1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/vmalloc.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 /* 33 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 34 * MSB and LSB are reversed in a byte by f2fs_set_bit. 35 */ 36 static inline unsigned long __reverse_ffs(unsigned long word) 37 { 38 int num = 0; 39 40 #if BITS_PER_LONG == 64 41 if ((word & 0xffffffff) == 0) { 42 num += 32; 43 word >>= 32; 44 } 45 #endif 46 if ((word & 0xffff) == 0) { 47 num += 16; 48 word >>= 16; 49 } 50 if ((word & 0xff) == 0) { 51 num += 8; 52 word >>= 8; 53 } 54 if ((word & 0xf0) == 0) 55 num += 4; 56 else 57 word >>= 4; 58 if ((word & 0xc) == 0) 59 num += 2; 60 else 61 word >>= 2; 62 if ((word & 0x2) == 0) 63 num += 1; 64 return num; 65 } 66 67 /* 68 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 69 * f2fs_set_bit makes MSB and LSB reversed in a byte. 70 * Example: 71 * LSB <--> MSB 72 * f2fs_set_bit(0, bitmap) => 0000 0001 73 * f2fs_set_bit(7, bitmap) => 1000 0000 74 */ 75 static unsigned long __find_rev_next_bit(const unsigned long *addr, 76 unsigned long size, unsigned long offset) 77 { 78 while (!f2fs_test_bit(offset, (unsigned char *)addr)) 79 offset++; 80 81 if (offset > size) 82 offset = size; 83 84 return offset; 85 #if 0 86 const unsigned long *p = addr + BIT_WORD(offset); 87 unsigned long result = offset & ~(BITS_PER_LONG - 1); 88 unsigned long tmp; 89 unsigned long mask, submask; 90 unsigned long quot, rest; 91 92 if (offset >= size) 93 return size; 94 95 size -= result; 96 offset %= BITS_PER_LONG; 97 if (!offset) 98 goto aligned; 99 100 tmp = *(p++); 101 quot = (offset >> 3) << 3; 102 rest = offset & 0x7; 103 mask = ~0UL << quot; 104 submask = (unsigned char)(0xff << rest) >> rest; 105 submask <<= quot; 106 mask &= submask; 107 tmp &= mask; 108 if (size < BITS_PER_LONG) 109 goto found_first; 110 if (tmp) 111 goto found_middle; 112 113 size -= BITS_PER_LONG; 114 result += BITS_PER_LONG; 115 aligned: 116 while (size & ~(BITS_PER_LONG-1)) { 117 tmp = *(p++); 118 if (tmp) 119 goto found_middle; 120 result += BITS_PER_LONG; 121 size -= BITS_PER_LONG; 122 } 123 if (!size) 124 return result; 125 tmp = *p; 126 found_first: 127 tmp &= (~0UL >> (BITS_PER_LONG - size)); 128 if (tmp == 0UL) /* Are any bits set? */ 129 return result + size; /* Nope. */ 130 found_middle: 131 return result + __reverse_ffs(tmp); 132 #endif 133 } 134 135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 136 unsigned long size, unsigned long offset) 137 { 138 while (f2fs_test_bit(offset, (unsigned char *)addr)) 139 offset++; 140 141 if (offset > size) 142 offset = size; 143 144 return offset; 145 #if 0 146 const unsigned long *p = addr + BIT_WORD(offset); 147 unsigned long result = offset & ~(BITS_PER_LONG - 1); 148 unsigned long tmp; 149 unsigned long mask, submask; 150 unsigned long quot, rest; 151 152 if (offset >= size) 153 return size; 154 155 size -= result; 156 offset %= BITS_PER_LONG; 157 if (!offset) 158 goto aligned; 159 160 tmp = *(p++); 161 quot = (offset >> 3) << 3; 162 rest = offset & 0x7; 163 mask = ~(~0UL << quot); 164 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest); 165 submask <<= quot; 166 mask += submask; 167 tmp |= mask; 168 if (size < BITS_PER_LONG) 169 goto found_first; 170 if (~tmp) 171 goto found_middle; 172 173 size -= BITS_PER_LONG; 174 result += BITS_PER_LONG; 175 aligned: 176 while (size & ~(BITS_PER_LONG - 1)) { 177 tmp = *(p++); 178 if (~tmp) 179 goto found_middle; 180 result += BITS_PER_LONG; 181 size -= BITS_PER_LONG; 182 } 183 if (!size) 184 return result; 185 tmp = *p; 186 187 found_first: 188 tmp |= ~0UL << size; 189 if (tmp == ~0UL) /* Are any bits zero? */ 190 return result + size; /* Nope. */ 191 found_middle: 192 return result + __reverse_ffz(tmp); 193 #endif 194 } 195 196 void register_inmem_page(struct inode *inode, struct page *page) 197 { 198 struct f2fs_inode_info *fi = F2FS_I(inode); 199 struct inmem_pages *new; 200 201 f2fs_trace_pid(page); 202 203 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 204 SetPagePrivate(page); 205 206 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 207 208 /* add atomic page indices to the list */ 209 new->page = page; 210 INIT_LIST_HEAD(&new->list); 211 212 /* increase reference count with clean state */ 213 mutex_lock(&fi->inmem_lock); 214 get_page(page); 215 list_add_tail(&new->list, &fi->inmem_pages); 216 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 217 mutex_unlock(&fi->inmem_lock); 218 219 trace_f2fs_register_inmem_page(page, INMEM); 220 } 221 222 int commit_inmem_pages(struct inode *inode, bool abort) 223 { 224 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 225 struct f2fs_inode_info *fi = F2FS_I(inode); 226 struct inmem_pages *cur, *tmp; 227 bool submit_bio = false; 228 struct f2fs_io_info fio = { 229 .sbi = sbi, 230 .type = DATA, 231 .rw = WRITE_SYNC | REQ_PRIO, 232 .encrypted_page = NULL, 233 }; 234 int err = 0; 235 236 /* 237 * The abort is true only when f2fs_evict_inode is called. 238 * Basically, the f2fs_evict_inode doesn't produce any data writes, so 239 * that we don't need to call f2fs_balance_fs. 240 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this 241 * inode becomes free by iget_locked in f2fs_iget. 242 */ 243 if (!abort) { 244 f2fs_balance_fs(sbi); 245 f2fs_lock_op(sbi); 246 } 247 248 mutex_lock(&fi->inmem_lock); 249 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 250 lock_page(cur->page); 251 if (!abort) { 252 if (cur->page->mapping == inode->i_mapping) { 253 set_page_dirty(cur->page); 254 f2fs_wait_on_page_writeback(cur->page, DATA); 255 if (clear_page_dirty_for_io(cur->page)) 256 inode_dec_dirty_pages(inode); 257 trace_f2fs_commit_inmem_page(cur->page, INMEM); 258 fio.page = cur->page; 259 err = do_write_data_page(&fio); 260 submit_bio = true; 261 if (err) { 262 unlock_page(cur->page); 263 break; 264 } 265 } 266 } else { 267 trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP); 268 } 269 set_page_private(cur->page, 0); 270 ClearPagePrivate(cur->page); 271 f2fs_put_page(cur->page, 1); 272 273 list_del(&cur->list); 274 kmem_cache_free(inmem_entry_slab, cur); 275 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 276 } 277 mutex_unlock(&fi->inmem_lock); 278 279 if (!abort) { 280 f2fs_unlock_op(sbi); 281 if (submit_bio) 282 f2fs_submit_merged_bio(sbi, DATA, WRITE); 283 } 284 return err; 285 } 286 287 /* 288 * This function balances dirty node and dentry pages. 289 * In addition, it controls garbage collection. 290 */ 291 void f2fs_balance_fs(struct f2fs_sb_info *sbi) 292 { 293 /* 294 * We should do GC or end up with checkpoint, if there are so many dirty 295 * dir/node pages without enough free segments. 296 */ 297 if (has_not_enough_free_secs(sbi, 0)) { 298 mutex_lock(&sbi->gc_mutex); 299 f2fs_gc(sbi); 300 } 301 } 302 303 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 304 { 305 /* try to shrink extent cache when there is no enough memory */ 306 if (!available_free_memory(sbi, EXTENT_CACHE)) 307 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 308 309 /* check the # of cached NAT entries */ 310 if (!available_free_memory(sbi, NAT_ENTRIES)) 311 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 312 313 if (!available_free_memory(sbi, FREE_NIDS)) 314 try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES); 315 316 /* checkpoint is the only way to shrink partial cached entries */ 317 if (!available_free_memory(sbi, NAT_ENTRIES) || 318 excess_prefree_segs(sbi) || 319 !available_free_memory(sbi, INO_ENTRIES)) 320 f2fs_sync_fs(sbi->sb, true); 321 } 322 323 static int issue_flush_thread(void *data) 324 { 325 struct f2fs_sb_info *sbi = data; 326 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 327 wait_queue_head_t *q = &fcc->flush_wait_queue; 328 repeat: 329 if (kthread_should_stop()) 330 return 0; 331 332 if (!llist_empty(&fcc->issue_list)) { 333 struct bio *bio; 334 struct flush_cmd *cmd, *next; 335 int ret; 336 337 bio = f2fs_bio_alloc(0); 338 339 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 340 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 341 342 bio->bi_bdev = sbi->sb->s_bdev; 343 ret = submit_bio_wait(WRITE_FLUSH, bio); 344 345 llist_for_each_entry_safe(cmd, next, 346 fcc->dispatch_list, llnode) { 347 cmd->ret = ret; 348 complete(&cmd->wait); 349 } 350 bio_put(bio); 351 fcc->dispatch_list = NULL; 352 } 353 354 wait_event_interruptible(*q, 355 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 356 goto repeat; 357 } 358 359 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 360 { 361 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 362 struct flush_cmd cmd; 363 364 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 365 test_opt(sbi, FLUSH_MERGE)); 366 367 if (test_opt(sbi, NOBARRIER)) 368 return 0; 369 370 if (!test_opt(sbi, FLUSH_MERGE)) { 371 struct bio *bio = f2fs_bio_alloc(0); 372 int ret; 373 374 bio->bi_bdev = sbi->sb->s_bdev; 375 ret = submit_bio_wait(WRITE_FLUSH, bio); 376 bio_put(bio); 377 return ret; 378 } 379 380 init_completion(&cmd.wait); 381 382 llist_add(&cmd.llnode, &fcc->issue_list); 383 384 if (!fcc->dispatch_list) 385 wake_up(&fcc->flush_wait_queue); 386 387 wait_for_completion(&cmd.wait); 388 389 return cmd.ret; 390 } 391 392 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 393 { 394 dev_t dev = sbi->sb->s_bdev->bd_dev; 395 struct flush_cmd_control *fcc; 396 int err = 0; 397 398 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 399 if (!fcc) 400 return -ENOMEM; 401 init_waitqueue_head(&fcc->flush_wait_queue); 402 init_llist_head(&fcc->issue_list); 403 SM_I(sbi)->cmd_control_info = fcc; 404 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 405 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 406 if (IS_ERR(fcc->f2fs_issue_flush)) { 407 err = PTR_ERR(fcc->f2fs_issue_flush); 408 kfree(fcc); 409 SM_I(sbi)->cmd_control_info = NULL; 410 return err; 411 } 412 413 return err; 414 } 415 416 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 417 { 418 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 419 420 if (fcc && fcc->f2fs_issue_flush) 421 kthread_stop(fcc->f2fs_issue_flush); 422 kfree(fcc); 423 SM_I(sbi)->cmd_control_info = NULL; 424 } 425 426 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 427 enum dirty_type dirty_type) 428 { 429 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 430 431 /* need not be added */ 432 if (IS_CURSEG(sbi, segno)) 433 return; 434 435 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 436 dirty_i->nr_dirty[dirty_type]++; 437 438 if (dirty_type == DIRTY) { 439 struct seg_entry *sentry = get_seg_entry(sbi, segno); 440 enum dirty_type t = sentry->type; 441 442 if (unlikely(t >= DIRTY)) { 443 f2fs_bug_on(sbi, 1); 444 return; 445 } 446 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 447 dirty_i->nr_dirty[t]++; 448 } 449 } 450 451 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 452 enum dirty_type dirty_type) 453 { 454 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 455 456 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 457 dirty_i->nr_dirty[dirty_type]--; 458 459 if (dirty_type == DIRTY) { 460 struct seg_entry *sentry = get_seg_entry(sbi, segno); 461 enum dirty_type t = sentry->type; 462 463 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 464 dirty_i->nr_dirty[t]--; 465 466 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 467 clear_bit(GET_SECNO(sbi, segno), 468 dirty_i->victim_secmap); 469 } 470 } 471 472 /* 473 * Should not occur error such as -ENOMEM. 474 * Adding dirty entry into seglist is not critical operation. 475 * If a given segment is one of current working segments, it won't be added. 476 */ 477 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 478 { 479 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 480 unsigned short valid_blocks; 481 482 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 483 return; 484 485 mutex_lock(&dirty_i->seglist_lock); 486 487 valid_blocks = get_valid_blocks(sbi, segno, 0); 488 489 if (valid_blocks == 0) { 490 __locate_dirty_segment(sbi, segno, PRE); 491 __remove_dirty_segment(sbi, segno, DIRTY); 492 } else if (valid_blocks < sbi->blocks_per_seg) { 493 __locate_dirty_segment(sbi, segno, DIRTY); 494 } else { 495 /* Recovery routine with SSR needs this */ 496 __remove_dirty_segment(sbi, segno, DIRTY); 497 } 498 499 mutex_unlock(&dirty_i->seglist_lock); 500 } 501 502 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 503 block_t blkstart, block_t blklen) 504 { 505 sector_t start = SECTOR_FROM_BLOCK(blkstart); 506 sector_t len = SECTOR_FROM_BLOCK(blklen); 507 struct seg_entry *se; 508 unsigned int offset; 509 block_t i; 510 511 for (i = blkstart; i < blkstart + blklen; i++) { 512 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 513 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 514 515 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 516 sbi->discard_blks--; 517 } 518 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 519 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 520 } 521 522 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 523 { 524 int err = -ENOTSUPP; 525 526 if (test_opt(sbi, DISCARD)) { 527 struct seg_entry *se = get_seg_entry(sbi, 528 GET_SEGNO(sbi, blkaddr)); 529 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 530 531 if (f2fs_test_bit(offset, se->discard_map)) 532 return false; 533 534 err = f2fs_issue_discard(sbi, blkaddr, 1); 535 } 536 537 if (err) { 538 update_meta_page(sbi, NULL, blkaddr); 539 return true; 540 } 541 return false; 542 } 543 544 static void __add_discard_entry(struct f2fs_sb_info *sbi, 545 struct cp_control *cpc, struct seg_entry *se, 546 unsigned int start, unsigned int end) 547 { 548 struct list_head *head = &SM_I(sbi)->discard_list; 549 struct discard_entry *new, *last; 550 551 if (!list_empty(head)) { 552 last = list_last_entry(head, struct discard_entry, list); 553 if (START_BLOCK(sbi, cpc->trim_start) + start == 554 last->blkaddr + last->len) { 555 last->len += end - start; 556 goto done; 557 } 558 } 559 560 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 561 INIT_LIST_HEAD(&new->list); 562 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 563 new->len = end - start; 564 list_add_tail(&new->list, head); 565 done: 566 SM_I(sbi)->nr_discards += end - start; 567 } 568 569 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 570 { 571 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 572 int max_blocks = sbi->blocks_per_seg; 573 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 574 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 575 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 576 unsigned long *discard_map = (unsigned long *)se->discard_map; 577 unsigned long *dmap = SIT_I(sbi)->tmp_map; 578 unsigned int start = 0, end = -1; 579 bool force = (cpc->reason == CP_DISCARD); 580 int i; 581 582 if (se->valid_blocks == max_blocks) 583 return; 584 585 if (!force) { 586 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 587 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 588 return; 589 } 590 591 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 592 for (i = 0; i < entries; i++) 593 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 594 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 595 596 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 597 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 598 if (start >= max_blocks) 599 break; 600 601 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 602 __add_discard_entry(sbi, cpc, se, start, end); 603 } 604 } 605 606 void release_discard_addrs(struct f2fs_sb_info *sbi) 607 { 608 struct list_head *head = &(SM_I(sbi)->discard_list); 609 struct discard_entry *entry, *this; 610 611 /* drop caches */ 612 list_for_each_entry_safe(entry, this, head, list) { 613 list_del(&entry->list); 614 kmem_cache_free(discard_entry_slab, entry); 615 } 616 } 617 618 /* 619 * Should call clear_prefree_segments after checkpoint is done. 620 */ 621 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 622 { 623 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 624 unsigned int segno; 625 626 mutex_lock(&dirty_i->seglist_lock); 627 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 628 __set_test_and_free(sbi, segno); 629 mutex_unlock(&dirty_i->seglist_lock); 630 } 631 632 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 633 { 634 struct list_head *head = &(SM_I(sbi)->discard_list); 635 struct discard_entry *entry, *this; 636 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 637 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 638 unsigned int start = 0, end = -1; 639 640 mutex_lock(&dirty_i->seglist_lock); 641 642 while (1) { 643 int i; 644 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 645 if (start >= MAIN_SEGS(sbi)) 646 break; 647 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 648 start + 1); 649 650 for (i = start; i < end; i++) 651 clear_bit(i, prefree_map); 652 653 dirty_i->nr_dirty[PRE] -= end - start; 654 655 if (!test_opt(sbi, DISCARD)) 656 continue; 657 658 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 659 (end - start) << sbi->log_blocks_per_seg); 660 } 661 mutex_unlock(&dirty_i->seglist_lock); 662 663 /* send small discards */ 664 list_for_each_entry_safe(entry, this, head, list) { 665 if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen) 666 goto skip; 667 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 668 cpc->trimmed += entry->len; 669 skip: 670 list_del(&entry->list); 671 SM_I(sbi)->nr_discards -= entry->len; 672 kmem_cache_free(discard_entry_slab, entry); 673 } 674 } 675 676 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 677 { 678 struct sit_info *sit_i = SIT_I(sbi); 679 680 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 681 sit_i->dirty_sentries++; 682 return false; 683 } 684 685 return true; 686 } 687 688 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 689 unsigned int segno, int modified) 690 { 691 struct seg_entry *se = get_seg_entry(sbi, segno); 692 se->type = type; 693 if (modified) 694 __mark_sit_entry_dirty(sbi, segno); 695 } 696 697 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 698 { 699 struct seg_entry *se; 700 unsigned int segno, offset; 701 long int new_vblocks; 702 703 segno = GET_SEGNO(sbi, blkaddr); 704 705 se = get_seg_entry(sbi, segno); 706 new_vblocks = se->valid_blocks + del; 707 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 708 709 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 710 (new_vblocks > sbi->blocks_per_seg))); 711 712 se->valid_blocks = new_vblocks; 713 se->mtime = get_mtime(sbi); 714 SIT_I(sbi)->max_mtime = se->mtime; 715 716 /* Update valid block bitmap */ 717 if (del > 0) { 718 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 719 f2fs_bug_on(sbi, 1); 720 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 721 sbi->discard_blks--; 722 } else { 723 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 724 f2fs_bug_on(sbi, 1); 725 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 726 sbi->discard_blks++; 727 } 728 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 729 se->ckpt_valid_blocks += del; 730 731 __mark_sit_entry_dirty(sbi, segno); 732 733 /* update total number of valid blocks to be written in ckpt area */ 734 SIT_I(sbi)->written_valid_blocks += del; 735 736 if (sbi->segs_per_sec > 1) 737 get_sec_entry(sbi, segno)->valid_blocks += del; 738 } 739 740 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 741 { 742 update_sit_entry(sbi, new, 1); 743 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 744 update_sit_entry(sbi, old, -1); 745 746 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 747 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 748 } 749 750 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 751 { 752 unsigned int segno = GET_SEGNO(sbi, addr); 753 struct sit_info *sit_i = SIT_I(sbi); 754 755 f2fs_bug_on(sbi, addr == NULL_ADDR); 756 if (addr == NEW_ADDR) 757 return; 758 759 /* add it into sit main buffer */ 760 mutex_lock(&sit_i->sentry_lock); 761 762 update_sit_entry(sbi, addr, -1); 763 764 /* add it into dirty seglist */ 765 locate_dirty_segment(sbi, segno); 766 767 mutex_unlock(&sit_i->sentry_lock); 768 } 769 770 /* 771 * This function should be resided under the curseg_mutex lock 772 */ 773 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 774 struct f2fs_summary *sum) 775 { 776 struct curseg_info *curseg = CURSEG_I(sbi, type); 777 void *addr = curseg->sum_blk; 778 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 779 memcpy(addr, sum, sizeof(struct f2fs_summary)); 780 } 781 782 /* 783 * Calculate the number of current summary pages for writing 784 */ 785 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 786 { 787 int valid_sum_count = 0; 788 int i, sum_in_page; 789 790 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 791 if (sbi->ckpt->alloc_type[i] == SSR) 792 valid_sum_count += sbi->blocks_per_seg; 793 else { 794 if (for_ra) 795 valid_sum_count += le16_to_cpu( 796 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 797 else 798 valid_sum_count += curseg_blkoff(sbi, i); 799 } 800 } 801 802 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - 803 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 804 if (valid_sum_count <= sum_in_page) 805 return 1; 806 else if ((valid_sum_count - sum_in_page) <= 807 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 808 return 2; 809 return 3; 810 } 811 812 /* 813 * Caller should put this summary page 814 */ 815 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 816 { 817 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 818 } 819 820 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 821 { 822 struct page *page = grab_meta_page(sbi, blk_addr); 823 void *dst = page_address(page); 824 825 if (src) 826 memcpy(dst, src, PAGE_CACHE_SIZE); 827 else 828 memset(dst, 0, PAGE_CACHE_SIZE); 829 set_page_dirty(page); 830 f2fs_put_page(page, 1); 831 } 832 833 static void write_sum_page(struct f2fs_sb_info *sbi, 834 struct f2fs_summary_block *sum_blk, block_t blk_addr) 835 { 836 update_meta_page(sbi, (void *)sum_blk, blk_addr); 837 } 838 839 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 840 { 841 struct curseg_info *curseg = CURSEG_I(sbi, type); 842 unsigned int segno = curseg->segno + 1; 843 struct free_segmap_info *free_i = FREE_I(sbi); 844 845 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 846 return !test_bit(segno, free_i->free_segmap); 847 return 0; 848 } 849 850 /* 851 * Find a new segment from the free segments bitmap to right order 852 * This function should be returned with success, otherwise BUG 853 */ 854 static void get_new_segment(struct f2fs_sb_info *sbi, 855 unsigned int *newseg, bool new_sec, int dir) 856 { 857 struct free_segmap_info *free_i = FREE_I(sbi); 858 unsigned int segno, secno, zoneno; 859 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 860 unsigned int hint = *newseg / sbi->segs_per_sec; 861 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 862 unsigned int left_start = hint; 863 bool init = true; 864 int go_left = 0; 865 int i; 866 867 spin_lock(&free_i->segmap_lock); 868 869 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 870 segno = find_next_zero_bit(free_i->free_segmap, 871 MAIN_SEGS(sbi), *newseg + 1); 872 if (segno - *newseg < sbi->segs_per_sec - 873 (*newseg % sbi->segs_per_sec)) 874 goto got_it; 875 } 876 find_other_zone: 877 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 878 if (secno >= MAIN_SECS(sbi)) { 879 if (dir == ALLOC_RIGHT) { 880 secno = find_next_zero_bit(free_i->free_secmap, 881 MAIN_SECS(sbi), 0); 882 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 883 } else { 884 go_left = 1; 885 left_start = hint - 1; 886 } 887 } 888 if (go_left == 0) 889 goto skip_left; 890 891 while (test_bit(left_start, free_i->free_secmap)) { 892 if (left_start > 0) { 893 left_start--; 894 continue; 895 } 896 left_start = find_next_zero_bit(free_i->free_secmap, 897 MAIN_SECS(sbi), 0); 898 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 899 break; 900 } 901 secno = left_start; 902 skip_left: 903 hint = secno; 904 segno = secno * sbi->segs_per_sec; 905 zoneno = secno / sbi->secs_per_zone; 906 907 /* give up on finding another zone */ 908 if (!init) 909 goto got_it; 910 if (sbi->secs_per_zone == 1) 911 goto got_it; 912 if (zoneno == old_zoneno) 913 goto got_it; 914 if (dir == ALLOC_LEFT) { 915 if (!go_left && zoneno + 1 >= total_zones) 916 goto got_it; 917 if (go_left && zoneno == 0) 918 goto got_it; 919 } 920 for (i = 0; i < NR_CURSEG_TYPE; i++) 921 if (CURSEG_I(sbi, i)->zone == zoneno) 922 break; 923 924 if (i < NR_CURSEG_TYPE) { 925 /* zone is in user, try another */ 926 if (go_left) 927 hint = zoneno * sbi->secs_per_zone - 1; 928 else if (zoneno + 1 >= total_zones) 929 hint = 0; 930 else 931 hint = (zoneno + 1) * sbi->secs_per_zone; 932 init = false; 933 goto find_other_zone; 934 } 935 got_it: 936 /* set it as dirty segment in free segmap */ 937 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 938 __set_inuse(sbi, segno); 939 *newseg = segno; 940 spin_unlock(&free_i->segmap_lock); 941 } 942 943 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 944 { 945 struct curseg_info *curseg = CURSEG_I(sbi, type); 946 struct summary_footer *sum_footer; 947 948 curseg->segno = curseg->next_segno; 949 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 950 curseg->next_blkoff = 0; 951 curseg->next_segno = NULL_SEGNO; 952 953 sum_footer = &(curseg->sum_blk->footer); 954 memset(sum_footer, 0, sizeof(struct summary_footer)); 955 if (IS_DATASEG(type)) 956 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 957 if (IS_NODESEG(type)) 958 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 959 __set_sit_entry_type(sbi, type, curseg->segno, modified); 960 } 961 962 /* 963 * Allocate a current working segment. 964 * This function always allocates a free segment in LFS manner. 965 */ 966 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 967 { 968 struct curseg_info *curseg = CURSEG_I(sbi, type); 969 unsigned int segno = curseg->segno; 970 int dir = ALLOC_LEFT; 971 972 write_sum_page(sbi, curseg->sum_blk, 973 GET_SUM_BLOCK(sbi, segno)); 974 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 975 dir = ALLOC_RIGHT; 976 977 if (test_opt(sbi, NOHEAP)) 978 dir = ALLOC_RIGHT; 979 980 get_new_segment(sbi, &segno, new_sec, dir); 981 curseg->next_segno = segno; 982 reset_curseg(sbi, type, 1); 983 curseg->alloc_type = LFS; 984 } 985 986 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 987 struct curseg_info *seg, block_t start) 988 { 989 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 990 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 991 unsigned long *target_map = SIT_I(sbi)->tmp_map; 992 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 993 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 994 int i, pos; 995 996 for (i = 0; i < entries; i++) 997 target_map[i] = ckpt_map[i] | cur_map[i]; 998 999 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1000 1001 seg->next_blkoff = pos; 1002 } 1003 1004 /* 1005 * If a segment is written by LFS manner, next block offset is just obtained 1006 * by increasing the current block offset. However, if a segment is written by 1007 * SSR manner, next block offset obtained by calling __next_free_blkoff 1008 */ 1009 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1010 struct curseg_info *seg) 1011 { 1012 if (seg->alloc_type == SSR) 1013 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1014 else 1015 seg->next_blkoff++; 1016 } 1017 1018 /* 1019 * This function always allocates a used segment(from dirty seglist) by SSR 1020 * manner, so it should recover the existing segment information of valid blocks 1021 */ 1022 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1023 { 1024 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1025 struct curseg_info *curseg = CURSEG_I(sbi, type); 1026 unsigned int new_segno = curseg->next_segno; 1027 struct f2fs_summary_block *sum_node; 1028 struct page *sum_page; 1029 1030 write_sum_page(sbi, curseg->sum_blk, 1031 GET_SUM_BLOCK(sbi, curseg->segno)); 1032 __set_test_and_inuse(sbi, new_segno); 1033 1034 mutex_lock(&dirty_i->seglist_lock); 1035 __remove_dirty_segment(sbi, new_segno, PRE); 1036 __remove_dirty_segment(sbi, new_segno, DIRTY); 1037 mutex_unlock(&dirty_i->seglist_lock); 1038 1039 reset_curseg(sbi, type, 1); 1040 curseg->alloc_type = SSR; 1041 __next_free_blkoff(sbi, curseg, 0); 1042 1043 if (reuse) { 1044 sum_page = get_sum_page(sbi, new_segno); 1045 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1046 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1047 f2fs_put_page(sum_page, 1); 1048 } 1049 } 1050 1051 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1052 { 1053 struct curseg_info *curseg = CURSEG_I(sbi, type); 1054 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1055 1056 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 1057 return v_ops->get_victim(sbi, 1058 &(curseg)->next_segno, BG_GC, type, SSR); 1059 1060 /* For data segments, let's do SSR more intensively */ 1061 for (; type >= CURSEG_HOT_DATA; type--) 1062 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1063 BG_GC, type, SSR)) 1064 return 1; 1065 return 0; 1066 } 1067 1068 /* 1069 * flush out current segment and replace it with new segment 1070 * This function should be returned with success, otherwise BUG 1071 */ 1072 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1073 int type, bool force) 1074 { 1075 struct curseg_info *curseg = CURSEG_I(sbi, type); 1076 1077 if (force) 1078 new_curseg(sbi, type, true); 1079 else if (type == CURSEG_WARM_NODE) 1080 new_curseg(sbi, type, false); 1081 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1082 new_curseg(sbi, type, false); 1083 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1084 change_curseg(sbi, type, true); 1085 else 1086 new_curseg(sbi, type, false); 1087 1088 stat_inc_seg_type(sbi, curseg); 1089 } 1090 1091 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) 1092 { 1093 struct curseg_info *curseg = CURSEG_I(sbi, type); 1094 unsigned int old_segno; 1095 1096 old_segno = curseg->segno; 1097 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 1098 locate_dirty_segment(sbi, old_segno); 1099 } 1100 1101 void allocate_new_segments(struct f2fs_sb_info *sbi) 1102 { 1103 int i; 1104 1105 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 1106 __allocate_new_segments(sbi, i); 1107 } 1108 1109 static const struct segment_allocation default_salloc_ops = { 1110 .allocate_segment = allocate_segment_by_default, 1111 }; 1112 1113 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1114 { 1115 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1116 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1117 unsigned int start_segno, end_segno; 1118 struct cp_control cpc; 1119 1120 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1121 return -EINVAL; 1122 1123 cpc.trimmed = 0; 1124 if (end <= MAIN_BLKADDR(sbi)) 1125 goto out; 1126 1127 /* start/end segment number in main_area */ 1128 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1129 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1130 GET_SEGNO(sbi, end); 1131 cpc.reason = CP_DISCARD; 1132 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1133 1134 /* do checkpoint to issue discard commands safely */ 1135 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1136 cpc.trim_start = start_segno; 1137 1138 if (sbi->discard_blks == 0) 1139 break; 1140 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1141 cpc.trim_end = end_segno; 1142 else 1143 cpc.trim_end = min_t(unsigned int, 1144 rounddown(start_segno + 1145 BATCHED_TRIM_SEGMENTS(sbi), 1146 sbi->segs_per_sec) - 1, end_segno); 1147 1148 mutex_lock(&sbi->gc_mutex); 1149 write_checkpoint(sbi, &cpc); 1150 mutex_unlock(&sbi->gc_mutex); 1151 } 1152 out: 1153 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1154 return 0; 1155 } 1156 1157 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1158 { 1159 struct curseg_info *curseg = CURSEG_I(sbi, type); 1160 if (curseg->next_blkoff < sbi->blocks_per_seg) 1161 return true; 1162 return false; 1163 } 1164 1165 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1166 { 1167 if (p_type == DATA) 1168 return CURSEG_HOT_DATA; 1169 else 1170 return CURSEG_HOT_NODE; 1171 } 1172 1173 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1174 { 1175 if (p_type == DATA) { 1176 struct inode *inode = page->mapping->host; 1177 1178 if (S_ISDIR(inode->i_mode)) 1179 return CURSEG_HOT_DATA; 1180 else 1181 return CURSEG_COLD_DATA; 1182 } else { 1183 if (IS_DNODE(page) && is_cold_node(page)) 1184 return CURSEG_WARM_NODE; 1185 else 1186 return CURSEG_COLD_NODE; 1187 } 1188 } 1189 1190 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1191 { 1192 if (p_type == DATA) { 1193 struct inode *inode = page->mapping->host; 1194 1195 if (S_ISDIR(inode->i_mode)) 1196 return CURSEG_HOT_DATA; 1197 else if (is_cold_data(page) || file_is_cold(inode)) 1198 return CURSEG_COLD_DATA; 1199 else 1200 return CURSEG_WARM_DATA; 1201 } else { 1202 if (IS_DNODE(page)) 1203 return is_cold_node(page) ? CURSEG_WARM_NODE : 1204 CURSEG_HOT_NODE; 1205 else 1206 return CURSEG_COLD_NODE; 1207 } 1208 } 1209 1210 static int __get_segment_type(struct page *page, enum page_type p_type) 1211 { 1212 switch (F2FS_P_SB(page)->active_logs) { 1213 case 2: 1214 return __get_segment_type_2(page, p_type); 1215 case 4: 1216 return __get_segment_type_4(page, p_type); 1217 } 1218 /* NR_CURSEG_TYPE(6) logs by default */ 1219 f2fs_bug_on(F2FS_P_SB(page), 1220 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1221 return __get_segment_type_6(page, p_type); 1222 } 1223 1224 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1225 block_t old_blkaddr, block_t *new_blkaddr, 1226 struct f2fs_summary *sum, int type) 1227 { 1228 struct sit_info *sit_i = SIT_I(sbi); 1229 struct curseg_info *curseg; 1230 bool direct_io = (type == CURSEG_DIRECT_IO); 1231 1232 type = direct_io ? CURSEG_WARM_DATA : type; 1233 1234 curseg = CURSEG_I(sbi, type); 1235 1236 mutex_lock(&curseg->curseg_mutex); 1237 mutex_lock(&sit_i->sentry_lock); 1238 1239 /* direct_io'ed data is aligned to the segment for better performance */ 1240 if (direct_io && curseg->next_blkoff && 1241 !has_not_enough_free_secs(sbi, 0)) 1242 __allocate_new_segments(sbi, type); 1243 1244 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1245 1246 /* 1247 * __add_sum_entry should be resided under the curseg_mutex 1248 * because, this function updates a summary entry in the 1249 * current summary block. 1250 */ 1251 __add_sum_entry(sbi, type, sum); 1252 1253 __refresh_next_blkoff(sbi, curseg); 1254 1255 stat_inc_block_count(sbi, curseg); 1256 1257 if (!__has_curseg_space(sbi, type)) 1258 sit_i->s_ops->allocate_segment(sbi, type, false); 1259 /* 1260 * SIT information should be updated before segment allocation, 1261 * since SSR needs latest valid block information. 1262 */ 1263 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1264 1265 mutex_unlock(&sit_i->sentry_lock); 1266 1267 if (page && IS_NODESEG(type)) 1268 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1269 1270 mutex_unlock(&curseg->curseg_mutex); 1271 } 1272 1273 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1274 { 1275 int type = __get_segment_type(fio->page, fio->type); 1276 1277 allocate_data_block(fio->sbi, fio->page, fio->blk_addr, 1278 &fio->blk_addr, sum, type); 1279 1280 /* writeout dirty page into bdev */ 1281 f2fs_submit_page_mbio(fio); 1282 } 1283 1284 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1285 { 1286 struct f2fs_io_info fio = { 1287 .sbi = sbi, 1288 .type = META, 1289 .rw = WRITE_SYNC | REQ_META | REQ_PRIO, 1290 .blk_addr = page->index, 1291 .page = page, 1292 .encrypted_page = NULL, 1293 }; 1294 1295 set_page_writeback(page); 1296 f2fs_submit_page_mbio(&fio); 1297 } 1298 1299 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1300 { 1301 struct f2fs_summary sum; 1302 1303 set_summary(&sum, nid, 0, 0); 1304 do_write_page(&sum, fio); 1305 } 1306 1307 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1308 { 1309 struct f2fs_sb_info *sbi = fio->sbi; 1310 struct f2fs_summary sum; 1311 struct node_info ni; 1312 1313 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1314 get_node_info(sbi, dn->nid, &ni); 1315 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1316 do_write_page(&sum, fio); 1317 dn->data_blkaddr = fio->blk_addr; 1318 } 1319 1320 void rewrite_data_page(struct f2fs_io_info *fio) 1321 { 1322 stat_inc_inplace_blocks(fio->sbi); 1323 f2fs_submit_page_mbio(fio); 1324 } 1325 1326 static void __f2fs_replace_block(struct f2fs_sb_info *sbi, 1327 struct f2fs_summary *sum, 1328 block_t old_blkaddr, block_t new_blkaddr, 1329 bool recover_curseg) 1330 { 1331 struct sit_info *sit_i = SIT_I(sbi); 1332 struct curseg_info *curseg; 1333 unsigned int segno, old_cursegno; 1334 struct seg_entry *se; 1335 int type; 1336 unsigned short old_blkoff; 1337 1338 segno = GET_SEGNO(sbi, new_blkaddr); 1339 se = get_seg_entry(sbi, segno); 1340 type = se->type; 1341 1342 if (!recover_curseg) { 1343 /* for recovery flow */ 1344 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1345 if (old_blkaddr == NULL_ADDR) 1346 type = CURSEG_COLD_DATA; 1347 else 1348 type = CURSEG_WARM_DATA; 1349 } 1350 } else { 1351 if (!IS_CURSEG(sbi, segno)) 1352 type = CURSEG_WARM_DATA; 1353 } 1354 1355 curseg = CURSEG_I(sbi, type); 1356 1357 mutex_lock(&curseg->curseg_mutex); 1358 mutex_lock(&sit_i->sentry_lock); 1359 1360 old_cursegno = curseg->segno; 1361 old_blkoff = curseg->next_blkoff; 1362 1363 /* change the current segment */ 1364 if (segno != curseg->segno) { 1365 curseg->next_segno = segno; 1366 change_curseg(sbi, type, true); 1367 } 1368 1369 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1370 __add_sum_entry(sbi, type, sum); 1371 1372 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1373 locate_dirty_segment(sbi, old_cursegno); 1374 1375 if (recover_curseg) { 1376 if (old_cursegno != curseg->segno) { 1377 curseg->next_segno = old_cursegno; 1378 change_curseg(sbi, type, true); 1379 } 1380 curseg->next_blkoff = old_blkoff; 1381 } 1382 1383 mutex_unlock(&sit_i->sentry_lock); 1384 mutex_unlock(&curseg->curseg_mutex); 1385 } 1386 1387 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1388 block_t old_addr, block_t new_addr, 1389 unsigned char version, bool recover_curseg) 1390 { 1391 struct f2fs_summary sum; 1392 1393 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1394 1395 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg); 1396 1397 dn->data_blkaddr = new_addr; 1398 set_data_blkaddr(dn); 1399 f2fs_update_extent_cache(dn); 1400 } 1401 1402 static inline bool is_merged_page(struct f2fs_sb_info *sbi, 1403 struct page *page, enum page_type type) 1404 { 1405 enum page_type btype = PAGE_TYPE_OF_BIO(type); 1406 struct f2fs_bio_info *io = &sbi->write_io[btype]; 1407 struct bio_vec *bvec; 1408 struct page *target; 1409 int i; 1410 1411 down_read(&io->io_rwsem); 1412 if (!io->bio) { 1413 up_read(&io->io_rwsem); 1414 return false; 1415 } 1416 1417 bio_for_each_segment_all(bvec, io->bio, i) { 1418 1419 if (bvec->bv_page->mapping) { 1420 target = bvec->bv_page; 1421 } else { 1422 struct f2fs_crypto_ctx *ctx; 1423 1424 /* encrypted page */ 1425 ctx = (struct f2fs_crypto_ctx *)page_private( 1426 bvec->bv_page); 1427 target = ctx->w.control_page; 1428 } 1429 1430 if (page == target) { 1431 up_read(&io->io_rwsem); 1432 return true; 1433 } 1434 } 1435 1436 up_read(&io->io_rwsem); 1437 return false; 1438 } 1439 1440 void f2fs_wait_on_page_writeback(struct page *page, 1441 enum page_type type) 1442 { 1443 if (PageWriteback(page)) { 1444 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1445 1446 if (is_merged_page(sbi, page, type)) 1447 f2fs_submit_merged_bio(sbi, type, WRITE); 1448 wait_on_page_writeback(page); 1449 } 1450 } 1451 1452 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1453 { 1454 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1455 struct curseg_info *seg_i; 1456 unsigned char *kaddr; 1457 struct page *page; 1458 block_t start; 1459 int i, j, offset; 1460 1461 start = start_sum_block(sbi); 1462 1463 page = get_meta_page(sbi, start++); 1464 kaddr = (unsigned char *)page_address(page); 1465 1466 /* Step 1: restore nat cache */ 1467 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1468 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); 1469 1470 /* Step 2: restore sit cache */ 1471 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1472 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, 1473 SUM_JOURNAL_SIZE); 1474 offset = 2 * SUM_JOURNAL_SIZE; 1475 1476 /* Step 3: restore summary entries */ 1477 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1478 unsigned short blk_off; 1479 unsigned int segno; 1480 1481 seg_i = CURSEG_I(sbi, i); 1482 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1483 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1484 seg_i->next_segno = segno; 1485 reset_curseg(sbi, i, 0); 1486 seg_i->alloc_type = ckpt->alloc_type[i]; 1487 seg_i->next_blkoff = blk_off; 1488 1489 if (seg_i->alloc_type == SSR) 1490 blk_off = sbi->blocks_per_seg; 1491 1492 for (j = 0; j < blk_off; j++) { 1493 struct f2fs_summary *s; 1494 s = (struct f2fs_summary *)(kaddr + offset); 1495 seg_i->sum_blk->entries[j] = *s; 1496 offset += SUMMARY_SIZE; 1497 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1498 SUM_FOOTER_SIZE) 1499 continue; 1500 1501 f2fs_put_page(page, 1); 1502 page = NULL; 1503 1504 page = get_meta_page(sbi, start++); 1505 kaddr = (unsigned char *)page_address(page); 1506 offset = 0; 1507 } 1508 } 1509 f2fs_put_page(page, 1); 1510 return 0; 1511 } 1512 1513 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1514 { 1515 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1516 struct f2fs_summary_block *sum; 1517 struct curseg_info *curseg; 1518 struct page *new; 1519 unsigned short blk_off; 1520 unsigned int segno = 0; 1521 block_t blk_addr = 0; 1522 1523 /* get segment number and block addr */ 1524 if (IS_DATASEG(type)) { 1525 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1526 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1527 CURSEG_HOT_DATA]); 1528 if (__exist_node_summaries(sbi)) 1529 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1530 else 1531 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1532 } else { 1533 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1534 CURSEG_HOT_NODE]); 1535 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1536 CURSEG_HOT_NODE]); 1537 if (__exist_node_summaries(sbi)) 1538 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1539 type - CURSEG_HOT_NODE); 1540 else 1541 blk_addr = GET_SUM_BLOCK(sbi, segno); 1542 } 1543 1544 new = get_meta_page(sbi, blk_addr); 1545 sum = (struct f2fs_summary_block *)page_address(new); 1546 1547 if (IS_NODESEG(type)) { 1548 if (__exist_node_summaries(sbi)) { 1549 struct f2fs_summary *ns = &sum->entries[0]; 1550 int i; 1551 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1552 ns->version = 0; 1553 ns->ofs_in_node = 0; 1554 } 1555 } else { 1556 int err; 1557 1558 err = restore_node_summary(sbi, segno, sum); 1559 if (err) { 1560 f2fs_put_page(new, 1); 1561 return err; 1562 } 1563 } 1564 } 1565 1566 /* set uncompleted segment to curseg */ 1567 curseg = CURSEG_I(sbi, type); 1568 mutex_lock(&curseg->curseg_mutex); 1569 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); 1570 curseg->next_segno = segno; 1571 reset_curseg(sbi, type, 0); 1572 curseg->alloc_type = ckpt->alloc_type[type]; 1573 curseg->next_blkoff = blk_off; 1574 mutex_unlock(&curseg->curseg_mutex); 1575 f2fs_put_page(new, 1); 1576 return 0; 1577 } 1578 1579 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1580 { 1581 int type = CURSEG_HOT_DATA; 1582 int err; 1583 1584 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1585 int npages = npages_for_summary_flush(sbi, true); 1586 1587 if (npages >= 2) 1588 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1589 META_CP); 1590 1591 /* restore for compacted data summary */ 1592 if (read_compacted_summaries(sbi)) 1593 return -EINVAL; 1594 type = CURSEG_HOT_NODE; 1595 } 1596 1597 if (__exist_node_summaries(sbi)) 1598 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1599 NR_CURSEG_TYPE - type, META_CP); 1600 1601 for (; type <= CURSEG_COLD_NODE; type++) { 1602 err = read_normal_summaries(sbi, type); 1603 if (err) 1604 return err; 1605 } 1606 1607 return 0; 1608 } 1609 1610 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1611 { 1612 struct page *page; 1613 unsigned char *kaddr; 1614 struct f2fs_summary *summary; 1615 struct curseg_info *seg_i; 1616 int written_size = 0; 1617 int i, j; 1618 1619 page = grab_meta_page(sbi, blkaddr++); 1620 kaddr = (unsigned char *)page_address(page); 1621 1622 /* Step 1: write nat cache */ 1623 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1624 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); 1625 written_size += SUM_JOURNAL_SIZE; 1626 1627 /* Step 2: write sit cache */ 1628 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1629 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, 1630 SUM_JOURNAL_SIZE); 1631 written_size += SUM_JOURNAL_SIZE; 1632 1633 /* Step 3: write summary entries */ 1634 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1635 unsigned short blkoff; 1636 seg_i = CURSEG_I(sbi, i); 1637 if (sbi->ckpt->alloc_type[i] == SSR) 1638 blkoff = sbi->blocks_per_seg; 1639 else 1640 blkoff = curseg_blkoff(sbi, i); 1641 1642 for (j = 0; j < blkoff; j++) { 1643 if (!page) { 1644 page = grab_meta_page(sbi, blkaddr++); 1645 kaddr = (unsigned char *)page_address(page); 1646 written_size = 0; 1647 } 1648 summary = (struct f2fs_summary *)(kaddr + written_size); 1649 *summary = seg_i->sum_blk->entries[j]; 1650 written_size += SUMMARY_SIZE; 1651 1652 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1653 SUM_FOOTER_SIZE) 1654 continue; 1655 1656 set_page_dirty(page); 1657 f2fs_put_page(page, 1); 1658 page = NULL; 1659 } 1660 } 1661 if (page) { 1662 set_page_dirty(page); 1663 f2fs_put_page(page, 1); 1664 } 1665 } 1666 1667 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1668 block_t blkaddr, int type) 1669 { 1670 int i, end; 1671 if (IS_DATASEG(type)) 1672 end = type + NR_CURSEG_DATA_TYPE; 1673 else 1674 end = type + NR_CURSEG_NODE_TYPE; 1675 1676 for (i = type; i < end; i++) { 1677 struct curseg_info *sum = CURSEG_I(sbi, i); 1678 mutex_lock(&sum->curseg_mutex); 1679 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); 1680 mutex_unlock(&sum->curseg_mutex); 1681 } 1682 } 1683 1684 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1685 { 1686 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1687 write_compacted_summaries(sbi, start_blk); 1688 else 1689 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1690 } 1691 1692 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1693 { 1694 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1695 } 1696 1697 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, 1698 unsigned int val, int alloc) 1699 { 1700 int i; 1701 1702 if (type == NAT_JOURNAL) { 1703 for (i = 0; i < nats_in_cursum(sum); i++) { 1704 if (le32_to_cpu(nid_in_journal(sum, i)) == val) 1705 return i; 1706 } 1707 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) 1708 return update_nats_in_cursum(sum, 1); 1709 } else if (type == SIT_JOURNAL) { 1710 for (i = 0; i < sits_in_cursum(sum); i++) 1711 if (le32_to_cpu(segno_in_journal(sum, i)) == val) 1712 return i; 1713 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) 1714 return update_sits_in_cursum(sum, 1); 1715 } 1716 return -1; 1717 } 1718 1719 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1720 unsigned int segno) 1721 { 1722 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1723 } 1724 1725 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1726 unsigned int start) 1727 { 1728 struct sit_info *sit_i = SIT_I(sbi); 1729 struct page *src_page, *dst_page; 1730 pgoff_t src_off, dst_off; 1731 void *src_addr, *dst_addr; 1732 1733 src_off = current_sit_addr(sbi, start); 1734 dst_off = next_sit_addr(sbi, src_off); 1735 1736 /* get current sit block page without lock */ 1737 src_page = get_meta_page(sbi, src_off); 1738 dst_page = grab_meta_page(sbi, dst_off); 1739 f2fs_bug_on(sbi, PageDirty(src_page)); 1740 1741 src_addr = page_address(src_page); 1742 dst_addr = page_address(dst_page); 1743 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1744 1745 set_page_dirty(dst_page); 1746 f2fs_put_page(src_page, 1); 1747 1748 set_to_next_sit(sit_i, start); 1749 1750 return dst_page; 1751 } 1752 1753 static struct sit_entry_set *grab_sit_entry_set(void) 1754 { 1755 struct sit_entry_set *ses = 1756 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 1757 1758 ses->entry_cnt = 0; 1759 INIT_LIST_HEAD(&ses->set_list); 1760 return ses; 1761 } 1762 1763 static void release_sit_entry_set(struct sit_entry_set *ses) 1764 { 1765 list_del(&ses->set_list); 1766 kmem_cache_free(sit_entry_set_slab, ses); 1767 } 1768 1769 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1770 struct list_head *head) 1771 { 1772 struct sit_entry_set *next = ses; 1773 1774 if (list_is_last(&ses->set_list, head)) 1775 return; 1776 1777 list_for_each_entry_continue(next, head, set_list) 1778 if (ses->entry_cnt <= next->entry_cnt) 1779 break; 1780 1781 list_move_tail(&ses->set_list, &next->set_list); 1782 } 1783 1784 static void add_sit_entry(unsigned int segno, struct list_head *head) 1785 { 1786 struct sit_entry_set *ses; 1787 unsigned int start_segno = START_SEGNO(segno); 1788 1789 list_for_each_entry(ses, head, set_list) { 1790 if (ses->start_segno == start_segno) { 1791 ses->entry_cnt++; 1792 adjust_sit_entry_set(ses, head); 1793 return; 1794 } 1795 } 1796 1797 ses = grab_sit_entry_set(); 1798 1799 ses->start_segno = start_segno; 1800 ses->entry_cnt++; 1801 list_add(&ses->set_list, head); 1802 } 1803 1804 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1805 { 1806 struct f2fs_sm_info *sm_info = SM_I(sbi); 1807 struct list_head *set_list = &sm_info->sit_entry_set; 1808 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1809 unsigned int segno; 1810 1811 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1812 add_sit_entry(segno, set_list); 1813 } 1814 1815 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1816 { 1817 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1818 struct f2fs_summary_block *sum = curseg->sum_blk; 1819 int i; 1820 1821 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { 1822 unsigned int segno; 1823 bool dirtied; 1824 1825 segno = le32_to_cpu(segno_in_journal(sum, i)); 1826 dirtied = __mark_sit_entry_dirty(sbi, segno); 1827 1828 if (!dirtied) 1829 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1830 } 1831 update_sits_in_cursum(sum, -sits_in_cursum(sum)); 1832 } 1833 1834 /* 1835 * CP calls this function, which flushes SIT entries including sit_journal, 1836 * and moves prefree segs to free segs. 1837 */ 1838 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1839 { 1840 struct sit_info *sit_i = SIT_I(sbi); 1841 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1842 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1843 struct f2fs_summary_block *sum = curseg->sum_blk; 1844 struct sit_entry_set *ses, *tmp; 1845 struct list_head *head = &SM_I(sbi)->sit_entry_set; 1846 bool to_journal = true; 1847 struct seg_entry *se; 1848 1849 mutex_lock(&curseg->curseg_mutex); 1850 mutex_lock(&sit_i->sentry_lock); 1851 1852 if (!sit_i->dirty_sentries) 1853 goto out; 1854 1855 /* 1856 * add and account sit entries of dirty bitmap in sit entry 1857 * set temporarily 1858 */ 1859 add_sits_in_set(sbi); 1860 1861 /* 1862 * if there are no enough space in journal to store dirty sit 1863 * entries, remove all entries from journal and add and account 1864 * them in sit entry set. 1865 */ 1866 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL)) 1867 remove_sits_in_journal(sbi); 1868 1869 /* 1870 * there are two steps to flush sit entries: 1871 * #1, flush sit entries to journal in current cold data summary block. 1872 * #2, flush sit entries to sit page. 1873 */ 1874 list_for_each_entry_safe(ses, tmp, head, set_list) { 1875 struct page *page = NULL; 1876 struct f2fs_sit_block *raw_sit = NULL; 1877 unsigned int start_segno = ses->start_segno; 1878 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 1879 (unsigned long)MAIN_SEGS(sbi)); 1880 unsigned int segno = start_segno; 1881 1882 if (to_journal && 1883 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL)) 1884 to_journal = false; 1885 1886 if (!to_journal) { 1887 page = get_next_sit_page(sbi, start_segno); 1888 raw_sit = page_address(page); 1889 } 1890 1891 /* flush dirty sit entries in region of current sit set */ 1892 for_each_set_bit_from(segno, bitmap, end) { 1893 int offset, sit_offset; 1894 1895 se = get_seg_entry(sbi, segno); 1896 1897 /* add discard candidates */ 1898 if (cpc->reason != CP_DISCARD) { 1899 cpc->trim_start = segno; 1900 add_discard_addrs(sbi, cpc); 1901 } 1902 1903 if (to_journal) { 1904 offset = lookup_journal_in_cursum(sum, 1905 SIT_JOURNAL, segno, 1); 1906 f2fs_bug_on(sbi, offset < 0); 1907 segno_in_journal(sum, offset) = 1908 cpu_to_le32(segno); 1909 seg_info_to_raw_sit(se, 1910 &sit_in_journal(sum, offset)); 1911 } else { 1912 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1913 seg_info_to_raw_sit(se, 1914 &raw_sit->entries[sit_offset]); 1915 } 1916 1917 __clear_bit(segno, bitmap); 1918 sit_i->dirty_sentries--; 1919 ses->entry_cnt--; 1920 } 1921 1922 if (!to_journal) 1923 f2fs_put_page(page, 1); 1924 1925 f2fs_bug_on(sbi, ses->entry_cnt); 1926 release_sit_entry_set(ses); 1927 } 1928 1929 f2fs_bug_on(sbi, !list_empty(head)); 1930 f2fs_bug_on(sbi, sit_i->dirty_sentries); 1931 out: 1932 if (cpc->reason == CP_DISCARD) { 1933 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 1934 add_discard_addrs(sbi, cpc); 1935 } 1936 mutex_unlock(&sit_i->sentry_lock); 1937 mutex_unlock(&curseg->curseg_mutex); 1938 1939 set_prefree_as_free_segments(sbi); 1940 } 1941 1942 static int build_sit_info(struct f2fs_sb_info *sbi) 1943 { 1944 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1945 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1946 struct sit_info *sit_i; 1947 unsigned int sit_segs, start; 1948 char *src_bitmap, *dst_bitmap; 1949 unsigned int bitmap_size; 1950 1951 /* allocate memory for SIT information */ 1952 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 1953 if (!sit_i) 1954 return -ENOMEM; 1955 1956 SM_I(sbi)->sit_info = sit_i; 1957 1958 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry)); 1959 if (!sit_i->sentries) 1960 return -ENOMEM; 1961 1962 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1963 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1964 if (!sit_i->dirty_sentries_bitmap) 1965 return -ENOMEM; 1966 1967 for (start = 0; start < MAIN_SEGS(sbi); start++) { 1968 sit_i->sentries[start].cur_valid_map 1969 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1970 sit_i->sentries[start].ckpt_valid_map 1971 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1972 sit_i->sentries[start].discard_map 1973 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1974 if (!sit_i->sentries[start].cur_valid_map || 1975 !sit_i->sentries[start].ckpt_valid_map || 1976 !sit_i->sentries[start].discard_map) 1977 return -ENOMEM; 1978 } 1979 1980 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1981 if (!sit_i->tmp_map) 1982 return -ENOMEM; 1983 1984 if (sbi->segs_per_sec > 1) { 1985 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) * 1986 sizeof(struct sec_entry)); 1987 if (!sit_i->sec_entries) 1988 return -ENOMEM; 1989 } 1990 1991 /* get information related with SIT */ 1992 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 1993 1994 /* setup SIT bitmap from ckeckpoint pack */ 1995 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 1996 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 1997 1998 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 1999 if (!dst_bitmap) 2000 return -ENOMEM; 2001 2002 /* init SIT information */ 2003 sit_i->s_ops = &default_salloc_ops; 2004 2005 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2006 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2007 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 2008 sit_i->sit_bitmap = dst_bitmap; 2009 sit_i->bitmap_size = bitmap_size; 2010 sit_i->dirty_sentries = 0; 2011 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2012 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2013 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2014 mutex_init(&sit_i->sentry_lock); 2015 return 0; 2016 } 2017 2018 static int build_free_segmap(struct f2fs_sb_info *sbi) 2019 { 2020 struct free_segmap_info *free_i; 2021 unsigned int bitmap_size, sec_bitmap_size; 2022 2023 /* allocate memory for free segmap information */ 2024 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2025 if (!free_i) 2026 return -ENOMEM; 2027 2028 SM_I(sbi)->free_info = free_i; 2029 2030 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2031 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); 2032 if (!free_i->free_segmap) 2033 return -ENOMEM; 2034 2035 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2036 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); 2037 if (!free_i->free_secmap) 2038 return -ENOMEM; 2039 2040 /* set all segments as dirty temporarily */ 2041 memset(free_i->free_segmap, 0xff, bitmap_size); 2042 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2043 2044 /* init free segmap information */ 2045 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2046 free_i->free_segments = 0; 2047 free_i->free_sections = 0; 2048 spin_lock_init(&free_i->segmap_lock); 2049 return 0; 2050 } 2051 2052 static int build_curseg(struct f2fs_sb_info *sbi) 2053 { 2054 struct curseg_info *array; 2055 int i; 2056 2057 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2058 if (!array) 2059 return -ENOMEM; 2060 2061 SM_I(sbi)->curseg_array = array; 2062 2063 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2064 mutex_init(&array[i].curseg_mutex); 2065 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 2066 if (!array[i].sum_blk) 2067 return -ENOMEM; 2068 array[i].segno = NULL_SEGNO; 2069 array[i].next_blkoff = 0; 2070 } 2071 return restore_curseg_summaries(sbi); 2072 } 2073 2074 static void build_sit_entries(struct f2fs_sb_info *sbi) 2075 { 2076 struct sit_info *sit_i = SIT_I(sbi); 2077 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2078 struct f2fs_summary_block *sum = curseg->sum_blk; 2079 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2080 unsigned int i, start, end; 2081 unsigned int readed, start_blk = 0; 2082 int nrpages = MAX_BIO_BLOCKS(sbi); 2083 2084 do { 2085 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT); 2086 2087 start = start_blk * sit_i->sents_per_block; 2088 end = (start_blk + readed) * sit_i->sents_per_block; 2089 2090 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2091 struct seg_entry *se = &sit_i->sentries[start]; 2092 struct f2fs_sit_block *sit_blk; 2093 struct f2fs_sit_entry sit; 2094 struct page *page; 2095 2096 mutex_lock(&curseg->curseg_mutex); 2097 for (i = 0; i < sits_in_cursum(sum); i++) { 2098 if (le32_to_cpu(segno_in_journal(sum, i)) 2099 == start) { 2100 sit = sit_in_journal(sum, i); 2101 mutex_unlock(&curseg->curseg_mutex); 2102 goto got_it; 2103 } 2104 } 2105 mutex_unlock(&curseg->curseg_mutex); 2106 2107 page = get_current_sit_page(sbi, start); 2108 sit_blk = (struct f2fs_sit_block *)page_address(page); 2109 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2110 f2fs_put_page(page, 1); 2111 got_it: 2112 check_block_count(sbi, start, &sit); 2113 seg_info_from_raw_sit(se, &sit); 2114 2115 /* build discard map only one time */ 2116 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 2117 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks; 2118 2119 if (sbi->segs_per_sec > 1) { 2120 struct sec_entry *e = get_sec_entry(sbi, start); 2121 e->valid_blocks += se->valid_blocks; 2122 } 2123 } 2124 start_blk += readed; 2125 } while (start_blk < sit_blk_cnt); 2126 } 2127 2128 static void init_free_segmap(struct f2fs_sb_info *sbi) 2129 { 2130 unsigned int start; 2131 int type; 2132 2133 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2134 struct seg_entry *sentry = get_seg_entry(sbi, start); 2135 if (!sentry->valid_blocks) 2136 __set_free(sbi, start); 2137 } 2138 2139 /* set use the current segments */ 2140 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2141 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2142 __set_test_and_inuse(sbi, curseg_t->segno); 2143 } 2144 } 2145 2146 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2147 { 2148 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2149 struct free_segmap_info *free_i = FREE_I(sbi); 2150 unsigned int segno = 0, offset = 0; 2151 unsigned short valid_blocks; 2152 2153 while (1) { 2154 /* find dirty segment based on free segmap */ 2155 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2156 if (segno >= MAIN_SEGS(sbi)) 2157 break; 2158 offset = segno + 1; 2159 valid_blocks = get_valid_blocks(sbi, segno, 0); 2160 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2161 continue; 2162 if (valid_blocks > sbi->blocks_per_seg) { 2163 f2fs_bug_on(sbi, 1); 2164 continue; 2165 } 2166 mutex_lock(&dirty_i->seglist_lock); 2167 __locate_dirty_segment(sbi, segno, DIRTY); 2168 mutex_unlock(&dirty_i->seglist_lock); 2169 } 2170 } 2171 2172 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2173 { 2174 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2175 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2176 2177 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL); 2178 if (!dirty_i->victim_secmap) 2179 return -ENOMEM; 2180 return 0; 2181 } 2182 2183 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2184 { 2185 struct dirty_seglist_info *dirty_i; 2186 unsigned int bitmap_size, i; 2187 2188 /* allocate memory for dirty segments list information */ 2189 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2190 if (!dirty_i) 2191 return -ENOMEM; 2192 2193 SM_I(sbi)->dirty_info = dirty_i; 2194 mutex_init(&dirty_i->seglist_lock); 2195 2196 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2197 2198 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2199 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); 2200 if (!dirty_i->dirty_segmap[i]) 2201 return -ENOMEM; 2202 } 2203 2204 init_dirty_segmap(sbi); 2205 return init_victim_secmap(sbi); 2206 } 2207 2208 /* 2209 * Update min, max modified time for cost-benefit GC algorithm 2210 */ 2211 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2212 { 2213 struct sit_info *sit_i = SIT_I(sbi); 2214 unsigned int segno; 2215 2216 mutex_lock(&sit_i->sentry_lock); 2217 2218 sit_i->min_mtime = LLONG_MAX; 2219 2220 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2221 unsigned int i; 2222 unsigned long long mtime = 0; 2223 2224 for (i = 0; i < sbi->segs_per_sec; i++) 2225 mtime += get_seg_entry(sbi, segno + i)->mtime; 2226 2227 mtime = div_u64(mtime, sbi->segs_per_sec); 2228 2229 if (sit_i->min_mtime > mtime) 2230 sit_i->min_mtime = mtime; 2231 } 2232 sit_i->max_mtime = get_mtime(sbi); 2233 mutex_unlock(&sit_i->sentry_lock); 2234 } 2235 2236 int build_segment_manager(struct f2fs_sb_info *sbi) 2237 { 2238 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2239 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2240 struct f2fs_sm_info *sm_info; 2241 int err; 2242 2243 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2244 if (!sm_info) 2245 return -ENOMEM; 2246 2247 /* init sm info */ 2248 sbi->sm_info = sm_info; 2249 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2250 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2251 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2252 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2253 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2254 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2255 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2256 sm_info->rec_prefree_segments = sm_info->main_segments * 2257 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2258 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2259 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2260 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2261 2262 INIT_LIST_HEAD(&sm_info->discard_list); 2263 sm_info->nr_discards = 0; 2264 sm_info->max_discards = 0; 2265 2266 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2267 2268 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2269 2270 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2271 err = create_flush_cmd_control(sbi); 2272 if (err) 2273 return err; 2274 } 2275 2276 err = build_sit_info(sbi); 2277 if (err) 2278 return err; 2279 err = build_free_segmap(sbi); 2280 if (err) 2281 return err; 2282 err = build_curseg(sbi); 2283 if (err) 2284 return err; 2285 2286 /* reinit free segmap based on SIT */ 2287 build_sit_entries(sbi); 2288 2289 init_free_segmap(sbi); 2290 err = build_dirty_segmap(sbi); 2291 if (err) 2292 return err; 2293 2294 init_min_max_mtime(sbi); 2295 return 0; 2296 } 2297 2298 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2299 enum dirty_type dirty_type) 2300 { 2301 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2302 2303 mutex_lock(&dirty_i->seglist_lock); 2304 kfree(dirty_i->dirty_segmap[dirty_type]); 2305 dirty_i->nr_dirty[dirty_type] = 0; 2306 mutex_unlock(&dirty_i->seglist_lock); 2307 } 2308 2309 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2310 { 2311 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2312 kfree(dirty_i->victim_secmap); 2313 } 2314 2315 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2316 { 2317 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2318 int i; 2319 2320 if (!dirty_i) 2321 return; 2322 2323 /* discard pre-free/dirty segments list */ 2324 for (i = 0; i < NR_DIRTY_TYPE; i++) 2325 discard_dirty_segmap(sbi, i); 2326 2327 destroy_victim_secmap(sbi); 2328 SM_I(sbi)->dirty_info = NULL; 2329 kfree(dirty_i); 2330 } 2331 2332 static void destroy_curseg(struct f2fs_sb_info *sbi) 2333 { 2334 struct curseg_info *array = SM_I(sbi)->curseg_array; 2335 int i; 2336 2337 if (!array) 2338 return; 2339 SM_I(sbi)->curseg_array = NULL; 2340 for (i = 0; i < NR_CURSEG_TYPE; i++) 2341 kfree(array[i].sum_blk); 2342 kfree(array); 2343 } 2344 2345 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2346 { 2347 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2348 if (!free_i) 2349 return; 2350 SM_I(sbi)->free_info = NULL; 2351 kfree(free_i->free_segmap); 2352 kfree(free_i->free_secmap); 2353 kfree(free_i); 2354 } 2355 2356 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2357 { 2358 struct sit_info *sit_i = SIT_I(sbi); 2359 unsigned int start; 2360 2361 if (!sit_i) 2362 return; 2363 2364 if (sit_i->sentries) { 2365 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2366 kfree(sit_i->sentries[start].cur_valid_map); 2367 kfree(sit_i->sentries[start].ckpt_valid_map); 2368 kfree(sit_i->sentries[start].discard_map); 2369 } 2370 } 2371 kfree(sit_i->tmp_map); 2372 2373 vfree(sit_i->sentries); 2374 vfree(sit_i->sec_entries); 2375 kfree(sit_i->dirty_sentries_bitmap); 2376 2377 SM_I(sbi)->sit_info = NULL; 2378 kfree(sit_i->sit_bitmap); 2379 kfree(sit_i); 2380 } 2381 2382 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2383 { 2384 struct f2fs_sm_info *sm_info = SM_I(sbi); 2385 2386 if (!sm_info) 2387 return; 2388 destroy_flush_cmd_control(sbi); 2389 destroy_dirty_segmap(sbi); 2390 destroy_curseg(sbi); 2391 destroy_free_segmap(sbi); 2392 destroy_sit_info(sbi); 2393 sbi->sm_info = NULL; 2394 kfree(sm_info); 2395 } 2396 2397 int __init create_segment_manager_caches(void) 2398 { 2399 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2400 sizeof(struct discard_entry)); 2401 if (!discard_entry_slab) 2402 goto fail; 2403 2404 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2405 sizeof(struct sit_entry_set)); 2406 if (!sit_entry_set_slab) 2407 goto destory_discard_entry; 2408 2409 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2410 sizeof(struct inmem_pages)); 2411 if (!inmem_entry_slab) 2412 goto destroy_sit_entry_set; 2413 return 0; 2414 2415 destroy_sit_entry_set: 2416 kmem_cache_destroy(sit_entry_set_slab); 2417 destory_discard_entry: 2418 kmem_cache_destroy(discard_entry_slab); 2419 fail: 2420 return -ENOMEM; 2421 } 2422 2423 void destroy_segment_manager_caches(void) 2424 { 2425 kmem_cache_destroy(sit_entry_set_slab); 2426 kmem_cache_destroy(discard_entry_slab); 2427 kmem_cache_destroy(inmem_entry_slab); 2428 } 2429