1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 static unsigned long __reverse_ulong(unsigned char *str) 33 { 34 unsigned long tmp = 0; 35 int shift = 24, idx = 0; 36 37 #if BITS_PER_LONG == 64 38 shift = 56; 39 #endif 40 while (shift >= 0) { 41 tmp |= (unsigned long)str[idx++] << shift; 42 shift -= BITS_PER_BYTE; 43 } 44 return tmp; 45 } 46 47 /* 48 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 49 * MSB and LSB are reversed in a byte by f2fs_set_bit. 50 */ 51 static inline unsigned long __reverse_ffs(unsigned long word) 52 { 53 int num = 0; 54 55 #if BITS_PER_LONG == 64 56 if ((word & 0xffffffff00000000UL) == 0) 57 num += 32; 58 else 59 word >>= 32; 60 #endif 61 if ((word & 0xffff0000) == 0) 62 num += 16; 63 else 64 word >>= 16; 65 66 if ((word & 0xff00) == 0) 67 num += 8; 68 else 69 word >>= 8; 70 71 if ((word & 0xf0) == 0) 72 num += 4; 73 else 74 word >>= 4; 75 76 if ((word & 0xc) == 0) 77 num += 2; 78 else 79 word >>= 2; 80 81 if ((word & 0x2) == 0) 82 num += 1; 83 return num; 84 } 85 86 /* 87 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 88 * f2fs_set_bit makes MSB and LSB reversed in a byte. 89 * @size must be integral times of unsigned long. 90 * Example: 91 * MSB <--> LSB 92 * f2fs_set_bit(0, bitmap) => 1000 0000 93 * f2fs_set_bit(7, bitmap) => 0000 0001 94 */ 95 static unsigned long __find_rev_next_bit(const unsigned long *addr, 96 unsigned long size, unsigned long offset) 97 { 98 const unsigned long *p = addr + BIT_WORD(offset); 99 unsigned long result = size; 100 unsigned long tmp; 101 102 if (offset >= size) 103 return size; 104 105 size -= (offset & ~(BITS_PER_LONG - 1)); 106 offset %= BITS_PER_LONG; 107 108 while (1) { 109 if (*p == 0) 110 goto pass; 111 112 tmp = __reverse_ulong((unsigned char *)p); 113 114 tmp &= ~0UL >> offset; 115 if (size < BITS_PER_LONG) 116 tmp &= (~0UL << (BITS_PER_LONG - size)); 117 if (tmp) 118 goto found; 119 pass: 120 if (size <= BITS_PER_LONG) 121 break; 122 size -= BITS_PER_LONG; 123 offset = 0; 124 p++; 125 } 126 return result; 127 found: 128 return result - size + __reverse_ffs(tmp); 129 } 130 131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 132 unsigned long size, unsigned long offset) 133 { 134 const unsigned long *p = addr + BIT_WORD(offset); 135 unsigned long result = size; 136 unsigned long tmp; 137 138 if (offset >= size) 139 return size; 140 141 size -= (offset & ~(BITS_PER_LONG - 1)); 142 offset %= BITS_PER_LONG; 143 144 while (1) { 145 if (*p == ~0UL) 146 goto pass; 147 148 tmp = __reverse_ulong((unsigned char *)p); 149 150 if (offset) 151 tmp |= ~0UL << (BITS_PER_LONG - offset); 152 if (size < BITS_PER_LONG) 153 tmp |= ~0UL >> size; 154 if (tmp != ~0UL) 155 goto found; 156 pass: 157 if (size <= BITS_PER_LONG) 158 break; 159 size -= BITS_PER_LONG; 160 offset = 0; 161 p++; 162 } 163 return result; 164 found: 165 return result - size + __reverse_ffz(tmp); 166 } 167 168 void register_inmem_page(struct inode *inode, struct page *page) 169 { 170 struct f2fs_inode_info *fi = F2FS_I(inode); 171 struct inmem_pages *new; 172 173 f2fs_trace_pid(page); 174 175 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 176 SetPagePrivate(page); 177 178 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 179 180 /* add atomic page indices to the list */ 181 new->page = page; 182 INIT_LIST_HEAD(&new->list); 183 184 /* increase reference count with clean state */ 185 mutex_lock(&fi->inmem_lock); 186 get_page(page); 187 list_add_tail(&new->list, &fi->inmem_pages); 188 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 189 mutex_unlock(&fi->inmem_lock); 190 191 trace_f2fs_register_inmem_page(page, INMEM); 192 } 193 194 static int __revoke_inmem_pages(struct inode *inode, 195 struct list_head *head, bool drop, bool recover) 196 { 197 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 198 struct inmem_pages *cur, *tmp; 199 int err = 0; 200 201 list_for_each_entry_safe(cur, tmp, head, list) { 202 struct page *page = cur->page; 203 204 if (drop) 205 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 206 207 lock_page(page); 208 209 if (recover) { 210 struct dnode_of_data dn; 211 struct node_info ni; 212 213 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 214 215 set_new_dnode(&dn, inode, NULL, NULL, 0); 216 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 217 err = -EAGAIN; 218 goto next; 219 } 220 get_node_info(sbi, dn.nid, &ni); 221 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 222 cur->old_addr, ni.version, true, true); 223 f2fs_put_dnode(&dn); 224 } 225 next: 226 /* we don't need to invalidate this in the sccessful status */ 227 if (drop || recover) 228 ClearPageUptodate(page); 229 set_page_private(page, 0); 230 ClearPagePrivate(page); 231 f2fs_put_page(page, 1); 232 233 list_del(&cur->list); 234 kmem_cache_free(inmem_entry_slab, cur); 235 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 236 } 237 return err; 238 } 239 240 void drop_inmem_pages(struct inode *inode) 241 { 242 struct f2fs_inode_info *fi = F2FS_I(inode); 243 244 clear_inode_flag(inode, FI_ATOMIC_FILE); 245 246 mutex_lock(&fi->inmem_lock); 247 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 248 mutex_unlock(&fi->inmem_lock); 249 } 250 251 static int __commit_inmem_pages(struct inode *inode, 252 struct list_head *revoke_list) 253 { 254 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 255 struct f2fs_inode_info *fi = F2FS_I(inode); 256 struct inmem_pages *cur, *tmp; 257 struct f2fs_io_info fio = { 258 .sbi = sbi, 259 .type = DATA, 260 .op = REQ_OP_WRITE, 261 .op_flags = WRITE_SYNC | REQ_PRIO, 262 .encrypted_page = NULL, 263 }; 264 bool submit_bio = false; 265 int err = 0; 266 267 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 268 struct page *page = cur->page; 269 270 lock_page(page); 271 if (page->mapping == inode->i_mapping) { 272 trace_f2fs_commit_inmem_page(page, INMEM); 273 274 set_page_dirty(page); 275 f2fs_wait_on_page_writeback(page, DATA, true); 276 if (clear_page_dirty_for_io(page)) 277 inode_dec_dirty_pages(inode); 278 279 fio.page = page; 280 err = do_write_data_page(&fio); 281 if (err) { 282 unlock_page(page); 283 break; 284 } 285 286 /* record old blkaddr for revoking */ 287 cur->old_addr = fio.old_blkaddr; 288 289 clear_cold_data(page); 290 submit_bio = true; 291 } 292 unlock_page(page); 293 list_move_tail(&cur->list, revoke_list); 294 } 295 296 if (submit_bio) 297 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); 298 299 if (!err) 300 __revoke_inmem_pages(inode, revoke_list, false, false); 301 302 return err; 303 } 304 305 int commit_inmem_pages(struct inode *inode) 306 { 307 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 308 struct f2fs_inode_info *fi = F2FS_I(inode); 309 struct list_head revoke_list; 310 int err; 311 312 INIT_LIST_HEAD(&revoke_list); 313 f2fs_balance_fs(sbi, true); 314 f2fs_lock_op(sbi); 315 316 mutex_lock(&fi->inmem_lock); 317 err = __commit_inmem_pages(inode, &revoke_list); 318 if (err) { 319 int ret; 320 /* 321 * try to revoke all committed pages, but still we could fail 322 * due to no memory or other reason, if that happened, EAGAIN 323 * will be returned, which means in such case, transaction is 324 * already not integrity, caller should use journal to do the 325 * recovery or rewrite & commit last transaction. For other 326 * error number, revoking was done by filesystem itself. 327 */ 328 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 329 if (ret) 330 err = ret; 331 332 /* drop all uncommitted pages */ 333 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 334 } 335 mutex_unlock(&fi->inmem_lock); 336 337 f2fs_unlock_op(sbi); 338 return err; 339 } 340 341 /* 342 * This function balances dirty node and dentry pages. 343 * In addition, it controls garbage collection. 344 */ 345 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 346 { 347 if (!need) 348 return; 349 350 /* balance_fs_bg is able to be pending */ 351 if (excess_cached_nats(sbi)) 352 f2fs_balance_fs_bg(sbi); 353 354 /* 355 * We should do GC or end up with checkpoint, if there are so many dirty 356 * dir/node pages without enough free segments. 357 */ 358 if (has_not_enough_free_secs(sbi, 0)) { 359 mutex_lock(&sbi->gc_mutex); 360 f2fs_gc(sbi, false); 361 } 362 } 363 364 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 365 { 366 /* try to shrink extent cache when there is no enough memory */ 367 if (!available_free_memory(sbi, EXTENT_CACHE)) 368 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 369 370 /* check the # of cached NAT entries */ 371 if (!available_free_memory(sbi, NAT_ENTRIES)) 372 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 373 374 if (!available_free_memory(sbi, FREE_NIDS)) 375 try_to_free_nids(sbi, MAX_FREE_NIDS); 376 else 377 build_free_nids(sbi); 378 379 /* checkpoint is the only way to shrink partial cached entries */ 380 if (!available_free_memory(sbi, NAT_ENTRIES) || 381 !available_free_memory(sbi, INO_ENTRIES) || 382 excess_prefree_segs(sbi) || 383 excess_dirty_nats(sbi) || 384 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) { 385 if (test_opt(sbi, DATA_FLUSH)) { 386 struct blk_plug plug; 387 388 blk_start_plug(&plug); 389 sync_dirty_inodes(sbi, FILE_INODE); 390 blk_finish_plug(&plug); 391 } 392 f2fs_sync_fs(sbi->sb, true); 393 stat_inc_bg_cp_count(sbi->stat_info); 394 } 395 } 396 397 static int issue_flush_thread(void *data) 398 { 399 struct f2fs_sb_info *sbi = data; 400 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 401 wait_queue_head_t *q = &fcc->flush_wait_queue; 402 repeat: 403 if (kthread_should_stop()) 404 return 0; 405 406 if (!llist_empty(&fcc->issue_list)) { 407 struct bio *bio; 408 struct flush_cmd *cmd, *next; 409 int ret; 410 411 bio = f2fs_bio_alloc(0); 412 413 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 414 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 415 416 bio->bi_bdev = sbi->sb->s_bdev; 417 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 418 ret = submit_bio_wait(bio); 419 420 llist_for_each_entry_safe(cmd, next, 421 fcc->dispatch_list, llnode) { 422 cmd->ret = ret; 423 complete(&cmd->wait); 424 } 425 bio_put(bio); 426 fcc->dispatch_list = NULL; 427 } 428 429 wait_event_interruptible(*q, 430 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 431 goto repeat; 432 } 433 434 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 435 { 436 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 437 struct flush_cmd cmd; 438 439 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 440 test_opt(sbi, FLUSH_MERGE)); 441 442 if (test_opt(sbi, NOBARRIER)) 443 return 0; 444 445 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) { 446 struct bio *bio = f2fs_bio_alloc(0); 447 int ret; 448 449 atomic_inc(&fcc->submit_flush); 450 bio->bi_bdev = sbi->sb->s_bdev; 451 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 452 ret = submit_bio_wait(bio); 453 atomic_dec(&fcc->submit_flush); 454 bio_put(bio); 455 return ret; 456 } 457 458 init_completion(&cmd.wait); 459 460 atomic_inc(&fcc->submit_flush); 461 llist_add(&cmd.llnode, &fcc->issue_list); 462 463 if (!fcc->dispatch_list) 464 wake_up(&fcc->flush_wait_queue); 465 466 wait_for_completion(&cmd.wait); 467 atomic_dec(&fcc->submit_flush); 468 469 return cmd.ret; 470 } 471 472 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 473 { 474 dev_t dev = sbi->sb->s_bdev->bd_dev; 475 struct flush_cmd_control *fcc; 476 int err = 0; 477 478 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 479 if (!fcc) 480 return -ENOMEM; 481 atomic_set(&fcc->submit_flush, 0); 482 init_waitqueue_head(&fcc->flush_wait_queue); 483 init_llist_head(&fcc->issue_list); 484 SM_I(sbi)->cmd_control_info = fcc; 485 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 486 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 487 if (IS_ERR(fcc->f2fs_issue_flush)) { 488 err = PTR_ERR(fcc->f2fs_issue_flush); 489 kfree(fcc); 490 SM_I(sbi)->cmd_control_info = NULL; 491 return err; 492 } 493 494 return err; 495 } 496 497 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 498 { 499 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 500 501 if (fcc && fcc->f2fs_issue_flush) 502 kthread_stop(fcc->f2fs_issue_flush); 503 kfree(fcc); 504 SM_I(sbi)->cmd_control_info = NULL; 505 } 506 507 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 508 enum dirty_type dirty_type) 509 { 510 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 511 512 /* need not be added */ 513 if (IS_CURSEG(sbi, segno)) 514 return; 515 516 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 517 dirty_i->nr_dirty[dirty_type]++; 518 519 if (dirty_type == DIRTY) { 520 struct seg_entry *sentry = get_seg_entry(sbi, segno); 521 enum dirty_type t = sentry->type; 522 523 if (unlikely(t >= DIRTY)) { 524 f2fs_bug_on(sbi, 1); 525 return; 526 } 527 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 528 dirty_i->nr_dirty[t]++; 529 } 530 } 531 532 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 533 enum dirty_type dirty_type) 534 { 535 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 536 537 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 538 dirty_i->nr_dirty[dirty_type]--; 539 540 if (dirty_type == DIRTY) { 541 struct seg_entry *sentry = get_seg_entry(sbi, segno); 542 enum dirty_type t = sentry->type; 543 544 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 545 dirty_i->nr_dirty[t]--; 546 547 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 548 clear_bit(GET_SECNO(sbi, segno), 549 dirty_i->victim_secmap); 550 } 551 } 552 553 /* 554 * Should not occur error such as -ENOMEM. 555 * Adding dirty entry into seglist is not critical operation. 556 * If a given segment is one of current working segments, it won't be added. 557 */ 558 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 559 { 560 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 561 unsigned short valid_blocks; 562 563 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 564 return; 565 566 mutex_lock(&dirty_i->seglist_lock); 567 568 valid_blocks = get_valid_blocks(sbi, segno, 0); 569 570 if (valid_blocks == 0) { 571 __locate_dirty_segment(sbi, segno, PRE); 572 __remove_dirty_segment(sbi, segno, DIRTY); 573 } else if (valid_blocks < sbi->blocks_per_seg) { 574 __locate_dirty_segment(sbi, segno, DIRTY); 575 } else { 576 /* Recovery routine with SSR needs this */ 577 __remove_dirty_segment(sbi, segno, DIRTY); 578 } 579 580 mutex_unlock(&dirty_i->seglist_lock); 581 } 582 583 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 584 block_t blkstart, block_t blklen) 585 { 586 sector_t start = SECTOR_FROM_BLOCK(blkstart); 587 sector_t len = SECTOR_FROM_BLOCK(blklen); 588 struct seg_entry *se; 589 unsigned int offset; 590 block_t i; 591 592 for (i = blkstart; i < blkstart + blklen; i++) { 593 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 594 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 595 596 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 597 sbi->discard_blks--; 598 } 599 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 600 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 601 } 602 603 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 604 { 605 int err = -EOPNOTSUPP; 606 607 if (test_opt(sbi, DISCARD)) { 608 struct seg_entry *se = get_seg_entry(sbi, 609 GET_SEGNO(sbi, blkaddr)); 610 unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 611 612 if (f2fs_test_bit(offset, se->discard_map)) 613 return false; 614 615 err = f2fs_issue_discard(sbi, blkaddr, 1); 616 } 617 618 if (err) { 619 update_meta_page(sbi, NULL, blkaddr); 620 return true; 621 } 622 return false; 623 } 624 625 static void __add_discard_entry(struct f2fs_sb_info *sbi, 626 struct cp_control *cpc, struct seg_entry *se, 627 unsigned int start, unsigned int end) 628 { 629 struct list_head *head = &SM_I(sbi)->discard_list; 630 struct discard_entry *new, *last; 631 632 if (!list_empty(head)) { 633 last = list_last_entry(head, struct discard_entry, list); 634 if (START_BLOCK(sbi, cpc->trim_start) + start == 635 last->blkaddr + last->len) { 636 last->len += end - start; 637 goto done; 638 } 639 } 640 641 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 642 INIT_LIST_HEAD(&new->list); 643 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 644 new->len = end - start; 645 list_add_tail(&new->list, head); 646 done: 647 SM_I(sbi)->nr_discards += end - start; 648 } 649 650 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 651 { 652 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 653 int max_blocks = sbi->blocks_per_seg; 654 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 655 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 656 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 657 unsigned long *discard_map = (unsigned long *)se->discard_map; 658 unsigned long *dmap = SIT_I(sbi)->tmp_map; 659 unsigned int start = 0, end = -1; 660 bool force = (cpc->reason == CP_DISCARD); 661 int i; 662 663 if (se->valid_blocks == max_blocks) 664 return; 665 666 if (!force) { 667 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 668 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 669 return; 670 } 671 672 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 673 for (i = 0; i < entries; i++) 674 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 675 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 676 677 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 678 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 679 if (start >= max_blocks) 680 break; 681 682 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 683 if (force && start && end != max_blocks 684 && (end - start) < cpc->trim_minlen) 685 continue; 686 687 __add_discard_entry(sbi, cpc, se, start, end); 688 } 689 } 690 691 void release_discard_addrs(struct f2fs_sb_info *sbi) 692 { 693 struct list_head *head = &(SM_I(sbi)->discard_list); 694 struct discard_entry *entry, *this; 695 696 /* drop caches */ 697 list_for_each_entry_safe(entry, this, head, list) { 698 list_del(&entry->list); 699 kmem_cache_free(discard_entry_slab, entry); 700 } 701 } 702 703 /* 704 * Should call clear_prefree_segments after checkpoint is done. 705 */ 706 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 707 { 708 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 709 unsigned int segno; 710 711 mutex_lock(&dirty_i->seglist_lock); 712 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 713 __set_test_and_free(sbi, segno); 714 mutex_unlock(&dirty_i->seglist_lock); 715 } 716 717 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 718 { 719 struct list_head *head = &(SM_I(sbi)->discard_list); 720 struct discard_entry *entry, *this; 721 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 722 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 723 unsigned int start = 0, end = -1; 724 unsigned int secno, start_segno; 725 bool force = (cpc->reason == CP_DISCARD); 726 727 mutex_lock(&dirty_i->seglist_lock); 728 729 while (1) { 730 int i; 731 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 732 if (start >= MAIN_SEGS(sbi)) 733 break; 734 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 735 start + 1); 736 737 for (i = start; i < end; i++) 738 clear_bit(i, prefree_map); 739 740 dirty_i->nr_dirty[PRE] -= end - start; 741 742 if (force || !test_opt(sbi, DISCARD)) 743 continue; 744 745 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 746 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 747 (end - start) << sbi->log_blocks_per_seg); 748 continue; 749 } 750 next: 751 secno = GET_SECNO(sbi, start); 752 start_segno = secno * sbi->segs_per_sec; 753 if (!IS_CURSEC(sbi, secno) && 754 !get_valid_blocks(sbi, start, sbi->segs_per_sec)) 755 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 756 sbi->segs_per_sec << sbi->log_blocks_per_seg); 757 758 start = start_segno + sbi->segs_per_sec; 759 if (start < end) 760 goto next; 761 } 762 mutex_unlock(&dirty_i->seglist_lock); 763 764 /* send small discards */ 765 list_for_each_entry_safe(entry, this, head, list) { 766 if (force && entry->len < cpc->trim_minlen) 767 goto skip; 768 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 769 cpc->trimmed += entry->len; 770 skip: 771 list_del(&entry->list); 772 SM_I(sbi)->nr_discards -= entry->len; 773 kmem_cache_free(discard_entry_slab, entry); 774 } 775 } 776 777 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 778 { 779 struct sit_info *sit_i = SIT_I(sbi); 780 781 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 782 sit_i->dirty_sentries++; 783 return false; 784 } 785 786 return true; 787 } 788 789 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 790 unsigned int segno, int modified) 791 { 792 struct seg_entry *se = get_seg_entry(sbi, segno); 793 se->type = type; 794 if (modified) 795 __mark_sit_entry_dirty(sbi, segno); 796 } 797 798 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 799 { 800 struct seg_entry *se; 801 unsigned int segno, offset; 802 long int new_vblocks; 803 804 segno = GET_SEGNO(sbi, blkaddr); 805 806 se = get_seg_entry(sbi, segno); 807 new_vblocks = se->valid_blocks + del; 808 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 809 810 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 811 (new_vblocks > sbi->blocks_per_seg))); 812 813 se->valid_blocks = new_vblocks; 814 se->mtime = get_mtime(sbi); 815 SIT_I(sbi)->max_mtime = se->mtime; 816 817 /* Update valid block bitmap */ 818 if (del > 0) { 819 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 820 f2fs_bug_on(sbi, 1); 821 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 822 sbi->discard_blks--; 823 } else { 824 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 825 f2fs_bug_on(sbi, 1); 826 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 827 sbi->discard_blks++; 828 } 829 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 830 se->ckpt_valid_blocks += del; 831 832 __mark_sit_entry_dirty(sbi, segno); 833 834 /* update total number of valid blocks to be written in ckpt area */ 835 SIT_I(sbi)->written_valid_blocks += del; 836 837 if (sbi->segs_per_sec > 1) 838 get_sec_entry(sbi, segno)->valid_blocks += del; 839 } 840 841 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 842 { 843 update_sit_entry(sbi, new, 1); 844 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 845 update_sit_entry(sbi, old, -1); 846 847 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 848 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 849 } 850 851 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 852 { 853 unsigned int segno = GET_SEGNO(sbi, addr); 854 struct sit_info *sit_i = SIT_I(sbi); 855 856 f2fs_bug_on(sbi, addr == NULL_ADDR); 857 if (addr == NEW_ADDR) 858 return; 859 860 /* add it into sit main buffer */ 861 mutex_lock(&sit_i->sentry_lock); 862 863 update_sit_entry(sbi, addr, -1); 864 865 /* add it into dirty seglist */ 866 locate_dirty_segment(sbi, segno); 867 868 mutex_unlock(&sit_i->sentry_lock); 869 } 870 871 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 872 { 873 struct sit_info *sit_i = SIT_I(sbi); 874 unsigned int segno, offset; 875 struct seg_entry *se; 876 bool is_cp = false; 877 878 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 879 return true; 880 881 mutex_lock(&sit_i->sentry_lock); 882 883 segno = GET_SEGNO(sbi, blkaddr); 884 se = get_seg_entry(sbi, segno); 885 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 886 887 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 888 is_cp = true; 889 890 mutex_unlock(&sit_i->sentry_lock); 891 892 return is_cp; 893 } 894 895 /* 896 * This function should be resided under the curseg_mutex lock 897 */ 898 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 899 struct f2fs_summary *sum) 900 { 901 struct curseg_info *curseg = CURSEG_I(sbi, type); 902 void *addr = curseg->sum_blk; 903 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 904 memcpy(addr, sum, sizeof(struct f2fs_summary)); 905 } 906 907 /* 908 * Calculate the number of current summary pages for writing 909 */ 910 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 911 { 912 int valid_sum_count = 0; 913 int i, sum_in_page; 914 915 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 916 if (sbi->ckpt->alloc_type[i] == SSR) 917 valid_sum_count += sbi->blocks_per_seg; 918 else { 919 if (for_ra) 920 valid_sum_count += le16_to_cpu( 921 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 922 else 923 valid_sum_count += curseg_blkoff(sbi, i); 924 } 925 } 926 927 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 928 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 929 if (valid_sum_count <= sum_in_page) 930 return 1; 931 else if ((valid_sum_count - sum_in_page) <= 932 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 933 return 2; 934 return 3; 935 } 936 937 /* 938 * Caller should put this summary page 939 */ 940 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 941 { 942 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 943 } 944 945 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 946 { 947 struct page *page = grab_meta_page(sbi, blk_addr); 948 void *dst = page_address(page); 949 950 if (src) 951 memcpy(dst, src, PAGE_SIZE); 952 else 953 memset(dst, 0, PAGE_SIZE); 954 set_page_dirty(page); 955 f2fs_put_page(page, 1); 956 } 957 958 static void write_sum_page(struct f2fs_sb_info *sbi, 959 struct f2fs_summary_block *sum_blk, block_t blk_addr) 960 { 961 update_meta_page(sbi, (void *)sum_blk, blk_addr); 962 } 963 964 static void write_current_sum_page(struct f2fs_sb_info *sbi, 965 int type, block_t blk_addr) 966 { 967 struct curseg_info *curseg = CURSEG_I(sbi, type); 968 struct page *page = grab_meta_page(sbi, blk_addr); 969 struct f2fs_summary_block *src = curseg->sum_blk; 970 struct f2fs_summary_block *dst; 971 972 dst = (struct f2fs_summary_block *)page_address(page); 973 974 mutex_lock(&curseg->curseg_mutex); 975 976 down_read(&curseg->journal_rwsem); 977 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 978 up_read(&curseg->journal_rwsem); 979 980 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 981 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 982 983 mutex_unlock(&curseg->curseg_mutex); 984 985 set_page_dirty(page); 986 f2fs_put_page(page, 1); 987 } 988 989 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 990 { 991 struct curseg_info *curseg = CURSEG_I(sbi, type); 992 unsigned int segno = curseg->segno + 1; 993 struct free_segmap_info *free_i = FREE_I(sbi); 994 995 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 996 return !test_bit(segno, free_i->free_segmap); 997 return 0; 998 } 999 1000 /* 1001 * Find a new segment from the free segments bitmap to right order 1002 * This function should be returned with success, otherwise BUG 1003 */ 1004 static void get_new_segment(struct f2fs_sb_info *sbi, 1005 unsigned int *newseg, bool new_sec, int dir) 1006 { 1007 struct free_segmap_info *free_i = FREE_I(sbi); 1008 unsigned int segno, secno, zoneno; 1009 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1010 unsigned int hint = *newseg / sbi->segs_per_sec; 1011 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 1012 unsigned int left_start = hint; 1013 bool init = true; 1014 int go_left = 0; 1015 int i; 1016 1017 spin_lock(&free_i->segmap_lock); 1018 1019 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1020 segno = find_next_zero_bit(free_i->free_segmap, 1021 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 1022 if (segno < (hint + 1) * sbi->segs_per_sec) 1023 goto got_it; 1024 } 1025 find_other_zone: 1026 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1027 if (secno >= MAIN_SECS(sbi)) { 1028 if (dir == ALLOC_RIGHT) { 1029 secno = find_next_zero_bit(free_i->free_secmap, 1030 MAIN_SECS(sbi), 0); 1031 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1032 } else { 1033 go_left = 1; 1034 left_start = hint - 1; 1035 } 1036 } 1037 if (go_left == 0) 1038 goto skip_left; 1039 1040 while (test_bit(left_start, free_i->free_secmap)) { 1041 if (left_start > 0) { 1042 left_start--; 1043 continue; 1044 } 1045 left_start = find_next_zero_bit(free_i->free_secmap, 1046 MAIN_SECS(sbi), 0); 1047 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1048 break; 1049 } 1050 secno = left_start; 1051 skip_left: 1052 hint = secno; 1053 segno = secno * sbi->segs_per_sec; 1054 zoneno = secno / sbi->secs_per_zone; 1055 1056 /* give up on finding another zone */ 1057 if (!init) 1058 goto got_it; 1059 if (sbi->secs_per_zone == 1) 1060 goto got_it; 1061 if (zoneno == old_zoneno) 1062 goto got_it; 1063 if (dir == ALLOC_LEFT) { 1064 if (!go_left && zoneno + 1 >= total_zones) 1065 goto got_it; 1066 if (go_left && zoneno == 0) 1067 goto got_it; 1068 } 1069 for (i = 0; i < NR_CURSEG_TYPE; i++) 1070 if (CURSEG_I(sbi, i)->zone == zoneno) 1071 break; 1072 1073 if (i < NR_CURSEG_TYPE) { 1074 /* zone is in user, try another */ 1075 if (go_left) 1076 hint = zoneno * sbi->secs_per_zone - 1; 1077 else if (zoneno + 1 >= total_zones) 1078 hint = 0; 1079 else 1080 hint = (zoneno + 1) * sbi->secs_per_zone; 1081 init = false; 1082 goto find_other_zone; 1083 } 1084 got_it: 1085 /* set it as dirty segment in free segmap */ 1086 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1087 __set_inuse(sbi, segno); 1088 *newseg = segno; 1089 spin_unlock(&free_i->segmap_lock); 1090 } 1091 1092 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1093 { 1094 struct curseg_info *curseg = CURSEG_I(sbi, type); 1095 struct summary_footer *sum_footer; 1096 1097 curseg->segno = curseg->next_segno; 1098 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1099 curseg->next_blkoff = 0; 1100 curseg->next_segno = NULL_SEGNO; 1101 1102 sum_footer = &(curseg->sum_blk->footer); 1103 memset(sum_footer, 0, sizeof(struct summary_footer)); 1104 if (IS_DATASEG(type)) 1105 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1106 if (IS_NODESEG(type)) 1107 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1108 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1109 } 1110 1111 /* 1112 * Allocate a current working segment. 1113 * This function always allocates a free segment in LFS manner. 1114 */ 1115 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1116 { 1117 struct curseg_info *curseg = CURSEG_I(sbi, type); 1118 unsigned int segno = curseg->segno; 1119 int dir = ALLOC_LEFT; 1120 1121 write_sum_page(sbi, curseg->sum_blk, 1122 GET_SUM_BLOCK(sbi, segno)); 1123 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1124 dir = ALLOC_RIGHT; 1125 1126 if (test_opt(sbi, NOHEAP)) 1127 dir = ALLOC_RIGHT; 1128 1129 get_new_segment(sbi, &segno, new_sec, dir); 1130 curseg->next_segno = segno; 1131 reset_curseg(sbi, type, 1); 1132 curseg->alloc_type = LFS; 1133 } 1134 1135 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1136 struct curseg_info *seg, block_t start) 1137 { 1138 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1139 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1140 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1141 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1142 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1143 int i, pos; 1144 1145 for (i = 0; i < entries; i++) 1146 target_map[i] = ckpt_map[i] | cur_map[i]; 1147 1148 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1149 1150 seg->next_blkoff = pos; 1151 } 1152 1153 /* 1154 * If a segment is written by LFS manner, next block offset is just obtained 1155 * by increasing the current block offset. However, if a segment is written by 1156 * SSR manner, next block offset obtained by calling __next_free_blkoff 1157 */ 1158 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1159 struct curseg_info *seg) 1160 { 1161 if (seg->alloc_type == SSR) 1162 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1163 else 1164 seg->next_blkoff++; 1165 } 1166 1167 /* 1168 * This function always allocates a used segment(from dirty seglist) by SSR 1169 * manner, so it should recover the existing segment information of valid blocks 1170 */ 1171 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1172 { 1173 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1174 struct curseg_info *curseg = CURSEG_I(sbi, type); 1175 unsigned int new_segno = curseg->next_segno; 1176 struct f2fs_summary_block *sum_node; 1177 struct page *sum_page; 1178 1179 write_sum_page(sbi, curseg->sum_blk, 1180 GET_SUM_BLOCK(sbi, curseg->segno)); 1181 __set_test_and_inuse(sbi, new_segno); 1182 1183 mutex_lock(&dirty_i->seglist_lock); 1184 __remove_dirty_segment(sbi, new_segno, PRE); 1185 __remove_dirty_segment(sbi, new_segno, DIRTY); 1186 mutex_unlock(&dirty_i->seglist_lock); 1187 1188 reset_curseg(sbi, type, 1); 1189 curseg->alloc_type = SSR; 1190 __next_free_blkoff(sbi, curseg, 0); 1191 1192 if (reuse) { 1193 sum_page = get_sum_page(sbi, new_segno); 1194 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1195 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1196 f2fs_put_page(sum_page, 1); 1197 } 1198 } 1199 1200 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1201 { 1202 struct curseg_info *curseg = CURSEG_I(sbi, type); 1203 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1204 1205 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 1206 return v_ops->get_victim(sbi, 1207 &(curseg)->next_segno, BG_GC, type, SSR); 1208 1209 /* For data segments, let's do SSR more intensively */ 1210 for (; type >= CURSEG_HOT_DATA; type--) 1211 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1212 BG_GC, type, SSR)) 1213 return 1; 1214 return 0; 1215 } 1216 1217 /* 1218 * flush out current segment and replace it with new segment 1219 * This function should be returned with success, otherwise BUG 1220 */ 1221 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1222 int type, bool force) 1223 { 1224 struct curseg_info *curseg = CURSEG_I(sbi, type); 1225 1226 if (force) 1227 new_curseg(sbi, type, true); 1228 else if (type == CURSEG_WARM_NODE) 1229 new_curseg(sbi, type, false); 1230 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1231 new_curseg(sbi, type, false); 1232 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1233 change_curseg(sbi, type, true); 1234 else 1235 new_curseg(sbi, type, false); 1236 1237 stat_inc_seg_type(sbi, curseg); 1238 } 1239 1240 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) 1241 { 1242 struct curseg_info *curseg = CURSEG_I(sbi, type); 1243 unsigned int old_segno; 1244 1245 old_segno = curseg->segno; 1246 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 1247 locate_dirty_segment(sbi, old_segno); 1248 } 1249 1250 void allocate_new_segments(struct f2fs_sb_info *sbi) 1251 { 1252 int i; 1253 1254 if (test_opt(sbi, LFS)) 1255 return; 1256 1257 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 1258 __allocate_new_segments(sbi, i); 1259 } 1260 1261 static const struct segment_allocation default_salloc_ops = { 1262 .allocate_segment = allocate_segment_by_default, 1263 }; 1264 1265 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1266 { 1267 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1268 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1269 unsigned int start_segno, end_segno; 1270 struct cp_control cpc; 1271 int err = 0; 1272 1273 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1274 return -EINVAL; 1275 1276 cpc.trimmed = 0; 1277 if (end <= MAIN_BLKADDR(sbi)) 1278 goto out; 1279 1280 /* start/end segment number in main_area */ 1281 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1282 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1283 GET_SEGNO(sbi, end); 1284 cpc.reason = CP_DISCARD; 1285 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1286 1287 /* do checkpoint to issue discard commands safely */ 1288 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1289 cpc.trim_start = start_segno; 1290 1291 if (sbi->discard_blks == 0) 1292 break; 1293 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1294 cpc.trim_end = end_segno; 1295 else 1296 cpc.trim_end = min_t(unsigned int, 1297 rounddown(start_segno + 1298 BATCHED_TRIM_SEGMENTS(sbi), 1299 sbi->segs_per_sec) - 1, end_segno); 1300 1301 mutex_lock(&sbi->gc_mutex); 1302 err = write_checkpoint(sbi, &cpc); 1303 mutex_unlock(&sbi->gc_mutex); 1304 } 1305 out: 1306 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1307 return err; 1308 } 1309 1310 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1311 { 1312 struct curseg_info *curseg = CURSEG_I(sbi, type); 1313 if (curseg->next_blkoff < sbi->blocks_per_seg) 1314 return true; 1315 return false; 1316 } 1317 1318 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1319 { 1320 if (p_type == DATA) 1321 return CURSEG_HOT_DATA; 1322 else 1323 return CURSEG_HOT_NODE; 1324 } 1325 1326 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1327 { 1328 if (p_type == DATA) { 1329 struct inode *inode = page->mapping->host; 1330 1331 if (S_ISDIR(inode->i_mode)) 1332 return CURSEG_HOT_DATA; 1333 else 1334 return CURSEG_COLD_DATA; 1335 } else { 1336 if (IS_DNODE(page) && is_cold_node(page)) 1337 return CURSEG_WARM_NODE; 1338 else 1339 return CURSEG_COLD_NODE; 1340 } 1341 } 1342 1343 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1344 { 1345 if (p_type == DATA) { 1346 struct inode *inode = page->mapping->host; 1347 1348 if (S_ISDIR(inode->i_mode)) 1349 return CURSEG_HOT_DATA; 1350 else if (is_cold_data(page) || file_is_cold(inode)) 1351 return CURSEG_COLD_DATA; 1352 else 1353 return CURSEG_WARM_DATA; 1354 } else { 1355 if (IS_DNODE(page)) 1356 return is_cold_node(page) ? CURSEG_WARM_NODE : 1357 CURSEG_HOT_NODE; 1358 else 1359 return CURSEG_COLD_NODE; 1360 } 1361 } 1362 1363 static int __get_segment_type(struct page *page, enum page_type p_type) 1364 { 1365 switch (F2FS_P_SB(page)->active_logs) { 1366 case 2: 1367 return __get_segment_type_2(page, p_type); 1368 case 4: 1369 return __get_segment_type_4(page, p_type); 1370 } 1371 /* NR_CURSEG_TYPE(6) logs by default */ 1372 f2fs_bug_on(F2FS_P_SB(page), 1373 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1374 return __get_segment_type_6(page, p_type); 1375 } 1376 1377 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1378 block_t old_blkaddr, block_t *new_blkaddr, 1379 struct f2fs_summary *sum, int type) 1380 { 1381 struct sit_info *sit_i = SIT_I(sbi); 1382 struct curseg_info *curseg; 1383 bool direct_io = (type == CURSEG_DIRECT_IO); 1384 1385 type = direct_io ? CURSEG_WARM_DATA : type; 1386 1387 curseg = CURSEG_I(sbi, type); 1388 1389 mutex_lock(&curseg->curseg_mutex); 1390 mutex_lock(&sit_i->sentry_lock); 1391 1392 /* direct_io'ed data is aligned to the segment for better performance */ 1393 if (direct_io && curseg->next_blkoff && 1394 !has_not_enough_free_secs(sbi, 0)) 1395 __allocate_new_segments(sbi, type); 1396 1397 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1398 1399 /* 1400 * __add_sum_entry should be resided under the curseg_mutex 1401 * because, this function updates a summary entry in the 1402 * current summary block. 1403 */ 1404 __add_sum_entry(sbi, type, sum); 1405 1406 __refresh_next_blkoff(sbi, curseg); 1407 1408 stat_inc_block_count(sbi, curseg); 1409 1410 if (!__has_curseg_space(sbi, type)) 1411 sit_i->s_ops->allocate_segment(sbi, type, false); 1412 /* 1413 * SIT information should be updated before segment allocation, 1414 * since SSR needs latest valid block information. 1415 */ 1416 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1417 1418 mutex_unlock(&sit_i->sentry_lock); 1419 1420 if (page && IS_NODESEG(type)) 1421 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1422 1423 mutex_unlock(&curseg->curseg_mutex); 1424 } 1425 1426 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1427 { 1428 int type = __get_segment_type(fio->page, fio->type); 1429 1430 if (fio->type == NODE || fio->type == DATA) 1431 mutex_lock(&fio->sbi->wio_mutex[fio->type]); 1432 1433 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1434 &fio->new_blkaddr, sum, type); 1435 1436 /* writeout dirty page into bdev */ 1437 f2fs_submit_page_mbio(fio); 1438 1439 if (fio->type == NODE || fio->type == DATA) 1440 mutex_unlock(&fio->sbi->wio_mutex[fio->type]); 1441 } 1442 1443 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1444 { 1445 struct f2fs_io_info fio = { 1446 .sbi = sbi, 1447 .type = META, 1448 .op = REQ_OP_WRITE, 1449 .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO, 1450 .old_blkaddr = page->index, 1451 .new_blkaddr = page->index, 1452 .page = page, 1453 .encrypted_page = NULL, 1454 }; 1455 1456 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1457 fio.op_flags &= ~REQ_META; 1458 1459 set_page_writeback(page); 1460 f2fs_submit_page_mbio(&fio); 1461 } 1462 1463 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1464 { 1465 struct f2fs_summary sum; 1466 1467 set_summary(&sum, nid, 0, 0); 1468 do_write_page(&sum, fio); 1469 } 1470 1471 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1472 { 1473 struct f2fs_sb_info *sbi = fio->sbi; 1474 struct f2fs_summary sum; 1475 struct node_info ni; 1476 1477 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1478 get_node_info(sbi, dn->nid, &ni); 1479 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1480 do_write_page(&sum, fio); 1481 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1482 } 1483 1484 void rewrite_data_page(struct f2fs_io_info *fio) 1485 { 1486 fio->new_blkaddr = fio->old_blkaddr; 1487 stat_inc_inplace_blocks(fio->sbi); 1488 f2fs_submit_page_mbio(fio); 1489 } 1490 1491 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1492 block_t old_blkaddr, block_t new_blkaddr, 1493 bool recover_curseg, bool recover_newaddr) 1494 { 1495 struct sit_info *sit_i = SIT_I(sbi); 1496 struct curseg_info *curseg; 1497 unsigned int segno, old_cursegno; 1498 struct seg_entry *se; 1499 int type; 1500 unsigned short old_blkoff; 1501 1502 segno = GET_SEGNO(sbi, new_blkaddr); 1503 se = get_seg_entry(sbi, segno); 1504 type = se->type; 1505 1506 if (!recover_curseg) { 1507 /* for recovery flow */ 1508 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1509 if (old_blkaddr == NULL_ADDR) 1510 type = CURSEG_COLD_DATA; 1511 else 1512 type = CURSEG_WARM_DATA; 1513 } 1514 } else { 1515 if (!IS_CURSEG(sbi, segno)) 1516 type = CURSEG_WARM_DATA; 1517 } 1518 1519 curseg = CURSEG_I(sbi, type); 1520 1521 mutex_lock(&curseg->curseg_mutex); 1522 mutex_lock(&sit_i->sentry_lock); 1523 1524 old_cursegno = curseg->segno; 1525 old_blkoff = curseg->next_blkoff; 1526 1527 /* change the current segment */ 1528 if (segno != curseg->segno) { 1529 curseg->next_segno = segno; 1530 change_curseg(sbi, type, true); 1531 } 1532 1533 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1534 __add_sum_entry(sbi, type, sum); 1535 1536 if (!recover_curseg || recover_newaddr) 1537 update_sit_entry(sbi, new_blkaddr, 1); 1538 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1539 update_sit_entry(sbi, old_blkaddr, -1); 1540 1541 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1542 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1543 1544 locate_dirty_segment(sbi, old_cursegno); 1545 1546 if (recover_curseg) { 1547 if (old_cursegno != curseg->segno) { 1548 curseg->next_segno = old_cursegno; 1549 change_curseg(sbi, type, true); 1550 } 1551 curseg->next_blkoff = old_blkoff; 1552 } 1553 1554 mutex_unlock(&sit_i->sentry_lock); 1555 mutex_unlock(&curseg->curseg_mutex); 1556 } 1557 1558 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1559 block_t old_addr, block_t new_addr, 1560 unsigned char version, bool recover_curseg, 1561 bool recover_newaddr) 1562 { 1563 struct f2fs_summary sum; 1564 1565 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1566 1567 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1568 recover_curseg, recover_newaddr); 1569 1570 f2fs_update_data_blkaddr(dn, new_addr); 1571 } 1572 1573 void f2fs_wait_on_page_writeback(struct page *page, 1574 enum page_type type, bool ordered) 1575 { 1576 if (PageWriteback(page)) { 1577 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1578 1579 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE); 1580 if (ordered) 1581 wait_on_page_writeback(page); 1582 else 1583 wait_for_stable_page(page); 1584 } 1585 } 1586 1587 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1588 block_t blkaddr) 1589 { 1590 struct page *cpage; 1591 1592 if (blkaddr == NEW_ADDR) 1593 return; 1594 1595 f2fs_bug_on(sbi, blkaddr == NULL_ADDR); 1596 1597 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1598 if (cpage) { 1599 f2fs_wait_on_page_writeback(cpage, DATA, true); 1600 f2fs_put_page(cpage, 1); 1601 } 1602 } 1603 1604 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1605 { 1606 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1607 struct curseg_info *seg_i; 1608 unsigned char *kaddr; 1609 struct page *page; 1610 block_t start; 1611 int i, j, offset; 1612 1613 start = start_sum_block(sbi); 1614 1615 page = get_meta_page(sbi, start++); 1616 kaddr = (unsigned char *)page_address(page); 1617 1618 /* Step 1: restore nat cache */ 1619 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1620 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1621 1622 /* Step 2: restore sit cache */ 1623 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1624 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1625 offset = 2 * SUM_JOURNAL_SIZE; 1626 1627 /* Step 3: restore summary entries */ 1628 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1629 unsigned short blk_off; 1630 unsigned int segno; 1631 1632 seg_i = CURSEG_I(sbi, i); 1633 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1634 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1635 seg_i->next_segno = segno; 1636 reset_curseg(sbi, i, 0); 1637 seg_i->alloc_type = ckpt->alloc_type[i]; 1638 seg_i->next_blkoff = blk_off; 1639 1640 if (seg_i->alloc_type == SSR) 1641 blk_off = sbi->blocks_per_seg; 1642 1643 for (j = 0; j < blk_off; j++) { 1644 struct f2fs_summary *s; 1645 s = (struct f2fs_summary *)(kaddr + offset); 1646 seg_i->sum_blk->entries[j] = *s; 1647 offset += SUMMARY_SIZE; 1648 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 1649 SUM_FOOTER_SIZE) 1650 continue; 1651 1652 f2fs_put_page(page, 1); 1653 page = NULL; 1654 1655 page = get_meta_page(sbi, start++); 1656 kaddr = (unsigned char *)page_address(page); 1657 offset = 0; 1658 } 1659 } 1660 f2fs_put_page(page, 1); 1661 return 0; 1662 } 1663 1664 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1665 { 1666 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1667 struct f2fs_summary_block *sum; 1668 struct curseg_info *curseg; 1669 struct page *new; 1670 unsigned short blk_off; 1671 unsigned int segno = 0; 1672 block_t blk_addr = 0; 1673 1674 /* get segment number and block addr */ 1675 if (IS_DATASEG(type)) { 1676 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1677 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1678 CURSEG_HOT_DATA]); 1679 if (__exist_node_summaries(sbi)) 1680 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1681 else 1682 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1683 } else { 1684 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1685 CURSEG_HOT_NODE]); 1686 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1687 CURSEG_HOT_NODE]); 1688 if (__exist_node_summaries(sbi)) 1689 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1690 type - CURSEG_HOT_NODE); 1691 else 1692 blk_addr = GET_SUM_BLOCK(sbi, segno); 1693 } 1694 1695 new = get_meta_page(sbi, blk_addr); 1696 sum = (struct f2fs_summary_block *)page_address(new); 1697 1698 if (IS_NODESEG(type)) { 1699 if (__exist_node_summaries(sbi)) { 1700 struct f2fs_summary *ns = &sum->entries[0]; 1701 int i; 1702 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1703 ns->version = 0; 1704 ns->ofs_in_node = 0; 1705 } 1706 } else { 1707 int err; 1708 1709 err = restore_node_summary(sbi, segno, sum); 1710 if (err) { 1711 f2fs_put_page(new, 1); 1712 return err; 1713 } 1714 } 1715 } 1716 1717 /* set uncompleted segment to curseg */ 1718 curseg = CURSEG_I(sbi, type); 1719 mutex_lock(&curseg->curseg_mutex); 1720 1721 /* update journal info */ 1722 down_write(&curseg->journal_rwsem); 1723 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 1724 up_write(&curseg->journal_rwsem); 1725 1726 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 1727 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 1728 curseg->next_segno = segno; 1729 reset_curseg(sbi, type, 0); 1730 curseg->alloc_type = ckpt->alloc_type[type]; 1731 curseg->next_blkoff = blk_off; 1732 mutex_unlock(&curseg->curseg_mutex); 1733 f2fs_put_page(new, 1); 1734 return 0; 1735 } 1736 1737 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1738 { 1739 int type = CURSEG_HOT_DATA; 1740 int err; 1741 1742 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1743 int npages = npages_for_summary_flush(sbi, true); 1744 1745 if (npages >= 2) 1746 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1747 META_CP, true); 1748 1749 /* restore for compacted data summary */ 1750 if (read_compacted_summaries(sbi)) 1751 return -EINVAL; 1752 type = CURSEG_HOT_NODE; 1753 } 1754 1755 if (__exist_node_summaries(sbi)) 1756 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1757 NR_CURSEG_TYPE - type, META_CP, true); 1758 1759 for (; type <= CURSEG_COLD_NODE; type++) { 1760 err = read_normal_summaries(sbi, type); 1761 if (err) 1762 return err; 1763 } 1764 1765 return 0; 1766 } 1767 1768 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1769 { 1770 struct page *page; 1771 unsigned char *kaddr; 1772 struct f2fs_summary *summary; 1773 struct curseg_info *seg_i; 1774 int written_size = 0; 1775 int i, j; 1776 1777 page = grab_meta_page(sbi, blkaddr++); 1778 kaddr = (unsigned char *)page_address(page); 1779 1780 /* Step 1: write nat cache */ 1781 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1782 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 1783 written_size += SUM_JOURNAL_SIZE; 1784 1785 /* Step 2: write sit cache */ 1786 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1787 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 1788 written_size += SUM_JOURNAL_SIZE; 1789 1790 /* Step 3: write summary entries */ 1791 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1792 unsigned short blkoff; 1793 seg_i = CURSEG_I(sbi, i); 1794 if (sbi->ckpt->alloc_type[i] == SSR) 1795 blkoff = sbi->blocks_per_seg; 1796 else 1797 blkoff = curseg_blkoff(sbi, i); 1798 1799 for (j = 0; j < blkoff; j++) { 1800 if (!page) { 1801 page = grab_meta_page(sbi, blkaddr++); 1802 kaddr = (unsigned char *)page_address(page); 1803 written_size = 0; 1804 } 1805 summary = (struct f2fs_summary *)(kaddr + written_size); 1806 *summary = seg_i->sum_blk->entries[j]; 1807 written_size += SUMMARY_SIZE; 1808 1809 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 1810 SUM_FOOTER_SIZE) 1811 continue; 1812 1813 set_page_dirty(page); 1814 f2fs_put_page(page, 1); 1815 page = NULL; 1816 } 1817 } 1818 if (page) { 1819 set_page_dirty(page); 1820 f2fs_put_page(page, 1); 1821 } 1822 } 1823 1824 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1825 block_t blkaddr, int type) 1826 { 1827 int i, end; 1828 if (IS_DATASEG(type)) 1829 end = type + NR_CURSEG_DATA_TYPE; 1830 else 1831 end = type + NR_CURSEG_NODE_TYPE; 1832 1833 for (i = type; i < end; i++) 1834 write_current_sum_page(sbi, i, blkaddr + (i - type)); 1835 } 1836 1837 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1838 { 1839 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1840 write_compacted_summaries(sbi, start_blk); 1841 else 1842 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1843 } 1844 1845 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1846 { 1847 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1848 } 1849 1850 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 1851 unsigned int val, int alloc) 1852 { 1853 int i; 1854 1855 if (type == NAT_JOURNAL) { 1856 for (i = 0; i < nats_in_cursum(journal); i++) { 1857 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 1858 return i; 1859 } 1860 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 1861 return update_nats_in_cursum(journal, 1); 1862 } else if (type == SIT_JOURNAL) { 1863 for (i = 0; i < sits_in_cursum(journal); i++) 1864 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 1865 return i; 1866 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 1867 return update_sits_in_cursum(journal, 1); 1868 } 1869 return -1; 1870 } 1871 1872 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1873 unsigned int segno) 1874 { 1875 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1876 } 1877 1878 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1879 unsigned int start) 1880 { 1881 struct sit_info *sit_i = SIT_I(sbi); 1882 struct page *src_page, *dst_page; 1883 pgoff_t src_off, dst_off; 1884 void *src_addr, *dst_addr; 1885 1886 src_off = current_sit_addr(sbi, start); 1887 dst_off = next_sit_addr(sbi, src_off); 1888 1889 /* get current sit block page without lock */ 1890 src_page = get_meta_page(sbi, src_off); 1891 dst_page = grab_meta_page(sbi, dst_off); 1892 f2fs_bug_on(sbi, PageDirty(src_page)); 1893 1894 src_addr = page_address(src_page); 1895 dst_addr = page_address(dst_page); 1896 memcpy(dst_addr, src_addr, PAGE_SIZE); 1897 1898 set_page_dirty(dst_page); 1899 f2fs_put_page(src_page, 1); 1900 1901 set_to_next_sit(sit_i, start); 1902 1903 return dst_page; 1904 } 1905 1906 static struct sit_entry_set *grab_sit_entry_set(void) 1907 { 1908 struct sit_entry_set *ses = 1909 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 1910 1911 ses->entry_cnt = 0; 1912 INIT_LIST_HEAD(&ses->set_list); 1913 return ses; 1914 } 1915 1916 static void release_sit_entry_set(struct sit_entry_set *ses) 1917 { 1918 list_del(&ses->set_list); 1919 kmem_cache_free(sit_entry_set_slab, ses); 1920 } 1921 1922 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1923 struct list_head *head) 1924 { 1925 struct sit_entry_set *next = ses; 1926 1927 if (list_is_last(&ses->set_list, head)) 1928 return; 1929 1930 list_for_each_entry_continue(next, head, set_list) 1931 if (ses->entry_cnt <= next->entry_cnt) 1932 break; 1933 1934 list_move_tail(&ses->set_list, &next->set_list); 1935 } 1936 1937 static void add_sit_entry(unsigned int segno, struct list_head *head) 1938 { 1939 struct sit_entry_set *ses; 1940 unsigned int start_segno = START_SEGNO(segno); 1941 1942 list_for_each_entry(ses, head, set_list) { 1943 if (ses->start_segno == start_segno) { 1944 ses->entry_cnt++; 1945 adjust_sit_entry_set(ses, head); 1946 return; 1947 } 1948 } 1949 1950 ses = grab_sit_entry_set(); 1951 1952 ses->start_segno = start_segno; 1953 ses->entry_cnt++; 1954 list_add(&ses->set_list, head); 1955 } 1956 1957 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1958 { 1959 struct f2fs_sm_info *sm_info = SM_I(sbi); 1960 struct list_head *set_list = &sm_info->sit_entry_set; 1961 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1962 unsigned int segno; 1963 1964 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1965 add_sit_entry(segno, set_list); 1966 } 1967 1968 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1969 { 1970 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1971 struct f2fs_journal *journal = curseg->journal; 1972 int i; 1973 1974 down_write(&curseg->journal_rwsem); 1975 for (i = 0; i < sits_in_cursum(journal); i++) { 1976 unsigned int segno; 1977 bool dirtied; 1978 1979 segno = le32_to_cpu(segno_in_journal(journal, i)); 1980 dirtied = __mark_sit_entry_dirty(sbi, segno); 1981 1982 if (!dirtied) 1983 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1984 } 1985 update_sits_in_cursum(journal, -i); 1986 up_write(&curseg->journal_rwsem); 1987 } 1988 1989 /* 1990 * CP calls this function, which flushes SIT entries including sit_journal, 1991 * and moves prefree segs to free segs. 1992 */ 1993 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1994 { 1995 struct sit_info *sit_i = SIT_I(sbi); 1996 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1997 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1998 struct f2fs_journal *journal = curseg->journal; 1999 struct sit_entry_set *ses, *tmp; 2000 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2001 bool to_journal = true; 2002 struct seg_entry *se; 2003 2004 mutex_lock(&sit_i->sentry_lock); 2005 2006 if (!sit_i->dirty_sentries) 2007 goto out; 2008 2009 /* 2010 * add and account sit entries of dirty bitmap in sit entry 2011 * set temporarily 2012 */ 2013 add_sits_in_set(sbi); 2014 2015 /* 2016 * if there are no enough space in journal to store dirty sit 2017 * entries, remove all entries from journal and add and account 2018 * them in sit entry set. 2019 */ 2020 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2021 remove_sits_in_journal(sbi); 2022 2023 /* 2024 * there are two steps to flush sit entries: 2025 * #1, flush sit entries to journal in current cold data summary block. 2026 * #2, flush sit entries to sit page. 2027 */ 2028 list_for_each_entry_safe(ses, tmp, head, set_list) { 2029 struct page *page = NULL; 2030 struct f2fs_sit_block *raw_sit = NULL; 2031 unsigned int start_segno = ses->start_segno; 2032 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2033 (unsigned long)MAIN_SEGS(sbi)); 2034 unsigned int segno = start_segno; 2035 2036 if (to_journal && 2037 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2038 to_journal = false; 2039 2040 if (to_journal) { 2041 down_write(&curseg->journal_rwsem); 2042 } else { 2043 page = get_next_sit_page(sbi, start_segno); 2044 raw_sit = page_address(page); 2045 } 2046 2047 /* flush dirty sit entries in region of current sit set */ 2048 for_each_set_bit_from(segno, bitmap, end) { 2049 int offset, sit_offset; 2050 2051 se = get_seg_entry(sbi, segno); 2052 2053 /* add discard candidates */ 2054 if (cpc->reason != CP_DISCARD) { 2055 cpc->trim_start = segno; 2056 add_discard_addrs(sbi, cpc); 2057 } 2058 2059 if (to_journal) { 2060 offset = lookup_journal_in_cursum(journal, 2061 SIT_JOURNAL, segno, 1); 2062 f2fs_bug_on(sbi, offset < 0); 2063 segno_in_journal(journal, offset) = 2064 cpu_to_le32(segno); 2065 seg_info_to_raw_sit(se, 2066 &sit_in_journal(journal, offset)); 2067 } else { 2068 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2069 seg_info_to_raw_sit(se, 2070 &raw_sit->entries[sit_offset]); 2071 } 2072 2073 __clear_bit(segno, bitmap); 2074 sit_i->dirty_sentries--; 2075 ses->entry_cnt--; 2076 } 2077 2078 if (to_journal) 2079 up_write(&curseg->journal_rwsem); 2080 else 2081 f2fs_put_page(page, 1); 2082 2083 f2fs_bug_on(sbi, ses->entry_cnt); 2084 release_sit_entry_set(ses); 2085 } 2086 2087 f2fs_bug_on(sbi, !list_empty(head)); 2088 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2089 out: 2090 if (cpc->reason == CP_DISCARD) { 2091 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2092 add_discard_addrs(sbi, cpc); 2093 } 2094 mutex_unlock(&sit_i->sentry_lock); 2095 2096 set_prefree_as_free_segments(sbi); 2097 } 2098 2099 static int build_sit_info(struct f2fs_sb_info *sbi) 2100 { 2101 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2102 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2103 struct sit_info *sit_i; 2104 unsigned int sit_segs, start; 2105 char *src_bitmap, *dst_bitmap; 2106 unsigned int bitmap_size; 2107 2108 /* allocate memory for SIT information */ 2109 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2110 if (!sit_i) 2111 return -ENOMEM; 2112 2113 SM_I(sbi)->sit_info = sit_i; 2114 2115 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2116 sizeof(struct seg_entry), GFP_KERNEL); 2117 if (!sit_i->sentries) 2118 return -ENOMEM; 2119 2120 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2121 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2122 if (!sit_i->dirty_sentries_bitmap) 2123 return -ENOMEM; 2124 2125 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2126 sit_i->sentries[start].cur_valid_map 2127 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2128 sit_i->sentries[start].ckpt_valid_map 2129 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2130 sit_i->sentries[start].discard_map 2131 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2132 if (!sit_i->sentries[start].cur_valid_map || 2133 !sit_i->sentries[start].ckpt_valid_map || 2134 !sit_i->sentries[start].discard_map) 2135 return -ENOMEM; 2136 } 2137 2138 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2139 if (!sit_i->tmp_map) 2140 return -ENOMEM; 2141 2142 if (sbi->segs_per_sec > 1) { 2143 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2144 sizeof(struct sec_entry), GFP_KERNEL); 2145 if (!sit_i->sec_entries) 2146 return -ENOMEM; 2147 } 2148 2149 /* get information related with SIT */ 2150 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2151 2152 /* setup SIT bitmap from ckeckpoint pack */ 2153 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2154 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2155 2156 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2157 if (!dst_bitmap) 2158 return -ENOMEM; 2159 2160 /* init SIT information */ 2161 sit_i->s_ops = &default_salloc_ops; 2162 2163 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2164 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2165 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 2166 sit_i->sit_bitmap = dst_bitmap; 2167 sit_i->bitmap_size = bitmap_size; 2168 sit_i->dirty_sentries = 0; 2169 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2170 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2171 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2172 mutex_init(&sit_i->sentry_lock); 2173 return 0; 2174 } 2175 2176 static int build_free_segmap(struct f2fs_sb_info *sbi) 2177 { 2178 struct free_segmap_info *free_i; 2179 unsigned int bitmap_size, sec_bitmap_size; 2180 2181 /* allocate memory for free segmap information */ 2182 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2183 if (!free_i) 2184 return -ENOMEM; 2185 2186 SM_I(sbi)->free_info = free_i; 2187 2188 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2189 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2190 if (!free_i->free_segmap) 2191 return -ENOMEM; 2192 2193 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2194 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2195 if (!free_i->free_secmap) 2196 return -ENOMEM; 2197 2198 /* set all segments as dirty temporarily */ 2199 memset(free_i->free_segmap, 0xff, bitmap_size); 2200 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2201 2202 /* init free segmap information */ 2203 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2204 free_i->free_segments = 0; 2205 free_i->free_sections = 0; 2206 spin_lock_init(&free_i->segmap_lock); 2207 return 0; 2208 } 2209 2210 static int build_curseg(struct f2fs_sb_info *sbi) 2211 { 2212 struct curseg_info *array; 2213 int i; 2214 2215 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2216 if (!array) 2217 return -ENOMEM; 2218 2219 SM_I(sbi)->curseg_array = array; 2220 2221 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2222 mutex_init(&array[i].curseg_mutex); 2223 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2224 if (!array[i].sum_blk) 2225 return -ENOMEM; 2226 init_rwsem(&array[i].journal_rwsem); 2227 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2228 GFP_KERNEL); 2229 if (!array[i].journal) 2230 return -ENOMEM; 2231 array[i].segno = NULL_SEGNO; 2232 array[i].next_blkoff = 0; 2233 } 2234 return restore_curseg_summaries(sbi); 2235 } 2236 2237 static void build_sit_entries(struct f2fs_sb_info *sbi) 2238 { 2239 struct sit_info *sit_i = SIT_I(sbi); 2240 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2241 struct f2fs_journal *journal = curseg->journal; 2242 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2243 unsigned int i, start, end; 2244 unsigned int readed, start_blk = 0; 2245 int nrpages = MAX_BIO_BLOCKS(sbi) * 8; 2246 2247 do { 2248 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true); 2249 2250 start = start_blk * sit_i->sents_per_block; 2251 end = (start_blk + readed) * sit_i->sents_per_block; 2252 2253 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2254 struct seg_entry *se = &sit_i->sentries[start]; 2255 struct f2fs_sit_block *sit_blk; 2256 struct f2fs_sit_entry sit; 2257 struct page *page; 2258 2259 down_read(&curseg->journal_rwsem); 2260 for (i = 0; i < sits_in_cursum(journal); i++) { 2261 if (le32_to_cpu(segno_in_journal(journal, i)) 2262 == start) { 2263 sit = sit_in_journal(journal, i); 2264 up_read(&curseg->journal_rwsem); 2265 goto got_it; 2266 } 2267 } 2268 up_read(&curseg->journal_rwsem); 2269 2270 page = get_current_sit_page(sbi, start); 2271 sit_blk = (struct f2fs_sit_block *)page_address(page); 2272 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2273 f2fs_put_page(page, 1); 2274 got_it: 2275 check_block_count(sbi, start, &sit); 2276 seg_info_from_raw_sit(se, &sit); 2277 2278 /* build discard map only one time */ 2279 memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 2280 sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks; 2281 2282 if (sbi->segs_per_sec > 1) { 2283 struct sec_entry *e = get_sec_entry(sbi, start); 2284 e->valid_blocks += se->valid_blocks; 2285 } 2286 } 2287 start_blk += readed; 2288 } while (start_blk < sit_blk_cnt); 2289 } 2290 2291 static void init_free_segmap(struct f2fs_sb_info *sbi) 2292 { 2293 unsigned int start; 2294 int type; 2295 2296 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2297 struct seg_entry *sentry = get_seg_entry(sbi, start); 2298 if (!sentry->valid_blocks) 2299 __set_free(sbi, start); 2300 } 2301 2302 /* set use the current segments */ 2303 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2304 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2305 __set_test_and_inuse(sbi, curseg_t->segno); 2306 } 2307 } 2308 2309 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2310 { 2311 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2312 struct free_segmap_info *free_i = FREE_I(sbi); 2313 unsigned int segno = 0, offset = 0; 2314 unsigned short valid_blocks; 2315 2316 while (1) { 2317 /* find dirty segment based on free segmap */ 2318 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2319 if (segno >= MAIN_SEGS(sbi)) 2320 break; 2321 offset = segno + 1; 2322 valid_blocks = get_valid_blocks(sbi, segno, 0); 2323 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2324 continue; 2325 if (valid_blocks > sbi->blocks_per_seg) { 2326 f2fs_bug_on(sbi, 1); 2327 continue; 2328 } 2329 mutex_lock(&dirty_i->seglist_lock); 2330 __locate_dirty_segment(sbi, segno, DIRTY); 2331 mutex_unlock(&dirty_i->seglist_lock); 2332 } 2333 } 2334 2335 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2336 { 2337 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2338 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2339 2340 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2341 if (!dirty_i->victim_secmap) 2342 return -ENOMEM; 2343 return 0; 2344 } 2345 2346 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2347 { 2348 struct dirty_seglist_info *dirty_i; 2349 unsigned int bitmap_size, i; 2350 2351 /* allocate memory for dirty segments list information */ 2352 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2353 if (!dirty_i) 2354 return -ENOMEM; 2355 2356 SM_I(sbi)->dirty_info = dirty_i; 2357 mutex_init(&dirty_i->seglist_lock); 2358 2359 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2360 2361 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2362 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2363 if (!dirty_i->dirty_segmap[i]) 2364 return -ENOMEM; 2365 } 2366 2367 init_dirty_segmap(sbi); 2368 return init_victim_secmap(sbi); 2369 } 2370 2371 /* 2372 * Update min, max modified time for cost-benefit GC algorithm 2373 */ 2374 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2375 { 2376 struct sit_info *sit_i = SIT_I(sbi); 2377 unsigned int segno; 2378 2379 mutex_lock(&sit_i->sentry_lock); 2380 2381 sit_i->min_mtime = LLONG_MAX; 2382 2383 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2384 unsigned int i; 2385 unsigned long long mtime = 0; 2386 2387 for (i = 0; i < sbi->segs_per_sec; i++) 2388 mtime += get_seg_entry(sbi, segno + i)->mtime; 2389 2390 mtime = div_u64(mtime, sbi->segs_per_sec); 2391 2392 if (sit_i->min_mtime > mtime) 2393 sit_i->min_mtime = mtime; 2394 } 2395 sit_i->max_mtime = get_mtime(sbi); 2396 mutex_unlock(&sit_i->sentry_lock); 2397 } 2398 2399 int build_segment_manager(struct f2fs_sb_info *sbi) 2400 { 2401 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2402 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2403 struct f2fs_sm_info *sm_info; 2404 int err; 2405 2406 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2407 if (!sm_info) 2408 return -ENOMEM; 2409 2410 /* init sm info */ 2411 sbi->sm_info = sm_info; 2412 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2413 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2414 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2415 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2416 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2417 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2418 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2419 sm_info->rec_prefree_segments = sm_info->main_segments * 2420 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2421 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 2422 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 2423 2424 if (!test_opt(sbi, LFS)) 2425 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2426 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2427 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2428 2429 INIT_LIST_HEAD(&sm_info->discard_list); 2430 sm_info->nr_discards = 0; 2431 sm_info->max_discards = 0; 2432 2433 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2434 2435 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2436 2437 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2438 err = create_flush_cmd_control(sbi); 2439 if (err) 2440 return err; 2441 } 2442 2443 err = build_sit_info(sbi); 2444 if (err) 2445 return err; 2446 err = build_free_segmap(sbi); 2447 if (err) 2448 return err; 2449 err = build_curseg(sbi); 2450 if (err) 2451 return err; 2452 2453 /* reinit free segmap based on SIT */ 2454 build_sit_entries(sbi); 2455 2456 init_free_segmap(sbi); 2457 err = build_dirty_segmap(sbi); 2458 if (err) 2459 return err; 2460 2461 init_min_max_mtime(sbi); 2462 return 0; 2463 } 2464 2465 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2466 enum dirty_type dirty_type) 2467 { 2468 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2469 2470 mutex_lock(&dirty_i->seglist_lock); 2471 kvfree(dirty_i->dirty_segmap[dirty_type]); 2472 dirty_i->nr_dirty[dirty_type] = 0; 2473 mutex_unlock(&dirty_i->seglist_lock); 2474 } 2475 2476 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2477 { 2478 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2479 kvfree(dirty_i->victim_secmap); 2480 } 2481 2482 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2483 { 2484 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2485 int i; 2486 2487 if (!dirty_i) 2488 return; 2489 2490 /* discard pre-free/dirty segments list */ 2491 for (i = 0; i < NR_DIRTY_TYPE; i++) 2492 discard_dirty_segmap(sbi, i); 2493 2494 destroy_victim_secmap(sbi); 2495 SM_I(sbi)->dirty_info = NULL; 2496 kfree(dirty_i); 2497 } 2498 2499 static void destroy_curseg(struct f2fs_sb_info *sbi) 2500 { 2501 struct curseg_info *array = SM_I(sbi)->curseg_array; 2502 int i; 2503 2504 if (!array) 2505 return; 2506 SM_I(sbi)->curseg_array = NULL; 2507 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2508 kfree(array[i].sum_blk); 2509 kfree(array[i].journal); 2510 } 2511 kfree(array); 2512 } 2513 2514 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2515 { 2516 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2517 if (!free_i) 2518 return; 2519 SM_I(sbi)->free_info = NULL; 2520 kvfree(free_i->free_segmap); 2521 kvfree(free_i->free_secmap); 2522 kfree(free_i); 2523 } 2524 2525 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2526 { 2527 struct sit_info *sit_i = SIT_I(sbi); 2528 unsigned int start; 2529 2530 if (!sit_i) 2531 return; 2532 2533 if (sit_i->sentries) { 2534 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2535 kfree(sit_i->sentries[start].cur_valid_map); 2536 kfree(sit_i->sentries[start].ckpt_valid_map); 2537 kfree(sit_i->sentries[start].discard_map); 2538 } 2539 } 2540 kfree(sit_i->tmp_map); 2541 2542 kvfree(sit_i->sentries); 2543 kvfree(sit_i->sec_entries); 2544 kvfree(sit_i->dirty_sentries_bitmap); 2545 2546 SM_I(sbi)->sit_info = NULL; 2547 kfree(sit_i->sit_bitmap); 2548 kfree(sit_i); 2549 } 2550 2551 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2552 { 2553 struct f2fs_sm_info *sm_info = SM_I(sbi); 2554 2555 if (!sm_info) 2556 return; 2557 destroy_flush_cmd_control(sbi); 2558 destroy_dirty_segmap(sbi); 2559 destroy_curseg(sbi); 2560 destroy_free_segmap(sbi); 2561 destroy_sit_info(sbi); 2562 sbi->sm_info = NULL; 2563 kfree(sm_info); 2564 } 2565 2566 int __init create_segment_manager_caches(void) 2567 { 2568 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2569 sizeof(struct discard_entry)); 2570 if (!discard_entry_slab) 2571 goto fail; 2572 2573 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2574 sizeof(struct sit_entry_set)); 2575 if (!sit_entry_set_slab) 2576 goto destory_discard_entry; 2577 2578 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2579 sizeof(struct inmem_pages)); 2580 if (!inmem_entry_slab) 2581 goto destroy_sit_entry_set; 2582 return 0; 2583 2584 destroy_sit_entry_set: 2585 kmem_cache_destroy(sit_entry_set_slab); 2586 destory_discard_entry: 2587 kmem_cache_destroy(discard_entry_slab); 2588 fail: 2589 return -ENOMEM; 2590 } 2591 2592 void destroy_segment_manager_caches(void) 2593 { 2594 kmem_cache_destroy(sit_entry_set_slab); 2595 kmem_cache_destroy(discard_entry_slab); 2596 kmem_cache_destroy(inmem_entry_slab); 2597 } 2598