xref: /openbmc/linux/fs/f2fs/segment.c (revision c4ee0af3)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17 
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22 
23 /*
24  * This function balances dirty node and dentry pages.
25  * In addition, it controls garbage collection.
26  */
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28 {
29 	/*
30 	 * We should do GC or end up with checkpoint, if there are so many dirty
31 	 * dir/node pages without enough free segments.
32 	 */
33 	if (has_not_enough_free_secs(sbi, 0)) {
34 		mutex_lock(&sbi->gc_mutex);
35 		f2fs_gc(sbi);
36 	}
37 }
38 
39 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
40 {
41 	/* check the # of cached NAT entries and prefree segments */
42 	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
43 				excess_prefree_segs(sbi))
44 		f2fs_sync_fs(sbi->sb, true);
45 }
46 
47 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
48 		enum dirty_type dirty_type)
49 {
50 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
51 
52 	/* need not be added */
53 	if (IS_CURSEG(sbi, segno))
54 		return;
55 
56 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
57 		dirty_i->nr_dirty[dirty_type]++;
58 
59 	if (dirty_type == DIRTY) {
60 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
61 		enum dirty_type t = sentry->type;
62 
63 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
64 			dirty_i->nr_dirty[t]++;
65 	}
66 }
67 
68 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
69 		enum dirty_type dirty_type)
70 {
71 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
72 
73 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
74 		dirty_i->nr_dirty[dirty_type]--;
75 
76 	if (dirty_type == DIRTY) {
77 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
78 		enum dirty_type t = sentry->type;
79 
80 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
81 			dirty_i->nr_dirty[t]--;
82 
83 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
84 			clear_bit(GET_SECNO(sbi, segno),
85 						dirty_i->victim_secmap);
86 	}
87 }
88 
89 /*
90  * Should not occur error such as -ENOMEM.
91  * Adding dirty entry into seglist is not critical operation.
92  * If a given segment is one of current working segments, it won't be added.
93  */
94 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
95 {
96 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
97 	unsigned short valid_blocks;
98 
99 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
100 		return;
101 
102 	mutex_lock(&dirty_i->seglist_lock);
103 
104 	valid_blocks = get_valid_blocks(sbi, segno, 0);
105 
106 	if (valid_blocks == 0) {
107 		__locate_dirty_segment(sbi, segno, PRE);
108 		__remove_dirty_segment(sbi, segno, DIRTY);
109 	} else if (valid_blocks < sbi->blocks_per_seg) {
110 		__locate_dirty_segment(sbi, segno, DIRTY);
111 	} else {
112 		/* Recovery routine with SSR needs this */
113 		__remove_dirty_segment(sbi, segno, DIRTY);
114 	}
115 
116 	mutex_unlock(&dirty_i->seglist_lock);
117 }
118 
119 /*
120  * Should call clear_prefree_segments after checkpoint is done.
121  */
122 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
123 {
124 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
125 	unsigned int segno = -1;
126 	unsigned int total_segs = TOTAL_SEGS(sbi);
127 
128 	mutex_lock(&dirty_i->seglist_lock);
129 	while (1) {
130 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
131 				segno + 1);
132 		if (segno >= total_segs)
133 			break;
134 		__set_test_and_free(sbi, segno);
135 	}
136 	mutex_unlock(&dirty_i->seglist_lock);
137 }
138 
139 void clear_prefree_segments(struct f2fs_sb_info *sbi)
140 {
141 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
142 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
143 	unsigned int total_segs = TOTAL_SEGS(sbi);
144 	unsigned int start = 0, end = -1;
145 
146 	mutex_lock(&dirty_i->seglist_lock);
147 
148 	while (1) {
149 		int i;
150 		start = find_next_bit(prefree_map, total_segs, end + 1);
151 		if (start >= total_segs)
152 			break;
153 		end = find_next_zero_bit(prefree_map, total_segs, start + 1);
154 
155 		for (i = start; i < end; i++)
156 			clear_bit(i, prefree_map);
157 
158 		dirty_i->nr_dirty[PRE] -= end - start;
159 
160 		if (!test_opt(sbi, DISCARD))
161 			continue;
162 
163 		blkdev_issue_discard(sbi->sb->s_bdev,
164 				START_BLOCK(sbi, start) <<
165 				sbi->log_sectors_per_block,
166 				(1 << (sbi->log_sectors_per_block +
167 				sbi->log_blocks_per_seg)) * (end - start),
168 				GFP_NOFS, 0);
169 	}
170 	mutex_unlock(&dirty_i->seglist_lock);
171 }
172 
173 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
174 {
175 	struct sit_info *sit_i = SIT_I(sbi);
176 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
177 		sit_i->dirty_sentries++;
178 }
179 
180 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
181 					unsigned int segno, int modified)
182 {
183 	struct seg_entry *se = get_seg_entry(sbi, segno);
184 	se->type = type;
185 	if (modified)
186 		__mark_sit_entry_dirty(sbi, segno);
187 }
188 
189 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
190 {
191 	struct seg_entry *se;
192 	unsigned int segno, offset;
193 	long int new_vblocks;
194 
195 	segno = GET_SEGNO(sbi, blkaddr);
196 
197 	se = get_seg_entry(sbi, segno);
198 	new_vblocks = se->valid_blocks + del;
199 	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
200 
201 	f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
202 				(new_vblocks > sbi->blocks_per_seg)));
203 
204 	se->valid_blocks = new_vblocks;
205 	se->mtime = get_mtime(sbi);
206 	SIT_I(sbi)->max_mtime = se->mtime;
207 
208 	/* Update valid block bitmap */
209 	if (del > 0) {
210 		if (f2fs_set_bit(offset, se->cur_valid_map))
211 			BUG();
212 	} else {
213 		if (!f2fs_clear_bit(offset, se->cur_valid_map))
214 			BUG();
215 	}
216 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
217 		se->ckpt_valid_blocks += del;
218 
219 	__mark_sit_entry_dirty(sbi, segno);
220 
221 	/* update total number of valid blocks to be written in ckpt area */
222 	SIT_I(sbi)->written_valid_blocks += del;
223 
224 	if (sbi->segs_per_sec > 1)
225 		get_sec_entry(sbi, segno)->valid_blocks += del;
226 }
227 
228 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
229 			block_t old_blkaddr, block_t new_blkaddr)
230 {
231 	update_sit_entry(sbi, new_blkaddr, 1);
232 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
233 		update_sit_entry(sbi, old_blkaddr, -1);
234 }
235 
236 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
237 {
238 	unsigned int segno = GET_SEGNO(sbi, addr);
239 	struct sit_info *sit_i = SIT_I(sbi);
240 
241 	f2fs_bug_on(addr == NULL_ADDR);
242 	if (addr == NEW_ADDR)
243 		return;
244 
245 	/* add it into sit main buffer */
246 	mutex_lock(&sit_i->sentry_lock);
247 
248 	update_sit_entry(sbi, addr, -1);
249 
250 	/* add it into dirty seglist */
251 	locate_dirty_segment(sbi, segno);
252 
253 	mutex_unlock(&sit_i->sentry_lock);
254 }
255 
256 /*
257  * This function should be resided under the curseg_mutex lock
258  */
259 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
260 					struct f2fs_summary *sum)
261 {
262 	struct curseg_info *curseg = CURSEG_I(sbi, type);
263 	void *addr = curseg->sum_blk;
264 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
265 	memcpy(addr, sum, sizeof(struct f2fs_summary));
266 }
267 
268 /*
269  * Calculate the number of current summary pages for writing
270  */
271 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
272 {
273 	int valid_sum_count = 0;
274 	int i, sum_in_page;
275 
276 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
277 		if (sbi->ckpt->alloc_type[i] == SSR)
278 			valid_sum_count += sbi->blocks_per_seg;
279 		else
280 			valid_sum_count += curseg_blkoff(sbi, i);
281 	}
282 
283 	sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
284 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
285 	if (valid_sum_count <= sum_in_page)
286 		return 1;
287 	else if ((valid_sum_count - sum_in_page) <=
288 		(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
289 		return 2;
290 	return 3;
291 }
292 
293 /*
294  * Caller should put this summary page
295  */
296 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
297 {
298 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
299 }
300 
301 static void write_sum_page(struct f2fs_sb_info *sbi,
302 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
303 {
304 	struct page *page = grab_meta_page(sbi, blk_addr);
305 	void *kaddr = page_address(page);
306 	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
307 	set_page_dirty(page);
308 	f2fs_put_page(page, 1);
309 }
310 
311 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
312 {
313 	struct curseg_info *curseg = CURSEG_I(sbi, type);
314 	unsigned int segno = curseg->segno + 1;
315 	struct free_segmap_info *free_i = FREE_I(sbi);
316 
317 	if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
318 		return !test_bit(segno, free_i->free_segmap);
319 	return 0;
320 }
321 
322 /*
323  * Find a new segment from the free segments bitmap to right order
324  * This function should be returned with success, otherwise BUG
325  */
326 static void get_new_segment(struct f2fs_sb_info *sbi,
327 			unsigned int *newseg, bool new_sec, int dir)
328 {
329 	struct free_segmap_info *free_i = FREE_I(sbi);
330 	unsigned int segno, secno, zoneno;
331 	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
332 	unsigned int hint = *newseg / sbi->segs_per_sec;
333 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
334 	unsigned int left_start = hint;
335 	bool init = true;
336 	int go_left = 0;
337 	int i;
338 
339 	write_lock(&free_i->segmap_lock);
340 
341 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
342 		segno = find_next_zero_bit(free_i->free_segmap,
343 					TOTAL_SEGS(sbi), *newseg + 1);
344 		if (segno - *newseg < sbi->segs_per_sec -
345 					(*newseg % sbi->segs_per_sec))
346 			goto got_it;
347 	}
348 find_other_zone:
349 	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
350 	if (secno >= TOTAL_SECS(sbi)) {
351 		if (dir == ALLOC_RIGHT) {
352 			secno = find_next_zero_bit(free_i->free_secmap,
353 							TOTAL_SECS(sbi), 0);
354 			f2fs_bug_on(secno >= TOTAL_SECS(sbi));
355 		} else {
356 			go_left = 1;
357 			left_start = hint - 1;
358 		}
359 	}
360 	if (go_left == 0)
361 		goto skip_left;
362 
363 	while (test_bit(left_start, free_i->free_secmap)) {
364 		if (left_start > 0) {
365 			left_start--;
366 			continue;
367 		}
368 		left_start = find_next_zero_bit(free_i->free_secmap,
369 							TOTAL_SECS(sbi), 0);
370 		f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
371 		break;
372 	}
373 	secno = left_start;
374 skip_left:
375 	hint = secno;
376 	segno = secno * sbi->segs_per_sec;
377 	zoneno = secno / sbi->secs_per_zone;
378 
379 	/* give up on finding another zone */
380 	if (!init)
381 		goto got_it;
382 	if (sbi->secs_per_zone == 1)
383 		goto got_it;
384 	if (zoneno == old_zoneno)
385 		goto got_it;
386 	if (dir == ALLOC_LEFT) {
387 		if (!go_left && zoneno + 1 >= total_zones)
388 			goto got_it;
389 		if (go_left && zoneno == 0)
390 			goto got_it;
391 	}
392 	for (i = 0; i < NR_CURSEG_TYPE; i++)
393 		if (CURSEG_I(sbi, i)->zone == zoneno)
394 			break;
395 
396 	if (i < NR_CURSEG_TYPE) {
397 		/* zone is in user, try another */
398 		if (go_left)
399 			hint = zoneno * sbi->secs_per_zone - 1;
400 		else if (zoneno + 1 >= total_zones)
401 			hint = 0;
402 		else
403 			hint = (zoneno + 1) * sbi->secs_per_zone;
404 		init = false;
405 		goto find_other_zone;
406 	}
407 got_it:
408 	/* set it as dirty segment in free segmap */
409 	f2fs_bug_on(test_bit(segno, free_i->free_segmap));
410 	__set_inuse(sbi, segno);
411 	*newseg = segno;
412 	write_unlock(&free_i->segmap_lock);
413 }
414 
415 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
416 {
417 	struct curseg_info *curseg = CURSEG_I(sbi, type);
418 	struct summary_footer *sum_footer;
419 
420 	curseg->segno = curseg->next_segno;
421 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
422 	curseg->next_blkoff = 0;
423 	curseg->next_segno = NULL_SEGNO;
424 
425 	sum_footer = &(curseg->sum_blk->footer);
426 	memset(sum_footer, 0, sizeof(struct summary_footer));
427 	if (IS_DATASEG(type))
428 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
429 	if (IS_NODESEG(type))
430 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
431 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
432 }
433 
434 /*
435  * Allocate a current working segment.
436  * This function always allocates a free segment in LFS manner.
437  */
438 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
439 {
440 	struct curseg_info *curseg = CURSEG_I(sbi, type);
441 	unsigned int segno = curseg->segno;
442 	int dir = ALLOC_LEFT;
443 
444 	write_sum_page(sbi, curseg->sum_blk,
445 				GET_SUM_BLOCK(sbi, segno));
446 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
447 		dir = ALLOC_RIGHT;
448 
449 	if (test_opt(sbi, NOHEAP))
450 		dir = ALLOC_RIGHT;
451 
452 	get_new_segment(sbi, &segno, new_sec, dir);
453 	curseg->next_segno = segno;
454 	reset_curseg(sbi, type, 1);
455 	curseg->alloc_type = LFS;
456 }
457 
458 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
459 			struct curseg_info *seg, block_t start)
460 {
461 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
462 	block_t ofs;
463 	for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
464 		if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
465 			&& !f2fs_test_bit(ofs, se->cur_valid_map))
466 			break;
467 	}
468 	seg->next_blkoff = ofs;
469 }
470 
471 /*
472  * If a segment is written by LFS manner, next block offset is just obtained
473  * by increasing the current block offset. However, if a segment is written by
474  * SSR manner, next block offset obtained by calling __next_free_blkoff
475  */
476 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
477 				struct curseg_info *seg)
478 {
479 	if (seg->alloc_type == SSR)
480 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
481 	else
482 		seg->next_blkoff++;
483 }
484 
485 /*
486  * This function always allocates a used segment (from dirty seglist) by SSR
487  * manner, so it should recover the existing segment information of valid blocks
488  */
489 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
490 {
491 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
492 	struct curseg_info *curseg = CURSEG_I(sbi, type);
493 	unsigned int new_segno = curseg->next_segno;
494 	struct f2fs_summary_block *sum_node;
495 	struct page *sum_page;
496 
497 	write_sum_page(sbi, curseg->sum_blk,
498 				GET_SUM_BLOCK(sbi, curseg->segno));
499 	__set_test_and_inuse(sbi, new_segno);
500 
501 	mutex_lock(&dirty_i->seglist_lock);
502 	__remove_dirty_segment(sbi, new_segno, PRE);
503 	__remove_dirty_segment(sbi, new_segno, DIRTY);
504 	mutex_unlock(&dirty_i->seglist_lock);
505 
506 	reset_curseg(sbi, type, 1);
507 	curseg->alloc_type = SSR;
508 	__next_free_blkoff(sbi, curseg, 0);
509 
510 	if (reuse) {
511 		sum_page = get_sum_page(sbi, new_segno);
512 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
513 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
514 		f2fs_put_page(sum_page, 1);
515 	}
516 }
517 
518 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
519 {
520 	struct curseg_info *curseg = CURSEG_I(sbi, type);
521 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
522 
523 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
524 		return v_ops->get_victim(sbi,
525 				&(curseg)->next_segno, BG_GC, type, SSR);
526 
527 	/* For data segments, let's do SSR more intensively */
528 	for (; type >= CURSEG_HOT_DATA; type--)
529 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
530 						BG_GC, type, SSR))
531 			return 1;
532 	return 0;
533 }
534 
535 /*
536  * flush out current segment and replace it with new segment
537  * This function should be returned with success, otherwise BUG
538  */
539 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
540 						int type, bool force)
541 {
542 	struct curseg_info *curseg = CURSEG_I(sbi, type);
543 
544 	if (force)
545 		new_curseg(sbi, type, true);
546 	else if (type == CURSEG_WARM_NODE)
547 		new_curseg(sbi, type, false);
548 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
549 		new_curseg(sbi, type, false);
550 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
551 		change_curseg(sbi, type, true);
552 	else
553 		new_curseg(sbi, type, false);
554 
555 	stat_inc_seg_type(sbi, curseg);
556 }
557 
558 void allocate_new_segments(struct f2fs_sb_info *sbi)
559 {
560 	struct curseg_info *curseg;
561 	unsigned int old_curseg;
562 	int i;
563 
564 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
565 		curseg = CURSEG_I(sbi, i);
566 		old_curseg = curseg->segno;
567 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
568 		locate_dirty_segment(sbi, old_curseg);
569 	}
570 }
571 
572 static const struct segment_allocation default_salloc_ops = {
573 	.allocate_segment = allocate_segment_by_default,
574 };
575 
576 static void f2fs_end_io_write(struct bio *bio, int err)
577 {
578 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
579 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
580 	struct bio_private *p = bio->bi_private;
581 
582 	do {
583 		struct page *page = bvec->bv_page;
584 
585 		if (--bvec >= bio->bi_io_vec)
586 			prefetchw(&bvec->bv_page->flags);
587 		if (!uptodate) {
588 			SetPageError(page);
589 			if (page->mapping)
590 				set_bit(AS_EIO, &page->mapping->flags);
591 			set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
592 			p->sbi->sb->s_flags |= MS_RDONLY;
593 		}
594 		end_page_writeback(page);
595 		dec_page_count(p->sbi, F2FS_WRITEBACK);
596 	} while (bvec >= bio->bi_io_vec);
597 
598 	if (p->is_sync)
599 		complete(p->wait);
600 
601 	if (!get_pages(p->sbi, F2FS_WRITEBACK) &&
602 			!list_empty(&p->sbi->cp_wait.task_list))
603 		wake_up(&p->sbi->cp_wait);
604 
605 	kfree(p);
606 	bio_put(bio);
607 }
608 
609 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
610 {
611 	struct bio *bio;
612 
613 	/* No failure on bio allocation */
614 	bio = bio_alloc(GFP_NOIO, npages);
615 	bio->bi_bdev = bdev;
616 	bio->bi_private = NULL;
617 
618 	return bio;
619 }
620 
621 static void do_submit_bio(struct f2fs_sb_info *sbi,
622 				enum page_type type, bool sync)
623 {
624 	int rw = sync ? WRITE_SYNC : WRITE;
625 	enum page_type btype = type > META ? META : type;
626 
627 	if (type >= META_FLUSH)
628 		rw = WRITE_FLUSH_FUA;
629 
630 	if (btype == META)
631 		rw |= REQ_META;
632 
633 	if (sbi->bio[btype]) {
634 		struct bio_private *p = sbi->bio[btype]->bi_private;
635 		p->sbi = sbi;
636 		sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
637 
638 		trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
639 
640 		if (type == META_FLUSH) {
641 			DECLARE_COMPLETION_ONSTACK(wait);
642 			p->is_sync = true;
643 			p->wait = &wait;
644 			submit_bio(rw, sbi->bio[btype]);
645 			wait_for_completion(&wait);
646 		} else {
647 			p->is_sync = false;
648 			submit_bio(rw, sbi->bio[btype]);
649 		}
650 		sbi->bio[btype] = NULL;
651 	}
652 }
653 
654 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
655 {
656 	down_write(&sbi->bio_sem);
657 	do_submit_bio(sbi, type, sync);
658 	up_write(&sbi->bio_sem);
659 }
660 
661 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
662 				block_t blk_addr, enum page_type type)
663 {
664 	struct block_device *bdev = sbi->sb->s_bdev;
665 	int bio_blocks;
666 
667 	verify_block_addr(sbi, blk_addr);
668 
669 	down_write(&sbi->bio_sem);
670 
671 	inc_page_count(sbi, F2FS_WRITEBACK);
672 
673 	if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
674 		do_submit_bio(sbi, type, false);
675 alloc_new:
676 	if (sbi->bio[type] == NULL) {
677 		struct bio_private *priv;
678 retry:
679 		priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
680 		if (!priv) {
681 			cond_resched();
682 			goto retry;
683 		}
684 
685 		bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
686 		sbi->bio[type] = f2fs_bio_alloc(bdev, bio_blocks);
687 		sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
688 		sbi->bio[type]->bi_private = priv;
689 		/*
690 		 * The end_io will be assigned at the sumbission phase.
691 		 * Until then, let bio_add_page() merge consecutive IOs as much
692 		 * as possible.
693 		 */
694 	}
695 
696 	if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
697 							PAGE_CACHE_SIZE) {
698 		do_submit_bio(sbi, type, false);
699 		goto alloc_new;
700 	}
701 
702 	sbi->last_block_in_bio[type] = blk_addr;
703 
704 	up_write(&sbi->bio_sem);
705 	trace_f2fs_submit_write_page(page, blk_addr, type);
706 }
707 
708 void f2fs_wait_on_page_writeback(struct page *page,
709 				enum page_type type, bool sync)
710 {
711 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
712 	if (PageWriteback(page)) {
713 		f2fs_submit_bio(sbi, type, sync);
714 		wait_on_page_writeback(page);
715 	}
716 }
717 
718 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
719 {
720 	struct curseg_info *curseg = CURSEG_I(sbi, type);
721 	if (curseg->next_blkoff < sbi->blocks_per_seg)
722 		return true;
723 	return false;
724 }
725 
726 static int __get_segment_type_2(struct page *page, enum page_type p_type)
727 {
728 	if (p_type == DATA)
729 		return CURSEG_HOT_DATA;
730 	else
731 		return CURSEG_HOT_NODE;
732 }
733 
734 static int __get_segment_type_4(struct page *page, enum page_type p_type)
735 {
736 	if (p_type == DATA) {
737 		struct inode *inode = page->mapping->host;
738 
739 		if (S_ISDIR(inode->i_mode))
740 			return CURSEG_HOT_DATA;
741 		else
742 			return CURSEG_COLD_DATA;
743 	} else {
744 		if (IS_DNODE(page) && !is_cold_node(page))
745 			return CURSEG_HOT_NODE;
746 		else
747 			return CURSEG_COLD_NODE;
748 	}
749 }
750 
751 static int __get_segment_type_6(struct page *page, enum page_type p_type)
752 {
753 	if (p_type == DATA) {
754 		struct inode *inode = page->mapping->host;
755 
756 		if (S_ISDIR(inode->i_mode))
757 			return CURSEG_HOT_DATA;
758 		else if (is_cold_data(page) || file_is_cold(inode))
759 			return CURSEG_COLD_DATA;
760 		else
761 			return CURSEG_WARM_DATA;
762 	} else {
763 		if (IS_DNODE(page))
764 			return is_cold_node(page) ? CURSEG_WARM_NODE :
765 						CURSEG_HOT_NODE;
766 		else
767 			return CURSEG_COLD_NODE;
768 	}
769 }
770 
771 static int __get_segment_type(struct page *page, enum page_type p_type)
772 {
773 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
774 	switch (sbi->active_logs) {
775 	case 2:
776 		return __get_segment_type_2(page, p_type);
777 	case 4:
778 		return __get_segment_type_4(page, p_type);
779 	}
780 	/* NR_CURSEG_TYPE(6) logs by default */
781 	f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
782 	return __get_segment_type_6(page, p_type);
783 }
784 
785 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
786 			block_t old_blkaddr, block_t *new_blkaddr,
787 			struct f2fs_summary *sum, enum page_type p_type)
788 {
789 	struct sit_info *sit_i = SIT_I(sbi);
790 	struct curseg_info *curseg;
791 	unsigned int old_cursegno;
792 	int type;
793 
794 	type = __get_segment_type(page, p_type);
795 	curseg = CURSEG_I(sbi, type);
796 
797 	mutex_lock(&curseg->curseg_mutex);
798 
799 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
800 	old_cursegno = curseg->segno;
801 
802 	/*
803 	 * __add_sum_entry should be resided under the curseg_mutex
804 	 * because, this function updates a summary entry in the
805 	 * current summary block.
806 	 */
807 	__add_sum_entry(sbi, type, sum);
808 
809 	mutex_lock(&sit_i->sentry_lock);
810 	__refresh_next_blkoff(sbi, curseg);
811 
812 	stat_inc_block_count(sbi, curseg);
813 
814 	/*
815 	 * SIT information should be updated before segment allocation,
816 	 * since SSR needs latest valid block information.
817 	 */
818 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
819 
820 	if (!__has_curseg_space(sbi, type))
821 		sit_i->s_ops->allocate_segment(sbi, type, false);
822 
823 	locate_dirty_segment(sbi, old_cursegno);
824 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
825 	mutex_unlock(&sit_i->sentry_lock);
826 
827 	if (p_type == NODE)
828 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
829 
830 	/* writeout dirty page into bdev */
831 	submit_write_page(sbi, page, *new_blkaddr, p_type);
832 
833 	mutex_unlock(&curseg->curseg_mutex);
834 }
835 
836 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
837 {
838 	set_page_writeback(page);
839 	submit_write_page(sbi, page, page->index, META);
840 }
841 
842 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
843 		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
844 {
845 	struct f2fs_summary sum;
846 	set_summary(&sum, nid, 0, 0);
847 	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
848 }
849 
850 void write_data_page(struct inode *inode, struct page *page,
851 		struct dnode_of_data *dn, block_t old_blkaddr,
852 		block_t *new_blkaddr)
853 {
854 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
855 	struct f2fs_summary sum;
856 	struct node_info ni;
857 
858 	f2fs_bug_on(old_blkaddr == NULL_ADDR);
859 	get_node_info(sbi, dn->nid, &ni);
860 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
861 
862 	do_write_page(sbi, page, old_blkaddr,
863 			new_blkaddr, &sum, DATA);
864 }
865 
866 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
867 					block_t old_blk_addr)
868 {
869 	submit_write_page(sbi, page, old_blk_addr, DATA);
870 }
871 
872 void recover_data_page(struct f2fs_sb_info *sbi,
873 			struct page *page, struct f2fs_summary *sum,
874 			block_t old_blkaddr, block_t new_blkaddr)
875 {
876 	struct sit_info *sit_i = SIT_I(sbi);
877 	struct curseg_info *curseg;
878 	unsigned int segno, old_cursegno;
879 	struct seg_entry *se;
880 	int type;
881 
882 	segno = GET_SEGNO(sbi, new_blkaddr);
883 	se = get_seg_entry(sbi, segno);
884 	type = se->type;
885 
886 	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
887 		if (old_blkaddr == NULL_ADDR)
888 			type = CURSEG_COLD_DATA;
889 		else
890 			type = CURSEG_WARM_DATA;
891 	}
892 	curseg = CURSEG_I(sbi, type);
893 
894 	mutex_lock(&curseg->curseg_mutex);
895 	mutex_lock(&sit_i->sentry_lock);
896 
897 	old_cursegno = curseg->segno;
898 
899 	/* change the current segment */
900 	if (segno != curseg->segno) {
901 		curseg->next_segno = segno;
902 		change_curseg(sbi, type, true);
903 	}
904 
905 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
906 					(sbi->blocks_per_seg - 1);
907 	__add_sum_entry(sbi, type, sum);
908 
909 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
910 
911 	locate_dirty_segment(sbi, old_cursegno);
912 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
913 
914 	mutex_unlock(&sit_i->sentry_lock);
915 	mutex_unlock(&curseg->curseg_mutex);
916 }
917 
918 void rewrite_node_page(struct f2fs_sb_info *sbi,
919 			struct page *page, struct f2fs_summary *sum,
920 			block_t old_blkaddr, block_t new_blkaddr)
921 {
922 	struct sit_info *sit_i = SIT_I(sbi);
923 	int type = CURSEG_WARM_NODE;
924 	struct curseg_info *curseg;
925 	unsigned int segno, old_cursegno;
926 	block_t next_blkaddr = next_blkaddr_of_node(page);
927 	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
928 
929 	curseg = CURSEG_I(sbi, type);
930 
931 	mutex_lock(&curseg->curseg_mutex);
932 	mutex_lock(&sit_i->sentry_lock);
933 
934 	segno = GET_SEGNO(sbi, new_blkaddr);
935 	old_cursegno = curseg->segno;
936 
937 	/* change the current segment */
938 	if (segno != curseg->segno) {
939 		curseg->next_segno = segno;
940 		change_curseg(sbi, type, true);
941 	}
942 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
943 					(sbi->blocks_per_seg - 1);
944 	__add_sum_entry(sbi, type, sum);
945 
946 	/* change the current log to the next block addr in advance */
947 	if (next_segno != segno) {
948 		curseg->next_segno = next_segno;
949 		change_curseg(sbi, type, true);
950 	}
951 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
952 					(sbi->blocks_per_seg - 1);
953 
954 	/* rewrite node page */
955 	set_page_writeback(page);
956 	submit_write_page(sbi, page, new_blkaddr, NODE);
957 	f2fs_submit_bio(sbi, NODE, true);
958 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
959 
960 	locate_dirty_segment(sbi, old_cursegno);
961 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
962 
963 	mutex_unlock(&sit_i->sentry_lock);
964 	mutex_unlock(&curseg->curseg_mutex);
965 }
966 
967 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
968 {
969 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
970 	struct curseg_info *seg_i;
971 	unsigned char *kaddr;
972 	struct page *page;
973 	block_t start;
974 	int i, j, offset;
975 
976 	start = start_sum_block(sbi);
977 
978 	page = get_meta_page(sbi, start++);
979 	kaddr = (unsigned char *)page_address(page);
980 
981 	/* Step 1: restore nat cache */
982 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
983 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
984 
985 	/* Step 2: restore sit cache */
986 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
987 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
988 						SUM_JOURNAL_SIZE);
989 	offset = 2 * SUM_JOURNAL_SIZE;
990 
991 	/* Step 3: restore summary entries */
992 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
993 		unsigned short blk_off;
994 		unsigned int segno;
995 
996 		seg_i = CURSEG_I(sbi, i);
997 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
998 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
999 		seg_i->next_segno = segno;
1000 		reset_curseg(sbi, i, 0);
1001 		seg_i->alloc_type = ckpt->alloc_type[i];
1002 		seg_i->next_blkoff = blk_off;
1003 
1004 		if (seg_i->alloc_type == SSR)
1005 			blk_off = sbi->blocks_per_seg;
1006 
1007 		for (j = 0; j < blk_off; j++) {
1008 			struct f2fs_summary *s;
1009 			s = (struct f2fs_summary *)(kaddr + offset);
1010 			seg_i->sum_blk->entries[j] = *s;
1011 			offset += SUMMARY_SIZE;
1012 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1013 						SUM_FOOTER_SIZE)
1014 				continue;
1015 
1016 			f2fs_put_page(page, 1);
1017 			page = NULL;
1018 
1019 			page = get_meta_page(sbi, start++);
1020 			kaddr = (unsigned char *)page_address(page);
1021 			offset = 0;
1022 		}
1023 	}
1024 	f2fs_put_page(page, 1);
1025 	return 0;
1026 }
1027 
1028 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1029 {
1030 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1031 	struct f2fs_summary_block *sum;
1032 	struct curseg_info *curseg;
1033 	struct page *new;
1034 	unsigned short blk_off;
1035 	unsigned int segno = 0;
1036 	block_t blk_addr = 0;
1037 
1038 	/* get segment number and block addr */
1039 	if (IS_DATASEG(type)) {
1040 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1041 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1042 							CURSEG_HOT_DATA]);
1043 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1044 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1045 		else
1046 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1047 	} else {
1048 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1049 							CURSEG_HOT_NODE]);
1050 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1051 							CURSEG_HOT_NODE]);
1052 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1053 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1054 							type - CURSEG_HOT_NODE);
1055 		else
1056 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1057 	}
1058 
1059 	new = get_meta_page(sbi, blk_addr);
1060 	sum = (struct f2fs_summary_block *)page_address(new);
1061 
1062 	if (IS_NODESEG(type)) {
1063 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1064 			struct f2fs_summary *ns = &sum->entries[0];
1065 			int i;
1066 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1067 				ns->version = 0;
1068 				ns->ofs_in_node = 0;
1069 			}
1070 		} else {
1071 			if (restore_node_summary(sbi, segno, sum)) {
1072 				f2fs_put_page(new, 1);
1073 				return -EINVAL;
1074 			}
1075 		}
1076 	}
1077 
1078 	/* set uncompleted segment to curseg */
1079 	curseg = CURSEG_I(sbi, type);
1080 	mutex_lock(&curseg->curseg_mutex);
1081 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1082 	curseg->next_segno = segno;
1083 	reset_curseg(sbi, type, 0);
1084 	curseg->alloc_type = ckpt->alloc_type[type];
1085 	curseg->next_blkoff = blk_off;
1086 	mutex_unlock(&curseg->curseg_mutex);
1087 	f2fs_put_page(new, 1);
1088 	return 0;
1089 }
1090 
1091 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1092 {
1093 	int type = CURSEG_HOT_DATA;
1094 
1095 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1096 		/* restore for compacted data summary */
1097 		if (read_compacted_summaries(sbi))
1098 			return -EINVAL;
1099 		type = CURSEG_HOT_NODE;
1100 	}
1101 
1102 	for (; type <= CURSEG_COLD_NODE; type++)
1103 		if (read_normal_summaries(sbi, type))
1104 			return -EINVAL;
1105 	return 0;
1106 }
1107 
1108 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1109 {
1110 	struct page *page;
1111 	unsigned char *kaddr;
1112 	struct f2fs_summary *summary;
1113 	struct curseg_info *seg_i;
1114 	int written_size = 0;
1115 	int i, j;
1116 
1117 	page = grab_meta_page(sbi, blkaddr++);
1118 	kaddr = (unsigned char *)page_address(page);
1119 
1120 	/* Step 1: write nat cache */
1121 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1122 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1123 	written_size += SUM_JOURNAL_SIZE;
1124 
1125 	/* Step 2: write sit cache */
1126 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1127 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1128 						SUM_JOURNAL_SIZE);
1129 	written_size += SUM_JOURNAL_SIZE;
1130 
1131 	/* Step 3: write summary entries */
1132 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1133 		unsigned short blkoff;
1134 		seg_i = CURSEG_I(sbi, i);
1135 		if (sbi->ckpt->alloc_type[i] == SSR)
1136 			blkoff = sbi->blocks_per_seg;
1137 		else
1138 			blkoff = curseg_blkoff(sbi, i);
1139 
1140 		for (j = 0; j < blkoff; j++) {
1141 			if (!page) {
1142 				page = grab_meta_page(sbi, blkaddr++);
1143 				kaddr = (unsigned char *)page_address(page);
1144 				written_size = 0;
1145 			}
1146 			summary = (struct f2fs_summary *)(kaddr + written_size);
1147 			*summary = seg_i->sum_blk->entries[j];
1148 			written_size += SUMMARY_SIZE;
1149 
1150 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1151 							SUM_FOOTER_SIZE)
1152 				continue;
1153 
1154 			set_page_dirty(page);
1155 			f2fs_put_page(page, 1);
1156 			page = NULL;
1157 		}
1158 	}
1159 	if (page) {
1160 		set_page_dirty(page);
1161 		f2fs_put_page(page, 1);
1162 	}
1163 }
1164 
1165 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1166 					block_t blkaddr, int type)
1167 {
1168 	int i, end;
1169 	if (IS_DATASEG(type))
1170 		end = type + NR_CURSEG_DATA_TYPE;
1171 	else
1172 		end = type + NR_CURSEG_NODE_TYPE;
1173 
1174 	for (i = type; i < end; i++) {
1175 		struct curseg_info *sum = CURSEG_I(sbi, i);
1176 		mutex_lock(&sum->curseg_mutex);
1177 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1178 		mutex_unlock(&sum->curseg_mutex);
1179 	}
1180 }
1181 
1182 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1183 {
1184 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1185 		write_compacted_summaries(sbi, start_blk);
1186 	else
1187 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1188 }
1189 
1190 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1191 {
1192 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1193 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1194 }
1195 
1196 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1197 					unsigned int val, int alloc)
1198 {
1199 	int i;
1200 
1201 	if (type == NAT_JOURNAL) {
1202 		for (i = 0; i < nats_in_cursum(sum); i++) {
1203 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1204 				return i;
1205 		}
1206 		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1207 			return update_nats_in_cursum(sum, 1);
1208 	} else if (type == SIT_JOURNAL) {
1209 		for (i = 0; i < sits_in_cursum(sum); i++)
1210 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1211 				return i;
1212 		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1213 			return update_sits_in_cursum(sum, 1);
1214 	}
1215 	return -1;
1216 }
1217 
1218 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1219 					unsigned int segno)
1220 {
1221 	struct sit_info *sit_i = SIT_I(sbi);
1222 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1223 	block_t blk_addr = sit_i->sit_base_addr + offset;
1224 
1225 	check_seg_range(sbi, segno);
1226 
1227 	/* calculate sit block address */
1228 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1229 		blk_addr += sit_i->sit_blocks;
1230 
1231 	return get_meta_page(sbi, blk_addr);
1232 }
1233 
1234 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1235 					unsigned int start)
1236 {
1237 	struct sit_info *sit_i = SIT_I(sbi);
1238 	struct page *src_page, *dst_page;
1239 	pgoff_t src_off, dst_off;
1240 	void *src_addr, *dst_addr;
1241 
1242 	src_off = current_sit_addr(sbi, start);
1243 	dst_off = next_sit_addr(sbi, src_off);
1244 
1245 	/* get current sit block page without lock */
1246 	src_page = get_meta_page(sbi, src_off);
1247 	dst_page = grab_meta_page(sbi, dst_off);
1248 	f2fs_bug_on(PageDirty(src_page));
1249 
1250 	src_addr = page_address(src_page);
1251 	dst_addr = page_address(dst_page);
1252 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1253 
1254 	set_page_dirty(dst_page);
1255 	f2fs_put_page(src_page, 1);
1256 
1257 	set_to_next_sit(sit_i, start);
1258 
1259 	return dst_page;
1260 }
1261 
1262 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1263 {
1264 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1265 	struct f2fs_summary_block *sum = curseg->sum_blk;
1266 	int i;
1267 
1268 	/*
1269 	 * If the journal area in the current summary is full of sit entries,
1270 	 * all the sit entries will be flushed. Otherwise the sit entries
1271 	 * are not able to replace with newly hot sit entries.
1272 	 */
1273 	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1274 		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1275 			unsigned int segno;
1276 			segno = le32_to_cpu(segno_in_journal(sum, i));
1277 			__mark_sit_entry_dirty(sbi, segno);
1278 		}
1279 		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1280 		return true;
1281 	}
1282 	return false;
1283 }
1284 
1285 /*
1286  * CP calls this function, which flushes SIT entries including sit_journal,
1287  * and moves prefree segs to free segs.
1288  */
1289 void flush_sit_entries(struct f2fs_sb_info *sbi)
1290 {
1291 	struct sit_info *sit_i = SIT_I(sbi);
1292 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1293 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1294 	struct f2fs_summary_block *sum = curseg->sum_blk;
1295 	unsigned long nsegs = TOTAL_SEGS(sbi);
1296 	struct page *page = NULL;
1297 	struct f2fs_sit_block *raw_sit = NULL;
1298 	unsigned int start = 0, end = 0;
1299 	unsigned int segno = -1;
1300 	bool flushed;
1301 
1302 	mutex_lock(&curseg->curseg_mutex);
1303 	mutex_lock(&sit_i->sentry_lock);
1304 
1305 	/*
1306 	 * "flushed" indicates whether sit entries in journal are flushed
1307 	 * to the SIT area or not.
1308 	 */
1309 	flushed = flush_sits_in_journal(sbi);
1310 
1311 	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1312 		struct seg_entry *se = get_seg_entry(sbi, segno);
1313 		int sit_offset, offset;
1314 
1315 		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1316 
1317 		if (flushed)
1318 			goto to_sit_page;
1319 
1320 		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1321 		if (offset >= 0) {
1322 			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1323 			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1324 			goto flush_done;
1325 		}
1326 to_sit_page:
1327 		if (!page || (start > segno) || (segno > end)) {
1328 			if (page) {
1329 				f2fs_put_page(page, 1);
1330 				page = NULL;
1331 			}
1332 
1333 			start = START_SEGNO(sit_i, segno);
1334 			end = start + SIT_ENTRY_PER_BLOCK - 1;
1335 
1336 			/* read sit block that will be updated */
1337 			page = get_next_sit_page(sbi, start);
1338 			raw_sit = page_address(page);
1339 		}
1340 
1341 		/* udpate entry in SIT block */
1342 		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1343 flush_done:
1344 		__clear_bit(segno, bitmap);
1345 		sit_i->dirty_sentries--;
1346 	}
1347 	mutex_unlock(&sit_i->sentry_lock);
1348 	mutex_unlock(&curseg->curseg_mutex);
1349 
1350 	/* writeout last modified SIT block */
1351 	f2fs_put_page(page, 1);
1352 
1353 	set_prefree_as_free_segments(sbi);
1354 }
1355 
1356 static int build_sit_info(struct f2fs_sb_info *sbi)
1357 {
1358 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1359 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1360 	struct sit_info *sit_i;
1361 	unsigned int sit_segs, start;
1362 	char *src_bitmap, *dst_bitmap;
1363 	unsigned int bitmap_size;
1364 
1365 	/* allocate memory for SIT information */
1366 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1367 	if (!sit_i)
1368 		return -ENOMEM;
1369 
1370 	SM_I(sbi)->sit_info = sit_i;
1371 
1372 	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1373 	if (!sit_i->sentries)
1374 		return -ENOMEM;
1375 
1376 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1377 	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1378 	if (!sit_i->dirty_sentries_bitmap)
1379 		return -ENOMEM;
1380 
1381 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1382 		sit_i->sentries[start].cur_valid_map
1383 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1384 		sit_i->sentries[start].ckpt_valid_map
1385 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1386 		if (!sit_i->sentries[start].cur_valid_map
1387 				|| !sit_i->sentries[start].ckpt_valid_map)
1388 			return -ENOMEM;
1389 	}
1390 
1391 	if (sbi->segs_per_sec > 1) {
1392 		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1393 					sizeof(struct sec_entry));
1394 		if (!sit_i->sec_entries)
1395 			return -ENOMEM;
1396 	}
1397 
1398 	/* get information related with SIT */
1399 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1400 
1401 	/* setup SIT bitmap from ckeckpoint pack */
1402 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1403 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1404 
1405 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1406 	if (!dst_bitmap)
1407 		return -ENOMEM;
1408 
1409 	/* init SIT information */
1410 	sit_i->s_ops = &default_salloc_ops;
1411 
1412 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1413 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1414 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1415 	sit_i->sit_bitmap = dst_bitmap;
1416 	sit_i->bitmap_size = bitmap_size;
1417 	sit_i->dirty_sentries = 0;
1418 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1419 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1420 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1421 	mutex_init(&sit_i->sentry_lock);
1422 	return 0;
1423 }
1424 
1425 static int build_free_segmap(struct f2fs_sb_info *sbi)
1426 {
1427 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1428 	struct free_segmap_info *free_i;
1429 	unsigned int bitmap_size, sec_bitmap_size;
1430 
1431 	/* allocate memory for free segmap information */
1432 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1433 	if (!free_i)
1434 		return -ENOMEM;
1435 
1436 	SM_I(sbi)->free_info = free_i;
1437 
1438 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1439 	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1440 	if (!free_i->free_segmap)
1441 		return -ENOMEM;
1442 
1443 	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1444 	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1445 	if (!free_i->free_secmap)
1446 		return -ENOMEM;
1447 
1448 	/* set all segments as dirty temporarily */
1449 	memset(free_i->free_segmap, 0xff, bitmap_size);
1450 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1451 
1452 	/* init free segmap information */
1453 	free_i->start_segno =
1454 		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1455 	free_i->free_segments = 0;
1456 	free_i->free_sections = 0;
1457 	rwlock_init(&free_i->segmap_lock);
1458 	return 0;
1459 }
1460 
1461 static int build_curseg(struct f2fs_sb_info *sbi)
1462 {
1463 	struct curseg_info *array;
1464 	int i;
1465 
1466 	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1467 	if (!array)
1468 		return -ENOMEM;
1469 
1470 	SM_I(sbi)->curseg_array = array;
1471 
1472 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1473 		mutex_init(&array[i].curseg_mutex);
1474 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1475 		if (!array[i].sum_blk)
1476 			return -ENOMEM;
1477 		array[i].segno = NULL_SEGNO;
1478 		array[i].next_blkoff = 0;
1479 	}
1480 	return restore_curseg_summaries(sbi);
1481 }
1482 
1483 static void build_sit_entries(struct f2fs_sb_info *sbi)
1484 {
1485 	struct sit_info *sit_i = SIT_I(sbi);
1486 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1487 	struct f2fs_summary_block *sum = curseg->sum_blk;
1488 	unsigned int start;
1489 
1490 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1491 		struct seg_entry *se = &sit_i->sentries[start];
1492 		struct f2fs_sit_block *sit_blk;
1493 		struct f2fs_sit_entry sit;
1494 		struct page *page;
1495 		int i;
1496 
1497 		mutex_lock(&curseg->curseg_mutex);
1498 		for (i = 0; i < sits_in_cursum(sum); i++) {
1499 			if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1500 				sit = sit_in_journal(sum, i);
1501 				mutex_unlock(&curseg->curseg_mutex);
1502 				goto got_it;
1503 			}
1504 		}
1505 		mutex_unlock(&curseg->curseg_mutex);
1506 		page = get_current_sit_page(sbi, start);
1507 		sit_blk = (struct f2fs_sit_block *)page_address(page);
1508 		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1509 		f2fs_put_page(page, 1);
1510 got_it:
1511 		check_block_count(sbi, start, &sit);
1512 		seg_info_from_raw_sit(se, &sit);
1513 		if (sbi->segs_per_sec > 1) {
1514 			struct sec_entry *e = get_sec_entry(sbi, start);
1515 			e->valid_blocks += se->valid_blocks;
1516 		}
1517 	}
1518 }
1519 
1520 static void init_free_segmap(struct f2fs_sb_info *sbi)
1521 {
1522 	unsigned int start;
1523 	int type;
1524 
1525 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1526 		struct seg_entry *sentry = get_seg_entry(sbi, start);
1527 		if (!sentry->valid_blocks)
1528 			__set_free(sbi, start);
1529 	}
1530 
1531 	/* set use the current segments */
1532 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1533 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1534 		__set_test_and_inuse(sbi, curseg_t->segno);
1535 	}
1536 }
1537 
1538 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1539 {
1540 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1541 	struct free_segmap_info *free_i = FREE_I(sbi);
1542 	unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1543 	unsigned short valid_blocks;
1544 
1545 	while (1) {
1546 		/* find dirty segment based on free segmap */
1547 		segno = find_next_inuse(free_i, total_segs, offset);
1548 		if (segno >= total_segs)
1549 			break;
1550 		offset = segno + 1;
1551 		valid_blocks = get_valid_blocks(sbi, segno, 0);
1552 		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1553 			continue;
1554 		mutex_lock(&dirty_i->seglist_lock);
1555 		__locate_dirty_segment(sbi, segno, DIRTY);
1556 		mutex_unlock(&dirty_i->seglist_lock);
1557 	}
1558 }
1559 
1560 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1561 {
1562 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1563 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1564 
1565 	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1566 	if (!dirty_i->victim_secmap)
1567 		return -ENOMEM;
1568 	return 0;
1569 }
1570 
1571 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1572 {
1573 	struct dirty_seglist_info *dirty_i;
1574 	unsigned int bitmap_size, i;
1575 
1576 	/* allocate memory for dirty segments list information */
1577 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1578 	if (!dirty_i)
1579 		return -ENOMEM;
1580 
1581 	SM_I(sbi)->dirty_info = dirty_i;
1582 	mutex_init(&dirty_i->seglist_lock);
1583 
1584 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1585 
1586 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1587 		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1588 		if (!dirty_i->dirty_segmap[i])
1589 			return -ENOMEM;
1590 	}
1591 
1592 	init_dirty_segmap(sbi);
1593 	return init_victim_secmap(sbi);
1594 }
1595 
1596 /*
1597  * Update min, max modified time for cost-benefit GC algorithm
1598  */
1599 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1600 {
1601 	struct sit_info *sit_i = SIT_I(sbi);
1602 	unsigned int segno;
1603 
1604 	mutex_lock(&sit_i->sentry_lock);
1605 
1606 	sit_i->min_mtime = LLONG_MAX;
1607 
1608 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1609 		unsigned int i;
1610 		unsigned long long mtime = 0;
1611 
1612 		for (i = 0; i < sbi->segs_per_sec; i++)
1613 			mtime += get_seg_entry(sbi, segno + i)->mtime;
1614 
1615 		mtime = div_u64(mtime, sbi->segs_per_sec);
1616 
1617 		if (sit_i->min_mtime > mtime)
1618 			sit_i->min_mtime = mtime;
1619 	}
1620 	sit_i->max_mtime = get_mtime(sbi);
1621 	mutex_unlock(&sit_i->sentry_lock);
1622 }
1623 
1624 int build_segment_manager(struct f2fs_sb_info *sbi)
1625 {
1626 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1627 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1628 	struct f2fs_sm_info *sm_info;
1629 	int err;
1630 
1631 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1632 	if (!sm_info)
1633 		return -ENOMEM;
1634 
1635 	/* init sm info */
1636 	sbi->sm_info = sm_info;
1637 	INIT_LIST_HEAD(&sm_info->wblist_head);
1638 	spin_lock_init(&sm_info->wblist_lock);
1639 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1640 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1641 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1642 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1643 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1644 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1645 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1646 	sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1647 
1648 	err = build_sit_info(sbi);
1649 	if (err)
1650 		return err;
1651 	err = build_free_segmap(sbi);
1652 	if (err)
1653 		return err;
1654 	err = build_curseg(sbi);
1655 	if (err)
1656 		return err;
1657 
1658 	/* reinit free segmap based on SIT */
1659 	build_sit_entries(sbi);
1660 
1661 	init_free_segmap(sbi);
1662 	err = build_dirty_segmap(sbi);
1663 	if (err)
1664 		return err;
1665 
1666 	init_min_max_mtime(sbi);
1667 	return 0;
1668 }
1669 
1670 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1671 		enum dirty_type dirty_type)
1672 {
1673 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1674 
1675 	mutex_lock(&dirty_i->seglist_lock);
1676 	kfree(dirty_i->dirty_segmap[dirty_type]);
1677 	dirty_i->nr_dirty[dirty_type] = 0;
1678 	mutex_unlock(&dirty_i->seglist_lock);
1679 }
1680 
1681 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1682 {
1683 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1684 	kfree(dirty_i->victim_secmap);
1685 }
1686 
1687 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1688 {
1689 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1690 	int i;
1691 
1692 	if (!dirty_i)
1693 		return;
1694 
1695 	/* discard pre-free/dirty segments list */
1696 	for (i = 0; i < NR_DIRTY_TYPE; i++)
1697 		discard_dirty_segmap(sbi, i);
1698 
1699 	destroy_victim_secmap(sbi);
1700 	SM_I(sbi)->dirty_info = NULL;
1701 	kfree(dirty_i);
1702 }
1703 
1704 static void destroy_curseg(struct f2fs_sb_info *sbi)
1705 {
1706 	struct curseg_info *array = SM_I(sbi)->curseg_array;
1707 	int i;
1708 
1709 	if (!array)
1710 		return;
1711 	SM_I(sbi)->curseg_array = NULL;
1712 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1713 		kfree(array[i].sum_blk);
1714 	kfree(array);
1715 }
1716 
1717 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1718 {
1719 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1720 	if (!free_i)
1721 		return;
1722 	SM_I(sbi)->free_info = NULL;
1723 	kfree(free_i->free_segmap);
1724 	kfree(free_i->free_secmap);
1725 	kfree(free_i);
1726 }
1727 
1728 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1729 {
1730 	struct sit_info *sit_i = SIT_I(sbi);
1731 	unsigned int start;
1732 
1733 	if (!sit_i)
1734 		return;
1735 
1736 	if (sit_i->sentries) {
1737 		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1738 			kfree(sit_i->sentries[start].cur_valid_map);
1739 			kfree(sit_i->sentries[start].ckpt_valid_map);
1740 		}
1741 	}
1742 	vfree(sit_i->sentries);
1743 	vfree(sit_i->sec_entries);
1744 	kfree(sit_i->dirty_sentries_bitmap);
1745 
1746 	SM_I(sbi)->sit_info = NULL;
1747 	kfree(sit_i->sit_bitmap);
1748 	kfree(sit_i);
1749 }
1750 
1751 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1752 {
1753 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1754 	if (!sm_info)
1755 		return;
1756 	destroy_dirty_segmap(sbi);
1757 	destroy_curseg(sbi);
1758 	destroy_free_segmap(sbi);
1759 	destroy_sit_info(sbi);
1760 	sbi->sm_info = NULL;
1761 	kfree(sm_info);
1762 }
1763