xref: /openbmc/linux/fs/f2fs/segment.c (revision bfad37c5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include "iostat.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *discard_cmd_slab;
30 static struct kmem_cache *sit_entry_set_slab;
31 static struct kmem_cache *inmem_entry_slab;
32 
33 static unsigned long __reverse_ulong(unsigned char *str)
34 {
35 	unsigned long tmp = 0;
36 	int shift = 24, idx = 0;
37 
38 #if BITS_PER_LONG == 64
39 	shift = 56;
40 #endif
41 	while (shift >= 0) {
42 		tmp |= (unsigned long)str[idx++] << shift;
43 		shift -= BITS_PER_BYTE;
44 	}
45 	return tmp;
46 }
47 
48 /*
49  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
50  * MSB and LSB are reversed in a byte by f2fs_set_bit.
51  */
52 static inline unsigned long __reverse_ffs(unsigned long word)
53 {
54 	int num = 0;
55 
56 #if BITS_PER_LONG == 64
57 	if ((word & 0xffffffff00000000UL) == 0)
58 		num += 32;
59 	else
60 		word >>= 32;
61 #endif
62 	if ((word & 0xffff0000) == 0)
63 		num += 16;
64 	else
65 		word >>= 16;
66 
67 	if ((word & 0xff00) == 0)
68 		num += 8;
69 	else
70 		word >>= 8;
71 
72 	if ((word & 0xf0) == 0)
73 		num += 4;
74 	else
75 		word >>= 4;
76 
77 	if ((word & 0xc) == 0)
78 		num += 2;
79 	else
80 		word >>= 2;
81 
82 	if ((word & 0x2) == 0)
83 		num += 1;
84 	return num;
85 }
86 
87 /*
88  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
89  * f2fs_set_bit makes MSB and LSB reversed in a byte.
90  * @size must be integral times of unsigned long.
91  * Example:
92  *                             MSB <--> LSB
93  *   f2fs_set_bit(0, bitmap) => 1000 0000
94  *   f2fs_set_bit(7, bitmap) => 0000 0001
95  */
96 static unsigned long __find_rev_next_bit(const unsigned long *addr,
97 			unsigned long size, unsigned long offset)
98 {
99 	const unsigned long *p = addr + BIT_WORD(offset);
100 	unsigned long result = size;
101 	unsigned long tmp;
102 
103 	if (offset >= size)
104 		return size;
105 
106 	size -= (offset & ~(BITS_PER_LONG - 1));
107 	offset %= BITS_PER_LONG;
108 
109 	while (1) {
110 		if (*p == 0)
111 			goto pass;
112 
113 		tmp = __reverse_ulong((unsigned char *)p);
114 
115 		tmp &= ~0UL >> offset;
116 		if (size < BITS_PER_LONG)
117 			tmp &= (~0UL << (BITS_PER_LONG - size));
118 		if (tmp)
119 			goto found;
120 pass:
121 		if (size <= BITS_PER_LONG)
122 			break;
123 		size -= BITS_PER_LONG;
124 		offset = 0;
125 		p++;
126 	}
127 	return result;
128 found:
129 	return result - size + __reverse_ffs(tmp);
130 }
131 
132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
133 			unsigned long size, unsigned long offset)
134 {
135 	const unsigned long *p = addr + BIT_WORD(offset);
136 	unsigned long result = size;
137 	unsigned long tmp;
138 
139 	if (offset >= size)
140 		return size;
141 
142 	size -= (offset & ~(BITS_PER_LONG - 1));
143 	offset %= BITS_PER_LONG;
144 
145 	while (1) {
146 		if (*p == ~0UL)
147 			goto pass;
148 
149 		tmp = __reverse_ulong((unsigned char *)p);
150 
151 		if (offset)
152 			tmp |= ~0UL << (BITS_PER_LONG - offset);
153 		if (size < BITS_PER_LONG)
154 			tmp |= ~0UL >> size;
155 		if (tmp != ~0UL)
156 			goto found;
157 pass:
158 		if (size <= BITS_PER_LONG)
159 			break;
160 		size -= BITS_PER_LONG;
161 		offset = 0;
162 		p++;
163 	}
164 	return result;
165 found:
166 	return result - size + __reverse_ffz(tmp);
167 }
168 
169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
170 {
171 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
172 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
173 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
174 
175 	if (f2fs_lfs_mode(sbi))
176 		return false;
177 	if (sbi->gc_mode == GC_URGENT_HIGH)
178 		return true;
179 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
180 		return true;
181 
182 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
183 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
184 }
185 
186 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
187 {
188 	struct inmem_pages *new;
189 
190 	set_page_private_atomic(page);
191 
192 	new = f2fs_kmem_cache_alloc(inmem_entry_slab,
193 					GFP_NOFS, true, NULL);
194 
195 	/* add atomic page indices to the list */
196 	new->page = page;
197 	INIT_LIST_HEAD(&new->list);
198 
199 	/* increase reference count with clean state */
200 	get_page(page);
201 	mutex_lock(&F2FS_I(inode)->inmem_lock);
202 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
203 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
204 	mutex_unlock(&F2FS_I(inode)->inmem_lock);
205 
206 	trace_f2fs_register_inmem_page(page, INMEM);
207 }
208 
209 static int __revoke_inmem_pages(struct inode *inode,
210 				struct list_head *head, bool drop, bool recover,
211 				bool trylock)
212 {
213 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
214 	struct inmem_pages *cur, *tmp;
215 	int err = 0;
216 
217 	list_for_each_entry_safe(cur, tmp, head, list) {
218 		struct page *page = cur->page;
219 
220 		if (drop)
221 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
222 
223 		if (trylock) {
224 			/*
225 			 * to avoid deadlock in between page lock and
226 			 * inmem_lock.
227 			 */
228 			if (!trylock_page(page))
229 				continue;
230 		} else {
231 			lock_page(page);
232 		}
233 
234 		f2fs_wait_on_page_writeback(page, DATA, true, true);
235 
236 		if (recover) {
237 			struct dnode_of_data dn;
238 			struct node_info ni;
239 
240 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
241 retry:
242 			set_new_dnode(&dn, inode, NULL, NULL, 0);
243 			err = f2fs_get_dnode_of_data(&dn, page->index,
244 								LOOKUP_NODE);
245 			if (err) {
246 				if (err == -ENOMEM) {
247 					congestion_wait(BLK_RW_ASYNC,
248 							DEFAULT_IO_TIMEOUT);
249 					cond_resched();
250 					goto retry;
251 				}
252 				err = -EAGAIN;
253 				goto next;
254 			}
255 
256 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
257 			if (err) {
258 				f2fs_put_dnode(&dn);
259 				return err;
260 			}
261 
262 			if (cur->old_addr == NEW_ADDR) {
263 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265 			} else
266 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267 					cur->old_addr, ni.version, true, true);
268 			f2fs_put_dnode(&dn);
269 		}
270 next:
271 		/* we don't need to invalidate this in the sccessful status */
272 		if (drop || recover) {
273 			ClearPageUptodate(page);
274 			clear_page_private_gcing(page);
275 		}
276 		detach_page_private(page);
277 		set_page_private(page, 0);
278 		f2fs_put_page(page, 1);
279 
280 		list_del(&cur->list);
281 		kmem_cache_free(inmem_entry_slab, cur);
282 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283 	}
284 	return err;
285 }
286 
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290 	struct inode *inode;
291 	struct f2fs_inode_info *fi;
292 	unsigned int count = sbi->atomic_files;
293 	unsigned int looped = 0;
294 next:
295 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 	if (list_empty(head)) {
297 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 		return;
299 	}
300 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 	inode = igrab(&fi->vfs_inode);
302 	if (inode)
303 		list_move_tail(&fi->inmem_ilist, head);
304 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305 
306 	if (inode) {
307 		if (gc_failure) {
308 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309 				goto skip;
310 		}
311 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 		f2fs_drop_inmem_pages(inode);
313 skip:
314 		iput(inode);
315 	}
316 	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317 	cond_resched();
318 	if (gc_failure) {
319 		if (++looped >= count)
320 			return;
321 	}
322 	goto next;
323 }
324 
325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 	struct f2fs_inode_info *fi = F2FS_I(inode);
329 
330 	do {
331 		mutex_lock(&fi->inmem_lock);
332 		if (list_empty(&fi->inmem_pages)) {
333 			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
334 
335 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336 			if (!list_empty(&fi->inmem_ilist))
337 				list_del_init(&fi->inmem_ilist);
338 			if (f2fs_is_atomic_file(inode)) {
339 				clear_inode_flag(inode, FI_ATOMIC_FILE);
340 				sbi->atomic_files--;
341 			}
342 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
343 
344 			mutex_unlock(&fi->inmem_lock);
345 			break;
346 		}
347 		__revoke_inmem_pages(inode, &fi->inmem_pages,
348 						true, false, true);
349 		mutex_unlock(&fi->inmem_lock);
350 	} while (1);
351 }
352 
353 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
354 {
355 	struct f2fs_inode_info *fi = F2FS_I(inode);
356 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
357 	struct list_head *head = &fi->inmem_pages;
358 	struct inmem_pages *cur = NULL;
359 
360 	f2fs_bug_on(sbi, !page_private_atomic(page));
361 
362 	mutex_lock(&fi->inmem_lock);
363 	list_for_each_entry(cur, head, list) {
364 		if (cur->page == page)
365 			break;
366 	}
367 
368 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
369 	list_del(&cur->list);
370 	mutex_unlock(&fi->inmem_lock);
371 
372 	dec_page_count(sbi, F2FS_INMEM_PAGES);
373 	kmem_cache_free(inmem_entry_slab, cur);
374 
375 	ClearPageUptodate(page);
376 	clear_page_private_atomic(page);
377 	f2fs_put_page(page, 0);
378 
379 	detach_page_private(page);
380 	set_page_private(page, 0);
381 
382 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
383 }
384 
385 static int __f2fs_commit_inmem_pages(struct inode *inode)
386 {
387 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
388 	struct f2fs_inode_info *fi = F2FS_I(inode);
389 	struct inmem_pages *cur, *tmp;
390 	struct f2fs_io_info fio = {
391 		.sbi = sbi,
392 		.ino = inode->i_ino,
393 		.type = DATA,
394 		.op = REQ_OP_WRITE,
395 		.op_flags = REQ_SYNC | REQ_PRIO,
396 		.io_type = FS_DATA_IO,
397 	};
398 	struct list_head revoke_list;
399 	bool submit_bio = false;
400 	int err = 0;
401 
402 	INIT_LIST_HEAD(&revoke_list);
403 
404 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
405 		struct page *page = cur->page;
406 
407 		lock_page(page);
408 		if (page->mapping == inode->i_mapping) {
409 			trace_f2fs_commit_inmem_page(page, INMEM);
410 
411 			f2fs_wait_on_page_writeback(page, DATA, true, true);
412 
413 			set_page_dirty(page);
414 			if (clear_page_dirty_for_io(page)) {
415 				inode_dec_dirty_pages(inode);
416 				f2fs_remove_dirty_inode(inode);
417 			}
418 retry:
419 			fio.page = page;
420 			fio.old_blkaddr = NULL_ADDR;
421 			fio.encrypted_page = NULL;
422 			fio.need_lock = LOCK_DONE;
423 			err = f2fs_do_write_data_page(&fio);
424 			if (err) {
425 				if (err == -ENOMEM) {
426 					congestion_wait(BLK_RW_ASYNC,
427 							DEFAULT_IO_TIMEOUT);
428 					cond_resched();
429 					goto retry;
430 				}
431 				unlock_page(page);
432 				break;
433 			}
434 			/* record old blkaddr for revoking */
435 			cur->old_addr = fio.old_blkaddr;
436 			submit_bio = true;
437 		}
438 		unlock_page(page);
439 		list_move_tail(&cur->list, &revoke_list);
440 	}
441 
442 	if (submit_bio)
443 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
444 
445 	if (err) {
446 		/*
447 		 * try to revoke all committed pages, but still we could fail
448 		 * due to no memory or other reason, if that happened, EAGAIN
449 		 * will be returned, which means in such case, transaction is
450 		 * already not integrity, caller should use journal to do the
451 		 * recovery or rewrite & commit last transaction. For other
452 		 * error number, revoking was done by filesystem itself.
453 		 */
454 		err = __revoke_inmem_pages(inode, &revoke_list,
455 						false, true, false);
456 
457 		/* drop all uncommitted pages */
458 		__revoke_inmem_pages(inode, &fi->inmem_pages,
459 						true, false, false);
460 	} else {
461 		__revoke_inmem_pages(inode, &revoke_list,
462 						false, false, false);
463 	}
464 
465 	return err;
466 }
467 
468 int f2fs_commit_inmem_pages(struct inode *inode)
469 {
470 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
471 	struct f2fs_inode_info *fi = F2FS_I(inode);
472 	int err;
473 
474 	f2fs_balance_fs(sbi, true);
475 
476 	down_write(&fi->i_gc_rwsem[WRITE]);
477 
478 	f2fs_lock_op(sbi);
479 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
480 
481 	mutex_lock(&fi->inmem_lock);
482 	err = __f2fs_commit_inmem_pages(inode);
483 	mutex_unlock(&fi->inmem_lock);
484 
485 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
486 
487 	f2fs_unlock_op(sbi);
488 	up_write(&fi->i_gc_rwsem[WRITE]);
489 
490 	return err;
491 }
492 
493 /*
494  * This function balances dirty node and dentry pages.
495  * In addition, it controls garbage collection.
496  */
497 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
498 {
499 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
500 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
501 		f2fs_stop_checkpoint(sbi, false);
502 	}
503 
504 	/* balance_fs_bg is able to be pending */
505 	if (need && excess_cached_nats(sbi))
506 		f2fs_balance_fs_bg(sbi, false);
507 
508 	if (!f2fs_is_checkpoint_ready(sbi))
509 		return;
510 
511 	/*
512 	 * We should do GC or end up with checkpoint, if there are so many dirty
513 	 * dir/node pages without enough free segments.
514 	 */
515 	if (has_not_enough_free_secs(sbi, 0, 0)) {
516 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
517 					sbi->gc_thread->f2fs_gc_task) {
518 			DEFINE_WAIT(wait);
519 
520 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
521 						TASK_UNINTERRUPTIBLE);
522 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
523 			io_schedule();
524 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
525 		} else {
526 			down_write(&sbi->gc_lock);
527 			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
528 		}
529 	}
530 }
531 
532 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
533 {
534 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
535 		return;
536 
537 	/* try to shrink extent cache when there is no enough memory */
538 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
539 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
540 
541 	/* check the # of cached NAT entries */
542 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
543 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
544 
545 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
546 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
547 	else
548 		f2fs_build_free_nids(sbi, false, false);
549 
550 	if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
551 		excess_prefree_segs(sbi))
552 		goto do_sync;
553 
554 	/* there is background inflight IO or foreground operation recently */
555 	if (is_inflight_io(sbi, REQ_TIME) ||
556 		(!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
557 		return;
558 
559 	/* exceed periodical checkpoint timeout threshold */
560 	if (f2fs_time_over(sbi, CP_TIME))
561 		goto do_sync;
562 
563 	/* checkpoint is the only way to shrink partial cached entries */
564 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
565 		f2fs_available_free_memory(sbi, INO_ENTRIES))
566 		return;
567 
568 do_sync:
569 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
570 		struct blk_plug plug;
571 
572 		mutex_lock(&sbi->flush_lock);
573 
574 		blk_start_plug(&plug);
575 		f2fs_sync_dirty_inodes(sbi, FILE_INODE);
576 		blk_finish_plug(&plug);
577 
578 		mutex_unlock(&sbi->flush_lock);
579 	}
580 	f2fs_sync_fs(sbi->sb, true);
581 	stat_inc_bg_cp_count(sbi->stat_info);
582 }
583 
584 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
585 				struct block_device *bdev)
586 {
587 	int ret = blkdev_issue_flush(bdev);
588 
589 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
590 				test_opt(sbi, FLUSH_MERGE), ret);
591 	return ret;
592 }
593 
594 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
595 {
596 	int ret = 0;
597 	int i;
598 
599 	if (!f2fs_is_multi_device(sbi))
600 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
601 
602 	for (i = 0; i < sbi->s_ndevs; i++) {
603 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
604 			continue;
605 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
606 		if (ret)
607 			break;
608 	}
609 	return ret;
610 }
611 
612 static int issue_flush_thread(void *data)
613 {
614 	struct f2fs_sb_info *sbi = data;
615 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
616 	wait_queue_head_t *q = &fcc->flush_wait_queue;
617 repeat:
618 	if (kthread_should_stop())
619 		return 0;
620 
621 	if (!llist_empty(&fcc->issue_list)) {
622 		struct flush_cmd *cmd, *next;
623 		int ret;
624 
625 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
626 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
627 
628 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
629 
630 		ret = submit_flush_wait(sbi, cmd->ino);
631 		atomic_inc(&fcc->issued_flush);
632 
633 		llist_for_each_entry_safe(cmd, next,
634 					  fcc->dispatch_list, llnode) {
635 			cmd->ret = ret;
636 			complete(&cmd->wait);
637 		}
638 		fcc->dispatch_list = NULL;
639 	}
640 
641 	wait_event_interruptible(*q,
642 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
643 	goto repeat;
644 }
645 
646 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
647 {
648 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
649 	struct flush_cmd cmd;
650 	int ret;
651 
652 	if (test_opt(sbi, NOBARRIER))
653 		return 0;
654 
655 	if (!test_opt(sbi, FLUSH_MERGE)) {
656 		atomic_inc(&fcc->queued_flush);
657 		ret = submit_flush_wait(sbi, ino);
658 		atomic_dec(&fcc->queued_flush);
659 		atomic_inc(&fcc->issued_flush);
660 		return ret;
661 	}
662 
663 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
664 	    f2fs_is_multi_device(sbi)) {
665 		ret = submit_flush_wait(sbi, ino);
666 		atomic_dec(&fcc->queued_flush);
667 
668 		atomic_inc(&fcc->issued_flush);
669 		return ret;
670 	}
671 
672 	cmd.ino = ino;
673 	init_completion(&cmd.wait);
674 
675 	llist_add(&cmd.llnode, &fcc->issue_list);
676 
677 	/*
678 	 * update issue_list before we wake up issue_flush thread, this
679 	 * smp_mb() pairs with another barrier in ___wait_event(), see
680 	 * more details in comments of waitqueue_active().
681 	 */
682 	smp_mb();
683 
684 	if (waitqueue_active(&fcc->flush_wait_queue))
685 		wake_up(&fcc->flush_wait_queue);
686 
687 	if (fcc->f2fs_issue_flush) {
688 		wait_for_completion(&cmd.wait);
689 		atomic_dec(&fcc->queued_flush);
690 	} else {
691 		struct llist_node *list;
692 
693 		list = llist_del_all(&fcc->issue_list);
694 		if (!list) {
695 			wait_for_completion(&cmd.wait);
696 			atomic_dec(&fcc->queued_flush);
697 		} else {
698 			struct flush_cmd *tmp, *next;
699 
700 			ret = submit_flush_wait(sbi, ino);
701 
702 			llist_for_each_entry_safe(tmp, next, list, llnode) {
703 				if (tmp == &cmd) {
704 					cmd.ret = ret;
705 					atomic_dec(&fcc->queued_flush);
706 					continue;
707 				}
708 				tmp->ret = ret;
709 				complete(&tmp->wait);
710 			}
711 		}
712 	}
713 
714 	return cmd.ret;
715 }
716 
717 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
718 {
719 	dev_t dev = sbi->sb->s_bdev->bd_dev;
720 	struct flush_cmd_control *fcc;
721 	int err = 0;
722 
723 	if (SM_I(sbi)->fcc_info) {
724 		fcc = SM_I(sbi)->fcc_info;
725 		if (fcc->f2fs_issue_flush)
726 			return err;
727 		goto init_thread;
728 	}
729 
730 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
731 	if (!fcc)
732 		return -ENOMEM;
733 	atomic_set(&fcc->issued_flush, 0);
734 	atomic_set(&fcc->queued_flush, 0);
735 	init_waitqueue_head(&fcc->flush_wait_queue);
736 	init_llist_head(&fcc->issue_list);
737 	SM_I(sbi)->fcc_info = fcc;
738 	if (!test_opt(sbi, FLUSH_MERGE))
739 		return err;
740 
741 init_thread:
742 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
743 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
744 	if (IS_ERR(fcc->f2fs_issue_flush)) {
745 		err = PTR_ERR(fcc->f2fs_issue_flush);
746 		kfree(fcc);
747 		SM_I(sbi)->fcc_info = NULL;
748 		return err;
749 	}
750 
751 	return err;
752 }
753 
754 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
755 {
756 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
757 
758 	if (fcc && fcc->f2fs_issue_flush) {
759 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
760 
761 		fcc->f2fs_issue_flush = NULL;
762 		kthread_stop(flush_thread);
763 	}
764 	if (free) {
765 		kfree(fcc);
766 		SM_I(sbi)->fcc_info = NULL;
767 	}
768 }
769 
770 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
771 {
772 	int ret = 0, i;
773 
774 	if (!f2fs_is_multi_device(sbi))
775 		return 0;
776 
777 	if (test_opt(sbi, NOBARRIER))
778 		return 0;
779 
780 	for (i = 1; i < sbi->s_ndevs; i++) {
781 		int count = DEFAULT_RETRY_IO_COUNT;
782 
783 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
784 			continue;
785 
786 		do {
787 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
788 			if (ret)
789 				congestion_wait(BLK_RW_ASYNC,
790 						DEFAULT_IO_TIMEOUT);
791 		} while (ret && --count);
792 
793 		if (ret) {
794 			f2fs_stop_checkpoint(sbi, false);
795 			break;
796 		}
797 
798 		spin_lock(&sbi->dev_lock);
799 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
800 		spin_unlock(&sbi->dev_lock);
801 	}
802 
803 	return ret;
804 }
805 
806 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
807 		enum dirty_type dirty_type)
808 {
809 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
810 
811 	/* need not be added */
812 	if (IS_CURSEG(sbi, segno))
813 		return;
814 
815 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
816 		dirty_i->nr_dirty[dirty_type]++;
817 
818 	if (dirty_type == DIRTY) {
819 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
820 		enum dirty_type t = sentry->type;
821 
822 		if (unlikely(t >= DIRTY)) {
823 			f2fs_bug_on(sbi, 1);
824 			return;
825 		}
826 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
827 			dirty_i->nr_dirty[t]++;
828 
829 		if (__is_large_section(sbi)) {
830 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
831 			block_t valid_blocks =
832 				get_valid_blocks(sbi, segno, true);
833 
834 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
835 					valid_blocks == BLKS_PER_SEC(sbi)));
836 
837 			if (!IS_CURSEC(sbi, secno))
838 				set_bit(secno, dirty_i->dirty_secmap);
839 		}
840 	}
841 }
842 
843 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
844 		enum dirty_type dirty_type)
845 {
846 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
847 	block_t valid_blocks;
848 
849 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
850 		dirty_i->nr_dirty[dirty_type]--;
851 
852 	if (dirty_type == DIRTY) {
853 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
854 		enum dirty_type t = sentry->type;
855 
856 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
857 			dirty_i->nr_dirty[t]--;
858 
859 		valid_blocks = get_valid_blocks(sbi, segno, true);
860 		if (valid_blocks == 0) {
861 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
862 						dirty_i->victim_secmap);
863 #ifdef CONFIG_F2FS_CHECK_FS
864 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
865 #endif
866 		}
867 		if (__is_large_section(sbi)) {
868 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
869 
870 			if (!valid_blocks ||
871 					valid_blocks == BLKS_PER_SEC(sbi)) {
872 				clear_bit(secno, dirty_i->dirty_secmap);
873 				return;
874 			}
875 
876 			if (!IS_CURSEC(sbi, secno))
877 				set_bit(secno, dirty_i->dirty_secmap);
878 		}
879 	}
880 }
881 
882 /*
883  * Should not occur error such as -ENOMEM.
884  * Adding dirty entry into seglist is not critical operation.
885  * If a given segment is one of current working segments, it won't be added.
886  */
887 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
888 {
889 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
890 	unsigned short valid_blocks, ckpt_valid_blocks;
891 	unsigned int usable_blocks;
892 
893 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
894 		return;
895 
896 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
897 	mutex_lock(&dirty_i->seglist_lock);
898 
899 	valid_blocks = get_valid_blocks(sbi, segno, false);
900 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
901 
902 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
903 		ckpt_valid_blocks == usable_blocks)) {
904 		__locate_dirty_segment(sbi, segno, PRE);
905 		__remove_dirty_segment(sbi, segno, DIRTY);
906 	} else if (valid_blocks < usable_blocks) {
907 		__locate_dirty_segment(sbi, segno, DIRTY);
908 	} else {
909 		/* Recovery routine with SSR needs this */
910 		__remove_dirty_segment(sbi, segno, DIRTY);
911 	}
912 
913 	mutex_unlock(&dirty_i->seglist_lock);
914 }
915 
916 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
917 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
918 {
919 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
920 	unsigned int segno;
921 
922 	mutex_lock(&dirty_i->seglist_lock);
923 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
924 		if (get_valid_blocks(sbi, segno, false))
925 			continue;
926 		if (IS_CURSEG(sbi, segno))
927 			continue;
928 		__locate_dirty_segment(sbi, segno, PRE);
929 		__remove_dirty_segment(sbi, segno, DIRTY);
930 	}
931 	mutex_unlock(&dirty_i->seglist_lock);
932 }
933 
934 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
935 {
936 	int ovp_hole_segs =
937 		(overprovision_segments(sbi) - reserved_segments(sbi));
938 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
939 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
940 	block_t holes[2] = {0, 0};	/* DATA and NODE */
941 	block_t unusable;
942 	struct seg_entry *se;
943 	unsigned int segno;
944 
945 	mutex_lock(&dirty_i->seglist_lock);
946 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
947 		se = get_seg_entry(sbi, segno);
948 		if (IS_NODESEG(se->type))
949 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
950 							se->valid_blocks;
951 		else
952 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
953 							se->valid_blocks;
954 	}
955 	mutex_unlock(&dirty_i->seglist_lock);
956 
957 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
958 	if (unusable > ovp_holes)
959 		return unusable - ovp_holes;
960 	return 0;
961 }
962 
963 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
964 {
965 	int ovp_hole_segs =
966 		(overprovision_segments(sbi) - reserved_segments(sbi));
967 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
968 		return -EAGAIN;
969 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
970 		dirty_segments(sbi) > ovp_hole_segs)
971 		return -EAGAIN;
972 	return 0;
973 }
974 
975 /* This is only used by SBI_CP_DISABLED */
976 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
977 {
978 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
979 	unsigned int segno = 0;
980 
981 	mutex_lock(&dirty_i->seglist_lock);
982 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
983 		if (get_valid_blocks(sbi, segno, false))
984 			continue;
985 		if (get_ckpt_valid_blocks(sbi, segno, false))
986 			continue;
987 		mutex_unlock(&dirty_i->seglist_lock);
988 		return segno;
989 	}
990 	mutex_unlock(&dirty_i->seglist_lock);
991 	return NULL_SEGNO;
992 }
993 
994 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
995 		struct block_device *bdev, block_t lstart,
996 		block_t start, block_t len)
997 {
998 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
999 	struct list_head *pend_list;
1000 	struct discard_cmd *dc;
1001 
1002 	f2fs_bug_on(sbi, !len);
1003 
1004 	pend_list = &dcc->pend_list[plist_idx(len)];
1005 
1006 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
1007 	INIT_LIST_HEAD(&dc->list);
1008 	dc->bdev = bdev;
1009 	dc->lstart = lstart;
1010 	dc->start = start;
1011 	dc->len = len;
1012 	dc->ref = 0;
1013 	dc->state = D_PREP;
1014 	dc->queued = 0;
1015 	dc->error = 0;
1016 	init_completion(&dc->wait);
1017 	list_add_tail(&dc->list, pend_list);
1018 	spin_lock_init(&dc->lock);
1019 	dc->bio_ref = 0;
1020 	atomic_inc(&dcc->discard_cmd_cnt);
1021 	dcc->undiscard_blks += len;
1022 
1023 	return dc;
1024 }
1025 
1026 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1027 				struct block_device *bdev, block_t lstart,
1028 				block_t start, block_t len,
1029 				struct rb_node *parent, struct rb_node **p,
1030 				bool leftmost)
1031 {
1032 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1033 	struct discard_cmd *dc;
1034 
1035 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1036 
1037 	rb_link_node(&dc->rb_node, parent, p);
1038 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1039 
1040 	return dc;
1041 }
1042 
1043 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1044 							struct discard_cmd *dc)
1045 {
1046 	if (dc->state == D_DONE)
1047 		atomic_sub(dc->queued, &dcc->queued_discard);
1048 
1049 	list_del(&dc->list);
1050 	rb_erase_cached(&dc->rb_node, &dcc->root);
1051 	dcc->undiscard_blks -= dc->len;
1052 
1053 	kmem_cache_free(discard_cmd_slab, dc);
1054 
1055 	atomic_dec(&dcc->discard_cmd_cnt);
1056 }
1057 
1058 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1059 							struct discard_cmd *dc)
1060 {
1061 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1062 	unsigned long flags;
1063 
1064 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1065 
1066 	spin_lock_irqsave(&dc->lock, flags);
1067 	if (dc->bio_ref) {
1068 		spin_unlock_irqrestore(&dc->lock, flags);
1069 		return;
1070 	}
1071 	spin_unlock_irqrestore(&dc->lock, flags);
1072 
1073 	f2fs_bug_on(sbi, dc->ref);
1074 
1075 	if (dc->error == -EOPNOTSUPP)
1076 		dc->error = 0;
1077 
1078 	if (dc->error)
1079 		printk_ratelimited(
1080 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1081 			KERN_INFO, sbi->sb->s_id,
1082 			dc->lstart, dc->start, dc->len, dc->error);
1083 	__detach_discard_cmd(dcc, dc);
1084 }
1085 
1086 static void f2fs_submit_discard_endio(struct bio *bio)
1087 {
1088 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1089 	unsigned long flags;
1090 
1091 	spin_lock_irqsave(&dc->lock, flags);
1092 	if (!dc->error)
1093 		dc->error = blk_status_to_errno(bio->bi_status);
1094 	dc->bio_ref--;
1095 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1096 		dc->state = D_DONE;
1097 		complete_all(&dc->wait);
1098 	}
1099 	spin_unlock_irqrestore(&dc->lock, flags);
1100 	bio_put(bio);
1101 }
1102 
1103 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1104 				block_t start, block_t end)
1105 {
1106 #ifdef CONFIG_F2FS_CHECK_FS
1107 	struct seg_entry *sentry;
1108 	unsigned int segno;
1109 	block_t blk = start;
1110 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1111 	unsigned long *map;
1112 
1113 	while (blk < end) {
1114 		segno = GET_SEGNO(sbi, blk);
1115 		sentry = get_seg_entry(sbi, segno);
1116 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1117 
1118 		if (end < START_BLOCK(sbi, segno + 1))
1119 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1120 		else
1121 			size = max_blocks;
1122 		map = (unsigned long *)(sentry->cur_valid_map);
1123 		offset = __find_rev_next_bit(map, size, offset);
1124 		f2fs_bug_on(sbi, offset != size);
1125 		blk = START_BLOCK(sbi, segno + 1);
1126 	}
1127 #endif
1128 }
1129 
1130 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1131 				struct discard_policy *dpolicy,
1132 				int discard_type, unsigned int granularity)
1133 {
1134 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1135 
1136 	/* common policy */
1137 	dpolicy->type = discard_type;
1138 	dpolicy->sync = true;
1139 	dpolicy->ordered = false;
1140 	dpolicy->granularity = granularity;
1141 
1142 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1143 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1144 	dpolicy->timeout = false;
1145 
1146 	if (discard_type == DPOLICY_BG) {
1147 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150 		dpolicy->io_aware = true;
1151 		dpolicy->sync = false;
1152 		dpolicy->ordered = true;
1153 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1154 			dpolicy->granularity = 1;
1155 			if (atomic_read(&dcc->discard_cmd_cnt))
1156 				dpolicy->max_interval =
1157 					DEF_MIN_DISCARD_ISSUE_TIME;
1158 		}
1159 	} else if (discard_type == DPOLICY_FORCE) {
1160 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1161 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1162 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1163 		dpolicy->io_aware = false;
1164 	} else if (discard_type == DPOLICY_FSTRIM) {
1165 		dpolicy->io_aware = false;
1166 	} else if (discard_type == DPOLICY_UMOUNT) {
1167 		dpolicy->io_aware = false;
1168 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1169 		dpolicy->granularity = 1;
1170 		dpolicy->timeout = true;
1171 	}
1172 }
1173 
1174 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1175 				struct block_device *bdev, block_t lstart,
1176 				block_t start, block_t len);
1177 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1178 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1179 						struct discard_policy *dpolicy,
1180 						struct discard_cmd *dc,
1181 						unsigned int *issued)
1182 {
1183 	struct block_device *bdev = dc->bdev;
1184 	struct request_queue *q = bdev_get_queue(bdev);
1185 	unsigned int max_discard_blocks =
1186 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1187 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1188 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1189 					&(dcc->fstrim_list) : &(dcc->wait_list);
1190 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1191 	block_t lstart, start, len, total_len;
1192 	int err = 0;
1193 
1194 	if (dc->state != D_PREP)
1195 		return 0;
1196 
1197 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1198 		return 0;
1199 
1200 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1201 
1202 	lstart = dc->lstart;
1203 	start = dc->start;
1204 	len = dc->len;
1205 	total_len = len;
1206 
1207 	dc->len = 0;
1208 
1209 	while (total_len && *issued < dpolicy->max_requests && !err) {
1210 		struct bio *bio = NULL;
1211 		unsigned long flags;
1212 		bool last = true;
1213 
1214 		if (len > max_discard_blocks) {
1215 			len = max_discard_blocks;
1216 			last = false;
1217 		}
1218 
1219 		(*issued)++;
1220 		if (*issued == dpolicy->max_requests)
1221 			last = true;
1222 
1223 		dc->len += len;
1224 
1225 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1226 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1227 			err = -EIO;
1228 			goto submit;
1229 		}
1230 		err = __blkdev_issue_discard(bdev,
1231 					SECTOR_FROM_BLOCK(start),
1232 					SECTOR_FROM_BLOCK(len),
1233 					GFP_NOFS, 0, &bio);
1234 submit:
1235 		if (err) {
1236 			spin_lock_irqsave(&dc->lock, flags);
1237 			if (dc->state == D_PARTIAL)
1238 				dc->state = D_SUBMIT;
1239 			spin_unlock_irqrestore(&dc->lock, flags);
1240 
1241 			break;
1242 		}
1243 
1244 		f2fs_bug_on(sbi, !bio);
1245 
1246 		/*
1247 		 * should keep before submission to avoid D_DONE
1248 		 * right away
1249 		 */
1250 		spin_lock_irqsave(&dc->lock, flags);
1251 		if (last)
1252 			dc->state = D_SUBMIT;
1253 		else
1254 			dc->state = D_PARTIAL;
1255 		dc->bio_ref++;
1256 		spin_unlock_irqrestore(&dc->lock, flags);
1257 
1258 		atomic_inc(&dcc->queued_discard);
1259 		dc->queued++;
1260 		list_move_tail(&dc->list, wait_list);
1261 
1262 		/* sanity check on discard range */
1263 		__check_sit_bitmap(sbi, lstart, lstart + len);
1264 
1265 		bio->bi_private = dc;
1266 		bio->bi_end_io = f2fs_submit_discard_endio;
1267 		bio->bi_opf |= flag;
1268 		submit_bio(bio);
1269 
1270 		atomic_inc(&dcc->issued_discard);
1271 
1272 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1273 
1274 		lstart += len;
1275 		start += len;
1276 		total_len -= len;
1277 		len = total_len;
1278 	}
1279 
1280 	if (!err && len) {
1281 		dcc->undiscard_blks -= len;
1282 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1283 	}
1284 	return err;
1285 }
1286 
1287 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1288 				struct block_device *bdev, block_t lstart,
1289 				block_t start, block_t len,
1290 				struct rb_node **insert_p,
1291 				struct rb_node *insert_parent)
1292 {
1293 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1294 	struct rb_node **p;
1295 	struct rb_node *parent = NULL;
1296 	bool leftmost = true;
1297 
1298 	if (insert_p && insert_parent) {
1299 		parent = insert_parent;
1300 		p = insert_p;
1301 		goto do_insert;
1302 	}
1303 
1304 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1305 							lstart, &leftmost);
1306 do_insert:
1307 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1308 								p, leftmost);
1309 }
1310 
1311 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1312 						struct discard_cmd *dc)
1313 {
1314 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1315 }
1316 
1317 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1318 				struct discard_cmd *dc, block_t blkaddr)
1319 {
1320 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1321 	struct discard_info di = dc->di;
1322 	bool modified = false;
1323 
1324 	if (dc->state == D_DONE || dc->len == 1) {
1325 		__remove_discard_cmd(sbi, dc);
1326 		return;
1327 	}
1328 
1329 	dcc->undiscard_blks -= di.len;
1330 
1331 	if (blkaddr > di.lstart) {
1332 		dc->len = blkaddr - dc->lstart;
1333 		dcc->undiscard_blks += dc->len;
1334 		__relocate_discard_cmd(dcc, dc);
1335 		modified = true;
1336 	}
1337 
1338 	if (blkaddr < di.lstart + di.len - 1) {
1339 		if (modified) {
1340 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1341 					di.start + blkaddr + 1 - di.lstart,
1342 					di.lstart + di.len - 1 - blkaddr,
1343 					NULL, NULL);
1344 		} else {
1345 			dc->lstart++;
1346 			dc->len--;
1347 			dc->start++;
1348 			dcc->undiscard_blks += dc->len;
1349 			__relocate_discard_cmd(dcc, dc);
1350 		}
1351 	}
1352 }
1353 
1354 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1355 				struct block_device *bdev, block_t lstart,
1356 				block_t start, block_t len)
1357 {
1358 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1359 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1360 	struct discard_cmd *dc;
1361 	struct discard_info di = {0};
1362 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1363 	struct request_queue *q = bdev_get_queue(bdev);
1364 	unsigned int max_discard_blocks =
1365 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1366 	block_t end = lstart + len;
1367 
1368 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1369 					NULL, lstart,
1370 					(struct rb_entry **)&prev_dc,
1371 					(struct rb_entry **)&next_dc,
1372 					&insert_p, &insert_parent, true, NULL);
1373 	if (dc)
1374 		prev_dc = dc;
1375 
1376 	if (!prev_dc) {
1377 		di.lstart = lstart;
1378 		di.len = next_dc ? next_dc->lstart - lstart : len;
1379 		di.len = min(di.len, len);
1380 		di.start = start;
1381 	}
1382 
1383 	while (1) {
1384 		struct rb_node *node;
1385 		bool merged = false;
1386 		struct discard_cmd *tdc = NULL;
1387 
1388 		if (prev_dc) {
1389 			di.lstart = prev_dc->lstart + prev_dc->len;
1390 			if (di.lstart < lstart)
1391 				di.lstart = lstart;
1392 			if (di.lstart >= end)
1393 				break;
1394 
1395 			if (!next_dc || next_dc->lstart > end)
1396 				di.len = end - di.lstart;
1397 			else
1398 				di.len = next_dc->lstart - di.lstart;
1399 			di.start = start + di.lstart - lstart;
1400 		}
1401 
1402 		if (!di.len)
1403 			goto next;
1404 
1405 		if (prev_dc && prev_dc->state == D_PREP &&
1406 			prev_dc->bdev == bdev &&
1407 			__is_discard_back_mergeable(&di, &prev_dc->di,
1408 							max_discard_blocks)) {
1409 			prev_dc->di.len += di.len;
1410 			dcc->undiscard_blks += di.len;
1411 			__relocate_discard_cmd(dcc, prev_dc);
1412 			di = prev_dc->di;
1413 			tdc = prev_dc;
1414 			merged = true;
1415 		}
1416 
1417 		if (next_dc && next_dc->state == D_PREP &&
1418 			next_dc->bdev == bdev &&
1419 			__is_discard_front_mergeable(&di, &next_dc->di,
1420 							max_discard_blocks)) {
1421 			next_dc->di.lstart = di.lstart;
1422 			next_dc->di.len += di.len;
1423 			next_dc->di.start = di.start;
1424 			dcc->undiscard_blks += di.len;
1425 			__relocate_discard_cmd(dcc, next_dc);
1426 			if (tdc)
1427 				__remove_discard_cmd(sbi, tdc);
1428 			merged = true;
1429 		}
1430 
1431 		if (!merged) {
1432 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1433 							di.len, NULL, NULL);
1434 		}
1435  next:
1436 		prev_dc = next_dc;
1437 		if (!prev_dc)
1438 			break;
1439 
1440 		node = rb_next(&prev_dc->rb_node);
1441 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1442 	}
1443 }
1444 
1445 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1446 		struct block_device *bdev, block_t blkstart, block_t blklen)
1447 {
1448 	block_t lblkstart = blkstart;
1449 
1450 	if (!f2fs_bdev_support_discard(bdev))
1451 		return 0;
1452 
1453 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1454 
1455 	if (f2fs_is_multi_device(sbi)) {
1456 		int devi = f2fs_target_device_index(sbi, blkstart);
1457 
1458 		blkstart -= FDEV(devi).start_blk;
1459 	}
1460 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1461 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1462 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1463 	return 0;
1464 }
1465 
1466 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1467 					struct discard_policy *dpolicy)
1468 {
1469 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1470 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1471 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1472 	struct discard_cmd *dc;
1473 	struct blk_plug plug;
1474 	unsigned int pos = dcc->next_pos;
1475 	unsigned int issued = 0;
1476 	bool io_interrupted = false;
1477 
1478 	mutex_lock(&dcc->cmd_lock);
1479 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1480 					NULL, pos,
1481 					(struct rb_entry **)&prev_dc,
1482 					(struct rb_entry **)&next_dc,
1483 					&insert_p, &insert_parent, true, NULL);
1484 	if (!dc)
1485 		dc = next_dc;
1486 
1487 	blk_start_plug(&plug);
1488 
1489 	while (dc) {
1490 		struct rb_node *node;
1491 		int err = 0;
1492 
1493 		if (dc->state != D_PREP)
1494 			goto next;
1495 
1496 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1497 			io_interrupted = true;
1498 			break;
1499 		}
1500 
1501 		dcc->next_pos = dc->lstart + dc->len;
1502 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1503 
1504 		if (issued >= dpolicy->max_requests)
1505 			break;
1506 next:
1507 		node = rb_next(&dc->rb_node);
1508 		if (err)
1509 			__remove_discard_cmd(sbi, dc);
1510 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1511 	}
1512 
1513 	blk_finish_plug(&plug);
1514 
1515 	if (!dc)
1516 		dcc->next_pos = 0;
1517 
1518 	mutex_unlock(&dcc->cmd_lock);
1519 
1520 	if (!issued && io_interrupted)
1521 		issued = -1;
1522 
1523 	return issued;
1524 }
1525 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1526 					struct discard_policy *dpolicy);
1527 
1528 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1529 					struct discard_policy *dpolicy)
1530 {
1531 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1532 	struct list_head *pend_list;
1533 	struct discard_cmd *dc, *tmp;
1534 	struct blk_plug plug;
1535 	int i, issued;
1536 	bool io_interrupted = false;
1537 
1538 	if (dpolicy->timeout)
1539 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1540 
1541 retry:
1542 	issued = 0;
1543 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1544 		if (dpolicy->timeout &&
1545 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1546 			break;
1547 
1548 		if (i + 1 < dpolicy->granularity)
1549 			break;
1550 
1551 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1552 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1553 
1554 		pend_list = &dcc->pend_list[i];
1555 
1556 		mutex_lock(&dcc->cmd_lock);
1557 		if (list_empty(pend_list))
1558 			goto next;
1559 		if (unlikely(dcc->rbtree_check))
1560 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1561 							&dcc->root, false));
1562 		blk_start_plug(&plug);
1563 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1564 			f2fs_bug_on(sbi, dc->state != D_PREP);
1565 
1566 			if (dpolicy->timeout &&
1567 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1568 				break;
1569 
1570 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1571 						!is_idle(sbi, DISCARD_TIME)) {
1572 				io_interrupted = true;
1573 				break;
1574 			}
1575 
1576 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1577 
1578 			if (issued >= dpolicy->max_requests)
1579 				break;
1580 		}
1581 		blk_finish_plug(&plug);
1582 next:
1583 		mutex_unlock(&dcc->cmd_lock);
1584 
1585 		if (issued >= dpolicy->max_requests || io_interrupted)
1586 			break;
1587 	}
1588 
1589 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1590 		__wait_all_discard_cmd(sbi, dpolicy);
1591 		goto retry;
1592 	}
1593 
1594 	if (!issued && io_interrupted)
1595 		issued = -1;
1596 
1597 	return issued;
1598 }
1599 
1600 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1601 {
1602 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1603 	struct list_head *pend_list;
1604 	struct discard_cmd *dc, *tmp;
1605 	int i;
1606 	bool dropped = false;
1607 
1608 	mutex_lock(&dcc->cmd_lock);
1609 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1610 		pend_list = &dcc->pend_list[i];
1611 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1612 			f2fs_bug_on(sbi, dc->state != D_PREP);
1613 			__remove_discard_cmd(sbi, dc);
1614 			dropped = true;
1615 		}
1616 	}
1617 	mutex_unlock(&dcc->cmd_lock);
1618 
1619 	return dropped;
1620 }
1621 
1622 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1623 {
1624 	__drop_discard_cmd(sbi);
1625 }
1626 
1627 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1628 							struct discard_cmd *dc)
1629 {
1630 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1631 	unsigned int len = 0;
1632 
1633 	wait_for_completion_io(&dc->wait);
1634 	mutex_lock(&dcc->cmd_lock);
1635 	f2fs_bug_on(sbi, dc->state != D_DONE);
1636 	dc->ref--;
1637 	if (!dc->ref) {
1638 		if (!dc->error)
1639 			len = dc->len;
1640 		__remove_discard_cmd(sbi, dc);
1641 	}
1642 	mutex_unlock(&dcc->cmd_lock);
1643 
1644 	return len;
1645 }
1646 
1647 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1648 						struct discard_policy *dpolicy,
1649 						block_t start, block_t end)
1650 {
1651 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1652 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1653 					&(dcc->fstrim_list) : &(dcc->wait_list);
1654 	struct discard_cmd *dc, *tmp;
1655 	bool need_wait;
1656 	unsigned int trimmed = 0;
1657 
1658 next:
1659 	need_wait = false;
1660 
1661 	mutex_lock(&dcc->cmd_lock);
1662 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1663 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1664 			continue;
1665 		if (dc->len < dpolicy->granularity)
1666 			continue;
1667 		if (dc->state == D_DONE && !dc->ref) {
1668 			wait_for_completion_io(&dc->wait);
1669 			if (!dc->error)
1670 				trimmed += dc->len;
1671 			__remove_discard_cmd(sbi, dc);
1672 		} else {
1673 			dc->ref++;
1674 			need_wait = true;
1675 			break;
1676 		}
1677 	}
1678 	mutex_unlock(&dcc->cmd_lock);
1679 
1680 	if (need_wait) {
1681 		trimmed += __wait_one_discard_bio(sbi, dc);
1682 		goto next;
1683 	}
1684 
1685 	return trimmed;
1686 }
1687 
1688 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1689 						struct discard_policy *dpolicy)
1690 {
1691 	struct discard_policy dp;
1692 	unsigned int discard_blks;
1693 
1694 	if (dpolicy)
1695 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1696 
1697 	/* wait all */
1698 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1699 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1700 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1701 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1702 
1703 	return discard_blks;
1704 }
1705 
1706 /* This should be covered by global mutex, &sit_i->sentry_lock */
1707 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1708 {
1709 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1710 	struct discard_cmd *dc;
1711 	bool need_wait = false;
1712 
1713 	mutex_lock(&dcc->cmd_lock);
1714 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1715 							NULL, blkaddr);
1716 	if (dc) {
1717 		if (dc->state == D_PREP) {
1718 			__punch_discard_cmd(sbi, dc, blkaddr);
1719 		} else {
1720 			dc->ref++;
1721 			need_wait = true;
1722 		}
1723 	}
1724 	mutex_unlock(&dcc->cmd_lock);
1725 
1726 	if (need_wait)
1727 		__wait_one_discard_bio(sbi, dc);
1728 }
1729 
1730 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1731 {
1732 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733 
1734 	if (dcc && dcc->f2fs_issue_discard) {
1735 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1736 
1737 		dcc->f2fs_issue_discard = NULL;
1738 		kthread_stop(discard_thread);
1739 	}
1740 }
1741 
1742 /* This comes from f2fs_put_super */
1743 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1744 {
1745 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1746 	struct discard_policy dpolicy;
1747 	bool dropped;
1748 
1749 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1750 					dcc->discard_granularity);
1751 	__issue_discard_cmd(sbi, &dpolicy);
1752 	dropped = __drop_discard_cmd(sbi);
1753 
1754 	/* just to make sure there is no pending discard commands */
1755 	__wait_all_discard_cmd(sbi, NULL);
1756 
1757 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1758 	return dropped;
1759 }
1760 
1761 static int issue_discard_thread(void *data)
1762 {
1763 	struct f2fs_sb_info *sbi = data;
1764 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1765 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1766 	struct discard_policy dpolicy;
1767 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1768 	int issued;
1769 
1770 	set_freezable();
1771 
1772 	do {
1773 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1774 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1775 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1776 		else
1777 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1778 						dcc->discard_granularity);
1779 
1780 		if (!atomic_read(&dcc->discard_cmd_cnt))
1781 		       wait_ms = dpolicy.max_interval;
1782 
1783 		wait_event_interruptible_timeout(*q,
1784 				kthread_should_stop() || freezing(current) ||
1785 				dcc->discard_wake,
1786 				msecs_to_jiffies(wait_ms));
1787 
1788 		if (dcc->discard_wake)
1789 			dcc->discard_wake = 0;
1790 
1791 		/* clean up pending candidates before going to sleep */
1792 		if (atomic_read(&dcc->queued_discard))
1793 			__wait_all_discard_cmd(sbi, NULL);
1794 
1795 		if (try_to_freeze())
1796 			continue;
1797 		if (f2fs_readonly(sbi->sb))
1798 			continue;
1799 		if (kthread_should_stop())
1800 			return 0;
1801 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1802 			wait_ms = dpolicy.max_interval;
1803 			continue;
1804 		}
1805 		if (!atomic_read(&dcc->discard_cmd_cnt))
1806 			continue;
1807 
1808 		sb_start_intwrite(sbi->sb);
1809 
1810 		issued = __issue_discard_cmd(sbi, &dpolicy);
1811 		if (issued > 0) {
1812 			__wait_all_discard_cmd(sbi, &dpolicy);
1813 			wait_ms = dpolicy.min_interval;
1814 		} else if (issued == -1) {
1815 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1816 			if (!wait_ms)
1817 				wait_ms = dpolicy.mid_interval;
1818 		} else {
1819 			wait_ms = dpolicy.max_interval;
1820 		}
1821 
1822 		sb_end_intwrite(sbi->sb);
1823 
1824 	} while (!kthread_should_stop());
1825 	return 0;
1826 }
1827 
1828 #ifdef CONFIG_BLK_DEV_ZONED
1829 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1830 		struct block_device *bdev, block_t blkstart, block_t blklen)
1831 {
1832 	sector_t sector, nr_sects;
1833 	block_t lblkstart = blkstart;
1834 	int devi = 0;
1835 
1836 	if (f2fs_is_multi_device(sbi)) {
1837 		devi = f2fs_target_device_index(sbi, blkstart);
1838 		if (blkstart < FDEV(devi).start_blk ||
1839 		    blkstart > FDEV(devi).end_blk) {
1840 			f2fs_err(sbi, "Invalid block %x", blkstart);
1841 			return -EIO;
1842 		}
1843 		blkstart -= FDEV(devi).start_blk;
1844 	}
1845 
1846 	/* For sequential zones, reset the zone write pointer */
1847 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1848 		sector = SECTOR_FROM_BLOCK(blkstart);
1849 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1850 
1851 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1852 				nr_sects != bdev_zone_sectors(bdev)) {
1853 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1854 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1855 				 blkstart, blklen);
1856 			return -EIO;
1857 		}
1858 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1859 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1860 					sector, nr_sects, GFP_NOFS);
1861 	}
1862 
1863 	/* For conventional zones, use regular discard if supported */
1864 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1865 }
1866 #endif
1867 
1868 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1869 		struct block_device *bdev, block_t blkstart, block_t blklen)
1870 {
1871 #ifdef CONFIG_BLK_DEV_ZONED
1872 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1873 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1874 #endif
1875 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1876 }
1877 
1878 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1879 				block_t blkstart, block_t blklen)
1880 {
1881 	sector_t start = blkstart, len = 0;
1882 	struct block_device *bdev;
1883 	struct seg_entry *se;
1884 	unsigned int offset;
1885 	block_t i;
1886 	int err = 0;
1887 
1888 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1889 
1890 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1891 		if (i != start) {
1892 			struct block_device *bdev2 =
1893 				f2fs_target_device(sbi, i, NULL);
1894 
1895 			if (bdev2 != bdev) {
1896 				err = __issue_discard_async(sbi, bdev,
1897 						start, len);
1898 				if (err)
1899 					return err;
1900 				bdev = bdev2;
1901 				start = i;
1902 				len = 0;
1903 			}
1904 		}
1905 
1906 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1907 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1908 
1909 		if (f2fs_block_unit_discard(sbi) &&
1910 				!f2fs_test_and_set_bit(offset, se->discard_map))
1911 			sbi->discard_blks--;
1912 	}
1913 
1914 	if (len)
1915 		err = __issue_discard_async(sbi, bdev, start, len);
1916 	return err;
1917 }
1918 
1919 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1920 							bool check_only)
1921 {
1922 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1923 	int max_blocks = sbi->blocks_per_seg;
1924 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1925 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1926 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1927 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1928 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1929 	unsigned int start = 0, end = -1;
1930 	bool force = (cpc->reason & CP_DISCARD);
1931 	struct discard_entry *de = NULL;
1932 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1933 	int i;
1934 
1935 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1936 			!f2fs_block_unit_discard(sbi))
1937 		return false;
1938 
1939 	if (!force) {
1940 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1941 			SM_I(sbi)->dcc_info->nr_discards >=
1942 				SM_I(sbi)->dcc_info->max_discards)
1943 			return false;
1944 	}
1945 
1946 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1947 	for (i = 0; i < entries; i++)
1948 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1949 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1950 
1951 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1952 				SM_I(sbi)->dcc_info->max_discards) {
1953 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1954 		if (start >= max_blocks)
1955 			break;
1956 
1957 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1958 		if (force && start && end != max_blocks
1959 					&& (end - start) < cpc->trim_minlen)
1960 			continue;
1961 
1962 		if (check_only)
1963 			return true;
1964 
1965 		if (!de) {
1966 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1967 						GFP_F2FS_ZERO, true, NULL);
1968 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1969 			list_add_tail(&de->list, head);
1970 		}
1971 
1972 		for (i = start; i < end; i++)
1973 			__set_bit_le(i, (void *)de->discard_map);
1974 
1975 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1976 	}
1977 	return false;
1978 }
1979 
1980 static void release_discard_addr(struct discard_entry *entry)
1981 {
1982 	list_del(&entry->list);
1983 	kmem_cache_free(discard_entry_slab, entry);
1984 }
1985 
1986 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1987 {
1988 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1989 	struct discard_entry *entry, *this;
1990 
1991 	/* drop caches */
1992 	list_for_each_entry_safe(entry, this, head, list)
1993 		release_discard_addr(entry);
1994 }
1995 
1996 /*
1997  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1998  */
1999 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2000 {
2001 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002 	unsigned int segno;
2003 
2004 	mutex_lock(&dirty_i->seglist_lock);
2005 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2006 		__set_test_and_free(sbi, segno, false);
2007 	mutex_unlock(&dirty_i->seglist_lock);
2008 }
2009 
2010 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2011 						struct cp_control *cpc)
2012 {
2013 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2014 	struct list_head *head = &dcc->entry_list;
2015 	struct discard_entry *entry, *this;
2016 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2017 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2018 	unsigned int start = 0, end = -1;
2019 	unsigned int secno, start_segno;
2020 	bool force = (cpc->reason & CP_DISCARD);
2021 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2022 						DISCARD_UNIT_SECTION;
2023 
2024 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2025 		section_alignment = true;
2026 
2027 	mutex_lock(&dirty_i->seglist_lock);
2028 
2029 	while (1) {
2030 		int i;
2031 
2032 		if (section_alignment && end != -1)
2033 			end--;
2034 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2035 		if (start >= MAIN_SEGS(sbi))
2036 			break;
2037 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2038 								start + 1);
2039 
2040 		if (section_alignment) {
2041 			start = rounddown(start, sbi->segs_per_sec);
2042 			end = roundup(end, sbi->segs_per_sec);
2043 		}
2044 
2045 		for (i = start; i < end; i++) {
2046 			if (test_and_clear_bit(i, prefree_map))
2047 				dirty_i->nr_dirty[PRE]--;
2048 		}
2049 
2050 		if (!f2fs_realtime_discard_enable(sbi))
2051 			continue;
2052 
2053 		if (force && start >= cpc->trim_start &&
2054 					(end - 1) <= cpc->trim_end)
2055 				continue;
2056 
2057 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2058 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2059 				(end - start) << sbi->log_blocks_per_seg);
2060 			continue;
2061 		}
2062 next:
2063 		secno = GET_SEC_FROM_SEG(sbi, start);
2064 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2065 		if (!IS_CURSEC(sbi, secno) &&
2066 			!get_valid_blocks(sbi, start, true))
2067 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2068 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2069 
2070 		start = start_segno + sbi->segs_per_sec;
2071 		if (start < end)
2072 			goto next;
2073 		else
2074 			end = start - 1;
2075 	}
2076 	mutex_unlock(&dirty_i->seglist_lock);
2077 
2078 	if (!f2fs_block_unit_discard(sbi))
2079 		goto wakeup;
2080 
2081 	/* send small discards */
2082 	list_for_each_entry_safe(entry, this, head, list) {
2083 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2084 		bool is_valid = test_bit_le(0, entry->discard_map);
2085 
2086 find_next:
2087 		if (is_valid) {
2088 			next_pos = find_next_zero_bit_le(entry->discard_map,
2089 					sbi->blocks_per_seg, cur_pos);
2090 			len = next_pos - cur_pos;
2091 
2092 			if (f2fs_sb_has_blkzoned(sbi) ||
2093 			    (force && len < cpc->trim_minlen))
2094 				goto skip;
2095 
2096 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2097 									len);
2098 			total_len += len;
2099 		} else {
2100 			next_pos = find_next_bit_le(entry->discard_map,
2101 					sbi->blocks_per_seg, cur_pos);
2102 		}
2103 skip:
2104 		cur_pos = next_pos;
2105 		is_valid = !is_valid;
2106 
2107 		if (cur_pos < sbi->blocks_per_seg)
2108 			goto find_next;
2109 
2110 		release_discard_addr(entry);
2111 		dcc->nr_discards -= total_len;
2112 	}
2113 
2114 wakeup:
2115 	wake_up_discard_thread(sbi, false);
2116 }
2117 
2118 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2119 {
2120 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2121 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2122 	int err = 0;
2123 
2124 	if (!f2fs_realtime_discard_enable(sbi))
2125 		return 0;
2126 
2127 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2128 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2129 	if (IS_ERR(dcc->f2fs_issue_discard))
2130 		err = PTR_ERR(dcc->f2fs_issue_discard);
2131 
2132 	return err;
2133 }
2134 
2135 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2136 {
2137 	struct discard_cmd_control *dcc;
2138 	int err = 0, i;
2139 
2140 	if (SM_I(sbi)->dcc_info) {
2141 		dcc = SM_I(sbi)->dcc_info;
2142 		goto init_thread;
2143 	}
2144 
2145 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2146 	if (!dcc)
2147 		return -ENOMEM;
2148 
2149 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2150 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2151 		dcc->discard_granularity = sbi->blocks_per_seg;
2152 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2153 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2154 
2155 	INIT_LIST_HEAD(&dcc->entry_list);
2156 	for (i = 0; i < MAX_PLIST_NUM; i++)
2157 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2158 	INIT_LIST_HEAD(&dcc->wait_list);
2159 	INIT_LIST_HEAD(&dcc->fstrim_list);
2160 	mutex_init(&dcc->cmd_lock);
2161 	atomic_set(&dcc->issued_discard, 0);
2162 	atomic_set(&dcc->queued_discard, 0);
2163 	atomic_set(&dcc->discard_cmd_cnt, 0);
2164 	dcc->nr_discards = 0;
2165 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2166 	dcc->undiscard_blks = 0;
2167 	dcc->next_pos = 0;
2168 	dcc->root = RB_ROOT_CACHED;
2169 	dcc->rbtree_check = false;
2170 
2171 	init_waitqueue_head(&dcc->discard_wait_queue);
2172 	SM_I(sbi)->dcc_info = dcc;
2173 init_thread:
2174 	err = f2fs_start_discard_thread(sbi);
2175 	if (err) {
2176 		kfree(dcc);
2177 		SM_I(sbi)->dcc_info = NULL;
2178 	}
2179 
2180 	return err;
2181 }
2182 
2183 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2184 {
2185 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2186 
2187 	if (!dcc)
2188 		return;
2189 
2190 	f2fs_stop_discard_thread(sbi);
2191 
2192 	/*
2193 	 * Recovery can cache discard commands, so in error path of
2194 	 * fill_super(), it needs to give a chance to handle them.
2195 	 */
2196 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2197 		f2fs_issue_discard_timeout(sbi);
2198 
2199 	kfree(dcc);
2200 	SM_I(sbi)->dcc_info = NULL;
2201 }
2202 
2203 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2204 {
2205 	struct sit_info *sit_i = SIT_I(sbi);
2206 
2207 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2208 		sit_i->dirty_sentries++;
2209 		return false;
2210 	}
2211 
2212 	return true;
2213 }
2214 
2215 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2216 					unsigned int segno, int modified)
2217 {
2218 	struct seg_entry *se = get_seg_entry(sbi, segno);
2219 
2220 	se->type = type;
2221 	if (modified)
2222 		__mark_sit_entry_dirty(sbi, segno);
2223 }
2224 
2225 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2226 								block_t blkaddr)
2227 {
2228 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2229 
2230 	if (segno == NULL_SEGNO)
2231 		return 0;
2232 	return get_seg_entry(sbi, segno)->mtime;
2233 }
2234 
2235 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2236 						unsigned long long old_mtime)
2237 {
2238 	struct seg_entry *se;
2239 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2240 	unsigned long long ctime = get_mtime(sbi, false);
2241 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2242 
2243 	if (segno == NULL_SEGNO)
2244 		return;
2245 
2246 	se = get_seg_entry(sbi, segno);
2247 
2248 	if (!se->mtime)
2249 		se->mtime = mtime;
2250 	else
2251 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2252 						se->valid_blocks + 1);
2253 
2254 	if (ctime > SIT_I(sbi)->max_mtime)
2255 		SIT_I(sbi)->max_mtime = ctime;
2256 }
2257 
2258 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2259 {
2260 	struct seg_entry *se;
2261 	unsigned int segno, offset;
2262 	long int new_vblocks;
2263 	bool exist;
2264 #ifdef CONFIG_F2FS_CHECK_FS
2265 	bool mir_exist;
2266 #endif
2267 
2268 	segno = GET_SEGNO(sbi, blkaddr);
2269 
2270 	se = get_seg_entry(sbi, segno);
2271 	new_vblocks = se->valid_blocks + del;
2272 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2273 
2274 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2275 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2276 
2277 	se->valid_blocks = new_vblocks;
2278 
2279 	/* Update valid block bitmap */
2280 	if (del > 0) {
2281 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2282 #ifdef CONFIG_F2FS_CHECK_FS
2283 		mir_exist = f2fs_test_and_set_bit(offset,
2284 						se->cur_valid_map_mir);
2285 		if (unlikely(exist != mir_exist)) {
2286 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2287 				 blkaddr, exist);
2288 			f2fs_bug_on(sbi, 1);
2289 		}
2290 #endif
2291 		if (unlikely(exist)) {
2292 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2293 				 blkaddr);
2294 			f2fs_bug_on(sbi, 1);
2295 			se->valid_blocks--;
2296 			del = 0;
2297 		}
2298 
2299 		if (f2fs_block_unit_discard(sbi) &&
2300 				!f2fs_test_and_set_bit(offset, se->discard_map))
2301 			sbi->discard_blks--;
2302 
2303 		/*
2304 		 * SSR should never reuse block which is checkpointed
2305 		 * or newly invalidated.
2306 		 */
2307 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2308 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2309 				se->ckpt_valid_blocks++;
2310 		}
2311 	} else {
2312 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2313 #ifdef CONFIG_F2FS_CHECK_FS
2314 		mir_exist = f2fs_test_and_clear_bit(offset,
2315 						se->cur_valid_map_mir);
2316 		if (unlikely(exist != mir_exist)) {
2317 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2318 				 blkaddr, exist);
2319 			f2fs_bug_on(sbi, 1);
2320 		}
2321 #endif
2322 		if (unlikely(!exist)) {
2323 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2324 				 blkaddr);
2325 			f2fs_bug_on(sbi, 1);
2326 			se->valid_blocks++;
2327 			del = 0;
2328 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2329 			/*
2330 			 * If checkpoints are off, we must not reuse data that
2331 			 * was used in the previous checkpoint. If it was used
2332 			 * before, we must track that to know how much space we
2333 			 * really have.
2334 			 */
2335 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2336 				spin_lock(&sbi->stat_lock);
2337 				sbi->unusable_block_count++;
2338 				spin_unlock(&sbi->stat_lock);
2339 			}
2340 		}
2341 
2342 		if (f2fs_block_unit_discard(sbi) &&
2343 			f2fs_test_and_clear_bit(offset, se->discard_map))
2344 			sbi->discard_blks++;
2345 	}
2346 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2347 		se->ckpt_valid_blocks += del;
2348 
2349 	__mark_sit_entry_dirty(sbi, segno);
2350 
2351 	/* update total number of valid blocks to be written in ckpt area */
2352 	SIT_I(sbi)->written_valid_blocks += del;
2353 
2354 	if (__is_large_section(sbi))
2355 		get_sec_entry(sbi, segno)->valid_blocks += del;
2356 }
2357 
2358 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2359 {
2360 	unsigned int segno = GET_SEGNO(sbi, addr);
2361 	struct sit_info *sit_i = SIT_I(sbi);
2362 
2363 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2364 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2365 		return;
2366 
2367 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2368 	f2fs_invalidate_compress_page(sbi, addr);
2369 
2370 	/* add it into sit main buffer */
2371 	down_write(&sit_i->sentry_lock);
2372 
2373 	update_segment_mtime(sbi, addr, 0);
2374 	update_sit_entry(sbi, addr, -1);
2375 
2376 	/* add it into dirty seglist */
2377 	locate_dirty_segment(sbi, segno);
2378 
2379 	up_write(&sit_i->sentry_lock);
2380 }
2381 
2382 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2383 {
2384 	struct sit_info *sit_i = SIT_I(sbi);
2385 	unsigned int segno, offset;
2386 	struct seg_entry *se;
2387 	bool is_cp = false;
2388 
2389 	if (!__is_valid_data_blkaddr(blkaddr))
2390 		return true;
2391 
2392 	down_read(&sit_i->sentry_lock);
2393 
2394 	segno = GET_SEGNO(sbi, blkaddr);
2395 	se = get_seg_entry(sbi, segno);
2396 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2397 
2398 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2399 		is_cp = true;
2400 
2401 	up_read(&sit_i->sentry_lock);
2402 
2403 	return is_cp;
2404 }
2405 
2406 /*
2407  * This function should be resided under the curseg_mutex lock
2408  */
2409 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2410 					struct f2fs_summary *sum)
2411 {
2412 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2413 	void *addr = curseg->sum_blk;
2414 
2415 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2416 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2417 }
2418 
2419 /*
2420  * Calculate the number of current summary pages for writing
2421  */
2422 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2423 {
2424 	int valid_sum_count = 0;
2425 	int i, sum_in_page;
2426 
2427 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2428 		if (sbi->ckpt->alloc_type[i] == SSR)
2429 			valid_sum_count += sbi->blocks_per_seg;
2430 		else {
2431 			if (for_ra)
2432 				valid_sum_count += le16_to_cpu(
2433 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2434 			else
2435 				valid_sum_count += curseg_blkoff(sbi, i);
2436 		}
2437 	}
2438 
2439 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2440 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2441 	if (valid_sum_count <= sum_in_page)
2442 		return 1;
2443 	else if ((valid_sum_count - sum_in_page) <=
2444 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2445 		return 2;
2446 	return 3;
2447 }
2448 
2449 /*
2450  * Caller should put this summary page
2451  */
2452 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2453 {
2454 	if (unlikely(f2fs_cp_error(sbi)))
2455 		return ERR_PTR(-EIO);
2456 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2457 }
2458 
2459 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2460 					void *src, block_t blk_addr)
2461 {
2462 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2463 
2464 	memcpy(page_address(page), src, PAGE_SIZE);
2465 	set_page_dirty(page);
2466 	f2fs_put_page(page, 1);
2467 }
2468 
2469 static void write_sum_page(struct f2fs_sb_info *sbi,
2470 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2471 {
2472 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2473 }
2474 
2475 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2476 						int type, block_t blk_addr)
2477 {
2478 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2479 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2480 	struct f2fs_summary_block *src = curseg->sum_blk;
2481 	struct f2fs_summary_block *dst;
2482 
2483 	dst = (struct f2fs_summary_block *)page_address(page);
2484 	memset(dst, 0, PAGE_SIZE);
2485 
2486 	mutex_lock(&curseg->curseg_mutex);
2487 
2488 	down_read(&curseg->journal_rwsem);
2489 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2490 	up_read(&curseg->journal_rwsem);
2491 
2492 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2493 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2494 
2495 	mutex_unlock(&curseg->curseg_mutex);
2496 
2497 	set_page_dirty(page);
2498 	f2fs_put_page(page, 1);
2499 }
2500 
2501 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2502 				struct curseg_info *curseg, int type)
2503 {
2504 	unsigned int segno = curseg->segno + 1;
2505 	struct free_segmap_info *free_i = FREE_I(sbi);
2506 
2507 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2508 		return !test_bit(segno, free_i->free_segmap);
2509 	return 0;
2510 }
2511 
2512 /*
2513  * Find a new segment from the free segments bitmap to right order
2514  * This function should be returned with success, otherwise BUG
2515  */
2516 static void get_new_segment(struct f2fs_sb_info *sbi,
2517 			unsigned int *newseg, bool new_sec, int dir)
2518 {
2519 	struct free_segmap_info *free_i = FREE_I(sbi);
2520 	unsigned int segno, secno, zoneno;
2521 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2522 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2523 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2524 	unsigned int left_start = hint;
2525 	bool init = true;
2526 	int go_left = 0;
2527 	int i;
2528 
2529 	spin_lock(&free_i->segmap_lock);
2530 
2531 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2532 		segno = find_next_zero_bit(free_i->free_segmap,
2533 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2534 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2535 			goto got_it;
2536 	}
2537 find_other_zone:
2538 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2539 	if (secno >= MAIN_SECS(sbi)) {
2540 		if (dir == ALLOC_RIGHT) {
2541 			secno = find_next_zero_bit(free_i->free_secmap,
2542 							MAIN_SECS(sbi), 0);
2543 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2544 		} else {
2545 			go_left = 1;
2546 			left_start = hint - 1;
2547 		}
2548 	}
2549 	if (go_left == 0)
2550 		goto skip_left;
2551 
2552 	while (test_bit(left_start, free_i->free_secmap)) {
2553 		if (left_start > 0) {
2554 			left_start--;
2555 			continue;
2556 		}
2557 		left_start = find_next_zero_bit(free_i->free_secmap,
2558 							MAIN_SECS(sbi), 0);
2559 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2560 		break;
2561 	}
2562 	secno = left_start;
2563 skip_left:
2564 	segno = GET_SEG_FROM_SEC(sbi, secno);
2565 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2566 
2567 	/* give up on finding another zone */
2568 	if (!init)
2569 		goto got_it;
2570 	if (sbi->secs_per_zone == 1)
2571 		goto got_it;
2572 	if (zoneno == old_zoneno)
2573 		goto got_it;
2574 	if (dir == ALLOC_LEFT) {
2575 		if (!go_left && zoneno + 1 >= total_zones)
2576 			goto got_it;
2577 		if (go_left && zoneno == 0)
2578 			goto got_it;
2579 	}
2580 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2581 		if (CURSEG_I(sbi, i)->zone == zoneno)
2582 			break;
2583 
2584 	if (i < NR_CURSEG_TYPE) {
2585 		/* zone is in user, try another */
2586 		if (go_left)
2587 			hint = zoneno * sbi->secs_per_zone - 1;
2588 		else if (zoneno + 1 >= total_zones)
2589 			hint = 0;
2590 		else
2591 			hint = (zoneno + 1) * sbi->secs_per_zone;
2592 		init = false;
2593 		goto find_other_zone;
2594 	}
2595 got_it:
2596 	/* set it as dirty segment in free segmap */
2597 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2598 	__set_inuse(sbi, segno);
2599 	*newseg = segno;
2600 	spin_unlock(&free_i->segmap_lock);
2601 }
2602 
2603 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2604 {
2605 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2606 	struct summary_footer *sum_footer;
2607 	unsigned short seg_type = curseg->seg_type;
2608 
2609 	curseg->inited = true;
2610 	curseg->segno = curseg->next_segno;
2611 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2612 	curseg->next_blkoff = 0;
2613 	curseg->next_segno = NULL_SEGNO;
2614 
2615 	sum_footer = &(curseg->sum_blk->footer);
2616 	memset(sum_footer, 0, sizeof(struct summary_footer));
2617 
2618 	sanity_check_seg_type(sbi, seg_type);
2619 
2620 	if (IS_DATASEG(seg_type))
2621 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2622 	if (IS_NODESEG(seg_type))
2623 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2624 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2625 }
2626 
2627 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2628 {
2629 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2630 	unsigned short seg_type = curseg->seg_type;
2631 
2632 	sanity_check_seg_type(sbi, seg_type);
2633 
2634 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2635 	if (__is_large_section(sbi))
2636 		return curseg->segno;
2637 
2638 	/* inmem log may not locate on any segment after mount */
2639 	if (!curseg->inited)
2640 		return 0;
2641 
2642 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2643 		return 0;
2644 
2645 	if (test_opt(sbi, NOHEAP) &&
2646 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2647 		return 0;
2648 
2649 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2650 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2651 
2652 	/* find segments from 0 to reuse freed segments */
2653 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2654 		return 0;
2655 
2656 	return curseg->segno;
2657 }
2658 
2659 /*
2660  * Allocate a current working segment.
2661  * This function always allocates a free segment in LFS manner.
2662  */
2663 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2664 {
2665 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2666 	unsigned short seg_type = curseg->seg_type;
2667 	unsigned int segno = curseg->segno;
2668 	int dir = ALLOC_LEFT;
2669 
2670 	if (curseg->inited)
2671 		write_sum_page(sbi, curseg->sum_blk,
2672 				GET_SUM_BLOCK(sbi, segno));
2673 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2674 		dir = ALLOC_RIGHT;
2675 
2676 	if (test_opt(sbi, NOHEAP))
2677 		dir = ALLOC_RIGHT;
2678 
2679 	segno = __get_next_segno(sbi, type);
2680 	get_new_segment(sbi, &segno, new_sec, dir);
2681 	curseg->next_segno = segno;
2682 	reset_curseg(sbi, type, 1);
2683 	curseg->alloc_type = LFS;
2684 }
2685 
2686 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2687 					int segno, block_t start)
2688 {
2689 	struct seg_entry *se = get_seg_entry(sbi, segno);
2690 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2691 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2692 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2693 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2694 	int i;
2695 
2696 	for (i = 0; i < entries; i++)
2697 		target_map[i] = ckpt_map[i] | cur_map[i];
2698 
2699 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2700 }
2701 
2702 /*
2703  * If a segment is written by LFS manner, next block offset is just obtained
2704  * by increasing the current block offset. However, if a segment is written by
2705  * SSR manner, next block offset obtained by calling __next_free_blkoff
2706  */
2707 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2708 				struct curseg_info *seg)
2709 {
2710 	if (seg->alloc_type == SSR)
2711 		seg->next_blkoff =
2712 			__next_free_blkoff(sbi, seg->segno,
2713 						seg->next_blkoff + 1);
2714 	else
2715 		seg->next_blkoff++;
2716 }
2717 
2718 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2719 {
2720 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2721 }
2722 
2723 /*
2724  * This function always allocates a used segment(from dirty seglist) by SSR
2725  * manner, so it should recover the existing segment information of valid blocks
2726  */
2727 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2728 {
2729 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2730 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2731 	unsigned int new_segno = curseg->next_segno;
2732 	struct f2fs_summary_block *sum_node;
2733 	struct page *sum_page;
2734 
2735 	if (flush)
2736 		write_sum_page(sbi, curseg->sum_blk,
2737 					GET_SUM_BLOCK(sbi, curseg->segno));
2738 
2739 	__set_test_and_inuse(sbi, new_segno);
2740 
2741 	mutex_lock(&dirty_i->seglist_lock);
2742 	__remove_dirty_segment(sbi, new_segno, PRE);
2743 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2744 	mutex_unlock(&dirty_i->seglist_lock);
2745 
2746 	reset_curseg(sbi, type, 1);
2747 	curseg->alloc_type = SSR;
2748 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2749 
2750 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2751 	if (IS_ERR(sum_page)) {
2752 		/* GC won't be able to use stale summary pages by cp_error */
2753 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2754 		return;
2755 	}
2756 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2757 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2758 	f2fs_put_page(sum_page, 1);
2759 }
2760 
2761 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2762 				int alloc_mode, unsigned long long age);
2763 
2764 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2765 					int target_type, int alloc_mode,
2766 					unsigned long long age)
2767 {
2768 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2769 
2770 	curseg->seg_type = target_type;
2771 
2772 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2773 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2774 
2775 		curseg->seg_type = se->type;
2776 		change_curseg(sbi, type, true);
2777 	} else {
2778 		/* allocate cold segment by default */
2779 		curseg->seg_type = CURSEG_COLD_DATA;
2780 		new_curseg(sbi, type, true);
2781 	}
2782 	stat_inc_seg_type(sbi, curseg);
2783 }
2784 
2785 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2786 {
2787 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2788 
2789 	if (!sbi->am.atgc_enabled)
2790 		return;
2791 
2792 	down_read(&SM_I(sbi)->curseg_lock);
2793 
2794 	mutex_lock(&curseg->curseg_mutex);
2795 	down_write(&SIT_I(sbi)->sentry_lock);
2796 
2797 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2798 
2799 	up_write(&SIT_I(sbi)->sentry_lock);
2800 	mutex_unlock(&curseg->curseg_mutex);
2801 
2802 	up_read(&SM_I(sbi)->curseg_lock);
2803 
2804 }
2805 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2806 {
2807 	__f2fs_init_atgc_curseg(sbi);
2808 }
2809 
2810 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2811 {
2812 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2813 
2814 	mutex_lock(&curseg->curseg_mutex);
2815 	if (!curseg->inited)
2816 		goto out;
2817 
2818 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2819 		write_sum_page(sbi, curseg->sum_blk,
2820 				GET_SUM_BLOCK(sbi, curseg->segno));
2821 	} else {
2822 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2823 		__set_test_and_free(sbi, curseg->segno, true);
2824 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2825 	}
2826 out:
2827 	mutex_unlock(&curseg->curseg_mutex);
2828 }
2829 
2830 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2831 {
2832 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2833 
2834 	if (sbi->am.atgc_enabled)
2835 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2836 }
2837 
2838 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2839 {
2840 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2841 
2842 	mutex_lock(&curseg->curseg_mutex);
2843 	if (!curseg->inited)
2844 		goto out;
2845 	if (get_valid_blocks(sbi, curseg->segno, false))
2846 		goto out;
2847 
2848 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2849 	__set_test_and_inuse(sbi, curseg->segno);
2850 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2851 out:
2852 	mutex_unlock(&curseg->curseg_mutex);
2853 }
2854 
2855 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2856 {
2857 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2858 
2859 	if (sbi->am.atgc_enabled)
2860 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2861 }
2862 
2863 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2864 				int alloc_mode, unsigned long long age)
2865 {
2866 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2867 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2868 	unsigned segno = NULL_SEGNO;
2869 	unsigned short seg_type = curseg->seg_type;
2870 	int i, cnt;
2871 	bool reversed = false;
2872 
2873 	sanity_check_seg_type(sbi, seg_type);
2874 
2875 	/* f2fs_need_SSR() already forces to do this */
2876 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2877 		curseg->next_segno = segno;
2878 		return 1;
2879 	}
2880 
2881 	/* For node segments, let's do SSR more intensively */
2882 	if (IS_NODESEG(seg_type)) {
2883 		if (seg_type >= CURSEG_WARM_NODE) {
2884 			reversed = true;
2885 			i = CURSEG_COLD_NODE;
2886 		} else {
2887 			i = CURSEG_HOT_NODE;
2888 		}
2889 		cnt = NR_CURSEG_NODE_TYPE;
2890 	} else {
2891 		if (seg_type >= CURSEG_WARM_DATA) {
2892 			reversed = true;
2893 			i = CURSEG_COLD_DATA;
2894 		} else {
2895 			i = CURSEG_HOT_DATA;
2896 		}
2897 		cnt = NR_CURSEG_DATA_TYPE;
2898 	}
2899 
2900 	for (; cnt-- > 0; reversed ? i-- : i++) {
2901 		if (i == seg_type)
2902 			continue;
2903 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2904 			curseg->next_segno = segno;
2905 			return 1;
2906 		}
2907 	}
2908 
2909 	/* find valid_blocks=0 in dirty list */
2910 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2911 		segno = get_free_segment(sbi);
2912 		if (segno != NULL_SEGNO) {
2913 			curseg->next_segno = segno;
2914 			return 1;
2915 		}
2916 	}
2917 	return 0;
2918 }
2919 
2920 /*
2921  * flush out current segment and replace it with new segment
2922  * This function should be returned with success, otherwise BUG
2923  */
2924 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2925 						int type, bool force)
2926 {
2927 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2928 
2929 	if (force)
2930 		new_curseg(sbi, type, true);
2931 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2932 					curseg->seg_type == CURSEG_WARM_NODE)
2933 		new_curseg(sbi, type, false);
2934 	else if (curseg->alloc_type == LFS &&
2935 			is_next_segment_free(sbi, curseg, type) &&
2936 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2937 		new_curseg(sbi, type, false);
2938 	else if (f2fs_need_SSR(sbi) &&
2939 			get_ssr_segment(sbi, type, SSR, 0))
2940 		change_curseg(sbi, type, true);
2941 	else
2942 		new_curseg(sbi, type, false);
2943 
2944 	stat_inc_seg_type(sbi, curseg);
2945 }
2946 
2947 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2948 					unsigned int start, unsigned int end)
2949 {
2950 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2951 	unsigned int segno;
2952 
2953 	down_read(&SM_I(sbi)->curseg_lock);
2954 	mutex_lock(&curseg->curseg_mutex);
2955 	down_write(&SIT_I(sbi)->sentry_lock);
2956 
2957 	segno = CURSEG_I(sbi, type)->segno;
2958 	if (segno < start || segno > end)
2959 		goto unlock;
2960 
2961 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2962 		change_curseg(sbi, type, true);
2963 	else
2964 		new_curseg(sbi, type, true);
2965 
2966 	stat_inc_seg_type(sbi, curseg);
2967 
2968 	locate_dirty_segment(sbi, segno);
2969 unlock:
2970 	up_write(&SIT_I(sbi)->sentry_lock);
2971 
2972 	if (segno != curseg->segno)
2973 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2974 			    type, segno, curseg->segno);
2975 
2976 	mutex_unlock(&curseg->curseg_mutex);
2977 	up_read(&SM_I(sbi)->curseg_lock);
2978 }
2979 
2980 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2981 						bool new_sec, bool force)
2982 {
2983 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2984 	unsigned int old_segno;
2985 
2986 	if (!curseg->inited)
2987 		goto alloc;
2988 
2989 	if (force || curseg->next_blkoff ||
2990 		get_valid_blocks(sbi, curseg->segno, new_sec))
2991 		goto alloc;
2992 
2993 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2994 		return;
2995 alloc:
2996 	old_segno = curseg->segno;
2997 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2998 	locate_dirty_segment(sbi, old_segno);
2999 }
3000 
3001 static void __allocate_new_section(struct f2fs_sb_info *sbi,
3002 						int type, bool force)
3003 {
3004 	__allocate_new_segment(sbi, type, true, force);
3005 }
3006 
3007 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3008 {
3009 	down_read(&SM_I(sbi)->curseg_lock);
3010 	down_write(&SIT_I(sbi)->sentry_lock);
3011 	__allocate_new_section(sbi, type, force);
3012 	up_write(&SIT_I(sbi)->sentry_lock);
3013 	up_read(&SM_I(sbi)->curseg_lock);
3014 }
3015 
3016 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3017 {
3018 	int i;
3019 
3020 	down_read(&SM_I(sbi)->curseg_lock);
3021 	down_write(&SIT_I(sbi)->sentry_lock);
3022 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3023 		__allocate_new_segment(sbi, i, false, false);
3024 	up_write(&SIT_I(sbi)->sentry_lock);
3025 	up_read(&SM_I(sbi)->curseg_lock);
3026 }
3027 
3028 static const struct segment_allocation default_salloc_ops = {
3029 	.allocate_segment = allocate_segment_by_default,
3030 };
3031 
3032 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3033 						struct cp_control *cpc)
3034 {
3035 	__u64 trim_start = cpc->trim_start;
3036 	bool has_candidate = false;
3037 
3038 	down_write(&SIT_I(sbi)->sentry_lock);
3039 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3040 		if (add_discard_addrs(sbi, cpc, true)) {
3041 			has_candidate = true;
3042 			break;
3043 		}
3044 	}
3045 	up_write(&SIT_I(sbi)->sentry_lock);
3046 
3047 	cpc->trim_start = trim_start;
3048 	return has_candidate;
3049 }
3050 
3051 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3052 					struct discard_policy *dpolicy,
3053 					unsigned int start, unsigned int end)
3054 {
3055 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3056 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3057 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3058 	struct discard_cmd *dc;
3059 	struct blk_plug plug;
3060 	int issued;
3061 	unsigned int trimmed = 0;
3062 
3063 next:
3064 	issued = 0;
3065 
3066 	mutex_lock(&dcc->cmd_lock);
3067 	if (unlikely(dcc->rbtree_check))
3068 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3069 							&dcc->root, false));
3070 
3071 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3072 					NULL, start,
3073 					(struct rb_entry **)&prev_dc,
3074 					(struct rb_entry **)&next_dc,
3075 					&insert_p, &insert_parent, true, NULL);
3076 	if (!dc)
3077 		dc = next_dc;
3078 
3079 	blk_start_plug(&plug);
3080 
3081 	while (dc && dc->lstart <= end) {
3082 		struct rb_node *node;
3083 		int err = 0;
3084 
3085 		if (dc->len < dpolicy->granularity)
3086 			goto skip;
3087 
3088 		if (dc->state != D_PREP) {
3089 			list_move_tail(&dc->list, &dcc->fstrim_list);
3090 			goto skip;
3091 		}
3092 
3093 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3094 
3095 		if (issued >= dpolicy->max_requests) {
3096 			start = dc->lstart + dc->len;
3097 
3098 			if (err)
3099 				__remove_discard_cmd(sbi, dc);
3100 
3101 			blk_finish_plug(&plug);
3102 			mutex_unlock(&dcc->cmd_lock);
3103 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3104 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3105 			goto next;
3106 		}
3107 skip:
3108 		node = rb_next(&dc->rb_node);
3109 		if (err)
3110 			__remove_discard_cmd(sbi, dc);
3111 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3112 
3113 		if (fatal_signal_pending(current))
3114 			break;
3115 	}
3116 
3117 	blk_finish_plug(&plug);
3118 	mutex_unlock(&dcc->cmd_lock);
3119 
3120 	return trimmed;
3121 }
3122 
3123 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3124 {
3125 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3126 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3127 	unsigned int start_segno, end_segno;
3128 	block_t start_block, end_block;
3129 	struct cp_control cpc;
3130 	struct discard_policy dpolicy;
3131 	unsigned long long trimmed = 0;
3132 	int err = 0;
3133 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3134 
3135 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3136 		return -EINVAL;
3137 
3138 	if (end < MAIN_BLKADDR(sbi))
3139 		goto out;
3140 
3141 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3142 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3143 		return -EFSCORRUPTED;
3144 	}
3145 
3146 	/* start/end segment number in main_area */
3147 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3148 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3149 						GET_SEGNO(sbi, end);
3150 	if (need_align) {
3151 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3152 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3153 	}
3154 
3155 	cpc.reason = CP_DISCARD;
3156 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3157 	cpc.trim_start = start_segno;
3158 	cpc.trim_end = end_segno;
3159 
3160 	if (sbi->discard_blks == 0)
3161 		goto out;
3162 
3163 	down_write(&sbi->gc_lock);
3164 	err = f2fs_write_checkpoint(sbi, &cpc);
3165 	up_write(&sbi->gc_lock);
3166 	if (err)
3167 		goto out;
3168 
3169 	/*
3170 	 * We filed discard candidates, but actually we don't need to wait for
3171 	 * all of them, since they'll be issued in idle time along with runtime
3172 	 * discard option. User configuration looks like using runtime discard
3173 	 * or periodic fstrim instead of it.
3174 	 */
3175 	if (f2fs_realtime_discard_enable(sbi))
3176 		goto out;
3177 
3178 	start_block = START_BLOCK(sbi, start_segno);
3179 	end_block = START_BLOCK(sbi, end_segno + 1);
3180 
3181 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3182 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3183 					start_block, end_block);
3184 
3185 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3186 					start_block, end_block);
3187 out:
3188 	if (!err)
3189 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3190 	return err;
3191 }
3192 
3193 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3194 					struct curseg_info *curseg)
3195 {
3196 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3197 							curseg->segno);
3198 }
3199 
3200 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3201 {
3202 	switch (hint) {
3203 	case WRITE_LIFE_SHORT:
3204 		return CURSEG_HOT_DATA;
3205 	case WRITE_LIFE_EXTREME:
3206 		return CURSEG_COLD_DATA;
3207 	default:
3208 		return CURSEG_WARM_DATA;
3209 	}
3210 }
3211 
3212 /* This returns write hints for each segment type. This hints will be
3213  * passed down to block layer. There are mapping tables which depend on
3214  * the mount option 'whint_mode'.
3215  *
3216  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3217  *
3218  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3219  *
3220  * User                  F2FS                     Block
3221  * ----                  ----                     -----
3222  *                       META                     WRITE_LIFE_NOT_SET
3223  *                       HOT_NODE                 "
3224  *                       WARM_NODE                "
3225  *                       COLD_NODE                "
3226  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3227  * extension list        "                        "
3228  *
3229  * -- buffered io
3230  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3231  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3232  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3233  * WRITE_LIFE_NONE       "                        "
3234  * WRITE_LIFE_MEDIUM     "                        "
3235  * WRITE_LIFE_LONG       "                        "
3236  *
3237  * -- direct io
3238  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3239  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3240  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3241  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3242  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3243  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3244  *
3245  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3246  *
3247  * User                  F2FS                     Block
3248  * ----                  ----                     -----
3249  *                       META                     WRITE_LIFE_MEDIUM;
3250  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3251  *                       WARM_NODE                "
3252  *                       COLD_NODE                WRITE_LIFE_NONE
3253  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3254  * extension list        "                        "
3255  *
3256  * -- buffered io
3257  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3258  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3259  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3260  * WRITE_LIFE_NONE       "                        "
3261  * WRITE_LIFE_MEDIUM     "                        "
3262  * WRITE_LIFE_LONG       "                        "
3263  *
3264  * -- direct io
3265  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3266  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3267  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3268  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3269  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3270  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3271  */
3272 
3273 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3274 				enum page_type type, enum temp_type temp)
3275 {
3276 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3277 		if (type == DATA) {
3278 			if (temp == WARM)
3279 				return WRITE_LIFE_NOT_SET;
3280 			else if (temp == HOT)
3281 				return WRITE_LIFE_SHORT;
3282 			else if (temp == COLD)
3283 				return WRITE_LIFE_EXTREME;
3284 		} else {
3285 			return WRITE_LIFE_NOT_SET;
3286 		}
3287 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3288 		if (type == DATA) {
3289 			if (temp == WARM)
3290 				return WRITE_LIFE_LONG;
3291 			else if (temp == HOT)
3292 				return WRITE_LIFE_SHORT;
3293 			else if (temp == COLD)
3294 				return WRITE_LIFE_EXTREME;
3295 		} else if (type == NODE) {
3296 			if (temp == WARM || temp == HOT)
3297 				return WRITE_LIFE_NOT_SET;
3298 			else if (temp == COLD)
3299 				return WRITE_LIFE_NONE;
3300 		} else if (type == META) {
3301 			return WRITE_LIFE_MEDIUM;
3302 		}
3303 	}
3304 	return WRITE_LIFE_NOT_SET;
3305 }
3306 
3307 static int __get_segment_type_2(struct f2fs_io_info *fio)
3308 {
3309 	if (fio->type == DATA)
3310 		return CURSEG_HOT_DATA;
3311 	else
3312 		return CURSEG_HOT_NODE;
3313 }
3314 
3315 static int __get_segment_type_4(struct f2fs_io_info *fio)
3316 {
3317 	if (fio->type == DATA) {
3318 		struct inode *inode = fio->page->mapping->host;
3319 
3320 		if (S_ISDIR(inode->i_mode))
3321 			return CURSEG_HOT_DATA;
3322 		else
3323 			return CURSEG_COLD_DATA;
3324 	} else {
3325 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3326 			return CURSEG_WARM_NODE;
3327 		else
3328 			return CURSEG_COLD_NODE;
3329 	}
3330 }
3331 
3332 static int __get_segment_type_6(struct f2fs_io_info *fio)
3333 {
3334 	if (fio->type == DATA) {
3335 		struct inode *inode = fio->page->mapping->host;
3336 
3337 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3338 			return CURSEG_COLD_DATA_PINNED;
3339 
3340 		if (page_private_gcing(fio->page)) {
3341 			if (fio->sbi->am.atgc_enabled &&
3342 				(fio->io_type == FS_DATA_IO) &&
3343 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3344 				return CURSEG_ALL_DATA_ATGC;
3345 			else
3346 				return CURSEG_COLD_DATA;
3347 		}
3348 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3349 			return CURSEG_COLD_DATA;
3350 		if (file_is_hot(inode) ||
3351 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3352 				f2fs_is_atomic_file(inode) ||
3353 				f2fs_is_volatile_file(inode))
3354 			return CURSEG_HOT_DATA;
3355 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3356 	} else {
3357 		if (IS_DNODE(fio->page))
3358 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3359 						CURSEG_HOT_NODE;
3360 		return CURSEG_COLD_NODE;
3361 	}
3362 }
3363 
3364 static int __get_segment_type(struct f2fs_io_info *fio)
3365 {
3366 	int type = 0;
3367 
3368 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3369 	case 2:
3370 		type = __get_segment_type_2(fio);
3371 		break;
3372 	case 4:
3373 		type = __get_segment_type_4(fio);
3374 		break;
3375 	case 6:
3376 		type = __get_segment_type_6(fio);
3377 		break;
3378 	default:
3379 		f2fs_bug_on(fio->sbi, true);
3380 	}
3381 
3382 	if (IS_HOT(type))
3383 		fio->temp = HOT;
3384 	else if (IS_WARM(type))
3385 		fio->temp = WARM;
3386 	else
3387 		fio->temp = COLD;
3388 	return type;
3389 }
3390 
3391 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3392 		block_t old_blkaddr, block_t *new_blkaddr,
3393 		struct f2fs_summary *sum, int type,
3394 		struct f2fs_io_info *fio)
3395 {
3396 	struct sit_info *sit_i = SIT_I(sbi);
3397 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3398 	unsigned long long old_mtime;
3399 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3400 	struct seg_entry *se = NULL;
3401 
3402 	down_read(&SM_I(sbi)->curseg_lock);
3403 
3404 	mutex_lock(&curseg->curseg_mutex);
3405 	down_write(&sit_i->sentry_lock);
3406 
3407 	if (from_gc) {
3408 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3409 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3410 		sanity_check_seg_type(sbi, se->type);
3411 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3412 	}
3413 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3414 
3415 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3416 
3417 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3418 
3419 	/*
3420 	 * __add_sum_entry should be resided under the curseg_mutex
3421 	 * because, this function updates a summary entry in the
3422 	 * current summary block.
3423 	 */
3424 	__add_sum_entry(sbi, type, sum);
3425 
3426 	__refresh_next_blkoff(sbi, curseg);
3427 
3428 	stat_inc_block_count(sbi, curseg);
3429 
3430 	if (from_gc) {
3431 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3432 	} else {
3433 		update_segment_mtime(sbi, old_blkaddr, 0);
3434 		old_mtime = 0;
3435 	}
3436 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3437 
3438 	/*
3439 	 * SIT information should be updated before segment allocation,
3440 	 * since SSR needs latest valid block information.
3441 	 */
3442 	update_sit_entry(sbi, *new_blkaddr, 1);
3443 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3444 		update_sit_entry(sbi, old_blkaddr, -1);
3445 
3446 	if (!__has_curseg_space(sbi, curseg)) {
3447 		if (from_gc)
3448 			get_atssr_segment(sbi, type, se->type,
3449 						AT_SSR, se->mtime);
3450 		else
3451 			sit_i->s_ops->allocate_segment(sbi, type, false);
3452 	}
3453 	/*
3454 	 * segment dirty status should be updated after segment allocation,
3455 	 * so we just need to update status only one time after previous
3456 	 * segment being closed.
3457 	 */
3458 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3459 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3460 
3461 	up_write(&sit_i->sentry_lock);
3462 
3463 	if (page && IS_NODESEG(type)) {
3464 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3465 
3466 		f2fs_inode_chksum_set(sbi, page);
3467 	}
3468 
3469 	if (fio) {
3470 		struct f2fs_bio_info *io;
3471 
3472 		if (F2FS_IO_ALIGNED(sbi))
3473 			fio->retry = false;
3474 
3475 		INIT_LIST_HEAD(&fio->list);
3476 		fio->in_list = true;
3477 		io = sbi->write_io[fio->type] + fio->temp;
3478 		spin_lock(&io->io_lock);
3479 		list_add_tail(&fio->list, &io->io_list);
3480 		spin_unlock(&io->io_lock);
3481 	}
3482 
3483 	mutex_unlock(&curseg->curseg_mutex);
3484 
3485 	up_read(&SM_I(sbi)->curseg_lock);
3486 }
3487 
3488 static void update_device_state(struct f2fs_io_info *fio)
3489 {
3490 	struct f2fs_sb_info *sbi = fio->sbi;
3491 	unsigned int devidx;
3492 
3493 	if (!f2fs_is_multi_device(sbi))
3494 		return;
3495 
3496 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3497 
3498 	/* update device state for fsync */
3499 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3500 
3501 	/* update device state for checkpoint */
3502 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3503 		spin_lock(&sbi->dev_lock);
3504 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3505 		spin_unlock(&sbi->dev_lock);
3506 	}
3507 }
3508 
3509 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3510 {
3511 	int type = __get_segment_type(fio);
3512 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3513 
3514 	if (keep_order)
3515 		down_read(&fio->sbi->io_order_lock);
3516 reallocate:
3517 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3518 			&fio->new_blkaddr, sum, type, fio);
3519 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3520 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3521 					fio->old_blkaddr, fio->old_blkaddr);
3522 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3523 	}
3524 
3525 	/* writeout dirty page into bdev */
3526 	f2fs_submit_page_write(fio);
3527 	if (fio->retry) {
3528 		fio->old_blkaddr = fio->new_blkaddr;
3529 		goto reallocate;
3530 	}
3531 
3532 	update_device_state(fio);
3533 
3534 	if (keep_order)
3535 		up_read(&fio->sbi->io_order_lock);
3536 }
3537 
3538 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3539 					enum iostat_type io_type)
3540 {
3541 	struct f2fs_io_info fio = {
3542 		.sbi = sbi,
3543 		.type = META,
3544 		.temp = HOT,
3545 		.op = REQ_OP_WRITE,
3546 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3547 		.old_blkaddr = page->index,
3548 		.new_blkaddr = page->index,
3549 		.page = page,
3550 		.encrypted_page = NULL,
3551 		.in_list = false,
3552 	};
3553 
3554 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3555 		fio.op_flags &= ~REQ_META;
3556 
3557 	set_page_writeback(page);
3558 	ClearPageError(page);
3559 	f2fs_submit_page_write(&fio);
3560 
3561 	stat_inc_meta_count(sbi, page->index);
3562 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3563 }
3564 
3565 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3566 {
3567 	struct f2fs_summary sum;
3568 
3569 	set_summary(&sum, nid, 0, 0);
3570 	do_write_page(&sum, fio);
3571 
3572 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3573 }
3574 
3575 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3576 					struct f2fs_io_info *fio)
3577 {
3578 	struct f2fs_sb_info *sbi = fio->sbi;
3579 	struct f2fs_summary sum;
3580 
3581 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3582 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3583 	do_write_page(&sum, fio);
3584 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3585 
3586 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3587 }
3588 
3589 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3590 {
3591 	int err;
3592 	struct f2fs_sb_info *sbi = fio->sbi;
3593 	unsigned int segno;
3594 
3595 	fio->new_blkaddr = fio->old_blkaddr;
3596 	/* i/o temperature is needed for passing down write hints */
3597 	__get_segment_type(fio);
3598 
3599 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3600 
3601 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3602 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3603 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3604 			  __func__, segno);
3605 		err = -EFSCORRUPTED;
3606 		goto drop_bio;
3607 	}
3608 
3609 	if (f2fs_cp_error(sbi)) {
3610 		err = -EIO;
3611 		goto drop_bio;
3612 	}
3613 
3614 	stat_inc_inplace_blocks(fio->sbi);
3615 
3616 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3617 		err = f2fs_merge_page_bio(fio);
3618 	else
3619 		err = f2fs_submit_page_bio(fio);
3620 	if (!err) {
3621 		update_device_state(fio);
3622 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3623 	}
3624 
3625 	return err;
3626 drop_bio:
3627 	if (fio->bio && *(fio->bio)) {
3628 		struct bio *bio = *(fio->bio);
3629 
3630 		bio->bi_status = BLK_STS_IOERR;
3631 		bio_endio(bio);
3632 		*(fio->bio) = NULL;
3633 	}
3634 	return err;
3635 }
3636 
3637 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3638 						unsigned int segno)
3639 {
3640 	int i;
3641 
3642 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3643 		if (CURSEG_I(sbi, i)->segno == segno)
3644 			break;
3645 	}
3646 	return i;
3647 }
3648 
3649 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3650 				block_t old_blkaddr, block_t new_blkaddr,
3651 				bool recover_curseg, bool recover_newaddr,
3652 				bool from_gc)
3653 {
3654 	struct sit_info *sit_i = SIT_I(sbi);
3655 	struct curseg_info *curseg;
3656 	unsigned int segno, old_cursegno;
3657 	struct seg_entry *se;
3658 	int type;
3659 	unsigned short old_blkoff;
3660 	unsigned char old_alloc_type;
3661 
3662 	segno = GET_SEGNO(sbi, new_blkaddr);
3663 	se = get_seg_entry(sbi, segno);
3664 	type = se->type;
3665 
3666 	down_write(&SM_I(sbi)->curseg_lock);
3667 
3668 	if (!recover_curseg) {
3669 		/* for recovery flow */
3670 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3671 			if (old_blkaddr == NULL_ADDR)
3672 				type = CURSEG_COLD_DATA;
3673 			else
3674 				type = CURSEG_WARM_DATA;
3675 		}
3676 	} else {
3677 		if (IS_CURSEG(sbi, segno)) {
3678 			/* se->type is volatile as SSR allocation */
3679 			type = __f2fs_get_curseg(sbi, segno);
3680 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3681 		} else {
3682 			type = CURSEG_WARM_DATA;
3683 		}
3684 	}
3685 
3686 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3687 	curseg = CURSEG_I(sbi, type);
3688 
3689 	mutex_lock(&curseg->curseg_mutex);
3690 	down_write(&sit_i->sentry_lock);
3691 
3692 	old_cursegno = curseg->segno;
3693 	old_blkoff = curseg->next_blkoff;
3694 	old_alloc_type = curseg->alloc_type;
3695 
3696 	/* change the current segment */
3697 	if (segno != curseg->segno) {
3698 		curseg->next_segno = segno;
3699 		change_curseg(sbi, type, true);
3700 	}
3701 
3702 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3703 	__add_sum_entry(sbi, type, sum);
3704 
3705 	if (!recover_curseg || recover_newaddr) {
3706 		if (!from_gc)
3707 			update_segment_mtime(sbi, new_blkaddr, 0);
3708 		update_sit_entry(sbi, new_blkaddr, 1);
3709 	}
3710 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3711 		invalidate_mapping_pages(META_MAPPING(sbi),
3712 					old_blkaddr, old_blkaddr);
3713 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3714 		if (!from_gc)
3715 			update_segment_mtime(sbi, old_blkaddr, 0);
3716 		update_sit_entry(sbi, old_blkaddr, -1);
3717 	}
3718 
3719 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3720 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3721 
3722 	locate_dirty_segment(sbi, old_cursegno);
3723 
3724 	if (recover_curseg) {
3725 		if (old_cursegno != curseg->segno) {
3726 			curseg->next_segno = old_cursegno;
3727 			change_curseg(sbi, type, true);
3728 		}
3729 		curseg->next_blkoff = old_blkoff;
3730 		curseg->alloc_type = old_alloc_type;
3731 	}
3732 
3733 	up_write(&sit_i->sentry_lock);
3734 	mutex_unlock(&curseg->curseg_mutex);
3735 	up_write(&SM_I(sbi)->curseg_lock);
3736 }
3737 
3738 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3739 				block_t old_addr, block_t new_addr,
3740 				unsigned char version, bool recover_curseg,
3741 				bool recover_newaddr)
3742 {
3743 	struct f2fs_summary sum;
3744 
3745 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3746 
3747 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3748 					recover_curseg, recover_newaddr, false);
3749 
3750 	f2fs_update_data_blkaddr(dn, new_addr);
3751 }
3752 
3753 void f2fs_wait_on_page_writeback(struct page *page,
3754 				enum page_type type, bool ordered, bool locked)
3755 {
3756 	if (PageWriteback(page)) {
3757 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3758 
3759 		/* submit cached LFS IO */
3760 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3761 		/* sbumit cached IPU IO */
3762 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3763 		if (ordered) {
3764 			wait_on_page_writeback(page);
3765 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3766 		} else {
3767 			wait_for_stable_page(page);
3768 		}
3769 	}
3770 }
3771 
3772 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3773 {
3774 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3775 	struct page *cpage;
3776 
3777 	if (!f2fs_post_read_required(inode))
3778 		return;
3779 
3780 	if (!__is_valid_data_blkaddr(blkaddr))
3781 		return;
3782 
3783 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3784 	if (cpage) {
3785 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3786 		f2fs_put_page(cpage, 1);
3787 	}
3788 }
3789 
3790 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3791 								block_t len)
3792 {
3793 	block_t i;
3794 
3795 	for (i = 0; i < len; i++)
3796 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3797 }
3798 
3799 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3800 {
3801 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3802 	struct curseg_info *seg_i;
3803 	unsigned char *kaddr;
3804 	struct page *page;
3805 	block_t start;
3806 	int i, j, offset;
3807 
3808 	start = start_sum_block(sbi);
3809 
3810 	page = f2fs_get_meta_page(sbi, start++);
3811 	if (IS_ERR(page))
3812 		return PTR_ERR(page);
3813 	kaddr = (unsigned char *)page_address(page);
3814 
3815 	/* Step 1: restore nat cache */
3816 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3817 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3818 
3819 	/* Step 2: restore sit cache */
3820 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3821 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3822 	offset = 2 * SUM_JOURNAL_SIZE;
3823 
3824 	/* Step 3: restore summary entries */
3825 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3826 		unsigned short blk_off;
3827 		unsigned int segno;
3828 
3829 		seg_i = CURSEG_I(sbi, i);
3830 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3831 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3832 		seg_i->next_segno = segno;
3833 		reset_curseg(sbi, i, 0);
3834 		seg_i->alloc_type = ckpt->alloc_type[i];
3835 		seg_i->next_blkoff = blk_off;
3836 
3837 		if (seg_i->alloc_type == SSR)
3838 			blk_off = sbi->blocks_per_seg;
3839 
3840 		for (j = 0; j < blk_off; j++) {
3841 			struct f2fs_summary *s;
3842 
3843 			s = (struct f2fs_summary *)(kaddr + offset);
3844 			seg_i->sum_blk->entries[j] = *s;
3845 			offset += SUMMARY_SIZE;
3846 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3847 						SUM_FOOTER_SIZE)
3848 				continue;
3849 
3850 			f2fs_put_page(page, 1);
3851 			page = NULL;
3852 
3853 			page = f2fs_get_meta_page(sbi, start++);
3854 			if (IS_ERR(page))
3855 				return PTR_ERR(page);
3856 			kaddr = (unsigned char *)page_address(page);
3857 			offset = 0;
3858 		}
3859 	}
3860 	f2fs_put_page(page, 1);
3861 	return 0;
3862 }
3863 
3864 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3865 {
3866 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3867 	struct f2fs_summary_block *sum;
3868 	struct curseg_info *curseg;
3869 	struct page *new;
3870 	unsigned short blk_off;
3871 	unsigned int segno = 0;
3872 	block_t blk_addr = 0;
3873 	int err = 0;
3874 
3875 	/* get segment number and block addr */
3876 	if (IS_DATASEG(type)) {
3877 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3878 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3879 							CURSEG_HOT_DATA]);
3880 		if (__exist_node_summaries(sbi))
3881 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3882 		else
3883 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3884 	} else {
3885 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3886 							CURSEG_HOT_NODE]);
3887 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3888 							CURSEG_HOT_NODE]);
3889 		if (__exist_node_summaries(sbi))
3890 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3891 							type - CURSEG_HOT_NODE);
3892 		else
3893 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3894 	}
3895 
3896 	new = f2fs_get_meta_page(sbi, blk_addr);
3897 	if (IS_ERR(new))
3898 		return PTR_ERR(new);
3899 	sum = (struct f2fs_summary_block *)page_address(new);
3900 
3901 	if (IS_NODESEG(type)) {
3902 		if (__exist_node_summaries(sbi)) {
3903 			struct f2fs_summary *ns = &sum->entries[0];
3904 			int i;
3905 
3906 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3907 				ns->version = 0;
3908 				ns->ofs_in_node = 0;
3909 			}
3910 		} else {
3911 			err = f2fs_restore_node_summary(sbi, segno, sum);
3912 			if (err)
3913 				goto out;
3914 		}
3915 	}
3916 
3917 	/* set uncompleted segment to curseg */
3918 	curseg = CURSEG_I(sbi, type);
3919 	mutex_lock(&curseg->curseg_mutex);
3920 
3921 	/* update journal info */
3922 	down_write(&curseg->journal_rwsem);
3923 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3924 	up_write(&curseg->journal_rwsem);
3925 
3926 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3927 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3928 	curseg->next_segno = segno;
3929 	reset_curseg(sbi, type, 0);
3930 	curseg->alloc_type = ckpt->alloc_type[type];
3931 	curseg->next_blkoff = blk_off;
3932 	mutex_unlock(&curseg->curseg_mutex);
3933 out:
3934 	f2fs_put_page(new, 1);
3935 	return err;
3936 }
3937 
3938 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3939 {
3940 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3941 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3942 	int type = CURSEG_HOT_DATA;
3943 	int err;
3944 
3945 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3946 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3947 
3948 		if (npages >= 2)
3949 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3950 							META_CP, true);
3951 
3952 		/* restore for compacted data summary */
3953 		err = read_compacted_summaries(sbi);
3954 		if (err)
3955 			return err;
3956 		type = CURSEG_HOT_NODE;
3957 	}
3958 
3959 	if (__exist_node_summaries(sbi))
3960 		f2fs_ra_meta_pages(sbi,
3961 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3962 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3963 
3964 	for (; type <= CURSEG_COLD_NODE; type++) {
3965 		err = read_normal_summaries(sbi, type);
3966 		if (err)
3967 			return err;
3968 	}
3969 
3970 	/* sanity check for summary blocks */
3971 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3972 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3973 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3974 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3975 		return -EINVAL;
3976 	}
3977 
3978 	return 0;
3979 }
3980 
3981 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3982 {
3983 	struct page *page;
3984 	unsigned char *kaddr;
3985 	struct f2fs_summary *summary;
3986 	struct curseg_info *seg_i;
3987 	int written_size = 0;
3988 	int i, j;
3989 
3990 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3991 	kaddr = (unsigned char *)page_address(page);
3992 	memset(kaddr, 0, PAGE_SIZE);
3993 
3994 	/* Step 1: write nat cache */
3995 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3996 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3997 	written_size += SUM_JOURNAL_SIZE;
3998 
3999 	/* Step 2: write sit cache */
4000 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4001 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4002 	written_size += SUM_JOURNAL_SIZE;
4003 
4004 	/* Step 3: write summary entries */
4005 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4006 		unsigned short blkoff;
4007 
4008 		seg_i = CURSEG_I(sbi, i);
4009 		if (sbi->ckpt->alloc_type[i] == SSR)
4010 			blkoff = sbi->blocks_per_seg;
4011 		else
4012 			blkoff = curseg_blkoff(sbi, i);
4013 
4014 		for (j = 0; j < blkoff; j++) {
4015 			if (!page) {
4016 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4017 				kaddr = (unsigned char *)page_address(page);
4018 				memset(kaddr, 0, PAGE_SIZE);
4019 				written_size = 0;
4020 			}
4021 			summary = (struct f2fs_summary *)(kaddr + written_size);
4022 			*summary = seg_i->sum_blk->entries[j];
4023 			written_size += SUMMARY_SIZE;
4024 
4025 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4026 							SUM_FOOTER_SIZE)
4027 				continue;
4028 
4029 			set_page_dirty(page);
4030 			f2fs_put_page(page, 1);
4031 			page = NULL;
4032 		}
4033 	}
4034 	if (page) {
4035 		set_page_dirty(page);
4036 		f2fs_put_page(page, 1);
4037 	}
4038 }
4039 
4040 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4041 					block_t blkaddr, int type)
4042 {
4043 	int i, end;
4044 
4045 	if (IS_DATASEG(type))
4046 		end = type + NR_CURSEG_DATA_TYPE;
4047 	else
4048 		end = type + NR_CURSEG_NODE_TYPE;
4049 
4050 	for (i = type; i < end; i++)
4051 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4052 }
4053 
4054 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4055 {
4056 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4057 		write_compacted_summaries(sbi, start_blk);
4058 	else
4059 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4060 }
4061 
4062 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4063 {
4064 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4065 }
4066 
4067 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4068 					unsigned int val, int alloc)
4069 {
4070 	int i;
4071 
4072 	if (type == NAT_JOURNAL) {
4073 		for (i = 0; i < nats_in_cursum(journal); i++) {
4074 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4075 				return i;
4076 		}
4077 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4078 			return update_nats_in_cursum(journal, 1);
4079 	} else if (type == SIT_JOURNAL) {
4080 		for (i = 0; i < sits_in_cursum(journal); i++)
4081 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4082 				return i;
4083 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4084 			return update_sits_in_cursum(journal, 1);
4085 	}
4086 	return -1;
4087 }
4088 
4089 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4090 					unsigned int segno)
4091 {
4092 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4093 }
4094 
4095 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4096 					unsigned int start)
4097 {
4098 	struct sit_info *sit_i = SIT_I(sbi);
4099 	struct page *page;
4100 	pgoff_t src_off, dst_off;
4101 
4102 	src_off = current_sit_addr(sbi, start);
4103 	dst_off = next_sit_addr(sbi, src_off);
4104 
4105 	page = f2fs_grab_meta_page(sbi, dst_off);
4106 	seg_info_to_sit_page(sbi, page, start);
4107 
4108 	set_page_dirty(page);
4109 	set_to_next_sit(sit_i, start);
4110 
4111 	return page;
4112 }
4113 
4114 static struct sit_entry_set *grab_sit_entry_set(void)
4115 {
4116 	struct sit_entry_set *ses =
4117 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4118 						GFP_NOFS, true, NULL);
4119 
4120 	ses->entry_cnt = 0;
4121 	INIT_LIST_HEAD(&ses->set_list);
4122 	return ses;
4123 }
4124 
4125 static void release_sit_entry_set(struct sit_entry_set *ses)
4126 {
4127 	list_del(&ses->set_list);
4128 	kmem_cache_free(sit_entry_set_slab, ses);
4129 }
4130 
4131 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4132 						struct list_head *head)
4133 {
4134 	struct sit_entry_set *next = ses;
4135 
4136 	if (list_is_last(&ses->set_list, head))
4137 		return;
4138 
4139 	list_for_each_entry_continue(next, head, set_list)
4140 		if (ses->entry_cnt <= next->entry_cnt)
4141 			break;
4142 
4143 	list_move_tail(&ses->set_list, &next->set_list);
4144 }
4145 
4146 static void add_sit_entry(unsigned int segno, struct list_head *head)
4147 {
4148 	struct sit_entry_set *ses;
4149 	unsigned int start_segno = START_SEGNO(segno);
4150 
4151 	list_for_each_entry(ses, head, set_list) {
4152 		if (ses->start_segno == start_segno) {
4153 			ses->entry_cnt++;
4154 			adjust_sit_entry_set(ses, head);
4155 			return;
4156 		}
4157 	}
4158 
4159 	ses = grab_sit_entry_set();
4160 
4161 	ses->start_segno = start_segno;
4162 	ses->entry_cnt++;
4163 	list_add(&ses->set_list, head);
4164 }
4165 
4166 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4167 {
4168 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4169 	struct list_head *set_list = &sm_info->sit_entry_set;
4170 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4171 	unsigned int segno;
4172 
4173 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4174 		add_sit_entry(segno, set_list);
4175 }
4176 
4177 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4178 {
4179 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4180 	struct f2fs_journal *journal = curseg->journal;
4181 	int i;
4182 
4183 	down_write(&curseg->journal_rwsem);
4184 	for (i = 0; i < sits_in_cursum(journal); i++) {
4185 		unsigned int segno;
4186 		bool dirtied;
4187 
4188 		segno = le32_to_cpu(segno_in_journal(journal, i));
4189 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4190 
4191 		if (!dirtied)
4192 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4193 	}
4194 	update_sits_in_cursum(journal, -i);
4195 	up_write(&curseg->journal_rwsem);
4196 }
4197 
4198 /*
4199  * CP calls this function, which flushes SIT entries including sit_journal,
4200  * and moves prefree segs to free segs.
4201  */
4202 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4203 {
4204 	struct sit_info *sit_i = SIT_I(sbi);
4205 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4206 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4207 	struct f2fs_journal *journal = curseg->journal;
4208 	struct sit_entry_set *ses, *tmp;
4209 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4210 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4211 	struct seg_entry *se;
4212 
4213 	down_write(&sit_i->sentry_lock);
4214 
4215 	if (!sit_i->dirty_sentries)
4216 		goto out;
4217 
4218 	/*
4219 	 * add and account sit entries of dirty bitmap in sit entry
4220 	 * set temporarily
4221 	 */
4222 	add_sits_in_set(sbi);
4223 
4224 	/*
4225 	 * if there are no enough space in journal to store dirty sit
4226 	 * entries, remove all entries from journal and add and account
4227 	 * them in sit entry set.
4228 	 */
4229 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4230 								!to_journal)
4231 		remove_sits_in_journal(sbi);
4232 
4233 	/*
4234 	 * there are two steps to flush sit entries:
4235 	 * #1, flush sit entries to journal in current cold data summary block.
4236 	 * #2, flush sit entries to sit page.
4237 	 */
4238 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4239 		struct page *page = NULL;
4240 		struct f2fs_sit_block *raw_sit = NULL;
4241 		unsigned int start_segno = ses->start_segno;
4242 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4243 						(unsigned long)MAIN_SEGS(sbi));
4244 		unsigned int segno = start_segno;
4245 
4246 		if (to_journal &&
4247 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4248 			to_journal = false;
4249 
4250 		if (to_journal) {
4251 			down_write(&curseg->journal_rwsem);
4252 		} else {
4253 			page = get_next_sit_page(sbi, start_segno);
4254 			raw_sit = page_address(page);
4255 		}
4256 
4257 		/* flush dirty sit entries in region of current sit set */
4258 		for_each_set_bit_from(segno, bitmap, end) {
4259 			int offset, sit_offset;
4260 
4261 			se = get_seg_entry(sbi, segno);
4262 #ifdef CONFIG_F2FS_CHECK_FS
4263 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4264 						SIT_VBLOCK_MAP_SIZE))
4265 				f2fs_bug_on(sbi, 1);
4266 #endif
4267 
4268 			/* add discard candidates */
4269 			if (!(cpc->reason & CP_DISCARD)) {
4270 				cpc->trim_start = segno;
4271 				add_discard_addrs(sbi, cpc, false);
4272 			}
4273 
4274 			if (to_journal) {
4275 				offset = f2fs_lookup_journal_in_cursum(journal,
4276 							SIT_JOURNAL, segno, 1);
4277 				f2fs_bug_on(sbi, offset < 0);
4278 				segno_in_journal(journal, offset) =
4279 							cpu_to_le32(segno);
4280 				seg_info_to_raw_sit(se,
4281 					&sit_in_journal(journal, offset));
4282 				check_block_count(sbi, segno,
4283 					&sit_in_journal(journal, offset));
4284 			} else {
4285 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4286 				seg_info_to_raw_sit(se,
4287 						&raw_sit->entries[sit_offset]);
4288 				check_block_count(sbi, segno,
4289 						&raw_sit->entries[sit_offset]);
4290 			}
4291 
4292 			__clear_bit(segno, bitmap);
4293 			sit_i->dirty_sentries--;
4294 			ses->entry_cnt--;
4295 		}
4296 
4297 		if (to_journal)
4298 			up_write(&curseg->journal_rwsem);
4299 		else
4300 			f2fs_put_page(page, 1);
4301 
4302 		f2fs_bug_on(sbi, ses->entry_cnt);
4303 		release_sit_entry_set(ses);
4304 	}
4305 
4306 	f2fs_bug_on(sbi, !list_empty(head));
4307 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4308 out:
4309 	if (cpc->reason & CP_DISCARD) {
4310 		__u64 trim_start = cpc->trim_start;
4311 
4312 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4313 			add_discard_addrs(sbi, cpc, false);
4314 
4315 		cpc->trim_start = trim_start;
4316 	}
4317 	up_write(&sit_i->sentry_lock);
4318 
4319 	set_prefree_as_free_segments(sbi);
4320 }
4321 
4322 static int build_sit_info(struct f2fs_sb_info *sbi)
4323 {
4324 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4325 	struct sit_info *sit_i;
4326 	unsigned int sit_segs, start;
4327 	char *src_bitmap, *bitmap;
4328 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4329 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4330 
4331 	/* allocate memory for SIT information */
4332 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4333 	if (!sit_i)
4334 		return -ENOMEM;
4335 
4336 	SM_I(sbi)->sit_info = sit_i;
4337 
4338 	sit_i->sentries =
4339 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4340 					      MAIN_SEGS(sbi)),
4341 			      GFP_KERNEL);
4342 	if (!sit_i->sentries)
4343 		return -ENOMEM;
4344 
4345 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4346 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4347 								GFP_KERNEL);
4348 	if (!sit_i->dirty_sentries_bitmap)
4349 		return -ENOMEM;
4350 
4351 #ifdef CONFIG_F2FS_CHECK_FS
4352 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4353 #else
4354 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4355 #endif
4356 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4357 	if (!sit_i->bitmap)
4358 		return -ENOMEM;
4359 
4360 	bitmap = sit_i->bitmap;
4361 
4362 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4363 		sit_i->sentries[start].cur_valid_map = bitmap;
4364 		bitmap += SIT_VBLOCK_MAP_SIZE;
4365 
4366 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4367 		bitmap += SIT_VBLOCK_MAP_SIZE;
4368 
4369 #ifdef CONFIG_F2FS_CHECK_FS
4370 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4371 		bitmap += SIT_VBLOCK_MAP_SIZE;
4372 #endif
4373 
4374 		if (discard_map) {
4375 			sit_i->sentries[start].discard_map = bitmap;
4376 			bitmap += SIT_VBLOCK_MAP_SIZE;
4377 		}
4378 	}
4379 
4380 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4381 	if (!sit_i->tmp_map)
4382 		return -ENOMEM;
4383 
4384 	if (__is_large_section(sbi)) {
4385 		sit_i->sec_entries =
4386 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4387 						      MAIN_SECS(sbi)),
4388 				      GFP_KERNEL);
4389 		if (!sit_i->sec_entries)
4390 			return -ENOMEM;
4391 	}
4392 
4393 	/* get information related with SIT */
4394 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4395 
4396 	/* setup SIT bitmap from ckeckpoint pack */
4397 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4398 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4399 
4400 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4401 	if (!sit_i->sit_bitmap)
4402 		return -ENOMEM;
4403 
4404 #ifdef CONFIG_F2FS_CHECK_FS
4405 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4406 					sit_bitmap_size, GFP_KERNEL);
4407 	if (!sit_i->sit_bitmap_mir)
4408 		return -ENOMEM;
4409 
4410 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4411 					main_bitmap_size, GFP_KERNEL);
4412 	if (!sit_i->invalid_segmap)
4413 		return -ENOMEM;
4414 #endif
4415 
4416 	/* init SIT information */
4417 	sit_i->s_ops = &default_salloc_ops;
4418 
4419 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4420 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4421 	sit_i->written_valid_blocks = 0;
4422 	sit_i->bitmap_size = sit_bitmap_size;
4423 	sit_i->dirty_sentries = 0;
4424 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4425 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4426 	sit_i->mounted_time = ktime_get_boottime_seconds();
4427 	init_rwsem(&sit_i->sentry_lock);
4428 	return 0;
4429 }
4430 
4431 static int build_free_segmap(struct f2fs_sb_info *sbi)
4432 {
4433 	struct free_segmap_info *free_i;
4434 	unsigned int bitmap_size, sec_bitmap_size;
4435 
4436 	/* allocate memory for free segmap information */
4437 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4438 	if (!free_i)
4439 		return -ENOMEM;
4440 
4441 	SM_I(sbi)->free_info = free_i;
4442 
4443 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4444 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4445 	if (!free_i->free_segmap)
4446 		return -ENOMEM;
4447 
4448 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4449 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4450 	if (!free_i->free_secmap)
4451 		return -ENOMEM;
4452 
4453 	/* set all segments as dirty temporarily */
4454 	memset(free_i->free_segmap, 0xff, bitmap_size);
4455 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4456 
4457 	/* init free segmap information */
4458 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4459 	free_i->free_segments = 0;
4460 	free_i->free_sections = 0;
4461 	spin_lock_init(&free_i->segmap_lock);
4462 	return 0;
4463 }
4464 
4465 static int build_curseg(struct f2fs_sb_info *sbi)
4466 {
4467 	struct curseg_info *array;
4468 	int i;
4469 
4470 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4471 					sizeof(*array)), GFP_KERNEL);
4472 	if (!array)
4473 		return -ENOMEM;
4474 
4475 	SM_I(sbi)->curseg_array = array;
4476 
4477 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4478 		mutex_init(&array[i].curseg_mutex);
4479 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4480 		if (!array[i].sum_blk)
4481 			return -ENOMEM;
4482 		init_rwsem(&array[i].journal_rwsem);
4483 		array[i].journal = f2fs_kzalloc(sbi,
4484 				sizeof(struct f2fs_journal), GFP_KERNEL);
4485 		if (!array[i].journal)
4486 			return -ENOMEM;
4487 		if (i < NR_PERSISTENT_LOG)
4488 			array[i].seg_type = CURSEG_HOT_DATA + i;
4489 		else if (i == CURSEG_COLD_DATA_PINNED)
4490 			array[i].seg_type = CURSEG_COLD_DATA;
4491 		else if (i == CURSEG_ALL_DATA_ATGC)
4492 			array[i].seg_type = CURSEG_COLD_DATA;
4493 		array[i].segno = NULL_SEGNO;
4494 		array[i].next_blkoff = 0;
4495 		array[i].inited = false;
4496 	}
4497 	return restore_curseg_summaries(sbi);
4498 }
4499 
4500 static int build_sit_entries(struct f2fs_sb_info *sbi)
4501 {
4502 	struct sit_info *sit_i = SIT_I(sbi);
4503 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4504 	struct f2fs_journal *journal = curseg->journal;
4505 	struct seg_entry *se;
4506 	struct f2fs_sit_entry sit;
4507 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4508 	unsigned int i, start, end;
4509 	unsigned int readed, start_blk = 0;
4510 	int err = 0;
4511 	block_t total_node_blocks = 0;
4512 
4513 	do {
4514 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4515 							META_SIT, true);
4516 
4517 		start = start_blk * sit_i->sents_per_block;
4518 		end = (start_blk + readed) * sit_i->sents_per_block;
4519 
4520 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4521 			struct f2fs_sit_block *sit_blk;
4522 			struct page *page;
4523 
4524 			se = &sit_i->sentries[start];
4525 			page = get_current_sit_page(sbi, start);
4526 			if (IS_ERR(page))
4527 				return PTR_ERR(page);
4528 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4529 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4530 			f2fs_put_page(page, 1);
4531 
4532 			err = check_block_count(sbi, start, &sit);
4533 			if (err)
4534 				return err;
4535 			seg_info_from_raw_sit(se, &sit);
4536 			if (IS_NODESEG(se->type))
4537 				total_node_blocks += se->valid_blocks;
4538 
4539 			if (f2fs_block_unit_discard(sbi)) {
4540 				/* build discard map only one time */
4541 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4542 					memset(se->discard_map, 0xff,
4543 						SIT_VBLOCK_MAP_SIZE);
4544 				} else {
4545 					memcpy(se->discard_map,
4546 						se->cur_valid_map,
4547 						SIT_VBLOCK_MAP_SIZE);
4548 					sbi->discard_blks +=
4549 						sbi->blocks_per_seg -
4550 						se->valid_blocks;
4551 				}
4552 			}
4553 
4554 			if (__is_large_section(sbi))
4555 				get_sec_entry(sbi, start)->valid_blocks +=
4556 							se->valid_blocks;
4557 		}
4558 		start_blk += readed;
4559 	} while (start_blk < sit_blk_cnt);
4560 
4561 	down_read(&curseg->journal_rwsem);
4562 	for (i = 0; i < sits_in_cursum(journal); i++) {
4563 		unsigned int old_valid_blocks;
4564 
4565 		start = le32_to_cpu(segno_in_journal(journal, i));
4566 		if (start >= MAIN_SEGS(sbi)) {
4567 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4568 				 start);
4569 			err = -EFSCORRUPTED;
4570 			break;
4571 		}
4572 
4573 		se = &sit_i->sentries[start];
4574 		sit = sit_in_journal(journal, i);
4575 
4576 		old_valid_blocks = se->valid_blocks;
4577 		if (IS_NODESEG(se->type))
4578 			total_node_blocks -= old_valid_blocks;
4579 
4580 		err = check_block_count(sbi, start, &sit);
4581 		if (err)
4582 			break;
4583 		seg_info_from_raw_sit(se, &sit);
4584 		if (IS_NODESEG(se->type))
4585 			total_node_blocks += se->valid_blocks;
4586 
4587 		if (f2fs_block_unit_discard(sbi)) {
4588 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4589 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4590 			} else {
4591 				memcpy(se->discard_map, se->cur_valid_map,
4592 							SIT_VBLOCK_MAP_SIZE);
4593 				sbi->discard_blks += old_valid_blocks;
4594 				sbi->discard_blks -= se->valid_blocks;
4595 			}
4596 		}
4597 
4598 		if (__is_large_section(sbi)) {
4599 			get_sec_entry(sbi, start)->valid_blocks +=
4600 							se->valid_blocks;
4601 			get_sec_entry(sbi, start)->valid_blocks -=
4602 							old_valid_blocks;
4603 		}
4604 	}
4605 	up_read(&curseg->journal_rwsem);
4606 
4607 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4608 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4609 			 total_node_blocks, valid_node_count(sbi));
4610 		err = -EFSCORRUPTED;
4611 	}
4612 
4613 	return err;
4614 }
4615 
4616 static void init_free_segmap(struct f2fs_sb_info *sbi)
4617 {
4618 	unsigned int start;
4619 	int type;
4620 	struct seg_entry *sentry;
4621 
4622 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4623 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4624 			continue;
4625 		sentry = get_seg_entry(sbi, start);
4626 		if (!sentry->valid_blocks)
4627 			__set_free(sbi, start);
4628 		else
4629 			SIT_I(sbi)->written_valid_blocks +=
4630 						sentry->valid_blocks;
4631 	}
4632 
4633 	/* set use the current segments */
4634 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4635 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4636 
4637 		__set_test_and_inuse(sbi, curseg_t->segno);
4638 	}
4639 }
4640 
4641 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4642 {
4643 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4644 	struct free_segmap_info *free_i = FREE_I(sbi);
4645 	unsigned int segno = 0, offset = 0, secno;
4646 	block_t valid_blocks, usable_blks_in_seg;
4647 	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4648 
4649 	while (1) {
4650 		/* find dirty segment based on free segmap */
4651 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4652 		if (segno >= MAIN_SEGS(sbi))
4653 			break;
4654 		offset = segno + 1;
4655 		valid_blocks = get_valid_blocks(sbi, segno, false);
4656 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4657 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4658 			continue;
4659 		if (valid_blocks > usable_blks_in_seg) {
4660 			f2fs_bug_on(sbi, 1);
4661 			continue;
4662 		}
4663 		mutex_lock(&dirty_i->seglist_lock);
4664 		__locate_dirty_segment(sbi, segno, DIRTY);
4665 		mutex_unlock(&dirty_i->seglist_lock);
4666 	}
4667 
4668 	if (!__is_large_section(sbi))
4669 		return;
4670 
4671 	mutex_lock(&dirty_i->seglist_lock);
4672 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4673 		valid_blocks = get_valid_blocks(sbi, segno, true);
4674 		secno = GET_SEC_FROM_SEG(sbi, segno);
4675 
4676 		if (!valid_blocks || valid_blocks == blks_per_sec)
4677 			continue;
4678 		if (IS_CURSEC(sbi, secno))
4679 			continue;
4680 		set_bit(secno, dirty_i->dirty_secmap);
4681 	}
4682 	mutex_unlock(&dirty_i->seglist_lock);
4683 }
4684 
4685 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4686 {
4687 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4688 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4689 
4690 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4691 	if (!dirty_i->victim_secmap)
4692 		return -ENOMEM;
4693 	return 0;
4694 }
4695 
4696 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4697 {
4698 	struct dirty_seglist_info *dirty_i;
4699 	unsigned int bitmap_size, i;
4700 
4701 	/* allocate memory for dirty segments list information */
4702 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4703 								GFP_KERNEL);
4704 	if (!dirty_i)
4705 		return -ENOMEM;
4706 
4707 	SM_I(sbi)->dirty_info = dirty_i;
4708 	mutex_init(&dirty_i->seglist_lock);
4709 
4710 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4711 
4712 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4713 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4714 								GFP_KERNEL);
4715 		if (!dirty_i->dirty_segmap[i])
4716 			return -ENOMEM;
4717 	}
4718 
4719 	if (__is_large_section(sbi)) {
4720 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4721 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4722 						bitmap_size, GFP_KERNEL);
4723 		if (!dirty_i->dirty_secmap)
4724 			return -ENOMEM;
4725 	}
4726 
4727 	init_dirty_segmap(sbi);
4728 	return init_victim_secmap(sbi);
4729 }
4730 
4731 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4732 {
4733 	int i;
4734 
4735 	/*
4736 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4737 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4738 	 */
4739 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4740 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4741 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4742 		unsigned int blkofs = curseg->next_blkoff;
4743 
4744 		if (f2fs_sb_has_readonly(sbi) &&
4745 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4746 			continue;
4747 
4748 		sanity_check_seg_type(sbi, curseg->seg_type);
4749 
4750 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4751 			goto out;
4752 
4753 		if (curseg->alloc_type == SSR)
4754 			continue;
4755 
4756 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4757 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4758 				continue;
4759 out:
4760 			f2fs_err(sbi,
4761 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4762 				 i, curseg->segno, curseg->alloc_type,
4763 				 curseg->next_blkoff, blkofs);
4764 			return -EFSCORRUPTED;
4765 		}
4766 	}
4767 	return 0;
4768 }
4769 
4770 #ifdef CONFIG_BLK_DEV_ZONED
4771 
4772 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4773 				    struct f2fs_dev_info *fdev,
4774 				    struct blk_zone *zone)
4775 {
4776 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4777 	block_t zone_block, wp_block, last_valid_block;
4778 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4779 	int i, s, b, ret;
4780 	struct seg_entry *se;
4781 
4782 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4783 		return 0;
4784 
4785 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4786 	wp_segno = GET_SEGNO(sbi, wp_block);
4787 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4788 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4789 	zone_segno = GET_SEGNO(sbi, zone_block);
4790 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4791 
4792 	if (zone_segno >= MAIN_SEGS(sbi))
4793 		return 0;
4794 
4795 	/*
4796 	 * Skip check of zones cursegs point to, since
4797 	 * fix_curseg_write_pointer() checks them.
4798 	 */
4799 	for (i = 0; i < NO_CHECK_TYPE; i++)
4800 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4801 						   CURSEG_I(sbi, i)->segno))
4802 			return 0;
4803 
4804 	/*
4805 	 * Get last valid block of the zone.
4806 	 */
4807 	last_valid_block = zone_block - 1;
4808 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4809 		segno = zone_segno + s;
4810 		se = get_seg_entry(sbi, segno);
4811 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4812 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4813 				last_valid_block = START_BLOCK(sbi, segno) + b;
4814 				break;
4815 			}
4816 		if (last_valid_block >= zone_block)
4817 			break;
4818 	}
4819 
4820 	/*
4821 	 * If last valid block is beyond the write pointer, report the
4822 	 * inconsistency. This inconsistency does not cause write error
4823 	 * because the zone will not be selected for write operation until
4824 	 * it get discarded. Just report it.
4825 	 */
4826 	if (last_valid_block >= wp_block) {
4827 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4828 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4829 			    GET_SEGNO(sbi, last_valid_block),
4830 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4831 			    wp_segno, wp_blkoff);
4832 		return 0;
4833 	}
4834 
4835 	/*
4836 	 * If there is no valid block in the zone and if write pointer is
4837 	 * not at zone start, reset the write pointer.
4838 	 */
4839 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4840 		f2fs_notice(sbi,
4841 			    "Zone without valid block has non-zero write "
4842 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4843 			    wp_segno, wp_blkoff);
4844 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4845 					zone->len >> log_sectors_per_block);
4846 		if (ret) {
4847 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4848 				 fdev->path, ret);
4849 			return ret;
4850 		}
4851 	}
4852 
4853 	return 0;
4854 }
4855 
4856 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4857 						  block_t zone_blkaddr)
4858 {
4859 	int i;
4860 
4861 	for (i = 0; i < sbi->s_ndevs; i++) {
4862 		if (!bdev_is_zoned(FDEV(i).bdev))
4863 			continue;
4864 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4865 				zone_blkaddr <= FDEV(i).end_blk))
4866 			return &FDEV(i);
4867 	}
4868 
4869 	return NULL;
4870 }
4871 
4872 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4873 			      void *data)
4874 {
4875 	memcpy(data, zone, sizeof(struct blk_zone));
4876 	return 0;
4877 }
4878 
4879 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4880 {
4881 	struct curseg_info *cs = CURSEG_I(sbi, type);
4882 	struct f2fs_dev_info *zbd;
4883 	struct blk_zone zone;
4884 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4885 	block_t cs_zone_block, wp_block;
4886 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4887 	sector_t zone_sector;
4888 	int err;
4889 
4890 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4891 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4892 
4893 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4894 	if (!zbd)
4895 		return 0;
4896 
4897 	/* report zone for the sector the curseg points to */
4898 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4899 		<< log_sectors_per_block;
4900 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4901 				  report_one_zone_cb, &zone);
4902 	if (err != 1) {
4903 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4904 			 zbd->path, err);
4905 		return err;
4906 	}
4907 
4908 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4909 		return 0;
4910 
4911 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4912 	wp_segno = GET_SEGNO(sbi, wp_block);
4913 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4914 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4915 
4916 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4917 		wp_sector_off == 0)
4918 		return 0;
4919 
4920 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4921 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4922 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4923 
4924 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4925 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4926 
4927 	f2fs_allocate_new_section(sbi, type, true);
4928 
4929 	/* check consistency of the zone curseg pointed to */
4930 	if (check_zone_write_pointer(sbi, zbd, &zone))
4931 		return -EIO;
4932 
4933 	/* check newly assigned zone */
4934 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4935 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4936 
4937 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4938 	if (!zbd)
4939 		return 0;
4940 
4941 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4942 		<< log_sectors_per_block;
4943 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4944 				  report_one_zone_cb, &zone);
4945 	if (err != 1) {
4946 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4947 			 zbd->path, err);
4948 		return err;
4949 	}
4950 
4951 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4952 		return 0;
4953 
4954 	if (zone.wp != zone.start) {
4955 		f2fs_notice(sbi,
4956 			    "New zone for curseg[%d] is not yet discarded. "
4957 			    "Reset the zone: curseg[0x%x,0x%x]",
4958 			    type, cs->segno, cs->next_blkoff);
4959 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4960 				zone_sector >> log_sectors_per_block,
4961 				zone.len >> log_sectors_per_block);
4962 		if (err) {
4963 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4964 				 zbd->path, err);
4965 			return err;
4966 		}
4967 	}
4968 
4969 	return 0;
4970 }
4971 
4972 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4973 {
4974 	int i, ret;
4975 
4976 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4977 		ret = fix_curseg_write_pointer(sbi, i);
4978 		if (ret)
4979 			return ret;
4980 	}
4981 
4982 	return 0;
4983 }
4984 
4985 struct check_zone_write_pointer_args {
4986 	struct f2fs_sb_info *sbi;
4987 	struct f2fs_dev_info *fdev;
4988 };
4989 
4990 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4991 				      void *data)
4992 {
4993 	struct check_zone_write_pointer_args *args;
4994 
4995 	args = (struct check_zone_write_pointer_args *)data;
4996 
4997 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4998 }
4999 
5000 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5001 {
5002 	int i, ret;
5003 	struct check_zone_write_pointer_args args;
5004 
5005 	for (i = 0; i < sbi->s_ndevs; i++) {
5006 		if (!bdev_is_zoned(FDEV(i).bdev))
5007 			continue;
5008 
5009 		args.sbi = sbi;
5010 		args.fdev = &FDEV(i);
5011 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5012 					  check_zone_write_pointer_cb, &args);
5013 		if (ret < 0)
5014 			return ret;
5015 	}
5016 
5017 	return 0;
5018 }
5019 
5020 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
5021 						unsigned int dev_idx)
5022 {
5023 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
5024 		return true;
5025 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
5026 }
5027 
5028 /* Return the zone index in the given device */
5029 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
5030 					int dev_idx)
5031 {
5032 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5033 
5034 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
5035 						sbi->log_blocks_per_blkz;
5036 }
5037 
5038 /*
5039  * Return the usable segments in a section based on the zone's
5040  * corresponding zone capacity. Zone is equal to a section.
5041  */
5042 static inline unsigned int f2fs_usable_zone_segs_in_sec(
5043 		struct f2fs_sb_info *sbi, unsigned int segno)
5044 {
5045 	unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
5046 
5047 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
5048 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
5049 
5050 	/* Conventional zone's capacity is always equal to zone size */
5051 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5052 		return sbi->segs_per_sec;
5053 
5054 	/*
5055 	 * If the zone_capacity_blocks array is NULL, then zone capacity
5056 	 * is equal to the zone size for all zones
5057 	 */
5058 	if (!FDEV(dev_idx).zone_capacity_blocks)
5059 		return sbi->segs_per_sec;
5060 
5061 	/* Get the segment count beyond zone capacity block */
5062 	unusable_segs_in_sec = (sbi->blocks_per_blkz -
5063 				FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5064 				sbi->log_blocks_per_seg;
5065 	return sbi->segs_per_sec - unusable_segs_in_sec;
5066 }
5067 
5068 /*
5069  * Return the number of usable blocks in a segment. The number of blocks
5070  * returned is always equal to the number of blocks in a segment for
5071  * segments fully contained within a sequential zone capacity or a
5072  * conventional zone. For segments partially contained in a sequential
5073  * zone capacity, the number of usable blocks up to the zone capacity
5074  * is returned. 0 is returned in all other cases.
5075  */
5076 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5077 			struct f2fs_sb_info *sbi, unsigned int segno)
5078 {
5079 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5080 	unsigned int zone_idx, dev_idx, secno;
5081 
5082 	secno = GET_SEC_FROM_SEG(sbi, segno);
5083 	seg_start = START_BLOCK(sbi, segno);
5084 	dev_idx = f2fs_target_device_index(sbi, seg_start);
5085 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5086 
5087 	/*
5088 	 * Conventional zone's capacity is always equal to zone size,
5089 	 * so, blocks per segment is unchanged.
5090 	 */
5091 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5092 		return sbi->blocks_per_seg;
5093 
5094 	if (!FDEV(dev_idx).zone_capacity_blocks)
5095 		return sbi->blocks_per_seg;
5096 
5097 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5098 	sec_cap_blkaddr = sec_start_blkaddr +
5099 				FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5100 
5101 	/*
5102 	 * If segment starts before zone capacity and spans beyond
5103 	 * zone capacity, then usable blocks are from seg start to
5104 	 * zone capacity. If the segment starts after the zone capacity,
5105 	 * then there are no usable blocks.
5106 	 */
5107 	if (seg_start >= sec_cap_blkaddr)
5108 		return 0;
5109 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5110 		return sec_cap_blkaddr - seg_start;
5111 
5112 	return sbi->blocks_per_seg;
5113 }
5114 #else
5115 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5116 {
5117 	return 0;
5118 }
5119 
5120 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5121 {
5122 	return 0;
5123 }
5124 
5125 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5126 							unsigned int segno)
5127 {
5128 	return 0;
5129 }
5130 
5131 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5132 							unsigned int segno)
5133 {
5134 	return 0;
5135 }
5136 #endif
5137 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5138 					unsigned int segno)
5139 {
5140 	if (f2fs_sb_has_blkzoned(sbi))
5141 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5142 
5143 	return sbi->blocks_per_seg;
5144 }
5145 
5146 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5147 					unsigned int segno)
5148 {
5149 	if (f2fs_sb_has_blkzoned(sbi))
5150 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5151 
5152 	return sbi->segs_per_sec;
5153 }
5154 
5155 /*
5156  * Update min, max modified time for cost-benefit GC algorithm
5157  */
5158 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5159 {
5160 	struct sit_info *sit_i = SIT_I(sbi);
5161 	unsigned int segno;
5162 
5163 	down_write(&sit_i->sentry_lock);
5164 
5165 	sit_i->min_mtime = ULLONG_MAX;
5166 
5167 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5168 		unsigned int i;
5169 		unsigned long long mtime = 0;
5170 
5171 		for (i = 0; i < sbi->segs_per_sec; i++)
5172 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5173 
5174 		mtime = div_u64(mtime, sbi->segs_per_sec);
5175 
5176 		if (sit_i->min_mtime > mtime)
5177 			sit_i->min_mtime = mtime;
5178 	}
5179 	sit_i->max_mtime = get_mtime(sbi, false);
5180 	sit_i->dirty_max_mtime = 0;
5181 	up_write(&sit_i->sentry_lock);
5182 }
5183 
5184 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5185 {
5186 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5187 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5188 	struct f2fs_sm_info *sm_info;
5189 	int err;
5190 
5191 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5192 	if (!sm_info)
5193 		return -ENOMEM;
5194 
5195 	/* init sm info */
5196 	sbi->sm_info = sm_info;
5197 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5198 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5199 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5200 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5201 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5202 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5203 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5204 	sm_info->rec_prefree_segments = sm_info->main_segments *
5205 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5206 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5207 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5208 
5209 	if (!f2fs_lfs_mode(sbi))
5210 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5211 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5212 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5213 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5214 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5215 	sm_info->min_ssr_sections = reserved_sections(sbi);
5216 
5217 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5218 
5219 	init_rwsem(&sm_info->curseg_lock);
5220 
5221 	if (!f2fs_readonly(sbi->sb)) {
5222 		err = f2fs_create_flush_cmd_control(sbi);
5223 		if (err)
5224 			return err;
5225 	}
5226 
5227 	err = create_discard_cmd_control(sbi);
5228 	if (err)
5229 		return err;
5230 
5231 	err = build_sit_info(sbi);
5232 	if (err)
5233 		return err;
5234 	err = build_free_segmap(sbi);
5235 	if (err)
5236 		return err;
5237 	err = build_curseg(sbi);
5238 	if (err)
5239 		return err;
5240 
5241 	/* reinit free segmap based on SIT */
5242 	err = build_sit_entries(sbi);
5243 	if (err)
5244 		return err;
5245 
5246 	init_free_segmap(sbi);
5247 	err = build_dirty_segmap(sbi);
5248 	if (err)
5249 		return err;
5250 
5251 	err = sanity_check_curseg(sbi);
5252 	if (err)
5253 		return err;
5254 
5255 	init_min_max_mtime(sbi);
5256 	return 0;
5257 }
5258 
5259 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5260 		enum dirty_type dirty_type)
5261 {
5262 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5263 
5264 	mutex_lock(&dirty_i->seglist_lock);
5265 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5266 	dirty_i->nr_dirty[dirty_type] = 0;
5267 	mutex_unlock(&dirty_i->seglist_lock);
5268 }
5269 
5270 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5271 {
5272 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5273 
5274 	kvfree(dirty_i->victim_secmap);
5275 }
5276 
5277 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5278 {
5279 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5280 	int i;
5281 
5282 	if (!dirty_i)
5283 		return;
5284 
5285 	/* discard pre-free/dirty segments list */
5286 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5287 		discard_dirty_segmap(sbi, i);
5288 
5289 	if (__is_large_section(sbi)) {
5290 		mutex_lock(&dirty_i->seglist_lock);
5291 		kvfree(dirty_i->dirty_secmap);
5292 		mutex_unlock(&dirty_i->seglist_lock);
5293 	}
5294 
5295 	destroy_victim_secmap(sbi);
5296 	SM_I(sbi)->dirty_info = NULL;
5297 	kfree(dirty_i);
5298 }
5299 
5300 static void destroy_curseg(struct f2fs_sb_info *sbi)
5301 {
5302 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5303 	int i;
5304 
5305 	if (!array)
5306 		return;
5307 	SM_I(sbi)->curseg_array = NULL;
5308 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5309 		kfree(array[i].sum_blk);
5310 		kfree(array[i].journal);
5311 	}
5312 	kfree(array);
5313 }
5314 
5315 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5316 {
5317 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5318 
5319 	if (!free_i)
5320 		return;
5321 	SM_I(sbi)->free_info = NULL;
5322 	kvfree(free_i->free_segmap);
5323 	kvfree(free_i->free_secmap);
5324 	kfree(free_i);
5325 }
5326 
5327 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5328 {
5329 	struct sit_info *sit_i = SIT_I(sbi);
5330 
5331 	if (!sit_i)
5332 		return;
5333 
5334 	if (sit_i->sentries)
5335 		kvfree(sit_i->bitmap);
5336 	kfree(sit_i->tmp_map);
5337 
5338 	kvfree(sit_i->sentries);
5339 	kvfree(sit_i->sec_entries);
5340 	kvfree(sit_i->dirty_sentries_bitmap);
5341 
5342 	SM_I(sbi)->sit_info = NULL;
5343 	kvfree(sit_i->sit_bitmap);
5344 #ifdef CONFIG_F2FS_CHECK_FS
5345 	kvfree(sit_i->sit_bitmap_mir);
5346 	kvfree(sit_i->invalid_segmap);
5347 #endif
5348 	kfree(sit_i);
5349 }
5350 
5351 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5352 {
5353 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5354 
5355 	if (!sm_info)
5356 		return;
5357 	f2fs_destroy_flush_cmd_control(sbi, true);
5358 	destroy_discard_cmd_control(sbi);
5359 	destroy_dirty_segmap(sbi);
5360 	destroy_curseg(sbi);
5361 	destroy_free_segmap(sbi);
5362 	destroy_sit_info(sbi);
5363 	sbi->sm_info = NULL;
5364 	kfree(sm_info);
5365 }
5366 
5367 int __init f2fs_create_segment_manager_caches(void)
5368 {
5369 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5370 			sizeof(struct discard_entry));
5371 	if (!discard_entry_slab)
5372 		goto fail;
5373 
5374 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5375 			sizeof(struct discard_cmd));
5376 	if (!discard_cmd_slab)
5377 		goto destroy_discard_entry;
5378 
5379 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5380 			sizeof(struct sit_entry_set));
5381 	if (!sit_entry_set_slab)
5382 		goto destroy_discard_cmd;
5383 
5384 	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5385 			sizeof(struct inmem_pages));
5386 	if (!inmem_entry_slab)
5387 		goto destroy_sit_entry_set;
5388 	return 0;
5389 
5390 destroy_sit_entry_set:
5391 	kmem_cache_destroy(sit_entry_set_slab);
5392 destroy_discard_cmd:
5393 	kmem_cache_destroy(discard_cmd_slab);
5394 destroy_discard_entry:
5395 	kmem_cache_destroy(discard_entry_slab);
5396 fail:
5397 	return -ENOMEM;
5398 }
5399 
5400 void f2fs_destroy_segment_manager_caches(void)
5401 {
5402 	kmem_cache_destroy(sit_entry_set_slab);
5403 	kmem_cache_destroy(discard_cmd_slab);
5404 	kmem_cache_destroy(discard_entry_slab);
5405 	kmem_cache_destroy(inmem_entry_slab);
5406 }
5407