_I(sbi);
1708 	struct page *src_page, *dst_page;
1709 	pgoff_t src_off, dst_off;
1710 	void *src_addr, *dst_addr;
1711 
1712 	src_off = current_sit_addr(sbi, start);
1713 	dst_off = next_sit_addr(sbi, src_off);
1714 
1715 	/* get current sit block page without lock */
1716 	src_page = get_meta_page(sbi, src_off);
1717 	dst_page = grab_meta_page(sbi, dst_off);
1718 	f2fs_bug_on(sbi, PageDirty(src_page));
1719 
1720 	src_addr = page_address(src_page);
1721 	dst_addr = page_address(dst_page);
1722 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1723 
1724 	set_page_dirty(dst_page);
1725 	f2fs_put_page(src_page, 1);
1726 
1727 	set_to_next_sit(sit_i, start);
1728 
1729 	return dst_page;
1730 }
1731 
1732 static struct sit_entry_set *grab_sit_entry_set(void)
1733 {
1734 	struct sit_entry_set *ses =
1735 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC);
1736 
1737 	ses->entry_cnt = 0;
1738 	INIT_LIST_HEAD(&ses->set_list);
1739 	return ses;
1740 }
1741 
1742 static void release_sit_entry_set(struct sit_entry_set *ses)
1743 {
1744 	list_del(&ses->set_list);
1745 	kmem_cache_free(sit_entry_set_slab, ses);
1746 }
1747 
1748 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1749 						struct list_head *head)
1750 {
1751 	struct sit_entry_set *next = ses;
1752 
1753 	if (list_is_last(&ses->set_list, head))
1754 		return;
1755 
1756 	list_for_each_entry_continue(next, head, set_list)
1757 		if (ses->entry_cnt <= next->entry_cnt)
1758 			break;
1759 
1760 	list_move_tail(&ses->set_list, &next->set_list);
1761 }
1762 
1763 static void add_sit_entry(unsigned int segno, struct list_head *head)
1764 {
1765 	struct sit_entry_set *ses;
1766 	unsigned int start_segno = START_SEGNO(segno);
1767 
1768 	list_for_each_entry(ses, head, set_list) {
1769 		if (ses->start_segno == start_segno) {
1770 			ses->entry_cnt++;
1771 			adjust_sit_entry_set(ses, head);
1772 			return;
1773 		}
1774 	}
1775 
1776 	ses = grab_sit_entry_set();
1777 
1778 	ses->start_segno = start_segno;
1779 	ses->entry_cnt++;
1780 	list_add(&ses->set_list, head);
1781 }
1782 
1783 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1784 {
1785 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1786 	struct list_head *set_list = &sm_info->sit_entry_set;
1787 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1788 	unsigned int segno;
1789 
1790 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1791 		add_sit_entry(segno, set_list);
1792 }
1793 
1794 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1795 {
1796 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1797 	struct f2fs_summary_block *sum = curseg->sum_blk;
1798 	int i;
1799 
1800 	for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1801 		unsigned int segno;
1802 		bool dirtied;
1803 
1804 		segno = le32_to_cpu(segno_in_journal(sum, i));
1805 		dirtied = __mark_sit_entry_dirty(sbi, segno);
1806 
1807 		if (!dirtied)
1808 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1809 	}
1810 	update_sits_in_cursum(sum, -sits_in_cursum(sum));
1811 }
1812 
1813 /*
1814  * CP calls this function, which flushes SIT entries including sit_journal,
1815  * and moves prefree segs to free segs.
1816  */
1817 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1818 {
1819 	struct sit_info *sit_i = SIT_I(sbi);
1820 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1821 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1822 	struct f2fs_summary_block *sum = curseg->sum_blk;
1823 	struct sit_entry_set *ses, *tmp;
1824 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
1825 	bool to_journal = true;
1826 	struct seg_entry *se;
1827 
1828 	mutex_lock(&curseg->curseg_mutex);
1829 	mutex_lock(&sit_i->sentry_lock);
1830 
1831 	if (!sit_i->dirty_sentries)
1832 		goto out;
1833 
1834 	/*
1835 	 * add and account sit entries of dirty bitmap in sit entry
1836 	 * set temporarily
1837 	 */
1838 	add_sits_in_set(sbi);
1839 
1840 	/*
1841 	 * if there are no enough space in journal to store dirty sit
1842 	 * entries, remove all entries from journal and add and account
1843 	 * them in sit entry set.
1844 	 */
1845 	if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1846 		remove_sits_in_journal(sbi);
1847 
1848 	/*
1849 	 * there are two steps to flush sit entries:
1850 	 * #1, flush sit entries to journal in current cold data summary block.
1851 	 * #2, flush sit entries to sit page.
1852 	 */
1853 	list_for_each_entry_safe(ses, tmp, head, set_list) {
1854 		struct page *page = NULL;
1855 		struct f2fs_sit_block *raw_sit = NULL;
1856 		unsigned int start_segno = ses->start_segno;
1857 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1858 						(unsigned long)MAIN_SEGS(sbi));
1859 		unsigned int segno = start_segno;
1860 
1861 		if (to_journal &&
1862 			!__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1863 			to_journal = false;
1864 
1865 		if (!to_journal) {
1866 			page = get_next_sit_page(sbi, start_segno);
1867 			raw_sit = page_address(page);
1868 		}
1869 
1870 		/* flush dirty sit entries in region of current sit set */
1871 		for_each_set_bit_from(segno, bitmap, end) {
1872 			int offset, sit_offset;
1873 
1874 			se = get_seg_entry(sbi, segno);
1875 
1876 			/* add discard candidates */
1877 			if (cpc->reason != CP_DISCARD) {
1878 				cpc->trim_start = segno;
1879 				add_discard_addrs(sbi, cpc);
1880 			}
1881 
1882 			if (to_journal) {
1883 				offset = lookup_journal_in_cursum(sum,
1884 							SIT_JOURNAL, segno, 1);
1885 				f2fs_bug_on(sbi, offset < 0);
1886 				segno_in_journal(sum, offset) =
1887 							cpu_to_le32(segno);
1888 				seg_info_to_raw_sit(se,
1889 						&sit_in_journal(sum, offset));
1890 			} else {
1891 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1892 				seg_info_to_raw_sit(se,
1893 						&raw_sit->entries[sit_offset]);
1894 			}
1895 
1896 			__clear_bit(segno, bitmap);
1897 			sit_i->dirty_sentries--;
1898 			ses->entry_cnt--;
1899 		}
1900 
1901 		if (!to_journal)
1902 			f2fs_put_page(page, 1);
1903 
1904 		f2fs_bug_on(sbi, ses->entry_cnt);
1905 		release_sit_entry_set(ses);
1906 	}
1907 
1908 	f2fs_bug_on(sbi, !list_empty(head));
1909 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
1910 out:
1911 	if (cpc->reason == CP_DISCARD) {
1912 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1913 			add_discard_addrs(sbi, cpc);
1914 	}
1915 	mutex_unlock(&sit_i->sentry_lock);
1916 	mutex_unlock(&curseg->curseg_mutex);
1917 
1918 	set_prefree_as_free_segments(sbi);
1919 }
1920 
1921 static int build_sit_info(struct f2fs_sb_info *sbi)
1922 {
1923 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1924 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1925 	struct sit_info *sit_i;
1926 	unsigned int sit_segs, start;
1927 	char *src_bitmap, *dst_bitmap;
1928 	unsigned int bitmap_size;
1929 
1930 	/* allocate memory for SIT information */
1931 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1932 	if (!sit_i)
1933 		return -ENOMEM;
1934 
1935 	SM_I(sbi)->sit_info = sit_i;
1936 
1937 	sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
1938 	if (!sit_i->sentries)
1939 		return -ENOMEM;
1940 
1941 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1942 	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1943 	if (!sit_i->dirty_sentries_bitmap)
1944 		return -ENOMEM;
1945 
1946 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
1947 		sit_i->sentries[start].cur_valid_map
1948 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1949 		sit_i->sentries[start].ckpt_valid_map
1950 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1951 		sit_i->sentries[start].discard_map
1952 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1953 		if (!sit_i->sentries[start].cur_valid_map ||
1954 				!sit_i->sentries[start].ckpt_valid_map ||
1955 				!sit_i->sentries[start].discard_map)
1956 			return -ENOMEM;
1957 	}
1958 
1959 	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1960 	if (!sit_i->tmp_map)
1961 		return -ENOMEM;
1962 
1963 	if (sbi->segs_per_sec > 1) {
1964 		sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
1965 					sizeof(struct sec_entry));
1966 		if (!sit_i->sec_entries)
1967 			return -ENOMEM;
1968 	}
1969 
1970 	/* get information related with SIT */
1971 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1972 
1973 	/* setup SIT bitmap from ckeckpoint pack */
1974 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1975 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1976 
1977 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1978 	if (!dst_bitmap)
1979 		return -ENOMEM;
1980 
1981 	/* init SIT information */
1982 	sit_i->s_ops = &default_salloc_ops;
1983 
1984 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1985 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1986 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1987 	sit_i->sit_bitmap = dst_bitmap;
1988 	sit_i->bitmap_size = bitmap_size;
1989 	sit_i->dirty_sentries = 0;
1990 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1991 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1992 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1993 	mutex_init(&sit_i->sentry_lock);
1994 	return 0;
1995 }
1996 
1997 static int build_free_segmap(struct f2fs_sb_info *sbi)
1998 {
1999 	struct free_segmap_info *free_i;
2000 	unsigned int bitmap_size, sec_bitmap_size;
2001 
2002 	/* allocate memory for free segmap information */
2003 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2004 	if (!free_i)
2005 		return -ENOMEM;
2006 
2007 	SM_I(sbi)->free_info = free_i;
2008 
2009 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2010 	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
2011 	if (!free_i->free_segmap)
2012 		return -ENOMEM;
2013 
2014 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2015 	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
2016 	if (!free_i->free_secmap)
2017 		return -ENOMEM;
2018 
2019 	/* set all segments as dirty temporarily */
2020 	memset(free_i->free_segmap, 0xff, bitmap_size);
2021 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2022 
2023 	/* init free segmap information */
2024 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2025 	free_i->free_segments = 0;
2026 	free_i->free_sections = 0;
2027 	spin_lock_init(&free_i->segmap_lock);
2028 	return 0;
2029 }
2030 
2031 static int build_curseg(struct f2fs_sb_info *sbi)
2032 {
2033 	struct curseg_info *array;
2034 	int i;
2035 
2036 	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2037 	if (!array)
2038 		return -ENOMEM;
2039 
2040 	SM_I(sbi)->curseg_array = array;
2041 
2042 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2043 		mutex_init(&array[i].curseg_mutex);
2044 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
2045 		if (!array[i].sum_blk)
2046 			return -ENOMEM;
2047 		array[i].segno = NULL_SEGNO;
2048 		array[i].next_blkoff = 0;
2049 	}
2050 	return restore_curseg_summaries(sbi);
2051 }
2052 
2053 static void build_sit_entries(struct f2fs_sb_info *sbi)
2054 {
2055 	struct sit_info *sit_i = SIT_I(sbi);
2056 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2057 	struct f2fs_summary_block *sum = curseg->sum_blk;
2058 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2059 	unsigned int i, start, end;
2060 	unsigned int readed, start_blk = 0;
2061 	int nrpages = MAX_BIO_BLOCKS(sbi);
2062 
2063 	do {
2064 		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
2065 
2066 		start = start_blk * sit_i->sents_per_block;
2067 		end = (start_blk + readed) * sit_i->sents_per_block;
2068 
2069 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
2070 			struct seg_entry *se = &sit_i->sentries[start];
2071 			struct f2fs_sit_block *sit_blk;
2072 			struct f2fs_sit_entry sit;
2073 			struct page *page;
2074 
2075 			mutex_lock(&curseg->curseg_mutex);
2076 			for (i = 0; i < sits_in_cursum(sum); i++) {
2077 				if (le32_to_cpu(segno_in_journal(sum, i))
2078 								== start) {
2079 					sit = sit_in_journal(sum, i);
2080 					mutex_unlock(&curseg->curseg_mutex);
2081 					goto got_it;
2082 				}
2083 			}
2084 			mutex_unlock(&curseg->curseg_mutex);
2085 
2086 			page = get_current_sit_page(sbi, start);
2087 			sit_blk = (struct f2fs_sit_block *)page_address(page);
2088 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2089 			f2fs_put_page(page, 1);
2090 got_it:
2091 			check_block_count(sbi, start, &sit);
2092 			seg_info_from_raw_sit(se, &sit);
2093 
2094 			/* build discard map only one time */
2095 			memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2096 			sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2097 
2098 			if (sbi->segs_per_sec > 1) {
2099 				struct sec_entry *e = get_sec_entry(sbi, start);
2100 				e->valid_blocks += se->valid_blocks;
2101 			}
2102 		}
2103 		start_blk += readed;
2104 	} while (start_blk < sit_blk_cnt);
2105 }
2106 
2107 static void init_free_segmap(struct f2fs_sb_info *sbi)
2108 {
2109 	unsigned int start;
2110 	int type;
2111 
2112 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2113 		struct seg_entry *sentry = get_seg_entry(sbi, start);
2114 		if (!sentry->valid_blocks)
2115 			__set_free(sbi, start);
2116 	}
2117 
2118 	/* set use the current segments */
2119 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2120 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2121 		__set_test_and_inuse(sbi, curseg_t->segno);
2122 	}
2123 }
2124 
2125 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2126 {
2127 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2128 	struct free_segmap_info *free_i = FREE_I(sbi);
2129 	unsigned int segno = 0, offset = 0;
2130 	unsigned short valid_blocks;
2131 
2132 	while (1) {
2133 		/* find dirty segment based on free segmap */
2134 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2135 		if (segno >= MAIN_SEGS(sbi))
2136 			break;
2137 		offset = segno + 1;
2138 		valid_blocks = get_valid_blocks(sbi, segno, 0);
2139 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2140 			continue;
2141 		if (valid_blocks > sbi->blocks_per_seg) {
2142 			f2fs_bug_on(sbi, 1);
2143 			continue;
2144 		}
2145 		mutex_lock(&dirty_i->seglist_lock);
2146 		__locate_dirty_segment(sbi, segno, DIRTY);
2147 		mutex_unlock(&dirty_i->seglist_lock);
2148 	}
2149 }
2150 
2151 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2152 {
2153 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2154 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2155 
2156 	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
2157 	if (!dirty_i->victim_secmap)
2158 		return -ENOMEM;
2159 	return 0;
2160 }
2161 
2162 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2163 {
2164 	struct dirty_seglist_info *dirty_i;
2165 	unsigned int bitmap_size, i;
2166 
2167 	/* allocate memory for dirty segments list information */
2168 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2169 	if (!dirty_i)
2170 		return -ENOMEM;
2171 
2172 	SM_I(sbi)->dirty_info = dirty_i;
2173 	mutex_init(&dirty_i->seglist_lock);
2174 
2175 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2176 
2177 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
2178 		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
2179 		if (!dirty_i->dirty_segmap[i])
2180 			return -ENOMEM;
2181 	}
2182 
2183 	init_dirty_segmap(sbi);
2184 	return init_victim_secmap(sbi);
2185 }
2186 
2187 /*
2188  * Update min, max modified time for cost-benefit GC algorithm
2189  */
2190 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2191 {
2192 	struct sit_info *sit_i = SIT_I(sbi);
2193 	unsigned int segno;
2194 
2195 	mutex_lock(&sit_i->sentry_lock);
2196 
2197 	sit_i->min_mtime = LLONG_MAX;
2198 
2199 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2200 		unsigned int i;
2201 		unsigned long long mtime = 0;
2202 
2203 		for (i = 0; i < sbi->segs_per_sec; i++)
2204 			mtime += get_seg_entry(sbi, segno + i)->mtime;
2205 
2206 		mtime = div_u64(mtime, sbi->segs_per_sec);
2207 
2208 		if (sit_i->min_mtime > mtime)
2209 			sit_i->min_mtime = mtime;
2210 	}
2211 	sit_i->max_mtime = get_mtime(sbi);
2212 	mutex_unlock(&sit_i->sentry_lock);
2213 }
2214 
2215 int build_segment_manager(struct f2fs_sb_info *sbi)
2216 {
2217 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2218 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2219 	struct f2fs_sm_info *sm_info;
2220 	int err;
2221 
2222 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2223 	if (!sm_info)
2224 		return -ENOMEM;
2225 
2226 	/* init sm info */
2227 	sbi->sm_info = sm_info;
2228 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2229 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2230 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2231 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2232 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2233 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2234 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2235 	sm_info->rec_prefree_segments = sm_info->main_segments *
2236 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2237 	sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2238 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2239 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2240 
2241 	INIT_LIST_HEAD(&sm_info->discard_list);
2242 	sm_info->nr_discards = 0;
2243 	sm_info->max_discards = 0;
2244 
2245 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2246 
2247 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
2248 
2249 	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2250 		err = create_flush_cmd_control(sbi);
2251 		if (err)
2252 			return err;
2253 	}
2254 
2255 	err = build_sit_info(sbi);
2256 	if (err)
2257 		return err;
2258 	err = build_free_segmap(sbi);
2259 	if (err)
2260 		return err;
2261 	err = build_curseg(sbi);
2262 	if (err)
2263 		return err;
2264 
2265 	/* reinit free segmap based on SIT */
2266 	build_sit_entries(sbi);
2267 
2268 	init_free_segmap(sbi);
2269 	err = build_dirty_segmap(sbi);
2270 	if (err)
2271 		return err;
2272 
2273 	init_min_max_mtime(sbi);
2274 	return 0;
2275 }
2276 
2277 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2278 		enum dirty_type dirty_type)
2279 {
2280 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2281 
2282 	mutex_lock(&dirty_i->seglist_lock);
2283 	kfree(dirty_i->dirty_segmap[dirty_type]);
2284 	dirty_i->nr_dirty[dirty_type] = 0;
2285 	mutex_unlock(&dirty_i->seglist_lock);
2286 }
2287 
2288 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2289 {
2290 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2291 	kfree(dirty_i->victim_secmap);
2292 }
2293 
2294 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2295 {
2296 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2297 	int i;
2298 
2299 	if (!dirty_i)
2300 		return;
2301 
2302 	/* discard pre-free/dirty segments list */
2303 	for (i = 0; i < NR_DIRTY_TYPE; i++)
2304 		discard_dirty_segmap(sbi, i);
2305 
2306 	destroy_victim_secmap(sbi);
2307 	SM_I(sbi)->dirty_info = NULL;
2308 	kfree(dirty_i);
2309 }
2310 
2311 static void destroy_curseg(struct f2fs_sb_info *sbi)
2312 {
2313 	struct curseg_info *array = SM_I(sbi)->curseg_array;
2314 	int i;
2315 
2316 	if (!array)
2317 		return;
2318 	SM_I(sbi)->curseg_array = NULL;
2319 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2320 		kfree(array[i].sum_blk);
2321 	kfree(array);
2322 }
2323 
2324 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2325 {
2326 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2327 	if (!free_i)
2328 		return;
2329 	SM_I(sbi)->free_info = NULL;
2330 	kfree(free_i->free_segmap);
2331 	kfree(free_i->free_secmap);
2332 	kfree(free_i);
2333 }
2334 
2335 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2336 {
2337 	struct sit_info *sit_i = SIT_I(sbi);
2338 	unsigned int start;
2339 
2340 	if (!sit_i)
2341 		return;
2342 
2343 	if (sit_i->sentries) {
2344 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
2345 			kfree(sit_i->sentries[start].cur_valid_map);
2346 			kfree(sit_i->sentries[start].ckpt_valid_map);
2347 			kfree(sit_i->sentries[start].discard_map);
2348 		}
2349 	}
2350 	kfree(sit_i->tmp_map);
2351 
2352 	vfree(sit_i->sentries);
2353 	vfree(sit_i->sec_entries);
2354 	kfree(sit_i->dirty_sentries_bitmap);
2355 
2356 	SM_I(sbi)->sit_info = NULL;
2357 	kfree(sit_i->sit_bitmap);
2358 	kfree(sit_i);
2359 }
2360 
2361 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2362 {
2363 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2364 
2365 	if (!sm_info)
2366 		return;
2367 	destroy_flush_cmd_control(sbi);
2368 	destroy_dirty_segmap(sbi);
2369 	destroy_curseg(sbi);
2370 	destroy_free_segmap(sbi);
2371 	destroy_sit_info(sbi);
2372 	sbi->sm_info = NULL;
2373 	kfree(sm_info);
2374 }
2375 
2376 int __init create_segment_manager_caches(void)
2377 {
2378 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2379 			sizeof(struct discard_entry));
2380 	if (!discard_entry_slab)
2381 		goto fail;
2382 
2383 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2384 			sizeof(struct sit_entry_set));
2385 	if (!sit_entry_set_slab)
2386 		goto destory_discard_entry;
2387 
2388 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2389 			sizeof(struct inmem_pages));
2390 	if (!inmem_entry_slab)
2391 		goto destroy_sit_entry_set;
2392 	return 0;
2393 
2394 destroy_sit_entry_set:
2395 	kmem_cache_destroy(sit_entry_set_slab);
2396 destory_discard_entry:
2397 	kmem_cache_destroy(discard_entry_slab);
2398 fail:
2399 	return -ENOMEM;
2400 }
2401 
2402 void destroy_segment_manager_caches(void)
2403 {
2404 	kmem_cache_destroy(sit_entry_set_slab);
2405 	kmem_cache_destroy(discard_entry_slab);
2406 	kmem_cache_destroy(inmem_entry_slab);
2407 }
2408