xref: /openbmc/linux/fs/f2fs/segment.c (revision bc5aa3a0)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31 
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34 	unsigned long tmp = 0;
35 	int shift = 24, idx = 0;
36 
37 #if BITS_PER_LONG == 64
38 	shift = 56;
39 #endif
40 	while (shift >= 0) {
41 		tmp |= (unsigned long)str[idx++] << shift;
42 		shift -= BITS_PER_BYTE;
43 	}
44 	return tmp;
45 }
46 
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53 	int num = 0;
54 
55 #if BITS_PER_LONG == 64
56 	if ((word & 0xffffffff00000000UL) == 0)
57 		num += 32;
58 	else
59 		word >>= 32;
60 #endif
61 	if ((word & 0xffff0000) == 0)
62 		num += 16;
63 	else
64 		word >>= 16;
65 
66 	if ((word & 0xff00) == 0)
67 		num += 8;
68 	else
69 		word >>= 8;
70 
71 	if ((word & 0xf0) == 0)
72 		num += 4;
73 	else
74 		word >>= 4;
75 
76 	if ((word & 0xc) == 0)
77 		num += 2;
78 	else
79 		word >>= 2;
80 
81 	if ((word & 0x2) == 0)
82 		num += 1;
83 	return num;
84 }
85 
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * @size must be integral times of unsigned long.
90  * Example:
91  *                             MSB <--> LSB
92  *   f2fs_set_bit(0, bitmap) => 1000 0000
93  *   f2fs_set_bit(7, bitmap) => 0000 0001
94  */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 			unsigned long size, unsigned long offset)
97 {
98 	const unsigned long *p = addr + BIT_WORD(offset);
99 	unsigned long result = size;
100 	unsigned long tmp;
101 
102 	if (offset >= size)
103 		return size;
104 
105 	size -= (offset & ~(BITS_PER_LONG - 1));
106 	offset %= BITS_PER_LONG;
107 
108 	while (1) {
109 		if (*p == 0)
110 			goto pass;
111 
112 		tmp = __reverse_ulong((unsigned char *)p);
113 
114 		tmp &= ~0UL >> offset;
115 		if (size < BITS_PER_LONG)
116 			tmp &= (~0UL << (BITS_PER_LONG - size));
117 		if (tmp)
118 			goto found;
119 pass:
120 		if (size <= BITS_PER_LONG)
121 			break;
122 		size -= BITS_PER_LONG;
123 		offset = 0;
124 		p++;
125 	}
126 	return result;
127 found:
128 	return result - size + __reverse_ffs(tmp);
129 }
130 
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 			unsigned long size, unsigned long offset)
133 {
134 	const unsigned long *p = addr + BIT_WORD(offset);
135 	unsigned long result = size;
136 	unsigned long tmp;
137 
138 	if (offset >= size)
139 		return size;
140 
141 	size -= (offset & ~(BITS_PER_LONG - 1));
142 	offset %= BITS_PER_LONG;
143 
144 	while (1) {
145 		if (*p == ~0UL)
146 			goto pass;
147 
148 		tmp = __reverse_ulong((unsigned char *)p);
149 
150 		if (offset)
151 			tmp |= ~0UL << (BITS_PER_LONG - offset);
152 		if (size < BITS_PER_LONG)
153 			tmp |= ~0UL >> size;
154 		if (tmp != ~0UL)
155 			goto found;
156 pass:
157 		if (size <= BITS_PER_LONG)
158 			break;
159 		size -= BITS_PER_LONG;
160 		offset = 0;
161 		p++;
162 	}
163 	return result;
164 found:
165 	return result - size + __reverse_ffz(tmp);
166 }
167 
168 void register_inmem_page(struct inode *inode, struct page *page)
169 {
170 	struct f2fs_inode_info *fi = F2FS_I(inode);
171 	struct inmem_pages *new;
172 
173 	f2fs_trace_pid(page);
174 
175 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
176 	SetPagePrivate(page);
177 
178 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
179 
180 	/* add atomic page indices to the list */
181 	new->page = page;
182 	INIT_LIST_HEAD(&new->list);
183 
184 	/* increase reference count with clean state */
185 	mutex_lock(&fi->inmem_lock);
186 	get_page(page);
187 	list_add_tail(&new->list, &fi->inmem_pages);
188 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
189 	mutex_unlock(&fi->inmem_lock);
190 
191 	trace_f2fs_register_inmem_page(page, INMEM);
192 }
193 
194 static int __revoke_inmem_pages(struct inode *inode,
195 				struct list_head *head, bool drop, bool recover)
196 {
197 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
198 	struct inmem_pages *cur, *tmp;
199 	int err = 0;
200 
201 	list_for_each_entry_safe(cur, tmp, head, list) {
202 		struct page *page = cur->page;
203 
204 		if (drop)
205 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
206 
207 		lock_page(page);
208 
209 		if (recover) {
210 			struct dnode_of_data dn;
211 			struct node_info ni;
212 
213 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
214 
215 			set_new_dnode(&dn, inode, NULL, NULL, 0);
216 			if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
217 				err = -EAGAIN;
218 				goto next;
219 			}
220 			get_node_info(sbi, dn.nid, &ni);
221 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
222 					cur->old_addr, ni.version, true, true);
223 			f2fs_put_dnode(&dn);
224 		}
225 next:
226 		/* we don't need to invalidate this in the sccessful status */
227 		if (drop || recover)
228 			ClearPageUptodate(page);
229 		set_page_private(page, 0);
230 		ClearPagePrivate(page);
231 		f2fs_put_page(page, 1);
232 
233 		list_del(&cur->list);
234 		kmem_cache_free(inmem_entry_slab, cur);
235 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
236 	}
237 	return err;
238 }
239 
240 void drop_inmem_pages(struct inode *inode)
241 {
242 	struct f2fs_inode_info *fi = F2FS_I(inode);
243 
244 	clear_inode_flag(inode, FI_ATOMIC_FILE);
245 
246 	mutex_lock(&fi->inmem_lock);
247 	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
248 	mutex_unlock(&fi->inmem_lock);
249 }
250 
251 static int __commit_inmem_pages(struct inode *inode,
252 					struct list_head *revoke_list)
253 {
254 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255 	struct f2fs_inode_info *fi = F2FS_I(inode);
256 	struct inmem_pages *cur, *tmp;
257 	struct f2fs_io_info fio = {
258 		.sbi = sbi,
259 		.type = DATA,
260 		.op = REQ_OP_WRITE,
261 		.op_flags = WRITE_SYNC | REQ_PRIO,
262 		.encrypted_page = NULL,
263 	};
264 	bool submit_bio = false;
265 	int err = 0;
266 
267 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
268 		struct page *page = cur->page;
269 
270 		lock_page(page);
271 		if (page->mapping == inode->i_mapping) {
272 			trace_f2fs_commit_inmem_page(page, INMEM);
273 
274 			set_page_dirty(page);
275 			f2fs_wait_on_page_writeback(page, DATA, true);
276 			if (clear_page_dirty_for_io(page))
277 				inode_dec_dirty_pages(inode);
278 
279 			fio.page = page;
280 			err = do_write_data_page(&fio);
281 			if (err) {
282 				unlock_page(page);
283 				break;
284 			}
285 
286 			/* record old blkaddr for revoking */
287 			cur->old_addr = fio.old_blkaddr;
288 
289 			clear_cold_data(page);
290 			submit_bio = true;
291 		}
292 		unlock_page(page);
293 		list_move_tail(&cur->list, revoke_list);
294 	}
295 
296 	if (submit_bio)
297 		f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
298 
299 	if (!err)
300 		__revoke_inmem_pages(inode, revoke_list, false, false);
301 
302 	return err;
303 }
304 
305 int commit_inmem_pages(struct inode *inode)
306 {
307 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
308 	struct f2fs_inode_info *fi = F2FS_I(inode);
309 	struct list_head revoke_list;
310 	int err;
311 
312 	INIT_LIST_HEAD(&revoke_list);
313 	f2fs_balance_fs(sbi, true);
314 	f2fs_lock_op(sbi);
315 
316 	mutex_lock(&fi->inmem_lock);
317 	err = __commit_inmem_pages(inode, &revoke_list);
318 	if (err) {
319 		int ret;
320 		/*
321 		 * try to revoke all committed pages, but still we could fail
322 		 * due to no memory or other reason, if that happened, EAGAIN
323 		 * will be returned, which means in such case, transaction is
324 		 * already not integrity, caller should use journal to do the
325 		 * recovery or rewrite & commit last transaction. For other
326 		 * error number, revoking was done by filesystem itself.
327 		 */
328 		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
329 		if (ret)
330 			err = ret;
331 
332 		/* drop all uncommitted pages */
333 		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
334 	}
335 	mutex_unlock(&fi->inmem_lock);
336 
337 	f2fs_unlock_op(sbi);
338 	return err;
339 }
340 
341 /*
342  * This function balances dirty node and dentry pages.
343  * In addition, it controls garbage collection.
344  */
345 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
346 {
347 	if (!need)
348 		return;
349 
350 	/* balance_fs_bg is able to be pending */
351 	if (excess_cached_nats(sbi))
352 		f2fs_balance_fs_bg(sbi);
353 
354 	/*
355 	 * We should do GC or end up with checkpoint, if there are so many dirty
356 	 * dir/node pages without enough free segments.
357 	 */
358 	if (has_not_enough_free_secs(sbi, 0)) {
359 		mutex_lock(&sbi->gc_mutex);
360 		f2fs_gc(sbi, false);
361 	}
362 }
363 
364 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
365 {
366 	/* try to shrink extent cache when there is no enough memory */
367 	if (!available_free_memory(sbi, EXTENT_CACHE))
368 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
369 
370 	/* check the # of cached NAT entries */
371 	if (!available_free_memory(sbi, NAT_ENTRIES))
372 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
373 
374 	if (!available_free_memory(sbi, FREE_NIDS))
375 		try_to_free_nids(sbi, MAX_FREE_NIDS);
376 	else
377 		build_free_nids(sbi);
378 
379 	/* checkpoint is the only way to shrink partial cached entries */
380 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
381 			!available_free_memory(sbi, INO_ENTRIES) ||
382 			excess_prefree_segs(sbi) ||
383 			excess_dirty_nats(sbi) ||
384 			(is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
385 		if (test_opt(sbi, DATA_FLUSH)) {
386 			struct blk_plug plug;
387 
388 			blk_start_plug(&plug);
389 			sync_dirty_inodes(sbi, FILE_INODE);
390 			blk_finish_plug(&plug);
391 		}
392 		f2fs_sync_fs(sbi->sb, true);
393 		stat_inc_bg_cp_count(sbi->stat_info);
394 	}
395 }
396 
397 static int issue_flush_thread(void *data)
398 {
399 	struct f2fs_sb_info *sbi = data;
400 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
401 	wait_queue_head_t *q = &fcc->flush_wait_queue;
402 repeat:
403 	if (kthread_should_stop())
404 		return 0;
405 
406 	if (!llist_empty(&fcc->issue_list)) {
407 		struct bio *bio;
408 		struct flush_cmd *cmd, *next;
409 		int ret;
410 
411 		bio = f2fs_bio_alloc(0);
412 
413 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
414 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
415 
416 		bio->bi_bdev = sbi->sb->s_bdev;
417 		bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
418 		ret = submit_bio_wait(bio);
419 
420 		llist_for_each_entry_safe(cmd, next,
421 					  fcc->dispatch_list, llnode) {
422 			cmd->ret = ret;
423 			complete(&cmd->wait);
424 		}
425 		bio_put(bio);
426 		fcc->dispatch_list = NULL;
427 	}
428 
429 	wait_event_interruptible(*q,
430 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
431 	goto repeat;
432 }
433 
434 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
435 {
436 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
437 	struct flush_cmd cmd;
438 
439 	trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
440 					test_opt(sbi, FLUSH_MERGE));
441 
442 	if (test_opt(sbi, NOBARRIER))
443 		return 0;
444 
445 	if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) {
446 		struct bio *bio = f2fs_bio_alloc(0);
447 		int ret;
448 
449 		atomic_inc(&fcc->submit_flush);
450 		bio->bi_bdev = sbi->sb->s_bdev;
451 		bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH);
452 		ret = submit_bio_wait(bio);
453 		atomic_dec(&fcc->submit_flush);
454 		bio_put(bio);
455 		return ret;
456 	}
457 
458 	init_completion(&cmd.wait);
459 
460 	atomic_inc(&fcc->submit_flush);
461 	llist_add(&cmd.llnode, &fcc->issue_list);
462 
463 	if (!fcc->dispatch_list)
464 		wake_up(&fcc->flush_wait_queue);
465 
466 	wait_for_completion(&cmd.wait);
467 	atomic_dec(&fcc->submit_flush);
468 
469 	return cmd.ret;
470 }
471 
472 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
473 {
474 	dev_t dev = sbi->sb->s_bdev->bd_dev;
475 	struct flush_cmd_control *fcc;
476 	int err = 0;
477 
478 	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
479 	if (!fcc)
480 		return -ENOMEM;
481 	atomic_set(&fcc->submit_flush, 0);
482 	init_waitqueue_head(&fcc->flush_wait_queue);
483 	init_llist_head(&fcc->issue_list);
484 	SM_I(sbi)->cmd_control_info = fcc;
485 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
486 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
487 	if (IS_ERR(fcc->f2fs_issue_flush)) {
488 		err = PTR_ERR(fcc->f2fs_issue_flush);
489 		kfree(fcc);
490 		SM_I(sbi)->cmd_control_info = NULL;
491 		return err;
492 	}
493 
494 	return err;
495 }
496 
497 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
498 {
499 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
500 
501 	if (fcc && fcc->f2fs_issue_flush)
502 		kthread_stop(fcc->f2fs_issue_flush);
503 	kfree(fcc);
504 	SM_I(sbi)->cmd_control_info = NULL;
505 }
506 
507 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
508 		enum dirty_type dirty_type)
509 {
510 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
511 
512 	/* need not be added */
513 	if (IS_CURSEG(sbi, segno))
514 		return;
515 
516 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
517 		dirty_i->nr_dirty[dirty_type]++;
518 
519 	if (dirty_type == DIRTY) {
520 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
521 		enum dirty_type t = sentry->type;
522 
523 		if (unlikely(t >= DIRTY)) {
524 			f2fs_bug_on(sbi, 1);
525 			return;
526 		}
527 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
528 			dirty_i->nr_dirty[t]++;
529 	}
530 }
531 
532 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
533 		enum dirty_type dirty_type)
534 {
535 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
536 
537 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
538 		dirty_i->nr_dirty[dirty_type]--;
539 
540 	if (dirty_type == DIRTY) {
541 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
542 		enum dirty_type t = sentry->type;
543 
544 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
545 			dirty_i->nr_dirty[t]--;
546 
547 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
548 			clear_bit(GET_SECNO(sbi, segno),
549 						dirty_i->victim_secmap);
550 	}
551 }
552 
553 /*
554  * Should not occur error such as -ENOMEM.
555  * Adding dirty entry into seglist is not critical operation.
556  * If a given segment is one of current working segments, it won't be added.
557  */
558 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
559 {
560 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
561 	unsigned short valid_blocks;
562 
563 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
564 		return;
565 
566 	mutex_lock(&dirty_i->seglist_lock);
567 
568 	valid_blocks = get_valid_blocks(sbi, segno, 0);
569 
570 	if (valid_blocks == 0) {
571 		__locate_dirty_segment(sbi, segno, PRE);
572 		__remove_dirty_segment(sbi, segno, DIRTY);
573 	} else if (valid_blocks < sbi->blocks_per_seg) {
574 		__locate_dirty_segment(sbi, segno, DIRTY);
575 	} else {
576 		/* Recovery routine with SSR needs this */
577 		__remove_dirty_segment(sbi, segno, DIRTY);
578 	}
579 
580 	mutex_unlock(&dirty_i->seglist_lock);
581 }
582 
583 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
584 				block_t blkstart, block_t blklen)
585 {
586 	sector_t start = SECTOR_FROM_BLOCK(blkstart);
587 	sector_t len = SECTOR_FROM_BLOCK(blklen);
588 	struct seg_entry *se;
589 	unsigned int offset;
590 	block_t i;
591 
592 	for (i = blkstart; i < blkstart + blklen; i++) {
593 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
594 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
595 
596 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
597 			sbi->discard_blks--;
598 	}
599 	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
600 	return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
601 }
602 
603 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
604 {
605 	int err = -EOPNOTSUPP;
606 
607 	if (test_opt(sbi, DISCARD)) {
608 		struct seg_entry *se = get_seg_entry(sbi,
609 				GET_SEGNO(sbi, blkaddr));
610 		unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
611 
612 		if (f2fs_test_bit(offset, se->discard_map))
613 			return false;
614 
615 		err = f2fs_issue_discard(sbi, blkaddr, 1);
616 	}
617 
618 	if (err) {
619 		update_meta_page(sbi, NULL, blkaddr);
620 		return true;
621 	}
622 	return false;
623 }
624 
625 static void __add_discard_entry(struct f2fs_sb_info *sbi,
626 		struct cp_control *cpc, struct seg_entry *se,
627 		unsigned int start, unsigned int end)
628 {
629 	struct list_head *head = &SM_I(sbi)->discard_list;
630 	struct discard_entry *new, *last;
631 
632 	if (!list_empty(head)) {
633 		last = list_last_entry(head, struct discard_entry, list);
634 		if (START_BLOCK(sbi, cpc->trim_start) + start ==
635 						last->blkaddr + last->len) {
636 			last->len += end - start;
637 			goto done;
638 		}
639 	}
640 
641 	new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
642 	INIT_LIST_HEAD(&new->list);
643 	new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
644 	new->len = end - start;
645 	list_add_tail(&new->list, head);
646 done:
647 	SM_I(sbi)->nr_discards += end - start;
648 }
649 
650 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
651 {
652 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
653 	int max_blocks = sbi->blocks_per_seg;
654 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
655 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
656 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
657 	unsigned long *discard_map = (unsigned long *)se->discard_map;
658 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
659 	unsigned int start = 0, end = -1;
660 	bool force = (cpc->reason == CP_DISCARD);
661 	int i;
662 
663 	if (se->valid_blocks == max_blocks)
664 		return;
665 
666 	if (!force) {
667 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
668 		    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
669 			return;
670 	}
671 
672 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
673 	for (i = 0; i < entries; i++)
674 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
675 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
676 
677 	while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
678 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
679 		if (start >= max_blocks)
680 			break;
681 
682 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
683 		if (force && start && end != max_blocks
684 					&& (end - start) < cpc->trim_minlen)
685 			continue;
686 
687 		__add_discard_entry(sbi, cpc, se, start, end);
688 	}
689 }
690 
691 void release_discard_addrs(struct f2fs_sb_info *sbi)
692 {
693 	struct list_head *head = &(SM_I(sbi)->discard_list);
694 	struct discard_entry *entry, *this;
695 
696 	/* drop caches */
697 	list_for_each_entry_safe(entry, this, head, list) {
698 		list_del(&entry->list);
699 		kmem_cache_free(discard_entry_slab, entry);
700 	}
701 }
702 
703 /*
704  * Should call clear_prefree_segments after checkpoint is done.
705  */
706 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
707 {
708 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
709 	unsigned int segno;
710 
711 	mutex_lock(&dirty_i->seglist_lock);
712 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
713 		__set_test_and_free(sbi, segno);
714 	mutex_unlock(&dirty_i->seglist_lock);
715 }
716 
717 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
718 {
719 	struct list_head *head = &(SM_I(sbi)->discard_list);
720 	struct discard_entry *entry, *this;
721 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
722 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
723 	unsigned int start = 0, end = -1;
724 	unsigned int secno, start_segno;
725 	bool force = (cpc->reason == CP_DISCARD);
726 
727 	mutex_lock(&dirty_i->seglist_lock);
728 
729 	while (1) {
730 		int i;
731 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
732 		if (start >= MAIN_SEGS(sbi))
733 			break;
734 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
735 								start + 1);
736 
737 		for (i = start; i < end; i++)
738 			clear_bit(i, prefree_map);
739 
740 		dirty_i->nr_dirty[PRE] -= end - start;
741 
742 		if (force || !test_opt(sbi, DISCARD))
743 			continue;
744 
745 		if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
746 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
747 				(end - start) << sbi->log_blocks_per_seg);
748 			continue;
749 		}
750 next:
751 		secno = GET_SECNO(sbi, start);
752 		start_segno = secno * sbi->segs_per_sec;
753 		if (!IS_CURSEC(sbi, secno) &&
754 			!get_valid_blocks(sbi, start, sbi->segs_per_sec))
755 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
756 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
757 
758 		start = start_segno + sbi->segs_per_sec;
759 		if (start < end)
760 			goto next;
761 	}
762 	mutex_unlock(&dirty_i->seglist_lock);
763 
764 	/* send small discards */
765 	list_for_each_entry_safe(entry, this, head, list) {
766 		if (force && entry->len < cpc->trim_minlen)
767 			goto skip;
768 		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
769 		cpc->trimmed += entry->len;
770 skip:
771 		list_del(&entry->list);
772 		SM_I(sbi)->nr_discards -= entry->len;
773 		kmem_cache_free(discard_entry_slab, entry);
774 	}
775 }
776 
777 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
778 {
779 	struct sit_info *sit_i = SIT_I(sbi);
780 
781 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
782 		sit_i->dirty_sentries++;
783 		return false;
784 	}
785 
786 	return true;
787 }
788 
789 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
790 					unsigned int segno, int modified)
791 {
792 	struct seg_entry *se = get_seg_entry(sbi, segno);
793 	se->type = type;
794 	if (modified)
795 		__mark_sit_entry_dirty(sbi, segno);
796 }
797 
798 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
799 {
800 	struct seg_entry *se;
801 	unsigned int segno, offset;
802 	long int new_vblocks;
803 
804 	segno = GET_SEGNO(sbi, blkaddr);
805 
806 	se = get_seg_entry(sbi, segno);
807 	new_vblocks = se->valid_blocks + del;
808 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
809 
810 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
811 				(new_vblocks > sbi->blocks_per_seg)));
812 
813 	se->valid_blocks = new_vblocks;
814 	se->mtime = get_mtime(sbi);
815 	SIT_I(sbi)->max_mtime = se->mtime;
816 
817 	/* Update valid block bitmap */
818 	if (del > 0) {
819 		if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
820 			f2fs_bug_on(sbi, 1);
821 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
822 			sbi->discard_blks--;
823 	} else {
824 		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
825 			f2fs_bug_on(sbi, 1);
826 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
827 			sbi->discard_blks++;
828 	}
829 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
830 		se->ckpt_valid_blocks += del;
831 
832 	__mark_sit_entry_dirty(sbi, segno);
833 
834 	/* update total number of valid blocks to be written in ckpt area */
835 	SIT_I(sbi)->written_valid_blocks += del;
836 
837 	if (sbi->segs_per_sec > 1)
838 		get_sec_entry(sbi, segno)->valid_blocks += del;
839 }
840 
841 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
842 {
843 	update_sit_entry(sbi, new, 1);
844 	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
845 		update_sit_entry(sbi, old, -1);
846 
847 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
848 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
849 }
850 
851 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
852 {
853 	unsigned int segno = GET_SEGNO(sbi, addr);
854 	struct sit_info *sit_i = SIT_I(sbi);
855 
856 	f2fs_bug_on(sbi, addr == NULL_ADDR);
857 	if (addr == NEW_ADDR)
858 		return;
859 
860 	/* add it into sit main buffer */
861 	mutex_lock(&sit_i->sentry_lock);
862 
863 	update_sit_entry(sbi, addr, -1);
864 
865 	/* add it into dirty seglist */
866 	locate_dirty_segment(sbi, segno);
867 
868 	mutex_unlock(&sit_i->sentry_lock);
869 }
870 
871 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
872 {
873 	struct sit_info *sit_i = SIT_I(sbi);
874 	unsigned int segno, offset;
875 	struct seg_entry *se;
876 	bool is_cp = false;
877 
878 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
879 		return true;
880 
881 	mutex_lock(&sit_i->sentry_lock);
882 
883 	segno = GET_SEGNO(sbi, blkaddr);
884 	se = get_seg_entry(sbi, segno);
885 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
886 
887 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
888 		is_cp = true;
889 
890 	mutex_unlock(&sit_i->sentry_lock);
891 
892 	return is_cp;
893 }
894 
895 /*
896  * This function should be resided under the curseg_mutex lock
897  */
898 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
899 					struct f2fs_summary *sum)
900 {
901 	struct curseg_info *curseg = CURSEG_I(sbi, type);
902 	void *addr = curseg->sum_blk;
903 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
904 	memcpy(addr, sum, sizeof(struct f2fs_summary));
905 }
906 
907 /*
908  * Calculate the number of current summary pages for writing
909  */
910 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
911 {
912 	int valid_sum_count = 0;
913 	int i, sum_in_page;
914 
915 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
916 		if (sbi->ckpt->alloc_type[i] == SSR)
917 			valid_sum_count += sbi->blocks_per_seg;
918 		else {
919 			if (for_ra)
920 				valid_sum_count += le16_to_cpu(
921 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
922 			else
923 				valid_sum_count += curseg_blkoff(sbi, i);
924 		}
925 	}
926 
927 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
928 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
929 	if (valid_sum_count <= sum_in_page)
930 		return 1;
931 	else if ((valid_sum_count - sum_in_page) <=
932 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
933 		return 2;
934 	return 3;
935 }
936 
937 /*
938  * Caller should put this summary page
939  */
940 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
941 {
942 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
943 }
944 
945 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
946 {
947 	struct page *page = grab_meta_page(sbi, blk_addr);
948 	void *dst = page_address(page);
949 
950 	if (src)
951 		memcpy(dst, src, PAGE_SIZE);
952 	else
953 		memset(dst, 0, PAGE_SIZE);
954 	set_page_dirty(page);
955 	f2fs_put_page(page, 1);
956 }
957 
958 static void write_sum_page(struct f2fs_sb_info *sbi,
959 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
960 {
961 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
962 }
963 
964 static void write_current_sum_page(struct f2fs_sb_info *sbi,
965 						int type, block_t blk_addr)
966 {
967 	struct curseg_info *curseg = CURSEG_I(sbi, type);
968 	struct page *page = grab_meta_page(sbi, blk_addr);
969 	struct f2fs_summary_block *src = curseg->sum_blk;
970 	struct f2fs_summary_block *dst;
971 
972 	dst = (struct f2fs_summary_block *)page_address(page);
973 
974 	mutex_lock(&curseg->curseg_mutex);
975 
976 	down_read(&curseg->journal_rwsem);
977 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
978 	up_read(&curseg->journal_rwsem);
979 
980 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
981 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
982 
983 	mutex_unlock(&curseg->curseg_mutex);
984 
985 	set_page_dirty(page);
986 	f2fs_put_page(page, 1);
987 }
988 
989 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
990 {
991 	struct curseg_info *curseg = CURSEG_I(sbi, type);
992 	unsigned int segno = curseg->segno + 1;
993 	struct free_segmap_info *free_i = FREE_I(sbi);
994 
995 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
996 		return !test_bit(segno, free_i->free_segmap);
997 	return 0;
998 }
999 
1000 /*
1001  * Find a new segment from the free segments bitmap to right order
1002  * This function should be returned with success, otherwise BUG
1003  */
1004 static void get_new_segment(struct f2fs_sb_info *sbi,
1005 			unsigned int *newseg, bool new_sec, int dir)
1006 {
1007 	struct free_segmap_info *free_i = FREE_I(sbi);
1008 	unsigned int segno, secno, zoneno;
1009 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1010 	unsigned int hint = *newseg / sbi->segs_per_sec;
1011 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
1012 	unsigned int left_start = hint;
1013 	bool init = true;
1014 	int go_left = 0;
1015 	int i;
1016 
1017 	spin_lock(&free_i->segmap_lock);
1018 
1019 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1020 		segno = find_next_zero_bit(free_i->free_segmap,
1021 				(hint + 1) * sbi->segs_per_sec, *newseg + 1);
1022 		if (segno < (hint + 1) * sbi->segs_per_sec)
1023 			goto got_it;
1024 	}
1025 find_other_zone:
1026 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1027 	if (secno >= MAIN_SECS(sbi)) {
1028 		if (dir == ALLOC_RIGHT) {
1029 			secno = find_next_zero_bit(free_i->free_secmap,
1030 							MAIN_SECS(sbi), 0);
1031 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1032 		} else {
1033 			go_left = 1;
1034 			left_start = hint - 1;
1035 		}
1036 	}
1037 	if (go_left == 0)
1038 		goto skip_left;
1039 
1040 	while (test_bit(left_start, free_i->free_secmap)) {
1041 		if (left_start > 0) {
1042 			left_start--;
1043 			continue;
1044 		}
1045 		left_start = find_next_zero_bit(free_i->free_secmap,
1046 							MAIN_SECS(sbi), 0);
1047 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1048 		break;
1049 	}
1050 	secno = left_start;
1051 skip_left:
1052 	hint = secno;
1053 	segno = secno * sbi->segs_per_sec;
1054 	zoneno = secno / sbi->secs_per_zone;
1055 
1056 	/* give up on finding another zone */
1057 	if (!init)
1058 		goto got_it;
1059 	if (sbi->secs_per_zone == 1)
1060 		goto got_it;
1061 	if (zoneno == old_zoneno)
1062 		goto got_it;
1063 	if (dir == ALLOC_LEFT) {
1064 		if (!go_left && zoneno + 1 >= total_zones)
1065 			goto got_it;
1066 		if (go_left && zoneno == 0)
1067 			goto got_it;
1068 	}
1069 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1070 		if (CURSEG_I(sbi, i)->zone == zoneno)
1071 			break;
1072 
1073 	if (i < NR_CURSEG_TYPE) {
1074 		/* zone is in user, try another */
1075 		if (go_left)
1076 			hint = zoneno * sbi->secs_per_zone - 1;
1077 		else if (zoneno + 1 >= total_zones)
1078 			hint = 0;
1079 		else
1080 			hint = (zoneno + 1) * sbi->secs_per_zone;
1081 		init = false;
1082 		goto find_other_zone;
1083 	}
1084 got_it:
1085 	/* set it as dirty segment in free segmap */
1086 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1087 	__set_inuse(sbi, segno);
1088 	*newseg = segno;
1089 	spin_unlock(&free_i->segmap_lock);
1090 }
1091 
1092 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1093 {
1094 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1095 	struct summary_footer *sum_footer;
1096 
1097 	curseg->segno = curseg->next_segno;
1098 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1099 	curseg->next_blkoff = 0;
1100 	curseg->next_segno = NULL_SEGNO;
1101 
1102 	sum_footer = &(curseg->sum_blk->footer);
1103 	memset(sum_footer, 0, sizeof(struct summary_footer));
1104 	if (IS_DATASEG(type))
1105 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1106 	if (IS_NODESEG(type))
1107 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1108 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
1109 }
1110 
1111 /*
1112  * Allocate a current working segment.
1113  * This function always allocates a free segment in LFS manner.
1114  */
1115 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1116 {
1117 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1118 	unsigned int segno = curseg->segno;
1119 	int dir = ALLOC_LEFT;
1120 
1121 	write_sum_page(sbi, curseg->sum_blk,
1122 				GET_SUM_BLOCK(sbi, segno));
1123 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1124 		dir = ALLOC_RIGHT;
1125 
1126 	if (test_opt(sbi, NOHEAP))
1127 		dir = ALLOC_RIGHT;
1128 
1129 	get_new_segment(sbi, &segno, new_sec, dir);
1130 	curseg->next_segno = segno;
1131 	reset_curseg(sbi, type, 1);
1132 	curseg->alloc_type = LFS;
1133 }
1134 
1135 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1136 			struct curseg_info *seg, block_t start)
1137 {
1138 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1139 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1140 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
1141 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1142 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1143 	int i, pos;
1144 
1145 	for (i = 0; i < entries; i++)
1146 		target_map[i] = ckpt_map[i] | cur_map[i];
1147 
1148 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1149 
1150 	seg->next_blkoff = pos;
1151 }
1152 
1153 /*
1154  * If a segment is written by LFS manner, next block offset is just obtained
1155  * by increasing the current block offset. However, if a segment is written by
1156  * SSR manner, next block offset obtained by calling __next_free_blkoff
1157  */
1158 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1159 				struct curseg_info *seg)
1160 {
1161 	if (seg->alloc_type == SSR)
1162 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1163 	else
1164 		seg->next_blkoff++;
1165 }
1166 
1167 /*
1168  * This function always allocates a used segment(from dirty seglist) by SSR
1169  * manner, so it should recover the existing segment information of valid blocks
1170  */
1171 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1172 {
1173 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1174 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1175 	unsigned int new_segno = curseg->next_segno;
1176 	struct f2fs_summary_block *sum_node;
1177 	struct page *sum_page;
1178 
1179 	write_sum_page(sbi, curseg->sum_blk,
1180 				GET_SUM_BLOCK(sbi, curseg->segno));
1181 	__set_test_and_inuse(sbi, new_segno);
1182 
1183 	mutex_lock(&dirty_i->seglist_lock);
1184 	__remove_dirty_segment(sbi, new_segno, PRE);
1185 	__remove_dirty_segment(sbi, new_segno, DIRTY);
1186 	mutex_unlock(&dirty_i->seglist_lock);
1187 
1188 	reset_curseg(sbi, type, 1);
1189 	curseg->alloc_type = SSR;
1190 	__next_free_blkoff(sbi, curseg, 0);
1191 
1192 	if (reuse) {
1193 		sum_page = get_sum_page(sbi, new_segno);
1194 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1195 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1196 		f2fs_put_page(sum_page, 1);
1197 	}
1198 }
1199 
1200 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1201 {
1202 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1203 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1204 
1205 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1206 		return v_ops->get_victim(sbi,
1207 				&(curseg)->next_segno, BG_GC, type, SSR);
1208 
1209 	/* For data segments, let's do SSR more intensively */
1210 	for (; type >= CURSEG_HOT_DATA; type--)
1211 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1212 						BG_GC, type, SSR))
1213 			return 1;
1214 	return 0;
1215 }
1216 
1217 /*
1218  * flush out current segment and replace it with new segment
1219  * This function should be returned with success, otherwise BUG
1220  */
1221 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1222 						int type, bool force)
1223 {
1224 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1225 
1226 	if (force)
1227 		new_curseg(sbi, type, true);
1228 	else if (type == CURSEG_WARM_NODE)
1229 		new_curseg(sbi, type, false);
1230 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1231 		new_curseg(sbi, type, false);
1232 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1233 		change_curseg(sbi, type, true);
1234 	else
1235 		new_curseg(sbi, type, false);
1236 
1237 	stat_inc_seg_type(sbi, curseg);
1238 }
1239 
1240 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1241 {
1242 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1243 	unsigned int old_segno;
1244 
1245 	old_segno = curseg->segno;
1246 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1247 	locate_dirty_segment(sbi, old_segno);
1248 }
1249 
1250 void allocate_new_segments(struct f2fs_sb_info *sbi)
1251 {
1252 	int i;
1253 
1254 	if (test_opt(sbi, LFS))
1255 		return;
1256 
1257 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1258 		__allocate_new_segments(sbi, i);
1259 }
1260 
1261 static const struct segment_allocation default_salloc_ops = {
1262 	.allocate_segment = allocate_segment_by_default,
1263 };
1264 
1265 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1266 {
1267 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
1268 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1269 	unsigned int start_segno, end_segno;
1270 	struct cp_control cpc;
1271 	int err = 0;
1272 
1273 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1274 		return -EINVAL;
1275 
1276 	cpc.trimmed = 0;
1277 	if (end <= MAIN_BLKADDR(sbi))
1278 		goto out;
1279 
1280 	/* start/end segment number in main_area */
1281 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1282 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1283 						GET_SEGNO(sbi, end);
1284 	cpc.reason = CP_DISCARD;
1285 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1286 
1287 	/* do checkpoint to issue discard commands safely */
1288 	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1289 		cpc.trim_start = start_segno;
1290 
1291 		if (sbi->discard_blks == 0)
1292 			break;
1293 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1294 			cpc.trim_end = end_segno;
1295 		else
1296 			cpc.trim_end = min_t(unsigned int,
1297 				rounddown(start_segno +
1298 				BATCHED_TRIM_SEGMENTS(sbi),
1299 				sbi->segs_per_sec) - 1, end_segno);
1300 
1301 		mutex_lock(&sbi->gc_mutex);
1302 		err = write_checkpoint(sbi, &cpc);
1303 		mutex_unlock(&sbi->gc_mutex);
1304 	}
1305 out:
1306 	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1307 	return err;
1308 }
1309 
1310 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1311 {
1312 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1313 	if (curseg->next_blkoff < sbi->blocks_per_seg)
1314 		return true;
1315 	return false;
1316 }
1317 
1318 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1319 {
1320 	if (p_type == DATA)
1321 		return CURSEG_HOT_DATA;
1322 	else
1323 		return CURSEG_HOT_NODE;
1324 }
1325 
1326 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1327 {
1328 	if (p_type == DATA) {
1329 		struct inode *inode = page->mapping->host;
1330 
1331 		if (S_ISDIR(inode->i_mode))
1332 			return CURSEG_HOT_DATA;
1333 		else
1334 			return CURSEG_COLD_DATA;
1335 	} else {
1336 		if (IS_DNODE(page) && is_cold_node(page))
1337 			return CURSEG_WARM_NODE;
1338 		else
1339 			return CURSEG_COLD_NODE;
1340 	}
1341 }
1342 
1343 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1344 {
1345 	if (p_type == DATA) {
1346 		struct inode *inode = page->mapping->host;
1347 
1348 		if (S_ISDIR(inode->i_mode))
1349 			return CURSEG_HOT_DATA;
1350 		else if (is_cold_data(page) || file_is_cold(inode))
1351 			return CURSEG_COLD_DATA;
1352 		else
1353 			return CURSEG_WARM_DATA;
1354 	} else {
1355 		if (IS_DNODE(page))
1356 			return is_cold_node(page) ? CURSEG_WARM_NODE :
1357 						CURSEG_HOT_NODE;
1358 		else
1359 			return CURSEG_COLD_NODE;
1360 	}
1361 }
1362 
1363 static int __get_segment_type(struct page *page, enum page_type p_type)
1364 {
1365 	switch (F2FS_P_SB(page)->active_logs) {
1366 	case 2:
1367 		return __get_segment_type_2(page, p_type);
1368 	case 4:
1369 		return __get_segment_type_4(page, p_type);
1370 	}
1371 	/* NR_CURSEG_TYPE(6) logs by default */
1372 	f2fs_bug_on(F2FS_P_SB(page),
1373 		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1374 	return __get_segment_type_6(page, p_type);
1375 }
1376 
1377 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1378 		block_t old_blkaddr, block_t *new_blkaddr,
1379 		struct f2fs_summary *sum, int type)
1380 {
1381 	struct sit_info *sit_i = SIT_I(sbi);
1382 	struct curseg_info *curseg;
1383 	bool direct_io = (type == CURSEG_DIRECT_IO);
1384 
1385 	type = direct_io ? CURSEG_WARM_DATA : type;
1386 
1387 	curseg = CURSEG_I(sbi, type);
1388 
1389 	mutex_lock(&curseg->curseg_mutex);
1390 	mutex_lock(&sit_i->sentry_lock);
1391 
1392 	/* direct_io'ed data is aligned to the segment for better performance */
1393 	if (direct_io && curseg->next_blkoff &&
1394 				!has_not_enough_free_secs(sbi, 0))
1395 		__allocate_new_segments(sbi, type);
1396 
1397 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1398 
1399 	/*
1400 	 * __add_sum_entry should be resided under the curseg_mutex
1401 	 * because, this function updates a summary entry in the
1402 	 * current summary block.
1403 	 */
1404 	__add_sum_entry(sbi, type, sum);
1405 
1406 	__refresh_next_blkoff(sbi, curseg);
1407 
1408 	stat_inc_block_count(sbi, curseg);
1409 
1410 	if (!__has_curseg_space(sbi, type))
1411 		sit_i->s_ops->allocate_segment(sbi, type, false);
1412 	/*
1413 	 * SIT information should be updated before segment allocation,
1414 	 * since SSR needs latest valid block information.
1415 	 */
1416 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1417 
1418 	mutex_unlock(&sit_i->sentry_lock);
1419 
1420 	if (page && IS_NODESEG(type))
1421 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1422 
1423 	mutex_unlock(&curseg->curseg_mutex);
1424 }
1425 
1426 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1427 {
1428 	int type = __get_segment_type(fio->page, fio->type);
1429 
1430 	if (fio->type == NODE || fio->type == DATA)
1431 		mutex_lock(&fio->sbi->wio_mutex[fio->type]);
1432 
1433 	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1434 					&fio->new_blkaddr, sum, type);
1435 
1436 	/* writeout dirty page into bdev */
1437 	f2fs_submit_page_mbio(fio);
1438 
1439 	if (fio->type == NODE || fio->type == DATA)
1440 		mutex_unlock(&fio->sbi->wio_mutex[fio->type]);
1441 }
1442 
1443 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1444 {
1445 	struct f2fs_io_info fio = {
1446 		.sbi = sbi,
1447 		.type = META,
1448 		.op = REQ_OP_WRITE,
1449 		.op_flags = WRITE_SYNC | REQ_META | REQ_PRIO,
1450 		.old_blkaddr = page->index,
1451 		.new_blkaddr = page->index,
1452 		.page = page,
1453 		.encrypted_page = NULL,
1454 	};
1455 
1456 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1457 		fio.op_flags &= ~REQ_META;
1458 
1459 	set_page_writeback(page);
1460 	f2fs_submit_page_mbio(&fio);
1461 }
1462 
1463 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1464 {
1465 	struct f2fs_summary sum;
1466 
1467 	set_summary(&sum, nid, 0, 0);
1468 	do_write_page(&sum, fio);
1469 }
1470 
1471 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1472 {
1473 	struct f2fs_sb_info *sbi = fio->sbi;
1474 	struct f2fs_summary sum;
1475 	struct node_info ni;
1476 
1477 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1478 	get_node_info(sbi, dn->nid, &ni);
1479 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1480 	do_write_page(&sum, fio);
1481 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1482 }
1483 
1484 void rewrite_data_page(struct f2fs_io_info *fio)
1485 {
1486 	fio->new_blkaddr = fio->old_blkaddr;
1487 	stat_inc_inplace_blocks(fio->sbi);
1488 	f2fs_submit_page_mbio(fio);
1489 }
1490 
1491 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1492 				block_t old_blkaddr, block_t new_blkaddr,
1493 				bool recover_curseg, bool recover_newaddr)
1494 {
1495 	struct sit_info *sit_i = SIT_I(sbi);
1496 	struct curseg_info *curseg;
1497 	unsigned int segno, old_cursegno;
1498 	struct seg_entry *se;
1499 	int type;
1500 	unsigned short old_blkoff;
1501 
1502 	segno = GET_SEGNO(sbi, new_blkaddr);
1503 	se = get_seg_entry(sbi, segno);
1504 	type = se->type;
1505 
1506 	if (!recover_curseg) {
1507 		/* for recovery flow */
1508 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1509 			if (old_blkaddr == NULL_ADDR)
1510 				type = CURSEG_COLD_DATA;
1511 			else
1512 				type = CURSEG_WARM_DATA;
1513 		}
1514 	} else {
1515 		if (!IS_CURSEG(sbi, segno))
1516 			type = CURSEG_WARM_DATA;
1517 	}
1518 
1519 	curseg = CURSEG_I(sbi, type);
1520 
1521 	mutex_lock(&curseg->curseg_mutex);
1522 	mutex_lock(&sit_i->sentry_lock);
1523 
1524 	old_cursegno = curseg->segno;
1525 	old_blkoff = curseg->next_blkoff;
1526 
1527 	/* change the current segment */
1528 	if (segno != curseg->segno) {
1529 		curseg->next_segno = segno;
1530 		change_curseg(sbi, type, true);
1531 	}
1532 
1533 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1534 	__add_sum_entry(sbi, type, sum);
1535 
1536 	if (!recover_curseg || recover_newaddr)
1537 		update_sit_entry(sbi, new_blkaddr, 1);
1538 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1539 		update_sit_entry(sbi, old_blkaddr, -1);
1540 
1541 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1542 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1543 
1544 	locate_dirty_segment(sbi, old_cursegno);
1545 
1546 	if (recover_curseg) {
1547 		if (old_cursegno != curseg->segno) {
1548 			curseg->next_segno = old_cursegno;
1549 			change_curseg(sbi, type, true);
1550 		}
1551 		curseg->next_blkoff = old_blkoff;
1552 	}
1553 
1554 	mutex_unlock(&sit_i->sentry_lock);
1555 	mutex_unlock(&curseg->curseg_mutex);
1556 }
1557 
1558 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1559 				block_t old_addr, block_t new_addr,
1560 				unsigned char version, bool recover_curseg,
1561 				bool recover_newaddr)
1562 {
1563 	struct f2fs_summary sum;
1564 
1565 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1566 
1567 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1568 					recover_curseg, recover_newaddr);
1569 
1570 	f2fs_update_data_blkaddr(dn, new_addr);
1571 }
1572 
1573 void f2fs_wait_on_page_writeback(struct page *page,
1574 				enum page_type type, bool ordered)
1575 {
1576 	if (PageWriteback(page)) {
1577 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1578 
1579 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1580 		if (ordered)
1581 			wait_on_page_writeback(page);
1582 		else
1583 			wait_for_stable_page(page);
1584 	}
1585 }
1586 
1587 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1588 							block_t blkaddr)
1589 {
1590 	struct page *cpage;
1591 
1592 	if (blkaddr == NEW_ADDR)
1593 		return;
1594 
1595 	f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1596 
1597 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1598 	if (cpage) {
1599 		f2fs_wait_on_page_writeback(cpage, DATA, true);
1600 		f2fs_put_page(cpage, 1);
1601 	}
1602 }
1603 
1604 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1605 {
1606 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1607 	struct curseg_info *seg_i;
1608 	unsigned char *kaddr;
1609 	struct page *page;
1610 	block_t start;
1611 	int i, j, offset;
1612 
1613 	start = start_sum_block(sbi);
1614 
1615 	page = get_meta_page(sbi, start++);
1616 	kaddr = (unsigned char *)page_address(page);
1617 
1618 	/* Step 1: restore nat cache */
1619 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1620 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1621 
1622 	/* Step 2: restore sit cache */
1623 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1624 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1625 	offset = 2 * SUM_JOURNAL_SIZE;
1626 
1627 	/* Step 3: restore summary entries */
1628 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1629 		unsigned short blk_off;
1630 		unsigned int segno;
1631 
1632 		seg_i = CURSEG_I(sbi, i);
1633 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1634 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1635 		seg_i->next_segno = segno;
1636 		reset_curseg(sbi, i, 0);
1637 		seg_i->alloc_type = ckpt->alloc_type[i];
1638 		seg_i->next_blkoff = blk_off;
1639 
1640 		if (seg_i->alloc_type == SSR)
1641 			blk_off = sbi->blocks_per_seg;
1642 
1643 		for (j = 0; j < blk_off; j++) {
1644 			struct f2fs_summary *s;
1645 			s = (struct f2fs_summary *)(kaddr + offset);
1646 			seg_i->sum_blk->entries[j] = *s;
1647 			offset += SUMMARY_SIZE;
1648 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1649 						SUM_FOOTER_SIZE)
1650 				continue;
1651 
1652 			f2fs_put_page(page, 1);
1653 			page = NULL;
1654 
1655 			page = get_meta_page(sbi, start++);
1656 			kaddr = (unsigned char *)page_address(page);
1657 			offset = 0;
1658 		}
1659 	}
1660 	f2fs_put_page(page, 1);
1661 	return 0;
1662 }
1663 
1664 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1665 {
1666 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1667 	struct f2fs_summary_block *sum;
1668 	struct curseg_info *curseg;
1669 	struct page *new;
1670 	unsigned short blk_off;
1671 	unsigned int segno = 0;
1672 	block_t blk_addr = 0;
1673 
1674 	/* get segment number and block addr */
1675 	if (IS_DATASEG(type)) {
1676 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1677 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1678 							CURSEG_HOT_DATA]);
1679 		if (__exist_node_summaries(sbi))
1680 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1681 		else
1682 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1683 	} else {
1684 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1685 							CURSEG_HOT_NODE]);
1686 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1687 							CURSEG_HOT_NODE]);
1688 		if (__exist_node_summaries(sbi))
1689 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1690 							type - CURSEG_HOT_NODE);
1691 		else
1692 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1693 	}
1694 
1695 	new = get_meta_page(sbi, blk_addr);
1696 	sum = (struct f2fs_summary_block *)page_address(new);
1697 
1698 	if (IS_NODESEG(type)) {
1699 		if (__exist_node_summaries(sbi)) {
1700 			struct f2fs_summary *ns = &sum->entries[0];
1701 			int i;
1702 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1703 				ns->version = 0;
1704 				ns->ofs_in_node = 0;
1705 			}
1706 		} else {
1707 			int err;
1708 
1709 			err = restore_node_summary(sbi, segno, sum);
1710 			if (err) {
1711 				f2fs_put_page(new, 1);
1712 				return err;
1713 			}
1714 		}
1715 	}
1716 
1717 	/* set uncompleted segment to curseg */
1718 	curseg = CURSEG_I(sbi, type);
1719 	mutex_lock(&curseg->curseg_mutex);
1720 
1721 	/* update journal info */
1722 	down_write(&curseg->journal_rwsem);
1723 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1724 	up_write(&curseg->journal_rwsem);
1725 
1726 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1727 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1728 	curseg->next_segno = segno;
1729 	reset_curseg(sbi, type, 0);
1730 	curseg->alloc_type = ckpt->alloc_type[type];
1731 	curseg->next_blkoff = blk_off;
1732 	mutex_unlock(&curseg->curseg_mutex);
1733 	f2fs_put_page(new, 1);
1734 	return 0;
1735 }
1736 
1737 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1738 {
1739 	int type = CURSEG_HOT_DATA;
1740 	int err;
1741 
1742 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1743 		int npages = npages_for_summary_flush(sbi, true);
1744 
1745 		if (npages >= 2)
1746 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
1747 							META_CP, true);
1748 
1749 		/* restore for compacted data summary */
1750 		if (read_compacted_summaries(sbi))
1751 			return -EINVAL;
1752 		type = CURSEG_HOT_NODE;
1753 	}
1754 
1755 	if (__exist_node_summaries(sbi))
1756 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1757 					NR_CURSEG_TYPE - type, META_CP, true);
1758 
1759 	for (; type <= CURSEG_COLD_NODE; type++) {
1760 		err = read_normal_summaries(sbi, type);
1761 		if (err)
1762 			return err;
1763 	}
1764 
1765 	return 0;
1766 }
1767 
1768 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1769 {
1770 	struct page *page;
1771 	unsigned char *kaddr;
1772 	struct f2fs_summary *summary;
1773 	struct curseg_info *seg_i;
1774 	int written_size = 0;
1775 	int i, j;
1776 
1777 	page = grab_meta_page(sbi, blkaddr++);
1778 	kaddr = (unsigned char *)page_address(page);
1779 
1780 	/* Step 1: write nat cache */
1781 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1782 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1783 	written_size += SUM_JOURNAL_SIZE;
1784 
1785 	/* Step 2: write sit cache */
1786 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1787 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1788 	written_size += SUM_JOURNAL_SIZE;
1789 
1790 	/* Step 3: write summary entries */
1791 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1792 		unsigned short blkoff;
1793 		seg_i = CURSEG_I(sbi, i);
1794 		if (sbi->ckpt->alloc_type[i] == SSR)
1795 			blkoff = sbi->blocks_per_seg;
1796 		else
1797 			blkoff = curseg_blkoff(sbi, i);
1798 
1799 		for (j = 0; j < blkoff; j++) {
1800 			if (!page) {
1801 				page = grab_meta_page(sbi, blkaddr++);
1802 				kaddr = (unsigned char *)page_address(page);
1803 				written_size = 0;
1804 			}
1805 			summary = (struct f2fs_summary *)(kaddr + written_size);
1806 			*summary = seg_i->sum_blk->entries[j];
1807 			written_size += SUMMARY_SIZE;
1808 
1809 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1810 							SUM_FOOTER_SIZE)
1811 				continue;
1812 
1813 			set_page_dirty(page);
1814 			f2fs_put_page(page, 1);
1815 			page = NULL;
1816 		}
1817 	}
1818 	if (page) {
1819 		set_page_dirty(page);
1820 		f2fs_put_page(page, 1);
1821 	}
1822 }
1823 
1824 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1825 					block_t blkaddr, int type)
1826 {
1827 	int i, end;
1828 	if (IS_DATASEG(type))
1829 		end = type + NR_CURSEG_DATA_TYPE;
1830 	else
1831 		end = type + NR_CURSEG_NODE_TYPE;
1832 
1833 	for (i = type; i < end; i++)
1834 		write_current_sum_page(sbi, i, blkaddr + (i - type));
1835 }
1836 
1837 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1838 {
1839 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1840 		write_compacted_summaries(sbi, start_blk);
1841 	else
1842 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1843 }
1844 
1845 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1846 {
1847 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1848 }
1849 
1850 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1851 					unsigned int val, int alloc)
1852 {
1853 	int i;
1854 
1855 	if (type == NAT_JOURNAL) {
1856 		for (i = 0; i < nats_in_cursum(journal); i++) {
1857 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1858 				return i;
1859 		}
1860 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1861 			return update_nats_in_cursum(journal, 1);
1862 	} else if (type == SIT_JOURNAL) {
1863 		for (i = 0; i < sits_in_cursum(journal); i++)
1864 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1865 				return i;
1866 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1867 			return update_sits_in_cursum(journal, 1);
1868 	}
1869 	return -1;
1870 }
1871 
1872 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1873 					unsigned int segno)
1874 {
1875 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
1876 }
1877 
1878 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1879 					unsigned int start)
1880 {
1881 	struct sit_info *sit_i = SIT_I(sbi);
1882 	struct page *src_page, *dst_page;
1883 	pgoff_t src_off, dst_off;
1884 	void *src_addr, *dst_addr;
1885 
1886 	src_off = current_sit_addr(sbi, start);
1887 	dst_off = next_sit_addr(sbi, src_off);
1888 
1889 	/* get current sit block page without lock */
1890 	src_page = get_meta_page(sbi, src_off);
1891 	dst_page = grab_meta_page(sbi, dst_off);
1892 	f2fs_bug_on(sbi, PageDirty(src_page));
1893 
1894 	src_addr = page_address(src_page);
1895 	dst_addr = page_address(dst_page);
1896 	memcpy(dst_addr, src_addr, PAGE_SIZE);
1897 
1898 	set_page_dirty(dst_page);
1899 	f2fs_put_page(src_page, 1);
1900 
1901 	set_to_next_sit(sit_i, start);
1902 
1903 	return dst_page;
1904 }
1905 
1906 static struct sit_entry_set *grab_sit_entry_set(void)
1907 {
1908 	struct sit_entry_set *ses =
1909 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1910 
1911 	ses->entry_cnt = 0;
1912 	INIT_LIST_HEAD(&ses->set_list);
1913 	return ses;
1914 }
1915 
1916 static void release_sit_entry_set(struct sit_entry_set *ses)
1917 {
1918 	list_del(&ses->set_list);
1919 	kmem_cache_free(sit_entry_set_slab, ses);
1920 }
1921 
1922 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1923 						struct list_head *head)
1924 {
1925 	struct sit_entry_set *next = ses;
1926 
1927 	if (list_is_last(&ses->set_list, head))
1928 		return;
1929 
1930 	list_for_each_entry_continue(next, head, set_list)
1931 		if (ses->entry_cnt <= next->entry_cnt)
1932 			break;
1933 
1934 	list_move_tail(&ses->set_list, &next->set_list);
1935 }
1936 
1937 static void add_sit_entry(unsigned int segno, struct list_head *head)
1938 {
1939 	struct sit_entry_set *ses;
1940 	unsigned int start_segno = START_SEGNO(segno);
1941 
1942 	list_for_each_entry(ses, head, set_list) {
1943 		if (ses->start_segno == start_segno) {
1944 			ses->entry_cnt++;
1945 			adjust_sit_entry_set(ses, head);
1946 			return;
1947 		}
1948 	}
1949 
1950 	ses = grab_sit_entry_set();
1951 
1952 	ses->start_segno = start_segno;
1953 	ses->entry_cnt++;
1954 	list_add(&ses->set_list, head);
1955 }
1956 
1957 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1958 {
1959 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1960 	struct list_head *set_list = &sm_info->sit_entry_set;
1961 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1962 	unsigned int segno;
1963 
1964 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1965 		add_sit_entry(segno, set_list);
1966 }
1967 
1968 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1969 {
1970 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1971 	struct f2fs_journal *journal = curseg->journal;
1972 	int i;
1973 
1974 	down_write(&curseg->journal_rwsem);
1975 	for (i = 0; i < sits_in_cursum(journal); i++) {
1976 		unsigned int segno;
1977 		bool dirtied;
1978 
1979 		segno = le32_to_cpu(segno_in_journal(journal, i));
1980 		dirtied = __mark_sit_entry_dirty(sbi, segno);
1981 
1982 		if (!dirtied)
1983 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1984 	}
1985 	update_sits_in_cursum(journal, -i);
1986 	up_write(&curseg->journal_rwsem);
1987 }
1988 
1989 /*
1990  * CP calls this function, which flushes SIT entries including sit_journal,
1991  * and moves prefree segs to free segs.
1992  */
1993 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1994 {
1995 	struct sit_info *sit_i = SIT_I(sbi);
1996 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1997 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1998 	struct f2fs_journal *journal = curseg->journal;
1999 	struct sit_entry_set *ses, *tmp;
2000 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
2001 	bool to_journal = true;
2002 	struct seg_entry *se;
2003 
2004 	mutex_lock(&sit_i->sentry_lock);
2005 
2006 	if (!sit_i->dirty_sentries)
2007 		goto out;
2008 
2009 	/*
2010 	 * add and account sit entries of dirty bitmap in sit entry
2011 	 * set temporarily
2012 	 */
2013 	add_sits_in_set(sbi);
2014 
2015 	/*
2016 	 * if there are no enough space in journal to store dirty sit
2017 	 * entries, remove all entries from journal and add and account
2018 	 * them in sit entry set.
2019 	 */
2020 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
2021 		remove_sits_in_journal(sbi);
2022 
2023 	/*
2024 	 * there are two steps to flush sit entries:
2025 	 * #1, flush sit entries to journal in current cold data summary block.
2026 	 * #2, flush sit entries to sit page.
2027 	 */
2028 	list_for_each_entry_safe(ses, tmp, head, set_list) {
2029 		struct page *page = NULL;
2030 		struct f2fs_sit_block *raw_sit = NULL;
2031 		unsigned int start_segno = ses->start_segno;
2032 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
2033 						(unsigned long)MAIN_SEGS(sbi));
2034 		unsigned int segno = start_segno;
2035 
2036 		if (to_journal &&
2037 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
2038 			to_journal = false;
2039 
2040 		if (to_journal) {
2041 			down_write(&curseg->journal_rwsem);
2042 		} else {
2043 			page = get_next_sit_page(sbi, start_segno);
2044 			raw_sit = page_address(page);
2045 		}
2046 
2047 		/* flush dirty sit entries in region of current sit set */
2048 		for_each_set_bit_from(segno, bitmap, end) {
2049 			int offset, sit_offset;
2050 
2051 			se = get_seg_entry(sbi, segno);
2052 
2053 			/* add discard candidates */
2054 			if (cpc->reason != CP_DISCARD) {
2055 				cpc->trim_start = segno;
2056 				add_discard_addrs(sbi, cpc);
2057 			}
2058 
2059 			if (to_journal) {
2060 				offset = lookup_journal_in_cursum(journal,
2061 							SIT_JOURNAL, segno, 1);
2062 				f2fs_bug_on(sbi, offset < 0);
2063 				segno_in_journal(journal, offset) =
2064 							cpu_to_le32(segno);
2065 				seg_info_to_raw_sit(se,
2066 					&sit_in_journal(journal, offset));
2067 			} else {
2068 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2069 				seg_info_to_raw_sit(se,
2070 						&raw_sit->entries[sit_offset]);
2071 			}
2072 
2073 			__clear_bit(segno, bitmap);
2074 			sit_i->dirty_sentries--;
2075 			ses->entry_cnt--;
2076 		}
2077 
2078 		if (to_journal)
2079 			up_write(&curseg->journal_rwsem);
2080 		else
2081 			f2fs_put_page(page, 1);
2082 
2083 		f2fs_bug_on(sbi, ses->entry_cnt);
2084 		release_sit_entry_set(ses);
2085 	}
2086 
2087 	f2fs_bug_on(sbi, !list_empty(head));
2088 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
2089 out:
2090 	if (cpc->reason == CP_DISCARD) {
2091 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2092 			add_discard_addrs(sbi, cpc);
2093 	}
2094 	mutex_unlock(&sit_i->sentry_lock);
2095 
2096 	set_prefree_as_free_segments(sbi);
2097 }
2098 
2099 static int build_sit_info(struct f2fs_sb_info *sbi)
2100 {
2101 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2102 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2103 	struct sit_info *sit_i;
2104 	unsigned int sit_segs, start;
2105 	char *src_bitmap, *dst_bitmap;
2106 	unsigned int bitmap_size;
2107 
2108 	/* allocate memory for SIT information */
2109 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2110 	if (!sit_i)
2111 		return -ENOMEM;
2112 
2113 	SM_I(sbi)->sit_info = sit_i;
2114 
2115 	sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2116 					sizeof(struct seg_entry), GFP_KERNEL);
2117 	if (!sit_i->sentries)
2118 		return -ENOMEM;
2119 
2120 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2121 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2122 	if (!sit_i->dirty_sentries_bitmap)
2123 		return -ENOMEM;
2124 
2125 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2126 		sit_i->sentries[start].cur_valid_map
2127 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2128 		sit_i->sentries[start].ckpt_valid_map
2129 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2130 		sit_i->sentries[start].discard_map
2131 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2132 		if (!sit_i->sentries[start].cur_valid_map ||
2133 				!sit_i->sentries[start].ckpt_valid_map ||
2134 				!sit_i->sentries[start].discard_map)
2135 			return -ENOMEM;
2136 	}
2137 
2138 	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2139 	if (!sit_i->tmp_map)
2140 		return -ENOMEM;
2141 
2142 	if (sbi->segs_per_sec > 1) {
2143 		sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2144 					sizeof(struct sec_entry), GFP_KERNEL);
2145 		if (!sit_i->sec_entries)
2146 			return -ENOMEM;
2147 	}
2148 
2149 	/* get information related with SIT */
2150 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2151 
2152 	/* setup SIT bitmap from ckeckpoint pack */
2153 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2154 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2155 
2156 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2157 	if (!dst_bitmap)
2158 		return -ENOMEM;
2159 
2160 	/* init SIT information */
2161 	sit_i->s_ops = &default_salloc_ops;
2162 
2163 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2164 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2165 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2166 	sit_i->sit_bitmap = dst_bitmap;
2167 	sit_i->bitmap_size = bitmap_size;
2168 	sit_i->dirty_sentries = 0;
2169 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2170 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2171 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2172 	mutex_init(&sit_i->sentry_lock);
2173 	return 0;
2174 }
2175 
2176 static int build_free_segmap(struct f2fs_sb_info *sbi)
2177 {
2178 	struct free_segmap_info *free_i;
2179 	unsigned int bitmap_size, sec_bitmap_size;
2180 
2181 	/* allocate memory for free segmap information */
2182 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2183 	if (!free_i)
2184 		return -ENOMEM;
2185 
2186 	SM_I(sbi)->free_info = free_i;
2187 
2188 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2189 	free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2190 	if (!free_i->free_segmap)
2191 		return -ENOMEM;
2192 
2193 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2194 	free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2195 	if (!free_i->free_secmap)
2196 		return -ENOMEM;
2197 
2198 	/* set all segments as dirty temporarily */
2199 	memset(free_i->free_segmap, 0xff, bitmap_size);
2200 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2201 
2202 	/* init free segmap information */
2203 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2204 	free_i->free_segments = 0;
2205 	free_i->free_sections = 0;
2206 	spin_lock_init(&free_i->segmap_lock);
2207 	return 0;
2208 }
2209 
2210 static int build_curseg(struct f2fs_sb_info *sbi)
2211 {
2212 	struct curseg_info *array;
2213 	int i;
2214 
2215 	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2216 	if (!array)
2217 		return -ENOMEM;
2218 
2219 	SM_I(sbi)->curseg_array = array;
2220 
2221 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2222 		mutex_init(&array[i].curseg_mutex);
2223 		array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2224 		if (!array[i].sum_blk)
2225 			return -ENOMEM;
2226 		init_rwsem(&array[i].journal_rwsem);
2227 		array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2228 							GFP_KERNEL);
2229 		if (!array[i].journal)
2230 			return -ENOMEM;
2231 		array[i].segno = NULL_SEGNO;
2232 		array[i].next_blkoff = 0;
2233 	}
2234 	return restore_curseg_summaries(sbi);
2235 }
2236 
2237 static void build_sit_entries(struct f2fs_sb_info *sbi)
2238 {
2239 	struct sit_info *sit_i = SIT_I(sbi);
2240 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2241 	struct f2fs_journal *journal = curseg->journal;
2242 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2243 	unsigned int i, start, end;
2244 	unsigned int readed, start_blk = 0;
2245 	int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2246 
2247 	do {
2248 		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2249 
2250 		start = start_blk * sit_i->sents_per_block;
2251 		end = (start_blk + readed) * sit_i->sents_per_block;
2252 
2253 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
2254 			struct seg_entry *se = &sit_i->sentries[start];
2255 			struct f2fs_sit_block *sit_blk;
2256 			struct f2fs_sit_entry sit;
2257 			struct page *page;
2258 
2259 			down_read(&curseg->journal_rwsem);
2260 			for (i = 0; i < sits_in_cursum(journal); i++) {
2261 				if (le32_to_cpu(segno_in_journal(journal, i))
2262 								== start) {
2263 					sit = sit_in_journal(journal, i);
2264 					up_read(&curseg->journal_rwsem);
2265 					goto got_it;
2266 				}
2267 			}
2268 			up_read(&curseg->journal_rwsem);
2269 
2270 			page = get_current_sit_page(sbi, start);
2271 			sit_blk = (struct f2fs_sit_block *)page_address(page);
2272 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2273 			f2fs_put_page(page, 1);
2274 got_it:
2275 			check_block_count(sbi, start, &sit);
2276 			seg_info_from_raw_sit(se, &sit);
2277 
2278 			/* build discard map only one time */
2279 			memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2280 			sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2281 
2282 			if (sbi->segs_per_sec > 1) {
2283 				struct sec_entry *e = get_sec_entry(sbi, start);
2284 				e->valid_blocks += se->valid_blocks;
2285 			}
2286 		}
2287 		start_blk += readed;
2288 	} while (start_blk < sit_blk_cnt);
2289 }
2290 
2291 static void init_free_segmap(struct f2fs_sb_info *sbi)
2292 {
2293 	unsigned int start;
2294 	int type;
2295 
2296 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2297 		struct seg_entry *sentry = get_seg_entry(sbi, start);
2298 		if (!sentry->valid_blocks)
2299 			__set_free(sbi, start);
2300 	}
2301 
2302 	/* set use the current segments */
2303 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2304 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2305 		__set_test_and_inuse(sbi, curseg_t->segno);
2306 	}
2307 }
2308 
2309 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2310 {
2311 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2312 	struct free_segmap_info *free_i = FREE_I(sbi);
2313 	unsigned int segno = 0, offset = 0;
2314 	unsigned short valid_blocks;
2315 
2316 	while (1) {
2317 		/* find dirty segment based on free segmap */
2318 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2319 		if (segno >= MAIN_SEGS(sbi))
2320 			break;
2321 		offset = segno + 1;
2322 		valid_blocks = get_valid_blocks(sbi, segno, 0);
2323 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2324 			continue;
2325 		if (valid_blocks > sbi->blocks_per_seg) {
2326 			f2fs_bug_on(sbi, 1);
2327 			continue;
2328 		}
2329 		mutex_lock(&dirty_i->seglist_lock);
2330 		__locate_dirty_segment(sbi, segno, DIRTY);
2331 		mutex_unlock(&dirty_i->seglist_lock);
2332 	}
2333 }
2334 
2335 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2336 {
2337 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2338 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2339 
2340 	dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2341 	if (!dirty_i->victim_secmap)
2342 		return -ENOMEM;
2343 	return 0;
2344 }
2345 
2346 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2347 {
2348 	struct dirty_seglist_info *dirty_i;
2349 	unsigned int bitmap_size, i;
2350 
2351 	/* allocate memory for dirty segments list information */
2352 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2353 	if (!dirty_i)
2354 		return -ENOMEM;
2355 
2356 	SM_I(sbi)->dirty_info = dirty_i;
2357 	mutex_init(&dirty_i->seglist_lock);
2358 
2359 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2360 
2361 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
2362 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2363 		if (!dirty_i->dirty_segmap[i])
2364 			return -ENOMEM;
2365 	}
2366 
2367 	init_dirty_segmap(sbi);
2368 	return init_victim_secmap(sbi);
2369 }
2370 
2371 /*
2372  * Update min, max modified time for cost-benefit GC algorithm
2373  */
2374 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2375 {
2376 	struct sit_info *sit_i = SIT_I(sbi);
2377 	unsigned int segno;
2378 
2379 	mutex_lock(&sit_i->sentry_lock);
2380 
2381 	sit_i->min_mtime = LLONG_MAX;
2382 
2383 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2384 		unsigned int i;
2385 		unsigned long long mtime = 0;
2386 
2387 		for (i = 0; i < sbi->segs_per_sec; i++)
2388 			mtime += get_seg_entry(sbi, segno + i)->mtime;
2389 
2390 		mtime = div_u64(mtime, sbi->segs_per_sec);
2391 
2392 		if (sit_i->min_mtime > mtime)
2393 			sit_i->min_mtime = mtime;
2394 	}
2395 	sit_i->max_mtime = get_mtime(sbi);
2396 	mutex_unlock(&sit_i->sentry_lock);
2397 }
2398 
2399 int build_segment_manager(struct f2fs_sb_info *sbi)
2400 {
2401 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2402 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2403 	struct f2fs_sm_info *sm_info;
2404 	int err;
2405 
2406 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2407 	if (!sm_info)
2408 		return -ENOMEM;
2409 
2410 	/* init sm info */
2411 	sbi->sm_info = sm_info;
2412 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2413 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2414 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2415 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2416 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2417 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2418 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2419 	sm_info->rec_prefree_segments = sm_info->main_segments *
2420 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2421 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
2422 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
2423 
2424 	if (!test_opt(sbi, LFS))
2425 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2426 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2427 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2428 
2429 	INIT_LIST_HEAD(&sm_info->discard_list);
2430 	sm_info->nr_discards = 0;
2431 	sm_info->max_discards = 0;
2432 
2433 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2434 
2435 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
2436 
2437 	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2438 		err = create_flush_cmd_control(sbi);
2439 		if (err)
2440 			return err;
2441 	}
2442 
2443 	err = build_sit_info(sbi);
2444 	if (err)
2445 		return err;
2446 	err = build_free_segmap(sbi);
2447 	if (err)
2448 		return err;
2449 	err = build_curseg(sbi);
2450 	if (err)
2451 		return err;
2452 
2453 	/* reinit free segmap based on SIT */
2454 	build_sit_entries(sbi);
2455 
2456 	init_free_segmap(sbi);
2457 	err = build_dirty_segmap(sbi);
2458 	if (err)
2459 		return err;
2460 
2461 	init_min_max_mtime(sbi);
2462 	return 0;
2463 }
2464 
2465 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2466 		enum dirty_type dirty_type)
2467 {
2468 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2469 
2470 	mutex_lock(&dirty_i->seglist_lock);
2471 	kvfree(dirty_i->dirty_segmap[dirty_type]);
2472 	dirty_i->nr_dirty[dirty_type] = 0;
2473 	mutex_unlock(&dirty_i->seglist_lock);
2474 }
2475 
2476 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2477 {
2478 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2479 	kvfree(dirty_i->victim_secmap);
2480 }
2481 
2482 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2483 {
2484 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2485 	int i;
2486 
2487 	if (!dirty_i)
2488 		return;
2489 
2490 	/* discard pre-free/dirty segments list */
2491 	for (i = 0; i < NR_DIRTY_TYPE; i++)
2492 		discard_dirty_segmap(sbi, i);
2493 
2494 	destroy_victim_secmap(sbi);
2495 	SM_I(sbi)->dirty_info = NULL;
2496 	kfree(dirty_i);
2497 }
2498 
2499 static void destroy_curseg(struct f2fs_sb_info *sbi)
2500 {
2501 	struct curseg_info *array = SM_I(sbi)->curseg_array;
2502 	int i;
2503 
2504 	if (!array)
2505 		return;
2506 	SM_I(sbi)->curseg_array = NULL;
2507 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2508 		kfree(array[i].sum_blk);
2509 		kfree(array[i].journal);
2510 	}
2511 	kfree(array);
2512 }
2513 
2514 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2515 {
2516 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2517 	if (!free_i)
2518 		return;
2519 	SM_I(sbi)->free_info = NULL;
2520 	kvfree(free_i->free_segmap);
2521 	kvfree(free_i->free_secmap);
2522 	kfree(free_i);
2523 }
2524 
2525 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2526 {
2527 	struct sit_info *sit_i = SIT_I(sbi);
2528 	unsigned int start;
2529 
2530 	if (!sit_i)
2531 		return;
2532 
2533 	if (sit_i->sentries) {
2534 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
2535 			kfree(sit_i->sentries[start].cur_valid_map);
2536 			kfree(sit_i->sentries[start].ckpt_valid_map);
2537 			kfree(sit_i->sentries[start].discard_map);
2538 		}
2539 	}
2540 	kfree(sit_i->tmp_map);
2541 
2542 	kvfree(sit_i->sentries);
2543 	kvfree(sit_i->sec_entries);
2544 	kvfree(sit_i->dirty_sentries_bitmap);
2545 
2546 	SM_I(sbi)->sit_info = NULL;
2547 	kfree(sit_i->sit_bitmap);
2548 	kfree(sit_i);
2549 }
2550 
2551 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2552 {
2553 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2554 
2555 	if (!sm_info)
2556 		return;
2557 	destroy_flush_cmd_control(sbi);
2558 	destroy_dirty_segmap(sbi);
2559 	destroy_curseg(sbi);
2560 	destroy_free_segmap(sbi);
2561 	destroy_sit_info(sbi);
2562 	sbi->sm_info = NULL;
2563 	kfree(sm_info);
2564 }
2565 
2566 int __init create_segment_manager_caches(void)
2567 {
2568 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2569 			sizeof(struct discard_entry));
2570 	if (!discard_entry_slab)
2571 		goto fail;
2572 
2573 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2574 			sizeof(struct sit_entry_set));
2575 	if (!sit_entry_set_slab)
2576 		goto destory_discard_entry;
2577 
2578 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2579 			sizeof(struct inmem_pages));
2580 	if (!inmem_entry_slab)
2581 		goto destroy_sit_entry_set;
2582 	return 0;
2583 
2584 destroy_sit_entry_set:
2585 	kmem_cache_destroy(sit_entry_set_slab);
2586 destory_discard_entry:
2587 	kmem_cache_destroy(discard_entry_slab);
2588 fail:
2589 	return -ENOMEM;
2590 }
2591 
2592 void destroy_segment_manager_caches(void)
2593 {
2594 	kmem_cache_destroy(sit_entry_set_slab);
2595 	kmem_cache_destroy(discard_entry_slab);
2596 	kmem_cache_destroy(inmem_entry_slab);
2597 }
2598