1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (test_opt(sbi, LFS)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct inmem_pages *new; 189 190 f2fs_trace_pid(page); 191 192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 193 194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 195 196 /* add atomic page indices to the list */ 197 new->page = page; 198 INIT_LIST_HEAD(&new->list); 199 200 /* increase reference count with clean state */ 201 get_page(page); 202 mutex_lock(&F2FS_I(inode)->inmem_lock); 203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 205 mutex_unlock(&F2FS_I(inode)->inmem_lock); 206 207 trace_f2fs_register_inmem_page(page, INMEM); 208 } 209 210 static int __revoke_inmem_pages(struct inode *inode, 211 struct list_head *head, bool drop, bool recover, 212 bool trylock) 213 { 214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 215 struct inmem_pages *cur, *tmp; 216 int err = 0; 217 218 list_for_each_entry_safe(cur, tmp, head, list) { 219 struct page *page = cur->page; 220 221 if (drop) 222 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 223 224 if (trylock) { 225 /* 226 * to avoid deadlock in between page lock and 227 * inmem_lock. 228 */ 229 if (!trylock_page(page)) 230 continue; 231 } else { 232 lock_page(page); 233 } 234 235 f2fs_wait_on_page_writeback(page, DATA, true, true); 236 237 if (recover) { 238 struct dnode_of_data dn; 239 struct node_info ni; 240 241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 242 retry: 243 set_new_dnode(&dn, inode, NULL, NULL, 0); 244 err = f2fs_get_dnode_of_data(&dn, page->index, 245 LOOKUP_NODE); 246 if (err) { 247 if (err == -ENOMEM) { 248 congestion_wait(BLK_RW_ASYNC, HZ/50); 249 cond_resched(); 250 goto retry; 251 } 252 err = -EAGAIN; 253 goto next; 254 } 255 256 err = f2fs_get_node_info(sbi, dn.nid, &ni); 257 if (err) { 258 f2fs_put_dnode(&dn); 259 return err; 260 } 261 262 if (cur->old_addr == NEW_ADDR) { 263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 264 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 265 } else 266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 267 cur->old_addr, ni.version, true, true); 268 f2fs_put_dnode(&dn); 269 } 270 next: 271 /* we don't need to invalidate this in the sccessful status */ 272 if (drop || recover) { 273 ClearPageUptodate(page); 274 clear_cold_data(page); 275 } 276 f2fs_clear_page_private(page); 277 f2fs_put_page(page, 1); 278 279 list_del(&cur->list); 280 kmem_cache_free(inmem_entry_slab, cur); 281 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 282 } 283 return err; 284 } 285 286 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 287 { 288 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 289 struct inode *inode; 290 struct f2fs_inode_info *fi; 291 next: 292 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 293 if (list_empty(head)) { 294 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 295 return; 296 } 297 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 298 inode = igrab(&fi->vfs_inode); 299 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 300 301 if (inode) { 302 if (gc_failure) { 303 if (fi->i_gc_failures[GC_FAILURE_ATOMIC]) 304 goto drop; 305 goto skip; 306 } 307 drop: 308 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 309 f2fs_drop_inmem_pages(inode); 310 iput(inode); 311 } 312 skip: 313 congestion_wait(BLK_RW_ASYNC, HZ/50); 314 cond_resched(); 315 goto next; 316 } 317 318 void f2fs_drop_inmem_pages(struct inode *inode) 319 { 320 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 321 struct f2fs_inode_info *fi = F2FS_I(inode); 322 323 while (!list_empty(&fi->inmem_pages)) { 324 mutex_lock(&fi->inmem_lock); 325 __revoke_inmem_pages(inode, &fi->inmem_pages, 326 true, false, true); 327 mutex_unlock(&fi->inmem_lock); 328 } 329 330 clear_inode_flag(inode, FI_ATOMIC_FILE); 331 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 332 stat_dec_atomic_write(inode); 333 334 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 335 if (!list_empty(&fi->inmem_ilist)) 336 list_del_init(&fi->inmem_ilist); 337 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 338 } 339 340 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 341 { 342 struct f2fs_inode_info *fi = F2FS_I(inode); 343 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 344 struct list_head *head = &fi->inmem_pages; 345 struct inmem_pages *cur = NULL; 346 347 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 348 349 mutex_lock(&fi->inmem_lock); 350 list_for_each_entry(cur, head, list) { 351 if (cur->page == page) 352 break; 353 } 354 355 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 356 list_del(&cur->list); 357 mutex_unlock(&fi->inmem_lock); 358 359 dec_page_count(sbi, F2FS_INMEM_PAGES); 360 kmem_cache_free(inmem_entry_slab, cur); 361 362 ClearPageUptodate(page); 363 f2fs_clear_page_private(page); 364 f2fs_put_page(page, 0); 365 366 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 367 } 368 369 static int __f2fs_commit_inmem_pages(struct inode *inode) 370 { 371 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 372 struct f2fs_inode_info *fi = F2FS_I(inode); 373 struct inmem_pages *cur, *tmp; 374 struct f2fs_io_info fio = { 375 .sbi = sbi, 376 .ino = inode->i_ino, 377 .type = DATA, 378 .op = REQ_OP_WRITE, 379 .op_flags = REQ_SYNC | REQ_PRIO, 380 .io_type = FS_DATA_IO, 381 }; 382 struct list_head revoke_list; 383 bool submit_bio = false; 384 int err = 0; 385 386 INIT_LIST_HEAD(&revoke_list); 387 388 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 389 struct page *page = cur->page; 390 391 lock_page(page); 392 if (page->mapping == inode->i_mapping) { 393 trace_f2fs_commit_inmem_page(page, INMEM); 394 395 f2fs_wait_on_page_writeback(page, DATA, true, true); 396 397 set_page_dirty(page); 398 if (clear_page_dirty_for_io(page)) { 399 inode_dec_dirty_pages(inode); 400 f2fs_remove_dirty_inode(inode); 401 } 402 retry: 403 fio.page = page; 404 fio.old_blkaddr = NULL_ADDR; 405 fio.encrypted_page = NULL; 406 fio.need_lock = LOCK_DONE; 407 err = f2fs_do_write_data_page(&fio); 408 if (err) { 409 if (err == -ENOMEM) { 410 congestion_wait(BLK_RW_ASYNC, HZ/50); 411 cond_resched(); 412 goto retry; 413 } 414 unlock_page(page); 415 break; 416 } 417 /* record old blkaddr for revoking */ 418 cur->old_addr = fio.old_blkaddr; 419 submit_bio = true; 420 } 421 unlock_page(page); 422 list_move_tail(&cur->list, &revoke_list); 423 } 424 425 if (submit_bio) 426 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 427 428 if (err) { 429 /* 430 * try to revoke all committed pages, but still we could fail 431 * due to no memory or other reason, if that happened, EAGAIN 432 * will be returned, which means in such case, transaction is 433 * already not integrity, caller should use journal to do the 434 * recovery or rewrite & commit last transaction. For other 435 * error number, revoking was done by filesystem itself. 436 */ 437 err = __revoke_inmem_pages(inode, &revoke_list, 438 false, true, false); 439 440 /* drop all uncommitted pages */ 441 __revoke_inmem_pages(inode, &fi->inmem_pages, 442 true, false, false); 443 } else { 444 __revoke_inmem_pages(inode, &revoke_list, 445 false, false, false); 446 } 447 448 return err; 449 } 450 451 int f2fs_commit_inmem_pages(struct inode *inode) 452 { 453 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 454 struct f2fs_inode_info *fi = F2FS_I(inode); 455 int err; 456 457 f2fs_balance_fs(sbi, true); 458 459 down_write(&fi->i_gc_rwsem[WRITE]); 460 461 f2fs_lock_op(sbi); 462 set_inode_flag(inode, FI_ATOMIC_COMMIT); 463 464 mutex_lock(&fi->inmem_lock); 465 err = __f2fs_commit_inmem_pages(inode); 466 mutex_unlock(&fi->inmem_lock); 467 468 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 469 470 f2fs_unlock_op(sbi); 471 up_write(&fi->i_gc_rwsem[WRITE]); 472 473 return err; 474 } 475 476 /* 477 * This function balances dirty node and dentry pages. 478 * In addition, it controls garbage collection. 479 */ 480 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 481 { 482 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 483 f2fs_show_injection_info(FAULT_CHECKPOINT); 484 f2fs_stop_checkpoint(sbi, false); 485 } 486 487 /* balance_fs_bg is able to be pending */ 488 if (need && excess_cached_nats(sbi)) 489 f2fs_balance_fs_bg(sbi); 490 491 if (!f2fs_is_checkpoint_ready(sbi)) 492 return; 493 494 /* 495 * We should do GC or end up with checkpoint, if there are so many dirty 496 * dir/node pages without enough free segments. 497 */ 498 if (has_not_enough_free_secs(sbi, 0, 0)) { 499 mutex_lock(&sbi->gc_mutex); 500 f2fs_gc(sbi, false, false, NULL_SEGNO); 501 } 502 } 503 504 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 505 { 506 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 507 return; 508 509 /* try to shrink extent cache when there is no enough memory */ 510 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 511 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 512 513 /* check the # of cached NAT entries */ 514 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 515 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 516 517 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 518 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 519 else 520 f2fs_build_free_nids(sbi, false, false); 521 522 if (!is_idle(sbi, REQ_TIME) && 523 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 524 return; 525 526 /* checkpoint is the only way to shrink partial cached entries */ 527 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 528 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 529 excess_prefree_segs(sbi) || 530 excess_dirty_nats(sbi) || 531 excess_dirty_nodes(sbi) || 532 f2fs_time_over(sbi, CP_TIME)) { 533 if (test_opt(sbi, DATA_FLUSH)) { 534 struct blk_plug plug; 535 536 mutex_lock(&sbi->flush_lock); 537 538 blk_start_plug(&plug); 539 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 540 blk_finish_plug(&plug); 541 542 mutex_unlock(&sbi->flush_lock); 543 } 544 f2fs_sync_fs(sbi->sb, true); 545 stat_inc_bg_cp_count(sbi->stat_info); 546 } 547 } 548 549 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 550 struct block_device *bdev) 551 { 552 struct bio *bio; 553 int ret; 554 555 bio = f2fs_bio_alloc(sbi, 0, false); 556 if (!bio) 557 return -ENOMEM; 558 559 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 560 bio_set_dev(bio, bdev); 561 ret = submit_bio_wait(bio); 562 bio_put(bio); 563 564 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 565 test_opt(sbi, FLUSH_MERGE), ret); 566 return ret; 567 } 568 569 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 570 { 571 int ret = 0; 572 int i; 573 574 if (!f2fs_is_multi_device(sbi)) 575 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 576 577 for (i = 0; i < sbi->s_ndevs; i++) { 578 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 579 continue; 580 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 581 if (ret) 582 break; 583 } 584 return ret; 585 } 586 587 static int issue_flush_thread(void *data) 588 { 589 struct f2fs_sb_info *sbi = data; 590 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 591 wait_queue_head_t *q = &fcc->flush_wait_queue; 592 repeat: 593 if (kthread_should_stop()) 594 return 0; 595 596 sb_start_intwrite(sbi->sb); 597 598 if (!llist_empty(&fcc->issue_list)) { 599 struct flush_cmd *cmd, *next; 600 int ret; 601 602 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 603 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 604 605 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 606 607 ret = submit_flush_wait(sbi, cmd->ino); 608 atomic_inc(&fcc->issued_flush); 609 610 llist_for_each_entry_safe(cmd, next, 611 fcc->dispatch_list, llnode) { 612 cmd->ret = ret; 613 complete(&cmd->wait); 614 } 615 fcc->dispatch_list = NULL; 616 } 617 618 sb_end_intwrite(sbi->sb); 619 620 wait_event_interruptible(*q, 621 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 622 goto repeat; 623 } 624 625 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 626 { 627 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 628 struct flush_cmd cmd; 629 int ret; 630 631 if (test_opt(sbi, NOBARRIER)) 632 return 0; 633 634 if (!test_opt(sbi, FLUSH_MERGE)) { 635 atomic_inc(&fcc->queued_flush); 636 ret = submit_flush_wait(sbi, ino); 637 atomic_dec(&fcc->queued_flush); 638 atomic_inc(&fcc->issued_flush); 639 return ret; 640 } 641 642 if (atomic_inc_return(&fcc->queued_flush) == 1 || 643 f2fs_is_multi_device(sbi)) { 644 ret = submit_flush_wait(sbi, ino); 645 atomic_dec(&fcc->queued_flush); 646 647 atomic_inc(&fcc->issued_flush); 648 return ret; 649 } 650 651 cmd.ino = ino; 652 init_completion(&cmd.wait); 653 654 llist_add(&cmd.llnode, &fcc->issue_list); 655 656 /* update issue_list before we wake up issue_flush thread */ 657 smp_mb(); 658 659 if (waitqueue_active(&fcc->flush_wait_queue)) 660 wake_up(&fcc->flush_wait_queue); 661 662 if (fcc->f2fs_issue_flush) { 663 wait_for_completion(&cmd.wait); 664 atomic_dec(&fcc->queued_flush); 665 } else { 666 struct llist_node *list; 667 668 list = llist_del_all(&fcc->issue_list); 669 if (!list) { 670 wait_for_completion(&cmd.wait); 671 atomic_dec(&fcc->queued_flush); 672 } else { 673 struct flush_cmd *tmp, *next; 674 675 ret = submit_flush_wait(sbi, ino); 676 677 llist_for_each_entry_safe(tmp, next, list, llnode) { 678 if (tmp == &cmd) { 679 cmd.ret = ret; 680 atomic_dec(&fcc->queued_flush); 681 continue; 682 } 683 tmp->ret = ret; 684 complete(&tmp->wait); 685 } 686 } 687 } 688 689 return cmd.ret; 690 } 691 692 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 693 { 694 dev_t dev = sbi->sb->s_bdev->bd_dev; 695 struct flush_cmd_control *fcc; 696 int err = 0; 697 698 if (SM_I(sbi)->fcc_info) { 699 fcc = SM_I(sbi)->fcc_info; 700 if (fcc->f2fs_issue_flush) 701 return err; 702 goto init_thread; 703 } 704 705 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 706 if (!fcc) 707 return -ENOMEM; 708 atomic_set(&fcc->issued_flush, 0); 709 atomic_set(&fcc->queued_flush, 0); 710 init_waitqueue_head(&fcc->flush_wait_queue); 711 init_llist_head(&fcc->issue_list); 712 SM_I(sbi)->fcc_info = fcc; 713 if (!test_opt(sbi, FLUSH_MERGE)) 714 return err; 715 716 init_thread: 717 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 718 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 719 if (IS_ERR(fcc->f2fs_issue_flush)) { 720 err = PTR_ERR(fcc->f2fs_issue_flush); 721 kvfree(fcc); 722 SM_I(sbi)->fcc_info = NULL; 723 return err; 724 } 725 726 return err; 727 } 728 729 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 730 { 731 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 732 733 if (fcc && fcc->f2fs_issue_flush) { 734 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 735 736 fcc->f2fs_issue_flush = NULL; 737 kthread_stop(flush_thread); 738 } 739 if (free) { 740 kvfree(fcc); 741 SM_I(sbi)->fcc_info = NULL; 742 } 743 } 744 745 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 746 { 747 int ret = 0, i; 748 749 if (!f2fs_is_multi_device(sbi)) 750 return 0; 751 752 for (i = 1; i < sbi->s_ndevs; i++) { 753 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 754 continue; 755 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 756 if (ret) 757 break; 758 759 spin_lock(&sbi->dev_lock); 760 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 761 spin_unlock(&sbi->dev_lock); 762 } 763 764 return ret; 765 } 766 767 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 768 enum dirty_type dirty_type) 769 { 770 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 771 772 /* need not be added */ 773 if (IS_CURSEG(sbi, segno)) 774 return; 775 776 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 777 dirty_i->nr_dirty[dirty_type]++; 778 779 if (dirty_type == DIRTY) { 780 struct seg_entry *sentry = get_seg_entry(sbi, segno); 781 enum dirty_type t = sentry->type; 782 783 if (unlikely(t >= DIRTY)) { 784 f2fs_bug_on(sbi, 1); 785 return; 786 } 787 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 788 dirty_i->nr_dirty[t]++; 789 } 790 } 791 792 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 793 enum dirty_type dirty_type) 794 { 795 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 796 797 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 798 dirty_i->nr_dirty[dirty_type]--; 799 800 if (dirty_type == DIRTY) { 801 struct seg_entry *sentry = get_seg_entry(sbi, segno); 802 enum dirty_type t = sentry->type; 803 804 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 805 dirty_i->nr_dirty[t]--; 806 807 if (get_valid_blocks(sbi, segno, true) == 0) { 808 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 809 dirty_i->victim_secmap); 810 #ifdef CONFIG_F2FS_CHECK_FS 811 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 812 #endif 813 } 814 } 815 } 816 817 /* 818 * Should not occur error such as -ENOMEM. 819 * Adding dirty entry into seglist is not critical operation. 820 * If a given segment is one of current working segments, it won't be added. 821 */ 822 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 823 { 824 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 825 unsigned short valid_blocks, ckpt_valid_blocks; 826 827 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 828 return; 829 830 mutex_lock(&dirty_i->seglist_lock); 831 832 valid_blocks = get_valid_blocks(sbi, segno, false); 833 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 834 835 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 836 ckpt_valid_blocks == sbi->blocks_per_seg)) { 837 __locate_dirty_segment(sbi, segno, PRE); 838 __remove_dirty_segment(sbi, segno, DIRTY); 839 } else if (valid_blocks < sbi->blocks_per_seg) { 840 __locate_dirty_segment(sbi, segno, DIRTY); 841 } else { 842 /* Recovery routine with SSR needs this */ 843 __remove_dirty_segment(sbi, segno, DIRTY); 844 } 845 846 mutex_unlock(&dirty_i->seglist_lock); 847 } 848 849 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 850 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 851 { 852 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 853 unsigned int segno; 854 855 mutex_lock(&dirty_i->seglist_lock); 856 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 857 if (get_valid_blocks(sbi, segno, false)) 858 continue; 859 if (IS_CURSEG(sbi, segno)) 860 continue; 861 __locate_dirty_segment(sbi, segno, PRE); 862 __remove_dirty_segment(sbi, segno, DIRTY); 863 } 864 mutex_unlock(&dirty_i->seglist_lock); 865 } 866 867 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 868 { 869 int ovp_hole_segs = 870 (overprovision_segments(sbi) - reserved_segments(sbi)); 871 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 872 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 873 block_t holes[2] = {0, 0}; /* DATA and NODE */ 874 block_t unusable; 875 struct seg_entry *se; 876 unsigned int segno; 877 878 mutex_lock(&dirty_i->seglist_lock); 879 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 880 se = get_seg_entry(sbi, segno); 881 if (IS_NODESEG(se->type)) 882 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; 883 else 884 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; 885 } 886 mutex_unlock(&dirty_i->seglist_lock); 887 888 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 889 if (unusable > ovp_holes) 890 return unusable - ovp_holes; 891 return 0; 892 } 893 894 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 895 { 896 int ovp_hole_segs = 897 (overprovision_segments(sbi) - reserved_segments(sbi)); 898 if (unusable > F2FS_OPTION(sbi).unusable_cap) 899 return -EAGAIN; 900 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 901 dirty_segments(sbi) > ovp_hole_segs) 902 return -EAGAIN; 903 return 0; 904 } 905 906 /* This is only used by SBI_CP_DISABLED */ 907 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 908 { 909 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 910 unsigned int segno = 0; 911 912 mutex_lock(&dirty_i->seglist_lock); 913 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 914 if (get_valid_blocks(sbi, segno, false)) 915 continue; 916 if (get_ckpt_valid_blocks(sbi, segno)) 917 continue; 918 mutex_unlock(&dirty_i->seglist_lock); 919 return segno; 920 } 921 mutex_unlock(&dirty_i->seglist_lock); 922 return NULL_SEGNO; 923 } 924 925 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 926 struct block_device *bdev, block_t lstart, 927 block_t start, block_t len) 928 { 929 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 930 struct list_head *pend_list; 931 struct discard_cmd *dc; 932 933 f2fs_bug_on(sbi, !len); 934 935 pend_list = &dcc->pend_list[plist_idx(len)]; 936 937 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 938 INIT_LIST_HEAD(&dc->list); 939 dc->bdev = bdev; 940 dc->lstart = lstart; 941 dc->start = start; 942 dc->len = len; 943 dc->ref = 0; 944 dc->state = D_PREP; 945 dc->queued = 0; 946 dc->error = 0; 947 init_completion(&dc->wait); 948 list_add_tail(&dc->list, pend_list); 949 spin_lock_init(&dc->lock); 950 dc->bio_ref = 0; 951 atomic_inc(&dcc->discard_cmd_cnt); 952 dcc->undiscard_blks += len; 953 954 return dc; 955 } 956 957 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 958 struct block_device *bdev, block_t lstart, 959 block_t start, block_t len, 960 struct rb_node *parent, struct rb_node **p, 961 bool leftmost) 962 { 963 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 964 struct discard_cmd *dc; 965 966 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 967 968 rb_link_node(&dc->rb_node, parent, p); 969 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 970 971 return dc; 972 } 973 974 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 975 struct discard_cmd *dc) 976 { 977 if (dc->state == D_DONE) 978 atomic_sub(dc->queued, &dcc->queued_discard); 979 980 list_del(&dc->list); 981 rb_erase_cached(&dc->rb_node, &dcc->root); 982 dcc->undiscard_blks -= dc->len; 983 984 kmem_cache_free(discard_cmd_slab, dc); 985 986 atomic_dec(&dcc->discard_cmd_cnt); 987 } 988 989 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 990 struct discard_cmd *dc) 991 { 992 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 993 unsigned long flags; 994 995 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 996 997 spin_lock_irqsave(&dc->lock, flags); 998 if (dc->bio_ref) { 999 spin_unlock_irqrestore(&dc->lock, flags); 1000 return; 1001 } 1002 spin_unlock_irqrestore(&dc->lock, flags); 1003 1004 f2fs_bug_on(sbi, dc->ref); 1005 1006 if (dc->error == -EOPNOTSUPP) 1007 dc->error = 0; 1008 1009 if (dc->error) 1010 printk_ratelimited( 1011 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d", 1012 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error); 1013 __detach_discard_cmd(dcc, dc); 1014 } 1015 1016 static void f2fs_submit_discard_endio(struct bio *bio) 1017 { 1018 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1019 unsigned long flags; 1020 1021 dc->error = blk_status_to_errno(bio->bi_status); 1022 1023 spin_lock_irqsave(&dc->lock, flags); 1024 dc->bio_ref--; 1025 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1026 dc->state = D_DONE; 1027 complete_all(&dc->wait); 1028 } 1029 spin_unlock_irqrestore(&dc->lock, flags); 1030 bio_put(bio); 1031 } 1032 1033 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1034 block_t start, block_t end) 1035 { 1036 #ifdef CONFIG_F2FS_CHECK_FS 1037 struct seg_entry *sentry; 1038 unsigned int segno; 1039 block_t blk = start; 1040 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1041 unsigned long *map; 1042 1043 while (blk < end) { 1044 segno = GET_SEGNO(sbi, blk); 1045 sentry = get_seg_entry(sbi, segno); 1046 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1047 1048 if (end < START_BLOCK(sbi, segno + 1)) 1049 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1050 else 1051 size = max_blocks; 1052 map = (unsigned long *)(sentry->cur_valid_map); 1053 offset = __find_rev_next_bit(map, size, offset); 1054 f2fs_bug_on(sbi, offset != size); 1055 blk = START_BLOCK(sbi, segno + 1); 1056 } 1057 #endif 1058 } 1059 1060 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1061 struct discard_policy *dpolicy, 1062 int discard_type, unsigned int granularity) 1063 { 1064 /* common policy */ 1065 dpolicy->type = discard_type; 1066 dpolicy->sync = true; 1067 dpolicy->ordered = false; 1068 dpolicy->granularity = granularity; 1069 1070 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1071 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1072 dpolicy->timeout = 0; 1073 1074 if (discard_type == DPOLICY_BG) { 1075 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1076 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1077 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1078 dpolicy->io_aware = true; 1079 dpolicy->sync = false; 1080 dpolicy->ordered = true; 1081 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1082 dpolicy->granularity = 1; 1083 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1084 } 1085 } else if (discard_type == DPOLICY_FORCE) { 1086 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1087 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1088 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1089 dpolicy->io_aware = false; 1090 } else if (discard_type == DPOLICY_FSTRIM) { 1091 dpolicy->io_aware = false; 1092 } else if (discard_type == DPOLICY_UMOUNT) { 1093 dpolicy->max_requests = UINT_MAX; 1094 dpolicy->io_aware = false; 1095 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1096 dpolicy->granularity = 1; 1097 } 1098 } 1099 1100 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1101 struct block_device *bdev, block_t lstart, 1102 block_t start, block_t len); 1103 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1104 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1105 struct discard_policy *dpolicy, 1106 struct discard_cmd *dc, 1107 unsigned int *issued) 1108 { 1109 struct block_device *bdev = dc->bdev; 1110 struct request_queue *q = bdev_get_queue(bdev); 1111 unsigned int max_discard_blocks = 1112 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1113 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1114 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1115 &(dcc->fstrim_list) : &(dcc->wait_list); 1116 int flag = dpolicy->sync ? REQ_SYNC : 0; 1117 block_t lstart, start, len, total_len; 1118 int err = 0; 1119 1120 if (dc->state != D_PREP) 1121 return 0; 1122 1123 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1124 return 0; 1125 1126 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1127 1128 lstart = dc->lstart; 1129 start = dc->start; 1130 len = dc->len; 1131 total_len = len; 1132 1133 dc->len = 0; 1134 1135 while (total_len && *issued < dpolicy->max_requests && !err) { 1136 struct bio *bio = NULL; 1137 unsigned long flags; 1138 bool last = true; 1139 1140 if (len > max_discard_blocks) { 1141 len = max_discard_blocks; 1142 last = false; 1143 } 1144 1145 (*issued)++; 1146 if (*issued == dpolicy->max_requests) 1147 last = true; 1148 1149 dc->len += len; 1150 1151 if (time_to_inject(sbi, FAULT_DISCARD)) { 1152 f2fs_show_injection_info(FAULT_DISCARD); 1153 err = -EIO; 1154 goto submit; 1155 } 1156 err = __blkdev_issue_discard(bdev, 1157 SECTOR_FROM_BLOCK(start), 1158 SECTOR_FROM_BLOCK(len), 1159 GFP_NOFS, 0, &bio); 1160 submit: 1161 if (err) { 1162 spin_lock_irqsave(&dc->lock, flags); 1163 if (dc->state == D_PARTIAL) 1164 dc->state = D_SUBMIT; 1165 spin_unlock_irqrestore(&dc->lock, flags); 1166 1167 break; 1168 } 1169 1170 f2fs_bug_on(sbi, !bio); 1171 1172 /* 1173 * should keep before submission to avoid D_DONE 1174 * right away 1175 */ 1176 spin_lock_irqsave(&dc->lock, flags); 1177 if (last) 1178 dc->state = D_SUBMIT; 1179 else 1180 dc->state = D_PARTIAL; 1181 dc->bio_ref++; 1182 spin_unlock_irqrestore(&dc->lock, flags); 1183 1184 atomic_inc(&dcc->queued_discard); 1185 dc->queued++; 1186 list_move_tail(&dc->list, wait_list); 1187 1188 /* sanity check on discard range */ 1189 __check_sit_bitmap(sbi, lstart, lstart + len); 1190 1191 bio->bi_private = dc; 1192 bio->bi_end_io = f2fs_submit_discard_endio; 1193 bio->bi_opf |= flag; 1194 submit_bio(bio); 1195 1196 atomic_inc(&dcc->issued_discard); 1197 1198 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1199 1200 lstart += len; 1201 start += len; 1202 total_len -= len; 1203 len = total_len; 1204 } 1205 1206 if (!err && len) 1207 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1208 return err; 1209 } 1210 1211 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 1212 struct block_device *bdev, block_t lstart, 1213 block_t start, block_t len, 1214 struct rb_node **insert_p, 1215 struct rb_node *insert_parent) 1216 { 1217 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1218 struct rb_node **p; 1219 struct rb_node *parent = NULL; 1220 struct discard_cmd *dc = NULL; 1221 bool leftmost = true; 1222 1223 if (insert_p && insert_parent) { 1224 parent = insert_parent; 1225 p = insert_p; 1226 goto do_insert; 1227 } 1228 1229 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1230 lstart, &leftmost); 1231 do_insert: 1232 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1233 p, leftmost); 1234 if (!dc) 1235 return NULL; 1236 1237 return dc; 1238 } 1239 1240 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1241 struct discard_cmd *dc) 1242 { 1243 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1244 } 1245 1246 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1247 struct discard_cmd *dc, block_t blkaddr) 1248 { 1249 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1250 struct discard_info di = dc->di; 1251 bool modified = false; 1252 1253 if (dc->state == D_DONE || dc->len == 1) { 1254 __remove_discard_cmd(sbi, dc); 1255 return; 1256 } 1257 1258 dcc->undiscard_blks -= di.len; 1259 1260 if (blkaddr > di.lstart) { 1261 dc->len = blkaddr - dc->lstart; 1262 dcc->undiscard_blks += dc->len; 1263 __relocate_discard_cmd(dcc, dc); 1264 modified = true; 1265 } 1266 1267 if (blkaddr < di.lstart + di.len - 1) { 1268 if (modified) { 1269 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1270 di.start + blkaddr + 1 - di.lstart, 1271 di.lstart + di.len - 1 - blkaddr, 1272 NULL, NULL); 1273 } else { 1274 dc->lstart++; 1275 dc->len--; 1276 dc->start++; 1277 dcc->undiscard_blks += dc->len; 1278 __relocate_discard_cmd(dcc, dc); 1279 } 1280 } 1281 } 1282 1283 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1284 struct block_device *bdev, block_t lstart, 1285 block_t start, block_t len) 1286 { 1287 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1288 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1289 struct discard_cmd *dc; 1290 struct discard_info di = {0}; 1291 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1292 struct request_queue *q = bdev_get_queue(bdev); 1293 unsigned int max_discard_blocks = 1294 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1295 block_t end = lstart + len; 1296 1297 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1298 NULL, lstart, 1299 (struct rb_entry **)&prev_dc, 1300 (struct rb_entry **)&next_dc, 1301 &insert_p, &insert_parent, true, NULL); 1302 if (dc) 1303 prev_dc = dc; 1304 1305 if (!prev_dc) { 1306 di.lstart = lstart; 1307 di.len = next_dc ? next_dc->lstart - lstart : len; 1308 di.len = min(di.len, len); 1309 di.start = start; 1310 } 1311 1312 while (1) { 1313 struct rb_node *node; 1314 bool merged = false; 1315 struct discard_cmd *tdc = NULL; 1316 1317 if (prev_dc) { 1318 di.lstart = prev_dc->lstart + prev_dc->len; 1319 if (di.lstart < lstart) 1320 di.lstart = lstart; 1321 if (di.lstart >= end) 1322 break; 1323 1324 if (!next_dc || next_dc->lstart > end) 1325 di.len = end - di.lstart; 1326 else 1327 di.len = next_dc->lstart - di.lstart; 1328 di.start = start + di.lstart - lstart; 1329 } 1330 1331 if (!di.len) 1332 goto next; 1333 1334 if (prev_dc && prev_dc->state == D_PREP && 1335 prev_dc->bdev == bdev && 1336 __is_discard_back_mergeable(&di, &prev_dc->di, 1337 max_discard_blocks)) { 1338 prev_dc->di.len += di.len; 1339 dcc->undiscard_blks += di.len; 1340 __relocate_discard_cmd(dcc, prev_dc); 1341 di = prev_dc->di; 1342 tdc = prev_dc; 1343 merged = true; 1344 } 1345 1346 if (next_dc && next_dc->state == D_PREP && 1347 next_dc->bdev == bdev && 1348 __is_discard_front_mergeable(&di, &next_dc->di, 1349 max_discard_blocks)) { 1350 next_dc->di.lstart = di.lstart; 1351 next_dc->di.len += di.len; 1352 next_dc->di.start = di.start; 1353 dcc->undiscard_blks += di.len; 1354 __relocate_discard_cmd(dcc, next_dc); 1355 if (tdc) 1356 __remove_discard_cmd(sbi, tdc); 1357 merged = true; 1358 } 1359 1360 if (!merged) { 1361 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1362 di.len, NULL, NULL); 1363 } 1364 next: 1365 prev_dc = next_dc; 1366 if (!prev_dc) 1367 break; 1368 1369 node = rb_next(&prev_dc->rb_node); 1370 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1371 } 1372 } 1373 1374 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1375 struct block_device *bdev, block_t blkstart, block_t blklen) 1376 { 1377 block_t lblkstart = blkstart; 1378 1379 if (!f2fs_bdev_support_discard(bdev)) 1380 return 0; 1381 1382 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1383 1384 if (f2fs_is_multi_device(sbi)) { 1385 int devi = f2fs_target_device_index(sbi, blkstart); 1386 1387 blkstart -= FDEV(devi).start_blk; 1388 } 1389 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1390 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1391 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1392 return 0; 1393 } 1394 1395 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1396 struct discard_policy *dpolicy) 1397 { 1398 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1399 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1400 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1401 struct discard_cmd *dc; 1402 struct blk_plug plug; 1403 unsigned int pos = dcc->next_pos; 1404 unsigned int issued = 0; 1405 bool io_interrupted = false; 1406 1407 mutex_lock(&dcc->cmd_lock); 1408 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1409 NULL, pos, 1410 (struct rb_entry **)&prev_dc, 1411 (struct rb_entry **)&next_dc, 1412 &insert_p, &insert_parent, true, NULL); 1413 if (!dc) 1414 dc = next_dc; 1415 1416 blk_start_plug(&plug); 1417 1418 while (dc) { 1419 struct rb_node *node; 1420 int err = 0; 1421 1422 if (dc->state != D_PREP) 1423 goto next; 1424 1425 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1426 io_interrupted = true; 1427 break; 1428 } 1429 1430 dcc->next_pos = dc->lstart + dc->len; 1431 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1432 1433 if (issued >= dpolicy->max_requests) 1434 break; 1435 next: 1436 node = rb_next(&dc->rb_node); 1437 if (err) 1438 __remove_discard_cmd(sbi, dc); 1439 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1440 } 1441 1442 blk_finish_plug(&plug); 1443 1444 if (!dc) 1445 dcc->next_pos = 0; 1446 1447 mutex_unlock(&dcc->cmd_lock); 1448 1449 if (!issued && io_interrupted) 1450 issued = -1; 1451 1452 return issued; 1453 } 1454 1455 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1456 struct discard_policy *dpolicy) 1457 { 1458 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1459 struct list_head *pend_list; 1460 struct discard_cmd *dc, *tmp; 1461 struct blk_plug plug; 1462 int i, issued = 0; 1463 bool io_interrupted = false; 1464 1465 if (dpolicy->timeout != 0) 1466 f2fs_update_time(sbi, dpolicy->timeout); 1467 1468 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1469 if (dpolicy->timeout != 0 && 1470 f2fs_time_over(sbi, dpolicy->timeout)) 1471 break; 1472 1473 if (i + 1 < dpolicy->granularity) 1474 break; 1475 1476 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1477 return __issue_discard_cmd_orderly(sbi, dpolicy); 1478 1479 pend_list = &dcc->pend_list[i]; 1480 1481 mutex_lock(&dcc->cmd_lock); 1482 if (list_empty(pend_list)) 1483 goto next; 1484 if (unlikely(dcc->rbtree_check)) 1485 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1486 &dcc->root)); 1487 blk_start_plug(&plug); 1488 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1489 f2fs_bug_on(sbi, dc->state != D_PREP); 1490 1491 if (dpolicy->timeout != 0 && 1492 f2fs_time_over(sbi, dpolicy->timeout)) 1493 break; 1494 1495 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1496 !is_idle(sbi, DISCARD_TIME)) { 1497 io_interrupted = true; 1498 break; 1499 } 1500 1501 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1502 1503 if (issued >= dpolicy->max_requests) 1504 break; 1505 } 1506 blk_finish_plug(&plug); 1507 next: 1508 mutex_unlock(&dcc->cmd_lock); 1509 1510 if (issued >= dpolicy->max_requests || io_interrupted) 1511 break; 1512 } 1513 1514 if (!issued && io_interrupted) 1515 issued = -1; 1516 1517 return issued; 1518 } 1519 1520 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1521 { 1522 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1523 struct list_head *pend_list; 1524 struct discard_cmd *dc, *tmp; 1525 int i; 1526 bool dropped = false; 1527 1528 mutex_lock(&dcc->cmd_lock); 1529 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1530 pend_list = &dcc->pend_list[i]; 1531 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1532 f2fs_bug_on(sbi, dc->state != D_PREP); 1533 __remove_discard_cmd(sbi, dc); 1534 dropped = true; 1535 } 1536 } 1537 mutex_unlock(&dcc->cmd_lock); 1538 1539 return dropped; 1540 } 1541 1542 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1543 { 1544 __drop_discard_cmd(sbi); 1545 } 1546 1547 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1548 struct discard_cmd *dc) 1549 { 1550 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1551 unsigned int len = 0; 1552 1553 wait_for_completion_io(&dc->wait); 1554 mutex_lock(&dcc->cmd_lock); 1555 f2fs_bug_on(sbi, dc->state != D_DONE); 1556 dc->ref--; 1557 if (!dc->ref) { 1558 if (!dc->error) 1559 len = dc->len; 1560 __remove_discard_cmd(sbi, dc); 1561 } 1562 mutex_unlock(&dcc->cmd_lock); 1563 1564 return len; 1565 } 1566 1567 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1568 struct discard_policy *dpolicy, 1569 block_t start, block_t end) 1570 { 1571 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1572 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1573 &(dcc->fstrim_list) : &(dcc->wait_list); 1574 struct discard_cmd *dc, *tmp; 1575 bool need_wait; 1576 unsigned int trimmed = 0; 1577 1578 next: 1579 need_wait = false; 1580 1581 mutex_lock(&dcc->cmd_lock); 1582 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1583 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1584 continue; 1585 if (dc->len < dpolicy->granularity) 1586 continue; 1587 if (dc->state == D_DONE && !dc->ref) { 1588 wait_for_completion_io(&dc->wait); 1589 if (!dc->error) 1590 trimmed += dc->len; 1591 __remove_discard_cmd(sbi, dc); 1592 } else { 1593 dc->ref++; 1594 need_wait = true; 1595 break; 1596 } 1597 } 1598 mutex_unlock(&dcc->cmd_lock); 1599 1600 if (need_wait) { 1601 trimmed += __wait_one_discard_bio(sbi, dc); 1602 goto next; 1603 } 1604 1605 return trimmed; 1606 } 1607 1608 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1609 struct discard_policy *dpolicy) 1610 { 1611 struct discard_policy dp; 1612 unsigned int discard_blks; 1613 1614 if (dpolicy) 1615 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1616 1617 /* wait all */ 1618 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1619 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1620 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1621 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1622 1623 return discard_blks; 1624 } 1625 1626 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1627 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1628 { 1629 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1630 struct discard_cmd *dc; 1631 bool need_wait = false; 1632 1633 mutex_lock(&dcc->cmd_lock); 1634 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1635 NULL, blkaddr); 1636 if (dc) { 1637 if (dc->state == D_PREP) { 1638 __punch_discard_cmd(sbi, dc, blkaddr); 1639 } else { 1640 dc->ref++; 1641 need_wait = true; 1642 } 1643 } 1644 mutex_unlock(&dcc->cmd_lock); 1645 1646 if (need_wait) 1647 __wait_one_discard_bio(sbi, dc); 1648 } 1649 1650 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1651 { 1652 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1653 1654 if (dcc && dcc->f2fs_issue_discard) { 1655 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1656 1657 dcc->f2fs_issue_discard = NULL; 1658 kthread_stop(discard_thread); 1659 } 1660 } 1661 1662 /* This comes from f2fs_put_super */ 1663 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1664 { 1665 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1666 struct discard_policy dpolicy; 1667 bool dropped; 1668 1669 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1670 dcc->discard_granularity); 1671 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT; 1672 __issue_discard_cmd(sbi, &dpolicy); 1673 dropped = __drop_discard_cmd(sbi); 1674 1675 /* just to make sure there is no pending discard commands */ 1676 __wait_all_discard_cmd(sbi, NULL); 1677 1678 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1679 return dropped; 1680 } 1681 1682 static int issue_discard_thread(void *data) 1683 { 1684 struct f2fs_sb_info *sbi = data; 1685 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1686 wait_queue_head_t *q = &dcc->discard_wait_queue; 1687 struct discard_policy dpolicy; 1688 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1689 int issued; 1690 1691 set_freezable(); 1692 1693 do { 1694 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1695 dcc->discard_granularity); 1696 1697 wait_event_interruptible_timeout(*q, 1698 kthread_should_stop() || freezing(current) || 1699 dcc->discard_wake, 1700 msecs_to_jiffies(wait_ms)); 1701 1702 if (dcc->discard_wake) 1703 dcc->discard_wake = 0; 1704 1705 /* clean up pending candidates before going to sleep */ 1706 if (atomic_read(&dcc->queued_discard)) 1707 __wait_all_discard_cmd(sbi, NULL); 1708 1709 if (try_to_freeze()) 1710 continue; 1711 if (f2fs_readonly(sbi->sb)) 1712 continue; 1713 if (kthread_should_stop()) 1714 return 0; 1715 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1716 wait_ms = dpolicy.max_interval; 1717 continue; 1718 } 1719 1720 if (sbi->gc_mode == GC_URGENT) 1721 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1722 1723 sb_start_intwrite(sbi->sb); 1724 1725 issued = __issue_discard_cmd(sbi, &dpolicy); 1726 if (issued > 0) { 1727 __wait_all_discard_cmd(sbi, &dpolicy); 1728 wait_ms = dpolicy.min_interval; 1729 } else if (issued == -1){ 1730 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1731 if (!wait_ms) 1732 wait_ms = dpolicy.mid_interval; 1733 } else { 1734 wait_ms = dpolicy.max_interval; 1735 } 1736 1737 sb_end_intwrite(sbi->sb); 1738 1739 } while (!kthread_should_stop()); 1740 return 0; 1741 } 1742 1743 #ifdef CONFIG_BLK_DEV_ZONED 1744 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1745 struct block_device *bdev, block_t blkstart, block_t blklen) 1746 { 1747 sector_t sector, nr_sects; 1748 block_t lblkstart = blkstart; 1749 int devi = 0; 1750 1751 if (f2fs_is_multi_device(sbi)) { 1752 devi = f2fs_target_device_index(sbi, blkstart); 1753 if (blkstart < FDEV(devi).start_blk || 1754 blkstart > FDEV(devi).end_blk) { 1755 f2fs_err(sbi, "Invalid block %x", blkstart); 1756 return -EIO; 1757 } 1758 blkstart -= FDEV(devi).start_blk; 1759 } 1760 1761 /* For sequential zones, reset the zone write pointer */ 1762 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1763 sector = SECTOR_FROM_BLOCK(blkstart); 1764 nr_sects = SECTOR_FROM_BLOCK(blklen); 1765 1766 if (sector & (bdev_zone_sectors(bdev) - 1) || 1767 nr_sects != bdev_zone_sectors(bdev)) { 1768 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1769 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1770 blkstart, blklen); 1771 return -EIO; 1772 } 1773 trace_f2fs_issue_reset_zone(bdev, blkstart); 1774 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1775 sector, nr_sects, GFP_NOFS); 1776 } 1777 1778 /* For conventional zones, use regular discard if supported */ 1779 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1780 } 1781 #endif 1782 1783 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1784 struct block_device *bdev, block_t blkstart, block_t blklen) 1785 { 1786 #ifdef CONFIG_BLK_DEV_ZONED 1787 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1788 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1789 #endif 1790 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1791 } 1792 1793 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1794 block_t blkstart, block_t blklen) 1795 { 1796 sector_t start = blkstart, len = 0; 1797 struct block_device *bdev; 1798 struct seg_entry *se; 1799 unsigned int offset; 1800 block_t i; 1801 int err = 0; 1802 1803 bdev = f2fs_target_device(sbi, blkstart, NULL); 1804 1805 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1806 if (i != start) { 1807 struct block_device *bdev2 = 1808 f2fs_target_device(sbi, i, NULL); 1809 1810 if (bdev2 != bdev) { 1811 err = __issue_discard_async(sbi, bdev, 1812 start, len); 1813 if (err) 1814 return err; 1815 bdev = bdev2; 1816 start = i; 1817 len = 0; 1818 } 1819 } 1820 1821 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1822 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1823 1824 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1825 sbi->discard_blks--; 1826 } 1827 1828 if (len) 1829 err = __issue_discard_async(sbi, bdev, start, len); 1830 return err; 1831 } 1832 1833 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1834 bool check_only) 1835 { 1836 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1837 int max_blocks = sbi->blocks_per_seg; 1838 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1839 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1840 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1841 unsigned long *discard_map = (unsigned long *)se->discard_map; 1842 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1843 unsigned int start = 0, end = -1; 1844 bool force = (cpc->reason & CP_DISCARD); 1845 struct discard_entry *de = NULL; 1846 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1847 int i; 1848 1849 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1850 return false; 1851 1852 if (!force) { 1853 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1854 SM_I(sbi)->dcc_info->nr_discards >= 1855 SM_I(sbi)->dcc_info->max_discards) 1856 return false; 1857 } 1858 1859 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1860 for (i = 0; i < entries; i++) 1861 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1862 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1863 1864 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1865 SM_I(sbi)->dcc_info->max_discards) { 1866 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1867 if (start >= max_blocks) 1868 break; 1869 1870 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1871 if (force && start && end != max_blocks 1872 && (end - start) < cpc->trim_minlen) 1873 continue; 1874 1875 if (check_only) 1876 return true; 1877 1878 if (!de) { 1879 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1880 GFP_F2FS_ZERO); 1881 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1882 list_add_tail(&de->list, head); 1883 } 1884 1885 for (i = start; i < end; i++) 1886 __set_bit_le(i, (void *)de->discard_map); 1887 1888 SM_I(sbi)->dcc_info->nr_discards += end - start; 1889 } 1890 return false; 1891 } 1892 1893 static void release_discard_addr(struct discard_entry *entry) 1894 { 1895 list_del(&entry->list); 1896 kmem_cache_free(discard_entry_slab, entry); 1897 } 1898 1899 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1900 { 1901 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1902 struct discard_entry *entry, *this; 1903 1904 /* drop caches */ 1905 list_for_each_entry_safe(entry, this, head, list) 1906 release_discard_addr(entry); 1907 } 1908 1909 /* 1910 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1911 */ 1912 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1913 { 1914 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1915 unsigned int segno; 1916 1917 mutex_lock(&dirty_i->seglist_lock); 1918 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1919 __set_test_and_free(sbi, segno); 1920 mutex_unlock(&dirty_i->seglist_lock); 1921 } 1922 1923 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1924 struct cp_control *cpc) 1925 { 1926 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1927 struct list_head *head = &dcc->entry_list; 1928 struct discard_entry *entry, *this; 1929 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1930 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1931 unsigned int start = 0, end = -1; 1932 unsigned int secno, start_segno; 1933 bool force = (cpc->reason & CP_DISCARD); 1934 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 1935 1936 mutex_lock(&dirty_i->seglist_lock); 1937 1938 while (1) { 1939 int i; 1940 1941 if (need_align && end != -1) 1942 end--; 1943 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1944 if (start >= MAIN_SEGS(sbi)) 1945 break; 1946 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1947 start + 1); 1948 1949 if (need_align) { 1950 start = rounddown(start, sbi->segs_per_sec); 1951 end = roundup(end, sbi->segs_per_sec); 1952 } 1953 1954 for (i = start; i < end; i++) { 1955 if (test_and_clear_bit(i, prefree_map)) 1956 dirty_i->nr_dirty[PRE]--; 1957 } 1958 1959 if (!f2fs_realtime_discard_enable(sbi)) 1960 continue; 1961 1962 if (force && start >= cpc->trim_start && 1963 (end - 1) <= cpc->trim_end) 1964 continue; 1965 1966 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) { 1967 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1968 (end - start) << sbi->log_blocks_per_seg); 1969 continue; 1970 } 1971 next: 1972 secno = GET_SEC_FROM_SEG(sbi, start); 1973 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1974 if (!IS_CURSEC(sbi, secno) && 1975 !get_valid_blocks(sbi, start, true)) 1976 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1977 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1978 1979 start = start_segno + sbi->segs_per_sec; 1980 if (start < end) 1981 goto next; 1982 else 1983 end = start - 1; 1984 } 1985 mutex_unlock(&dirty_i->seglist_lock); 1986 1987 /* send small discards */ 1988 list_for_each_entry_safe(entry, this, head, list) { 1989 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1990 bool is_valid = test_bit_le(0, entry->discard_map); 1991 1992 find_next: 1993 if (is_valid) { 1994 next_pos = find_next_zero_bit_le(entry->discard_map, 1995 sbi->blocks_per_seg, cur_pos); 1996 len = next_pos - cur_pos; 1997 1998 if (f2fs_sb_has_blkzoned(sbi) || 1999 (force && len < cpc->trim_minlen)) 2000 goto skip; 2001 2002 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2003 len); 2004 total_len += len; 2005 } else { 2006 next_pos = find_next_bit_le(entry->discard_map, 2007 sbi->blocks_per_seg, cur_pos); 2008 } 2009 skip: 2010 cur_pos = next_pos; 2011 is_valid = !is_valid; 2012 2013 if (cur_pos < sbi->blocks_per_seg) 2014 goto find_next; 2015 2016 release_discard_addr(entry); 2017 dcc->nr_discards -= total_len; 2018 } 2019 2020 wake_up_discard_thread(sbi, false); 2021 } 2022 2023 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2024 { 2025 dev_t dev = sbi->sb->s_bdev->bd_dev; 2026 struct discard_cmd_control *dcc; 2027 int err = 0, i; 2028 2029 if (SM_I(sbi)->dcc_info) { 2030 dcc = SM_I(sbi)->dcc_info; 2031 goto init_thread; 2032 } 2033 2034 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2035 if (!dcc) 2036 return -ENOMEM; 2037 2038 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2039 INIT_LIST_HEAD(&dcc->entry_list); 2040 for (i = 0; i < MAX_PLIST_NUM; i++) 2041 INIT_LIST_HEAD(&dcc->pend_list[i]); 2042 INIT_LIST_HEAD(&dcc->wait_list); 2043 INIT_LIST_HEAD(&dcc->fstrim_list); 2044 mutex_init(&dcc->cmd_lock); 2045 atomic_set(&dcc->issued_discard, 0); 2046 atomic_set(&dcc->queued_discard, 0); 2047 atomic_set(&dcc->discard_cmd_cnt, 0); 2048 dcc->nr_discards = 0; 2049 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2050 dcc->undiscard_blks = 0; 2051 dcc->next_pos = 0; 2052 dcc->root = RB_ROOT_CACHED; 2053 dcc->rbtree_check = false; 2054 2055 init_waitqueue_head(&dcc->discard_wait_queue); 2056 SM_I(sbi)->dcc_info = dcc; 2057 init_thread: 2058 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2059 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2060 if (IS_ERR(dcc->f2fs_issue_discard)) { 2061 err = PTR_ERR(dcc->f2fs_issue_discard); 2062 kvfree(dcc); 2063 SM_I(sbi)->dcc_info = NULL; 2064 return err; 2065 } 2066 2067 return err; 2068 } 2069 2070 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2071 { 2072 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2073 2074 if (!dcc) 2075 return; 2076 2077 f2fs_stop_discard_thread(sbi); 2078 2079 /* 2080 * Recovery can cache discard commands, so in error path of 2081 * fill_super(), it needs to give a chance to handle them. 2082 */ 2083 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2084 f2fs_issue_discard_timeout(sbi); 2085 2086 kvfree(dcc); 2087 SM_I(sbi)->dcc_info = NULL; 2088 } 2089 2090 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2091 { 2092 struct sit_info *sit_i = SIT_I(sbi); 2093 2094 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2095 sit_i->dirty_sentries++; 2096 return false; 2097 } 2098 2099 return true; 2100 } 2101 2102 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2103 unsigned int segno, int modified) 2104 { 2105 struct seg_entry *se = get_seg_entry(sbi, segno); 2106 se->type = type; 2107 if (modified) 2108 __mark_sit_entry_dirty(sbi, segno); 2109 } 2110 2111 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2112 { 2113 struct seg_entry *se; 2114 unsigned int segno, offset; 2115 long int new_vblocks; 2116 bool exist; 2117 #ifdef CONFIG_F2FS_CHECK_FS 2118 bool mir_exist; 2119 #endif 2120 2121 segno = GET_SEGNO(sbi, blkaddr); 2122 2123 se = get_seg_entry(sbi, segno); 2124 new_vblocks = se->valid_blocks + del; 2125 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2126 2127 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 2128 (new_vblocks > sbi->blocks_per_seg))); 2129 2130 se->valid_blocks = new_vblocks; 2131 se->mtime = get_mtime(sbi, false); 2132 if (se->mtime > SIT_I(sbi)->max_mtime) 2133 SIT_I(sbi)->max_mtime = se->mtime; 2134 2135 /* Update valid block bitmap */ 2136 if (del > 0) { 2137 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2138 #ifdef CONFIG_F2FS_CHECK_FS 2139 mir_exist = f2fs_test_and_set_bit(offset, 2140 se->cur_valid_map_mir); 2141 if (unlikely(exist != mir_exist)) { 2142 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2143 blkaddr, exist); 2144 f2fs_bug_on(sbi, 1); 2145 } 2146 #endif 2147 if (unlikely(exist)) { 2148 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2149 blkaddr); 2150 f2fs_bug_on(sbi, 1); 2151 se->valid_blocks--; 2152 del = 0; 2153 } 2154 2155 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2156 sbi->discard_blks--; 2157 2158 /* 2159 * SSR should never reuse block which is checkpointed 2160 * or newly invalidated. 2161 */ 2162 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2163 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2164 se->ckpt_valid_blocks++; 2165 } 2166 } else { 2167 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2168 #ifdef CONFIG_F2FS_CHECK_FS 2169 mir_exist = f2fs_test_and_clear_bit(offset, 2170 se->cur_valid_map_mir); 2171 if (unlikely(exist != mir_exist)) { 2172 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2173 blkaddr, exist); 2174 f2fs_bug_on(sbi, 1); 2175 } 2176 #endif 2177 if (unlikely(!exist)) { 2178 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2179 blkaddr); 2180 f2fs_bug_on(sbi, 1); 2181 se->valid_blocks++; 2182 del = 0; 2183 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2184 /* 2185 * If checkpoints are off, we must not reuse data that 2186 * was used in the previous checkpoint. If it was used 2187 * before, we must track that to know how much space we 2188 * really have. 2189 */ 2190 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2191 spin_lock(&sbi->stat_lock); 2192 sbi->unusable_block_count++; 2193 spin_unlock(&sbi->stat_lock); 2194 } 2195 } 2196 2197 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2198 sbi->discard_blks++; 2199 } 2200 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2201 se->ckpt_valid_blocks += del; 2202 2203 __mark_sit_entry_dirty(sbi, segno); 2204 2205 /* update total number of valid blocks to be written in ckpt area */ 2206 SIT_I(sbi)->written_valid_blocks += del; 2207 2208 if (__is_large_section(sbi)) 2209 get_sec_entry(sbi, segno)->valid_blocks += del; 2210 } 2211 2212 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2213 { 2214 unsigned int segno = GET_SEGNO(sbi, addr); 2215 struct sit_info *sit_i = SIT_I(sbi); 2216 2217 f2fs_bug_on(sbi, addr == NULL_ADDR); 2218 if (addr == NEW_ADDR) 2219 return; 2220 2221 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2222 2223 /* add it into sit main buffer */ 2224 down_write(&sit_i->sentry_lock); 2225 2226 update_sit_entry(sbi, addr, -1); 2227 2228 /* add it into dirty seglist */ 2229 locate_dirty_segment(sbi, segno); 2230 2231 up_write(&sit_i->sentry_lock); 2232 } 2233 2234 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2235 { 2236 struct sit_info *sit_i = SIT_I(sbi); 2237 unsigned int segno, offset; 2238 struct seg_entry *se; 2239 bool is_cp = false; 2240 2241 if (!__is_valid_data_blkaddr(blkaddr)) 2242 return true; 2243 2244 down_read(&sit_i->sentry_lock); 2245 2246 segno = GET_SEGNO(sbi, blkaddr); 2247 se = get_seg_entry(sbi, segno); 2248 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2249 2250 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2251 is_cp = true; 2252 2253 up_read(&sit_i->sentry_lock); 2254 2255 return is_cp; 2256 } 2257 2258 /* 2259 * This function should be resided under the curseg_mutex lock 2260 */ 2261 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2262 struct f2fs_summary *sum) 2263 { 2264 struct curseg_info *curseg = CURSEG_I(sbi, type); 2265 void *addr = curseg->sum_blk; 2266 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2267 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2268 } 2269 2270 /* 2271 * Calculate the number of current summary pages for writing 2272 */ 2273 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2274 { 2275 int valid_sum_count = 0; 2276 int i, sum_in_page; 2277 2278 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2279 if (sbi->ckpt->alloc_type[i] == SSR) 2280 valid_sum_count += sbi->blocks_per_seg; 2281 else { 2282 if (for_ra) 2283 valid_sum_count += le16_to_cpu( 2284 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2285 else 2286 valid_sum_count += curseg_blkoff(sbi, i); 2287 } 2288 } 2289 2290 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2291 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2292 if (valid_sum_count <= sum_in_page) 2293 return 1; 2294 else if ((valid_sum_count - sum_in_page) <= 2295 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2296 return 2; 2297 return 3; 2298 } 2299 2300 /* 2301 * Caller should put this summary page 2302 */ 2303 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2304 { 2305 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); 2306 } 2307 2308 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2309 void *src, block_t blk_addr) 2310 { 2311 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2312 2313 memcpy(page_address(page), src, PAGE_SIZE); 2314 set_page_dirty(page); 2315 f2fs_put_page(page, 1); 2316 } 2317 2318 static void write_sum_page(struct f2fs_sb_info *sbi, 2319 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2320 { 2321 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2322 } 2323 2324 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2325 int type, block_t blk_addr) 2326 { 2327 struct curseg_info *curseg = CURSEG_I(sbi, type); 2328 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2329 struct f2fs_summary_block *src = curseg->sum_blk; 2330 struct f2fs_summary_block *dst; 2331 2332 dst = (struct f2fs_summary_block *)page_address(page); 2333 memset(dst, 0, PAGE_SIZE); 2334 2335 mutex_lock(&curseg->curseg_mutex); 2336 2337 down_read(&curseg->journal_rwsem); 2338 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2339 up_read(&curseg->journal_rwsem); 2340 2341 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2342 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2343 2344 mutex_unlock(&curseg->curseg_mutex); 2345 2346 set_page_dirty(page); 2347 f2fs_put_page(page, 1); 2348 } 2349 2350 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2351 { 2352 struct curseg_info *curseg = CURSEG_I(sbi, type); 2353 unsigned int segno = curseg->segno + 1; 2354 struct free_segmap_info *free_i = FREE_I(sbi); 2355 2356 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2357 return !test_bit(segno, free_i->free_segmap); 2358 return 0; 2359 } 2360 2361 /* 2362 * Find a new segment from the free segments bitmap to right order 2363 * This function should be returned with success, otherwise BUG 2364 */ 2365 static void get_new_segment(struct f2fs_sb_info *sbi, 2366 unsigned int *newseg, bool new_sec, int dir) 2367 { 2368 struct free_segmap_info *free_i = FREE_I(sbi); 2369 unsigned int segno, secno, zoneno; 2370 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2371 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2372 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2373 unsigned int left_start = hint; 2374 bool init = true; 2375 int go_left = 0; 2376 int i; 2377 2378 spin_lock(&free_i->segmap_lock); 2379 2380 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2381 segno = find_next_zero_bit(free_i->free_segmap, 2382 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2383 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2384 goto got_it; 2385 } 2386 find_other_zone: 2387 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2388 if (secno >= MAIN_SECS(sbi)) { 2389 if (dir == ALLOC_RIGHT) { 2390 secno = find_next_zero_bit(free_i->free_secmap, 2391 MAIN_SECS(sbi), 0); 2392 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2393 } else { 2394 go_left = 1; 2395 left_start = hint - 1; 2396 } 2397 } 2398 if (go_left == 0) 2399 goto skip_left; 2400 2401 while (test_bit(left_start, free_i->free_secmap)) { 2402 if (left_start > 0) { 2403 left_start--; 2404 continue; 2405 } 2406 left_start = find_next_zero_bit(free_i->free_secmap, 2407 MAIN_SECS(sbi), 0); 2408 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2409 break; 2410 } 2411 secno = left_start; 2412 skip_left: 2413 segno = GET_SEG_FROM_SEC(sbi, secno); 2414 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2415 2416 /* give up on finding another zone */ 2417 if (!init) 2418 goto got_it; 2419 if (sbi->secs_per_zone == 1) 2420 goto got_it; 2421 if (zoneno == old_zoneno) 2422 goto got_it; 2423 if (dir == ALLOC_LEFT) { 2424 if (!go_left && zoneno + 1 >= total_zones) 2425 goto got_it; 2426 if (go_left && zoneno == 0) 2427 goto got_it; 2428 } 2429 for (i = 0; i < NR_CURSEG_TYPE; i++) 2430 if (CURSEG_I(sbi, i)->zone == zoneno) 2431 break; 2432 2433 if (i < NR_CURSEG_TYPE) { 2434 /* zone is in user, try another */ 2435 if (go_left) 2436 hint = zoneno * sbi->secs_per_zone - 1; 2437 else if (zoneno + 1 >= total_zones) 2438 hint = 0; 2439 else 2440 hint = (zoneno + 1) * sbi->secs_per_zone; 2441 init = false; 2442 goto find_other_zone; 2443 } 2444 got_it: 2445 /* set it as dirty segment in free segmap */ 2446 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2447 __set_inuse(sbi, segno); 2448 *newseg = segno; 2449 spin_unlock(&free_i->segmap_lock); 2450 } 2451 2452 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2453 { 2454 struct curseg_info *curseg = CURSEG_I(sbi, type); 2455 struct summary_footer *sum_footer; 2456 2457 curseg->segno = curseg->next_segno; 2458 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2459 curseg->next_blkoff = 0; 2460 curseg->next_segno = NULL_SEGNO; 2461 2462 sum_footer = &(curseg->sum_blk->footer); 2463 memset(sum_footer, 0, sizeof(struct summary_footer)); 2464 if (IS_DATASEG(type)) 2465 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2466 if (IS_NODESEG(type)) 2467 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2468 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2469 } 2470 2471 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2472 { 2473 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2474 if (__is_large_section(sbi)) 2475 return CURSEG_I(sbi, type)->segno; 2476 2477 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2478 return 0; 2479 2480 if (test_opt(sbi, NOHEAP) && 2481 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2482 return 0; 2483 2484 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2485 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2486 2487 /* find segments from 0 to reuse freed segments */ 2488 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2489 return 0; 2490 2491 return CURSEG_I(sbi, type)->segno; 2492 } 2493 2494 /* 2495 * Allocate a current working segment. 2496 * This function always allocates a free segment in LFS manner. 2497 */ 2498 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2499 { 2500 struct curseg_info *curseg = CURSEG_I(sbi, type); 2501 unsigned int segno = curseg->segno; 2502 int dir = ALLOC_LEFT; 2503 2504 write_sum_page(sbi, curseg->sum_blk, 2505 GET_SUM_BLOCK(sbi, segno)); 2506 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2507 dir = ALLOC_RIGHT; 2508 2509 if (test_opt(sbi, NOHEAP)) 2510 dir = ALLOC_RIGHT; 2511 2512 segno = __get_next_segno(sbi, type); 2513 get_new_segment(sbi, &segno, new_sec, dir); 2514 curseg->next_segno = segno; 2515 reset_curseg(sbi, type, 1); 2516 curseg->alloc_type = LFS; 2517 } 2518 2519 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2520 struct curseg_info *seg, block_t start) 2521 { 2522 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2523 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2524 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2525 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2526 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2527 int i, pos; 2528 2529 for (i = 0; i < entries; i++) 2530 target_map[i] = ckpt_map[i] | cur_map[i]; 2531 2532 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2533 2534 seg->next_blkoff = pos; 2535 } 2536 2537 /* 2538 * If a segment is written by LFS manner, next block offset is just obtained 2539 * by increasing the current block offset. However, if a segment is written by 2540 * SSR manner, next block offset obtained by calling __next_free_blkoff 2541 */ 2542 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2543 struct curseg_info *seg) 2544 { 2545 if (seg->alloc_type == SSR) 2546 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2547 else 2548 seg->next_blkoff++; 2549 } 2550 2551 /* 2552 * This function always allocates a used segment(from dirty seglist) by SSR 2553 * manner, so it should recover the existing segment information of valid blocks 2554 */ 2555 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2556 { 2557 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2558 struct curseg_info *curseg = CURSEG_I(sbi, type); 2559 unsigned int new_segno = curseg->next_segno; 2560 struct f2fs_summary_block *sum_node; 2561 struct page *sum_page; 2562 2563 write_sum_page(sbi, curseg->sum_blk, 2564 GET_SUM_BLOCK(sbi, curseg->segno)); 2565 __set_test_and_inuse(sbi, new_segno); 2566 2567 mutex_lock(&dirty_i->seglist_lock); 2568 __remove_dirty_segment(sbi, new_segno, PRE); 2569 __remove_dirty_segment(sbi, new_segno, DIRTY); 2570 mutex_unlock(&dirty_i->seglist_lock); 2571 2572 reset_curseg(sbi, type, 1); 2573 curseg->alloc_type = SSR; 2574 __next_free_blkoff(sbi, curseg, 0); 2575 2576 sum_page = f2fs_get_sum_page(sbi, new_segno); 2577 f2fs_bug_on(sbi, IS_ERR(sum_page)); 2578 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2579 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2580 f2fs_put_page(sum_page, 1); 2581 } 2582 2583 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2584 { 2585 struct curseg_info *curseg = CURSEG_I(sbi, type); 2586 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2587 unsigned segno = NULL_SEGNO; 2588 int i, cnt; 2589 bool reversed = false; 2590 2591 /* f2fs_need_SSR() already forces to do this */ 2592 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2593 curseg->next_segno = segno; 2594 return 1; 2595 } 2596 2597 /* For node segments, let's do SSR more intensively */ 2598 if (IS_NODESEG(type)) { 2599 if (type >= CURSEG_WARM_NODE) { 2600 reversed = true; 2601 i = CURSEG_COLD_NODE; 2602 } else { 2603 i = CURSEG_HOT_NODE; 2604 } 2605 cnt = NR_CURSEG_NODE_TYPE; 2606 } else { 2607 if (type >= CURSEG_WARM_DATA) { 2608 reversed = true; 2609 i = CURSEG_COLD_DATA; 2610 } else { 2611 i = CURSEG_HOT_DATA; 2612 } 2613 cnt = NR_CURSEG_DATA_TYPE; 2614 } 2615 2616 for (; cnt-- > 0; reversed ? i-- : i++) { 2617 if (i == type) 2618 continue; 2619 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2620 curseg->next_segno = segno; 2621 return 1; 2622 } 2623 } 2624 2625 /* find valid_blocks=0 in dirty list */ 2626 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2627 segno = get_free_segment(sbi); 2628 if (segno != NULL_SEGNO) { 2629 curseg->next_segno = segno; 2630 return 1; 2631 } 2632 } 2633 return 0; 2634 } 2635 2636 /* 2637 * flush out current segment and replace it with new segment 2638 * This function should be returned with success, otherwise BUG 2639 */ 2640 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2641 int type, bool force) 2642 { 2643 struct curseg_info *curseg = CURSEG_I(sbi, type); 2644 2645 if (force) 2646 new_curseg(sbi, type, true); 2647 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2648 type == CURSEG_WARM_NODE) 2649 new_curseg(sbi, type, false); 2650 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && 2651 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2652 new_curseg(sbi, type, false); 2653 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2654 change_curseg(sbi, type); 2655 else 2656 new_curseg(sbi, type, false); 2657 2658 stat_inc_seg_type(sbi, curseg); 2659 } 2660 2661 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2662 unsigned int start, unsigned int end) 2663 { 2664 struct curseg_info *curseg = CURSEG_I(sbi, type); 2665 unsigned int segno; 2666 2667 down_read(&SM_I(sbi)->curseg_lock); 2668 mutex_lock(&curseg->curseg_mutex); 2669 down_write(&SIT_I(sbi)->sentry_lock); 2670 2671 segno = CURSEG_I(sbi, type)->segno; 2672 if (segno < start || segno > end) 2673 goto unlock; 2674 2675 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2676 change_curseg(sbi, type); 2677 else 2678 new_curseg(sbi, type, true); 2679 2680 stat_inc_seg_type(sbi, curseg); 2681 2682 locate_dirty_segment(sbi, segno); 2683 unlock: 2684 up_write(&SIT_I(sbi)->sentry_lock); 2685 2686 if (segno != curseg->segno) 2687 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2688 type, segno, curseg->segno); 2689 2690 mutex_unlock(&curseg->curseg_mutex); 2691 up_read(&SM_I(sbi)->curseg_lock); 2692 } 2693 2694 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2695 { 2696 struct curseg_info *curseg; 2697 unsigned int old_segno; 2698 int i; 2699 2700 down_write(&SIT_I(sbi)->sentry_lock); 2701 2702 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2703 curseg = CURSEG_I(sbi, i); 2704 old_segno = curseg->segno; 2705 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2706 locate_dirty_segment(sbi, old_segno); 2707 } 2708 2709 up_write(&SIT_I(sbi)->sentry_lock); 2710 } 2711 2712 static const struct segment_allocation default_salloc_ops = { 2713 .allocate_segment = allocate_segment_by_default, 2714 }; 2715 2716 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2717 struct cp_control *cpc) 2718 { 2719 __u64 trim_start = cpc->trim_start; 2720 bool has_candidate = false; 2721 2722 down_write(&SIT_I(sbi)->sentry_lock); 2723 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2724 if (add_discard_addrs(sbi, cpc, true)) { 2725 has_candidate = true; 2726 break; 2727 } 2728 } 2729 up_write(&SIT_I(sbi)->sentry_lock); 2730 2731 cpc->trim_start = trim_start; 2732 return has_candidate; 2733 } 2734 2735 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2736 struct discard_policy *dpolicy, 2737 unsigned int start, unsigned int end) 2738 { 2739 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2740 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2741 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2742 struct discard_cmd *dc; 2743 struct blk_plug plug; 2744 int issued; 2745 unsigned int trimmed = 0; 2746 2747 next: 2748 issued = 0; 2749 2750 mutex_lock(&dcc->cmd_lock); 2751 if (unlikely(dcc->rbtree_check)) 2752 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2753 &dcc->root)); 2754 2755 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2756 NULL, start, 2757 (struct rb_entry **)&prev_dc, 2758 (struct rb_entry **)&next_dc, 2759 &insert_p, &insert_parent, true, NULL); 2760 if (!dc) 2761 dc = next_dc; 2762 2763 blk_start_plug(&plug); 2764 2765 while (dc && dc->lstart <= end) { 2766 struct rb_node *node; 2767 int err = 0; 2768 2769 if (dc->len < dpolicy->granularity) 2770 goto skip; 2771 2772 if (dc->state != D_PREP) { 2773 list_move_tail(&dc->list, &dcc->fstrim_list); 2774 goto skip; 2775 } 2776 2777 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2778 2779 if (issued >= dpolicy->max_requests) { 2780 start = dc->lstart + dc->len; 2781 2782 if (err) 2783 __remove_discard_cmd(sbi, dc); 2784 2785 blk_finish_plug(&plug); 2786 mutex_unlock(&dcc->cmd_lock); 2787 trimmed += __wait_all_discard_cmd(sbi, NULL); 2788 congestion_wait(BLK_RW_ASYNC, HZ/50); 2789 goto next; 2790 } 2791 skip: 2792 node = rb_next(&dc->rb_node); 2793 if (err) 2794 __remove_discard_cmd(sbi, dc); 2795 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2796 2797 if (fatal_signal_pending(current)) 2798 break; 2799 } 2800 2801 blk_finish_plug(&plug); 2802 mutex_unlock(&dcc->cmd_lock); 2803 2804 return trimmed; 2805 } 2806 2807 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2808 { 2809 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2810 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2811 unsigned int start_segno, end_segno; 2812 block_t start_block, end_block; 2813 struct cp_control cpc; 2814 struct discard_policy dpolicy; 2815 unsigned long long trimmed = 0; 2816 int err = 0; 2817 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 2818 2819 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2820 return -EINVAL; 2821 2822 if (end < MAIN_BLKADDR(sbi)) 2823 goto out; 2824 2825 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2826 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 2827 return -EFSCORRUPTED; 2828 } 2829 2830 /* start/end segment number in main_area */ 2831 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2832 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2833 GET_SEGNO(sbi, end); 2834 if (need_align) { 2835 start_segno = rounddown(start_segno, sbi->segs_per_sec); 2836 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 2837 } 2838 2839 cpc.reason = CP_DISCARD; 2840 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2841 cpc.trim_start = start_segno; 2842 cpc.trim_end = end_segno; 2843 2844 if (sbi->discard_blks == 0) 2845 goto out; 2846 2847 mutex_lock(&sbi->gc_mutex); 2848 err = f2fs_write_checkpoint(sbi, &cpc); 2849 mutex_unlock(&sbi->gc_mutex); 2850 if (err) 2851 goto out; 2852 2853 /* 2854 * We filed discard candidates, but actually we don't need to wait for 2855 * all of them, since they'll be issued in idle time along with runtime 2856 * discard option. User configuration looks like using runtime discard 2857 * or periodic fstrim instead of it. 2858 */ 2859 if (f2fs_realtime_discard_enable(sbi)) 2860 goto out; 2861 2862 start_block = START_BLOCK(sbi, start_segno); 2863 end_block = START_BLOCK(sbi, end_segno + 1); 2864 2865 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2866 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 2867 start_block, end_block); 2868 2869 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 2870 start_block, end_block); 2871 out: 2872 if (!err) 2873 range->len = F2FS_BLK_TO_BYTES(trimmed); 2874 return err; 2875 } 2876 2877 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2878 { 2879 struct curseg_info *curseg = CURSEG_I(sbi, type); 2880 if (curseg->next_blkoff < sbi->blocks_per_seg) 2881 return true; 2882 return false; 2883 } 2884 2885 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2886 { 2887 switch (hint) { 2888 case WRITE_LIFE_SHORT: 2889 return CURSEG_HOT_DATA; 2890 case WRITE_LIFE_EXTREME: 2891 return CURSEG_COLD_DATA; 2892 default: 2893 return CURSEG_WARM_DATA; 2894 } 2895 } 2896 2897 /* This returns write hints for each segment type. This hints will be 2898 * passed down to block layer. There are mapping tables which depend on 2899 * the mount option 'whint_mode'. 2900 * 2901 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2902 * 2903 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2904 * 2905 * User F2FS Block 2906 * ---- ---- ----- 2907 * META WRITE_LIFE_NOT_SET 2908 * HOT_NODE " 2909 * WARM_NODE " 2910 * COLD_NODE " 2911 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2912 * extension list " " 2913 * 2914 * -- buffered io 2915 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2916 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2917 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2918 * WRITE_LIFE_NONE " " 2919 * WRITE_LIFE_MEDIUM " " 2920 * WRITE_LIFE_LONG " " 2921 * 2922 * -- direct io 2923 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2924 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2925 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2926 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2927 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2928 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2929 * 2930 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2931 * 2932 * User F2FS Block 2933 * ---- ---- ----- 2934 * META WRITE_LIFE_MEDIUM; 2935 * HOT_NODE WRITE_LIFE_NOT_SET 2936 * WARM_NODE " 2937 * COLD_NODE WRITE_LIFE_NONE 2938 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2939 * extension list " " 2940 * 2941 * -- buffered io 2942 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2943 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2944 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2945 * WRITE_LIFE_NONE " " 2946 * WRITE_LIFE_MEDIUM " " 2947 * WRITE_LIFE_LONG " " 2948 * 2949 * -- direct io 2950 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2951 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2952 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2953 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2954 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2955 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2956 */ 2957 2958 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2959 enum page_type type, enum temp_type temp) 2960 { 2961 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 2962 if (type == DATA) { 2963 if (temp == WARM) 2964 return WRITE_LIFE_NOT_SET; 2965 else if (temp == HOT) 2966 return WRITE_LIFE_SHORT; 2967 else if (temp == COLD) 2968 return WRITE_LIFE_EXTREME; 2969 } else { 2970 return WRITE_LIFE_NOT_SET; 2971 } 2972 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 2973 if (type == DATA) { 2974 if (temp == WARM) 2975 return WRITE_LIFE_LONG; 2976 else if (temp == HOT) 2977 return WRITE_LIFE_SHORT; 2978 else if (temp == COLD) 2979 return WRITE_LIFE_EXTREME; 2980 } else if (type == NODE) { 2981 if (temp == WARM || temp == HOT) 2982 return WRITE_LIFE_NOT_SET; 2983 else if (temp == COLD) 2984 return WRITE_LIFE_NONE; 2985 } else if (type == META) { 2986 return WRITE_LIFE_MEDIUM; 2987 } 2988 } 2989 return WRITE_LIFE_NOT_SET; 2990 } 2991 2992 static int __get_segment_type_2(struct f2fs_io_info *fio) 2993 { 2994 if (fio->type == DATA) 2995 return CURSEG_HOT_DATA; 2996 else 2997 return CURSEG_HOT_NODE; 2998 } 2999 3000 static int __get_segment_type_4(struct f2fs_io_info *fio) 3001 { 3002 if (fio->type == DATA) { 3003 struct inode *inode = fio->page->mapping->host; 3004 3005 if (S_ISDIR(inode->i_mode)) 3006 return CURSEG_HOT_DATA; 3007 else 3008 return CURSEG_COLD_DATA; 3009 } else { 3010 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3011 return CURSEG_WARM_NODE; 3012 else 3013 return CURSEG_COLD_NODE; 3014 } 3015 } 3016 3017 static int __get_segment_type_6(struct f2fs_io_info *fio) 3018 { 3019 if (fio->type == DATA) { 3020 struct inode *inode = fio->page->mapping->host; 3021 3022 if (is_cold_data(fio->page) || file_is_cold(inode)) 3023 return CURSEG_COLD_DATA; 3024 if (file_is_hot(inode) || 3025 is_inode_flag_set(inode, FI_HOT_DATA) || 3026 f2fs_is_atomic_file(inode) || 3027 f2fs_is_volatile_file(inode)) 3028 return CURSEG_HOT_DATA; 3029 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3030 } else { 3031 if (IS_DNODE(fio->page)) 3032 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3033 CURSEG_HOT_NODE; 3034 return CURSEG_COLD_NODE; 3035 } 3036 } 3037 3038 static int __get_segment_type(struct f2fs_io_info *fio) 3039 { 3040 int type = 0; 3041 3042 switch (F2FS_OPTION(fio->sbi).active_logs) { 3043 case 2: 3044 type = __get_segment_type_2(fio); 3045 break; 3046 case 4: 3047 type = __get_segment_type_4(fio); 3048 break; 3049 case 6: 3050 type = __get_segment_type_6(fio); 3051 break; 3052 default: 3053 f2fs_bug_on(fio->sbi, true); 3054 } 3055 3056 if (IS_HOT(type)) 3057 fio->temp = HOT; 3058 else if (IS_WARM(type)) 3059 fio->temp = WARM; 3060 else 3061 fio->temp = COLD; 3062 return type; 3063 } 3064 3065 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3066 block_t old_blkaddr, block_t *new_blkaddr, 3067 struct f2fs_summary *sum, int type, 3068 struct f2fs_io_info *fio, bool add_list) 3069 { 3070 struct sit_info *sit_i = SIT_I(sbi); 3071 struct curseg_info *curseg = CURSEG_I(sbi, type); 3072 3073 down_read(&SM_I(sbi)->curseg_lock); 3074 3075 mutex_lock(&curseg->curseg_mutex); 3076 down_write(&sit_i->sentry_lock); 3077 3078 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3079 3080 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3081 3082 /* 3083 * __add_sum_entry should be resided under the curseg_mutex 3084 * because, this function updates a summary entry in the 3085 * current summary block. 3086 */ 3087 __add_sum_entry(sbi, type, sum); 3088 3089 __refresh_next_blkoff(sbi, curseg); 3090 3091 stat_inc_block_count(sbi, curseg); 3092 3093 /* 3094 * SIT information should be updated before segment allocation, 3095 * since SSR needs latest valid block information. 3096 */ 3097 update_sit_entry(sbi, *new_blkaddr, 1); 3098 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3099 update_sit_entry(sbi, old_blkaddr, -1); 3100 3101 if (!__has_curseg_space(sbi, type)) 3102 sit_i->s_ops->allocate_segment(sbi, type, false); 3103 3104 /* 3105 * segment dirty status should be updated after segment allocation, 3106 * so we just need to update status only one time after previous 3107 * segment being closed. 3108 */ 3109 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3110 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3111 3112 up_write(&sit_i->sentry_lock); 3113 3114 if (page && IS_NODESEG(type)) { 3115 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3116 3117 f2fs_inode_chksum_set(sbi, page); 3118 } 3119 3120 if (F2FS_IO_ALIGNED(sbi)) 3121 fio->retry = false; 3122 3123 if (add_list) { 3124 struct f2fs_bio_info *io; 3125 3126 INIT_LIST_HEAD(&fio->list); 3127 fio->in_list = true; 3128 io = sbi->write_io[fio->type] + fio->temp; 3129 spin_lock(&io->io_lock); 3130 list_add_tail(&fio->list, &io->io_list); 3131 spin_unlock(&io->io_lock); 3132 } 3133 3134 mutex_unlock(&curseg->curseg_mutex); 3135 3136 up_read(&SM_I(sbi)->curseg_lock); 3137 } 3138 3139 static void update_device_state(struct f2fs_io_info *fio) 3140 { 3141 struct f2fs_sb_info *sbi = fio->sbi; 3142 unsigned int devidx; 3143 3144 if (!f2fs_is_multi_device(sbi)) 3145 return; 3146 3147 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3148 3149 /* update device state for fsync */ 3150 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3151 3152 /* update device state for checkpoint */ 3153 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3154 spin_lock(&sbi->dev_lock); 3155 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3156 spin_unlock(&sbi->dev_lock); 3157 } 3158 } 3159 3160 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3161 { 3162 int type = __get_segment_type(fio); 3163 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA); 3164 3165 if (keep_order) 3166 down_read(&fio->sbi->io_order_lock); 3167 reallocate: 3168 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3169 &fio->new_blkaddr, sum, type, fio, true); 3170 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3171 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3172 fio->old_blkaddr, fio->old_blkaddr); 3173 3174 /* writeout dirty page into bdev */ 3175 f2fs_submit_page_write(fio); 3176 if (fio->retry) { 3177 fio->old_blkaddr = fio->new_blkaddr; 3178 goto reallocate; 3179 } 3180 3181 update_device_state(fio); 3182 3183 if (keep_order) 3184 up_read(&fio->sbi->io_order_lock); 3185 } 3186 3187 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3188 enum iostat_type io_type) 3189 { 3190 struct f2fs_io_info fio = { 3191 .sbi = sbi, 3192 .type = META, 3193 .temp = HOT, 3194 .op = REQ_OP_WRITE, 3195 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3196 .old_blkaddr = page->index, 3197 .new_blkaddr = page->index, 3198 .page = page, 3199 .encrypted_page = NULL, 3200 .in_list = false, 3201 }; 3202 3203 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3204 fio.op_flags &= ~REQ_META; 3205 3206 set_page_writeback(page); 3207 ClearPageError(page); 3208 f2fs_submit_page_write(&fio); 3209 3210 stat_inc_meta_count(sbi, page->index); 3211 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3212 } 3213 3214 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3215 { 3216 struct f2fs_summary sum; 3217 3218 set_summary(&sum, nid, 0, 0); 3219 do_write_page(&sum, fio); 3220 3221 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3222 } 3223 3224 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3225 struct f2fs_io_info *fio) 3226 { 3227 struct f2fs_sb_info *sbi = fio->sbi; 3228 struct f2fs_summary sum; 3229 3230 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3231 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3232 do_write_page(&sum, fio); 3233 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3234 3235 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3236 } 3237 3238 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3239 { 3240 int err; 3241 struct f2fs_sb_info *sbi = fio->sbi; 3242 unsigned int segno; 3243 3244 fio->new_blkaddr = fio->old_blkaddr; 3245 /* i/o temperature is needed for passing down write hints */ 3246 __get_segment_type(fio); 3247 3248 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3249 3250 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3251 set_sbi_flag(sbi, SBI_NEED_FSCK); 3252 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3253 __func__, segno); 3254 return -EFSCORRUPTED; 3255 } 3256 3257 stat_inc_inplace_blocks(fio->sbi); 3258 3259 if (fio->bio) 3260 err = f2fs_merge_page_bio(fio); 3261 else 3262 err = f2fs_submit_page_bio(fio); 3263 if (!err) { 3264 update_device_state(fio); 3265 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3266 } 3267 3268 return err; 3269 } 3270 3271 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3272 unsigned int segno) 3273 { 3274 int i; 3275 3276 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3277 if (CURSEG_I(sbi, i)->segno == segno) 3278 break; 3279 } 3280 return i; 3281 } 3282 3283 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3284 block_t old_blkaddr, block_t new_blkaddr, 3285 bool recover_curseg, bool recover_newaddr) 3286 { 3287 struct sit_info *sit_i = SIT_I(sbi); 3288 struct curseg_info *curseg; 3289 unsigned int segno, old_cursegno; 3290 struct seg_entry *se; 3291 int type; 3292 unsigned short old_blkoff; 3293 3294 segno = GET_SEGNO(sbi, new_blkaddr); 3295 se = get_seg_entry(sbi, segno); 3296 type = se->type; 3297 3298 down_write(&SM_I(sbi)->curseg_lock); 3299 3300 if (!recover_curseg) { 3301 /* for recovery flow */ 3302 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3303 if (old_blkaddr == NULL_ADDR) 3304 type = CURSEG_COLD_DATA; 3305 else 3306 type = CURSEG_WARM_DATA; 3307 } 3308 } else { 3309 if (IS_CURSEG(sbi, segno)) { 3310 /* se->type is volatile as SSR allocation */ 3311 type = __f2fs_get_curseg(sbi, segno); 3312 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3313 } else { 3314 type = CURSEG_WARM_DATA; 3315 } 3316 } 3317 3318 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3319 curseg = CURSEG_I(sbi, type); 3320 3321 mutex_lock(&curseg->curseg_mutex); 3322 down_write(&sit_i->sentry_lock); 3323 3324 old_cursegno = curseg->segno; 3325 old_blkoff = curseg->next_blkoff; 3326 3327 /* change the current segment */ 3328 if (segno != curseg->segno) { 3329 curseg->next_segno = segno; 3330 change_curseg(sbi, type); 3331 } 3332 3333 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3334 __add_sum_entry(sbi, type, sum); 3335 3336 if (!recover_curseg || recover_newaddr) 3337 update_sit_entry(sbi, new_blkaddr, 1); 3338 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3339 invalidate_mapping_pages(META_MAPPING(sbi), 3340 old_blkaddr, old_blkaddr); 3341 update_sit_entry(sbi, old_blkaddr, -1); 3342 } 3343 3344 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3345 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3346 3347 locate_dirty_segment(sbi, old_cursegno); 3348 3349 if (recover_curseg) { 3350 if (old_cursegno != curseg->segno) { 3351 curseg->next_segno = old_cursegno; 3352 change_curseg(sbi, type); 3353 } 3354 curseg->next_blkoff = old_blkoff; 3355 } 3356 3357 up_write(&sit_i->sentry_lock); 3358 mutex_unlock(&curseg->curseg_mutex); 3359 up_write(&SM_I(sbi)->curseg_lock); 3360 } 3361 3362 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3363 block_t old_addr, block_t new_addr, 3364 unsigned char version, bool recover_curseg, 3365 bool recover_newaddr) 3366 { 3367 struct f2fs_summary sum; 3368 3369 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3370 3371 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3372 recover_curseg, recover_newaddr); 3373 3374 f2fs_update_data_blkaddr(dn, new_addr); 3375 } 3376 3377 void f2fs_wait_on_page_writeback(struct page *page, 3378 enum page_type type, bool ordered, bool locked) 3379 { 3380 if (PageWriteback(page)) { 3381 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3382 3383 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3384 if (ordered) { 3385 wait_on_page_writeback(page); 3386 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3387 } else { 3388 wait_for_stable_page(page); 3389 } 3390 } 3391 } 3392 3393 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3394 { 3395 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3396 struct page *cpage; 3397 3398 if (!f2fs_post_read_required(inode)) 3399 return; 3400 3401 if (!__is_valid_data_blkaddr(blkaddr)) 3402 return; 3403 3404 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3405 if (cpage) { 3406 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3407 f2fs_put_page(cpage, 1); 3408 } 3409 } 3410 3411 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3412 block_t len) 3413 { 3414 block_t i; 3415 3416 for (i = 0; i < len; i++) 3417 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3418 } 3419 3420 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3421 { 3422 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3423 struct curseg_info *seg_i; 3424 unsigned char *kaddr; 3425 struct page *page; 3426 block_t start; 3427 int i, j, offset; 3428 3429 start = start_sum_block(sbi); 3430 3431 page = f2fs_get_meta_page(sbi, start++); 3432 if (IS_ERR(page)) 3433 return PTR_ERR(page); 3434 kaddr = (unsigned char *)page_address(page); 3435 3436 /* Step 1: restore nat cache */ 3437 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3438 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3439 3440 /* Step 2: restore sit cache */ 3441 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3442 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3443 offset = 2 * SUM_JOURNAL_SIZE; 3444 3445 /* Step 3: restore summary entries */ 3446 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3447 unsigned short blk_off; 3448 unsigned int segno; 3449 3450 seg_i = CURSEG_I(sbi, i); 3451 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3452 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3453 seg_i->next_segno = segno; 3454 reset_curseg(sbi, i, 0); 3455 seg_i->alloc_type = ckpt->alloc_type[i]; 3456 seg_i->next_blkoff = blk_off; 3457 3458 if (seg_i->alloc_type == SSR) 3459 blk_off = sbi->blocks_per_seg; 3460 3461 for (j = 0; j < blk_off; j++) { 3462 struct f2fs_summary *s; 3463 s = (struct f2fs_summary *)(kaddr + offset); 3464 seg_i->sum_blk->entries[j] = *s; 3465 offset += SUMMARY_SIZE; 3466 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3467 SUM_FOOTER_SIZE) 3468 continue; 3469 3470 f2fs_put_page(page, 1); 3471 page = NULL; 3472 3473 page = f2fs_get_meta_page(sbi, start++); 3474 if (IS_ERR(page)) 3475 return PTR_ERR(page); 3476 kaddr = (unsigned char *)page_address(page); 3477 offset = 0; 3478 } 3479 } 3480 f2fs_put_page(page, 1); 3481 return 0; 3482 } 3483 3484 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3485 { 3486 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3487 struct f2fs_summary_block *sum; 3488 struct curseg_info *curseg; 3489 struct page *new; 3490 unsigned short blk_off; 3491 unsigned int segno = 0; 3492 block_t blk_addr = 0; 3493 int err = 0; 3494 3495 /* get segment number and block addr */ 3496 if (IS_DATASEG(type)) { 3497 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3498 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3499 CURSEG_HOT_DATA]); 3500 if (__exist_node_summaries(sbi)) 3501 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3502 else 3503 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3504 } else { 3505 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3506 CURSEG_HOT_NODE]); 3507 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3508 CURSEG_HOT_NODE]); 3509 if (__exist_node_summaries(sbi)) 3510 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3511 type - CURSEG_HOT_NODE); 3512 else 3513 blk_addr = GET_SUM_BLOCK(sbi, segno); 3514 } 3515 3516 new = f2fs_get_meta_page(sbi, blk_addr); 3517 if (IS_ERR(new)) 3518 return PTR_ERR(new); 3519 sum = (struct f2fs_summary_block *)page_address(new); 3520 3521 if (IS_NODESEG(type)) { 3522 if (__exist_node_summaries(sbi)) { 3523 struct f2fs_summary *ns = &sum->entries[0]; 3524 int i; 3525 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3526 ns->version = 0; 3527 ns->ofs_in_node = 0; 3528 } 3529 } else { 3530 err = f2fs_restore_node_summary(sbi, segno, sum); 3531 if (err) 3532 goto out; 3533 } 3534 } 3535 3536 /* set uncompleted segment to curseg */ 3537 curseg = CURSEG_I(sbi, type); 3538 mutex_lock(&curseg->curseg_mutex); 3539 3540 /* update journal info */ 3541 down_write(&curseg->journal_rwsem); 3542 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3543 up_write(&curseg->journal_rwsem); 3544 3545 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3546 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3547 curseg->next_segno = segno; 3548 reset_curseg(sbi, type, 0); 3549 curseg->alloc_type = ckpt->alloc_type[type]; 3550 curseg->next_blkoff = blk_off; 3551 mutex_unlock(&curseg->curseg_mutex); 3552 out: 3553 f2fs_put_page(new, 1); 3554 return err; 3555 } 3556 3557 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3558 { 3559 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3560 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3561 int type = CURSEG_HOT_DATA; 3562 int err; 3563 3564 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3565 int npages = f2fs_npages_for_summary_flush(sbi, true); 3566 3567 if (npages >= 2) 3568 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3569 META_CP, true); 3570 3571 /* restore for compacted data summary */ 3572 err = read_compacted_summaries(sbi); 3573 if (err) 3574 return err; 3575 type = CURSEG_HOT_NODE; 3576 } 3577 3578 if (__exist_node_summaries(sbi)) 3579 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3580 NR_CURSEG_TYPE - type, META_CP, true); 3581 3582 for (; type <= CURSEG_COLD_NODE; type++) { 3583 err = read_normal_summaries(sbi, type); 3584 if (err) 3585 return err; 3586 } 3587 3588 /* sanity check for summary blocks */ 3589 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3590 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3591 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", 3592 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3593 return -EINVAL; 3594 } 3595 3596 return 0; 3597 } 3598 3599 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3600 { 3601 struct page *page; 3602 unsigned char *kaddr; 3603 struct f2fs_summary *summary; 3604 struct curseg_info *seg_i; 3605 int written_size = 0; 3606 int i, j; 3607 3608 page = f2fs_grab_meta_page(sbi, blkaddr++); 3609 kaddr = (unsigned char *)page_address(page); 3610 memset(kaddr, 0, PAGE_SIZE); 3611 3612 /* Step 1: write nat cache */ 3613 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3614 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3615 written_size += SUM_JOURNAL_SIZE; 3616 3617 /* Step 2: write sit cache */ 3618 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3619 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3620 written_size += SUM_JOURNAL_SIZE; 3621 3622 /* Step 3: write summary entries */ 3623 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3624 unsigned short blkoff; 3625 seg_i = CURSEG_I(sbi, i); 3626 if (sbi->ckpt->alloc_type[i] == SSR) 3627 blkoff = sbi->blocks_per_seg; 3628 else 3629 blkoff = curseg_blkoff(sbi, i); 3630 3631 for (j = 0; j < blkoff; j++) { 3632 if (!page) { 3633 page = f2fs_grab_meta_page(sbi, blkaddr++); 3634 kaddr = (unsigned char *)page_address(page); 3635 memset(kaddr, 0, PAGE_SIZE); 3636 written_size = 0; 3637 } 3638 summary = (struct f2fs_summary *)(kaddr + written_size); 3639 *summary = seg_i->sum_blk->entries[j]; 3640 written_size += SUMMARY_SIZE; 3641 3642 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3643 SUM_FOOTER_SIZE) 3644 continue; 3645 3646 set_page_dirty(page); 3647 f2fs_put_page(page, 1); 3648 page = NULL; 3649 } 3650 } 3651 if (page) { 3652 set_page_dirty(page); 3653 f2fs_put_page(page, 1); 3654 } 3655 } 3656 3657 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3658 block_t blkaddr, int type) 3659 { 3660 int i, end; 3661 if (IS_DATASEG(type)) 3662 end = type + NR_CURSEG_DATA_TYPE; 3663 else 3664 end = type + NR_CURSEG_NODE_TYPE; 3665 3666 for (i = type; i < end; i++) 3667 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3668 } 3669 3670 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3671 { 3672 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3673 write_compacted_summaries(sbi, start_blk); 3674 else 3675 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3676 } 3677 3678 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3679 { 3680 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3681 } 3682 3683 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3684 unsigned int val, int alloc) 3685 { 3686 int i; 3687 3688 if (type == NAT_JOURNAL) { 3689 for (i = 0; i < nats_in_cursum(journal); i++) { 3690 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3691 return i; 3692 } 3693 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3694 return update_nats_in_cursum(journal, 1); 3695 } else if (type == SIT_JOURNAL) { 3696 for (i = 0; i < sits_in_cursum(journal); i++) 3697 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3698 return i; 3699 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3700 return update_sits_in_cursum(journal, 1); 3701 } 3702 return -1; 3703 } 3704 3705 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3706 unsigned int segno) 3707 { 3708 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); 3709 } 3710 3711 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3712 unsigned int start) 3713 { 3714 struct sit_info *sit_i = SIT_I(sbi); 3715 struct page *page; 3716 pgoff_t src_off, dst_off; 3717 3718 src_off = current_sit_addr(sbi, start); 3719 dst_off = next_sit_addr(sbi, src_off); 3720 3721 page = f2fs_grab_meta_page(sbi, dst_off); 3722 seg_info_to_sit_page(sbi, page, start); 3723 3724 set_page_dirty(page); 3725 set_to_next_sit(sit_i, start); 3726 3727 return page; 3728 } 3729 3730 static struct sit_entry_set *grab_sit_entry_set(void) 3731 { 3732 struct sit_entry_set *ses = 3733 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3734 3735 ses->entry_cnt = 0; 3736 INIT_LIST_HEAD(&ses->set_list); 3737 return ses; 3738 } 3739 3740 static void release_sit_entry_set(struct sit_entry_set *ses) 3741 { 3742 list_del(&ses->set_list); 3743 kmem_cache_free(sit_entry_set_slab, ses); 3744 } 3745 3746 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3747 struct list_head *head) 3748 { 3749 struct sit_entry_set *next = ses; 3750 3751 if (list_is_last(&ses->set_list, head)) 3752 return; 3753 3754 list_for_each_entry_continue(next, head, set_list) 3755 if (ses->entry_cnt <= next->entry_cnt) 3756 break; 3757 3758 list_move_tail(&ses->set_list, &next->set_list); 3759 } 3760 3761 static void add_sit_entry(unsigned int segno, struct list_head *head) 3762 { 3763 struct sit_entry_set *ses; 3764 unsigned int start_segno = START_SEGNO(segno); 3765 3766 list_for_each_entry(ses, head, set_list) { 3767 if (ses->start_segno == start_segno) { 3768 ses->entry_cnt++; 3769 adjust_sit_entry_set(ses, head); 3770 return; 3771 } 3772 } 3773 3774 ses = grab_sit_entry_set(); 3775 3776 ses->start_segno = start_segno; 3777 ses->entry_cnt++; 3778 list_add(&ses->set_list, head); 3779 } 3780 3781 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3782 { 3783 struct f2fs_sm_info *sm_info = SM_I(sbi); 3784 struct list_head *set_list = &sm_info->sit_entry_set; 3785 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3786 unsigned int segno; 3787 3788 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3789 add_sit_entry(segno, set_list); 3790 } 3791 3792 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3793 { 3794 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3795 struct f2fs_journal *journal = curseg->journal; 3796 int i; 3797 3798 down_write(&curseg->journal_rwsem); 3799 for (i = 0; i < sits_in_cursum(journal); i++) { 3800 unsigned int segno; 3801 bool dirtied; 3802 3803 segno = le32_to_cpu(segno_in_journal(journal, i)); 3804 dirtied = __mark_sit_entry_dirty(sbi, segno); 3805 3806 if (!dirtied) 3807 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3808 } 3809 update_sits_in_cursum(journal, -i); 3810 up_write(&curseg->journal_rwsem); 3811 } 3812 3813 /* 3814 * CP calls this function, which flushes SIT entries including sit_journal, 3815 * and moves prefree segs to free segs. 3816 */ 3817 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3818 { 3819 struct sit_info *sit_i = SIT_I(sbi); 3820 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3821 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3822 struct f2fs_journal *journal = curseg->journal; 3823 struct sit_entry_set *ses, *tmp; 3824 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3825 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 3826 struct seg_entry *se; 3827 3828 down_write(&sit_i->sentry_lock); 3829 3830 if (!sit_i->dirty_sentries) 3831 goto out; 3832 3833 /* 3834 * add and account sit entries of dirty bitmap in sit entry 3835 * set temporarily 3836 */ 3837 add_sits_in_set(sbi); 3838 3839 /* 3840 * if there are no enough space in journal to store dirty sit 3841 * entries, remove all entries from journal and add and account 3842 * them in sit entry set. 3843 */ 3844 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 3845 !to_journal) 3846 remove_sits_in_journal(sbi); 3847 3848 /* 3849 * there are two steps to flush sit entries: 3850 * #1, flush sit entries to journal in current cold data summary block. 3851 * #2, flush sit entries to sit page. 3852 */ 3853 list_for_each_entry_safe(ses, tmp, head, set_list) { 3854 struct page *page = NULL; 3855 struct f2fs_sit_block *raw_sit = NULL; 3856 unsigned int start_segno = ses->start_segno; 3857 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3858 (unsigned long)MAIN_SEGS(sbi)); 3859 unsigned int segno = start_segno; 3860 3861 if (to_journal && 3862 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3863 to_journal = false; 3864 3865 if (to_journal) { 3866 down_write(&curseg->journal_rwsem); 3867 } else { 3868 page = get_next_sit_page(sbi, start_segno); 3869 raw_sit = page_address(page); 3870 } 3871 3872 /* flush dirty sit entries in region of current sit set */ 3873 for_each_set_bit_from(segno, bitmap, end) { 3874 int offset, sit_offset; 3875 3876 se = get_seg_entry(sbi, segno); 3877 #ifdef CONFIG_F2FS_CHECK_FS 3878 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3879 SIT_VBLOCK_MAP_SIZE)) 3880 f2fs_bug_on(sbi, 1); 3881 #endif 3882 3883 /* add discard candidates */ 3884 if (!(cpc->reason & CP_DISCARD)) { 3885 cpc->trim_start = segno; 3886 add_discard_addrs(sbi, cpc, false); 3887 } 3888 3889 if (to_journal) { 3890 offset = f2fs_lookup_journal_in_cursum(journal, 3891 SIT_JOURNAL, segno, 1); 3892 f2fs_bug_on(sbi, offset < 0); 3893 segno_in_journal(journal, offset) = 3894 cpu_to_le32(segno); 3895 seg_info_to_raw_sit(se, 3896 &sit_in_journal(journal, offset)); 3897 check_block_count(sbi, segno, 3898 &sit_in_journal(journal, offset)); 3899 } else { 3900 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3901 seg_info_to_raw_sit(se, 3902 &raw_sit->entries[sit_offset]); 3903 check_block_count(sbi, segno, 3904 &raw_sit->entries[sit_offset]); 3905 } 3906 3907 __clear_bit(segno, bitmap); 3908 sit_i->dirty_sentries--; 3909 ses->entry_cnt--; 3910 } 3911 3912 if (to_journal) 3913 up_write(&curseg->journal_rwsem); 3914 else 3915 f2fs_put_page(page, 1); 3916 3917 f2fs_bug_on(sbi, ses->entry_cnt); 3918 release_sit_entry_set(ses); 3919 } 3920 3921 f2fs_bug_on(sbi, !list_empty(head)); 3922 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3923 out: 3924 if (cpc->reason & CP_DISCARD) { 3925 __u64 trim_start = cpc->trim_start; 3926 3927 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3928 add_discard_addrs(sbi, cpc, false); 3929 3930 cpc->trim_start = trim_start; 3931 } 3932 up_write(&sit_i->sentry_lock); 3933 3934 set_prefree_as_free_segments(sbi); 3935 } 3936 3937 static int build_sit_info(struct f2fs_sb_info *sbi) 3938 { 3939 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3940 struct sit_info *sit_i; 3941 unsigned int sit_segs, start; 3942 char *src_bitmap, *bitmap; 3943 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 3944 3945 /* allocate memory for SIT information */ 3946 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3947 if (!sit_i) 3948 return -ENOMEM; 3949 3950 SM_I(sbi)->sit_info = sit_i; 3951 3952 sit_i->sentries = 3953 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 3954 MAIN_SEGS(sbi)), 3955 GFP_KERNEL); 3956 if (!sit_i->sentries) 3957 return -ENOMEM; 3958 3959 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3960 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 3961 GFP_KERNEL); 3962 if (!sit_i->dirty_sentries_bitmap) 3963 return -ENOMEM; 3964 3965 #ifdef CONFIG_F2FS_CHECK_FS 3966 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; 3967 #else 3968 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; 3969 #endif 3970 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 3971 if (!sit_i->bitmap) 3972 return -ENOMEM; 3973 3974 bitmap = sit_i->bitmap; 3975 3976 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3977 sit_i->sentries[start].cur_valid_map = bitmap; 3978 bitmap += SIT_VBLOCK_MAP_SIZE; 3979 3980 sit_i->sentries[start].ckpt_valid_map = bitmap; 3981 bitmap += SIT_VBLOCK_MAP_SIZE; 3982 3983 #ifdef CONFIG_F2FS_CHECK_FS 3984 sit_i->sentries[start].cur_valid_map_mir = bitmap; 3985 bitmap += SIT_VBLOCK_MAP_SIZE; 3986 #endif 3987 3988 sit_i->sentries[start].discard_map = bitmap; 3989 bitmap += SIT_VBLOCK_MAP_SIZE; 3990 } 3991 3992 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3993 if (!sit_i->tmp_map) 3994 return -ENOMEM; 3995 3996 if (__is_large_section(sbi)) { 3997 sit_i->sec_entries = 3998 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 3999 MAIN_SECS(sbi)), 4000 GFP_KERNEL); 4001 if (!sit_i->sec_entries) 4002 return -ENOMEM; 4003 } 4004 4005 /* get information related with SIT */ 4006 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4007 4008 /* setup SIT bitmap from ckeckpoint pack */ 4009 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4010 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4011 4012 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4013 if (!sit_i->sit_bitmap) 4014 return -ENOMEM; 4015 4016 #ifdef CONFIG_F2FS_CHECK_FS 4017 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4018 sit_bitmap_size, GFP_KERNEL); 4019 if (!sit_i->sit_bitmap_mir) 4020 return -ENOMEM; 4021 4022 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4023 main_bitmap_size, GFP_KERNEL); 4024 if (!sit_i->invalid_segmap) 4025 return -ENOMEM; 4026 #endif 4027 4028 /* init SIT information */ 4029 sit_i->s_ops = &default_salloc_ops; 4030 4031 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4032 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4033 sit_i->written_valid_blocks = 0; 4034 sit_i->bitmap_size = sit_bitmap_size; 4035 sit_i->dirty_sentries = 0; 4036 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4037 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4038 sit_i->mounted_time = ktime_get_real_seconds(); 4039 init_rwsem(&sit_i->sentry_lock); 4040 return 0; 4041 } 4042 4043 static int build_free_segmap(struct f2fs_sb_info *sbi) 4044 { 4045 struct free_segmap_info *free_i; 4046 unsigned int bitmap_size, sec_bitmap_size; 4047 4048 /* allocate memory for free segmap information */ 4049 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4050 if (!free_i) 4051 return -ENOMEM; 4052 4053 SM_I(sbi)->free_info = free_i; 4054 4055 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4056 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4057 if (!free_i->free_segmap) 4058 return -ENOMEM; 4059 4060 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4061 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4062 if (!free_i->free_secmap) 4063 return -ENOMEM; 4064 4065 /* set all segments as dirty temporarily */ 4066 memset(free_i->free_segmap, 0xff, bitmap_size); 4067 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4068 4069 /* init free segmap information */ 4070 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4071 free_i->free_segments = 0; 4072 free_i->free_sections = 0; 4073 spin_lock_init(&free_i->segmap_lock); 4074 return 0; 4075 } 4076 4077 static int build_curseg(struct f2fs_sb_info *sbi) 4078 { 4079 struct curseg_info *array; 4080 int i; 4081 4082 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), 4083 GFP_KERNEL); 4084 if (!array) 4085 return -ENOMEM; 4086 4087 SM_I(sbi)->curseg_array = array; 4088 4089 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4090 mutex_init(&array[i].curseg_mutex); 4091 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4092 if (!array[i].sum_blk) 4093 return -ENOMEM; 4094 init_rwsem(&array[i].journal_rwsem); 4095 array[i].journal = f2fs_kzalloc(sbi, 4096 sizeof(struct f2fs_journal), GFP_KERNEL); 4097 if (!array[i].journal) 4098 return -ENOMEM; 4099 array[i].segno = NULL_SEGNO; 4100 array[i].next_blkoff = 0; 4101 } 4102 return restore_curseg_summaries(sbi); 4103 } 4104 4105 static int build_sit_entries(struct f2fs_sb_info *sbi) 4106 { 4107 struct sit_info *sit_i = SIT_I(sbi); 4108 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4109 struct f2fs_journal *journal = curseg->journal; 4110 struct seg_entry *se; 4111 struct f2fs_sit_entry sit; 4112 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4113 unsigned int i, start, end; 4114 unsigned int readed, start_blk = 0; 4115 int err = 0; 4116 block_t total_node_blocks = 0; 4117 4118 do { 4119 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4120 META_SIT, true); 4121 4122 start = start_blk * sit_i->sents_per_block; 4123 end = (start_blk + readed) * sit_i->sents_per_block; 4124 4125 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4126 struct f2fs_sit_block *sit_blk; 4127 struct page *page; 4128 4129 se = &sit_i->sentries[start]; 4130 page = get_current_sit_page(sbi, start); 4131 if (IS_ERR(page)) 4132 return PTR_ERR(page); 4133 sit_blk = (struct f2fs_sit_block *)page_address(page); 4134 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4135 f2fs_put_page(page, 1); 4136 4137 err = check_block_count(sbi, start, &sit); 4138 if (err) 4139 return err; 4140 seg_info_from_raw_sit(se, &sit); 4141 if (IS_NODESEG(se->type)) 4142 total_node_blocks += se->valid_blocks; 4143 4144 /* build discard map only one time */ 4145 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4146 memset(se->discard_map, 0xff, 4147 SIT_VBLOCK_MAP_SIZE); 4148 } else { 4149 memcpy(se->discard_map, 4150 se->cur_valid_map, 4151 SIT_VBLOCK_MAP_SIZE); 4152 sbi->discard_blks += 4153 sbi->blocks_per_seg - 4154 se->valid_blocks; 4155 } 4156 4157 if (__is_large_section(sbi)) 4158 get_sec_entry(sbi, start)->valid_blocks += 4159 se->valid_blocks; 4160 } 4161 start_blk += readed; 4162 } while (start_blk < sit_blk_cnt); 4163 4164 down_read(&curseg->journal_rwsem); 4165 for (i = 0; i < sits_in_cursum(journal); i++) { 4166 unsigned int old_valid_blocks; 4167 4168 start = le32_to_cpu(segno_in_journal(journal, i)); 4169 if (start >= MAIN_SEGS(sbi)) { 4170 f2fs_err(sbi, "Wrong journal entry on segno %u", 4171 start); 4172 err = -EFSCORRUPTED; 4173 break; 4174 } 4175 4176 se = &sit_i->sentries[start]; 4177 sit = sit_in_journal(journal, i); 4178 4179 old_valid_blocks = se->valid_blocks; 4180 if (IS_NODESEG(se->type)) 4181 total_node_blocks -= old_valid_blocks; 4182 4183 err = check_block_count(sbi, start, &sit); 4184 if (err) 4185 break; 4186 seg_info_from_raw_sit(se, &sit); 4187 if (IS_NODESEG(se->type)) 4188 total_node_blocks += se->valid_blocks; 4189 4190 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4191 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4192 } else { 4193 memcpy(se->discard_map, se->cur_valid_map, 4194 SIT_VBLOCK_MAP_SIZE); 4195 sbi->discard_blks += old_valid_blocks; 4196 sbi->discard_blks -= se->valid_blocks; 4197 } 4198 4199 if (__is_large_section(sbi)) { 4200 get_sec_entry(sbi, start)->valid_blocks += 4201 se->valid_blocks; 4202 get_sec_entry(sbi, start)->valid_blocks -= 4203 old_valid_blocks; 4204 } 4205 } 4206 up_read(&curseg->journal_rwsem); 4207 4208 if (!err && total_node_blocks != valid_node_count(sbi)) { 4209 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4210 total_node_blocks, valid_node_count(sbi)); 4211 err = -EFSCORRUPTED; 4212 } 4213 4214 return err; 4215 } 4216 4217 static void init_free_segmap(struct f2fs_sb_info *sbi) 4218 { 4219 unsigned int start; 4220 int type; 4221 4222 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4223 struct seg_entry *sentry = get_seg_entry(sbi, start); 4224 if (!sentry->valid_blocks) 4225 __set_free(sbi, start); 4226 else 4227 SIT_I(sbi)->written_valid_blocks += 4228 sentry->valid_blocks; 4229 } 4230 4231 /* set use the current segments */ 4232 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4233 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4234 __set_test_and_inuse(sbi, curseg_t->segno); 4235 } 4236 } 4237 4238 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4239 { 4240 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4241 struct free_segmap_info *free_i = FREE_I(sbi); 4242 unsigned int segno = 0, offset = 0; 4243 unsigned short valid_blocks; 4244 4245 while (1) { 4246 /* find dirty segment based on free segmap */ 4247 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4248 if (segno >= MAIN_SEGS(sbi)) 4249 break; 4250 offset = segno + 1; 4251 valid_blocks = get_valid_blocks(sbi, segno, false); 4252 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 4253 continue; 4254 if (valid_blocks > sbi->blocks_per_seg) { 4255 f2fs_bug_on(sbi, 1); 4256 continue; 4257 } 4258 mutex_lock(&dirty_i->seglist_lock); 4259 __locate_dirty_segment(sbi, segno, DIRTY); 4260 mutex_unlock(&dirty_i->seglist_lock); 4261 } 4262 } 4263 4264 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4265 { 4266 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4267 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4268 4269 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4270 if (!dirty_i->victim_secmap) 4271 return -ENOMEM; 4272 return 0; 4273 } 4274 4275 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4276 { 4277 struct dirty_seglist_info *dirty_i; 4278 unsigned int bitmap_size, i; 4279 4280 /* allocate memory for dirty segments list information */ 4281 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4282 GFP_KERNEL); 4283 if (!dirty_i) 4284 return -ENOMEM; 4285 4286 SM_I(sbi)->dirty_info = dirty_i; 4287 mutex_init(&dirty_i->seglist_lock); 4288 4289 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4290 4291 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4292 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4293 GFP_KERNEL); 4294 if (!dirty_i->dirty_segmap[i]) 4295 return -ENOMEM; 4296 } 4297 4298 init_dirty_segmap(sbi); 4299 return init_victim_secmap(sbi); 4300 } 4301 4302 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4303 { 4304 int i; 4305 4306 /* 4307 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4308 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4309 */ 4310 for (i = 0; i < NO_CHECK_TYPE; i++) { 4311 struct curseg_info *curseg = CURSEG_I(sbi, i); 4312 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4313 unsigned int blkofs = curseg->next_blkoff; 4314 4315 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4316 goto out; 4317 4318 if (curseg->alloc_type == SSR) 4319 continue; 4320 4321 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4322 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4323 continue; 4324 out: 4325 f2fs_err(sbi, 4326 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4327 i, curseg->segno, curseg->alloc_type, 4328 curseg->next_blkoff, blkofs); 4329 return -EFSCORRUPTED; 4330 } 4331 } 4332 return 0; 4333 } 4334 4335 /* 4336 * Update min, max modified time for cost-benefit GC algorithm 4337 */ 4338 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 4339 { 4340 struct sit_info *sit_i = SIT_I(sbi); 4341 unsigned int segno; 4342 4343 down_write(&sit_i->sentry_lock); 4344 4345 sit_i->min_mtime = ULLONG_MAX; 4346 4347 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4348 unsigned int i; 4349 unsigned long long mtime = 0; 4350 4351 for (i = 0; i < sbi->segs_per_sec; i++) 4352 mtime += get_seg_entry(sbi, segno + i)->mtime; 4353 4354 mtime = div_u64(mtime, sbi->segs_per_sec); 4355 4356 if (sit_i->min_mtime > mtime) 4357 sit_i->min_mtime = mtime; 4358 } 4359 sit_i->max_mtime = get_mtime(sbi, false); 4360 up_write(&sit_i->sentry_lock); 4361 } 4362 4363 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 4364 { 4365 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4366 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4367 struct f2fs_sm_info *sm_info; 4368 int err; 4369 4370 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 4371 if (!sm_info) 4372 return -ENOMEM; 4373 4374 /* init sm info */ 4375 sbi->sm_info = sm_info; 4376 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 4377 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 4378 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 4379 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4380 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4381 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 4382 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 4383 sm_info->rec_prefree_segments = sm_info->main_segments * 4384 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 4385 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 4386 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 4387 4388 if (!test_opt(sbi, LFS)) 4389 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 4390 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 4391 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 4392 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 4393 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 4394 sm_info->min_ssr_sections = reserved_sections(sbi); 4395 4396 INIT_LIST_HEAD(&sm_info->sit_entry_set); 4397 4398 init_rwsem(&sm_info->curseg_lock); 4399 4400 if (!f2fs_readonly(sbi->sb)) { 4401 err = f2fs_create_flush_cmd_control(sbi); 4402 if (err) 4403 return err; 4404 } 4405 4406 err = create_discard_cmd_control(sbi); 4407 if (err) 4408 return err; 4409 4410 err = build_sit_info(sbi); 4411 if (err) 4412 return err; 4413 err = build_free_segmap(sbi); 4414 if (err) 4415 return err; 4416 err = build_curseg(sbi); 4417 if (err) 4418 return err; 4419 4420 /* reinit free segmap based on SIT */ 4421 err = build_sit_entries(sbi); 4422 if (err) 4423 return err; 4424 4425 init_free_segmap(sbi); 4426 err = build_dirty_segmap(sbi); 4427 if (err) 4428 return err; 4429 4430 err = sanity_check_curseg(sbi); 4431 if (err) 4432 return err; 4433 4434 init_min_max_mtime(sbi); 4435 return 0; 4436 } 4437 4438 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 4439 enum dirty_type dirty_type) 4440 { 4441 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4442 4443 mutex_lock(&dirty_i->seglist_lock); 4444 kvfree(dirty_i->dirty_segmap[dirty_type]); 4445 dirty_i->nr_dirty[dirty_type] = 0; 4446 mutex_unlock(&dirty_i->seglist_lock); 4447 } 4448 4449 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 4450 { 4451 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4452 kvfree(dirty_i->victim_secmap); 4453 } 4454 4455 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 4456 { 4457 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4458 int i; 4459 4460 if (!dirty_i) 4461 return; 4462 4463 /* discard pre-free/dirty segments list */ 4464 for (i = 0; i < NR_DIRTY_TYPE; i++) 4465 discard_dirty_segmap(sbi, i); 4466 4467 destroy_victim_secmap(sbi); 4468 SM_I(sbi)->dirty_info = NULL; 4469 kvfree(dirty_i); 4470 } 4471 4472 static void destroy_curseg(struct f2fs_sb_info *sbi) 4473 { 4474 struct curseg_info *array = SM_I(sbi)->curseg_array; 4475 int i; 4476 4477 if (!array) 4478 return; 4479 SM_I(sbi)->curseg_array = NULL; 4480 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4481 kvfree(array[i].sum_blk); 4482 kvfree(array[i].journal); 4483 } 4484 kvfree(array); 4485 } 4486 4487 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4488 { 4489 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4490 if (!free_i) 4491 return; 4492 SM_I(sbi)->free_info = NULL; 4493 kvfree(free_i->free_segmap); 4494 kvfree(free_i->free_secmap); 4495 kvfree(free_i); 4496 } 4497 4498 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4499 { 4500 struct sit_info *sit_i = SIT_I(sbi); 4501 4502 if (!sit_i) 4503 return; 4504 4505 if (sit_i->sentries) 4506 kvfree(sit_i->bitmap); 4507 kvfree(sit_i->tmp_map); 4508 4509 kvfree(sit_i->sentries); 4510 kvfree(sit_i->sec_entries); 4511 kvfree(sit_i->dirty_sentries_bitmap); 4512 4513 SM_I(sbi)->sit_info = NULL; 4514 kvfree(sit_i->sit_bitmap); 4515 #ifdef CONFIG_F2FS_CHECK_FS 4516 kvfree(sit_i->sit_bitmap_mir); 4517 kvfree(sit_i->invalid_segmap); 4518 #endif 4519 kvfree(sit_i); 4520 } 4521 4522 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4523 { 4524 struct f2fs_sm_info *sm_info = SM_I(sbi); 4525 4526 if (!sm_info) 4527 return; 4528 f2fs_destroy_flush_cmd_control(sbi, true); 4529 destroy_discard_cmd_control(sbi); 4530 destroy_dirty_segmap(sbi); 4531 destroy_curseg(sbi); 4532 destroy_free_segmap(sbi); 4533 destroy_sit_info(sbi); 4534 sbi->sm_info = NULL; 4535 kvfree(sm_info); 4536 } 4537 4538 int __init f2fs_create_segment_manager_caches(void) 4539 { 4540 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 4541 sizeof(struct discard_entry)); 4542 if (!discard_entry_slab) 4543 goto fail; 4544 4545 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 4546 sizeof(struct discard_cmd)); 4547 if (!discard_cmd_slab) 4548 goto destroy_discard_entry; 4549 4550 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 4551 sizeof(struct sit_entry_set)); 4552 if (!sit_entry_set_slab) 4553 goto destroy_discard_cmd; 4554 4555 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 4556 sizeof(struct inmem_pages)); 4557 if (!inmem_entry_slab) 4558 goto destroy_sit_entry_set; 4559 return 0; 4560 4561 destroy_sit_entry_set: 4562 kmem_cache_destroy(sit_entry_set_slab); 4563 destroy_discard_cmd: 4564 kmem_cache_destroy(discard_cmd_slab); 4565 destroy_discard_entry: 4566 kmem_cache_destroy(discard_entry_slab); 4567 fail: 4568 return -ENOMEM; 4569 } 4570 4571 void f2fs_destroy_segment_manager_caches(void) 4572 { 4573 kmem_cache_destroy(sit_entry_set_slab); 4574 kmem_cache_destroy(discard_cmd_slab); 4575 kmem_cache_destroy(discard_entry_slab); 4576 kmem_cache_destroy(inmem_entry_slab); 4577 } 4578