xref: /openbmc/linux/fs/f2fs/segment.c (revision c4c11dd1)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17 
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 #include <trace/events/f2fs.h>
22 
23 /*
24  * This function balances dirty node and dentry pages.
25  * In addition, it controls garbage collection.
26  */
27 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
28 {
29 	/*
30 	 * We should do GC or end up with checkpoint, if there are so many dirty
31 	 * dir/node pages without enough free segments.
32 	 */
33 	if (has_not_enough_free_secs(sbi, 0)) {
34 		mutex_lock(&sbi->gc_mutex);
35 		f2fs_gc(sbi);
36 	}
37 }
38 
39 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
40 		enum dirty_type dirty_type)
41 {
42 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
43 
44 	/* need not be added */
45 	if (IS_CURSEG(sbi, segno))
46 		return;
47 
48 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
49 		dirty_i->nr_dirty[dirty_type]++;
50 
51 	if (dirty_type == DIRTY) {
52 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
53 		enum dirty_type t = DIRTY_HOT_DATA;
54 
55 		dirty_type = sentry->type;
56 
57 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
58 			dirty_i->nr_dirty[dirty_type]++;
59 
60 		/* Only one bitmap should be set */
61 		for (; t <= DIRTY_COLD_NODE; t++) {
62 			if (t == dirty_type)
63 				continue;
64 			if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
65 				dirty_i->nr_dirty[t]--;
66 		}
67 	}
68 }
69 
70 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
71 		enum dirty_type dirty_type)
72 {
73 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
74 
75 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
76 		dirty_i->nr_dirty[dirty_type]--;
77 
78 	if (dirty_type == DIRTY) {
79 		enum dirty_type t = DIRTY_HOT_DATA;
80 
81 		/* clear all the bitmaps */
82 		for (; t <= DIRTY_COLD_NODE; t++)
83 			if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
84 				dirty_i->nr_dirty[t]--;
85 
86 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
87 			clear_bit(GET_SECNO(sbi, segno),
88 						dirty_i->victim_secmap);
89 	}
90 }
91 
92 /*
93  * Should not occur error such as -ENOMEM.
94  * Adding dirty entry into seglist is not critical operation.
95  * If a given segment is one of current working segments, it won't be added.
96  */
97 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
98 {
99 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
100 	unsigned short valid_blocks;
101 
102 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
103 		return;
104 
105 	mutex_lock(&dirty_i->seglist_lock);
106 
107 	valid_blocks = get_valid_blocks(sbi, segno, 0);
108 
109 	if (valid_blocks == 0) {
110 		__locate_dirty_segment(sbi, segno, PRE);
111 		__remove_dirty_segment(sbi, segno, DIRTY);
112 	} else if (valid_blocks < sbi->blocks_per_seg) {
113 		__locate_dirty_segment(sbi, segno, DIRTY);
114 	} else {
115 		/* Recovery routine with SSR needs this */
116 		__remove_dirty_segment(sbi, segno, DIRTY);
117 	}
118 
119 	mutex_unlock(&dirty_i->seglist_lock);
120 	return;
121 }
122 
123 /*
124  * Should call clear_prefree_segments after checkpoint is done.
125  */
126 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
127 {
128 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
129 	unsigned int segno = -1;
130 	unsigned int total_segs = TOTAL_SEGS(sbi);
131 
132 	mutex_lock(&dirty_i->seglist_lock);
133 	while (1) {
134 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
135 				segno + 1);
136 		if (segno >= total_segs)
137 			break;
138 		__set_test_and_free(sbi, segno);
139 	}
140 	mutex_unlock(&dirty_i->seglist_lock);
141 }
142 
143 void clear_prefree_segments(struct f2fs_sb_info *sbi)
144 {
145 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
146 	unsigned int segno = -1;
147 	unsigned int total_segs = TOTAL_SEGS(sbi);
148 
149 	mutex_lock(&dirty_i->seglist_lock);
150 	while (1) {
151 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
152 				segno + 1);
153 		if (segno >= total_segs)
154 			break;
155 
156 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
157 			dirty_i->nr_dirty[PRE]--;
158 
159 		/* Let's use trim */
160 		if (test_opt(sbi, DISCARD))
161 			blkdev_issue_discard(sbi->sb->s_bdev,
162 					START_BLOCK(sbi, segno) <<
163 					sbi->log_sectors_per_block,
164 					1 << (sbi->log_sectors_per_block +
165 						sbi->log_blocks_per_seg),
166 					GFP_NOFS, 0);
167 	}
168 	mutex_unlock(&dirty_i->seglist_lock);
169 }
170 
171 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
172 {
173 	struct sit_info *sit_i = SIT_I(sbi);
174 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
175 		sit_i->dirty_sentries++;
176 }
177 
178 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
179 					unsigned int segno, int modified)
180 {
181 	struct seg_entry *se = get_seg_entry(sbi, segno);
182 	se->type = type;
183 	if (modified)
184 		__mark_sit_entry_dirty(sbi, segno);
185 }
186 
187 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
188 {
189 	struct seg_entry *se;
190 	unsigned int segno, offset;
191 	long int new_vblocks;
192 
193 	segno = GET_SEGNO(sbi, blkaddr);
194 
195 	se = get_seg_entry(sbi, segno);
196 	new_vblocks = se->valid_blocks + del;
197 	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
198 
199 	BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
200 				(new_vblocks > sbi->blocks_per_seg)));
201 
202 	se->valid_blocks = new_vblocks;
203 	se->mtime = get_mtime(sbi);
204 	SIT_I(sbi)->max_mtime = se->mtime;
205 
206 	/* Update valid block bitmap */
207 	if (del > 0) {
208 		if (f2fs_set_bit(offset, se->cur_valid_map))
209 			BUG();
210 	} else {
211 		if (!f2fs_clear_bit(offset, se->cur_valid_map))
212 			BUG();
213 	}
214 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
215 		se->ckpt_valid_blocks += del;
216 
217 	__mark_sit_entry_dirty(sbi, segno);
218 
219 	/* update total number of valid blocks to be written in ckpt area */
220 	SIT_I(sbi)->written_valid_blocks += del;
221 
222 	if (sbi->segs_per_sec > 1)
223 		get_sec_entry(sbi, segno)->valid_blocks += del;
224 }
225 
226 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
227 			block_t old_blkaddr, block_t new_blkaddr)
228 {
229 	update_sit_entry(sbi, new_blkaddr, 1);
230 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
231 		update_sit_entry(sbi, old_blkaddr, -1);
232 }
233 
234 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
235 {
236 	unsigned int segno = GET_SEGNO(sbi, addr);
237 	struct sit_info *sit_i = SIT_I(sbi);
238 
239 	BUG_ON(addr == NULL_ADDR);
240 	if (addr == NEW_ADDR)
241 		return;
242 
243 	/* add it into sit main buffer */
244 	mutex_lock(&sit_i->sentry_lock);
245 
246 	update_sit_entry(sbi, addr, -1);
247 
248 	/* add it into dirty seglist */
249 	locate_dirty_segment(sbi, segno);
250 
251 	mutex_unlock(&sit_i->sentry_lock);
252 }
253 
254 /*
255  * This function should be resided under the curseg_mutex lock
256  */
257 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
258 					struct f2fs_summary *sum)
259 {
260 	struct curseg_info *curseg = CURSEG_I(sbi, type);
261 	void *addr = curseg->sum_blk;
262 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
263 	memcpy(addr, sum, sizeof(struct f2fs_summary));
264 	return;
265 }
266 
267 /*
268  * Calculate the number of current summary pages for writing
269  */
270 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
271 {
272 	int total_size_bytes = 0;
273 	int valid_sum_count = 0;
274 	int i, sum_space;
275 
276 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
277 		if (sbi->ckpt->alloc_type[i] == SSR)
278 			valid_sum_count += sbi->blocks_per_seg;
279 		else
280 			valid_sum_count += curseg_blkoff(sbi, i);
281 	}
282 
283 	total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
284 			+ sizeof(struct nat_journal) + 2
285 			+ sizeof(struct sit_journal) + 2;
286 	sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
287 	if (total_size_bytes < sum_space)
288 		return 1;
289 	else if (total_size_bytes < 2 * sum_space)
290 		return 2;
291 	return 3;
292 }
293 
294 /*
295  * Caller should put this summary page
296  */
297 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
298 {
299 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
300 }
301 
302 static void write_sum_page(struct f2fs_sb_info *sbi,
303 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
304 {
305 	struct page *page = grab_meta_page(sbi, blk_addr);
306 	void *kaddr = page_address(page);
307 	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
308 	set_page_dirty(page);
309 	f2fs_put_page(page, 1);
310 }
311 
312 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
313 {
314 	struct curseg_info *curseg = CURSEG_I(sbi, type);
315 	unsigned int segno = curseg->segno + 1;
316 	struct free_segmap_info *free_i = FREE_I(sbi);
317 
318 	if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
319 		return !test_bit(segno, free_i->free_segmap);
320 	return 0;
321 }
322 
323 /*
324  * Find a new segment from the free segments bitmap to right order
325  * This function should be returned with success, otherwise BUG
326  */
327 static void get_new_segment(struct f2fs_sb_info *sbi,
328 			unsigned int *newseg, bool new_sec, int dir)
329 {
330 	struct free_segmap_info *free_i = FREE_I(sbi);
331 	unsigned int segno, secno, zoneno;
332 	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
333 	unsigned int hint = *newseg / sbi->segs_per_sec;
334 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
335 	unsigned int left_start = hint;
336 	bool init = true;
337 	int go_left = 0;
338 	int i;
339 
340 	write_lock(&free_i->segmap_lock);
341 
342 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
343 		segno = find_next_zero_bit(free_i->free_segmap,
344 					TOTAL_SEGS(sbi), *newseg + 1);
345 		if (segno - *newseg < sbi->segs_per_sec -
346 					(*newseg % sbi->segs_per_sec))
347 			goto got_it;
348 	}
349 find_other_zone:
350 	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
351 	if (secno >= TOTAL_SECS(sbi)) {
352 		if (dir == ALLOC_RIGHT) {
353 			secno = find_next_zero_bit(free_i->free_secmap,
354 							TOTAL_SECS(sbi), 0);
355 			BUG_ON(secno >= TOTAL_SECS(sbi));
356 		} else {
357 			go_left = 1;
358 			left_start = hint - 1;
359 		}
360 	}
361 	if (go_left == 0)
362 		goto skip_left;
363 
364 	while (test_bit(left_start, free_i->free_secmap)) {
365 		if (left_start > 0) {
366 			left_start--;
367 			continue;
368 		}
369 		left_start = find_next_zero_bit(free_i->free_secmap,
370 							TOTAL_SECS(sbi), 0);
371 		BUG_ON(left_start >= TOTAL_SECS(sbi));
372 		break;
373 	}
374 	secno = left_start;
375 skip_left:
376 	hint = secno;
377 	segno = secno * sbi->segs_per_sec;
378 	zoneno = secno / sbi->secs_per_zone;
379 
380 	/* give up on finding another zone */
381 	if (!init)
382 		goto got_it;
383 	if (sbi->secs_per_zone == 1)
384 		goto got_it;
385 	if (zoneno == old_zoneno)
386 		goto got_it;
387 	if (dir == ALLOC_LEFT) {
388 		if (!go_left && zoneno + 1 >= total_zones)
389 			goto got_it;
390 		if (go_left && zoneno == 0)
391 			goto got_it;
392 	}
393 	for (i = 0; i < NR_CURSEG_TYPE; i++)
394 		if (CURSEG_I(sbi, i)->zone == zoneno)
395 			break;
396 
397 	if (i < NR_CURSEG_TYPE) {
398 		/* zone is in user, try another */
399 		if (go_left)
400 			hint = zoneno * sbi->secs_per_zone - 1;
401 		else if (zoneno + 1 >= total_zones)
402 			hint = 0;
403 		else
404 			hint = (zoneno + 1) * sbi->secs_per_zone;
405 		init = false;
406 		goto find_other_zone;
407 	}
408 got_it:
409 	/* set it as dirty segment in free segmap */
410 	BUG_ON(test_bit(segno, free_i->free_segmap));
411 	__set_inuse(sbi, segno);
412 	*newseg = segno;
413 	write_unlock(&free_i->segmap_lock);
414 }
415 
416 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
417 {
418 	struct curseg_info *curseg = CURSEG_I(sbi, type);
419 	struct summary_footer *sum_footer;
420 
421 	curseg->segno = curseg->next_segno;
422 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
423 	curseg->next_blkoff = 0;
424 	curseg->next_segno = NULL_SEGNO;
425 
426 	sum_footer = &(curseg->sum_blk->footer);
427 	memset(sum_footer, 0, sizeof(struct summary_footer));
428 	if (IS_DATASEG(type))
429 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
430 	if (IS_NODESEG(type))
431 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
432 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
433 }
434 
435 /*
436  * Allocate a current working segment.
437  * This function always allocates a free segment in LFS manner.
438  */
439 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
440 {
441 	struct curseg_info *curseg = CURSEG_I(sbi, type);
442 	unsigned int segno = curseg->segno;
443 	int dir = ALLOC_LEFT;
444 
445 	write_sum_page(sbi, curseg->sum_blk,
446 				GET_SUM_BLOCK(sbi, segno));
447 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
448 		dir = ALLOC_RIGHT;
449 
450 	if (test_opt(sbi, NOHEAP))
451 		dir = ALLOC_RIGHT;
452 
453 	get_new_segment(sbi, &segno, new_sec, dir);
454 	curseg->next_segno = segno;
455 	reset_curseg(sbi, type, 1);
456 	curseg->alloc_type = LFS;
457 }
458 
459 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
460 			struct curseg_info *seg, block_t start)
461 {
462 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
463 	block_t ofs;
464 	for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
465 		if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
466 			&& !f2fs_test_bit(ofs, se->cur_valid_map))
467 			break;
468 	}
469 	seg->next_blkoff = ofs;
470 }
471 
472 /*
473  * If a segment is written by LFS manner, next block offset is just obtained
474  * by increasing the current block offset. However, if a segment is written by
475  * SSR manner, next block offset obtained by calling __next_free_blkoff
476  */
477 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
478 				struct curseg_info *seg)
479 {
480 	if (seg->alloc_type == SSR)
481 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
482 	else
483 		seg->next_blkoff++;
484 }
485 
486 /*
487  * This function always allocates a used segment (from dirty seglist) by SSR
488  * manner, so it should recover the existing segment information of valid blocks
489  */
490 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
491 {
492 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
493 	struct curseg_info *curseg = CURSEG_I(sbi, type);
494 	unsigned int new_segno = curseg->next_segno;
495 	struct f2fs_summary_block *sum_node;
496 	struct page *sum_page;
497 
498 	write_sum_page(sbi, curseg->sum_blk,
499 				GET_SUM_BLOCK(sbi, curseg->segno));
500 	__set_test_and_inuse(sbi, new_segno);
501 
502 	mutex_lock(&dirty_i->seglist_lock);
503 	__remove_dirty_segment(sbi, new_segno, PRE);
504 	__remove_dirty_segment(sbi, new_segno, DIRTY);
505 	mutex_unlock(&dirty_i->seglist_lock);
506 
507 	reset_curseg(sbi, type, 1);
508 	curseg->alloc_type = SSR;
509 	__next_free_blkoff(sbi, curseg, 0);
510 
511 	if (reuse) {
512 		sum_page = get_sum_page(sbi, new_segno);
513 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
514 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
515 		f2fs_put_page(sum_page, 1);
516 	}
517 }
518 
519 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
520 {
521 	struct curseg_info *curseg = CURSEG_I(sbi, type);
522 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
523 
524 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
525 		return v_ops->get_victim(sbi,
526 				&(curseg)->next_segno, BG_GC, type, SSR);
527 
528 	/* For data segments, let's do SSR more intensively */
529 	for (; type >= CURSEG_HOT_DATA; type--)
530 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
531 						BG_GC, type, SSR))
532 			return 1;
533 	return 0;
534 }
535 
536 /*
537  * flush out current segment and replace it with new segment
538  * This function should be returned with success, otherwise BUG
539  */
540 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
541 						int type, bool force)
542 {
543 	struct curseg_info *curseg = CURSEG_I(sbi, type);
544 
545 	if (force) {
546 		new_curseg(sbi, type, true);
547 		goto out;
548 	}
549 
550 	if (type == CURSEG_WARM_NODE)
551 		new_curseg(sbi, type, false);
552 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
553 		new_curseg(sbi, type, false);
554 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
555 		change_curseg(sbi, type, true);
556 	else
557 		new_curseg(sbi, type, false);
558 out:
559 #ifdef CONFIG_F2FS_STAT_FS
560 	sbi->segment_count[curseg->alloc_type]++;
561 #endif
562 	return;
563 }
564 
565 void allocate_new_segments(struct f2fs_sb_info *sbi)
566 {
567 	struct curseg_info *curseg;
568 	unsigned int old_curseg;
569 	int i;
570 
571 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
572 		curseg = CURSEG_I(sbi, i);
573 		old_curseg = curseg->segno;
574 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
575 		locate_dirty_segment(sbi, old_curseg);
576 	}
577 }
578 
579 static const struct segment_allocation default_salloc_ops = {
580 	.allocate_segment = allocate_segment_by_default,
581 };
582 
583 static void f2fs_end_io_write(struct bio *bio, int err)
584 {
585 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
586 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
587 	struct bio_private *p = bio->bi_private;
588 
589 	do {
590 		struct page *page = bvec->bv_page;
591 
592 		if (--bvec >= bio->bi_io_vec)
593 			prefetchw(&bvec->bv_page->flags);
594 		if (!uptodate) {
595 			SetPageError(page);
596 			if (page->mapping)
597 				set_bit(AS_EIO, &page->mapping->flags);
598 			set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
599 			p->sbi->sb->s_flags |= MS_RDONLY;
600 		}
601 		end_page_writeback(page);
602 		dec_page_count(p->sbi, F2FS_WRITEBACK);
603 	} while (bvec >= bio->bi_io_vec);
604 
605 	if (p->is_sync)
606 		complete(p->wait);
607 	kfree(p);
608 	bio_put(bio);
609 }
610 
611 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
612 {
613 	struct bio *bio;
614 	struct bio_private *priv;
615 retry:
616 	priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
617 	if (!priv) {
618 		cond_resched();
619 		goto retry;
620 	}
621 
622 	/* No failure on bio allocation */
623 	bio = bio_alloc(GFP_NOIO, npages);
624 	bio->bi_bdev = bdev;
625 	bio->bi_private = priv;
626 	return bio;
627 }
628 
629 static void do_submit_bio(struct f2fs_sb_info *sbi,
630 				enum page_type type, bool sync)
631 {
632 	int rw = sync ? WRITE_SYNC : WRITE;
633 	enum page_type btype = type > META ? META : type;
634 
635 	if (type >= META_FLUSH)
636 		rw = WRITE_FLUSH_FUA;
637 
638 	if (btype == META)
639 		rw |= REQ_META;
640 
641 	if (sbi->bio[btype]) {
642 		struct bio_private *p = sbi->bio[btype]->bi_private;
643 		p->sbi = sbi;
644 		sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
645 
646 		trace_f2fs_do_submit_bio(sbi->sb, btype, sync, sbi->bio[btype]);
647 
648 		if (type == META_FLUSH) {
649 			DECLARE_COMPLETION_ONSTACK(wait);
650 			p->is_sync = true;
651 			p->wait = &wait;
652 			submit_bio(rw, sbi->bio[btype]);
653 			wait_for_completion(&wait);
654 		} else {
655 			p->is_sync = false;
656 			submit_bio(rw, sbi->bio[btype]);
657 		}
658 		sbi->bio[btype] = NULL;
659 	}
660 }
661 
662 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
663 {
664 	down_write(&sbi->bio_sem);
665 	do_submit_bio(sbi, type, sync);
666 	up_write(&sbi->bio_sem);
667 }
668 
669 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
670 				block_t blk_addr, enum page_type type)
671 {
672 	struct block_device *bdev = sbi->sb->s_bdev;
673 
674 	verify_block_addr(sbi, blk_addr);
675 
676 	down_write(&sbi->bio_sem);
677 
678 	inc_page_count(sbi, F2FS_WRITEBACK);
679 
680 	if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
681 		do_submit_bio(sbi, type, false);
682 alloc_new:
683 	if (sbi->bio[type] == NULL) {
684 		sbi->bio[type] = f2fs_bio_alloc(bdev, max_hw_blocks(sbi));
685 		sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
686 		/*
687 		 * The end_io will be assigned at the sumbission phase.
688 		 * Until then, let bio_add_page() merge consecutive IOs as much
689 		 * as possible.
690 		 */
691 	}
692 
693 	if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
694 							PAGE_CACHE_SIZE) {
695 		do_submit_bio(sbi, type, false);
696 		goto alloc_new;
697 	}
698 
699 	sbi->last_block_in_bio[type] = blk_addr;
700 
701 	up_write(&sbi->bio_sem);
702 	trace_f2fs_submit_write_page(page, blk_addr, type);
703 }
704 
705 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
706 {
707 	struct curseg_info *curseg = CURSEG_I(sbi, type);
708 	if (curseg->next_blkoff < sbi->blocks_per_seg)
709 		return true;
710 	return false;
711 }
712 
713 static int __get_segment_type_2(struct page *page, enum page_type p_type)
714 {
715 	if (p_type == DATA)
716 		return CURSEG_HOT_DATA;
717 	else
718 		return CURSEG_HOT_NODE;
719 }
720 
721 static int __get_segment_type_4(struct page *page, enum page_type p_type)
722 {
723 	if (p_type == DATA) {
724 		struct inode *inode = page->mapping->host;
725 
726 		if (S_ISDIR(inode->i_mode))
727 			return CURSEG_HOT_DATA;
728 		else
729 			return CURSEG_COLD_DATA;
730 	} else {
731 		if (IS_DNODE(page) && !is_cold_node(page))
732 			return CURSEG_HOT_NODE;
733 		else
734 			return CURSEG_COLD_NODE;
735 	}
736 }
737 
738 static int __get_segment_type_6(struct page *page, enum page_type p_type)
739 {
740 	if (p_type == DATA) {
741 		struct inode *inode = page->mapping->host;
742 
743 		if (S_ISDIR(inode->i_mode))
744 			return CURSEG_HOT_DATA;
745 		else if (is_cold_data(page) || file_is_cold(inode))
746 			return CURSEG_COLD_DATA;
747 		else
748 			return CURSEG_WARM_DATA;
749 	} else {
750 		if (IS_DNODE(page))
751 			return is_cold_node(page) ? CURSEG_WARM_NODE :
752 						CURSEG_HOT_NODE;
753 		else
754 			return CURSEG_COLD_NODE;
755 	}
756 }
757 
758 static int __get_segment_type(struct page *page, enum page_type p_type)
759 {
760 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
761 	switch (sbi->active_logs) {
762 	case 2:
763 		return __get_segment_type_2(page, p_type);
764 	case 4:
765 		return __get_segment_type_4(page, p_type);
766 	}
767 	/* NR_CURSEG_TYPE(6) logs by default */
768 	BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
769 	return __get_segment_type_6(page, p_type);
770 }
771 
772 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
773 			block_t old_blkaddr, block_t *new_blkaddr,
774 			struct f2fs_summary *sum, enum page_type p_type)
775 {
776 	struct sit_info *sit_i = SIT_I(sbi);
777 	struct curseg_info *curseg;
778 	unsigned int old_cursegno;
779 	int type;
780 
781 	type = __get_segment_type(page, p_type);
782 	curseg = CURSEG_I(sbi, type);
783 
784 	mutex_lock(&curseg->curseg_mutex);
785 
786 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
787 	old_cursegno = curseg->segno;
788 
789 	/*
790 	 * __add_sum_entry should be resided under the curseg_mutex
791 	 * because, this function updates a summary entry in the
792 	 * current summary block.
793 	 */
794 	__add_sum_entry(sbi, type, sum);
795 
796 	mutex_lock(&sit_i->sentry_lock);
797 	__refresh_next_blkoff(sbi, curseg);
798 #ifdef CONFIG_F2FS_STAT_FS
799 	sbi->block_count[curseg->alloc_type]++;
800 #endif
801 
802 	/*
803 	 * SIT information should be updated before segment allocation,
804 	 * since SSR needs latest valid block information.
805 	 */
806 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
807 
808 	if (!__has_curseg_space(sbi, type))
809 		sit_i->s_ops->allocate_segment(sbi, type, false);
810 
811 	locate_dirty_segment(sbi, old_cursegno);
812 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
813 	mutex_unlock(&sit_i->sentry_lock);
814 
815 	if (p_type == NODE)
816 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
817 
818 	/* writeout dirty page into bdev */
819 	submit_write_page(sbi, page, *new_blkaddr, p_type);
820 
821 	mutex_unlock(&curseg->curseg_mutex);
822 }
823 
824 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
825 {
826 	set_page_writeback(page);
827 	submit_write_page(sbi, page, page->index, META);
828 }
829 
830 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
831 		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
832 {
833 	struct f2fs_summary sum;
834 	set_summary(&sum, nid, 0, 0);
835 	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
836 }
837 
838 void write_data_page(struct inode *inode, struct page *page,
839 		struct dnode_of_data *dn, block_t old_blkaddr,
840 		block_t *new_blkaddr)
841 {
842 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
843 	struct f2fs_summary sum;
844 	struct node_info ni;
845 
846 	BUG_ON(old_blkaddr == NULL_ADDR);
847 	get_node_info(sbi, dn->nid, &ni);
848 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
849 
850 	do_write_page(sbi, page, old_blkaddr,
851 			new_blkaddr, &sum, DATA);
852 }
853 
854 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
855 					block_t old_blk_addr)
856 {
857 	submit_write_page(sbi, page, old_blk_addr, DATA);
858 }
859 
860 void recover_data_page(struct f2fs_sb_info *sbi,
861 			struct page *page, struct f2fs_summary *sum,
862 			block_t old_blkaddr, block_t new_blkaddr)
863 {
864 	struct sit_info *sit_i = SIT_I(sbi);
865 	struct curseg_info *curseg;
866 	unsigned int segno, old_cursegno;
867 	struct seg_entry *se;
868 	int type;
869 
870 	segno = GET_SEGNO(sbi, new_blkaddr);
871 	se = get_seg_entry(sbi, segno);
872 	type = se->type;
873 
874 	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
875 		if (old_blkaddr == NULL_ADDR)
876 			type = CURSEG_COLD_DATA;
877 		else
878 			type = CURSEG_WARM_DATA;
879 	}
880 	curseg = CURSEG_I(sbi, type);
881 
882 	mutex_lock(&curseg->curseg_mutex);
883 	mutex_lock(&sit_i->sentry_lock);
884 
885 	old_cursegno = curseg->segno;
886 
887 	/* change the current segment */
888 	if (segno != curseg->segno) {
889 		curseg->next_segno = segno;
890 		change_curseg(sbi, type, true);
891 	}
892 
893 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
894 					(sbi->blocks_per_seg - 1);
895 	__add_sum_entry(sbi, type, sum);
896 
897 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
898 
899 	locate_dirty_segment(sbi, old_cursegno);
900 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
901 
902 	mutex_unlock(&sit_i->sentry_lock);
903 	mutex_unlock(&curseg->curseg_mutex);
904 }
905 
906 void rewrite_node_page(struct f2fs_sb_info *sbi,
907 			struct page *page, struct f2fs_summary *sum,
908 			block_t old_blkaddr, block_t new_blkaddr)
909 {
910 	struct sit_info *sit_i = SIT_I(sbi);
911 	int type = CURSEG_WARM_NODE;
912 	struct curseg_info *curseg;
913 	unsigned int segno, old_cursegno;
914 	block_t next_blkaddr = next_blkaddr_of_node(page);
915 	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
916 
917 	curseg = CURSEG_I(sbi, type);
918 
919 	mutex_lock(&curseg->curseg_mutex);
920 	mutex_lock(&sit_i->sentry_lock);
921 
922 	segno = GET_SEGNO(sbi, new_blkaddr);
923 	old_cursegno = curseg->segno;
924 
925 	/* change the current segment */
926 	if (segno != curseg->segno) {
927 		curseg->next_segno = segno;
928 		change_curseg(sbi, type, true);
929 	}
930 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
931 					(sbi->blocks_per_seg - 1);
932 	__add_sum_entry(sbi, type, sum);
933 
934 	/* change the current log to the next block addr in advance */
935 	if (next_segno != segno) {
936 		curseg->next_segno = next_segno;
937 		change_curseg(sbi, type, true);
938 	}
939 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
940 					(sbi->blocks_per_seg - 1);
941 
942 	/* rewrite node page */
943 	set_page_writeback(page);
944 	submit_write_page(sbi, page, new_blkaddr, NODE);
945 	f2fs_submit_bio(sbi, NODE, true);
946 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
947 
948 	locate_dirty_segment(sbi, old_cursegno);
949 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
950 
951 	mutex_unlock(&sit_i->sentry_lock);
952 	mutex_unlock(&curseg->curseg_mutex);
953 }
954 
955 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
956 {
957 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
958 	struct curseg_info *seg_i;
959 	unsigned char *kaddr;
960 	struct page *page;
961 	block_t start;
962 	int i, j, offset;
963 
964 	start = start_sum_block(sbi);
965 
966 	page = get_meta_page(sbi, start++);
967 	kaddr = (unsigned char *)page_address(page);
968 
969 	/* Step 1: restore nat cache */
970 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
971 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
972 
973 	/* Step 2: restore sit cache */
974 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
975 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
976 						SUM_JOURNAL_SIZE);
977 	offset = 2 * SUM_JOURNAL_SIZE;
978 
979 	/* Step 3: restore summary entries */
980 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
981 		unsigned short blk_off;
982 		unsigned int segno;
983 
984 		seg_i = CURSEG_I(sbi, i);
985 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
986 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
987 		seg_i->next_segno = segno;
988 		reset_curseg(sbi, i, 0);
989 		seg_i->alloc_type = ckpt->alloc_type[i];
990 		seg_i->next_blkoff = blk_off;
991 
992 		if (seg_i->alloc_type == SSR)
993 			blk_off = sbi->blocks_per_seg;
994 
995 		for (j = 0; j < blk_off; j++) {
996 			struct f2fs_summary *s;
997 			s = (struct f2fs_summary *)(kaddr + offset);
998 			seg_i->sum_blk->entries[j] = *s;
999 			offset += SUMMARY_SIZE;
1000 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1001 						SUM_FOOTER_SIZE)
1002 				continue;
1003 
1004 			f2fs_put_page(page, 1);
1005 			page = NULL;
1006 
1007 			page = get_meta_page(sbi, start++);
1008 			kaddr = (unsigned char *)page_address(page);
1009 			offset = 0;
1010 		}
1011 	}
1012 	f2fs_put_page(page, 1);
1013 	return 0;
1014 }
1015 
1016 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1017 {
1018 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1019 	struct f2fs_summary_block *sum;
1020 	struct curseg_info *curseg;
1021 	struct page *new;
1022 	unsigned short blk_off;
1023 	unsigned int segno = 0;
1024 	block_t blk_addr = 0;
1025 
1026 	/* get segment number and block addr */
1027 	if (IS_DATASEG(type)) {
1028 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1029 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1030 							CURSEG_HOT_DATA]);
1031 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1032 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1033 		else
1034 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1035 	} else {
1036 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1037 							CURSEG_HOT_NODE]);
1038 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1039 							CURSEG_HOT_NODE]);
1040 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1041 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1042 							type - CURSEG_HOT_NODE);
1043 		else
1044 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1045 	}
1046 
1047 	new = get_meta_page(sbi, blk_addr);
1048 	sum = (struct f2fs_summary_block *)page_address(new);
1049 
1050 	if (IS_NODESEG(type)) {
1051 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1052 			struct f2fs_summary *ns = &sum->entries[0];
1053 			int i;
1054 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1055 				ns->version = 0;
1056 				ns->ofs_in_node = 0;
1057 			}
1058 		} else {
1059 			if (restore_node_summary(sbi, segno, sum)) {
1060 				f2fs_put_page(new, 1);
1061 				return -EINVAL;
1062 			}
1063 		}
1064 	}
1065 
1066 	/* set uncompleted segment to curseg */
1067 	curseg = CURSEG_I(sbi, type);
1068 	mutex_lock(&curseg->curseg_mutex);
1069 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1070 	curseg->next_segno = segno;
1071 	reset_curseg(sbi, type, 0);
1072 	curseg->alloc_type = ckpt->alloc_type[type];
1073 	curseg->next_blkoff = blk_off;
1074 	mutex_unlock(&curseg->curseg_mutex);
1075 	f2fs_put_page(new, 1);
1076 	return 0;
1077 }
1078 
1079 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1080 {
1081 	int type = CURSEG_HOT_DATA;
1082 
1083 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1084 		/* restore for compacted data summary */
1085 		if (read_compacted_summaries(sbi))
1086 			return -EINVAL;
1087 		type = CURSEG_HOT_NODE;
1088 	}
1089 
1090 	for (; type <= CURSEG_COLD_NODE; type++)
1091 		if (read_normal_summaries(sbi, type))
1092 			return -EINVAL;
1093 	return 0;
1094 }
1095 
1096 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1097 {
1098 	struct page *page;
1099 	unsigned char *kaddr;
1100 	struct f2fs_summary *summary;
1101 	struct curseg_info *seg_i;
1102 	int written_size = 0;
1103 	int i, j;
1104 
1105 	page = grab_meta_page(sbi, blkaddr++);
1106 	kaddr = (unsigned char *)page_address(page);
1107 
1108 	/* Step 1: write nat cache */
1109 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1110 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1111 	written_size += SUM_JOURNAL_SIZE;
1112 
1113 	/* Step 2: write sit cache */
1114 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1115 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1116 						SUM_JOURNAL_SIZE);
1117 	written_size += SUM_JOURNAL_SIZE;
1118 
1119 	set_page_dirty(page);
1120 
1121 	/* Step 3: write summary entries */
1122 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1123 		unsigned short blkoff;
1124 		seg_i = CURSEG_I(sbi, i);
1125 		if (sbi->ckpt->alloc_type[i] == SSR)
1126 			blkoff = sbi->blocks_per_seg;
1127 		else
1128 			blkoff = curseg_blkoff(sbi, i);
1129 
1130 		for (j = 0; j < blkoff; j++) {
1131 			if (!page) {
1132 				page = grab_meta_page(sbi, blkaddr++);
1133 				kaddr = (unsigned char *)page_address(page);
1134 				written_size = 0;
1135 			}
1136 			summary = (struct f2fs_summary *)(kaddr + written_size);
1137 			*summary = seg_i->sum_blk->entries[j];
1138 			written_size += SUMMARY_SIZE;
1139 			set_page_dirty(page);
1140 
1141 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1142 							SUM_FOOTER_SIZE)
1143 				continue;
1144 
1145 			f2fs_put_page(page, 1);
1146 			page = NULL;
1147 		}
1148 	}
1149 	if (page)
1150 		f2fs_put_page(page, 1);
1151 }
1152 
1153 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1154 					block_t blkaddr, int type)
1155 {
1156 	int i, end;
1157 	if (IS_DATASEG(type))
1158 		end = type + NR_CURSEG_DATA_TYPE;
1159 	else
1160 		end = type + NR_CURSEG_NODE_TYPE;
1161 
1162 	for (i = type; i < end; i++) {
1163 		struct curseg_info *sum = CURSEG_I(sbi, i);
1164 		mutex_lock(&sum->curseg_mutex);
1165 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1166 		mutex_unlock(&sum->curseg_mutex);
1167 	}
1168 }
1169 
1170 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1171 {
1172 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1173 		write_compacted_summaries(sbi, start_blk);
1174 	else
1175 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1176 }
1177 
1178 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1179 {
1180 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1181 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1182 	return;
1183 }
1184 
1185 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1186 					unsigned int val, int alloc)
1187 {
1188 	int i;
1189 
1190 	if (type == NAT_JOURNAL) {
1191 		for (i = 0; i < nats_in_cursum(sum); i++) {
1192 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1193 				return i;
1194 		}
1195 		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1196 			return update_nats_in_cursum(sum, 1);
1197 	} else if (type == SIT_JOURNAL) {
1198 		for (i = 0; i < sits_in_cursum(sum); i++)
1199 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1200 				return i;
1201 		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1202 			return update_sits_in_cursum(sum, 1);
1203 	}
1204 	return -1;
1205 }
1206 
1207 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1208 					unsigned int segno)
1209 {
1210 	struct sit_info *sit_i = SIT_I(sbi);
1211 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1212 	block_t blk_addr = sit_i->sit_base_addr + offset;
1213 
1214 	check_seg_range(sbi, segno);
1215 
1216 	/* calculate sit block address */
1217 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1218 		blk_addr += sit_i->sit_blocks;
1219 
1220 	return get_meta_page(sbi, blk_addr);
1221 }
1222 
1223 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1224 					unsigned int start)
1225 {
1226 	struct sit_info *sit_i = SIT_I(sbi);
1227 	struct page *src_page, *dst_page;
1228 	pgoff_t src_off, dst_off;
1229 	void *src_addr, *dst_addr;
1230 
1231 	src_off = current_sit_addr(sbi, start);
1232 	dst_off = next_sit_addr(sbi, src_off);
1233 
1234 	/* get current sit block page without lock */
1235 	src_page = get_meta_page(sbi, src_off);
1236 	dst_page = grab_meta_page(sbi, dst_off);
1237 	BUG_ON(PageDirty(src_page));
1238 
1239 	src_addr = page_address(src_page);
1240 	dst_addr = page_address(dst_page);
1241 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1242 
1243 	set_page_dirty(dst_page);
1244 	f2fs_put_page(src_page, 1);
1245 
1246 	set_to_next_sit(sit_i, start);
1247 
1248 	return dst_page;
1249 }
1250 
1251 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1252 {
1253 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1254 	struct f2fs_summary_block *sum = curseg->sum_blk;
1255 	int i;
1256 
1257 	/*
1258 	 * If the journal area in the current summary is full of sit entries,
1259 	 * all the sit entries will be flushed. Otherwise the sit entries
1260 	 * are not able to replace with newly hot sit entries.
1261 	 */
1262 	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1263 		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1264 			unsigned int segno;
1265 			segno = le32_to_cpu(segno_in_journal(sum, i));
1266 			__mark_sit_entry_dirty(sbi, segno);
1267 		}
1268 		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1269 		return 1;
1270 	}
1271 	return 0;
1272 }
1273 
1274 /*
1275  * CP calls this function, which flushes SIT entries including sit_journal,
1276  * and moves prefree segs to free segs.
1277  */
1278 void flush_sit_entries(struct f2fs_sb_info *sbi)
1279 {
1280 	struct sit_info *sit_i = SIT_I(sbi);
1281 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1282 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1283 	struct f2fs_summary_block *sum = curseg->sum_blk;
1284 	unsigned long nsegs = TOTAL_SEGS(sbi);
1285 	struct page *page = NULL;
1286 	struct f2fs_sit_block *raw_sit = NULL;
1287 	unsigned int start = 0, end = 0;
1288 	unsigned int segno = -1;
1289 	bool flushed;
1290 
1291 	mutex_lock(&curseg->curseg_mutex);
1292 	mutex_lock(&sit_i->sentry_lock);
1293 
1294 	/*
1295 	 * "flushed" indicates whether sit entries in journal are flushed
1296 	 * to the SIT area or not.
1297 	 */
1298 	flushed = flush_sits_in_journal(sbi);
1299 
1300 	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1301 		struct seg_entry *se = get_seg_entry(sbi, segno);
1302 		int sit_offset, offset;
1303 
1304 		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1305 
1306 		if (flushed)
1307 			goto to_sit_page;
1308 
1309 		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1310 		if (offset >= 0) {
1311 			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1312 			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1313 			goto flush_done;
1314 		}
1315 to_sit_page:
1316 		if (!page || (start > segno) || (segno > end)) {
1317 			if (page) {
1318 				f2fs_put_page(page, 1);
1319 				page = NULL;
1320 			}
1321 
1322 			start = START_SEGNO(sit_i, segno);
1323 			end = start + SIT_ENTRY_PER_BLOCK - 1;
1324 
1325 			/* read sit block that will be updated */
1326 			page = get_next_sit_page(sbi, start);
1327 			raw_sit = page_address(page);
1328 		}
1329 
1330 		/* udpate entry in SIT block */
1331 		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1332 flush_done:
1333 		__clear_bit(segno, bitmap);
1334 		sit_i->dirty_sentries--;
1335 	}
1336 	mutex_unlock(&sit_i->sentry_lock);
1337 	mutex_unlock(&curseg->curseg_mutex);
1338 
1339 	/* writeout last modified SIT block */
1340 	f2fs_put_page(page, 1);
1341 
1342 	set_prefree_as_free_segments(sbi);
1343 }
1344 
1345 static int build_sit_info(struct f2fs_sb_info *sbi)
1346 {
1347 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1348 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1349 	struct sit_info *sit_i;
1350 	unsigned int sit_segs, start;
1351 	char *src_bitmap, *dst_bitmap;
1352 	unsigned int bitmap_size;
1353 
1354 	/* allocate memory for SIT information */
1355 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1356 	if (!sit_i)
1357 		return -ENOMEM;
1358 
1359 	SM_I(sbi)->sit_info = sit_i;
1360 
1361 	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1362 	if (!sit_i->sentries)
1363 		return -ENOMEM;
1364 
1365 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1366 	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1367 	if (!sit_i->dirty_sentries_bitmap)
1368 		return -ENOMEM;
1369 
1370 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1371 		sit_i->sentries[start].cur_valid_map
1372 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1373 		sit_i->sentries[start].ckpt_valid_map
1374 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1375 		if (!sit_i->sentries[start].cur_valid_map
1376 				|| !sit_i->sentries[start].ckpt_valid_map)
1377 			return -ENOMEM;
1378 	}
1379 
1380 	if (sbi->segs_per_sec > 1) {
1381 		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1382 					sizeof(struct sec_entry));
1383 		if (!sit_i->sec_entries)
1384 			return -ENOMEM;
1385 	}
1386 
1387 	/* get information related with SIT */
1388 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1389 
1390 	/* setup SIT bitmap from ckeckpoint pack */
1391 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1392 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1393 
1394 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1395 	if (!dst_bitmap)
1396 		return -ENOMEM;
1397 
1398 	/* init SIT information */
1399 	sit_i->s_ops = &default_salloc_ops;
1400 
1401 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1402 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1403 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1404 	sit_i->sit_bitmap = dst_bitmap;
1405 	sit_i->bitmap_size = bitmap_size;
1406 	sit_i->dirty_sentries = 0;
1407 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1408 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1409 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1410 	mutex_init(&sit_i->sentry_lock);
1411 	return 0;
1412 }
1413 
1414 static int build_free_segmap(struct f2fs_sb_info *sbi)
1415 {
1416 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1417 	struct free_segmap_info *free_i;
1418 	unsigned int bitmap_size, sec_bitmap_size;
1419 
1420 	/* allocate memory for free segmap information */
1421 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1422 	if (!free_i)
1423 		return -ENOMEM;
1424 
1425 	SM_I(sbi)->free_info = free_i;
1426 
1427 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1428 	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1429 	if (!free_i->free_segmap)
1430 		return -ENOMEM;
1431 
1432 	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1433 	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1434 	if (!free_i->free_secmap)
1435 		return -ENOMEM;
1436 
1437 	/* set all segments as dirty temporarily */
1438 	memset(free_i->free_segmap, 0xff, bitmap_size);
1439 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1440 
1441 	/* init free segmap information */
1442 	free_i->start_segno =
1443 		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1444 	free_i->free_segments = 0;
1445 	free_i->free_sections = 0;
1446 	rwlock_init(&free_i->segmap_lock);
1447 	return 0;
1448 }
1449 
1450 static int build_curseg(struct f2fs_sb_info *sbi)
1451 {
1452 	struct curseg_info *array;
1453 	int i;
1454 
1455 	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1456 	if (!array)
1457 		return -ENOMEM;
1458 
1459 	SM_I(sbi)->curseg_array = array;
1460 
1461 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1462 		mutex_init(&array[i].curseg_mutex);
1463 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1464 		if (!array[i].sum_blk)
1465 			return -ENOMEM;
1466 		array[i].segno = NULL_SEGNO;
1467 		array[i].next_blkoff = 0;
1468 	}
1469 	return restore_curseg_summaries(sbi);
1470 }
1471 
1472 static void build_sit_entries(struct f2fs_sb_info *sbi)
1473 {
1474 	struct sit_info *sit_i = SIT_I(sbi);
1475 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1476 	struct f2fs_summary_block *sum = curseg->sum_blk;
1477 	unsigned int start;
1478 
1479 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1480 		struct seg_entry *se = &sit_i->sentries[start];
1481 		struct f2fs_sit_block *sit_blk;
1482 		struct f2fs_sit_entry sit;
1483 		struct page *page;
1484 		int i;
1485 
1486 		mutex_lock(&curseg->curseg_mutex);
1487 		for (i = 0; i < sits_in_cursum(sum); i++) {
1488 			if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1489 				sit = sit_in_journal(sum, i);
1490 				mutex_unlock(&curseg->curseg_mutex);
1491 				goto got_it;
1492 			}
1493 		}
1494 		mutex_unlock(&curseg->curseg_mutex);
1495 		page = get_current_sit_page(sbi, start);
1496 		sit_blk = (struct f2fs_sit_block *)page_address(page);
1497 		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1498 		f2fs_put_page(page, 1);
1499 got_it:
1500 		check_block_count(sbi, start, &sit);
1501 		seg_info_from_raw_sit(se, &sit);
1502 		if (sbi->segs_per_sec > 1) {
1503 			struct sec_entry *e = get_sec_entry(sbi, start);
1504 			e->valid_blocks += se->valid_blocks;
1505 		}
1506 	}
1507 }
1508 
1509 static void init_free_segmap(struct f2fs_sb_info *sbi)
1510 {
1511 	unsigned int start;
1512 	int type;
1513 
1514 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1515 		struct seg_entry *sentry = get_seg_entry(sbi, start);
1516 		if (!sentry->valid_blocks)
1517 			__set_free(sbi, start);
1518 	}
1519 
1520 	/* set use the current segments */
1521 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1522 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1523 		__set_test_and_inuse(sbi, curseg_t->segno);
1524 	}
1525 }
1526 
1527 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1528 {
1529 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1530 	struct free_segmap_info *free_i = FREE_I(sbi);
1531 	unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1532 	unsigned short valid_blocks;
1533 
1534 	while (1) {
1535 		/* find dirty segment based on free segmap */
1536 		segno = find_next_inuse(free_i, total_segs, offset);
1537 		if (segno >= total_segs)
1538 			break;
1539 		offset = segno + 1;
1540 		valid_blocks = get_valid_blocks(sbi, segno, 0);
1541 		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1542 			continue;
1543 		mutex_lock(&dirty_i->seglist_lock);
1544 		__locate_dirty_segment(sbi, segno, DIRTY);
1545 		mutex_unlock(&dirty_i->seglist_lock);
1546 	}
1547 }
1548 
1549 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1550 {
1551 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1552 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1553 
1554 	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1555 	if (!dirty_i->victim_secmap)
1556 		return -ENOMEM;
1557 	return 0;
1558 }
1559 
1560 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1561 {
1562 	struct dirty_seglist_info *dirty_i;
1563 	unsigned int bitmap_size, i;
1564 
1565 	/* allocate memory for dirty segments list information */
1566 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1567 	if (!dirty_i)
1568 		return -ENOMEM;
1569 
1570 	SM_I(sbi)->dirty_info = dirty_i;
1571 	mutex_init(&dirty_i->seglist_lock);
1572 
1573 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1574 
1575 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1576 		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1577 		if (!dirty_i->dirty_segmap[i])
1578 			return -ENOMEM;
1579 	}
1580 
1581 	init_dirty_segmap(sbi);
1582 	return init_victim_secmap(sbi);
1583 }
1584 
1585 /*
1586  * Update min, max modified time for cost-benefit GC algorithm
1587  */
1588 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1589 {
1590 	struct sit_info *sit_i = SIT_I(sbi);
1591 	unsigned int segno;
1592 
1593 	mutex_lock(&sit_i->sentry_lock);
1594 
1595 	sit_i->min_mtime = LLONG_MAX;
1596 
1597 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1598 		unsigned int i;
1599 		unsigned long long mtime = 0;
1600 
1601 		for (i = 0; i < sbi->segs_per_sec; i++)
1602 			mtime += get_seg_entry(sbi, segno + i)->mtime;
1603 
1604 		mtime = div_u64(mtime, sbi->segs_per_sec);
1605 
1606 		if (sit_i->min_mtime > mtime)
1607 			sit_i->min_mtime = mtime;
1608 	}
1609 	sit_i->max_mtime = get_mtime(sbi);
1610 	mutex_unlock(&sit_i->sentry_lock);
1611 }
1612 
1613 int build_segment_manager(struct f2fs_sb_info *sbi)
1614 {
1615 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1616 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1617 	struct f2fs_sm_info *sm_info;
1618 	int err;
1619 
1620 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1621 	if (!sm_info)
1622 		return -ENOMEM;
1623 
1624 	/* init sm info */
1625 	sbi->sm_info = sm_info;
1626 	INIT_LIST_HEAD(&sm_info->wblist_head);
1627 	spin_lock_init(&sm_info->wblist_lock);
1628 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1629 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1630 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1631 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1632 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1633 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1634 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1635 
1636 	err = build_sit_info(sbi);
1637 	if (err)
1638 		return err;
1639 	err = build_free_segmap(sbi);
1640 	if (err)
1641 		return err;
1642 	err = build_curseg(sbi);
1643 	if (err)
1644 		return err;
1645 
1646 	/* reinit free segmap based on SIT */
1647 	build_sit_entries(sbi);
1648 
1649 	init_free_segmap(sbi);
1650 	err = build_dirty_segmap(sbi);
1651 	if (err)
1652 		return err;
1653 
1654 	init_min_max_mtime(sbi);
1655 	return 0;
1656 }
1657 
1658 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1659 		enum dirty_type dirty_type)
1660 {
1661 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1662 
1663 	mutex_lock(&dirty_i->seglist_lock);
1664 	kfree(dirty_i->dirty_segmap[dirty_type]);
1665 	dirty_i->nr_dirty[dirty_type] = 0;
1666 	mutex_unlock(&dirty_i->seglist_lock);
1667 }
1668 
1669 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1670 {
1671 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1672 	kfree(dirty_i->victim_secmap);
1673 }
1674 
1675 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1676 {
1677 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1678 	int i;
1679 
1680 	if (!dirty_i)
1681 		return;
1682 
1683 	/* discard pre-free/dirty segments list */
1684 	for (i = 0; i < NR_DIRTY_TYPE; i++)
1685 		discard_dirty_segmap(sbi, i);
1686 
1687 	destroy_victim_secmap(sbi);
1688 	SM_I(sbi)->dirty_info = NULL;
1689 	kfree(dirty_i);
1690 }
1691 
1692 static void destroy_curseg(struct f2fs_sb_info *sbi)
1693 {
1694 	struct curseg_info *array = SM_I(sbi)->curseg_array;
1695 	int i;
1696 
1697 	if (!array)
1698 		return;
1699 	SM_I(sbi)->curseg_array = NULL;
1700 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1701 		kfree(array[i].sum_blk);
1702 	kfree(array);
1703 }
1704 
1705 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1706 {
1707 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1708 	if (!free_i)
1709 		return;
1710 	SM_I(sbi)->free_info = NULL;
1711 	kfree(free_i->free_segmap);
1712 	kfree(free_i->free_secmap);
1713 	kfree(free_i);
1714 }
1715 
1716 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1717 {
1718 	struct sit_info *sit_i = SIT_I(sbi);
1719 	unsigned int start;
1720 
1721 	if (!sit_i)
1722 		return;
1723 
1724 	if (sit_i->sentries) {
1725 		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1726 			kfree(sit_i->sentries[start].cur_valid_map);
1727 			kfree(sit_i->sentries[start].ckpt_valid_map);
1728 		}
1729 	}
1730 	vfree(sit_i->sentries);
1731 	vfree(sit_i->sec_entries);
1732 	kfree(sit_i->dirty_sentries_bitmap);
1733 
1734 	SM_I(sbi)->sit_info = NULL;
1735 	kfree(sit_i->sit_bitmap);
1736 	kfree(sit_i);
1737 }
1738 
1739 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1740 {
1741 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1742 	destroy_dirty_segmap(sbi);
1743 	destroy_curseg(sbi);
1744 	destroy_free_segmap(sbi);
1745 	destroy_sit_info(sbi);
1746 	sbi->sm_info = NULL;
1747 	kfree(sm_info);
1748 }
1749