1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (test_opt(sbi, LFS)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct inmem_pages *new; 189 190 f2fs_trace_pid(page); 191 192 f2fs_set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 193 194 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 195 196 /* add atomic page indices to the list */ 197 new->page = page; 198 INIT_LIST_HEAD(&new->list); 199 200 /* increase reference count with clean state */ 201 get_page(page); 202 mutex_lock(&F2FS_I(inode)->inmem_lock); 203 list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages); 204 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 205 mutex_unlock(&F2FS_I(inode)->inmem_lock); 206 207 trace_f2fs_register_inmem_page(page, INMEM); 208 } 209 210 static int __revoke_inmem_pages(struct inode *inode, 211 struct list_head *head, bool drop, bool recover, 212 bool trylock) 213 { 214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 215 struct inmem_pages *cur, *tmp; 216 int err = 0; 217 218 list_for_each_entry_safe(cur, tmp, head, list) { 219 struct page *page = cur->page; 220 221 if (drop) 222 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 223 224 if (trylock) { 225 /* 226 * to avoid deadlock in between page lock and 227 * inmem_lock. 228 */ 229 if (!trylock_page(page)) 230 continue; 231 } else { 232 lock_page(page); 233 } 234 235 f2fs_wait_on_page_writeback(page, DATA, true, true); 236 237 if (recover) { 238 struct dnode_of_data dn; 239 struct node_info ni; 240 241 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 242 retry: 243 set_new_dnode(&dn, inode, NULL, NULL, 0); 244 err = f2fs_get_dnode_of_data(&dn, page->index, 245 LOOKUP_NODE); 246 if (err) { 247 if (err == -ENOMEM) { 248 congestion_wait(BLK_RW_ASYNC, HZ/50); 249 cond_resched(); 250 goto retry; 251 } 252 err = -EAGAIN; 253 goto next; 254 } 255 256 err = f2fs_get_node_info(sbi, dn.nid, &ni); 257 if (err) { 258 f2fs_put_dnode(&dn); 259 return err; 260 } 261 262 if (cur->old_addr == NEW_ADDR) { 263 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 264 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 265 } else 266 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 267 cur->old_addr, ni.version, true, true); 268 f2fs_put_dnode(&dn); 269 } 270 next: 271 /* we don't need to invalidate this in the sccessful status */ 272 if (drop || recover) { 273 ClearPageUptodate(page); 274 clear_cold_data(page); 275 } 276 f2fs_clear_page_private(page); 277 f2fs_put_page(page, 1); 278 279 list_del(&cur->list); 280 kmem_cache_free(inmem_entry_slab, cur); 281 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 282 } 283 return err; 284 } 285 286 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 287 { 288 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 289 struct inode *inode; 290 struct f2fs_inode_info *fi; 291 unsigned int count = sbi->atomic_files; 292 unsigned int looped = 0; 293 next: 294 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 295 if (list_empty(head)) { 296 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 297 return; 298 } 299 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 300 inode = igrab(&fi->vfs_inode); 301 if (inode) 302 list_move_tail(&fi->inmem_ilist, head); 303 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 304 305 if (inode) { 306 if (gc_failure) { 307 if (!fi->i_gc_failures[GC_FAILURE_ATOMIC]) 308 goto skip; 309 } 310 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 311 f2fs_drop_inmem_pages(inode); 312 skip: 313 iput(inode); 314 } 315 congestion_wait(BLK_RW_ASYNC, HZ/50); 316 cond_resched(); 317 if (gc_failure) { 318 if (++looped >= count) 319 return; 320 } 321 goto next; 322 } 323 324 void f2fs_drop_inmem_pages(struct inode *inode) 325 { 326 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 327 struct f2fs_inode_info *fi = F2FS_I(inode); 328 329 while (!list_empty(&fi->inmem_pages)) { 330 mutex_lock(&fi->inmem_lock); 331 __revoke_inmem_pages(inode, &fi->inmem_pages, 332 true, false, true); 333 mutex_unlock(&fi->inmem_lock); 334 } 335 336 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 337 stat_dec_atomic_write(inode); 338 339 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 340 if (!list_empty(&fi->inmem_ilist)) 341 list_del_init(&fi->inmem_ilist); 342 if (f2fs_is_atomic_file(inode)) { 343 clear_inode_flag(inode, FI_ATOMIC_FILE); 344 sbi->atomic_files--; 345 } 346 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 347 } 348 349 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 350 { 351 struct f2fs_inode_info *fi = F2FS_I(inode); 352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 353 struct list_head *head = &fi->inmem_pages; 354 struct inmem_pages *cur = NULL; 355 356 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 357 358 mutex_lock(&fi->inmem_lock); 359 list_for_each_entry(cur, head, list) { 360 if (cur->page == page) 361 break; 362 } 363 364 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 365 list_del(&cur->list); 366 mutex_unlock(&fi->inmem_lock); 367 368 dec_page_count(sbi, F2FS_INMEM_PAGES); 369 kmem_cache_free(inmem_entry_slab, cur); 370 371 ClearPageUptodate(page); 372 f2fs_clear_page_private(page); 373 f2fs_put_page(page, 0); 374 375 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 376 } 377 378 static int __f2fs_commit_inmem_pages(struct inode *inode) 379 { 380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 381 struct f2fs_inode_info *fi = F2FS_I(inode); 382 struct inmem_pages *cur, *tmp; 383 struct f2fs_io_info fio = { 384 .sbi = sbi, 385 .ino = inode->i_ino, 386 .type = DATA, 387 .op = REQ_OP_WRITE, 388 .op_flags = REQ_SYNC | REQ_PRIO, 389 .io_type = FS_DATA_IO, 390 }; 391 struct list_head revoke_list; 392 bool submit_bio = false; 393 int err = 0; 394 395 INIT_LIST_HEAD(&revoke_list); 396 397 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 398 struct page *page = cur->page; 399 400 lock_page(page); 401 if (page->mapping == inode->i_mapping) { 402 trace_f2fs_commit_inmem_page(page, INMEM); 403 404 f2fs_wait_on_page_writeback(page, DATA, true, true); 405 406 set_page_dirty(page); 407 if (clear_page_dirty_for_io(page)) { 408 inode_dec_dirty_pages(inode); 409 f2fs_remove_dirty_inode(inode); 410 } 411 retry: 412 fio.page = page; 413 fio.old_blkaddr = NULL_ADDR; 414 fio.encrypted_page = NULL; 415 fio.need_lock = LOCK_DONE; 416 err = f2fs_do_write_data_page(&fio); 417 if (err) { 418 if (err == -ENOMEM) { 419 congestion_wait(BLK_RW_ASYNC, HZ/50); 420 cond_resched(); 421 goto retry; 422 } 423 unlock_page(page); 424 break; 425 } 426 /* record old blkaddr for revoking */ 427 cur->old_addr = fio.old_blkaddr; 428 submit_bio = true; 429 } 430 unlock_page(page); 431 list_move_tail(&cur->list, &revoke_list); 432 } 433 434 if (submit_bio) 435 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 436 437 if (err) { 438 /* 439 * try to revoke all committed pages, but still we could fail 440 * due to no memory or other reason, if that happened, EAGAIN 441 * will be returned, which means in such case, transaction is 442 * already not integrity, caller should use journal to do the 443 * recovery or rewrite & commit last transaction. For other 444 * error number, revoking was done by filesystem itself. 445 */ 446 err = __revoke_inmem_pages(inode, &revoke_list, 447 false, true, false); 448 449 /* drop all uncommitted pages */ 450 __revoke_inmem_pages(inode, &fi->inmem_pages, 451 true, false, false); 452 } else { 453 __revoke_inmem_pages(inode, &revoke_list, 454 false, false, false); 455 } 456 457 return err; 458 } 459 460 int f2fs_commit_inmem_pages(struct inode *inode) 461 { 462 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 463 struct f2fs_inode_info *fi = F2FS_I(inode); 464 int err; 465 466 f2fs_balance_fs(sbi, true); 467 468 down_write(&fi->i_gc_rwsem[WRITE]); 469 470 f2fs_lock_op(sbi); 471 set_inode_flag(inode, FI_ATOMIC_COMMIT); 472 473 mutex_lock(&fi->inmem_lock); 474 err = __f2fs_commit_inmem_pages(inode); 475 mutex_unlock(&fi->inmem_lock); 476 477 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 478 479 f2fs_unlock_op(sbi); 480 up_write(&fi->i_gc_rwsem[WRITE]); 481 482 return err; 483 } 484 485 /* 486 * This function balances dirty node and dentry pages. 487 * In addition, it controls garbage collection. 488 */ 489 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 490 { 491 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 492 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 493 f2fs_stop_checkpoint(sbi, false); 494 } 495 496 /* balance_fs_bg is able to be pending */ 497 if (need && excess_cached_nats(sbi)) 498 f2fs_balance_fs_bg(sbi); 499 500 if (!f2fs_is_checkpoint_ready(sbi)) 501 return; 502 503 /* 504 * We should do GC or end up with checkpoint, if there are so many dirty 505 * dir/node pages without enough free segments. 506 */ 507 if (has_not_enough_free_secs(sbi, 0, 0)) { 508 mutex_lock(&sbi->gc_mutex); 509 f2fs_gc(sbi, false, false, NULL_SEGNO); 510 } 511 } 512 513 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 514 { 515 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 516 return; 517 518 /* try to shrink extent cache when there is no enough memory */ 519 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 520 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 521 522 /* check the # of cached NAT entries */ 523 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 524 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 525 526 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 527 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 528 else 529 f2fs_build_free_nids(sbi, false, false); 530 531 if (!is_idle(sbi, REQ_TIME) && 532 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 533 return; 534 535 /* checkpoint is the only way to shrink partial cached entries */ 536 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 537 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 538 excess_prefree_segs(sbi) || 539 excess_dirty_nats(sbi) || 540 excess_dirty_nodes(sbi) || 541 f2fs_time_over(sbi, CP_TIME)) { 542 if (test_opt(sbi, DATA_FLUSH)) { 543 struct blk_plug plug; 544 545 mutex_lock(&sbi->flush_lock); 546 547 blk_start_plug(&plug); 548 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 549 blk_finish_plug(&plug); 550 551 mutex_unlock(&sbi->flush_lock); 552 } 553 f2fs_sync_fs(sbi->sb, true); 554 stat_inc_bg_cp_count(sbi->stat_info); 555 } 556 } 557 558 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 559 struct block_device *bdev) 560 { 561 struct bio *bio; 562 int ret; 563 564 bio = f2fs_bio_alloc(sbi, 0, false); 565 if (!bio) 566 return -ENOMEM; 567 568 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 569 bio_set_dev(bio, bdev); 570 ret = submit_bio_wait(bio); 571 bio_put(bio); 572 573 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 574 test_opt(sbi, FLUSH_MERGE), ret); 575 return ret; 576 } 577 578 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 579 { 580 int ret = 0; 581 int i; 582 583 if (!f2fs_is_multi_device(sbi)) 584 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 585 586 for (i = 0; i < sbi->s_ndevs; i++) { 587 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 588 continue; 589 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 590 if (ret) 591 break; 592 } 593 return ret; 594 } 595 596 static int issue_flush_thread(void *data) 597 { 598 struct f2fs_sb_info *sbi = data; 599 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 600 wait_queue_head_t *q = &fcc->flush_wait_queue; 601 repeat: 602 if (kthread_should_stop()) 603 return 0; 604 605 sb_start_intwrite(sbi->sb); 606 607 if (!llist_empty(&fcc->issue_list)) { 608 struct flush_cmd *cmd, *next; 609 int ret; 610 611 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 612 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 613 614 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 615 616 ret = submit_flush_wait(sbi, cmd->ino); 617 atomic_inc(&fcc->issued_flush); 618 619 llist_for_each_entry_safe(cmd, next, 620 fcc->dispatch_list, llnode) { 621 cmd->ret = ret; 622 complete(&cmd->wait); 623 } 624 fcc->dispatch_list = NULL; 625 } 626 627 sb_end_intwrite(sbi->sb); 628 629 wait_event_interruptible(*q, 630 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 631 goto repeat; 632 } 633 634 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 635 { 636 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 637 struct flush_cmd cmd; 638 int ret; 639 640 if (test_opt(sbi, NOBARRIER)) 641 return 0; 642 643 if (!test_opt(sbi, FLUSH_MERGE)) { 644 atomic_inc(&fcc->queued_flush); 645 ret = submit_flush_wait(sbi, ino); 646 atomic_dec(&fcc->queued_flush); 647 atomic_inc(&fcc->issued_flush); 648 return ret; 649 } 650 651 if (atomic_inc_return(&fcc->queued_flush) == 1 || 652 f2fs_is_multi_device(sbi)) { 653 ret = submit_flush_wait(sbi, ino); 654 atomic_dec(&fcc->queued_flush); 655 656 atomic_inc(&fcc->issued_flush); 657 return ret; 658 } 659 660 cmd.ino = ino; 661 init_completion(&cmd.wait); 662 663 llist_add(&cmd.llnode, &fcc->issue_list); 664 665 /* update issue_list before we wake up issue_flush thread */ 666 smp_mb(); 667 668 if (waitqueue_active(&fcc->flush_wait_queue)) 669 wake_up(&fcc->flush_wait_queue); 670 671 if (fcc->f2fs_issue_flush) { 672 wait_for_completion(&cmd.wait); 673 atomic_dec(&fcc->queued_flush); 674 } else { 675 struct llist_node *list; 676 677 list = llist_del_all(&fcc->issue_list); 678 if (!list) { 679 wait_for_completion(&cmd.wait); 680 atomic_dec(&fcc->queued_flush); 681 } else { 682 struct flush_cmd *tmp, *next; 683 684 ret = submit_flush_wait(sbi, ino); 685 686 llist_for_each_entry_safe(tmp, next, list, llnode) { 687 if (tmp == &cmd) { 688 cmd.ret = ret; 689 atomic_dec(&fcc->queued_flush); 690 continue; 691 } 692 tmp->ret = ret; 693 complete(&tmp->wait); 694 } 695 } 696 } 697 698 return cmd.ret; 699 } 700 701 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 702 { 703 dev_t dev = sbi->sb->s_bdev->bd_dev; 704 struct flush_cmd_control *fcc; 705 int err = 0; 706 707 if (SM_I(sbi)->fcc_info) { 708 fcc = SM_I(sbi)->fcc_info; 709 if (fcc->f2fs_issue_flush) 710 return err; 711 goto init_thread; 712 } 713 714 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 715 if (!fcc) 716 return -ENOMEM; 717 atomic_set(&fcc->issued_flush, 0); 718 atomic_set(&fcc->queued_flush, 0); 719 init_waitqueue_head(&fcc->flush_wait_queue); 720 init_llist_head(&fcc->issue_list); 721 SM_I(sbi)->fcc_info = fcc; 722 if (!test_opt(sbi, FLUSH_MERGE)) 723 return err; 724 725 init_thread: 726 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 727 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 728 if (IS_ERR(fcc->f2fs_issue_flush)) { 729 err = PTR_ERR(fcc->f2fs_issue_flush); 730 kvfree(fcc); 731 SM_I(sbi)->fcc_info = NULL; 732 return err; 733 } 734 735 return err; 736 } 737 738 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 739 { 740 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 741 742 if (fcc && fcc->f2fs_issue_flush) { 743 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 744 745 fcc->f2fs_issue_flush = NULL; 746 kthread_stop(flush_thread); 747 } 748 if (free) { 749 kvfree(fcc); 750 SM_I(sbi)->fcc_info = NULL; 751 } 752 } 753 754 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 755 { 756 int ret = 0, i; 757 758 if (!f2fs_is_multi_device(sbi)) 759 return 0; 760 761 for (i = 1; i < sbi->s_ndevs; i++) { 762 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 763 continue; 764 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 765 if (ret) 766 break; 767 768 spin_lock(&sbi->dev_lock); 769 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 770 spin_unlock(&sbi->dev_lock); 771 } 772 773 return ret; 774 } 775 776 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 777 enum dirty_type dirty_type) 778 { 779 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 780 781 /* need not be added */ 782 if (IS_CURSEG(sbi, segno)) 783 return; 784 785 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 786 dirty_i->nr_dirty[dirty_type]++; 787 788 if (dirty_type == DIRTY) { 789 struct seg_entry *sentry = get_seg_entry(sbi, segno); 790 enum dirty_type t = sentry->type; 791 792 if (unlikely(t >= DIRTY)) { 793 f2fs_bug_on(sbi, 1); 794 return; 795 } 796 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 797 dirty_i->nr_dirty[t]++; 798 } 799 } 800 801 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 802 enum dirty_type dirty_type) 803 { 804 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 805 806 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 807 dirty_i->nr_dirty[dirty_type]--; 808 809 if (dirty_type == DIRTY) { 810 struct seg_entry *sentry = get_seg_entry(sbi, segno); 811 enum dirty_type t = sentry->type; 812 813 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 814 dirty_i->nr_dirty[t]--; 815 816 if (get_valid_blocks(sbi, segno, true) == 0) { 817 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 818 dirty_i->victim_secmap); 819 #ifdef CONFIG_F2FS_CHECK_FS 820 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 821 #endif 822 } 823 } 824 } 825 826 /* 827 * Should not occur error such as -ENOMEM. 828 * Adding dirty entry into seglist is not critical operation. 829 * If a given segment is one of current working segments, it won't be added. 830 */ 831 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 832 { 833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 834 unsigned short valid_blocks, ckpt_valid_blocks; 835 836 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 837 return; 838 839 mutex_lock(&dirty_i->seglist_lock); 840 841 valid_blocks = get_valid_blocks(sbi, segno, false); 842 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 843 844 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 845 ckpt_valid_blocks == sbi->blocks_per_seg)) { 846 __locate_dirty_segment(sbi, segno, PRE); 847 __remove_dirty_segment(sbi, segno, DIRTY); 848 } else if (valid_blocks < sbi->blocks_per_seg) { 849 __locate_dirty_segment(sbi, segno, DIRTY); 850 } else { 851 /* Recovery routine with SSR needs this */ 852 __remove_dirty_segment(sbi, segno, DIRTY); 853 } 854 855 mutex_unlock(&dirty_i->seglist_lock); 856 } 857 858 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 859 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 860 { 861 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 862 unsigned int segno; 863 864 mutex_lock(&dirty_i->seglist_lock); 865 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 866 if (get_valid_blocks(sbi, segno, false)) 867 continue; 868 if (IS_CURSEG(sbi, segno)) 869 continue; 870 __locate_dirty_segment(sbi, segno, PRE); 871 __remove_dirty_segment(sbi, segno, DIRTY); 872 } 873 mutex_unlock(&dirty_i->seglist_lock); 874 } 875 876 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 877 { 878 int ovp_hole_segs = 879 (overprovision_segments(sbi) - reserved_segments(sbi)); 880 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 882 block_t holes[2] = {0, 0}; /* DATA and NODE */ 883 block_t unusable; 884 struct seg_entry *se; 885 unsigned int segno; 886 887 mutex_lock(&dirty_i->seglist_lock); 888 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 889 se = get_seg_entry(sbi, segno); 890 if (IS_NODESEG(se->type)) 891 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; 892 else 893 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; 894 } 895 mutex_unlock(&dirty_i->seglist_lock); 896 897 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 898 if (unusable > ovp_holes) 899 return unusable - ovp_holes; 900 return 0; 901 } 902 903 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 904 { 905 int ovp_hole_segs = 906 (overprovision_segments(sbi) - reserved_segments(sbi)); 907 if (unusable > F2FS_OPTION(sbi).unusable_cap) 908 return -EAGAIN; 909 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 910 dirty_segments(sbi) > ovp_hole_segs) 911 return -EAGAIN; 912 return 0; 913 } 914 915 /* This is only used by SBI_CP_DISABLED */ 916 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 917 { 918 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 919 unsigned int segno = 0; 920 921 mutex_lock(&dirty_i->seglist_lock); 922 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 923 if (get_valid_blocks(sbi, segno, false)) 924 continue; 925 if (get_ckpt_valid_blocks(sbi, segno)) 926 continue; 927 mutex_unlock(&dirty_i->seglist_lock); 928 return segno; 929 } 930 mutex_unlock(&dirty_i->seglist_lock); 931 return NULL_SEGNO; 932 } 933 934 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 935 struct block_device *bdev, block_t lstart, 936 block_t start, block_t len) 937 { 938 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 939 struct list_head *pend_list; 940 struct discard_cmd *dc; 941 942 f2fs_bug_on(sbi, !len); 943 944 pend_list = &dcc->pend_list[plist_idx(len)]; 945 946 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 947 INIT_LIST_HEAD(&dc->list); 948 dc->bdev = bdev; 949 dc->lstart = lstart; 950 dc->start = start; 951 dc->len = len; 952 dc->ref = 0; 953 dc->state = D_PREP; 954 dc->queued = 0; 955 dc->error = 0; 956 init_completion(&dc->wait); 957 list_add_tail(&dc->list, pend_list); 958 spin_lock_init(&dc->lock); 959 dc->bio_ref = 0; 960 atomic_inc(&dcc->discard_cmd_cnt); 961 dcc->undiscard_blks += len; 962 963 return dc; 964 } 965 966 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 967 struct block_device *bdev, block_t lstart, 968 block_t start, block_t len, 969 struct rb_node *parent, struct rb_node **p, 970 bool leftmost) 971 { 972 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 973 struct discard_cmd *dc; 974 975 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 976 977 rb_link_node(&dc->rb_node, parent, p); 978 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 979 980 return dc; 981 } 982 983 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 984 struct discard_cmd *dc) 985 { 986 if (dc->state == D_DONE) 987 atomic_sub(dc->queued, &dcc->queued_discard); 988 989 list_del(&dc->list); 990 rb_erase_cached(&dc->rb_node, &dcc->root); 991 dcc->undiscard_blks -= dc->len; 992 993 kmem_cache_free(discard_cmd_slab, dc); 994 995 atomic_dec(&dcc->discard_cmd_cnt); 996 } 997 998 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 999 struct discard_cmd *dc) 1000 { 1001 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1002 unsigned long flags; 1003 1004 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 1005 1006 spin_lock_irqsave(&dc->lock, flags); 1007 if (dc->bio_ref) { 1008 spin_unlock_irqrestore(&dc->lock, flags); 1009 return; 1010 } 1011 spin_unlock_irqrestore(&dc->lock, flags); 1012 1013 f2fs_bug_on(sbi, dc->ref); 1014 1015 if (dc->error == -EOPNOTSUPP) 1016 dc->error = 0; 1017 1018 if (dc->error) 1019 printk_ratelimited( 1020 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1021 KERN_INFO, sbi->sb->s_id, 1022 dc->lstart, dc->start, dc->len, dc->error); 1023 __detach_discard_cmd(dcc, dc); 1024 } 1025 1026 static void f2fs_submit_discard_endio(struct bio *bio) 1027 { 1028 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1029 unsigned long flags; 1030 1031 dc->error = blk_status_to_errno(bio->bi_status); 1032 1033 spin_lock_irqsave(&dc->lock, flags); 1034 dc->bio_ref--; 1035 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1036 dc->state = D_DONE; 1037 complete_all(&dc->wait); 1038 } 1039 spin_unlock_irqrestore(&dc->lock, flags); 1040 bio_put(bio); 1041 } 1042 1043 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1044 block_t start, block_t end) 1045 { 1046 #ifdef CONFIG_F2FS_CHECK_FS 1047 struct seg_entry *sentry; 1048 unsigned int segno; 1049 block_t blk = start; 1050 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1051 unsigned long *map; 1052 1053 while (blk < end) { 1054 segno = GET_SEGNO(sbi, blk); 1055 sentry = get_seg_entry(sbi, segno); 1056 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1057 1058 if (end < START_BLOCK(sbi, segno + 1)) 1059 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1060 else 1061 size = max_blocks; 1062 map = (unsigned long *)(sentry->cur_valid_map); 1063 offset = __find_rev_next_bit(map, size, offset); 1064 f2fs_bug_on(sbi, offset != size); 1065 blk = START_BLOCK(sbi, segno + 1); 1066 } 1067 #endif 1068 } 1069 1070 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1071 struct discard_policy *dpolicy, 1072 int discard_type, unsigned int granularity) 1073 { 1074 /* common policy */ 1075 dpolicy->type = discard_type; 1076 dpolicy->sync = true; 1077 dpolicy->ordered = false; 1078 dpolicy->granularity = granularity; 1079 1080 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1081 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1082 dpolicy->timeout = 0; 1083 1084 if (discard_type == DPOLICY_BG) { 1085 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1086 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1087 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1088 dpolicy->io_aware = true; 1089 dpolicy->sync = false; 1090 dpolicy->ordered = true; 1091 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1092 dpolicy->granularity = 1; 1093 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1094 } 1095 } else if (discard_type == DPOLICY_FORCE) { 1096 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1097 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1098 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1099 dpolicy->io_aware = false; 1100 } else if (discard_type == DPOLICY_FSTRIM) { 1101 dpolicy->io_aware = false; 1102 } else if (discard_type == DPOLICY_UMOUNT) { 1103 dpolicy->max_requests = UINT_MAX; 1104 dpolicy->io_aware = false; 1105 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1106 dpolicy->granularity = 1; 1107 } 1108 } 1109 1110 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1111 struct block_device *bdev, block_t lstart, 1112 block_t start, block_t len); 1113 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1114 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1115 struct discard_policy *dpolicy, 1116 struct discard_cmd *dc, 1117 unsigned int *issued) 1118 { 1119 struct block_device *bdev = dc->bdev; 1120 struct request_queue *q = bdev_get_queue(bdev); 1121 unsigned int max_discard_blocks = 1122 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1123 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1124 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1125 &(dcc->fstrim_list) : &(dcc->wait_list); 1126 int flag = dpolicy->sync ? REQ_SYNC : 0; 1127 block_t lstart, start, len, total_len; 1128 int err = 0; 1129 1130 if (dc->state != D_PREP) 1131 return 0; 1132 1133 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1134 return 0; 1135 1136 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1137 1138 lstart = dc->lstart; 1139 start = dc->start; 1140 len = dc->len; 1141 total_len = len; 1142 1143 dc->len = 0; 1144 1145 while (total_len && *issued < dpolicy->max_requests && !err) { 1146 struct bio *bio = NULL; 1147 unsigned long flags; 1148 bool last = true; 1149 1150 if (len > max_discard_blocks) { 1151 len = max_discard_blocks; 1152 last = false; 1153 } 1154 1155 (*issued)++; 1156 if (*issued == dpolicy->max_requests) 1157 last = true; 1158 1159 dc->len += len; 1160 1161 if (time_to_inject(sbi, FAULT_DISCARD)) { 1162 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1163 err = -EIO; 1164 goto submit; 1165 } 1166 err = __blkdev_issue_discard(bdev, 1167 SECTOR_FROM_BLOCK(start), 1168 SECTOR_FROM_BLOCK(len), 1169 GFP_NOFS, 0, &bio); 1170 submit: 1171 if (err) { 1172 spin_lock_irqsave(&dc->lock, flags); 1173 if (dc->state == D_PARTIAL) 1174 dc->state = D_SUBMIT; 1175 spin_unlock_irqrestore(&dc->lock, flags); 1176 1177 break; 1178 } 1179 1180 f2fs_bug_on(sbi, !bio); 1181 1182 /* 1183 * should keep before submission to avoid D_DONE 1184 * right away 1185 */ 1186 spin_lock_irqsave(&dc->lock, flags); 1187 if (last) 1188 dc->state = D_SUBMIT; 1189 else 1190 dc->state = D_PARTIAL; 1191 dc->bio_ref++; 1192 spin_unlock_irqrestore(&dc->lock, flags); 1193 1194 atomic_inc(&dcc->queued_discard); 1195 dc->queued++; 1196 list_move_tail(&dc->list, wait_list); 1197 1198 /* sanity check on discard range */ 1199 __check_sit_bitmap(sbi, lstart, lstart + len); 1200 1201 bio->bi_private = dc; 1202 bio->bi_end_io = f2fs_submit_discard_endio; 1203 bio->bi_opf |= flag; 1204 submit_bio(bio); 1205 1206 atomic_inc(&dcc->issued_discard); 1207 1208 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1209 1210 lstart += len; 1211 start += len; 1212 total_len -= len; 1213 len = total_len; 1214 } 1215 1216 if (!err && len) 1217 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1218 return err; 1219 } 1220 1221 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 1222 struct block_device *bdev, block_t lstart, 1223 block_t start, block_t len, 1224 struct rb_node **insert_p, 1225 struct rb_node *insert_parent) 1226 { 1227 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1228 struct rb_node **p; 1229 struct rb_node *parent = NULL; 1230 struct discard_cmd *dc = NULL; 1231 bool leftmost = true; 1232 1233 if (insert_p && insert_parent) { 1234 parent = insert_parent; 1235 p = insert_p; 1236 goto do_insert; 1237 } 1238 1239 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1240 lstart, &leftmost); 1241 do_insert: 1242 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1243 p, leftmost); 1244 if (!dc) 1245 return NULL; 1246 1247 return dc; 1248 } 1249 1250 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1251 struct discard_cmd *dc) 1252 { 1253 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1254 } 1255 1256 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1257 struct discard_cmd *dc, block_t blkaddr) 1258 { 1259 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1260 struct discard_info di = dc->di; 1261 bool modified = false; 1262 1263 if (dc->state == D_DONE || dc->len == 1) { 1264 __remove_discard_cmd(sbi, dc); 1265 return; 1266 } 1267 1268 dcc->undiscard_blks -= di.len; 1269 1270 if (blkaddr > di.lstart) { 1271 dc->len = blkaddr - dc->lstart; 1272 dcc->undiscard_blks += dc->len; 1273 __relocate_discard_cmd(dcc, dc); 1274 modified = true; 1275 } 1276 1277 if (blkaddr < di.lstart + di.len - 1) { 1278 if (modified) { 1279 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1280 di.start + blkaddr + 1 - di.lstart, 1281 di.lstart + di.len - 1 - blkaddr, 1282 NULL, NULL); 1283 } else { 1284 dc->lstart++; 1285 dc->len--; 1286 dc->start++; 1287 dcc->undiscard_blks += dc->len; 1288 __relocate_discard_cmd(dcc, dc); 1289 } 1290 } 1291 } 1292 1293 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1294 struct block_device *bdev, block_t lstart, 1295 block_t start, block_t len) 1296 { 1297 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1298 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1299 struct discard_cmd *dc; 1300 struct discard_info di = {0}; 1301 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1302 struct request_queue *q = bdev_get_queue(bdev); 1303 unsigned int max_discard_blocks = 1304 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1305 block_t end = lstart + len; 1306 1307 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1308 NULL, lstart, 1309 (struct rb_entry **)&prev_dc, 1310 (struct rb_entry **)&next_dc, 1311 &insert_p, &insert_parent, true, NULL); 1312 if (dc) 1313 prev_dc = dc; 1314 1315 if (!prev_dc) { 1316 di.lstart = lstart; 1317 di.len = next_dc ? next_dc->lstart - lstart : len; 1318 di.len = min(di.len, len); 1319 di.start = start; 1320 } 1321 1322 while (1) { 1323 struct rb_node *node; 1324 bool merged = false; 1325 struct discard_cmd *tdc = NULL; 1326 1327 if (prev_dc) { 1328 di.lstart = prev_dc->lstart + prev_dc->len; 1329 if (di.lstart < lstart) 1330 di.lstart = lstart; 1331 if (di.lstart >= end) 1332 break; 1333 1334 if (!next_dc || next_dc->lstart > end) 1335 di.len = end - di.lstart; 1336 else 1337 di.len = next_dc->lstart - di.lstart; 1338 di.start = start + di.lstart - lstart; 1339 } 1340 1341 if (!di.len) 1342 goto next; 1343 1344 if (prev_dc && prev_dc->state == D_PREP && 1345 prev_dc->bdev == bdev && 1346 __is_discard_back_mergeable(&di, &prev_dc->di, 1347 max_discard_blocks)) { 1348 prev_dc->di.len += di.len; 1349 dcc->undiscard_blks += di.len; 1350 __relocate_discard_cmd(dcc, prev_dc); 1351 di = prev_dc->di; 1352 tdc = prev_dc; 1353 merged = true; 1354 } 1355 1356 if (next_dc && next_dc->state == D_PREP && 1357 next_dc->bdev == bdev && 1358 __is_discard_front_mergeable(&di, &next_dc->di, 1359 max_discard_blocks)) { 1360 next_dc->di.lstart = di.lstart; 1361 next_dc->di.len += di.len; 1362 next_dc->di.start = di.start; 1363 dcc->undiscard_blks += di.len; 1364 __relocate_discard_cmd(dcc, next_dc); 1365 if (tdc) 1366 __remove_discard_cmd(sbi, tdc); 1367 merged = true; 1368 } 1369 1370 if (!merged) { 1371 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1372 di.len, NULL, NULL); 1373 } 1374 next: 1375 prev_dc = next_dc; 1376 if (!prev_dc) 1377 break; 1378 1379 node = rb_next(&prev_dc->rb_node); 1380 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1381 } 1382 } 1383 1384 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1385 struct block_device *bdev, block_t blkstart, block_t blklen) 1386 { 1387 block_t lblkstart = blkstart; 1388 1389 if (!f2fs_bdev_support_discard(bdev)) 1390 return 0; 1391 1392 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1393 1394 if (f2fs_is_multi_device(sbi)) { 1395 int devi = f2fs_target_device_index(sbi, blkstart); 1396 1397 blkstart -= FDEV(devi).start_blk; 1398 } 1399 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1400 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1401 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1402 return 0; 1403 } 1404 1405 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1406 struct discard_policy *dpolicy) 1407 { 1408 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1409 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1410 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1411 struct discard_cmd *dc; 1412 struct blk_plug plug; 1413 unsigned int pos = dcc->next_pos; 1414 unsigned int issued = 0; 1415 bool io_interrupted = false; 1416 1417 mutex_lock(&dcc->cmd_lock); 1418 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1419 NULL, pos, 1420 (struct rb_entry **)&prev_dc, 1421 (struct rb_entry **)&next_dc, 1422 &insert_p, &insert_parent, true, NULL); 1423 if (!dc) 1424 dc = next_dc; 1425 1426 blk_start_plug(&plug); 1427 1428 while (dc) { 1429 struct rb_node *node; 1430 int err = 0; 1431 1432 if (dc->state != D_PREP) 1433 goto next; 1434 1435 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1436 io_interrupted = true; 1437 break; 1438 } 1439 1440 dcc->next_pos = dc->lstart + dc->len; 1441 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1442 1443 if (issued >= dpolicy->max_requests) 1444 break; 1445 next: 1446 node = rb_next(&dc->rb_node); 1447 if (err) 1448 __remove_discard_cmd(sbi, dc); 1449 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1450 } 1451 1452 blk_finish_plug(&plug); 1453 1454 if (!dc) 1455 dcc->next_pos = 0; 1456 1457 mutex_unlock(&dcc->cmd_lock); 1458 1459 if (!issued && io_interrupted) 1460 issued = -1; 1461 1462 return issued; 1463 } 1464 1465 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1466 struct discard_policy *dpolicy) 1467 { 1468 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1469 struct list_head *pend_list; 1470 struct discard_cmd *dc, *tmp; 1471 struct blk_plug plug; 1472 int i, issued = 0; 1473 bool io_interrupted = false; 1474 1475 if (dpolicy->timeout != 0) 1476 f2fs_update_time(sbi, dpolicy->timeout); 1477 1478 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1479 if (dpolicy->timeout != 0 && 1480 f2fs_time_over(sbi, dpolicy->timeout)) 1481 break; 1482 1483 if (i + 1 < dpolicy->granularity) 1484 break; 1485 1486 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1487 return __issue_discard_cmd_orderly(sbi, dpolicy); 1488 1489 pend_list = &dcc->pend_list[i]; 1490 1491 mutex_lock(&dcc->cmd_lock); 1492 if (list_empty(pend_list)) 1493 goto next; 1494 if (unlikely(dcc->rbtree_check)) 1495 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1496 &dcc->root)); 1497 blk_start_plug(&plug); 1498 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1499 f2fs_bug_on(sbi, dc->state != D_PREP); 1500 1501 if (dpolicy->timeout != 0 && 1502 f2fs_time_over(sbi, dpolicy->timeout)) 1503 break; 1504 1505 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1506 !is_idle(sbi, DISCARD_TIME)) { 1507 io_interrupted = true; 1508 break; 1509 } 1510 1511 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1512 1513 if (issued >= dpolicy->max_requests) 1514 break; 1515 } 1516 blk_finish_plug(&plug); 1517 next: 1518 mutex_unlock(&dcc->cmd_lock); 1519 1520 if (issued >= dpolicy->max_requests || io_interrupted) 1521 break; 1522 } 1523 1524 if (!issued && io_interrupted) 1525 issued = -1; 1526 1527 return issued; 1528 } 1529 1530 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1531 { 1532 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1533 struct list_head *pend_list; 1534 struct discard_cmd *dc, *tmp; 1535 int i; 1536 bool dropped = false; 1537 1538 mutex_lock(&dcc->cmd_lock); 1539 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1540 pend_list = &dcc->pend_list[i]; 1541 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1542 f2fs_bug_on(sbi, dc->state != D_PREP); 1543 __remove_discard_cmd(sbi, dc); 1544 dropped = true; 1545 } 1546 } 1547 mutex_unlock(&dcc->cmd_lock); 1548 1549 return dropped; 1550 } 1551 1552 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1553 { 1554 __drop_discard_cmd(sbi); 1555 } 1556 1557 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1558 struct discard_cmd *dc) 1559 { 1560 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1561 unsigned int len = 0; 1562 1563 wait_for_completion_io(&dc->wait); 1564 mutex_lock(&dcc->cmd_lock); 1565 f2fs_bug_on(sbi, dc->state != D_DONE); 1566 dc->ref--; 1567 if (!dc->ref) { 1568 if (!dc->error) 1569 len = dc->len; 1570 __remove_discard_cmd(sbi, dc); 1571 } 1572 mutex_unlock(&dcc->cmd_lock); 1573 1574 return len; 1575 } 1576 1577 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1578 struct discard_policy *dpolicy, 1579 block_t start, block_t end) 1580 { 1581 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1582 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1583 &(dcc->fstrim_list) : &(dcc->wait_list); 1584 struct discard_cmd *dc, *tmp; 1585 bool need_wait; 1586 unsigned int trimmed = 0; 1587 1588 next: 1589 need_wait = false; 1590 1591 mutex_lock(&dcc->cmd_lock); 1592 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1593 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1594 continue; 1595 if (dc->len < dpolicy->granularity) 1596 continue; 1597 if (dc->state == D_DONE && !dc->ref) { 1598 wait_for_completion_io(&dc->wait); 1599 if (!dc->error) 1600 trimmed += dc->len; 1601 __remove_discard_cmd(sbi, dc); 1602 } else { 1603 dc->ref++; 1604 need_wait = true; 1605 break; 1606 } 1607 } 1608 mutex_unlock(&dcc->cmd_lock); 1609 1610 if (need_wait) { 1611 trimmed += __wait_one_discard_bio(sbi, dc); 1612 goto next; 1613 } 1614 1615 return trimmed; 1616 } 1617 1618 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1619 struct discard_policy *dpolicy) 1620 { 1621 struct discard_policy dp; 1622 unsigned int discard_blks; 1623 1624 if (dpolicy) 1625 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1626 1627 /* wait all */ 1628 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1629 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1630 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1631 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1632 1633 return discard_blks; 1634 } 1635 1636 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1637 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1638 { 1639 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1640 struct discard_cmd *dc; 1641 bool need_wait = false; 1642 1643 mutex_lock(&dcc->cmd_lock); 1644 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1645 NULL, blkaddr); 1646 if (dc) { 1647 if (dc->state == D_PREP) { 1648 __punch_discard_cmd(sbi, dc, blkaddr); 1649 } else { 1650 dc->ref++; 1651 need_wait = true; 1652 } 1653 } 1654 mutex_unlock(&dcc->cmd_lock); 1655 1656 if (need_wait) 1657 __wait_one_discard_bio(sbi, dc); 1658 } 1659 1660 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1661 { 1662 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1663 1664 if (dcc && dcc->f2fs_issue_discard) { 1665 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1666 1667 dcc->f2fs_issue_discard = NULL; 1668 kthread_stop(discard_thread); 1669 } 1670 } 1671 1672 /* This comes from f2fs_put_super */ 1673 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1674 { 1675 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1676 struct discard_policy dpolicy; 1677 bool dropped; 1678 1679 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1680 dcc->discard_granularity); 1681 dpolicy.timeout = UMOUNT_DISCARD_TIMEOUT; 1682 __issue_discard_cmd(sbi, &dpolicy); 1683 dropped = __drop_discard_cmd(sbi); 1684 1685 /* just to make sure there is no pending discard commands */ 1686 __wait_all_discard_cmd(sbi, NULL); 1687 1688 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1689 return dropped; 1690 } 1691 1692 static int issue_discard_thread(void *data) 1693 { 1694 struct f2fs_sb_info *sbi = data; 1695 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1696 wait_queue_head_t *q = &dcc->discard_wait_queue; 1697 struct discard_policy dpolicy; 1698 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1699 int issued; 1700 1701 set_freezable(); 1702 1703 do { 1704 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1705 dcc->discard_granularity); 1706 1707 wait_event_interruptible_timeout(*q, 1708 kthread_should_stop() || freezing(current) || 1709 dcc->discard_wake, 1710 msecs_to_jiffies(wait_ms)); 1711 1712 if (dcc->discard_wake) 1713 dcc->discard_wake = 0; 1714 1715 /* clean up pending candidates before going to sleep */ 1716 if (atomic_read(&dcc->queued_discard)) 1717 __wait_all_discard_cmd(sbi, NULL); 1718 1719 if (try_to_freeze()) 1720 continue; 1721 if (f2fs_readonly(sbi->sb)) 1722 continue; 1723 if (kthread_should_stop()) 1724 return 0; 1725 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1726 wait_ms = dpolicy.max_interval; 1727 continue; 1728 } 1729 1730 if (sbi->gc_mode == GC_URGENT) 1731 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1732 1733 sb_start_intwrite(sbi->sb); 1734 1735 issued = __issue_discard_cmd(sbi, &dpolicy); 1736 if (issued > 0) { 1737 __wait_all_discard_cmd(sbi, &dpolicy); 1738 wait_ms = dpolicy.min_interval; 1739 } else if (issued == -1){ 1740 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1741 if (!wait_ms) 1742 wait_ms = dpolicy.mid_interval; 1743 } else { 1744 wait_ms = dpolicy.max_interval; 1745 } 1746 1747 sb_end_intwrite(sbi->sb); 1748 1749 } while (!kthread_should_stop()); 1750 return 0; 1751 } 1752 1753 #ifdef CONFIG_BLK_DEV_ZONED 1754 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1755 struct block_device *bdev, block_t blkstart, block_t blklen) 1756 { 1757 sector_t sector, nr_sects; 1758 block_t lblkstart = blkstart; 1759 int devi = 0; 1760 1761 if (f2fs_is_multi_device(sbi)) { 1762 devi = f2fs_target_device_index(sbi, blkstart); 1763 if (blkstart < FDEV(devi).start_blk || 1764 blkstart > FDEV(devi).end_blk) { 1765 f2fs_err(sbi, "Invalid block %x", blkstart); 1766 return -EIO; 1767 } 1768 blkstart -= FDEV(devi).start_blk; 1769 } 1770 1771 /* For sequential zones, reset the zone write pointer */ 1772 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1773 sector = SECTOR_FROM_BLOCK(blkstart); 1774 nr_sects = SECTOR_FROM_BLOCK(blklen); 1775 1776 if (sector & (bdev_zone_sectors(bdev) - 1) || 1777 nr_sects != bdev_zone_sectors(bdev)) { 1778 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1779 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1780 blkstart, blklen); 1781 return -EIO; 1782 } 1783 trace_f2fs_issue_reset_zone(bdev, blkstart); 1784 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1785 sector, nr_sects, GFP_NOFS); 1786 } 1787 1788 /* For conventional zones, use regular discard if supported */ 1789 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1790 } 1791 #endif 1792 1793 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1794 struct block_device *bdev, block_t blkstart, block_t blklen) 1795 { 1796 #ifdef CONFIG_BLK_DEV_ZONED 1797 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1798 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1799 #endif 1800 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1801 } 1802 1803 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1804 block_t blkstart, block_t blklen) 1805 { 1806 sector_t start = blkstart, len = 0; 1807 struct block_device *bdev; 1808 struct seg_entry *se; 1809 unsigned int offset; 1810 block_t i; 1811 int err = 0; 1812 1813 bdev = f2fs_target_device(sbi, blkstart, NULL); 1814 1815 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1816 if (i != start) { 1817 struct block_device *bdev2 = 1818 f2fs_target_device(sbi, i, NULL); 1819 1820 if (bdev2 != bdev) { 1821 err = __issue_discard_async(sbi, bdev, 1822 start, len); 1823 if (err) 1824 return err; 1825 bdev = bdev2; 1826 start = i; 1827 len = 0; 1828 } 1829 } 1830 1831 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1832 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1833 1834 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1835 sbi->discard_blks--; 1836 } 1837 1838 if (len) 1839 err = __issue_discard_async(sbi, bdev, start, len); 1840 return err; 1841 } 1842 1843 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1844 bool check_only) 1845 { 1846 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1847 int max_blocks = sbi->blocks_per_seg; 1848 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1849 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1850 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1851 unsigned long *discard_map = (unsigned long *)se->discard_map; 1852 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1853 unsigned int start = 0, end = -1; 1854 bool force = (cpc->reason & CP_DISCARD); 1855 struct discard_entry *de = NULL; 1856 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1857 int i; 1858 1859 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1860 return false; 1861 1862 if (!force) { 1863 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1864 SM_I(sbi)->dcc_info->nr_discards >= 1865 SM_I(sbi)->dcc_info->max_discards) 1866 return false; 1867 } 1868 1869 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1870 for (i = 0; i < entries; i++) 1871 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1872 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1873 1874 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1875 SM_I(sbi)->dcc_info->max_discards) { 1876 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1877 if (start >= max_blocks) 1878 break; 1879 1880 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1881 if (force && start && end != max_blocks 1882 && (end - start) < cpc->trim_minlen) 1883 continue; 1884 1885 if (check_only) 1886 return true; 1887 1888 if (!de) { 1889 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1890 GFP_F2FS_ZERO); 1891 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1892 list_add_tail(&de->list, head); 1893 } 1894 1895 for (i = start; i < end; i++) 1896 __set_bit_le(i, (void *)de->discard_map); 1897 1898 SM_I(sbi)->dcc_info->nr_discards += end - start; 1899 } 1900 return false; 1901 } 1902 1903 static void release_discard_addr(struct discard_entry *entry) 1904 { 1905 list_del(&entry->list); 1906 kmem_cache_free(discard_entry_slab, entry); 1907 } 1908 1909 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1910 { 1911 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1912 struct discard_entry *entry, *this; 1913 1914 /* drop caches */ 1915 list_for_each_entry_safe(entry, this, head, list) 1916 release_discard_addr(entry); 1917 } 1918 1919 /* 1920 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1921 */ 1922 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1923 { 1924 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1925 unsigned int segno; 1926 1927 mutex_lock(&dirty_i->seglist_lock); 1928 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1929 __set_test_and_free(sbi, segno); 1930 mutex_unlock(&dirty_i->seglist_lock); 1931 } 1932 1933 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1934 struct cp_control *cpc) 1935 { 1936 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1937 struct list_head *head = &dcc->entry_list; 1938 struct discard_entry *entry, *this; 1939 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1940 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1941 unsigned int start = 0, end = -1; 1942 unsigned int secno, start_segno; 1943 bool force = (cpc->reason & CP_DISCARD); 1944 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 1945 1946 mutex_lock(&dirty_i->seglist_lock); 1947 1948 while (1) { 1949 int i; 1950 1951 if (need_align && end != -1) 1952 end--; 1953 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1954 if (start >= MAIN_SEGS(sbi)) 1955 break; 1956 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1957 start + 1); 1958 1959 if (need_align) { 1960 start = rounddown(start, sbi->segs_per_sec); 1961 end = roundup(end, sbi->segs_per_sec); 1962 } 1963 1964 for (i = start; i < end; i++) { 1965 if (test_and_clear_bit(i, prefree_map)) 1966 dirty_i->nr_dirty[PRE]--; 1967 } 1968 1969 if (!f2fs_realtime_discard_enable(sbi)) 1970 continue; 1971 1972 if (force && start >= cpc->trim_start && 1973 (end - 1) <= cpc->trim_end) 1974 continue; 1975 1976 if (!test_opt(sbi, LFS) || !__is_large_section(sbi)) { 1977 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1978 (end - start) << sbi->log_blocks_per_seg); 1979 continue; 1980 } 1981 next: 1982 secno = GET_SEC_FROM_SEG(sbi, start); 1983 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1984 if (!IS_CURSEC(sbi, secno) && 1985 !get_valid_blocks(sbi, start, true)) 1986 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1987 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1988 1989 start = start_segno + sbi->segs_per_sec; 1990 if (start < end) 1991 goto next; 1992 else 1993 end = start - 1; 1994 } 1995 mutex_unlock(&dirty_i->seglist_lock); 1996 1997 /* send small discards */ 1998 list_for_each_entry_safe(entry, this, head, list) { 1999 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2000 bool is_valid = test_bit_le(0, entry->discard_map); 2001 2002 find_next: 2003 if (is_valid) { 2004 next_pos = find_next_zero_bit_le(entry->discard_map, 2005 sbi->blocks_per_seg, cur_pos); 2006 len = next_pos - cur_pos; 2007 2008 if (f2fs_sb_has_blkzoned(sbi) || 2009 (force && len < cpc->trim_minlen)) 2010 goto skip; 2011 2012 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2013 len); 2014 total_len += len; 2015 } else { 2016 next_pos = find_next_bit_le(entry->discard_map, 2017 sbi->blocks_per_seg, cur_pos); 2018 } 2019 skip: 2020 cur_pos = next_pos; 2021 is_valid = !is_valid; 2022 2023 if (cur_pos < sbi->blocks_per_seg) 2024 goto find_next; 2025 2026 release_discard_addr(entry); 2027 dcc->nr_discards -= total_len; 2028 } 2029 2030 wake_up_discard_thread(sbi, false); 2031 } 2032 2033 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2034 { 2035 dev_t dev = sbi->sb->s_bdev->bd_dev; 2036 struct discard_cmd_control *dcc; 2037 int err = 0, i; 2038 2039 if (SM_I(sbi)->dcc_info) { 2040 dcc = SM_I(sbi)->dcc_info; 2041 goto init_thread; 2042 } 2043 2044 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2045 if (!dcc) 2046 return -ENOMEM; 2047 2048 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2049 INIT_LIST_HEAD(&dcc->entry_list); 2050 for (i = 0; i < MAX_PLIST_NUM; i++) 2051 INIT_LIST_HEAD(&dcc->pend_list[i]); 2052 INIT_LIST_HEAD(&dcc->wait_list); 2053 INIT_LIST_HEAD(&dcc->fstrim_list); 2054 mutex_init(&dcc->cmd_lock); 2055 atomic_set(&dcc->issued_discard, 0); 2056 atomic_set(&dcc->queued_discard, 0); 2057 atomic_set(&dcc->discard_cmd_cnt, 0); 2058 dcc->nr_discards = 0; 2059 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2060 dcc->undiscard_blks = 0; 2061 dcc->next_pos = 0; 2062 dcc->root = RB_ROOT_CACHED; 2063 dcc->rbtree_check = false; 2064 2065 init_waitqueue_head(&dcc->discard_wait_queue); 2066 SM_I(sbi)->dcc_info = dcc; 2067 init_thread: 2068 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2069 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2070 if (IS_ERR(dcc->f2fs_issue_discard)) { 2071 err = PTR_ERR(dcc->f2fs_issue_discard); 2072 kvfree(dcc); 2073 SM_I(sbi)->dcc_info = NULL; 2074 return err; 2075 } 2076 2077 return err; 2078 } 2079 2080 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2081 { 2082 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2083 2084 if (!dcc) 2085 return; 2086 2087 f2fs_stop_discard_thread(sbi); 2088 2089 /* 2090 * Recovery can cache discard commands, so in error path of 2091 * fill_super(), it needs to give a chance to handle them. 2092 */ 2093 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2094 f2fs_issue_discard_timeout(sbi); 2095 2096 kvfree(dcc); 2097 SM_I(sbi)->dcc_info = NULL; 2098 } 2099 2100 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2101 { 2102 struct sit_info *sit_i = SIT_I(sbi); 2103 2104 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2105 sit_i->dirty_sentries++; 2106 return false; 2107 } 2108 2109 return true; 2110 } 2111 2112 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2113 unsigned int segno, int modified) 2114 { 2115 struct seg_entry *se = get_seg_entry(sbi, segno); 2116 se->type = type; 2117 if (modified) 2118 __mark_sit_entry_dirty(sbi, segno); 2119 } 2120 2121 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2122 { 2123 struct seg_entry *se; 2124 unsigned int segno, offset; 2125 long int new_vblocks; 2126 bool exist; 2127 #ifdef CONFIG_F2FS_CHECK_FS 2128 bool mir_exist; 2129 #endif 2130 2131 segno = GET_SEGNO(sbi, blkaddr); 2132 2133 se = get_seg_entry(sbi, segno); 2134 new_vblocks = se->valid_blocks + del; 2135 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2136 2137 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 2138 (new_vblocks > sbi->blocks_per_seg))); 2139 2140 se->valid_blocks = new_vblocks; 2141 se->mtime = get_mtime(sbi, false); 2142 if (se->mtime > SIT_I(sbi)->max_mtime) 2143 SIT_I(sbi)->max_mtime = se->mtime; 2144 2145 /* Update valid block bitmap */ 2146 if (del > 0) { 2147 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2148 #ifdef CONFIG_F2FS_CHECK_FS 2149 mir_exist = f2fs_test_and_set_bit(offset, 2150 se->cur_valid_map_mir); 2151 if (unlikely(exist != mir_exist)) { 2152 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2153 blkaddr, exist); 2154 f2fs_bug_on(sbi, 1); 2155 } 2156 #endif 2157 if (unlikely(exist)) { 2158 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2159 blkaddr); 2160 f2fs_bug_on(sbi, 1); 2161 se->valid_blocks--; 2162 del = 0; 2163 } 2164 2165 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2166 sbi->discard_blks--; 2167 2168 /* 2169 * SSR should never reuse block which is checkpointed 2170 * or newly invalidated. 2171 */ 2172 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2173 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2174 se->ckpt_valid_blocks++; 2175 } 2176 } else { 2177 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2178 #ifdef CONFIG_F2FS_CHECK_FS 2179 mir_exist = f2fs_test_and_clear_bit(offset, 2180 se->cur_valid_map_mir); 2181 if (unlikely(exist != mir_exist)) { 2182 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2183 blkaddr, exist); 2184 f2fs_bug_on(sbi, 1); 2185 } 2186 #endif 2187 if (unlikely(!exist)) { 2188 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2189 blkaddr); 2190 f2fs_bug_on(sbi, 1); 2191 se->valid_blocks++; 2192 del = 0; 2193 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2194 /* 2195 * If checkpoints are off, we must not reuse data that 2196 * was used in the previous checkpoint. If it was used 2197 * before, we must track that to know how much space we 2198 * really have. 2199 */ 2200 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2201 spin_lock(&sbi->stat_lock); 2202 sbi->unusable_block_count++; 2203 spin_unlock(&sbi->stat_lock); 2204 } 2205 } 2206 2207 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2208 sbi->discard_blks++; 2209 } 2210 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2211 se->ckpt_valid_blocks += del; 2212 2213 __mark_sit_entry_dirty(sbi, segno); 2214 2215 /* update total number of valid blocks to be written in ckpt area */ 2216 SIT_I(sbi)->written_valid_blocks += del; 2217 2218 if (__is_large_section(sbi)) 2219 get_sec_entry(sbi, segno)->valid_blocks += del; 2220 } 2221 2222 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2223 { 2224 unsigned int segno = GET_SEGNO(sbi, addr); 2225 struct sit_info *sit_i = SIT_I(sbi); 2226 2227 f2fs_bug_on(sbi, addr == NULL_ADDR); 2228 if (addr == NEW_ADDR) 2229 return; 2230 2231 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2232 2233 /* add it into sit main buffer */ 2234 down_write(&sit_i->sentry_lock); 2235 2236 update_sit_entry(sbi, addr, -1); 2237 2238 /* add it into dirty seglist */ 2239 locate_dirty_segment(sbi, segno); 2240 2241 up_write(&sit_i->sentry_lock); 2242 } 2243 2244 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2245 { 2246 struct sit_info *sit_i = SIT_I(sbi); 2247 unsigned int segno, offset; 2248 struct seg_entry *se; 2249 bool is_cp = false; 2250 2251 if (!__is_valid_data_blkaddr(blkaddr)) 2252 return true; 2253 2254 down_read(&sit_i->sentry_lock); 2255 2256 segno = GET_SEGNO(sbi, blkaddr); 2257 se = get_seg_entry(sbi, segno); 2258 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2259 2260 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2261 is_cp = true; 2262 2263 up_read(&sit_i->sentry_lock); 2264 2265 return is_cp; 2266 } 2267 2268 /* 2269 * This function should be resided under the curseg_mutex lock 2270 */ 2271 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2272 struct f2fs_summary *sum) 2273 { 2274 struct curseg_info *curseg = CURSEG_I(sbi, type); 2275 void *addr = curseg->sum_blk; 2276 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2277 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2278 } 2279 2280 /* 2281 * Calculate the number of current summary pages for writing 2282 */ 2283 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2284 { 2285 int valid_sum_count = 0; 2286 int i, sum_in_page; 2287 2288 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2289 if (sbi->ckpt->alloc_type[i] == SSR) 2290 valid_sum_count += sbi->blocks_per_seg; 2291 else { 2292 if (for_ra) 2293 valid_sum_count += le16_to_cpu( 2294 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2295 else 2296 valid_sum_count += curseg_blkoff(sbi, i); 2297 } 2298 } 2299 2300 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2301 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2302 if (valid_sum_count <= sum_in_page) 2303 return 1; 2304 else if ((valid_sum_count - sum_in_page) <= 2305 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2306 return 2; 2307 return 3; 2308 } 2309 2310 /* 2311 * Caller should put this summary page 2312 */ 2313 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2314 { 2315 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); 2316 } 2317 2318 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2319 void *src, block_t blk_addr) 2320 { 2321 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2322 2323 memcpy(page_address(page), src, PAGE_SIZE); 2324 set_page_dirty(page); 2325 f2fs_put_page(page, 1); 2326 } 2327 2328 static void write_sum_page(struct f2fs_sb_info *sbi, 2329 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2330 { 2331 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2332 } 2333 2334 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2335 int type, block_t blk_addr) 2336 { 2337 struct curseg_info *curseg = CURSEG_I(sbi, type); 2338 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2339 struct f2fs_summary_block *src = curseg->sum_blk; 2340 struct f2fs_summary_block *dst; 2341 2342 dst = (struct f2fs_summary_block *)page_address(page); 2343 memset(dst, 0, PAGE_SIZE); 2344 2345 mutex_lock(&curseg->curseg_mutex); 2346 2347 down_read(&curseg->journal_rwsem); 2348 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2349 up_read(&curseg->journal_rwsem); 2350 2351 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2352 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2353 2354 mutex_unlock(&curseg->curseg_mutex); 2355 2356 set_page_dirty(page); 2357 f2fs_put_page(page, 1); 2358 } 2359 2360 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2361 { 2362 struct curseg_info *curseg = CURSEG_I(sbi, type); 2363 unsigned int segno = curseg->segno + 1; 2364 struct free_segmap_info *free_i = FREE_I(sbi); 2365 2366 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2367 return !test_bit(segno, free_i->free_segmap); 2368 return 0; 2369 } 2370 2371 /* 2372 * Find a new segment from the free segments bitmap to right order 2373 * This function should be returned with success, otherwise BUG 2374 */ 2375 static void get_new_segment(struct f2fs_sb_info *sbi, 2376 unsigned int *newseg, bool new_sec, int dir) 2377 { 2378 struct free_segmap_info *free_i = FREE_I(sbi); 2379 unsigned int segno, secno, zoneno; 2380 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2381 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2382 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2383 unsigned int left_start = hint; 2384 bool init = true; 2385 int go_left = 0; 2386 int i; 2387 2388 spin_lock(&free_i->segmap_lock); 2389 2390 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2391 segno = find_next_zero_bit(free_i->free_segmap, 2392 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2393 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2394 goto got_it; 2395 } 2396 find_other_zone: 2397 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2398 if (secno >= MAIN_SECS(sbi)) { 2399 if (dir == ALLOC_RIGHT) { 2400 secno = find_next_zero_bit(free_i->free_secmap, 2401 MAIN_SECS(sbi), 0); 2402 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2403 } else { 2404 go_left = 1; 2405 left_start = hint - 1; 2406 } 2407 } 2408 if (go_left == 0) 2409 goto skip_left; 2410 2411 while (test_bit(left_start, free_i->free_secmap)) { 2412 if (left_start > 0) { 2413 left_start--; 2414 continue; 2415 } 2416 left_start = find_next_zero_bit(free_i->free_secmap, 2417 MAIN_SECS(sbi), 0); 2418 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2419 break; 2420 } 2421 secno = left_start; 2422 skip_left: 2423 segno = GET_SEG_FROM_SEC(sbi, secno); 2424 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2425 2426 /* give up on finding another zone */ 2427 if (!init) 2428 goto got_it; 2429 if (sbi->secs_per_zone == 1) 2430 goto got_it; 2431 if (zoneno == old_zoneno) 2432 goto got_it; 2433 if (dir == ALLOC_LEFT) { 2434 if (!go_left && zoneno + 1 >= total_zones) 2435 goto got_it; 2436 if (go_left && zoneno == 0) 2437 goto got_it; 2438 } 2439 for (i = 0; i < NR_CURSEG_TYPE; i++) 2440 if (CURSEG_I(sbi, i)->zone == zoneno) 2441 break; 2442 2443 if (i < NR_CURSEG_TYPE) { 2444 /* zone is in user, try another */ 2445 if (go_left) 2446 hint = zoneno * sbi->secs_per_zone - 1; 2447 else if (zoneno + 1 >= total_zones) 2448 hint = 0; 2449 else 2450 hint = (zoneno + 1) * sbi->secs_per_zone; 2451 init = false; 2452 goto find_other_zone; 2453 } 2454 got_it: 2455 /* set it as dirty segment in free segmap */ 2456 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2457 __set_inuse(sbi, segno); 2458 *newseg = segno; 2459 spin_unlock(&free_i->segmap_lock); 2460 } 2461 2462 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2463 { 2464 struct curseg_info *curseg = CURSEG_I(sbi, type); 2465 struct summary_footer *sum_footer; 2466 2467 curseg->segno = curseg->next_segno; 2468 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2469 curseg->next_blkoff = 0; 2470 curseg->next_segno = NULL_SEGNO; 2471 2472 sum_footer = &(curseg->sum_blk->footer); 2473 memset(sum_footer, 0, sizeof(struct summary_footer)); 2474 if (IS_DATASEG(type)) 2475 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2476 if (IS_NODESEG(type)) 2477 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2478 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2479 } 2480 2481 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2482 { 2483 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2484 if (__is_large_section(sbi)) 2485 return CURSEG_I(sbi, type)->segno; 2486 2487 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2488 return 0; 2489 2490 if (test_opt(sbi, NOHEAP) && 2491 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2492 return 0; 2493 2494 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2495 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2496 2497 /* find segments from 0 to reuse freed segments */ 2498 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2499 return 0; 2500 2501 return CURSEG_I(sbi, type)->segno; 2502 } 2503 2504 /* 2505 * Allocate a current working segment. 2506 * This function always allocates a free segment in LFS manner. 2507 */ 2508 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2509 { 2510 struct curseg_info *curseg = CURSEG_I(sbi, type); 2511 unsigned int segno = curseg->segno; 2512 int dir = ALLOC_LEFT; 2513 2514 write_sum_page(sbi, curseg->sum_blk, 2515 GET_SUM_BLOCK(sbi, segno)); 2516 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2517 dir = ALLOC_RIGHT; 2518 2519 if (test_opt(sbi, NOHEAP)) 2520 dir = ALLOC_RIGHT; 2521 2522 segno = __get_next_segno(sbi, type); 2523 get_new_segment(sbi, &segno, new_sec, dir); 2524 curseg->next_segno = segno; 2525 reset_curseg(sbi, type, 1); 2526 curseg->alloc_type = LFS; 2527 } 2528 2529 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2530 struct curseg_info *seg, block_t start) 2531 { 2532 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2533 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2534 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2535 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2536 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2537 int i, pos; 2538 2539 for (i = 0; i < entries; i++) 2540 target_map[i] = ckpt_map[i] | cur_map[i]; 2541 2542 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2543 2544 seg->next_blkoff = pos; 2545 } 2546 2547 /* 2548 * If a segment is written by LFS manner, next block offset is just obtained 2549 * by increasing the current block offset. However, if a segment is written by 2550 * SSR manner, next block offset obtained by calling __next_free_blkoff 2551 */ 2552 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2553 struct curseg_info *seg) 2554 { 2555 if (seg->alloc_type == SSR) 2556 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2557 else 2558 seg->next_blkoff++; 2559 } 2560 2561 /* 2562 * This function always allocates a used segment(from dirty seglist) by SSR 2563 * manner, so it should recover the existing segment information of valid blocks 2564 */ 2565 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2566 { 2567 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2568 struct curseg_info *curseg = CURSEG_I(sbi, type); 2569 unsigned int new_segno = curseg->next_segno; 2570 struct f2fs_summary_block *sum_node; 2571 struct page *sum_page; 2572 2573 write_sum_page(sbi, curseg->sum_blk, 2574 GET_SUM_BLOCK(sbi, curseg->segno)); 2575 __set_test_and_inuse(sbi, new_segno); 2576 2577 mutex_lock(&dirty_i->seglist_lock); 2578 __remove_dirty_segment(sbi, new_segno, PRE); 2579 __remove_dirty_segment(sbi, new_segno, DIRTY); 2580 mutex_unlock(&dirty_i->seglist_lock); 2581 2582 reset_curseg(sbi, type, 1); 2583 curseg->alloc_type = SSR; 2584 __next_free_blkoff(sbi, curseg, 0); 2585 2586 sum_page = f2fs_get_sum_page(sbi, new_segno); 2587 f2fs_bug_on(sbi, IS_ERR(sum_page)); 2588 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2589 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2590 f2fs_put_page(sum_page, 1); 2591 } 2592 2593 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2594 { 2595 struct curseg_info *curseg = CURSEG_I(sbi, type); 2596 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2597 unsigned segno = NULL_SEGNO; 2598 int i, cnt; 2599 bool reversed = false; 2600 2601 /* f2fs_need_SSR() already forces to do this */ 2602 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2603 curseg->next_segno = segno; 2604 return 1; 2605 } 2606 2607 /* For node segments, let's do SSR more intensively */ 2608 if (IS_NODESEG(type)) { 2609 if (type >= CURSEG_WARM_NODE) { 2610 reversed = true; 2611 i = CURSEG_COLD_NODE; 2612 } else { 2613 i = CURSEG_HOT_NODE; 2614 } 2615 cnt = NR_CURSEG_NODE_TYPE; 2616 } else { 2617 if (type >= CURSEG_WARM_DATA) { 2618 reversed = true; 2619 i = CURSEG_COLD_DATA; 2620 } else { 2621 i = CURSEG_HOT_DATA; 2622 } 2623 cnt = NR_CURSEG_DATA_TYPE; 2624 } 2625 2626 for (; cnt-- > 0; reversed ? i-- : i++) { 2627 if (i == type) 2628 continue; 2629 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2630 curseg->next_segno = segno; 2631 return 1; 2632 } 2633 } 2634 2635 /* find valid_blocks=0 in dirty list */ 2636 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2637 segno = get_free_segment(sbi); 2638 if (segno != NULL_SEGNO) { 2639 curseg->next_segno = segno; 2640 return 1; 2641 } 2642 } 2643 return 0; 2644 } 2645 2646 /* 2647 * flush out current segment and replace it with new segment 2648 * This function should be returned with success, otherwise BUG 2649 */ 2650 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2651 int type, bool force) 2652 { 2653 struct curseg_info *curseg = CURSEG_I(sbi, type); 2654 2655 if (force) 2656 new_curseg(sbi, type, true); 2657 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2658 type == CURSEG_WARM_NODE) 2659 new_curseg(sbi, type, false); 2660 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && 2661 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2662 new_curseg(sbi, type, false); 2663 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2664 change_curseg(sbi, type); 2665 else 2666 new_curseg(sbi, type, false); 2667 2668 stat_inc_seg_type(sbi, curseg); 2669 } 2670 2671 void allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2672 unsigned int start, unsigned int end) 2673 { 2674 struct curseg_info *curseg = CURSEG_I(sbi, type); 2675 unsigned int segno; 2676 2677 down_read(&SM_I(sbi)->curseg_lock); 2678 mutex_lock(&curseg->curseg_mutex); 2679 down_write(&SIT_I(sbi)->sentry_lock); 2680 2681 segno = CURSEG_I(sbi, type)->segno; 2682 if (segno < start || segno > end) 2683 goto unlock; 2684 2685 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2686 change_curseg(sbi, type); 2687 else 2688 new_curseg(sbi, type, true); 2689 2690 stat_inc_seg_type(sbi, curseg); 2691 2692 locate_dirty_segment(sbi, segno); 2693 unlock: 2694 up_write(&SIT_I(sbi)->sentry_lock); 2695 2696 if (segno != curseg->segno) 2697 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2698 type, segno, curseg->segno); 2699 2700 mutex_unlock(&curseg->curseg_mutex); 2701 up_read(&SM_I(sbi)->curseg_lock); 2702 } 2703 2704 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi, int type) 2705 { 2706 struct curseg_info *curseg; 2707 unsigned int old_segno; 2708 int i; 2709 2710 down_write(&SIT_I(sbi)->sentry_lock); 2711 2712 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2713 if (type != NO_CHECK_TYPE && i != type) 2714 continue; 2715 2716 curseg = CURSEG_I(sbi, i); 2717 if (type == NO_CHECK_TYPE || curseg->next_blkoff || 2718 get_valid_blocks(sbi, curseg->segno, false) || 2719 get_ckpt_valid_blocks(sbi, curseg->segno)) { 2720 old_segno = curseg->segno; 2721 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2722 locate_dirty_segment(sbi, old_segno); 2723 } 2724 } 2725 2726 up_write(&SIT_I(sbi)->sentry_lock); 2727 } 2728 2729 static const struct segment_allocation default_salloc_ops = { 2730 .allocate_segment = allocate_segment_by_default, 2731 }; 2732 2733 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2734 struct cp_control *cpc) 2735 { 2736 __u64 trim_start = cpc->trim_start; 2737 bool has_candidate = false; 2738 2739 down_write(&SIT_I(sbi)->sentry_lock); 2740 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2741 if (add_discard_addrs(sbi, cpc, true)) { 2742 has_candidate = true; 2743 break; 2744 } 2745 } 2746 up_write(&SIT_I(sbi)->sentry_lock); 2747 2748 cpc->trim_start = trim_start; 2749 return has_candidate; 2750 } 2751 2752 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2753 struct discard_policy *dpolicy, 2754 unsigned int start, unsigned int end) 2755 { 2756 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2757 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2758 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2759 struct discard_cmd *dc; 2760 struct blk_plug plug; 2761 int issued; 2762 unsigned int trimmed = 0; 2763 2764 next: 2765 issued = 0; 2766 2767 mutex_lock(&dcc->cmd_lock); 2768 if (unlikely(dcc->rbtree_check)) 2769 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2770 &dcc->root)); 2771 2772 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2773 NULL, start, 2774 (struct rb_entry **)&prev_dc, 2775 (struct rb_entry **)&next_dc, 2776 &insert_p, &insert_parent, true, NULL); 2777 if (!dc) 2778 dc = next_dc; 2779 2780 blk_start_plug(&plug); 2781 2782 while (dc && dc->lstart <= end) { 2783 struct rb_node *node; 2784 int err = 0; 2785 2786 if (dc->len < dpolicy->granularity) 2787 goto skip; 2788 2789 if (dc->state != D_PREP) { 2790 list_move_tail(&dc->list, &dcc->fstrim_list); 2791 goto skip; 2792 } 2793 2794 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2795 2796 if (issued >= dpolicy->max_requests) { 2797 start = dc->lstart + dc->len; 2798 2799 if (err) 2800 __remove_discard_cmd(sbi, dc); 2801 2802 blk_finish_plug(&plug); 2803 mutex_unlock(&dcc->cmd_lock); 2804 trimmed += __wait_all_discard_cmd(sbi, NULL); 2805 congestion_wait(BLK_RW_ASYNC, HZ/50); 2806 goto next; 2807 } 2808 skip: 2809 node = rb_next(&dc->rb_node); 2810 if (err) 2811 __remove_discard_cmd(sbi, dc); 2812 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2813 2814 if (fatal_signal_pending(current)) 2815 break; 2816 } 2817 2818 blk_finish_plug(&plug); 2819 mutex_unlock(&dcc->cmd_lock); 2820 2821 return trimmed; 2822 } 2823 2824 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2825 { 2826 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2827 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2828 unsigned int start_segno, end_segno; 2829 block_t start_block, end_block; 2830 struct cp_control cpc; 2831 struct discard_policy dpolicy; 2832 unsigned long long trimmed = 0; 2833 int err = 0; 2834 bool need_align = test_opt(sbi, LFS) && __is_large_section(sbi); 2835 2836 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2837 return -EINVAL; 2838 2839 if (end < MAIN_BLKADDR(sbi)) 2840 goto out; 2841 2842 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2843 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 2844 return -EFSCORRUPTED; 2845 } 2846 2847 /* start/end segment number in main_area */ 2848 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2849 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2850 GET_SEGNO(sbi, end); 2851 if (need_align) { 2852 start_segno = rounddown(start_segno, sbi->segs_per_sec); 2853 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 2854 } 2855 2856 cpc.reason = CP_DISCARD; 2857 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2858 cpc.trim_start = start_segno; 2859 cpc.trim_end = end_segno; 2860 2861 if (sbi->discard_blks == 0) 2862 goto out; 2863 2864 mutex_lock(&sbi->gc_mutex); 2865 err = f2fs_write_checkpoint(sbi, &cpc); 2866 mutex_unlock(&sbi->gc_mutex); 2867 if (err) 2868 goto out; 2869 2870 /* 2871 * We filed discard candidates, but actually we don't need to wait for 2872 * all of them, since they'll be issued in idle time along with runtime 2873 * discard option. User configuration looks like using runtime discard 2874 * or periodic fstrim instead of it. 2875 */ 2876 if (f2fs_realtime_discard_enable(sbi)) 2877 goto out; 2878 2879 start_block = START_BLOCK(sbi, start_segno); 2880 end_block = START_BLOCK(sbi, end_segno + 1); 2881 2882 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2883 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 2884 start_block, end_block); 2885 2886 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 2887 start_block, end_block); 2888 out: 2889 if (!err) 2890 range->len = F2FS_BLK_TO_BYTES(trimmed); 2891 return err; 2892 } 2893 2894 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2895 { 2896 struct curseg_info *curseg = CURSEG_I(sbi, type); 2897 if (curseg->next_blkoff < sbi->blocks_per_seg) 2898 return true; 2899 return false; 2900 } 2901 2902 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2903 { 2904 switch (hint) { 2905 case WRITE_LIFE_SHORT: 2906 return CURSEG_HOT_DATA; 2907 case WRITE_LIFE_EXTREME: 2908 return CURSEG_COLD_DATA; 2909 default: 2910 return CURSEG_WARM_DATA; 2911 } 2912 } 2913 2914 /* This returns write hints for each segment type. This hints will be 2915 * passed down to block layer. There are mapping tables which depend on 2916 * the mount option 'whint_mode'. 2917 * 2918 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2919 * 2920 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2921 * 2922 * User F2FS Block 2923 * ---- ---- ----- 2924 * META WRITE_LIFE_NOT_SET 2925 * HOT_NODE " 2926 * WARM_NODE " 2927 * COLD_NODE " 2928 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2929 * extension list " " 2930 * 2931 * -- buffered io 2932 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2933 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2934 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2935 * WRITE_LIFE_NONE " " 2936 * WRITE_LIFE_MEDIUM " " 2937 * WRITE_LIFE_LONG " " 2938 * 2939 * -- direct io 2940 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2941 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2942 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2943 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2944 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2945 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2946 * 2947 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2948 * 2949 * User F2FS Block 2950 * ---- ---- ----- 2951 * META WRITE_LIFE_MEDIUM; 2952 * HOT_NODE WRITE_LIFE_NOT_SET 2953 * WARM_NODE " 2954 * COLD_NODE WRITE_LIFE_NONE 2955 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2956 * extension list " " 2957 * 2958 * -- buffered io 2959 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2960 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2961 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2962 * WRITE_LIFE_NONE " " 2963 * WRITE_LIFE_MEDIUM " " 2964 * WRITE_LIFE_LONG " " 2965 * 2966 * -- direct io 2967 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2968 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2969 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2970 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2971 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2972 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2973 */ 2974 2975 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2976 enum page_type type, enum temp_type temp) 2977 { 2978 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 2979 if (type == DATA) { 2980 if (temp == WARM) 2981 return WRITE_LIFE_NOT_SET; 2982 else if (temp == HOT) 2983 return WRITE_LIFE_SHORT; 2984 else if (temp == COLD) 2985 return WRITE_LIFE_EXTREME; 2986 } else { 2987 return WRITE_LIFE_NOT_SET; 2988 } 2989 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 2990 if (type == DATA) { 2991 if (temp == WARM) 2992 return WRITE_LIFE_LONG; 2993 else if (temp == HOT) 2994 return WRITE_LIFE_SHORT; 2995 else if (temp == COLD) 2996 return WRITE_LIFE_EXTREME; 2997 } else if (type == NODE) { 2998 if (temp == WARM || temp == HOT) 2999 return WRITE_LIFE_NOT_SET; 3000 else if (temp == COLD) 3001 return WRITE_LIFE_NONE; 3002 } else if (type == META) { 3003 return WRITE_LIFE_MEDIUM; 3004 } 3005 } 3006 return WRITE_LIFE_NOT_SET; 3007 } 3008 3009 static int __get_segment_type_2(struct f2fs_io_info *fio) 3010 { 3011 if (fio->type == DATA) 3012 return CURSEG_HOT_DATA; 3013 else 3014 return CURSEG_HOT_NODE; 3015 } 3016 3017 static int __get_segment_type_4(struct f2fs_io_info *fio) 3018 { 3019 if (fio->type == DATA) { 3020 struct inode *inode = fio->page->mapping->host; 3021 3022 if (S_ISDIR(inode->i_mode)) 3023 return CURSEG_HOT_DATA; 3024 else 3025 return CURSEG_COLD_DATA; 3026 } else { 3027 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3028 return CURSEG_WARM_NODE; 3029 else 3030 return CURSEG_COLD_NODE; 3031 } 3032 } 3033 3034 static int __get_segment_type_6(struct f2fs_io_info *fio) 3035 { 3036 if (fio->type == DATA) { 3037 struct inode *inode = fio->page->mapping->host; 3038 3039 if (is_cold_data(fio->page) || file_is_cold(inode)) 3040 return CURSEG_COLD_DATA; 3041 if (file_is_hot(inode) || 3042 is_inode_flag_set(inode, FI_HOT_DATA) || 3043 f2fs_is_atomic_file(inode) || 3044 f2fs_is_volatile_file(inode)) 3045 return CURSEG_HOT_DATA; 3046 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3047 } else { 3048 if (IS_DNODE(fio->page)) 3049 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3050 CURSEG_HOT_NODE; 3051 return CURSEG_COLD_NODE; 3052 } 3053 } 3054 3055 static int __get_segment_type(struct f2fs_io_info *fio) 3056 { 3057 int type = 0; 3058 3059 switch (F2FS_OPTION(fio->sbi).active_logs) { 3060 case 2: 3061 type = __get_segment_type_2(fio); 3062 break; 3063 case 4: 3064 type = __get_segment_type_4(fio); 3065 break; 3066 case 6: 3067 type = __get_segment_type_6(fio); 3068 break; 3069 default: 3070 f2fs_bug_on(fio->sbi, true); 3071 } 3072 3073 if (IS_HOT(type)) 3074 fio->temp = HOT; 3075 else if (IS_WARM(type)) 3076 fio->temp = WARM; 3077 else 3078 fio->temp = COLD; 3079 return type; 3080 } 3081 3082 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3083 block_t old_blkaddr, block_t *new_blkaddr, 3084 struct f2fs_summary *sum, int type, 3085 struct f2fs_io_info *fio, bool add_list) 3086 { 3087 struct sit_info *sit_i = SIT_I(sbi); 3088 struct curseg_info *curseg = CURSEG_I(sbi, type); 3089 bool put_pin_sem = false; 3090 3091 if (type == CURSEG_COLD_DATA) { 3092 /* GC during CURSEG_COLD_DATA_PINNED allocation */ 3093 if (down_read_trylock(&sbi->pin_sem)) { 3094 put_pin_sem = true; 3095 } else { 3096 type = CURSEG_WARM_DATA; 3097 curseg = CURSEG_I(sbi, type); 3098 } 3099 } else if (type == CURSEG_COLD_DATA_PINNED) { 3100 type = CURSEG_COLD_DATA; 3101 } 3102 3103 down_read(&SM_I(sbi)->curseg_lock); 3104 3105 mutex_lock(&curseg->curseg_mutex); 3106 down_write(&sit_i->sentry_lock); 3107 3108 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3109 3110 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3111 3112 /* 3113 * __add_sum_entry should be resided under the curseg_mutex 3114 * because, this function updates a summary entry in the 3115 * current summary block. 3116 */ 3117 __add_sum_entry(sbi, type, sum); 3118 3119 __refresh_next_blkoff(sbi, curseg); 3120 3121 stat_inc_block_count(sbi, curseg); 3122 3123 /* 3124 * SIT information should be updated before segment allocation, 3125 * since SSR needs latest valid block information. 3126 */ 3127 update_sit_entry(sbi, *new_blkaddr, 1); 3128 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3129 update_sit_entry(sbi, old_blkaddr, -1); 3130 3131 if (!__has_curseg_space(sbi, type)) 3132 sit_i->s_ops->allocate_segment(sbi, type, false); 3133 3134 /* 3135 * segment dirty status should be updated after segment allocation, 3136 * so we just need to update status only one time after previous 3137 * segment being closed. 3138 */ 3139 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3140 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3141 3142 up_write(&sit_i->sentry_lock); 3143 3144 if (page && IS_NODESEG(type)) { 3145 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3146 3147 f2fs_inode_chksum_set(sbi, page); 3148 } 3149 3150 if (F2FS_IO_ALIGNED(sbi)) 3151 fio->retry = false; 3152 3153 if (add_list) { 3154 struct f2fs_bio_info *io; 3155 3156 INIT_LIST_HEAD(&fio->list); 3157 fio->in_list = true; 3158 io = sbi->write_io[fio->type] + fio->temp; 3159 spin_lock(&io->io_lock); 3160 list_add_tail(&fio->list, &io->io_list); 3161 spin_unlock(&io->io_lock); 3162 } 3163 3164 mutex_unlock(&curseg->curseg_mutex); 3165 3166 up_read(&SM_I(sbi)->curseg_lock); 3167 3168 if (put_pin_sem) 3169 up_read(&sbi->pin_sem); 3170 } 3171 3172 static void update_device_state(struct f2fs_io_info *fio) 3173 { 3174 struct f2fs_sb_info *sbi = fio->sbi; 3175 unsigned int devidx; 3176 3177 if (!f2fs_is_multi_device(sbi)) 3178 return; 3179 3180 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3181 3182 /* update device state for fsync */ 3183 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3184 3185 /* update device state for checkpoint */ 3186 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3187 spin_lock(&sbi->dev_lock); 3188 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3189 spin_unlock(&sbi->dev_lock); 3190 } 3191 } 3192 3193 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3194 { 3195 int type = __get_segment_type(fio); 3196 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA); 3197 3198 if (keep_order) 3199 down_read(&fio->sbi->io_order_lock); 3200 reallocate: 3201 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3202 &fio->new_blkaddr, sum, type, fio, true); 3203 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3204 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3205 fio->old_blkaddr, fio->old_blkaddr); 3206 3207 /* writeout dirty page into bdev */ 3208 f2fs_submit_page_write(fio); 3209 if (fio->retry) { 3210 fio->old_blkaddr = fio->new_blkaddr; 3211 goto reallocate; 3212 } 3213 3214 update_device_state(fio); 3215 3216 if (keep_order) 3217 up_read(&fio->sbi->io_order_lock); 3218 } 3219 3220 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3221 enum iostat_type io_type) 3222 { 3223 struct f2fs_io_info fio = { 3224 .sbi = sbi, 3225 .type = META, 3226 .temp = HOT, 3227 .op = REQ_OP_WRITE, 3228 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3229 .old_blkaddr = page->index, 3230 .new_blkaddr = page->index, 3231 .page = page, 3232 .encrypted_page = NULL, 3233 .in_list = false, 3234 }; 3235 3236 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3237 fio.op_flags &= ~REQ_META; 3238 3239 set_page_writeback(page); 3240 ClearPageError(page); 3241 f2fs_submit_page_write(&fio); 3242 3243 stat_inc_meta_count(sbi, page->index); 3244 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3245 } 3246 3247 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3248 { 3249 struct f2fs_summary sum; 3250 3251 set_summary(&sum, nid, 0, 0); 3252 do_write_page(&sum, fio); 3253 3254 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3255 } 3256 3257 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3258 struct f2fs_io_info *fio) 3259 { 3260 struct f2fs_sb_info *sbi = fio->sbi; 3261 struct f2fs_summary sum; 3262 3263 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3264 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3265 do_write_page(&sum, fio); 3266 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3267 3268 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3269 } 3270 3271 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3272 { 3273 int err; 3274 struct f2fs_sb_info *sbi = fio->sbi; 3275 unsigned int segno; 3276 3277 fio->new_blkaddr = fio->old_blkaddr; 3278 /* i/o temperature is needed for passing down write hints */ 3279 __get_segment_type(fio); 3280 3281 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3282 3283 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3284 set_sbi_flag(sbi, SBI_NEED_FSCK); 3285 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3286 __func__, segno); 3287 return -EFSCORRUPTED; 3288 } 3289 3290 stat_inc_inplace_blocks(fio->sbi); 3291 3292 if (fio->bio) 3293 err = f2fs_merge_page_bio(fio); 3294 else 3295 err = f2fs_submit_page_bio(fio); 3296 if (!err) { 3297 update_device_state(fio); 3298 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3299 } 3300 3301 return err; 3302 } 3303 3304 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3305 unsigned int segno) 3306 { 3307 int i; 3308 3309 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3310 if (CURSEG_I(sbi, i)->segno == segno) 3311 break; 3312 } 3313 return i; 3314 } 3315 3316 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3317 block_t old_blkaddr, block_t new_blkaddr, 3318 bool recover_curseg, bool recover_newaddr) 3319 { 3320 struct sit_info *sit_i = SIT_I(sbi); 3321 struct curseg_info *curseg; 3322 unsigned int segno, old_cursegno; 3323 struct seg_entry *se; 3324 int type; 3325 unsigned short old_blkoff; 3326 3327 segno = GET_SEGNO(sbi, new_blkaddr); 3328 se = get_seg_entry(sbi, segno); 3329 type = se->type; 3330 3331 down_write(&SM_I(sbi)->curseg_lock); 3332 3333 if (!recover_curseg) { 3334 /* for recovery flow */ 3335 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3336 if (old_blkaddr == NULL_ADDR) 3337 type = CURSEG_COLD_DATA; 3338 else 3339 type = CURSEG_WARM_DATA; 3340 } 3341 } else { 3342 if (IS_CURSEG(sbi, segno)) { 3343 /* se->type is volatile as SSR allocation */ 3344 type = __f2fs_get_curseg(sbi, segno); 3345 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3346 } else { 3347 type = CURSEG_WARM_DATA; 3348 } 3349 } 3350 3351 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3352 curseg = CURSEG_I(sbi, type); 3353 3354 mutex_lock(&curseg->curseg_mutex); 3355 down_write(&sit_i->sentry_lock); 3356 3357 old_cursegno = curseg->segno; 3358 old_blkoff = curseg->next_blkoff; 3359 3360 /* change the current segment */ 3361 if (segno != curseg->segno) { 3362 curseg->next_segno = segno; 3363 change_curseg(sbi, type); 3364 } 3365 3366 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3367 __add_sum_entry(sbi, type, sum); 3368 3369 if (!recover_curseg || recover_newaddr) 3370 update_sit_entry(sbi, new_blkaddr, 1); 3371 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3372 invalidate_mapping_pages(META_MAPPING(sbi), 3373 old_blkaddr, old_blkaddr); 3374 update_sit_entry(sbi, old_blkaddr, -1); 3375 } 3376 3377 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3378 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3379 3380 locate_dirty_segment(sbi, old_cursegno); 3381 3382 if (recover_curseg) { 3383 if (old_cursegno != curseg->segno) { 3384 curseg->next_segno = old_cursegno; 3385 change_curseg(sbi, type); 3386 } 3387 curseg->next_blkoff = old_blkoff; 3388 } 3389 3390 up_write(&sit_i->sentry_lock); 3391 mutex_unlock(&curseg->curseg_mutex); 3392 up_write(&SM_I(sbi)->curseg_lock); 3393 } 3394 3395 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3396 block_t old_addr, block_t new_addr, 3397 unsigned char version, bool recover_curseg, 3398 bool recover_newaddr) 3399 { 3400 struct f2fs_summary sum; 3401 3402 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3403 3404 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3405 recover_curseg, recover_newaddr); 3406 3407 f2fs_update_data_blkaddr(dn, new_addr); 3408 } 3409 3410 void f2fs_wait_on_page_writeback(struct page *page, 3411 enum page_type type, bool ordered, bool locked) 3412 { 3413 if (PageWriteback(page)) { 3414 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3415 3416 /* submit cached LFS IO */ 3417 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3418 /* sbumit cached IPU IO */ 3419 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3420 if (ordered) { 3421 wait_on_page_writeback(page); 3422 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3423 } else { 3424 wait_for_stable_page(page); 3425 } 3426 } 3427 } 3428 3429 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3430 { 3431 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3432 struct page *cpage; 3433 3434 if (!f2fs_post_read_required(inode)) 3435 return; 3436 3437 if (!__is_valid_data_blkaddr(blkaddr)) 3438 return; 3439 3440 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3441 if (cpage) { 3442 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3443 f2fs_put_page(cpage, 1); 3444 } 3445 } 3446 3447 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3448 block_t len) 3449 { 3450 block_t i; 3451 3452 for (i = 0; i < len; i++) 3453 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3454 } 3455 3456 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3457 { 3458 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3459 struct curseg_info *seg_i; 3460 unsigned char *kaddr; 3461 struct page *page; 3462 block_t start; 3463 int i, j, offset; 3464 3465 start = start_sum_block(sbi); 3466 3467 page = f2fs_get_meta_page(sbi, start++); 3468 if (IS_ERR(page)) 3469 return PTR_ERR(page); 3470 kaddr = (unsigned char *)page_address(page); 3471 3472 /* Step 1: restore nat cache */ 3473 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3474 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3475 3476 /* Step 2: restore sit cache */ 3477 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3478 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3479 offset = 2 * SUM_JOURNAL_SIZE; 3480 3481 /* Step 3: restore summary entries */ 3482 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3483 unsigned short blk_off; 3484 unsigned int segno; 3485 3486 seg_i = CURSEG_I(sbi, i); 3487 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3488 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3489 seg_i->next_segno = segno; 3490 reset_curseg(sbi, i, 0); 3491 seg_i->alloc_type = ckpt->alloc_type[i]; 3492 seg_i->next_blkoff = blk_off; 3493 3494 if (seg_i->alloc_type == SSR) 3495 blk_off = sbi->blocks_per_seg; 3496 3497 for (j = 0; j < blk_off; j++) { 3498 struct f2fs_summary *s; 3499 s = (struct f2fs_summary *)(kaddr + offset); 3500 seg_i->sum_blk->entries[j] = *s; 3501 offset += SUMMARY_SIZE; 3502 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3503 SUM_FOOTER_SIZE) 3504 continue; 3505 3506 f2fs_put_page(page, 1); 3507 page = NULL; 3508 3509 page = f2fs_get_meta_page(sbi, start++); 3510 if (IS_ERR(page)) 3511 return PTR_ERR(page); 3512 kaddr = (unsigned char *)page_address(page); 3513 offset = 0; 3514 } 3515 } 3516 f2fs_put_page(page, 1); 3517 return 0; 3518 } 3519 3520 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3521 { 3522 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3523 struct f2fs_summary_block *sum; 3524 struct curseg_info *curseg; 3525 struct page *new; 3526 unsigned short blk_off; 3527 unsigned int segno = 0; 3528 block_t blk_addr = 0; 3529 int err = 0; 3530 3531 /* get segment number and block addr */ 3532 if (IS_DATASEG(type)) { 3533 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3534 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3535 CURSEG_HOT_DATA]); 3536 if (__exist_node_summaries(sbi)) 3537 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3538 else 3539 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3540 } else { 3541 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3542 CURSEG_HOT_NODE]); 3543 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3544 CURSEG_HOT_NODE]); 3545 if (__exist_node_summaries(sbi)) 3546 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3547 type - CURSEG_HOT_NODE); 3548 else 3549 blk_addr = GET_SUM_BLOCK(sbi, segno); 3550 } 3551 3552 new = f2fs_get_meta_page(sbi, blk_addr); 3553 if (IS_ERR(new)) 3554 return PTR_ERR(new); 3555 sum = (struct f2fs_summary_block *)page_address(new); 3556 3557 if (IS_NODESEG(type)) { 3558 if (__exist_node_summaries(sbi)) { 3559 struct f2fs_summary *ns = &sum->entries[0]; 3560 int i; 3561 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3562 ns->version = 0; 3563 ns->ofs_in_node = 0; 3564 } 3565 } else { 3566 err = f2fs_restore_node_summary(sbi, segno, sum); 3567 if (err) 3568 goto out; 3569 } 3570 } 3571 3572 /* set uncompleted segment to curseg */ 3573 curseg = CURSEG_I(sbi, type); 3574 mutex_lock(&curseg->curseg_mutex); 3575 3576 /* update journal info */ 3577 down_write(&curseg->journal_rwsem); 3578 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3579 up_write(&curseg->journal_rwsem); 3580 3581 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3582 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3583 curseg->next_segno = segno; 3584 reset_curseg(sbi, type, 0); 3585 curseg->alloc_type = ckpt->alloc_type[type]; 3586 curseg->next_blkoff = blk_off; 3587 mutex_unlock(&curseg->curseg_mutex); 3588 out: 3589 f2fs_put_page(new, 1); 3590 return err; 3591 } 3592 3593 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3594 { 3595 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3596 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3597 int type = CURSEG_HOT_DATA; 3598 int err; 3599 3600 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3601 int npages = f2fs_npages_for_summary_flush(sbi, true); 3602 3603 if (npages >= 2) 3604 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3605 META_CP, true); 3606 3607 /* restore for compacted data summary */ 3608 err = read_compacted_summaries(sbi); 3609 if (err) 3610 return err; 3611 type = CURSEG_HOT_NODE; 3612 } 3613 3614 if (__exist_node_summaries(sbi)) 3615 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3616 NR_CURSEG_TYPE - type, META_CP, true); 3617 3618 for (; type <= CURSEG_COLD_NODE; type++) { 3619 err = read_normal_summaries(sbi, type); 3620 if (err) 3621 return err; 3622 } 3623 3624 /* sanity check for summary blocks */ 3625 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3626 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3627 f2fs_err(sbi, "invalid journal entries nats %u sits %u\n", 3628 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3629 return -EINVAL; 3630 } 3631 3632 return 0; 3633 } 3634 3635 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3636 { 3637 struct page *page; 3638 unsigned char *kaddr; 3639 struct f2fs_summary *summary; 3640 struct curseg_info *seg_i; 3641 int written_size = 0; 3642 int i, j; 3643 3644 page = f2fs_grab_meta_page(sbi, blkaddr++); 3645 kaddr = (unsigned char *)page_address(page); 3646 memset(kaddr, 0, PAGE_SIZE); 3647 3648 /* Step 1: write nat cache */ 3649 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3650 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3651 written_size += SUM_JOURNAL_SIZE; 3652 3653 /* Step 2: write sit cache */ 3654 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3655 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3656 written_size += SUM_JOURNAL_SIZE; 3657 3658 /* Step 3: write summary entries */ 3659 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3660 unsigned short blkoff; 3661 seg_i = CURSEG_I(sbi, i); 3662 if (sbi->ckpt->alloc_type[i] == SSR) 3663 blkoff = sbi->blocks_per_seg; 3664 else 3665 blkoff = curseg_blkoff(sbi, i); 3666 3667 for (j = 0; j < blkoff; j++) { 3668 if (!page) { 3669 page = f2fs_grab_meta_page(sbi, blkaddr++); 3670 kaddr = (unsigned char *)page_address(page); 3671 memset(kaddr, 0, PAGE_SIZE); 3672 written_size = 0; 3673 } 3674 summary = (struct f2fs_summary *)(kaddr + written_size); 3675 *summary = seg_i->sum_blk->entries[j]; 3676 written_size += SUMMARY_SIZE; 3677 3678 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3679 SUM_FOOTER_SIZE) 3680 continue; 3681 3682 set_page_dirty(page); 3683 f2fs_put_page(page, 1); 3684 page = NULL; 3685 } 3686 } 3687 if (page) { 3688 set_page_dirty(page); 3689 f2fs_put_page(page, 1); 3690 } 3691 } 3692 3693 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3694 block_t blkaddr, int type) 3695 { 3696 int i, end; 3697 if (IS_DATASEG(type)) 3698 end = type + NR_CURSEG_DATA_TYPE; 3699 else 3700 end = type + NR_CURSEG_NODE_TYPE; 3701 3702 for (i = type; i < end; i++) 3703 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3704 } 3705 3706 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3707 { 3708 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3709 write_compacted_summaries(sbi, start_blk); 3710 else 3711 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3712 } 3713 3714 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3715 { 3716 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3717 } 3718 3719 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3720 unsigned int val, int alloc) 3721 { 3722 int i; 3723 3724 if (type == NAT_JOURNAL) { 3725 for (i = 0; i < nats_in_cursum(journal); i++) { 3726 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3727 return i; 3728 } 3729 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3730 return update_nats_in_cursum(journal, 1); 3731 } else if (type == SIT_JOURNAL) { 3732 for (i = 0; i < sits_in_cursum(journal); i++) 3733 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3734 return i; 3735 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3736 return update_sits_in_cursum(journal, 1); 3737 } 3738 return -1; 3739 } 3740 3741 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3742 unsigned int segno) 3743 { 3744 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); 3745 } 3746 3747 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3748 unsigned int start) 3749 { 3750 struct sit_info *sit_i = SIT_I(sbi); 3751 struct page *page; 3752 pgoff_t src_off, dst_off; 3753 3754 src_off = current_sit_addr(sbi, start); 3755 dst_off = next_sit_addr(sbi, src_off); 3756 3757 page = f2fs_grab_meta_page(sbi, dst_off); 3758 seg_info_to_sit_page(sbi, page, start); 3759 3760 set_page_dirty(page); 3761 set_to_next_sit(sit_i, start); 3762 3763 return page; 3764 } 3765 3766 static struct sit_entry_set *grab_sit_entry_set(void) 3767 { 3768 struct sit_entry_set *ses = 3769 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3770 3771 ses->entry_cnt = 0; 3772 INIT_LIST_HEAD(&ses->set_list); 3773 return ses; 3774 } 3775 3776 static void release_sit_entry_set(struct sit_entry_set *ses) 3777 { 3778 list_del(&ses->set_list); 3779 kmem_cache_free(sit_entry_set_slab, ses); 3780 } 3781 3782 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3783 struct list_head *head) 3784 { 3785 struct sit_entry_set *next = ses; 3786 3787 if (list_is_last(&ses->set_list, head)) 3788 return; 3789 3790 list_for_each_entry_continue(next, head, set_list) 3791 if (ses->entry_cnt <= next->entry_cnt) 3792 break; 3793 3794 list_move_tail(&ses->set_list, &next->set_list); 3795 } 3796 3797 static void add_sit_entry(unsigned int segno, struct list_head *head) 3798 { 3799 struct sit_entry_set *ses; 3800 unsigned int start_segno = START_SEGNO(segno); 3801 3802 list_for_each_entry(ses, head, set_list) { 3803 if (ses->start_segno == start_segno) { 3804 ses->entry_cnt++; 3805 adjust_sit_entry_set(ses, head); 3806 return; 3807 } 3808 } 3809 3810 ses = grab_sit_entry_set(); 3811 3812 ses->start_segno = start_segno; 3813 ses->entry_cnt++; 3814 list_add(&ses->set_list, head); 3815 } 3816 3817 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3818 { 3819 struct f2fs_sm_info *sm_info = SM_I(sbi); 3820 struct list_head *set_list = &sm_info->sit_entry_set; 3821 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3822 unsigned int segno; 3823 3824 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3825 add_sit_entry(segno, set_list); 3826 } 3827 3828 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3829 { 3830 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3831 struct f2fs_journal *journal = curseg->journal; 3832 int i; 3833 3834 down_write(&curseg->journal_rwsem); 3835 for (i = 0; i < sits_in_cursum(journal); i++) { 3836 unsigned int segno; 3837 bool dirtied; 3838 3839 segno = le32_to_cpu(segno_in_journal(journal, i)); 3840 dirtied = __mark_sit_entry_dirty(sbi, segno); 3841 3842 if (!dirtied) 3843 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3844 } 3845 update_sits_in_cursum(journal, -i); 3846 up_write(&curseg->journal_rwsem); 3847 } 3848 3849 /* 3850 * CP calls this function, which flushes SIT entries including sit_journal, 3851 * and moves prefree segs to free segs. 3852 */ 3853 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3854 { 3855 struct sit_info *sit_i = SIT_I(sbi); 3856 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3857 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3858 struct f2fs_journal *journal = curseg->journal; 3859 struct sit_entry_set *ses, *tmp; 3860 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3861 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 3862 struct seg_entry *se; 3863 3864 down_write(&sit_i->sentry_lock); 3865 3866 if (!sit_i->dirty_sentries) 3867 goto out; 3868 3869 /* 3870 * add and account sit entries of dirty bitmap in sit entry 3871 * set temporarily 3872 */ 3873 add_sits_in_set(sbi); 3874 3875 /* 3876 * if there are no enough space in journal to store dirty sit 3877 * entries, remove all entries from journal and add and account 3878 * them in sit entry set. 3879 */ 3880 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 3881 !to_journal) 3882 remove_sits_in_journal(sbi); 3883 3884 /* 3885 * there are two steps to flush sit entries: 3886 * #1, flush sit entries to journal in current cold data summary block. 3887 * #2, flush sit entries to sit page. 3888 */ 3889 list_for_each_entry_safe(ses, tmp, head, set_list) { 3890 struct page *page = NULL; 3891 struct f2fs_sit_block *raw_sit = NULL; 3892 unsigned int start_segno = ses->start_segno; 3893 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3894 (unsigned long)MAIN_SEGS(sbi)); 3895 unsigned int segno = start_segno; 3896 3897 if (to_journal && 3898 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3899 to_journal = false; 3900 3901 if (to_journal) { 3902 down_write(&curseg->journal_rwsem); 3903 } else { 3904 page = get_next_sit_page(sbi, start_segno); 3905 raw_sit = page_address(page); 3906 } 3907 3908 /* flush dirty sit entries in region of current sit set */ 3909 for_each_set_bit_from(segno, bitmap, end) { 3910 int offset, sit_offset; 3911 3912 se = get_seg_entry(sbi, segno); 3913 #ifdef CONFIG_F2FS_CHECK_FS 3914 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3915 SIT_VBLOCK_MAP_SIZE)) 3916 f2fs_bug_on(sbi, 1); 3917 #endif 3918 3919 /* add discard candidates */ 3920 if (!(cpc->reason & CP_DISCARD)) { 3921 cpc->trim_start = segno; 3922 add_discard_addrs(sbi, cpc, false); 3923 } 3924 3925 if (to_journal) { 3926 offset = f2fs_lookup_journal_in_cursum(journal, 3927 SIT_JOURNAL, segno, 1); 3928 f2fs_bug_on(sbi, offset < 0); 3929 segno_in_journal(journal, offset) = 3930 cpu_to_le32(segno); 3931 seg_info_to_raw_sit(se, 3932 &sit_in_journal(journal, offset)); 3933 check_block_count(sbi, segno, 3934 &sit_in_journal(journal, offset)); 3935 } else { 3936 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3937 seg_info_to_raw_sit(se, 3938 &raw_sit->entries[sit_offset]); 3939 check_block_count(sbi, segno, 3940 &raw_sit->entries[sit_offset]); 3941 } 3942 3943 __clear_bit(segno, bitmap); 3944 sit_i->dirty_sentries--; 3945 ses->entry_cnt--; 3946 } 3947 3948 if (to_journal) 3949 up_write(&curseg->journal_rwsem); 3950 else 3951 f2fs_put_page(page, 1); 3952 3953 f2fs_bug_on(sbi, ses->entry_cnt); 3954 release_sit_entry_set(ses); 3955 } 3956 3957 f2fs_bug_on(sbi, !list_empty(head)); 3958 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3959 out: 3960 if (cpc->reason & CP_DISCARD) { 3961 __u64 trim_start = cpc->trim_start; 3962 3963 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3964 add_discard_addrs(sbi, cpc, false); 3965 3966 cpc->trim_start = trim_start; 3967 } 3968 up_write(&sit_i->sentry_lock); 3969 3970 set_prefree_as_free_segments(sbi); 3971 } 3972 3973 static int build_sit_info(struct f2fs_sb_info *sbi) 3974 { 3975 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3976 struct sit_info *sit_i; 3977 unsigned int sit_segs, start; 3978 char *src_bitmap, *bitmap; 3979 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 3980 3981 /* allocate memory for SIT information */ 3982 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3983 if (!sit_i) 3984 return -ENOMEM; 3985 3986 SM_I(sbi)->sit_info = sit_i; 3987 3988 sit_i->sentries = 3989 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 3990 MAIN_SEGS(sbi)), 3991 GFP_KERNEL); 3992 if (!sit_i->sentries) 3993 return -ENOMEM; 3994 3995 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3996 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 3997 GFP_KERNEL); 3998 if (!sit_i->dirty_sentries_bitmap) 3999 return -ENOMEM; 4000 4001 #ifdef CONFIG_F2FS_CHECK_FS 4002 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4; 4003 #else 4004 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3; 4005 #endif 4006 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4007 if (!sit_i->bitmap) 4008 return -ENOMEM; 4009 4010 bitmap = sit_i->bitmap; 4011 4012 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4013 sit_i->sentries[start].cur_valid_map = bitmap; 4014 bitmap += SIT_VBLOCK_MAP_SIZE; 4015 4016 sit_i->sentries[start].ckpt_valid_map = bitmap; 4017 bitmap += SIT_VBLOCK_MAP_SIZE; 4018 4019 #ifdef CONFIG_F2FS_CHECK_FS 4020 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4021 bitmap += SIT_VBLOCK_MAP_SIZE; 4022 #endif 4023 4024 sit_i->sentries[start].discard_map = bitmap; 4025 bitmap += SIT_VBLOCK_MAP_SIZE; 4026 } 4027 4028 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4029 if (!sit_i->tmp_map) 4030 return -ENOMEM; 4031 4032 if (__is_large_section(sbi)) { 4033 sit_i->sec_entries = 4034 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4035 MAIN_SECS(sbi)), 4036 GFP_KERNEL); 4037 if (!sit_i->sec_entries) 4038 return -ENOMEM; 4039 } 4040 4041 /* get information related with SIT */ 4042 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4043 4044 /* setup SIT bitmap from ckeckpoint pack */ 4045 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4046 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4047 4048 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4049 if (!sit_i->sit_bitmap) 4050 return -ENOMEM; 4051 4052 #ifdef CONFIG_F2FS_CHECK_FS 4053 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4054 sit_bitmap_size, GFP_KERNEL); 4055 if (!sit_i->sit_bitmap_mir) 4056 return -ENOMEM; 4057 4058 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4059 main_bitmap_size, GFP_KERNEL); 4060 if (!sit_i->invalid_segmap) 4061 return -ENOMEM; 4062 #endif 4063 4064 /* init SIT information */ 4065 sit_i->s_ops = &default_salloc_ops; 4066 4067 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4068 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4069 sit_i->written_valid_blocks = 0; 4070 sit_i->bitmap_size = sit_bitmap_size; 4071 sit_i->dirty_sentries = 0; 4072 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4073 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4074 sit_i->mounted_time = ktime_get_real_seconds(); 4075 init_rwsem(&sit_i->sentry_lock); 4076 return 0; 4077 } 4078 4079 static int build_free_segmap(struct f2fs_sb_info *sbi) 4080 { 4081 struct free_segmap_info *free_i; 4082 unsigned int bitmap_size, sec_bitmap_size; 4083 4084 /* allocate memory for free segmap information */ 4085 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4086 if (!free_i) 4087 return -ENOMEM; 4088 4089 SM_I(sbi)->free_info = free_i; 4090 4091 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4092 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4093 if (!free_i->free_segmap) 4094 return -ENOMEM; 4095 4096 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4097 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4098 if (!free_i->free_secmap) 4099 return -ENOMEM; 4100 4101 /* set all segments as dirty temporarily */ 4102 memset(free_i->free_segmap, 0xff, bitmap_size); 4103 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4104 4105 /* init free segmap information */ 4106 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4107 free_i->free_segments = 0; 4108 free_i->free_sections = 0; 4109 spin_lock_init(&free_i->segmap_lock); 4110 return 0; 4111 } 4112 4113 static int build_curseg(struct f2fs_sb_info *sbi) 4114 { 4115 struct curseg_info *array; 4116 int i; 4117 4118 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), 4119 GFP_KERNEL); 4120 if (!array) 4121 return -ENOMEM; 4122 4123 SM_I(sbi)->curseg_array = array; 4124 4125 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4126 mutex_init(&array[i].curseg_mutex); 4127 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4128 if (!array[i].sum_blk) 4129 return -ENOMEM; 4130 init_rwsem(&array[i].journal_rwsem); 4131 array[i].journal = f2fs_kzalloc(sbi, 4132 sizeof(struct f2fs_journal), GFP_KERNEL); 4133 if (!array[i].journal) 4134 return -ENOMEM; 4135 array[i].segno = NULL_SEGNO; 4136 array[i].next_blkoff = 0; 4137 } 4138 return restore_curseg_summaries(sbi); 4139 } 4140 4141 static int build_sit_entries(struct f2fs_sb_info *sbi) 4142 { 4143 struct sit_info *sit_i = SIT_I(sbi); 4144 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4145 struct f2fs_journal *journal = curseg->journal; 4146 struct seg_entry *se; 4147 struct f2fs_sit_entry sit; 4148 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4149 unsigned int i, start, end; 4150 unsigned int readed, start_blk = 0; 4151 int err = 0; 4152 block_t total_node_blocks = 0; 4153 4154 do { 4155 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4156 META_SIT, true); 4157 4158 start = start_blk * sit_i->sents_per_block; 4159 end = (start_blk + readed) * sit_i->sents_per_block; 4160 4161 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4162 struct f2fs_sit_block *sit_blk; 4163 struct page *page; 4164 4165 se = &sit_i->sentries[start]; 4166 page = get_current_sit_page(sbi, start); 4167 if (IS_ERR(page)) 4168 return PTR_ERR(page); 4169 sit_blk = (struct f2fs_sit_block *)page_address(page); 4170 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4171 f2fs_put_page(page, 1); 4172 4173 err = check_block_count(sbi, start, &sit); 4174 if (err) 4175 return err; 4176 seg_info_from_raw_sit(se, &sit); 4177 if (IS_NODESEG(se->type)) 4178 total_node_blocks += se->valid_blocks; 4179 4180 /* build discard map only one time */ 4181 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4182 memset(se->discard_map, 0xff, 4183 SIT_VBLOCK_MAP_SIZE); 4184 } else { 4185 memcpy(se->discard_map, 4186 se->cur_valid_map, 4187 SIT_VBLOCK_MAP_SIZE); 4188 sbi->discard_blks += 4189 sbi->blocks_per_seg - 4190 se->valid_blocks; 4191 } 4192 4193 if (__is_large_section(sbi)) 4194 get_sec_entry(sbi, start)->valid_blocks += 4195 se->valid_blocks; 4196 } 4197 start_blk += readed; 4198 } while (start_blk < sit_blk_cnt); 4199 4200 down_read(&curseg->journal_rwsem); 4201 for (i = 0; i < sits_in_cursum(journal); i++) { 4202 unsigned int old_valid_blocks; 4203 4204 start = le32_to_cpu(segno_in_journal(journal, i)); 4205 if (start >= MAIN_SEGS(sbi)) { 4206 f2fs_err(sbi, "Wrong journal entry on segno %u", 4207 start); 4208 err = -EFSCORRUPTED; 4209 break; 4210 } 4211 4212 se = &sit_i->sentries[start]; 4213 sit = sit_in_journal(journal, i); 4214 4215 old_valid_blocks = se->valid_blocks; 4216 if (IS_NODESEG(se->type)) 4217 total_node_blocks -= old_valid_blocks; 4218 4219 err = check_block_count(sbi, start, &sit); 4220 if (err) 4221 break; 4222 seg_info_from_raw_sit(se, &sit); 4223 if (IS_NODESEG(se->type)) 4224 total_node_blocks += se->valid_blocks; 4225 4226 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4227 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4228 } else { 4229 memcpy(se->discard_map, se->cur_valid_map, 4230 SIT_VBLOCK_MAP_SIZE); 4231 sbi->discard_blks += old_valid_blocks; 4232 sbi->discard_blks -= se->valid_blocks; 4233 } 4234 4235 if (__is_large_section(sbi)) { 4236 get_sec_entry(sbi, start)->valid_blocks += 4237 se->valid_blocks; 4238 get_sec_entry(sbi, start)->valid_blocks -= 4239 old_valid_blocks; 4240 } 4241 } 4242 up_read(&curseg->journal_rwsem); 4243 4244 if (!err && total_node_blocks != valid_node_count(sbi)) { 4245 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4246 total_node_blocks, valid_node_count(sbi)); 4247 err = -EFSCORRUPTED; 4248 } 4249 4250 return err; 4251 } 4252 4253 static void init_free_segmap(struct f2fs_sb_info *sbi) 4254 { 4255 unsigned int start; 4256 int type; 4257 4258 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4259 struct seg_entry *sentry = get_seg_entry(sbi, start); 4260 if (!sentry->valid_blocks) 4261 __set_free(sbi, start); 4262 else 4263 SIT_I(sbi)->written_valid_blocks += 4264 sentry->valid_blocks; 4265 } 4266 4267 /* set use the current segments */ 4268 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4269 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4270 __set_test_and_inuse(sbi, curseg_t->segno); 4271 } 4272 } 4273 4274 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4275 { 4276 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4277 struct free_segmap_info *free_i = FREE_I(sbi); 4278 unsigned int segno = 0, offset = 0; 4279 unsigned short valid_blocks; 4280 4281 while (1) { 4282 /* find dirty segment based on free segmap */ 4283 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4284 if (segno >= MAIN_SEGS(sbi)) 4285 break; 4286 offset = segno + 1; 4287 valid_blocks = get_valid_blocks(sbi, segno, false); 4288 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 4289 continue; 4290 if (valid_blocks > sbi->blocks_per_seg) { 4291 f2fs_bug_on(sbi, 1); 4292 continue; 4293 } 4294 mutex_lock(&dirty_i->seglist_lock); 4295 __locate_dirty_segment(sbi, segno, DIRTY); 4296 mutex_unlock(&dirty_i->seglist_lock); 4297 } 4298 } 4299 4300 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4301 { 4302 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4303 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4304 4305 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4306 if (!dirty_i->victim_secmap) 4307 return -ENOMEM; 4308 return 0; 4309 } 4310 4311 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4312 { 4313 struct dirty_seglist_info *dirty_i; 4314 unsigned int bitmap_size, i; 4315 4316 /* allocate memory for dirty segments list information */ 4317 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4318 GFP_KERNEL); 4319 if (!dirty_i) 4320 return -ENOMEM; 4321 4322 SM_I(sbi)->dirty_info = dirty_i; 4323 mutex_init(&dirty_i->seglist_lock); 4324 4325 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4326 4327 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4328 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4329 GFP_KERNEL); 4330 if (!dirty_i->dirty_segmap[i]) 4331 return -ENOMEM; 4332 } 4333 4334 init_dirty_segmap(sbi); 4335 return init_victim_secmap(sbi); 4336 } 4337 4338 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4339 { 4340 int i; 4341 4342 /* 4343 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4344 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4345 */ 4346 for (i = 0; i < NO_CHECK_TYPE; i++) { 4347 struct curseg_info *curseg = CURSEG_I(sbi, i); 4348 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4349 unsigned int blkofs = curseg->next_blkoff; 4350 4351 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4352 goto out; 4353 4354 if (curseg->alloc_type == SSR) 4355 continue; 4356 4357 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4358 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4359 continue; 4360 out: 4361 f2fs_err(sbi, 4362 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4363 i, curseg->segno, curseg->alloc_type, 4364 curseg->next_blkoff, blkofs); 4365 return -EFSCORRUPTED; 4366 } 4367 } 4368 return 0; 4369 } 4370 4371 /* 4372 * Update min, max modified time for cost-benefit GC algorithm 4373 */ 4374 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 4375 { 4376 struct sit_info *sit_i = SIT_I(sbi); 4377 unsigned int segno; 4378 4379 down_write(&sit_i->sentry_lock); 4380 4381 sit_i->min_mtime = ULLONG_MAX; 4382 4383 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4384 unsigned int i; 4385 unsigned long long mtime = 0; 4386 4387 for (i = 0; i < sbi->segs_per_sec; i++) 4388 mtime += get_seg_entry(sbi, segno + i)->mtime; 4389 4390 mtime = div_u64(mtime, sbi->segs_per_sec); 4391 4392 if (sit_i->min_mtime > mtime) 4393 sit_i->min_mtime = mtime; 4394 } 4395 sit_i->max_mtime = get_mtime(sbi, false); 4396 up_write(&sit_i->sentry_lock); 4397 } 4398 4399 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 4400 { 4401 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4402 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4403 struct f2fs_sm_info *sm_info; 4404 int err; 4405 4406 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 4407 if (!sm_info) 4408 return -ENOMEM; 4409 4410 /* init sm info */ 4411 sbi->sm_info = sm_info; 4412 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 4413 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 4414 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 4415 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4416 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4417 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 4418 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 4419 sm_info->rec_prefree_segments = sm_info->main_segments * 4420 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 4421 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 4422 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 4423 4424 if (!test_opt(sbi, LFS)) 4425 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 4426 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 4427 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 4428 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 4429 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 4430 sm_info->min_ssr_sections = reserved_sections(sbi); 4431 4432 INIT_LIST_HEAD(&sm_info->sit_entry_set); 4433 4434 init_rwsem(&sm_info->curseg_lock); 4435 4436 if (!f2fs_readonly(sbi->sb)) { 4437 err = f2fs_create_flush_cmd_control(sbi); 4438 if (err) 4439 return err; 4440 } 4441 4442 err = create_discard_cmd_control(sbi); 4443 if (err) 4444 return err; 4445 4446 err = build_sit_info(sbi); 4447 if (err) 4448 return err; 4449 err = build_free_segmap(sbi); 4450 if (err) 4451 return err; 4452 err = build_curseg(sbi); 4453 if (err) 4454 return err; 4455 4456 /* reinit free segmap based on SIT */ 4457 err = build_sit_entries(sbi); 4458 if (err) 4459 return err; 4460 4461 init_free_segmap(sbi); 4462 err = build_dirty_segmap(sbi); 4463 if (err) 4464 return err; 4465 4466 err = sanity_check_curseg(sbi); 4467 if (err) 4468 return err; 4469 4470 init_min_max_mtime(sbi); 4471 return 0; 4472 } 4473 4474 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 4475 enum dirty_type dirty_type) 4476 { 4477 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4478 4479 mutex_lock(&dirty_i->seglist_lock); 4480 kvfree(dirty_i->dirty_segmap[dirty_type]); 4481 dirty_i->nr_dirty[dirty_type] = 0; 4482 mutex_unlock(&dirty_i->seglist_lock); 4483 } 4484 4485 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 4486 { 4487 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4488 kvfree(dirty_i->victim_secmap); 4489 } 4490 4491 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 4492 { 4493 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4494 int i; 4495 4496 if (!dirty_i) 4497 return; 4498 4499 /* discard pre-free/dirty segments list */ 4500 for (i = 0; i < NR_DIRTY_TYPE; i++) 4501 discard_dirty_segmap(sbi, i); 4502 4503 destroy_victim_secmap(sbi); 4504 SM_I(sbi)->dirty_info = NULL; 4505 kvfree(dirty_i); 4506 } 4507 4508 static void destroy_curseg(struct f2fs_sb_info *sbi) 4509 { 4510 struct curseg_info *array = SM_I(sbi)->curseg_array; 4511 int i; 4512 4513 if (!array) 4514 return; 4515 SM_I(sbi)->curseg_array = NULL; 4516 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4517 kvfree(array[i].sum_blk); 4518 kvfree(array[i].journal); 4519 } 4520 kvfree(array); 4521 } 4522 4523 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4524 { 4525 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4526 if (!free_i) 4527 return; 4528 SM_I(sbi)->free_info = NULL; 4529 kvfree(free_i->free_segmap); 4530 kvfree(free_i->free_secmap); 4531 kvfree(free_i); 4532 } 4533 4534 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4535 { 4536 struct sit_info *sit_i = SIT_I(sbi); 4537 4538 if (!sit_i) 4539 return; 4540 4541 if (sit_i->sentries) 4542 kvfree(sit_i->bitmap); 4543 kvfree(sit_i->tmp_map); 4544 4545 kvfree(sit_i->sentries); 4546 kvfree(sit_i->sec_entries); 4547 kvfree(sit_i->dirty_sentries_bitmap); 4548 4549 SM_I(sbi)->sit_info = NULL; 4550 kvfree(sit_i->sit_bitmap); 4551 #ifdef CONFIG_F2FS_CHECK_FS 4552 kvfree(sit_i->sit_bitmap_mir); 4553 kvfree(sit_i->invalid_segmap); 4554 #endif 4555 kvfree(sit_i); 4556 } 4557 4558 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4559 { 4560 struct f2fs_sm_info *sm_info = SM_I(sbi); 4561 4562 if (!sm_info) 4563 return; 4564 f2fs_destroy_flush_cmd_control(sbi, true); 4565 destroy_discard_cmd_control(sbi); 4566 destroy_dirty_segmap(sbi); 4567 destroy_curseg(sbi); 4568 destroy_free_segmap(sbi); 4569 destroy_sit_info(sbi); 4570 sbi->sm_info = NULL; 4571 kvfree(sm_info); 4572 } 4573 4574 int __init f2fs_create_segment_manager_caches(void) 4575 { 4576 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 4577 sizeof(struct discard_entry)); 4578 if (!discard_entry_slab) 4579 goto fail; 4580 4581 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 4582 sizeof(struct discard_cmd)); 4583 if (!discard_cmd_slab) 4584 goto destroy_discard_entry; 4585 4586 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 4587 sizeof(struct sit_entry_set)); 4588 if (!sit_entry_set_slab) 4589 goto destroy_discard_cmd; 4590 4591 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 4592 sizeof(struct inmem_pages)); 4593 if (!inmem_entry_slab) 4594 goto destroy_sit_entry_set; 4595 return 0; 4596 4597 destroy_sit_entry_set: 4598 kmem_cache_destroy(sit_entry_set_slab); 4599 destroy_discard_cmd: 4600 kmem_cache_destroy(discard_cmd_slab); 4601 destroy_discard_entry: 4602 kmem_cache_destroy(discard_entry_slab); 4603 fail: 4604 return -ENOMEM; 4605 } 4606 4607 void f2fs_destroy_segment_manager_caches(void) 4608 { 4609 kmem_cache_destroy(sit_entry_set_slab); 4610 kmem_cache_destroy(discard_cmd_slab); 4611 kmem_cache_destroy(discard_entry_slab); 4612 kmem_cache_destroy(inmem_entry_slab); 4613 } 4614