1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/vmalloc.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include <trace/events/f2fs.h> 24 25 #define __reverse_ffz(x) __reverse_ffs(~(x)) 26 27 static struct kmem_cache *discard_entry_slab; 28 static struct kmem_cache *flush_cmd_slab; 29 30 /* 31 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 32 * MSB and LSB are reversed in a byte by f2fs_set_bit. 33 */ 34 static inline unsigned long __reverse_ffs(unsigned long word) 35 { 36 int num = 0; 37 38 #if BITS_PER_LONG == 64 39 if ((word & 0xffffffff) == 0) { 40 num += 32; 41 word >>= 32; 42 } 43 #endif 44 if ((word & 0xffff) == 0) { 45 num += 16; 46 word >>= 16; 47 } 48 if ((word & 0xff) == 0) { 49 num += 8; 50 word >>= 8; 51 } 52 if ((word & 0xf0) == 0) 53 num += 4; 54 else 55 word >>= 4; 56 if ((word & 0xc) == 0) 57 num += 2; 58 else 59 word >>= 2; 60 if ((word & 0x2) == 0) 61 num += 1; 62 return num; 63 } 64 65 /* 66 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue 67 * f2fs_set_bit makes MSB and LSB reversed in a byte. 68 * Example: 69 * LSB <--> MSB 70 * f2fs_set_bit(0, bitmap) => 0000 0001 71 * f2fs_set_bit(7, bitmap) => 1000 0000 72 */ 73 static unsigned long __find_rev_next_bit(const unsigned long *addr, 74 unsigned long size, unsigned long offset) 75 { 76 const unsigned long *p = addr + BIT_WORD(offset); 77 unsigned long result = offset & ~(BITS_PER_LONG - 1); 78 unsigned long tmp; 79 unsigned long mask, submask; 80 unsigned long quot, rest; 81 82 if (offset >= size) 83 return size; 84 85 size -= result; 86 offset %= BITS_PER_LONG; 87 if (!offset) 88 goto aligned; 89 90 tmp = *(p++); 91 quot = (offset >> 3) << 3; 92 rest = offset & 0x7; 93 mask = ~0UL << quot; 94 submask = (unsigned char)(0xff << rest) >> rest; 95 submask <<= quot; 96 mask &= submask; 97 tmp &= mask; 98 if (size < BITS_PER_LONG) 99 goto found_first; 100 if (tmp) 101 goto found_middle; 102 103 size -= BITS_PER_LONG; 104 result += BITS_PER_LONG; 105 aligned: 106 while (size & ~(BITS_PER_LONG-1)) { 107 tmp = *(p++); 108 if (tmp) 109 goto found_middle; 110 result += BITS_PER_LONG; 111 size -= BITS_PER_LONG; 112 } 113 if (!size) 114 return result; 115 tmp = *p; 116 found_first: 117 tmp &= (~0UL >> (BITS_PER_LONG - size)); 118 if (tmp == 0UL) /* Are any bits set? */ 119 return result + size; /* Nope. */ 120 found_middle: 121 return result + __reverse_ffs(tmp); 122 } 123 124 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 125 unsigned long size, unsigned long offset) 126 { 127 const unsigned long *p = addr + BIT_WORD(offset); 128 unsigned long result = offset & ~(BITS_PER_LONG - 1); 129 unsigned long tmp; 130 unsigned long mask, submask; 131 unsigned long quot, rest; 132 133 if (offset >= size) 134 return size; 135 136 size -= result; 137 offset %= BITS_PER_LONG; 138 if (!offset) 139 goto aligned; 140 141 tmp = *(p++); 142 quot = (offset >> 3) << 3; 143 rest = offset & 0x7; 144 mask = ~(~0UL << quot); 145 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest); 146 submask <<= quot; 147 mask += submask; 148 tmp |= mask; 149 if (size < BITS_PER_LONG) 150 goto found_first; 151 if (~tmp) 152 goto found_middle; 153 154 size -= BITS_PER_LONG; 155 result += BITS_PER_LONG; 156 aligned: 157 while (size & ~(BITS_PER_LONG - 1)) { 158 tmp = *(p++); 159 if (~tmp) 160 goto found_middle; 161 result += BITS_PER_LONG; 162 size -= BITS_PER_LONG; 163 } 164 if (!size) 165 return result; 166 tmp = *p; 167 168 found_first: 169 tmp |= ~0UL << size; 170 if (tmp == ~0UL) /* Are any bits zero? */ 171 return result + size; /* Nope. */ 172 found_middle: 173 return result + __reverse_ffz(tmp); 174 } 175 176 /* 177 * This function balances dirty node and dentry pages. 178 * In addition, it controls garbage collection. 179 */ 180 void f2fs_balance_fs(struct f2fs_sb_info *sbi) 181 { 182 /* 183 * We should do GC or end up with checkpoint, if there are so many dirty 184 * dir/node pages without enough free segments. 185 */ 186 if (has_not_enough_free_secs(sbi, 0)) { 187 mutex_lock(&sbi->gc_mutex); 188 f2fs_gc(sbi); 189 } 190 } 191 192 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 193 { 194 /* check the # of cached NAT entries and prefree segments */ 195 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) || 196 excess_prefree_segs(sbi)) 197 f2fs_sync_fs(sbi->sb, true); 198 } 199 200 static int issue_flush_thread(void *data) 201 { 202 struct f2fs_sb_info *sbi = data; 203 struct f2fs_sm_info *sm_i = SM_I(sbi); 204 wait_queue_head_t *q = &sm_i->flush_wait_queue; 205 repeat: 206 if (kthread_should_stop()) 207 return 0; 208 209 spin_lock(&sm_i->issue_lock); 210 if (sm_i->issue_list) { 211 sm_i->dispatch_list = sm_i->issue_list; 212 sm_i->issue_list = sm_i->issue_tail = NULL; 213 } 214 spin_unlock(&sm_i->issue_lock); 215 216 if (sm_i->dispatch_list) { 217 struct bio *bio = bio_alloc(GFP_NOIO, 0); 218 struct flush_cmd *cmd, *next; 219 int ret; 220 221 bio->bi_bdev = sbi->sb->s_bdev; 222 ret = submit_bio_wait(WRITE_FLUSH, bio); 223 224 for (cmd = sm_i->dispatch_list; cmd; cmd = next) { 225 cmd->ret = ret; 226 next = cmd->next; 227 complete(&cmd->wait); 228 } 229 sm_i->dispatch_list = NULL; 230 } 231 232 wait_event_interruptible(*q, kthread_should_stop() || sm_i->issue_list); 233 goto repeat; 234 } 235 236 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 237 { 238 struct f2fs_sm_info *sm_i = SM_I(sbi); 239 struct flush_cmd *cmd; 240 int ret; 241 242 if (!test_opt(sbi, FLUSH_MERGE)) 243 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL); 244 245 cmd = f2fs_kmem_cache_alloc(flush_cmd_slab, GFP_ATOMIC); 246 cmd->next = NULL; 247 cmd->ret = 0; 248 init_completion(&cmd->wait); 249 250 spin_lock(&sm_i->issue_lock); 251 if (sm_i->issue_list) 252 sm_i->issue_tail->next = cmd; 253 else 254 sm_i->issue_list = cmd; 255 sm_i->issue_tail = cmd; 256 spin_unlock(&sm_i->issue_lock); 257 258 if (!sm_i->dispatch_list) 259 wake_up(&sm_i->flush_wait_queue); 260 261 wait_for_completion(&cmd->wait); 262 ret = cmd->ret; 263 kmem_cache_free(flush_cmd_slab, cmd); 264 return ret; 265 } 266 267 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 268 enum dirty_type dirty_type) 269 { 270 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 271 272 /* need not be added */ 273 if (IS_CURSEG(sbi, segno)) 274 return; 275 276 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 277 dirty_i->nr_dirty[dirty_type]++; 278 279 if (dirty_type == DIRTY) { 280 struct seg_entry *sentry = get_seg_entry(sbi, segno); 281 enum dirty_type t = sentry->type; 282 283 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 284 dirty_i->nr_dirty[t]++; 285 } 286 } 287 288 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 289 enum dirty_type dirty_type) 290 { 291 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 292 293 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 294 dirty_i->nr_dirty[dirty_type]--; 295 296 if (dirty_type == DIRTY) { 297 struct seg_entry *sentry = get_seg_entry(sbi, segno); 298 enum dirty_type t = sentry->type; 299 300 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 301 dirty_i->nr_dirty[t]--; 302 303 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 304 clear_bit(GET_SECNO(sbi, segno), 305 dirty_i->victim_secmap); 306 } 307 } 308 309 /* 310 * Should not occur error such as -ENOMEM. 311 * Adding dirty entry into seglist is not critical operation. 312 * If a given segment is one of current working segments, it won't be added. 313 */ 314 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 315 { 316 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 317 unsigned short valid_blocks; 318 319 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 320 return; 321 322 mutex_lock(&dirty_i->seglist_lock); 323 324 valid_blocks = get_valid_blocks(sbi, segno, 0); 325 326 if (valid_blocks == 0) { 327 __locate_dirty_segment(sbi, segno, PRE); 328 __remove_dirty_segment(sbi, segno, DIRTY); 329 } else if (valid_blocks < sbi->blocks_per_seg) { 330 __locate_dirty_segment(sbi, segno, DIRTY); 331 } else { 332 /* Recovery routine with SSR needs this */ 333 __remove_dirty_segment(sbi, segno, DIRTY); 334 } 335 336 mutex_unlock(&dirty_i->seglist_lock); 337 } 338 339 static void f2fs_issue_discard(struct f2fs_sb_info *sbi, 340 block_t blkstart, block_t blklen) 341 { 342 sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart); 343 sector_t len = SECTOR_FROM_BLOCK(sbi, blklen); 344 blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 345 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 346 } 347 348 static void add_discard_addrs(struct f2fs_sb_info *sbi, 349 unsigned int segno, struct seg_entry *se) 350 { 351 struct list_head *head = &SM_I(sbi)->discard_list; 352 struct discard_entry *new; 353 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 354 int max_blocks = sbi->blocks_per_seg; 355 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 356 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 357 unsigned long dmap[entries]; 358 unsigned int start = 0, end = -1; 359 int i; 360 361 if (!test_opt(sbi, DISCARD)) 362 return; 363 364 /* zero block will be discarded through the prefree list */ 365 if (!se->valid_blocks || se->valid_blocks == max_blocks) 366 return; 367 368 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 369 for (i = 0; i < entries; i++) 370 dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 371 372 while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 373 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 374 if (start >= max_blocks) 375 break; 376 377 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 378 379 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 380 INIT_LIST_HEAD(&new->list); 381 new->blkaddr = START_BLOCK(sbi, segno) + start; 382 new->len = end - start; 383 384 list_add_tail(&new->list, head); 385 SM_I(sbi)->nr_discards += end - start; 386 } 387 } 388 389 /* 390 * Should call clear_prefree_segments after checkpoint is done. 391 */ 392 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 393 { 394 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 395 unsigned int segno = -1; 396 unsigned int total_segs = TOTAL_SEGS(sbi); 397 398 mutex_lock(&dirty_i->seglist_lock); 399 while (1) { 400 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, 401 segno + 1); 402 if (segno >= total_segs) 403 break; 404 __set_test_and_free(sbi, segno); 405 } 406 mutex_unlock(&dirty_i->seglist_lock); 407 } 408 409 void clear_prefree_segments(struct f2fs_sb_info *sbi) 410 { 411 struct list_head *head = &(SM_I(sbi)->discard_list); 412 struct discard_entry *entry, *this; 413 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 414 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 415 unsigned int total_segs = TOTAL_SEGS(sbi); 416 unsigned int start = 0, end = -1; 417 418 mutex_lock(&dirty_i->seglist_lock); 419 420 while (1) { 421 int i; 422 start = find_next_bit(prefree_map, total_segs, end + 1); 423 if (start >= total_segs) 424 break; 425 end = find_next_zero_bit(prefree_map, total_segs, start + 1); 426 427 for (i = start; i < end; i++) 428 clear_bit(i, prefree_map); 429 430 dirty_i->nr_dirty[PRE] -= end - start; 431 432 if (!test_opt(sbi, DISCARD)) 433 continue; 434 435 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 436 (end - start) << sbi->log_blocks_per_seg); 437 } 438 mutex_unlock(&dirty_i->seglist_lock); 439 440 /* send small discards */ 441 list_for_each_entry_safe(entry, this, head, list) { 442 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 443 list_del(&entry->list); 444 SM_I(sbi)->nr_discards -= entry->len; 445 kmem_cache_free(discard_entry_slab, entry); 446 } 447 } 448 449 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 450 { 451 struct sit_info *sit_i = SIT_I(sbi); 452 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) 453 sit_i->dirty_sentries++; 454 } 455 456 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 457 unsigned int segno, int modified) 458 { 459 struct seg_entry *se = get_seg_entry(sbi, segno); 460 se->type = type; 461 if (modified) 462 __mark_sit_entry_dirty(sbi, segno); 463 } 464 465 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 466 { 467 struct seg_entry *se; 468 unsigned int segno, offset; 469 long int new_vblocks; 470 471 segno = GET_SEGNO(sbi, blkaddr); 472 473 se = get_seg_entry(sbi, segno); 474 new_vblocks = se->valid_blocks + del; 475 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 476 477 f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) || 478 (new_vblocks > sbi->blocks_per_seg))); 479 480 se->valid_blocks = new_vblocks; 481 se->mtime = get_mtime(sbi); 482 SIT_I(sbi)->max_mtime = se->mtime; 483 484 /* Update valid block bitmap */ 485 if (del > 0) { 486 if (f2fs_set_bit(offset, se->cur_valid_map)) 487 BUG(); 488 } else { 489 if (!f2fs_clear_bit(offset, se->cur_valid_map)) 490 BUG(); 491 } 492 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 493 se->ckpt_valid_blocks += del; 494 495 __mark_sit_entry_dirty(sbi, segno); 496 497 /* update total number of valid blocks to be written in ckpt area */ 498 SIT_I(sbi)->written_valid_blocks += del; 499 500 if (sbi->segs_per_sec > 1) 501 get_sec_entry(sbi, segno)->valid_blocks += del; 502 } 503 504 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 505 { 506 update_sit_entry(sbi, new, 1); 507 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 508 update_sit_entry(sbi, old, -1); 509 510 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 511 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 512 } 513 514 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 515 { 516 unsigned int segno = GET_SEGNO(sbi, addr); 517 struct sit_info *sit_i = SIT_I(sbi); 518 519 f2fs_bug_on(addr == NULL_ADDR); 520 if (addr == NEW_ADDR) 521 return; 522 523 /* add it into sit main buffer */ 524 mutex_lock(&sit_i->sentry_lock); 525 526 update_sit_entry(sbi, addr, -1); 527 528 /* add it into dirty seglist */ 529 locate_dirty_segment(sbi, segno); 530 531 mutex_unlock(&sit_i->sentry_lock); 532 } 533 534 /* 535 * This function should be resided under the curseg_mutex lock 536 */ 537 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 538 struct f2fs_summary *sum) 539 { 540 struct curseg_info *curseg = CURSEG_I(sbi, type); 541 void *addr = curseg->sum_blk; 542 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 543 memcpy(addr, sum, sizeof(struct f2fs_summary)); 544 } 545 546 /* 547 * Calculate the number of current summary pages for writing 548 */ 549 int npages_for_summary_flush(struct f2fs_sb_info *sbi) 550 { 551 int valid_sum_count = 0; 552 int i, sum_in_page; 553 554 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 555 if (sbi->ckpt->alloc_type[i] == SSR) 556 valid_sum_count += sbi->blocks_per_seg; 557 else 558 valid_sum_count += curseg_blkoff(sbi, i); 559 } 560 561 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - 562 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 563 if (valid_sum_count <= sum_in_page) 564 return 1; 565 else if ((valid_sum_count - sum_in_page) <= 566 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 567 return 2; 568 return 3; 569 } 570 571 /* 572 * Caller should put this summary page 573 */ 574 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 575 { 576 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 577 } 578 579 static void write_sum_page(struct f2fs_sb_info *sbi, 580 struct f2fs_summary_block *sum_blk, block_t blk_addr) 581 { 582 struct page *page = grab_meta_page(sbi, blk_addr); 583 void *kaddr = page_address(page); 584 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); 585 set_page_dirty(page); 586 f2fs_put_page(page, 1); 587 } 588 589 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 590 { 591 struct curseg_info *curseg = CURSEG_I(sbi, type); 592 unsigned int segno = curseg->segno + 1; 593 struct free_segmap_info *free_i = FREE_I(sbi); 594 595 if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec) 596 return !test_bit(segno, free_i->free_segmap); 597 return 0; 598 } 599 600 /* 601 * Find a new segment from the free segments bitmap to right order 602 * This function should be returned with success, otherwise BUG 603 */ 604 static void get_new_segment(struct f2fs_sb_info *sbi, 605 unsigned int *newseg, bool new_sec, int dir) 606 { 607 struct free_segmap_info *free_i = FREE_I(sbi); 608 unsigned int segno, secno, zoneno; 609 unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone; 610 unsigned int hint = *newseg / sbi->segs_per_sec; 611 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 612 unsigned int left_start = hint; 613 bool init = true; 614 int go_left = 0; 615 int i; 616 617 write_lock(&free_i->segmap_lock); 618 619 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 620 segno = find_next_zero_bit(free_i->free_segmap, 621 TOTAL_SEGS(sbi), *newseg + 1); 622 if (segno - *newseg < sbi->segs_per_sec - 623 (*newseg % sbi->segs_per_sec)) 624 goto got_it; 625 } 626 find_other_zone: 627 secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint); 628 if (secno >= TOTAL_SECS(sbi)) { 629 if (dir == ALLOC_RIGHT) { 630 secno = find_next_zero_bit(free_i->free_secmap, 631 TOTAL_SECS(sbi), 0); 632 f2fs_bug_on(secno >= TOTAL_SECS(sbi)); 633 } else { 634 go_left = 1; 635 left_start = hint - 1; 636 } 637 } 638 if (go_left == 0) 639 goto skip_left; 640 641 while (test_bit(left_start, free_i->free_secmap)) { 642 if (left_start > 0) { 643 left_start--; 644 continue; 645 } 646 left_start = find_next_zero_bit(free_i->free_secmap, 647 TOTAL_SECS(sbi), 0); 648 f2fs_bug_on(left_start >= TOTAL_SECS(sbi)); 649 break; 650 } 651 secno = left_start; 652 skip_left: 653 hint = secno; 654 segno = secno * sbi->segs_per_sec; 655 zoneno = secno / sbi->secs_per_zone; 656 657 /* give up on finding another zone */ 658 if (!init) 659 goto got_it; 660 if (sbi->secs_per_zone == 1) 661 goto got_it; 662 if (zoneno == old_zoneno) 663 goto got_it; 664 if (dir == ALLOC_LEFT) { 665 if (!go_left && zoneno + 1 >= total_zones) 666 goto got_it; 667 if (go_left && zoneno == 0) 668 goto got_it; 669 } 670 for (i = 0; i < NR_CURSEG_TYPE; i++) 671 if (CURSEG_I(sbi, i)->zone == zoneno) 672 break; 673 674 if (i < NR_CURSEG_TYPE) { 675 /* zone is in user, try another */ 676 if (go_left) 677 hint = zoneno * sbi->secs_per_zone - 1; 678 else if (zoneno + 1 >= total_zones) 679 hint = 0; 680 else 681 hint = (zoneno + 1) * sbi->secs_per_zone; 682 init = false; 683 goto find_other_zone; 684 } 685 got_it: 686 /* set it as dirty segment in free segmap */ 687 f2fs_bug_on(test_bit(segno, free_i->free_segmap)); 688 __set_inuse(sbi, segno); 689 *newseg = segno; 690 write_unlock(&free_i->segmap_lock); 691 } 692 693 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 694 { 695 struct curseg_info *curseg = CURSEG_I(sbi, type); 696 struct summary_footer *sum_footer; 697 698 curseg->segno = curseg->next_segno; 699 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 700 curseg->next_blkoff = 0; 701 curseg->next_segno = NULL_SEGNO; 702 703 sum_footer = &(curseg->sum_blk->footer); 704 memset(sum_footer, 0, sizeof(struct summary_footer)); 705 if (IS_DATASEG(type)) 706 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 707 if (IS_NODESEG(type)) 708 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 709 __set_sit_entry_type(sbi, type, curseg->segno, modified); 710 } 711 712 /* 713 * Allocate a current working segment. 714 * This function always allocates a free segment in LFS manner. 715 */ 716 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 717 { 718 struct curseg_info *curseg = CURSEG_I(sbi, type); 719 unsigned int segno = curseg->segno; 720 int dir = ALLOC_LEFT; 721 722 write_sum_page(sbi, curseg->sum_blk, 723 GET_SUM_BLOCK(sbi, segno)); 724 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 725 dir = ALLOC_RIGHT; 726 727 if (test_opt(sbi, NOHEAP)) 728 dir = ALLOC_RIGHT; 729 730 get_new_segment(sbi, &segno, new_sec, dir); 731 curseg->next_segno = segno; 732 reset_curseg(sbi, type, 1); 733 curseg->alloc_type = LFS; 734 } 735 736 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 737 struct curseg_info *seg, block_t start) 738 { 739 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 740 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 741 unsigned long target_map[entries]; 742 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 743 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 744 int i, pos; 745 746 for (i = 0; i < entries; i++) 747 target_map[i] = ckpt_map[i] | cur_map[i]; 748 749 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 750 751 seg->next_blkoff = pos; 752 } 753 754 /* 755 * If a segment is written by LFS manner, next block offset is just obtained 756 * by increasing the current block offset. However, if a segment is written by 757 * SSR manner, next block offset obtained by calling __next_free_blkoff 758 */ 759 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 760 struct curseg_info *seg) 761 { 762 if (seg->alloc_type == SSR) 763 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 764 else 765 seg->next_blkoff++; 766 } 767 768 /* 769 * This function always allocates a used segment (from dirty seglist) by SSR 770 * manner, so it should recover the existing segment information of valid blocks 771 */ 772 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 773 { 774 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 775 struct curseg_info *curseg = CURSEG_I(sbi, type); 776 unsigned int new_segno = curseg->next_segno; 777 struct f2fs_summary_block *sum_node; 778 struct page *sum_page; 779 780 write_sum_page(sbi, curseg->sum_blk, 781 GET_SUM_BLOCK(sbi, curseg->segno)); 782 __set_test_and_inuse(sbi, new_segno); 783 784 mutex_lock(&dirty_i->seglist_lock); 785 __remove_dirty_segment(sbi, new_segno, PRE); 786 __remove_dirty_segment(sbi, new_segno, DIRTY); 787 mutex_unlock(&dirty_i->seglist_lock); 788 789 reset_curseg(sbi, type, 1); 790 curseg->alloc_type = SSR; 791 __next_free_blkoff(sbi, curseg, 0); 792 793 if (reuse) { 794 sum_page = get_sum_page(sbi, new_segno); 795 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 796 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 797 f2fs_put_page(sum_page, 1); 798 } 799 } 800 801 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 802 { 803 struct curseg_info *curseg = CURSEG_I(sbi, type); 804 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 805 806 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 807 return v_ops->get_victim(sbi, 808 &(curseg)->next_segno, BG_GC, type, SSR); 809 810 /* For data segments, let's do SSR more intensively */ 811 for (; type >= CURSEG_HOT_DATA; type--) 812 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 813 BG_GC, type, SSR)) 814 return 1; 815 return 0; 816 } 817 818 /* 819 * flush out current segment and replace it with new segment 820 * This function should be returned with success, otherwise BUG 821 */ 822 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 823 int type, bool force) 824 { 825 struct curseg_info *curseg = CURSEG_I(sbi, type); 826 827 if (force) 828 new_curseg(sbi, type, true); 829 else if (type == CURSEG_WARM_NODE) 830 new_curseg(sbi, type, false); 831 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 832 new_curseg(sbi, type, false); 833 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 834 change_curseg(sbi, type, true); 835 else 836 new_curseg(sbi, type, false); 837 838 stat_inc_seg_type(sbi, curseg); 839 } 840 841 void allocate_new_segments(struct f2fs_sb_info *sbi) 842 { 843 struct curseg_info *curseg; 844 unsigned int old_curseg; 845 int i; 846 847 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 848 curseg = CURSEG_I(sbi, i); 849 old_curseg = curseg->segno; 850 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 851 locate_dirty_segment(sbi, old_curseg); 852 } 853 } 854 855 static const struct segment_allocation default_salloc_ops = { 856 .allocate_segment = allocate_segment_by_default, 857 }; 858 859 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 860 { 861 struct curseg_info *curseg = CURSEG_I(sbi, type); 862 if (curseg->next_blkoff < sbi->blocks_per_seg) 863 return true; 864 return false; 865 } 866 867 static int __get_segment_type_2(struct page *page, enum page_type p_type) 868 { 869 if (p_type == DATA) 870 return CURSEG_HOT_DATA; 871 else 872 return CURSEG_HOT_NODE; 873 } 874 875 static int __get_segment_type_4(struct page *page, enum page_type p_type) 876 { 877 if (p_type == DATA) { 878 struct inode *inode = page->mapping->host; 879 880 if (S_ISDIR(inode->i_mode)) 881 return CURSEG_HOT_DATA; 882 else 883 return CURSEG_COLD_DATA; 884 } else { 885 if (IS_DNODE(page) && !is_cold_node(page)) 886 return CURSEG_HOT_NODE; 887 else 888 return CURSEG_COLD_NODE; 889 } 890 } 891 892 static int __get_segment_type_6(struct page *page, enum page_type p_type) 893 { 894 if (p_type == DATA) { 895 struct inode *inode = page->mapping->host; 896 897 if (S_ISDIR(inode->i_mode)) 898 return CURSEG_HOT_DATA; 899 else if (is_cold_data(page) || file_is_cold(inode)) 900 return CURSEG_COLD_DATA; 901 else 902 return CURSEG_WARM_DATA; 903 } else { 904 if (IS_DNODE(page)) 905 return is_cold_node(page) ? CURSEG_WARM_NODE : 906 CURSEG_HOT_NODE; 907 else 908 return CURSEG_COLD_NODE; 909 } 910 } 911 912 static int __get_segment_type(struct page *page, enum page_type p_type) 913 { 914 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 915 switch (sbi->active_logs) { 916 case 2: 917 return __get_segment_type_2(page, p_type); 918 case 4: 919 return __get_segment_type_4(page, p_type); 920 } 921 /* NR_CURSEG_TYPE(6) logs by default */ 922 f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE); 923 return __get_segment_type_6(page, p_type); 924 } 925 926 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 927 block_t old_blkaddr, block_t *new_blkaddr, 928 struct f2fs_summary *sum, int type) 929 { 930 struct sit_info *sit_i = SIT_I(sbi); 931 struct curseg_info *curseg; 932 unsigned int old_cursegno; 933 934 curseg = CURSEG_I(sbi, type); 935 936 mutex_lock(&curseg->curseg_mutex); 937 938 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 939 old_cursegno = curseg->segno; 940 941 /* 942 * __add_sum_entry should be resided under the curseg_mutex 943 * because, this function updates a summary entry in the 944 * current summary block. 945 */ 946 __add_sum_entry(sbi, type, sum); 947 948 mutex_lock(&sit_i->sentry_lock); 949 __refresh_next_blkoff(sbi, curseg); 950 951 stat_inc_block_count(sbi, curseg); 952 953 if (!__has_curseg_space(sbi, type)) 954 sit_i->s_ops->allocate_segment(sbi, type, false); 955 /* 956 * SIT information should be updated before segment allocation, 957 * since SSR needs latest valid block information. 958 */ 959 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 960 locate_dirty_segment(sbi, old_cursegno); 961 962 mutex_unlock(&sit_i->sentry_lock); 963 964 if (page && IS_NODESEG(type)) 965 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 966 967 mutex_unlock(&curseg->curseg_mutex); 968 } 969 970 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, 971 block_t old_blkaddr, block_t *new_blkaddr, 972 struct f2fs_summary *sum, struct f2fs_io_info *fio) 973 { 974 int type = __get_segment_type(page, fio->type); 975 976 allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type); 977 978 /* writeout dirty page into bdev */ 979 f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio); 980 } 981 982 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 983 { 984 struct f2fs_io_info fio = { 985 .type = META, 986 .rw = WRITE_SYNC | REQ_META | REQ_PRIO 987 }; 988 989 set_page_writeback(page); 990 f2fs_submit_page_mbio(sbi, page, page->index, &fio); 991 } 992 993 void write_node_page(struct f2fs_sb_info *sbi, struct page *page, 994 struct f2fs_io_info *fio, 995 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) 996 { 997 struct f2fs_summary sum; 998 set_summary(&sum, nid, 0, 0); 999 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio); 1000 } 1001 1002 void write_data_page(struct page *page, struct dnode_of_data *dn, 1003 block_t *new_blkaddr, struct f2fs_io_info *fio) 1004 { 1005 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb); 1006 struct f2fs_summary sum; 1007 struct node_info ni; 1008 1009 f2fs_bug_on(dn->data_blkaddr == NULL_ADDR); 1010 get_node_info(sbi, dn->nid, &ni); 1011 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1012 1013 do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio); 1014 } 1015 1016 void rewrite_data_page(struct page *page, block_t old_blkaddr, 1017 struct f2fs_io_info *fio) 1018 { 1019 struct inode *inode = page->mapping->host; 1020 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 1021 f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio); 1022 } 1023 1024 void recover_data_page(struct f2fs_sb_info *sbi, 1025 struct page *page, struct f2fs_summary *sum, 1026 block_t old_blkaddr, block_t new_blkaddr) 1027 { 1028 struct sit_info *sit_i = SIT_I(sbi); 1029 struct curseg_info *curseg; 1030 unsigned int segno, old_cursegno; 1031 struct seg_entry *se; 1032 int type; 1033 1034 segno = GET_SEGNO(sbi, new_blkaddr); 1035 se = get_seg_entry(sbi, segno); 1036 type = se->type; 1037 1038 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1039 if (old_blkaddr == NULL_ADDR) 1040 type = CURSEG_COLD_DATA; 1041 else 1042 type = CURSEG_WARM_DATA; 1043 } 1044 curseg = CURSEG_I(sbi, type); 1045 1046 mutex_lock(&curseg->curseg_mutex); 1047 mutex_lock(&sit_i->sentry_lock); 1048 1049 old_cursegno = curseg->segno; 1050 1051 /* change the current segment */ 1052 if (segno != curseg->segno) { 1053 curseg->next_segno = segno; 1054 change_curseg(sbi, type, true); 1055 } 1056 1057 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1058 __add_sum_entry(sbi, type, sum); 1059 1060 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1061 locate_dirty_segment(sbi, old_cursegno); 1062 1063 mutex_unlock(&sit_i->sentry_lock); 1064 mutex_unlock(&curseg->curseg_mutex); 1065 } 1066 1067 void rewrite_node_page(struct f2fs_sb_info *sbi, 1068 struct page *page, struct f2fs_summary *sum, 1069 block_t old_blkaddr, block_t new_blkaddr) 1070 { 1071 struct sit_info *sit_i = SIT_I(sbi); 1072 int type = CURSEG_WARM_NODE; 1073 struct curseg_info *curseg; 1074 unsigned int segno, old_cursegno; 1075 block_t next_blkaddr = next_blkaddr_of_node(page); 1076 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr); 1077 struct f2fs_io_info fio = { 1078 .type = NODE, 1079 .rw = WRITE_SYNC, 1080 }; 1081 1082 curseg = CURSEG_I(sbi, type); 1083 1084 mutex_lock(&curseg->curseg_mutex); 1085 mutex_lock(&sit_i->sentry_lock); 1086 1087 segno = GET_SEGNO(sbi, new_blkaddr); 1088 old_cursegno = curseg->segno; 1089 1090 /* change the current segment */ 1091 if (segno != curseg->segno) { 1092 curseg->next_segno = segno; 1093 change_curseg(sbi, type, true); 1094 } 1095 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1096 __add_sum_entry(sbi, type, sum); 1097 1098 /* change the current log to the next block addr in advance */ 1099 if (next_segno != segno) { 1100 curseg->next_segno = next_segno; 1101 change_curseg(sbi, type, true); 1102 } 1103 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr); 1104 1105 /* rewrite node page */ 1106 set_page_writeback(page); 1107 f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio); 1108 f2fs_submit_merged_bio(sbi, NODE, WRITE); 1109 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1110 locate_dirty_segment(sbi, old_cursegno); 1111 1112 mutex_unlock(&sit_i->sentry_lock); 1113 mutex_unlock(&curseg->curseg_mutex); 1114 } 1115 1116 static inline bool is_merged_page(struct f2fs_sb_info *sbi, 1117 struct page *page, enum page_type type) 1118 { 1119 enum page_type btype = PAGE_TYPE_OF_BIO(type); 1120 struct f2fs_bio_info *io = &sbi->write_io[btype]; 1121 struct bio_vec *bvec; 1122 int i; 1123 1124 down_read(&io->io_rwsem); 1125 if (!io->bio) 1126 goto out; 1127 1128 bio_for_each_segment_all(bvec, io->bio, i) { 1129 if (page == bvec->bv_page) { 1130 up_read(&io->io_rwsem); 1131 return true; 1132 } 1133 } 1134 1135 out: 1136 up_read(&io->io_rwsem); 1137 return false; 1138 } 1139 1140 void f2fs_wait_on_page_writeback(struct page *page, 1141 enum page_type type) 1142 { 1143 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 1144 if (PageWriteback(page)) { 1145 if (is_merged_page(sbi, page, type)) 1146 f2fs_submit_merged_bio(sbi, type, WRITE); 1147 wait_on_page_writeback(page); 1148 } 1149 } 1150 1151 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1152 { 1153 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1154 struct curseg_info *seg_i; 1155 unsigned char *kaddr; 1156 struct page *page; 1157 block_t start; 1158 int i, j, offset; 1159 1160 start = start_sum_block(sbi); 1161 1162 page = get_meta_page(sbi, start++); 1163 kaddr = (unsigned char *)page_address(page); 1164 1165 /* Step 1: restore nat cache */ 1166 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1167 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); 1168 1169 /* Step 2: restore sit cache */ 1170 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1171 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, 1172 SUM_JOURNAL_SIZE); 1173 offset = 2 * SUM_JOURNAL_SIZE; 1174 1175 /* Step 3: restore summary entries */ 1176 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1177 unsigned short blk_off; 1178 unsigned int segno; 1179 1180 seg_i = CURSEG_I(sbi, i); 1181 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1182 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1183 seg_i->next_segno = segno; 1184 reset_curseg(sbi, i, 0); 1185 seg_i->alloc_type = ckpt->alloc_type[i]; 1186 seg_i->next_blkoff = blk_off; 1187 1188 if (seg_i->alloc_type == SSR) 1189 blk_off = sbi->blocks_per_seg; 1190 1191 for (j = 0; j < blk_off; j++) { 1192 struct f2fs_summary *s; 1193 s = (struct f2fs_summary *)(kaddr + offset); 1194 seg_i->sum_blk->entries[j] = *s; 1195 offset += SUMMARY_SIZE; 1196 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1197 SUM_FOOTER_SIZE) 1198 continue; 1199 1200 f2fs_put_page(page, 1); 1201 page = NULL; 1202 1203 page = get_meta_page(sbi, start++); 1204 kaddr = (unsigned char *)page_address(page); 1205 offset = 0; 1206 } 1207 } 1208 f2fs_put_page(page, 1); 1209 return 0; 1210 } 1211 1212 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1213 { 1214 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1215 struct f2fs_summary_block *sum; 1216 struct curseg_info *curseg; 1217 struct page *new; 1218 unsigned short blk_off; 1219 unsigned int segno = 0; 1220 block_t blk_addr = 0; 1221 1222 /* get segment number and block addr */ 1223 if (IS_DATASEG(type)) { 1224 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1225 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1226 CURSEG_HOT_DATA]); 1227 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1228 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1229 else 1230 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1231 } else { 1232 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1233 CURSEG_HOT_NODE]); 1234 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1235 CURSEG_HOT_NODE]); 1236 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1237 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1238 type - CURSEG_HOT_NODE); 1239 else 1240 blk_addr = GET_SUM_BLOCK(sbi, segno); 1241 } 1242 1243 new = get_meta_page(sbi, blk_addr); 1244 sum = (struct f2fs_summary_block *)page_address(new); 1245 1246 if (IS_NODESEG(type)) { 1247 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) { 1248 struct f2fs_summary *ns = &sum->entries[0]; 1249 int i; 1250 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1251 ns->version = 0; 1252 ns->ofs_in_node = 0; 1253 } 1254 } else { 1255 int err; 1256 1257 err = restore_node_summary(sbi, segno, sum); 1258 if (err) { 1259 f2fs_put_page(new, 1); 1260 return err; 1261 } 1262 } 1263 } 1264 1265 /* set uncompleted segment to curseg */ 1266 curseg = CURSEG_I(sbi, type); 1267 mutex_lock(&curseg->curseg_mutex); 1268 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); 1269 curseg->next_segno = segno; 1270 reset_curseg(sbi, type, 0); 1271 curseg->alloc_type = ckpt->alloc_type[type]; 1272 curseg->next_blkoff = blk_off; 1273 mutex_unlock(&curseg->curseg_mutex); 1274 f2fs_put_page(new, 1); 1275 return 0; 1276 } 1277 1278 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1279 { 1280 int type = CURSEG_HOT_DATA; 1281 int err; 1282 1283 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1284 /* restore for compacted data summary */ 1285 if (read_compacted_summaries(sbi)) 1286 return -EINVAL; 1287 type = CURSEG_HOT_NODE; 1288 } 1289 1290 for (; type <= CURSEG_COLD_NODE; type++) { 1291 err = read_normal_summaries(sbi, type); 1292 if (err) 1293 return err; 1294 } 1295 1296 return 0; 1297 } 1298 1299 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1300 { 1301 struct page *page; 1302 unsigned char *kaddr; 1303 struct f2fs_summary *summary; 1304 struct curseg_info *seg_i; 1305 int written_size = 0; 1306 int i, j; 1307 1308 page = grab_meta_page(sbi, blkaddr++); 1309 kaddr = (unsigned char *)page_address(page); 1310 1311 /* Step 1: write nat cache */ 1312 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1313 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); 1314 written_size += SUM_JOURNAL_SIZE; 1315 1316 /* Step 2: write sit cache */ 1317 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1318 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, 1319 SUM_JOURNAL_SIZE); 1320 written_size += SUM_JOURNAL_SIZE; 1321 1322 /* Step 3: write summary entries */ 1323 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1324 unsigned short blkoff; 1325 seg_i = CURSEG_I(sbi, i); 1326 if (sbi->ckpt->alloc_type[i] == SSR) 1327 blkoff = sbi->blocks_per_seg; 1328 else 1329 blkoff = curseg_blkoff(sbi, i); 1330 1331 for (j = 0; j < blkoff; j++) { 1332 if (!page) { 1333 page = grab_meta_page(sbi, blkaddr++); 1334 kaddr = (unsigned char *)page_address(page); 1335 written_size = 0; 1336 } 1337 summary = (struct f2fs_summary *)(kaddr + written_size); 1338 *summary = seg_i->sum_blk->entries[j]; 1339 written_size += SUMMARY_SIZE; 1340 1341 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1342 SUM_FOOTER_SIZE) 1343 continue; 1344 1345 set_page_dirty(page); 1346 f2fs_put_page(page, 1); 1347 page = NULL; 1348 } 1349 } 1350 if (page) { 1351 set_page_dirty(page); 1352 f2fs_put_page(page, 1); 1353 } 1354 } 1355 1356 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1357 block_t blkaddr, int type) 1358 { 1359 int i, end; 1360 if (IS_DATASEG(type)) 1361 end = type + NR_CURSEG_DATA_TYPE; 1362 else 1363 end = type + NR_CURSEG_NODE_TYPE; 1364 1365 for (i = type; i < end; i++) { 1366 struct curseg_info *sum = CURSEG_I(sbi, i); 1367 mutex_lock(&sum->curseg_mutex); 1368 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); 1369 mutex_unlock(&sum->curseg_mutex); 1370 } 1371 } 1372 1373 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1374 { 1375 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1376 write_compacted_summaries(sbi, start_blk); 1377 else 1378 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1379 } 1380 1381 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1382 { 1383 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) 1384 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1385 } 1386 1387 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, 1388 unsigned int val, int alloc) 1389 { 1390 int i; 1391 1392 if (type == NAT_JOURNAL) { 1393 for (i = 0; i < nats_in_cursum(sum); i++) { 1394 if (le32_to_cpu(nid_in_journal(sum, i)) == val) 1395 return i; 1396 } 1397 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) 1398 return update_nats_in_cursum(sum, 1); 1399 } else if (type == SIT_JOURNAL) { 1400 for (i = 0; i < sits_in_cursum(sum); i++) 1401 if (le32_to_cpu(segno_in_journal(sum, i)) == val) 1402 return i; 1403 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) 1404 return update_sits_in_cursum(sum, 1); 1405 } 1406 return -1; 1407 } 1408 1409 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1410 unsigned int segno) 1411 { 1412 struct sit_info *sit_i = SIT_I(sbi); 1413 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); 1414 block_t blk_addr = sit_i->sit_base_addr + offset; 1415 1416 check_seg_range(sbi, segno); 1417 1418 /* calculate sit block address */ 1419 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 1420 blk_addr += sit_i->sit_blocks; 1421 1422 return get_meta_page(sbi, blk_addr); 1423 } 1424 1425 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1426 unsigned int start) 1427 { 1428 struct sit_info *sit_i = SIT_I(sbi); 1429 struct page *src_page, *dst_page; 1430 pgoff_t src_off, dst_off; 1431 void *src_addr, *dst_addr; 1432 1433 src_off = current_sit_addr(sbi, start); 1434 dst_off = next_sit_addr(sbi, src_off); 1435 1436 /* get current sit block page without lock */ 1437 src_page = get_meta_page(sbi, src_off); 1438 dst_page = grab_meta_page(sbi, dst_off); 1439 f2fs_bug_on(PageDirty(src_page)); 1440 1441 src_addr = page_address(src_page); 1442 dst_addr = page_address(dst_page); 1443 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1444 1445 set_page_dirty(dst_page); 1446 f2fs_put_page(src_page, 1); 1447 1448 set_to_next_sit(sit_i, start); 1449 1450 return dst_page; 1451 } 1452 1453 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi) 1454 { 1455 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1456 struct f2fs_summary_block *sum = curseg->sum_blk; 1457 int i; 1458 1459 /* 1460 * If the journal area in the current summary is full of sit entries, 1461 * all the sit entries will be flushed. Otherwise the sit entries 1462 * are not able to replace with newly hot sit entries. 1463 */ 1464 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) { 1465 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { 1466 unsigned int segno; 1467 segno = le32_to_cpu(segno_in_journal(sum, i)); 1468 __mark_sit_entry_dirty(sbi, segno); 1469 } 1470 update_sits_in_cursum(sum, -sits_in_cursum(sum)); 1471 return true; 1472 } 1473 return false; 1474 } 1475 1476 /* 1477 * CP calls this function, which flushes SIT entries including sit_journal, 1478 * and moves prefree segs to free segs. 1479 */ 1480 void flush_sit_entries(struct f2fs_sb_info *sbi) 1481 { 1482 struct sit_info *sit_i = SIT_I(sbi); 1483 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1484 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1485 struct f2fs_summary_block *sum = curseg->sum_blk; 1486 unsigned long nsegs = TOTAL_SEGS(sbi); 1487 struct page *page = NULL; 1488 struct f2fs_sit_block *raw_sit = NULL; 1489 unsigned int start = 0, end = 0; 1490 unsigned int segno = -1; 1491 bool flushed; 1492 1493 mutex_lock(&curseg->curseg_mutex); 1494 mutex_lock(&sit_i->sentry_lock); 1495 1496 /* 1497 * "flushed" indicates whether sit entries in journal are flushed 1498 * to the SIT area or not. 1499 */ 1500 flushed = flush_sits_in_journal(sbi); 1501 1502 while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) { 1503 struct seg_entry *se = get_seg_entry(sbi, segno); 1504 int sit_offset, offset; 1505 1506 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1507 1508 /* add discard candidates */ 1509 if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards) 1510 add_discard_addrs(sbi, segno, se); 1511 1512 if (flushed) 1513 goto to_sit_page; 1514 1515 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1); 1516 if (offset >= 0) { 1517 segno_in_journal(sum, offset) = cpu_to_le32(segno); 1518 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset)); 1519 goto flush_done; 1520 } 1521 to_sit_page: 1522 if (!page || (start > segno) || (segno > end)) { 1523 if (page) { 1524 f2fs_put_page(page, 1); 1525 page = NULL; 1526 } 1527 1528 start = START_SEGNO(sit_i, segno); 1529 end = start + SIT_ENTRY_PER_BLOCK - 1; 1530 1531 /* read sit block that will be updated */ 1532 page = get_next_sit_page(sbi, start); 1533 raw_sit = page_address(page); 1534 } 1535 1536 /* udpate entry in SIT block */ 1537 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]); 1538 flush_done: 1539 __clear_bit(segno, bitmap); 1540 sit_i->dirty_sentries--; 1541 } 1542 mutex_unlock(&sit_i->sentry_lock); 1543 mutex_unlock(&curseg->curseg_mutex); 1544 1545 /* writeout last modified SIT block */ 1546 f2fs_put_page(page, 1); 1547 1548 set_prefree_as_free_segments(sbi); 1549 } 1550 1551 static int build_sit_info(struct f2fs_sb_info *sbi) 1552 { 1553 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1554 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1555 struct sit_info *sit_i; 1556 unsigned int sit_segs, start; 1557 char *src_bitmap, *dst_bitmap; 1558 unsigned int bitmap_size; 1559 1560 /* allocate memory for SIT information */ 1561 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 1562 if (!sit_i) 1563 return -ENOMEM; 1564 1565 SM_I(sbi)->sit_info = sit_i; 1566 1567 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry)); 1568 if (!sit_i->sentries) 1569 return -ENOMEM; 1570 1571 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); 1572 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1573 if (!sit_i->dirty_sentries_bitmap) 1574 return -ENOMEM; 1575 1576 for (start = 0; start < TOTAL_SEGS(sbi); start++) { 1577 sit_i->sentries[start].cur_valid_map 1578 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1579 sit_i->sentries[start].ckpt_valid_map 1580 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1581 if (!sit_i->sentries[start].cur_valid_map 1582 || !sit_i->sentries[start].ckpt_valid_map) 1583 return -ENOMEM; 1584 } 1585 1586 if (sbi->segs_per_sec > 1) { 1587 sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) * 1588 sizeof(struct sec_entry)); 1589 if (!sit_i->sec_entries) 1590 return -ENOMEM; 1591 } 1592 1593 /* get information related with SIT */ 1594 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 1595 1596 /* setup SIT bitmap from ckeckpoint pack */ 1597 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 1598 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 1599 1600 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 1601 if (!dst_bitmap) 1602 return -ENOMEM; 1603 1604 /* init SIT information */ 1605 sit_i->s_ops = &default_salloc_ops; 1606 1607 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 1608 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 1609 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 1610 sit_i->sit_bitmap = dst_bitmap; 1611 sit_i->bitmap_size = bitmap_size; 1612 sit_i->dirty_sentries = 0; 1613 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 1614 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 1615 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 1616 mutex_init(&sit_i->sentry_lock); 1617 return 0; 1618 } 1619 1620 static int build_free_segmap(struct f2fs_sb_info *sbi) 1621 { 1622 struct f2fs_sm_info *sm_info = SM_I(sbi); 1623 struct free_segmap_info *free_i; 1624 unsigned int bitmap_size, sec_bitmap_size; 1625 1626 /* allocate memory for free segmap information */ 1627 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 1628 if (!free_i) 1629 return -ENOMEM; 1630 1631 SM_I(sbi)->free_info = free_i; 1632 1633 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); 1634 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); 1635 if (!free_i->free_segmap) 1636 return -ENOMEM; 1637 1638 sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi)); 1639 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); 1640 if (!free_i->free_secmap) 1641 return -ENOMEM; 1642 1643 /* set all segments as dirty temporarily */ 1644 memset(free_i->free_segmap, 0xff, bitmap_size); 1645 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 1646 1647 /* init free segmap information */ 1648 free_i->start_segno = 1649 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr); 1650 free_i->free_segments = 0; 1651 free_i->free_sections = 0; 1652 rwlock_init(&free_i->segmap_lock); 1653 return 0; 1654 } 1655 1656 static int build_curseg(struct f2fs_sb_info *sbi) 1657 { 1658 struct curseg_info *array; 1659 int i; 1660 1661 array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL); 1662 if (!array) 1663 return -ENOMEM; 1664 1665 SM_I(sbi)->curseg_array = array; 1666 1667 for (i = 0; i < NR_CURSEG_TYPE; i++) { 1668 mutex_init(&array[i].curseg_mutex); 1669 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 1670 if (!array[i].sum_blk) 1671 return -ENOMEM; 1672 array[i].segno = NULL_SEGNO; 1673 array[i].next_blkoff = 0; 1674 } 1675 return restore_curseg_summaries(sbi); 1676 } 1677 1678 static void build_sit_entries(struct f2fs_sb_info *sbi) 1679 { 1680 struct sit_info *sit_i = SIT_I(sbi); 1681 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1682 struct f2fs_summary_block *sum = curseg->sum_blk; 1683 int sit_blk_cnt = SIT_BLK_CNT(sbi); 1684 unsigned int i, start, end; 1685 unsigned int readed, start_blk = 0; 1686 int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi)); 1687 1688 do { 1689 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT); 1690 1691 start = start_blk * sit_i->sents_per_block; 1692 end = (start_blk + readed) * sit_i->sents_per_block; 1693 1694 for (; start < end && start < TOTAL_SEGS(sbi); start++) { 1695 struct seg_entry *se = &sit_i->sentries[start]; 1696 struct f2fs_sit_block *sit_blk; 1697 struct f2fs_sit_entry sit; 1698 struct page *page; 1699 1700 mutex_lock(&curseg->curseg_mutex); 1701 for (i = 0; i < sits_in_cursum(sum); i++) { 1702 if (le32_to_cpu(segno_in_journal(sum, i)) 1703 == start) { 1704 sit = sit_in_journal(sum, i); 1705 mutex_unlock(&curseg->curseg_mutex); 1706 goto got_it; 1707 } 1708 } 1709 mutex_unlock(&curseg->curseg_mutex); 1710 1711 page = get_current_sit_page(sbi, start); 1712 sit_blk = (struct f2fs_sit_block *)page_address(page); 1713 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 1714 f2fs_put_page(page, 1); 1715 got_it: 1716 check_block_count(sbi, start, &sit); 1717 seg_info_from_raw_sit(se, &sit); 1718 if (sbi->segs_per_sec > 1) { 1719 struct sec_entry *e = get_sec_entry(sbi, start); 1720 e->valid_blocks += se->valid_blocks; 1721 } 1722 } 1723 start_blk += readed; 1724 } while (start_blk < sit_blk_cnt); 1725 } 1726 1727 static void init_free_segmap(struct f2fs_sb_info *sbi) 1728 { 1729 unsigned int start; 1730 int type; 1731 1732 for (start = 0; start < TOTAL_SEGS(sbi); start++) { 1733 struct seg_entry *sentry = get_seg_entry(sbi, start); 1734 if (!sentry->valid_blocks) 1735 __set_free(sbi, start); 1736 } 1737 1738 /* set use the current segments */ 1739 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 1740 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 1741 __set_test_and_inuse(sbi, curseg_t->segno); 1742 } 1743 } 1744 1745 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 1746 { 1747 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1748 struct free_segmap_info *free_i = FREE_I(sbi); 1749 unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi); 1750 unsigned short valid_blocks; 1751 1752 while (1) { 1753 /* find dirty segment based on free segmap */ 1754 segno = find_next_inuse(free_i, total_segs, offset); 1755 if (segno >= total_segs) 1756 break; 1757 offset = segno + 1; 1758 valid_blocks = get_valid_blocks(sbi, segno, 0); 1759 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks) 1760 continue; 1761 mutex_lock(&dirty_i->seglist_lock); 1762 __locate_dirty_segment(sbi, segno, DIRTY); 1763 mutex_unlock(&dirty_i->seglist_lock); 1764 } 1765 } 1766 1767 static int init_victim_secmap(struct f2fs_sb_info *sbi) 1768 { 1769 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1770 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi)); 1771 1772 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL); 1773 if (!dirty_i->victim_secmap) 1774 return -ENOMEM; 1775 return 0; 1776 } 1777 1778 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 1779 { 1780 struct dirty_seglist_info *dirty_i; 1781 unsigned int bitmap_size, i; 1782 1783 /* allocate memory for dirty segments list information */ 1784 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 1785 if (!dirty_i) 1786 return -ENOMEM; 1787 1788 SM_I(sbi)->dirty_info = dirty_i; 1789 mutex_init(&dirty_i->seglist_lock); 1790 1791 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); 1792 1793 for (i = 0; i < NR_DIRTY_TYPE; i++) { 1794 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); 1795 if (!dirty_i->dirty_segmap[i]) 1796 return -ENOMEM; 1797 } 1798 1799 init_dirty_segmap(sbi); 1800 return init_victim_secmap(sbi); 1801 } 1802 1803 /* 1804 * Update min, max modified time for cost-benefit GC algorithm 1805 */ 1806 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 1807 { 1808 struct sit_info *sit_i = SIT_I(sbi); 1809 unsigned int segno; 1810 1811 mutex_lock(&sit_i->sentry_lock); 1812 1813 sit_i->min_mtime = LLONG_MAX; 1814 1815 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) { 1816 unsigned int i; 1817 unsigned long long mtime = 0; 1818 1819 for (i = 0; i < sbi->segs_per_sec; i++) 1820 mtime += get_seg_entry(sbi, segno + i)->mtime; 1821 1822 mtime = div_u64(mtime, sbi->segs_per_sec); 1823 1824 if (sit_i->min_mtime > mtime) 1825 sit_i->min_mtime = mtime; 1826 } 1827 sit_i->max_mtime = get_mtime(sbi); 1828 mutex_unlock(&sit_i->sentry_lock); 1829 } 1830 1831 int build_segment_manager(struct f2fs_sb_info *sbi) 1832 { 1833 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1834 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1835 dev_t dev = sbi->sb->s_bdev->bd_dev; 1836 struct f2fs_sm_info *sm_info; 1837 int err; 1838 1839 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 1840 if (!sm_info) 1841 return -ENOMEM; 1842 1843 /* init sm info */ 1844 sbi->sm_info = sm_info; 1845 INIT_LIST_HEAD(&sm_info->wblist_head); 1846 spin_lock_init(&sm_info->wblist_lock); 1847 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1848 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1849 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 1850 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 1851 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 1852 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 1853 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1854 sm_info->rec_prefree_segments = sm_info->main_segments * 1855 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 1856 sm_info->ipu_policy = F2FS_IPU_DISABLE; 1857 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 1858 1859 INIT_LIST_HEAD(&sm_info->discard_list); 1860 sm_info->nr_discards = 0; 1861 sm_info->max_discards = 0; 1862 1863 if (test_opt(sbi, FLUSH_MERGE)) { 1864 spin_lock_init(&sm_info->issue_lock); 1865 init_waitqueue_head(&sm_info->flush_wait_queue); 1866 1867 sm_info->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 1868 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 1869 if (IS_ERR(sm_info->f2fs_issue_flush)) 1870 return PTR_ERR(sm_info->f2fs_issue_flush); 1871 } 1872 1873 err = build_sit_info(sbi); 1874 if (err) 1875 return err; 1876 err = build_free_segmap(sbi); 1877 if (err) 1878 return err; 1879 err = build_curseg(sbi); 1880 if (err) 1881 return err; 1882 1883 /* reinit free segmap based on SIT */ 1884 build_sit_entries(sbi); 1885 1886 init_free_segmap(sbi); 1887 err = build_dirty_segmap(sbi); 1888 if (err) 1889 return err; 1890 1891 init_min_max_mtime(sbi); 1892 return 0; 1893 } 1894 1895 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 1896 enum dirty_type dirty_type) 1897 { 1898 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1899 1900 mutex_lock(&dirty_i->seglist_lock); 1901 kfree(dirty_i->dirty_segmap[dirty_type]); 1902 dirty_i->nr_dirty[dirty_type] = 0; 1903 mutex_unlock(&dirty_i->seglist_lock); 1904 } 1905 1906 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 1907 { 1908 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1909 kfree(dirty_i->victim_secmap); 1910 } 1911 1912 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 1913 { 1914 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1915 int i; 1916 1917 if (!dirty_i) 1918 return; 1919 1920 /* discard pre-free/dirty segments list */ 1921 for (i = 0; i < NR_DIRTY_TYPE; i++) 1922 discard_dirty_segmap(sbi, i); 1923 1924 destroy_victim_secmap(sbi); 1925 SM_I(sbi)->dirty_info = NULL; 1926 kfree(dirty_i); 1927 } 1928 1929 static void destroy_curseg(struct f2fs_sb_info *sbi) 1930 { 1931 struct curseg_info *array = SM_I(sbi)->curseg_array; 1932 int i; 1933 1934 if (!array) 1935 return; 1936 SM_I(sbi)->curseg_array = NULL; 1937 for (i = 0; i < NR_CURSEG_TYPE; i++) 1938 kfree(array[i].sum_blk); 1939 kfree(array); 1940 } 1941 1942 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 1943 { 1944 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 1945 if (!free_i) 1946 return; 1947 SM_I(sbi)->free_info = NULL; 1948 kfree(free_i->free_segmap); 1949 kfree(free_i->free_secmap); 1950 kfree(free_i); 1951 } 1952 1953 static void destroy_sit_info(struct f2fs_sb_info *sbi) 1954 { 1955 struct sit_info *sit_i = SIT_I(sbi); 1956 unsigned int start; 1957 1958 if (!sit_i) 1959 return; 1960 1961 if (sit_i->sentries) { 1962 for (start = 0; start < TOTAL_SEGS(sbi); start++) { 1963 kfree(sit_i->sentries[start].cur_valid_map); 1964 kfree(sit_i->sentries[start].ckpt_valid_map); 1965 } 1966 } 1967 vfree(sit_i->sentries); 1968 vfree(sit_i->sec_entries); 1969 kfree(sit_i->dirty_sentries_bitmap); 1970 1971 SM_I(sbi)->sit_info = NULL; 1972 kfree(sit_i->sit_bitmap); 1973 kfree(sit_i); 1974 } 1975 1976 void destroy_segment_manager(struct f2fs_sb_info *sbi) 1977 { 1978 struct f2fs_sm_info *sm_info = SM_I(sbi); 1979 if (!sm_info) 1980 return; 1981 if (sm_info->f2fs_issue_flush) 1982 kthread_stop(sm_info->f2fs_issue_flush); 1983 destroy_dirty_segmap(sbi); 1984 destroy_curseg(sbi); 1985 destroy_free_segmap(sbi); 1986 destroy_sit_info(sbi); 1987 sbi->sm_info = NULL; 1988 kfree(sm_info); 1989 } 1990 1991 int __init create_segment_manager_caches(void) 1992 { 1993 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 1994 sizeof(struct discard_entry)); 1995 if (!discard_entry_slab) 1996 return -ENOMEM; 1997 flush_cmd_slab = f2fs_kmem_cache_create("flush_command", 1998 sizeof(struct flush_cmd)); 1999 if (!flush_cmd_slab) { 2000 kmem_cache_destroy(discard_entry_slab); 2001 return -ENOMEM; 2002 } 2003 return 0; 2004 } 2005 2006 void destroy_segment_manager_caches(void) 2007 { 2008 kmem_cache_destroy(discard_entry_slab); 2009 kmem_cache_destroy(flush_cmd_slab); 2010 } 2011