1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *bio_entry_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 void register_inmem_page(struct inode *inode, struct page *page) 170 { 171 struct f2fs_inode_info *fi = F2FS_I(inode); 172 struct inmem_pages *new; 173 174 f2fs_trace_pid(page); 175 176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 177 SetPagePrivate(page); 178 179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 180 181 /* add atomic page indices to the list */ 182 new->page = page; 183 INIT_LIST_HEAD(&new->list); 184 185 /* increase reference count with clean state */ 186 mutex_lock(&fi->inmem_lock); 187 get_page(page); 188 list_add_tail(&new->list, &fi->inmem_pages); 189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 190 mutex_unlock(&fi->inmem_lock); 191 192 trace_f2fs_register_inmem_page(page, INMEM); 193 } 194 195 static int __revoke_inmem_pages(struct inode *inode, 196 struct list_head *head, bool drop, bool recover) 197 { 198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 199 struct inmem_pages *cur, *tmp; 200 int err = 0; 201 202 list_for_each_entry_safe(cur, tmp, head, list) { 203 struct page *page = cur->page; 204 205 if (drop) 206 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 207 208 lock_page(page); 209 210 if (recover) { 211 struct dnode_of_data dn; 212 struct node_info ni; 213 214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 215 216 set_new_dnode(&dn, inode, NULL, NULL, 0); 217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 218 err = -EAGAIN; 219 goto next; 220 } 221 get_node_info(sbi, dn.nid, &ni); 222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 223 cur->old_addr, ni.version, true, true); 224 f2fs_put_dnode(&dn); 225 } 226 next: 227 /* we don't need to invalidate this in the sccessful status */ 228 if (drop || recover) 229 ClearPageUptodate(page); 230 set_page_private(page, 0); 231 ClearPagePrivate(page); 232 f2fs_put_page(page, 1); 233 234 list_del(&cur->list); 235 kmem_cache_free(inmem_entry_slab, cur); 236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 237 } 238 return err; 239 } 240 241 void drop_inmem_pages(struct inode *inode) 242 { 243 struct f2fs_inode_info *fi = F2FS_I(inode); 244 245 clear_inode_flag(inode, FI_ATOMIC_FILE); 246 247 mutex_lock(&fi->inmem_lock); 248 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 249 mutex_unlock(&fi->inmem_lock); 250 } 251 252 static int __commit_inmem_pages(struct inode *inode, 253 struct list_head *revoke_list) 254 { 255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 256 struct f2fs_inode_info *fi = F2FS_I(inode); 257 struct inmem_pages *cur, *tmp; 258 struct f2fs_io_info fio = { 259 .sbi = sbi, 260 .type = DATA, 261 .op = REQ_OP_WRITE, 262 .op_flags = REQ_SYNC | REQ_PRIO, 263 .encrypted_page = NULL, 264 }; 265 bool submit_bio = false; 266 int err = 0; 267 268 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 269 struct page *page = cur->page; 270 271 lock_page(page); 272 if (page->mapping == inode->i_mapping) { 273 trace_f2fs_commit_inmem_page(page, INMEM); 274 275 set_page_dirty(page); 276 f2fs_wait_on_page_writeback(page, DATA, true); 277 if (clear_page_dirty_for_io(page)) { 278 inode_dec_dirty_pages(inode); 279 remove_dirty_inode(inode); 280 } 281 282 fio.page = page; 283 err = do_write_data_page(&fio); 284 if (err) { 285 unlock_page(page); 286 break; 287 } 288 289 /* record old blkaddr for revoking */ 290 cur->old_addr = fio.old_blkaddr; 291 292 submit_bio = true; 293 } 294 unlock_page(page); 295 list_move_tail(&cur->list, revoke_list); 296 } 297 298 if (submit_bio) 299 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); 300 301 if (!err) 302 __revoke_inmem_pages(inode, revoke_list, false, false); 303 304 return err; 305 } 306 307 int commit_inmem_pages(struct inode *inode) 308 { 309 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 310 struct f2fs_inode_info *fi = F2FS_I(inode); 311 struct list_head revoke_list; 312 int err; 313 314 INIT_LIST_HEAD(&revoke_list); 315 f2fs_balance_fs(sbi, true); 316 f2fs_lock_op(sbi); 317 318 mutex_lock(&fi->inmem_lock); 319 err = __commit_inmem_pages(inode, &revoke_list); 320 if (err) { 321 int ret; 322 /* 323 * try to revoke all committed pages, but still we could fail 324 * due to no memory or other reason, if that happened, EAGAIN 325 * will be returned, which means in such case, transaction is 326 * already not integrity, caller should use journal to do the 327 * recovery or rewrite & commit last transaction. For other 328 * error number, revoking was done by filesystem itself. 329 */ 330 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 331 if (ret) 332 err = ret; 333 334 /* drop all uncommitted pages */ 335 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 336 } 337 mutex_unlock(&fi->inmem_lock); 338 339 f2fs_unlock_op(sbi); 340 return err; 341 } 342 343 /* 344 * This function balances dirty node and dentry pages. 345 * In addition, it controls garbage collection. 346 */ 347 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 348 { 349 #ifdef CONFIG_F2FS_FAULT_INJECTION 350 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 351 f2fs_stop_checkpoint(sbi, false); 352 #endif 353 354 if (!need) 355 return; 356 357 /* balance_fs_bg is able to be pending */ 358 if (excess_cached_nats(sbi)) 359 f2fs_balance_fs_bg(sbi); 360 361 /* 362 * We should do GC or end up with checkpoint, if there are so many dirty 363 * dir/node pages without enough free segments. 364 */ 365 if (has_not_enough_free_secs(sbi, 0, 0)) { 366 mutex_lock(&sbi->gc_mutex); 367 f2fs_gc(sbi, false, false); 368 } 369 } 370 371 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 372 { 373 /* try to shrink extent cache when there is no enough memory */ 374 if (!available_free_memory(sbi, EXTENT_CACHE)) 375 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 376 377 /* check the # of cached NAT entries */ 378 if (!available_free_memory(sbi, NAT_ENTRIES)) 379 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 380 381 if (!available_free_memory(sbi, FREE_NIDS)) 382 try_to_free_nids(sbi, MAX_FREE_NIDS); 383 else 384 build_free_nids(sbi, false); 385 386 if (!is_idle(sbi)) 387 return; 388 389 /* checkpoint is the only way to shrink partial cached entries */ 390 if (!available_free_memory(sbi, NAT_ENTRIES) || 391 !available_free_memory(sbi, INO_ENTRIES) || 392 excess_prefree_segs(sbi) || 393 excess_dirty_nats(sbi) || 394 f2fs_time_over(sbi, CP_TIME)) { 395 if (test_opt(sbi, DATA_FLUSH)) { 396 struct blk_plug plug; 397 398 blk_start_plug(&plug); 399 sync_dirty_inodes(sbi, FILE_INODE); 400 blk_finish_plug(&plug); 401 } 402 f2fs_sync_fs(sbi->sb, true); 403 stat_inc_bg_cp_count(sbi->stat_info); 404 } 405 } 406 407 static int __submit_flush_wait(struct block_device *bdev) 408 { 409 struct bio *bio = f2fs_bio_alloc(0); 410 int ret; 411 412 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 413 bio->bi_bdev = bdev; 414 ret = submit_bio_wait(bio); 415 bio_put(bio); 416 return ret; 417 } 418 419 static int submit_flush_wait(struct f2fs_sb_info *sbi) 420 { 421 int ret = __submit_flush_wait(sbi->sb->s_bdev); 422 int i; 423 424 if (sbi->s_ndevs && !ret) { 425 for (i = 1; i < sbi->s_ndevs; i++) { 426 ret = __submit_flush_wait(FDEV(i).bdev); 427 if (ret) 428 break; 429 } 430 } 431 return ret; 432 } 433 434 static int issue_flush_thread(void *data) 435 { 436 struct f2fs_sb_info *sbi = data; 437 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 438 wait_queue_head_t *q = &fcc->flush_wait_queue; 439 repeat: 440 if (kthread_should_stop()) 441 return 0; 442 443 if (!llist_empty(&fcc->issue_list)) { 444 struct flush_cmd *cmd, *next; 445 int ret; 446 447 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 448 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 449 450 ret = submit_flush_wait(sbi); 451 llist_for_each_entry_safe(cmd, next, 452 fcc->dispatch_list, llnode) { 453 cmd->ret = ret; 454 complete(&cmd->wait); 455 } 456 fcc->dispatch_list = NULL; 457 } 458 459 wait_event_interruptible(*q, 460 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 461 goto repeat; 462 } 463 464 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 465 { 466 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 467 struct flush_cmd cmd; 468 469 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 470 test_opt(sbi, FLUSH_MERGE)); 471 472 if (test_opt(sbi, NOBARRIER)) 473 return 0; 474 475 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) { 476 int ret; 477 478 atomic_inc(&fcc->submit_flush); 479 ret = submit_flush_wait(sbi); 480 atomic_dec(&fcc->submit_flush); 481 return ret; 482 } 483 484 init_completion(&cmd.wait); 485 486 atomic_inc(&fcc->submit_flush); 487 llist_add(&cmd.llnode, &fcc->issue_list); 488 489 if (!fcc->dispatch_list) 490 wake_up(&fcc->flush_wait_queue); 491 492 if (fcc->f2fs_issue_flush) { 493 wait_for_completion(&cmd.wait); 494 atomic_dec(&fcc->submit_flush); 495 } else { 496 llist_del_all(&fcc->issue_list); 497 atomic_set(&fcc->submit_flush, 0); 498 } 499 500 return cmd.ret; 501 } 502 503 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 504 { 505 dev_t dev = sbi->sb->s_bdev->bd_dev; 506 struct flush_cmd_control *fcc; 507 int err = 0; 508 509 if (SM_I(sbi)->cmd_control_info) { 510 fcc = SM_I(sbi)->cmd_control_info; 511 goto init_thread; 512 } 513 514 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 515 if (!fcc) 516 return -ENOMEM; 517 atomic_set(&fcc->submit_flush, 0); 518 init_waitqueue_head(&fcc->flush_wait_queue); 519 init_llist_head(&fcc->issue_list); 520 SM_I(sbi)->cmd_control_info = fcc; 521 init_thread: 522 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 523 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 524 if (IS_ERR(fcc->f2fs_issue_flush)) { 525 err = PTR_ERR(fcc->f2fs_issue_flush); 526 kfree(fcc); 527 SM_I(sbi)->cmd_control_info = NULL; 528 return err; 529 } 530 531 return err; 532 } 533 534 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 535 { 536 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 537 538 if (fcc && fcc->f2fs_issue_flush) { 539 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 540 541 fcc->f2fs_issue_flush = NULL; 542 kthread_stop(flush_thread); 543 } 544 if (free) { 545 kfree(fcc); 546 SM_I(sbi)->cmd_control_info = NULL; 547 } 548 } 549 550 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 551 enum dirty_type dirty_type) 552 { 553 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 554 555 /* need not be added */ 556 if (IS_CURSEG(sbi, segno)) 557 return; 558 559 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 560 dirty_i->nr_dirty[dirty_type]++; 561 562 if (dirty_type == DIRTY) { 563 struct seg_entry *sentry = get_seg_entry(sbi, segno); 564 enum dirty_type t = sentry->type; 565 566 if (unlikely(t >= DIRTY)) { 567 f2fs_bug_on(sbi, 1); 568 return; 569 } 570 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 571 dirty_i->nr_dirty[t]++; 572 } 573 } 574 575 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 576 enum dirty_type dirty_type) 577 { 578 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 579 580 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 581 dirty_i->nr_dirty[dirty_type]--; 582 583 if (dirty_type == DIRTY) { 584 struct seg_entry *sentry = get_seg_entry(sbi, segno); 585 enum dirty_type t = sentry->type; 586 587 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 588 dirty_i->nr_dirty[t]--; 589 590 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 591 clear_bit(GET_SECNO(sbi, segno), 592 dirty_i->victim_secmap); 593 } 594 } 595 596 /* 597 * Should not occur error such as -ENOMEM. 598 * Adding dirty entry into seglist is not critical operation. 599 * If a given segment is one of current working segments, it won't be added. 600 */ 601 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 602 { 603 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 604 unsigned short valid_blocks; 605 606 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 607 return; 608 609 mutex_lock(&dirty_i->seglist_lock); 610 611 valid_blocks = get_valid_blocks(sbi, segno, 0); 612 613 if (valid_blocks == 0) { 614 __locate_dirty_segment(sbi, segno, PRE); 615 __remove_dirty_segment(sbi, segno, DIRTY); 616 } else if (valid_blocks < sbi->blocks_per_seg) { 617 __locate_dirty_segment(sbi, segno, DIRTY); 618 } else { 619 /* Recovery routine with SSR needs this */ 620 __remove_dirty_segment(sbi, segno, DIRTY); 621 } 622 623 mutex_unlock(&dirty_i->seglist_lock); 624 } 625 626 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi, 627 struct bio *bio) 628 { 629 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 630 struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); 631 632 INIT_LIST_HEAD(&be->list); 633 be->bio = bio; 634 init_completion(&be->event); 635 list_add_tail(&be->list, wait_list); 636 637 return be; 638 } 639 640 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi) 641 { 642 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 643 struct bio_entry *be, *tmp; 644 645 list_for_each_entry_safe(be, tmp, wait_list, list) { 646 struct bio *bio = be->bio; 647 int err; 648 649 wait_for_completion_io(&be->event); 650 err = be->error; 651 if (err == -EOPNOTSUPP) 652 err = 0; 653 654 if (err) 655 f2fs_msg(sbi->sb, KERN_INFO, 656 "Issue discard failed, ret: %d", err); 657 658 bio_put(bio); 659 list_del(&be->list); 660 kmem_cache_free(bio_entry_slab, be); 661 } 662 } 663 664 static void f2fs_submit_bio_wait_endio(struct bio *bio) 665 { 666 struct bio_entry *be = (struct bio_entry *)bio->bi_private; 667 668 be->error = bio->bi_error; 669 complete(&be->event); 670 } 671 672 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 673 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, 674 struct block_device *bdev, block_t blkstart, block_t blklen) 675 { 676 struct bio *bio = NULL; 677 int err; 678 679 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 680 681 if (sbi->s_ndevs) { 682 int devi = f2fs_target_device_index(sbi, blkstart); 683 684 blkstart -= FDEV(devi).start_blk; 685 } 686 err = __blkdev_issue_discard(bdev, 687 SECTOR_FROM_BLOCK(blkstart), 688 SECTOR_FROM_BLOCK(blklen), 689 GFP_NOFS, 0, &bio); 690 if (!err && bio) { 691 struct bio_entry *be = __add_bio_entry(sbi, bio); 692 693 bio->bi_private = be; 694 bio->bi_end_io = f2fs_submit_bio_wait_endio; 695 bio->bi_opf |= REQ_SYNC; 696 submit_bio(bio); 697 } 698 699 return err; 700 } 701 702 #ifdef CONFIG_BLK_DEV_ZONED 703 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 704 struct block_device *bdev, block_t blkstart, block_t blklen) 705 { 706 sector_t nr_sects = SECTOR_FROM_BLOCK(blklen); 707 sector_t sector; 708 int devi = 0; 709 710 if (sbi->s_ndevs) { 711 devi = f2fs_target_device_index(sbi, blkstart); 712 blkstart -= FDEV(devi).start_blk; 713 } 714 sector = SECTOR_FROM_BLOCK(blkstart); 715 716 if (sector & (bdev_zone_size(bdev) - 1) || 717 nr_sects != bdev_zone_size(bdev)) { 718 f2fs_msg(sbi->sb, KERN_INFO, 719 "(%d) %s: Unaligned discard attempted (block %x + %x)", 720 devi, sbi->s_ndevs ? FDEV(devi).path: "", 721 blkstart, blklen); 722 return -EIO; 723 } 724 725 /* 726 * We need to know the type of the zone: for conventional zones, 727 * use regular discard if the drive supports it. For sequential 728 * zones, reset the zone write pointer. 729 */ 730 switch (get_blkz_type(sbi, bdev, blkstart)) { 731 732 case BLK_ZONE_TYPE_CONVENTIONAL: 733 if (!blk_queue_discard(bdev_get_queue(bdev))) 734 return 0; 735 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 736 case BLK_ZONE_TYPE_SEQWRITE_REQ: 737 case BLK_ZONE_TYPE_SEQWRITE_PREF: 738 trace_f2fs_issue_reset_zone(sbi->sb, blkstart); 739 return blkdev_reset_zones(bdev, sector, 740 nr_sects, GFP_NOFS); 741 default: 742 /* Unknown zone type: broken device ? */ 743 return -EIO; 744 } 745 } 746 #endif 747 748 static int __issue_discard_async(struct f2fs_sb_info *sbi, 749 struct block_device *bdev, block_t blkstart, block_t blklen) 750 { 751 #ifdef CONFIG_BLK_DEV_ZONED 752 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 753 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 754 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 755 #endif 756 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 757 } 758 759 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 760 block_t blkstart, block_t blklen) 761 { 762 sector_t start = blkstart, len = 0; 763 struct block_device *bdev; 764 struct seg_entry *se; 765 unsigned int offset; 766 block_t i; 767 int err = 0; 768 769 bdev = f2fs_target_device(sbi, blkstart, NULL); 770 771 for (i = blkstart; i < blkstart + blklen; i++, len++) { 772 if (i != start) { 773 struct block_device *bdev2 = 774 f2fs_target_device(sbi, i, NULL); 775 776 if (bdev2 != bdev) { 777 err = __issue_discard_async(sbi, bdev, 778 start, len); 779 if (err) 780 return err; 781 bdev = bdev2; 782 start = i; 783 len = 0; 784 } 785 } 786 787 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 788 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 789 790 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 791 sbi->discard_blks--; 792 } 793 794 if (len) 795 err = __issue_discard_async(sbi, bdev, start, len); 796 return err; 797 } 798 799 static void __add_discard_entry(struct f2fs_sb_info *sbi, 800 struct cp_control *cpc, struct seg_entry *se, 801 unsigned int start, unsigned int end) 802 { 803 struct list_head *head = &SM_I(sbi)->discard_list; 804 struct discard_entry *new, *last; 805 806 if (!list_empty(head)) { 807 last = list_last_entry(head, struct discard_entry, list); 808 if (START_BLOCK(sbi, cpc->trim_start) + start == 809 last->blkaddr + last->len) { 810 last->len += end - start; 811 goto done; 812 } 813 } 814 815 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 816 INIT_LIST_HEAD(&new->list); 817 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 818 new->len = end - start; 819 list_add_tail(&new->list, head); 820 done: 821 SM_I(sbi)->nr_discards += end - start; 822 } 823 824 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 825 { 826 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 827 int max_blocks = sbi->blocks_per_seg; 828 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 829 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 830 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 831 unsigned long *discard_map = (unsigned long *)se->discard_map; 832 unsigned long *dmap = SIT_I(sbi)->tmp_map; 833 unsigned int start = 0, end = -1; 834 bool force = (cpc->reason == CP_DISCARD); 835 int i; 836 837 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 838 return; 839 840 if (!force) { 841 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 842 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 843 return; 844 } 845 846 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 847 for (i = 0; i < entries; i++) 848 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 849 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 850 851 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 852 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 853 if (start >= max_blocks) 854 break; 855 856 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 857 if (force && start && end != max_blocks 858 && (end - start) < cpc->trim_minlen) 859 continue; 860 861 __add_discard_entry(sbi, cpc, se, start, end); 862 } 863 } 864 865 void release_discard_addrs(struct f2fs_sb_info *sbi) 866 { 867 struct list_head *head = &(SM_I(sbi)->discard_list); 868 struct discard_entry *entry, *this; 869 870 /* drop caches */ 871 list_for_each_entry_safe(entry, this, head, list) { 872 list_del(&entry->list); 873 kmem_cache_free(discard_entry_slab, entry); 874 } 875 } 876 877 /* 878 * Should call clear_prefree_segments after checkpoint is done. 879 */ 880 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 881 { 882 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 883 unsigned int segno; 884 885 mutex_lock(&dirty_i->seglist_lock); 886 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 887 __set_test_and_free(sbi, segno); 888 mutex_unlock(&dirty_i->seglist_lock); 889 } 890 891 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 892 { 893 struct list_head *head = &(SM_I(sbi)->discard_list); 894 struct discard_entry *entry, *this; 895 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 896 struct blk_plug plug; 897 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 898 unsigned int start = 0, end = -1; 899 unsigned int secno, start_segno; 900 bool force = (cpc->reason == CP_DISCARD); 901 902 blk_start_plug(&plug); 903 904 mutex_lock(&dirty_i->seglist_lock); 905 906 while (1) { 907 int i; 908 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 909 if (start >= MAIN_SEGS(sbi)) 910 break; 911 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 912 start + 1); 913 914 for (i = start; i < end; i++) 915 clear_bit(i, prefree_map); 916 917 dirty_i->nr_dirty[PRE] -= end - start; 918 919 if (force || !test_opt(sbi, DISCARD)) 920 continue; 921 922 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 923 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 924 (end - start) << sbi->log_blocks_per_seg); 925 continue; 926 } 927 next: 928 secno = GET_SECNO(sbi, start); 929 start_segno = secno * sbi->segs_per_sec; 930 if (!IS_CURSEC(sbi, secno) && 931 !get_valid_blocks(sbi, start, sbi->segs_per_sec)) 932 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 933 sbi->segs_per_sec << sbi->log_blocks_per_seg); 934 935 start = start_segno + sbi->segs_per_sec; 936 if (start < end) 937 goto next; 938 } 939 mutex_unlock(&dirty_i->seglist_lock); 940 941 /* send small discards */ 942 list_for_each_entry_safe(entry, this, head, list) { 943 if (force && entry->len < cpc->trim_minlen) 944 goto skip; 945 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 946 cpc->trimmed += entry->len; 947 skip: 948 list_del(&entry->list); 949 SM_I(sbi)->nr_discards -= entry->len; 950 kmem_cache_free(discard_entry_slab, entry); 951 } 952 953 blk_finish_plug(&plug); 954 } 955 956 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 957 { 958 struct sit_info *sit_i = SIT_I(sbi); 959 960 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 961 sit_i->dirty_sentries++; 962 return false; 963 } 964 965 return true; 966 } 967 968 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 969 unsigned int segno, int modified) 970 { 971 struct seg_entry *se = get_seg_entry(sbi, segno); 972 se->type = type; 973 if (modified) 974 __mark_sit_entry_dirty(sbi, segno); 975 } 976 977 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 978 { 979 struct seg_entry *se; 980 unsigned int segno, offset; 981 long int new_vblocks; 982 983 segno = GET_SEGNO(sbi, blkaddr); 984 985 se = get_seg_entry(sbi, segno); 986 new_vblocks = se->valid_blocks + del; 987 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 988 989 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 990 (new_vblocks > sbi->blocks_per_seg))); 991 992 se->valid_blocks = new_vblocks; 993 se->mtime = get_mtime(sbi); 994 SIT_I(sbi)->max_mtime = se->mtime; 995 996 /* Update valid block bitmap */ 997 if (del > 0) { 998 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 999 f2fs_bug_on(sbi, 1); 1000 if (f2fs_discard_en(sbi) && 1001 !f2fs_test_and_set_bit(offset, se->discard_map)) 1002 sbi->discard_blks--; 1003 } else { 1004 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 1005 f2fs_bug_on(sbi, 1); 1006 if (f2fs_discard_en(sbi) && 1007 f2fs_test_and_clear_bit(offset, se->discard_map)) 1008 sbi->discard_blks++; 1009 } 1010 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 1011 se->ckpt_valid_blocks += del; 1012 1013 __mark_sit_entry_dirty(sbi, segno); 1014 1015 /* update total number of valid blocks to be written in ckpt area */ 1016 SIT_I(sbi)->written_valid_blocks += del; 1017 1018 if (sbi->segs_per_sec > 1) 1019 get_sec_entry(sbi, segno)->valid_blocks += del; 1020 } 1021 1022 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 1023 { 1024 update_sit_entry(sbi, new, 1); 1025 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 1026 update_sit_entry(sbi, old, -1); 1027 1028 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 1029 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 1030 } 1031 1032 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 1033 { 1034 unsigned int segno = GET_SEGNO(sbi, addr); 1035 struct sit_info *sit_i = SIT_I(sbi); 1036 1037 f2fs_bug_on(sbi, addr == NULL_ADDR); 1038 if (addr == NEW_ADDR) 1039 return; 1040 1041 /* add it into sit main buffer */ 1042 mutex_lock(&sit_i->sentry_lock); 1043 1044 update_sit_entry(sbi, addr, -1); 1045 1046 /* add it into dirty seglist */ 1047 locate_dirty_segment(sbi, segno); 1048 1049 mutex_unlock(&sit_i->sentry_lock); 1050 } 1051 1052 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 1053 { 1054 struct sit_info *sit_i = SIT_I(sbi); 1055 unsigned int segno, offset; 1056 struct seg_entry *se; 1057 bool is_cp = false; 1058 1059 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1060 return true; 1061 1062 mutex_lock(&sit_i->sentry_lock); 1063 1064 segno = GET_SEGNO(sbi, blkaddr); 1065 se = get_seg_entry(sbi, segno); 1066 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1067 1068 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 1069 is_cp = true; 1070 1071 mutex_unlock(&sit_i->sentry_lock); 1072 1073 return is_cp; 1074 } 1075 1076 /* 1077 * This function should be resided under the curseg_mutex lock 1078 */ 1079 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1080 struct f2fs_summary *sum) 1081 { 1082 struct curseg_info *curseg = CURSEG_I(sbi, type); 1083 void *addr = curseg->sum_blk; 1084 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1085 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1086 } 1087 1088 /* 1089 * Calculate the number of current summary pages for writing 1090 */ 1091 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1092 { 1093 int valid_sum_count = 0; 1094 int i, sum_in_page; 1095 1096 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1097 if (sbi->ckpt->alloc_type[i] == SSR) 1098 valid_sum_count += sbi->blocks_per_seg; 1099 else { 1100 if (for_ra) 1101 valid_sum_count += le16_to_cpu( 1102 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1103 else 1104 valid_sum_count += curseg_blkoff(sbi, i); 1105 } 1106 } 1107 1108 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1109 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1110 if (valid_sum_count <= sum_in_page) 1111 return 1; 1112 else if ((valid_sum_count - sum_in_page) <= 1113 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1114 return 2; 1115 return 3; 1116 } 1117 1118 /* 1119 * Caller should put this summary page 1120 */ 1121 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1122 { 1123 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1124 } 1125 1126 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 1127 { 1128 struct page *page = grab_meta_page(sbi, blk_addr); 1129 void *dst = page_address(page); 1130 1131 if (src) 1132 memcpy(dst, src, PAGE_SIZE); 1133 else 1134 memset(dst, 0, PAGE_SIZE); 1135 set_page_dirty(page); 1136 f2fs_put_page(page, 1); 1137 } 1138 1139 static void write_sum_page(struct f2fs_sb_info *sbi, 1140 struct f2fs_summary_block *sum_blk, block_t blk_addr) 1141 { 1142 update_meta_page(sbi, (void *)sum_blk, blk_addr); 1143 } 1144 1145 static void write_current_sum_page(struct f2fs_sb_info *sbi, 1146 int type, block_t blk_addr) 1147 { 1148 struct curseg_info *curseg = CURSEG_I(sbi, type); 1149 struct page *page = grab_meta_page(sbi, blk_addr); 1150 struct f2fs_summary_block *src = curseg->sum_blk; 1151 struct f2fs_summary_block *dst; 1152 1153 dst = (struct f2fs_summary_block *)page_address(page); 1154 1155 mutex_lock(&curseg->curseg_mutex); 1156 1157 down_read(&curseg->journal_rwsem); 1158 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 1159 up_read(&curseg->journal_rwsem); 1160 1161 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 1162 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 1163 1164 mutex_unlock(&curseg->curseg_mutex); 1165 1166 set_page_dirty(page); 1167 f2fs_put_page(page, 1); 1168 } 1169 1170 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 1171 { 1172 struct curseg_info *curseg = CURSEG_I(sbi, type); 1173 unsigned int segno = curseg->segno + 1; 1174 struct free_segmap_info *free_i = FREE_I(sbi); 1175 1176 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 1177 return !test_bit(segno, free_i->free_segmap); 1178 return 0; 1179 } 1180 1181 /* 1182 * Find a new segment from the free segments bitmap to right order 1183 * This function should be returned with success, otherwise BUG 1184 */ 1185 static void get_new_segment(struct f2fs_sb_info *sbi, 1186 unsigned int *newseg, bool new_sec, int dir) 1187 { 1188 struct free_segmap_info *free_i = FREE_I(sbi); 1189 unsigned int segno, secno, zoneno; 1190 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1191 unsigned int hint = *newseg / sbi->segs_per_sec; 1192 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 1193 unsigned int left_start = hint; 1194 bool init = true; 1195 int go_left = 0; 1196 int i; 1197 1198 spin_lock(&free_i->segmap_lock); 1199 1200 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1201 segno = find_next_zero_bit(free_i->free_segmap, 1202 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 1203 if (segno < (hint + 1) * sbi->segs_per_sec) 1204 goto got_it; 1205 } 1206 find_other_zone: 1207 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1208 if (secno >= MAIN_SECS(sbi)) { 1209 if (dir == ALLOC_RIGHT) { 1210 secno = find_next_zero_bit(free_i->free_secmap, 1211 MAIN_SECS(sbi), 0); 1212 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1213 } else { 1214 go_left = 1; 1215 left_start = hint - 1; 1216 } 1217 } 1218 if (go_left == 0) 1219 goto skip_left; 1220 1221 while (test_bit(left_start, free_i->free_secmap)) { 1222 if (left_start > 0) { 1223 left_start--; 1224 continue; 1225 } 1226 left_start = find_next_zero_bit(free_i->free_secmap, 1227 MAIN_SECS(sbi), 0); 1228 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1229 break; 1230 } 1231 secno = left_start; 1232 skip_left: 1233 hint = secno; 1234 segno = secno * sbi->segs_per_sec; 1235 zoneno = secno / sbi->secs_per_zone; 1236 1237 /* give up on finding another zone */ 1238 if (!init) 1239 goto got_it; 1240 if (sbi->secs_per_zone == 1) 1241 goto got_it; 1242 if (zoneno == old_zoneno) 1243 goto got_it; 1244 if (dir == ALLOC_LEFT) { 1245 if (!go_left && zoneno + 1 >= total_zones) 1246 goto got_it; 1247 if (go_left && zoneno == 0) 1248 goto got_it; 1249 } 1250 for (i = 0; i < NR_CURSEG_TYPE; i++) 1251 if (CURSEG_I(sbi, i)->zone == zoneno) 1252 break; 1253 1254 if (i < NR_CURSEG_TYPE) { 1255 /* zone is in user, try another */ 1256 if (go_left) 1257 hint = zoneno * sbi->secs_per_zone - 1; 1258 else if (zoneno + 1 >= total_zones) 1259 hint = 0; 1260 else 1261 hint = (zoneno + 1) * sbi->secs_per_zone; 1262 init = false; 1263 goto find_other_zone; 1264 } 1265 got_it: 1266 /* set it as dirty segment in free segmap */ 1267 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1268 __set_inuse(sbi, segno); 1269 *newseg = segno; 1270 spin_unlock(&free_i->segmap_lock); 1271 } 1272 1273 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1274 { 1275 struct curseg_info *curseg = CURSEG_I(sbi, type); 1276 struct summary_footer *sum_footer; 1277 1278 curseg->segno = curseg->next_segno; 1279 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1280 curseg->next_blkoff = 0; 1281 curseg->next_segno = NULL_SEGNO; 1282 1283 sum_footer = &(curseg->sum_blk->footer); 1284 memset(sum_footer, 0, sizeof(struct summary_footer)); 1285 if (IS_DATASEG(type)) 1286 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1287 if (IS_NODESEG(type)) 1288 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1289 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1290 } 1291 1292 /* 1293 * Allocate a current working segment. 1294 * This function always allocates a free segment in LFS manner. 1295 */ 1296 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1297 { 1298 struct curseg_info *curseg = CURSEG_I(sbi, type); 1299 unsigned int segno = curseg->segno; 1300 int dir = ALLOC_LEFT; 1301 1302 write_sum_page(sbi, curseg->sum_blk, 1303 GET_SUM_BLOCK(sbi, segno)); 1304 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1305 dir = ALLOC_RIGHT; 1306 1307 if (test_opt(sbi, NOHEAP)) 1308 dir = ALLOC_RIGHT; 1309 1310 get_new_segment(sbi, &segno, new_sec, dir); 1311 curseg->next_segno = segno; 1312 reset_curseg(sbi, type, 1); 1313 curseg->alloc_type = LFS; 1314 } 1315 1316 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1317 struct curseg_info *seg, block_t start) 1318 { 1319 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1320 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1321 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1322 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1323 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1324 int i, pos; 1325 1326 for (i = 0; i < entries; i++) 1327 target_map[i] = ckpt_map[i] | cur_map[i]; 1328 1329 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1330 1331 seg->next_blkoff = pos; 1332 } 1333 1334 /* 1335 * If a segment is written by LFS manner, next block offset is just obtained 1336 * by increasing the current block offset. However, if a segment is written by 1337 * SSR manner, next block offset obtained by calling __next_free_blkoff 1338 */ 1339 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1340 struct curseg_info *seg) 1341 { 1342 if (seg->alloc_type == SSR) 1343 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1344 else 1345 seg->next_blkoff++; 1346 } 1347 1348 /* 1349 * This function always allocates a used segment(from dirty seglist) by SSR 1350 * manner, so it should recover the existing segment information of valid blocks 1351 */ 1352 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1353 { 1354 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1355 struct curseg_info *curseg = CURSEG_I(sbi, type); 1356 unsigned int new_segno = curseg->next_segno; 1357 struct f2fs_summary_block *sum_node; 1358 struct page *sum_page; 1359 1360 write_sum_page(sbi, curseg->sum_blk, 1361 GET_SUM_BLOCK(sbi, curseg->segno)); 1362 __set_test_and_inuse(sbi, new_segno); 1363 1364 mutex_lock(&dirty_i->seglist_lock); 1365 __remove_dirty_segment(sbi, new_segno, PRE); 1366 __remove_dirty_segment(sbi, new_segno, DIRTY); 1367 mutex_unlock(&dirty_i->seglist_lock); 1368 1369 reset_curseg(sbi, type, 1); 1370 curseg->alloc_type = SSR; 1371 __next_free_blkoff(sbi, curseg, 0); 1372 1373 if (reuse) { 1374 sum_page = get_sum_page(sbi, new_segno); 1375 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1376 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1377 f2fs_put_page(sum_page, 1); 1378 } 1379 } 1380 1381 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1382 { 1383 struct curseg_info *curseg = CURSEG_I(sbi, type); 1384 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1385 1386 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0)) 1387 return v_ops->get_victim(sbi, 1388 &(curseg)->next_segno, BG_GC, type, SSR); 1389 1390 /* For data segments, let's do SSR more intensively */ 1391 for (; type >= CURSEG_HOT_DATA; type--) 1392 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1393 BG_GC, type, SSR)) 1394 return 1; 1395 return 0; 1396 } 1397 1398 /* 1399 * flush out current segment and replace it with new segment 1400 * This function should be returned with success, otherwise BUG 1401 */ 1402 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1403 int type, bool force) 1404 { 1405 struct curseg_info *curseg = CURSEG_I(sbi, type); 1406 1407 if (force) 1408 new_curseg(sbi, type, true); 1409 else if (type == CURSEG_WARM_NODE) 1410 new_curseg(sbi, type, false); 1411 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1412 new_curseg(sbi, type, false); 1413 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1414 change_curseg(sbi, type, true); 1415 else 1416 new_curseg(sbi, type, false); 1417 1418 stat_inc_seg_type(sbi, curseg); 1419 } 1420 1421 void allocate_new_segments(struct f2fs_sb_info *sbi) 1422 { 1423 struct curseg_info *curseg; 1424 unsigned int old_segno; 1425 int i; 1426 1427 if (test_opt(sbi, LFS)) 1428 return; 1429 1430 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1431 curseg = CURSEG_I(sbi, i); 1432 old_segno = curseg->segno; 1433 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 1434 locate_dirty_segment(sbi, old_segno); 1435 } 1436 } 1437 1438 static const struct segment_allocation default_salloc_ops = { 1439 .allocate_segment = allocate_segment_by_default, 1440 }; 1441 1442 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1443 { 1444 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1445 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1446 unsigned int start_segno, end_segno; 1447 struct cp_control cpc; 1448 int err = 0; 1449 1450 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1451 return -EINVAL; 1452 1453 cpc.trimmed = 0; 1454 if (end <= MAIN_BLKADDR(sbi)) 1455 goto out; 1456 1457 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1458 f2fs_msg(sbi->sb, KERN_WARNING, 1459 "Found FS corruption, run fsck to fix."); 1460 goto out; 1461 } 1462 1463 /* start/end segment number in main_area */ 1464 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1465 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1466 GET_SEGNO(sbi, end); 1467 cpc.reason = CP_DISCARD; 1468 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1469 1470 /* do checkpoint to issue discard commands safely */ 1471 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1472 cpc.trim_start = start_segno; 1473 1474 if (sbi->discard_blks == 0) 1475 break; 1476 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1477 cpc.trim_end = end_segno; 1478 else 1479 cpc.trim_end = min_t(unsigned int, 1480 rounddown(start_segno + 1481 BATCHED_TRIM_SEGMENTS(sbi), 1482 sbi->segs_per_sec) - 1, end_segno); 1483 1484 mutex_lock(&sbi->gc_mutex); 1485 err = write_checkpoint(sbi, &cpc); 1486 mutex_unlock(&sbi->gc_mutex); 1487 if (err) 1488 break; 1489 1490 schedule(); 1491 } 1492 out: 1493 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1494 return err; 1495 } 1496 1497 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1498 { 1499 struct curseg_info *curseg = CURSEG_I(sbi, type); 1500 if (curseg->next_blkoff < sbi->blocks_per_seg) 1501 return true; 1502 return false; 1503 } 1504 1505 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1506 { 1507 if (p_type == DATA) 1508 return CURSEG_HOT_DATA; 1509 else 1510 return CURSEG_HOT_NODE; 1511 } 1512 1513 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1514 { 1515 if (p_type == DATA) { 1516 struct inode *inode = page->mapping->host; 1517 1518 if (S_ISDIR(inode->i_mode)) 1519 return CURSEG_HOT_DATA; 1520 else 1521 return CURSEG_COLD_DATA; 1522 } else { 1523 if (IS_DNODE(page) && is_cold_node(page)) 1524 return CURSEG_WARM_NODE; 1525 else 1526 return CURSEG_COLD_NODE; 1527 } 1528 } 1529 1530 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1531 { 1532 if (p_type == DATA) { 1533 struct inode *inode = page->mapping->host; 1534 1535 if (S_ISDIR(inode->i_mode)) 1536 return CURSEG_HOT_DATA; 1537 else if (is_cold_data(page) || file_is_cold(inode)) 1538 return CURSEG_COLD_DATA; 1539 else 1540 return CURSEG_WARM_DATA; 1541 } else { 1542 if (IS_DNODE(page)) 1543 return is_cold_node(page) ? CURSEG_WARM_NODE : 1544 CURSEG_HOT_NODE; 1545 else 1546 return CURSEG_COLD_NODE; 1547 } 1548 } 1549 1550 static int __get_segment_type(struct page *page, enum page_type p_type) 1551 { 1552 switch (F2FS_P_SB(page)->active_logs) { 1553 case 2: 1554 return __get_segment_type_2(page, p_type); 1555 case 4: 1556 return __get_segment_type_4(page, p_type); 1557 } 1558 /* NR_CURSEG_TYPE(6) logs by default */ 1559 f2fs_bug_on(F2FS_P_SB(page), 1560 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1561 return __get_segment_type_6(page, p_type); 1562 } 1563 1564 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1565 block_t old_blkaddr, block_t *new_blkaddr, 1566 struct f2fs_summary *sum, int type) 1567 { 1568 struct sit_info *sit_i = SIT_I(sbi); 1569 struct curseg_info *curseg = CURSEG_I(sbi, type); 1570 1571 mutex_lock(&curseg->curseg_mutex); 1572 mutex_lock(&sit_i->sentry_lock); 1573 1574 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1575 1576 /* 1577 * __add_sum_entry should be resided under the curseg_mutex 1578 * because, this function updates a summary entry in the 1579 * current summary block. 1580 */ 1581 __add_sum_entry(sbi, type, sum); 1582 1583 __refresh_next_blkoff(sbi, curseg); 1584 1585 stat_inc_block_count(sbi, curseg); 1586 1587 if (!__has_curseg_space(sbi, type)) 1588 sit_i->s_ops->allocate_segment(sbi, type, false); 1589 /* 1590 * SIT information should be updated before segment allocation, 1591 * since SSR needs latest valid block information. 1592 */ 1593 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1594 1595 mutex_unlock(&sit_i->sentry_lock); 1596 1597 if (page && IS_NODESEG(type)) 1598 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1599 1600 mutex_unlock(&curseg->curseg_mutex); 1601 } 1602 1603 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1604 { 1605 int type = __get_segment_type(fio->page, fio->type); 1606 1607 if (fio->type == NODE || fio->type == DATA) 1608 mutex_lock(&fio->sbi->wio_mutex[fio->type]); 1609 1610 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1611 &fio->new_blkaddr, sum, type); 1612 1613 /* writeout dirty page into bdev */ 1614 f2fs_submit_page_mbio(fio); 1615 1616 if (fio->type == NODE || fio->type == DATA) 1617 mutex_unlock(&fio->sbi->wio_mutex[fio->type]); 1618 } 1619 1620 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1621 { 1622 struct f2fs_io_info fio = { 1623 .sbi = sbi, 1624 .type = META, 1625 .op = REQ_OP_WRITE, 1626 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 1627 .old_blkaddr = page->index, 1628 .new_blkaddr = page->index, 1629 .page = page, 1630 .encrypted_page = NULL, 1631 }; 1632 1633 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1634 fio.op_flags &= ~REQ_META; 1635 1636 set_page_writeback(page); 1637 f2fs_submit_page_mbio(&fio); 1638 } 1639 1640 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1641 { 1642 struct f2fs_summary sum; 1643 1644 set_summary(&sum, nid, 0, 0); 1645 do_write_page(&sum, fio); 1646 } 1647 1648 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1649 { 1650 struct f2fs_sb_info *sbi = fio->sbi; 1651 struct f2fs_summary sum; 1652 struct node_info ni; 1653 1654 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1655 get_node_info(sbi, dn->nid, &ni); 1656 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1657 do_write_page(&sum, fio); 1658 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1659 } 1660 1661 void rewrite_data_page(struct f2fs_io_info *fio) 1662 { 1663 fio->new_blkaddr = fio->old_blkaddr; 1664 stat_inc_inplace_blocks(fio->sbi); 1665 f2fs_submit_page_mbio(fio); 1666 } 1667 1668 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1669 block_t old_blkaddr, block_t new_blkaddr, 1670 bool recover_curseg, bool recover_newaddr) 1671 { 1672 struct sit_info *sit_i = SIT_I(sbi); 1673 struct curseg_info *curseg; 1674 unsigned int segno, old_cursegno; 1675 struct seg_entry *se; 1676 int type; 1677 unsigned short old_blkoff; 1678 1679 segno = GET_SEGNO(sbi, new_blkaddr); 1680 se = get_seg_entry(sbi, segno); 1681 type = se->type; 1682 1683 if (!recover_curseg) { 1684 /* for recovery flow */ 1685 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1686 if (old_blkaddr == NULL_ADDR) 1687 type = CURSEG_COLD_DATA; 1688 else 1689 type = CURSEG_WARM_DATA; 1690 } 1691 } else { 1692 if (!IS_CURSEG(sbi, segno)) 1693 type = CURSEG_WARM_DATA; 1694 } 1695 1696 curseg = CURSEG_I(sbi, type); 1697 1698 mutex_lock(&curseg->curseg_mutex); 1699 mutex_lock(&sit_i->sentry_lock); 1700 1701 old_cursegno = curseg->segno; 1702 old_blkoff = curseg->next_blkoff; 1703 1704 /* change the current segment */ 1705 if (segno != curseg->segno) { 1706 curseg->next_segno = segno; 1707 change_curseg(sbi, type, true); 1708 } 1709 1710 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1711 __add_sum_entry(sbi, type, sum); 1712 1713 if (!recover_curseg || recover_newaddr) 1714 update_sit_entry(sbi, new_blkaddr, 1); 1715 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1716 update_sit_entry(sbi, old_blkaddr, -1); 1717 1718 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1719 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1720 1721 locate_dirty_segment(sbi, old_cursegno); 1722 1723 if (recover_curseg) { 1724 if (old_cursegno != curseg->segno) { 1725 curseg->next_segno = old_cursegno; 1726 change_curseg(sbi, type, true); 1727 } 1728 curseg->next_blkoff = old_blkoff; 1729 } 1730 1731 mutex_unlock(&sit_i->sentry_lock); 1732 mutex_unlock(&curseg->curseg_mutex); 1733 } 1734 1735 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1736 block_t old_addr, block_t new_addr, 1737 unsigned char version, bool recover_curseg, 1738 bool recover_newaddr) 1739 { 1740 struct f2fs_summary sum; 1741 1742 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1743 1744 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1745 recover_curseg, recover_newaddr); 1746 1747 f2fs_update_data_blkaddr(dn, new_addr); 1748 } 1749 1750 void f2fs_wait_on_page_writeback(struct page *page, 1751 enum page_type type, bool ordered) 1752 { 1753 if (PageWriteback(page)) { 1754 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1755 1756 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE); 1757 if (ordered) 1758 wait_on_page_writeback(page); 1759 else 1760 wait_for_stable_page(page); 1761 } 1762 } 1763 1764 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1765 block_t blkaddr) 1766 { 1767 struct page *cpage; 1768 1769 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1770 return; 1771 1772 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1773 if (cpage) { 1774 f2fs_wait_on_page_writeback(cpage, DATA, true); 1775 f2fs_put_page(cpage, 1); 1776 } 1777 } 1778 1779 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1780 { 1781 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1782 struct curseg_info *seg_i; 1783 unsigned char *kaddr; 1784 struct page *page; 1785 block_t start; 1786 int i, j, offset; 1787 1788 start = start_sum_block(sbi); 1789 1790 page = get_meta_page(sbi, start++); 1791 kaddr = (unsigned char *)page_address(page); 1792 1793 /* Step 1: restore nat cache */ 1794 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1795 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1796 1797 /* Step 2: restore sit cache */ 1798 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1799 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1800 offset = 2 * SUM_JOURNAL_SIZE; 1801 1802 /* Step 3: restore summary entries */ 1803 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1804 unsigned short blk_off; 1805 unsigned int segno; 1806 1807 seg_i = CURSEG_I(sbi, i); 1808 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1809 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1810 seg_i->next_segno = segno; 1811 reset_curseg(sbi, i, 0); 1812 seg_i->alloc_type = ckpt->alloc_type[i]; 1813 seg_i->next_blkoff = blk_off; 1814 1815 if (seg_i->alloc_type == SSR) 1816 blk_off = sbi->blocks_per_seg; 1817 1818 for (j = 0; j < blk_off; j++) { 1819 struct f2fs_summary *s; 1820 s = (struct f2fs_summary *)(kaddr + offset); 1821 seg_i->sum_blk->entries[j] = *s; 1822 offset += SUMMARY_SIZE; 1823 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 1824 SUM_FOOTER_SIZE) 1825 continue; 1826 1827 f2fs_put_page(page, 1); 1828 page = NULL; 1829 1830 page = get_meta_page(sbi, start++); 1831 kaddr = (unsigned char *)page_address(page); 1832 offset = 0; 1833 } 1834 } 1835 f2fs_put_page(page, 1); 1836 return 0; 1837 } 1838 1839 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1840 { 1841 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1842 struct f2fs_summary_block *sum; 1843 struct curseg_info *curseg; 1844 struct page *new; 1845 unsigned short blk_off; 1846 unsigned int segno = 0; 1847 block_t blk_addr = 0; 1848 1849 /* get segment number and block addr */ 1850 if (IS_DATASEG(type)) { 1851 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1852 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1853 CURSEG_HOT_DATA]); 1854 if (__exist_node_summaries(sbi)) 1855 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1856 else 1857 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1858 } else { 1859 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1860 CURSEG_HOT_NODE]); 1861 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1862 CURSEG_HOT_NODE]); 1863 if (__exist_node_summaries(sbi)) 1864 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1865 type - CURSEG_HOT_NODE); 1866 else 1867 blk_addr = GET_SUM_BLOCK(sbi, segno); 1868 } 1869 1870 new = get_meta_page(sbi, blk_addr); 1871 sum = (struct f2fs_summary_block *)page_address(new); 1872 1873 if (IS_NODESEG(type)) { 1874 if (__exist_node_summaries(sbi)) { 1875 struct f2fs_summary *ns = &sum->entries[0]; 1876 int i; 1877 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1878 ns->version = 0; 1879 ns->ofs_in_node = 0; 1880 } 1881 } else { 1882 int err; 1883 1884 err = restore_node_summary(sbi, segno, sum); 1885 if (err) { 1886 f2fs_put_page(new, 1); 1887 return err; 1888 } 1889 } 1890 } 1891 1892 /* set uncompleted segment to curseg */ 1893 curseg = CURSEG_I(sbi, type); 1894 mutex_lock(&curseg->curseg_mutex); 1895 1896 /* update journal info */ 1897 down_write(&curseg->journal_rwsem); 1898 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 1899 up_write(&curseg->journal_rwsem); 1900 1901 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 1902 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 1903 curseg->next_segno = segno; 1904 reset_curseg(sbi, type, 0); 1905 curseg->alloc_type = ckpt->alloc_type[type]; 1906 curseg->next_blkoff = blk_off; 1907 mutex_unlock(&curseg->curseg_mutex); 1908 f2fs_put_page(new, 1); 1909 return 0; 1910 } 1911 1912 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1913 { 1914 int type = CURSEG_HOT_DATA; 1915 int err; 1916 1917 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 1918 int npages = npages_for_summary_flush(sbi, true); 1919 1920 if (npages >= 2) 1921 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1922 META_CP, true); 1923 1924 /* restore for compacted data summary */ 1925 if (read_compacted_summaries(sbi)) 1926 return -EINVAL; 1927 type = CURSEG_HOT_NODE; 1928 } 1929 1930 if (__exist_node_summaries(sbi)) 1931 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1932 NR_CURSEG_TYPE - type, META_CP, true); 1933 1934 for (; type <= CURSEG_COLD_NODE; type++) { 1935 err = read_normal_summaries(sbi, type); 1936 if (err) 1937 return err; 1938 } 1939 1940 return 0; 1941 } 1942 1943 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1944 { 1945 struct page *page; 1946 unsigned char *kaddr; 1947 struct f2fs_summary *summary; 1948 struct curseg_info *seg_i; 1949 int written_size = 0; 1950 int i, j; 1951 1952 page = grab_meta_page(sbi, blkaddr++); 1953 kaddr = (unsigned char *)page_address(page); 1954 1955 /* Step 1: write nat cache */ 1956 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1957 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 1958 written_size += SUM_JOURNAL_SIZE; 1959 1960 /* Step 2: write sit cache */ 1961 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1962 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 1963 written_size += SUM_JOURNAL_SIZE; 1964 1965 /* Step 3: write summary entries */ 1966 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1967 unsigned short blkoff; 1968 seg_i = CURSEG_I(sbi, i); 1969 if (sbi->ckpt->alloc_type[i] == SSR) 1970 blkoff = sbi->blocks_per_seg; 1971 else 1972 blkoff = curseg_blkoff(sbi, i); 1973 1974 for (j = 0; j < blkoff; j++) { 1975 if (!page) { 1976 page = grab_meta_page(sbi, blkaddr++); 1977 kaddr = (unsigned char *)page_address(page); 1978 written_size = 0; 1979 } 1980 summary = (struct f2fs_summary *)(kaddr + written_size); 1981 *summary = seg_i->sum_blk->entries[j]; 1982 written_size += SUMMARY_SIZE; 1983 1984 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 1985 SUM_FOOTER_SIZE) 1986 continue; 1987 1988 set_page_dirty(page); 1989 f2fs_put_page(page, 1); 1990 page = NULL; 1991 } 1992 } 1993 if (page) { 1994 set_page_dirty(page); 1995 f2fs_put_page(page, 1); 1996 } 1997 } 1998 1999 static void write_normal_summaries(struct f2fs_sb_info *sbi, 2000 block_t blkaddr, int type) 2001 { 2002 int i, end; 2003 if (IS_DATASEG(type)) 2004 end = type + NR_CURSEG_DATA_TYPE; 2005 else 2006 end = type + NR_CURSEG_NODE_TYPE; 2007 2008 for (i = type; i < end; i++) 2009 write_current_sum_page(sbi, i, blkaddr + (i - type)); 2010 } 2011 2012 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2013 { 2014 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 2015 write_compacted_summaries(sbi, start_blk); 2016 else 2017 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 2018 } 2019 2020 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2021 { 2022 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 2023 } 2024 2025 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2026 unsigned int val, int alloc) 2027 { 2028 int i; 2029 2030 if (type == NAT_JOURNAL) { 2031 for (i = 0; i < nats_in_cursum(journal); i++) { 2032 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 2033 return i; 2034 } 2035 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 2036 return update_nats_in_cursum(journal, 1); 2037 } else if (type == SIT_JOURNAL) { 2038 for (i = 0; i < sits_in_cursum(journal); i++) 2039 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 2040 return i; 2041 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 2042 return update_sits_in_cursum(journal, 1); 2043 } 2044 return -1; 2045 } 2046 2047 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 2048 unsigned int segno) 2049 { 2050 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 2051 } 2052 2053 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 2054 unsigned int start) 2055 { 2056 struct sit_info *sit_i = SIT_I(sbi); 2057 struct page *src_page, *dst_page; 2058 pgoff_t src_off, dst_off; 2059 void *src_addr, *dst_addr; 2060 2061 src_off = current_sit_addr(sbi, start); 2062 dst_off = next_sit_addr(sbi, src_off); 2063 2064 /* get current sit block page without lock */ 2065 src_page = get_meta_page(sbi, src_off); 2066 dst_page = grab_meta_page(sbi, dst_off); 2067 f2fs_bug_on(sbi, PageDirty(src_page)); 2068 2069 src_addr = page_address(src_page); 2070 dst_addr = page_address(dst_page); 2071 memcpy(dst_addr, src_addr, PAGE_SIZE); 2072 2073 set_page_dirty(dst_page); 2074 f2fs_put_page(src_page, 1); 2075 2076 set_to_next_sit(sit_i, start); 2077 2078 return dst_page; 2079 } 2080 2081 static struct sit_entry_set *grab_sit_entry_set(void) 2082 { 2083 struct sit_entry_set *ses = 2084 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 2085 2086 ses->entry_cnt = 0; 2087 INIT_LIST_HEAD(&ses->set_list); 2088 return ses; 2089 } 2090 2091 static void release_sit_entry_set(struct sit_entry_set *ses) 2092 { 2093 list_del(&ses->set_list); 2094 kmem_cache_free(sit_entry_set_slab, ses); 2095 } 2096 2097 static void adjust_sit_entry_set(struct sit_entry_set *ses, 2098 struct list_head *head) 2099 { 2100 struct sit_entry_set *next = ses; 2101 2102 if (list_is_last(&ses->set_list, head)) 2103 return; 2104 2105 list_for_each_entry_continue(next, head, set_list) 2106 if (ses->entry_cnt <= next->entry_cnt) 2107 break; 2108 2109 list_move_tail(&ses->set_list, &next->set_list); 2110 } 2111 2112 static void add_sit_entry(unsigned int segno, struct list_head *head) 2113 { 2114 struct sit_entry_set *ses; 2115 unsigned int start_segno = START_SEGNO(segno); 2116 2117 list_for_each_entry(ses, head, set_list) { 2118 if (ses->start_segno == start_segno) { 2119 ses->entry_cnt++; 2120 adjust_sit_entry_set(ses, head); 2121 return; 2122 } 2123 } 2124 2125 ses = grab_sit_entry_set(); 2126 2127 ses->start_segno = start_segno; 2128 ses->entry_cnt++; 2129 list_add(&ses->set_list, head); 2130 } 2131 2132 static void add_sits_in_set(struct f2fs_sb_info *sbi) 2133 { 2134 struct f2fs_sm_info *sm_info = SM_I(sbi); 2135 struct list_head *set_list = &sm_info->sit_entry_set; 2136 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 2137 unsigned int segno; 2138 2139 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 2140 add_sit_entry(segno, set_list); 2141 } 2142 2143 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 2144 { 2145 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2146 struct f2fs_journal *journal = curseg->journal; 2147 int i; 2148 2149 down_write(&curseg->journal_rwsem); 2150 for (i = 0; i < sits_in_cursum(journal); i++) { 2151 unsigned int segno; 2152 bool dirtied; 2153 2154 segno = le32_to_cpu(segno_in_journal(journal, i)); 2155 dirtied = __mark_sit_entry_dirty(sbi, segno); 2156 2157 if (!dirtied) 2158 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 2159 } 2160 update_sits_in_cursum(journal, -i); 2161 up_write(&curseg->journal_rwsem); 2162 } 2163 2164 /* 2165 * CP calls this function, which flushes SIT entries including sit_journal, 2166 * and moves prefree segs to free segs. 2167 */ 2168 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2169 { 2170 struct sit_info *sit_i = SIT_I(sbi); 2171 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 2172 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2173 struct f2fs_journal *journal = curseg->journal; 2174 struct sit_entry_set *ses, *tmp; 2175 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2176 bool to_journal = true; 2177 struct seg_entry *se; 2178 2179 mutex_lock(&sit_i->sentry_lock); 2180 2181 if (!sit_i->dirty_sentries) 2182 goto out; 2183 2184 /* 2185 * add and account sit entries of dirty bitmap in sit entry 2186 * set temporarily 2187 */ 2188 add_sits_in_set(sbi); 2189 2190 /* 2191 * if there are no enough space in journal to store dirty sit 2192 * entries, remove all entries from journal and add and account 2193 * them in sit entry set. 2194 */ 2195 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2196 remove_sits_in_journal(sbi); 2197 2198 /* 2199 * there are two steps to flush sit entries: 2200 * #1, flush sit entries to journal in current cold data summary block. 2201 * #2, flush sit entries to sit page. 2202 */ 2203 list_for_each_entry_safe(ses, tmp, head, set_list) { 2204 struct page *page = NULL; 2205 struct f2fs_sit_block *raw_sit = NULL; 2206 unsigned int start_segno = ses->start_segno; 2207 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2208 (unsigned long)MAIN_SEGS(sbi)); 2209 unsigned int segno = start_segno; 2210 2211 if (to_journal && 2212 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2213 to_journal = false; 2214 2215 if (to_journal) { 2216 down_write(&curseg->journal_rwsem); 2217 } else { 2218 page = get_next_sit_page(sbi, start_segno); 2219 raw_sit = page_address(page); 2220 } 2221 2222 /* flush dirty sit entries in region of current sit set */ 2223 for_each_set_bit_from(segno, bitmap, end) { 2224 int offset, sit_offset; 2225 2226 se = get_seg_entry(sbi, segno); 2227 2228 /* add discard candidates */ 2229 if (cpc->reason != CP_DISCARD) { 2230 cpc->trim_start = segno; 2231 add_discard_addrs(sbi, cpc); 2232 } 2233 2234 if (to_journal) { 2235 offset = lookup_journal_in_cursum(journal, 2236 SIT_JOURNAL, segno, 1); 2237 f2fs_bug_on(sbi, offset < 0); 2238 segno_in_journal(journal, offset) = 2239 cpu_to_le32(segno); 2240 seg_info_to_raw_sit(se, 2241 &sit_in_journal(journal, offset)); 2242 } else { 2243 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2244 seg_info_to_raw_sit(se, 2245 &raw_sit->entries[sit_offset]); 2246 } 2247 2248 __clear_bit(segno, bitmap); 2249 sit_i->dirty_sentries--; 2250 ses->entry_cnt--; 2251 } 2252 2253 if (to_journal) 2254 up_write(&curseg->journal_rwsem); 2255 else 2256 f2fs_put_page(page, 1); 2257 2258 f2fs_bug_on(sbi, ses->entry_cnt); 2259 release_sit_entry_set(ses); 2260 } 2261 2262 f2fs_bug_on(sbi, !list_empty(head)); 2263 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2264 out: 2265 if (cpc->reason == CP_DISCARD) { 2266 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2267 add_discard_addrs(sbi, cpc); 2268 } 2269 mutex_unlock(&sit_i->sentry_lock); 2270 2271 set_prefree_as_free_segments(sbi); 2272 } 2273 2274 static int build_sit_info(struct f2fs_sb_info *sbi) 2275 { 2276 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2277 struct sit_info *sit_i; 2278 unsigned int sit_segs, start; 2279 char *src_bitmap, *dst_bitmap; 2280 unsigned int bitmap_size; 2281 2282 /* allocate memory for SIT information */ 2283 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2284 if (!sit_i) 2285 return -ENOMEM; 2286 2287 SM_I(sbi)->sit_info = sit_i; 2288 2289 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2290 sizeof(struct seg_entry), GFP_KERNEL); 2291 if (!sit_i->sentries) 2292 return -ENOMEM; 2293 2294 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2295 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2296 if (!sit_i->dirty_sentries_bitmap) 2297 return -ENOMEM; 2298 2299 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2300 sit_i->sentries[start].cur_valid_map 2301 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2302 sit_i->sentries[start].ckpt_valid_map 2303 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2304 if (!sit_i->sentries[start].cur_valid_map || 2305 !sit_i->sentries[start].ckpt_valid_map) 2306 return -ENOMEM; 2307 2308 if (f2fs_discard_en(sbi)) { 2309 sit_i->sentries[start].discard_map 2310 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2311 if (!sit_i->sentries[start].discard_map) 2312 return -ENOMEM; 2313 } 2314 } 2315 2316 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2317 if (!sit_i->tmp_map) 2318 return -ENOMEM; 2319 2320 if (sbi->segs_per_sec > 1) { 2321 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2322 sizeof(struct sec_entry), GFP_KERNEL); 2323 if (!sit_i->sec_entries) 2324 return -ENOMEM; 2325 } 2326 2327 /* get information related with SIT */ 2328 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2329 2330 /* setup SIT bitmap from ckeckpoint pack */ 2331 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2332 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2333 2334 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2335 if (!dst_bitmap) 2336 return -ENOMEM; 2337 2338 /* init SIT information */ 2339 sit_i->s_ops = &default_salloc_ops; 2340 2341 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2342 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2343 sit_i->written_valid_blocks = 0; 2344 sit_i->sit_bitmap = dst_bitmap; 2345 sit_i->bitmap_size = bitmap_size; 2346 sit_i->dirty_sentries = 0; 2347 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2348 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2349 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2350 mutex_init(&sit_i->sentry_lock); 2351 return 0; 2352 } 2353 2354 static int build_free_segmap(struct f2fs_sb_info *sbi) 2355 { 2356 struct free_segmap_info *free_i; 2357 unsigned int bitmap_size, sec_bitmap_size; 2358 2359 /* allocate memory for free segmap information */ 2360 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2361 if (!free_i) 2362 return -ENOMEM; 2363 2364 SM_I(sbi)->free_info = free_i; 2365 2366 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2367 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2368 if (!free_i->free_segmap) 2369 return -ENOMEM; 2370 2371 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2372 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2373 if (!free_i->free_secmap) 2374 return -ENOMEM; 2375 2376 /* set all segments as dirty temporarily */ 2377 memset(free_i->free_segmap, 0xff, bitmap_size); 2378 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2379 2380 /* init free segmap information */ 2381 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2382 free_i->free_segments = 0; 2383 free_i->free_sections = 0; 2384 spin_lock_init(&free_i->segmap_lock); 2385 return 0; 2386 } 2387 2388 static int build_curseg(struct f2fs_sb_info *sbi) 2389 { 2390 struct curseg_info *array; 2391 int i; 2392 2393 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2394 if (!array) 2395 return -ENOMEM; 2396 2397 SM_I(sbi)->curseg_array = array; 2398 2399 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2400 mutex_init(&array[i].curseg_mutex); 2401 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2402 if (!array[i].sum_blk) 2403 return -ENOMEM; 2404 init_rwsem(&array[i].journal_rwsem); 2405 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2406 GFP_KERNEL); 2407 if (!array[i].journal) 2408 return -ENOMEM; 2409 array[i].segno = NULL_SEGNO; 2410 array[i].next_blkoff = 0; 2411 } 2412 return restore_curseg_summaries(sbi); 2413 } 2414 2415 static void build_sit_entries(struct f2fs_sb_info *sbi) 2416 { 2417 struct sit_info *sit_i = SIT_I(sbi); 2418 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2419 struct f2fs_journal *journal = curseg->journal; 2420 struct seg_entry *se; 2421 struct f2fs_sit_entry sit; 2422 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2423 unsigned int i, start, end; 2424 unsigned int readed, start_blk = 0; 2425 2426 do { 2427 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 2428 META_SIT, true); 2429 2430 start = start_blk * sit_i->sents_per_block; 2431 end = (start_blk + readed) * sit_i->sents_per_block; 2432 2433 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2434 struct f2fs_sit_block *sit_blk; 2435 struct page *page; 2436 2437 se = &sit_i->sentries[start]; 2438 page = get_current_sit_page(sbi, start); 2439 sit_blk = (struct f2fs_sit_block *)page_address(page); 2440 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2441 f2fs_put_page(page, 1); 2442 2443 check_block_count(sbi, start, &sit); 2444 seg_info_from_raw_sit(se, &sit); 2445 2446 /* build discard map only one time */ 2447 if (f2fs_discard_en(sbi)) { 2448 memcpy(se->discard_map, se->cur_valid_map, 2449 SIT_VBLOCK_MAP_SIZE); 2450 sbi->discard_blks += sbi->blocks_per_seg - 2451 se->valid_blocks; 2452 } 2453 2454 if (sbi->segs_per_sec > 1) 2455 get_sec_entry(sbi, start)->valid_blocks += 2456 se->valid_blocks; 2457 } 2458 start_blk += readed; 2459 } while (start_blk < sit_blk_cnt); 2460 2461 down_read(&curseg->journal_rwsem); 2462 for (i = 0; i < sits_in_cursum(journal); i++) { 2463 unsigned int old_valid_blocks; 2464 2465 start = le32_to_cpu(segno_in_journal(journal, i)); 2466 se = &sit_i->sentries[start]; 2467 sit = sit_in_journal(journal, i); 2468 2469 old_valid_blocks = se->valid_blocks; 2470 2471 check_block_count(sbi, start, &sit); 2472 seg_info_from_raw_sit(se, &sit); 2473 2474 if (f2fs_discard_en(sbi)) { 2475 memcpy(se->discard_map, se->cur_valid_map, 2476 SIT_VBLOCK_MAP_SIZE); 2477 sbi->discard_blks += old_valid_blocks - 2478 se->valid_blocks; 2479 } 2480 2481 if (sbi->segs_per_sec > 1) 2482 get_sec_entry(sbi, start)->valid_blocks += 2483 se->valid_blocks - old_valid_blocks; 2484 } 2485 up_read(&curseg->journal_rwsem); 2486 } 2487 2488 static void init_free_segmap(struct f2fs_sb_info *sbi) 2489 { 2490 unsigned int start; 2491 int type; 2492 2493 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2494 struct seg_entry *sentry = get_seg_entry(sbi, start); 2495 if (!sentry->valid_blocks) 2496 __set_free(sbi, start); 2497 else 2498 SIT_I(sbi)->written_valid_blocks += 2499 sentry->valid_blocks; 2500 } 2501 2502 /* set use the current segments */ 2503 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2504 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2505 __set_test_and_inuse(sbi, curseg_t->segno); 2506 } 2507 } 2508 2509 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2510 { 2511 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2512 struct free_segmap_info *free_i = FREE_I(sbi); 2513 unsigned int segno = 0, offset = 0; 2514 unsigned short valid_blocks; 2515 2516 while (1) { 2517 /* find dirty segment based on free segmap */ 2518 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2519 if (segno >= MAIN_SEGS(sbi)) 2520 break; 2521 offset = segno + 1; 2522 valid_blocks = get_valid_blocks(sbi, segno, 0); 2523 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2524 continue; 2525 if (valid_blocks > sbi->blocks_per_seg) { 2526 f2fs_bug_on(sbi, 1); 2527 continue; 2528 } 2529 mutex_lock(&dirty_i->seglist_lock); 2530 __locate_dirty_segment(sbi, segno, DIRTY); 2531 mutex_unlock(&dirty_i->seglist_lock); 2532 } 2533 } 2534 2535 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2536 { 2537 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2538 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2539 2540 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2541 if (!dirty_i->victim_secmap) 2542 return -ENOMEM; 2543 return 0; 2544 } 2545 2546 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2547 { 2548 struct dirty_seglist_info *dirty_i; 2549 unsigned int bitmap_size, i; 2550 2551 /* allocate memory for dirty segments list information */ 2552 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2553 if (!dirty_i) 2554 return -ENOMEM; 2555 2556 SM_I(sbi)->dirty_info = dirty_i; 2557 mutex_init(&dirty_i->seglist_lock); 2558 2559 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2560 2561 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2562 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2563 if (!dirty_i->dirty_segmap[i]) 2564 return -ENOMEM; 2565 } 2566 2567 init_dirty_segmap(sbi); 2568 return init_victim_secmap(sbi); 2569 } 2570 2571 /* 2572 * Update min, max modified time for cost-benefit GC algorithm 2573 */ 2574 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2575 { 2576 struct sit_info *sit_i = SIT_I(sbi); 2577 unsigned int segno; 2578 2579 mutex_lock(&sit_i->sentry_lock); 2580 2581 sit_i->min_mtime = LLONG_MAX; 2582 2583 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2584 unsigned int i; 2585 unsigned long long mtime = 0; 2586 2587 for (i = 0; i < sbi->segs_per_sec; i++) 2588 mtime += get_seg_entry(sbi, segno + i)->mtime; 2589 2590 mtime = div_u64(mtime, sbi->segs_per_sec); 2591 2592 if (sit_i->min_mtime > mtime) 2593 sit_i->min_mtime = mtime; 2594 } 2595 sit_i->max_mtime = get_mtime(sbi); 2596 mutex_unlock(&sit_i->sentry_lock); 2597 } 2598 2599 int build_segment_manager(struct f2fs_sb_info *sbi) 2600 { 2601 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2602 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2603 struct f2fs_sm_info *sm_info; 2604 int err; 2605 2606 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2607 if (!sm_info) 2608 return -ENOMEM; 2609 2610 /* init sm info */ 2611 sbi->sm_info = sm_info; 2612 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2613 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2614 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2615 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2616 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2617 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2618 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2619 sm_info->rec_prefree_segments = sm_info->main_segments * 2620 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2621 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 2622 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 2623 2624 if (!test_opt(sbi, LFS)) 2625 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2626 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2627 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2628 2629 INIT_LIST_HEAD(&sm_info->discard_list); 2630 INIT_LIST_HEAD(&sm_info->wait_list); 2631 sm_info->nr_discards = 0; 2632 sm_info->max_discards = 0; 2633 2634 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2635 2636 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2637 2638 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2639 err = create_flush_cmd_control(sbi); 2640 if (err) 2641 return err; 2642 } 2643 2644 err = build_sit_info(sbi); 2645 if (err) 2646 return err; 2647 err = build_free_segmap(sbi); 2648 if (err) 2649 return err; 2650 err = build_curseg(sbi); 2651 if (err) 2652 return err; 2653 2654 /* reinit free segmap based on SIT */ 2655 build_sit_entries(sbi); 2656 2657 init_free_segmap(sbi); 2658 err = build_dirty_segmap(sbi); 2659 if (err) 2660 return err; 2661 2662 init_min_max_mtime(sbi); 2663 return 0; 2664 } 2665 2666 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2667 enum dirty_type dirty_type) 2668 { 2669 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2670 2671 mutex_lock(&dirty_i->seglist_lock); 2672 kvfree(dirty_i->dirty_segmap[dirty_type]); 2673 dirty_i->nr_dirty[dirty_type] = 0; 2674 mutex_unlock(&dirty_i->seglist_lock); 2675 } 2676 2677 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2678 { 2679 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2680 kvfree(dirty_i->victim_secmap); 2681 } 2682 2683 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2684 { 2685 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2686 int i; 2687 2688 if (!dirty_i) 2689 return; 2690 2691 /* discard pre-free/dirty segments list */ 2692 for (i = 0; i < NR_DIRTY_TYPE; i++) 2693 discard_dirty_segmap(sbi, i); 2694 2695 destroy_victim_secmap(sbi); 2696 SM_I(sbi)->dirty_info = NULL; 2697 kfree(dirty_i); 2698 } 2699 2700 static void destroy_curseg(struct f2fs_sb_info *sbi) 2701 { 2702 struct curseg_info *array = SM_I(sbi)->curseg_array; 2703 int i; 2704 2705 if (!array) 2706 return; 2707 SM_I(sbi)->curseg_array = NULL; 2708 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2709 kfree(array[i].sum_blk); 2710 kfree(array[i].journal); 2711 } 2712 kfree(array); 2713 } 2714 2715 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2716 { 2717 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2718 if (!free_i) 2719 return; 2720 SM_I(sbi)->free_info = NULL; 2721 kvfree(free_i->free_segmap); 2722 kvfree(free_i->free_secmap); 2723 kfree(free_i); 2724 } 2725 2726 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2727 { 2728 struct sit_info *sit_i = SIT_I(sbi); 2729 unsigned int start; 2730 2731 if (!sit_i) 2732 return; 2733 2734 if (sit_i->sentries) { 2735 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2736 kfree(sit_i->sentries[start].cur_valid_map); 2737 kfree(sit_i->sentries[start].ckpt_valid_map); 2738 kfree(sit_i->sentries[start].discard_map); 2739 } 2740 } 2741 kfree(sit_i->tmp_map); 2742 2743 kvfree(sit_i->sentries); 2744 kvfree(sit_i->sec_entries); 2745 kvfree(sit_i->dirty_sentries_bitmap); 2746 2747 SM_I(sbi)->sit_info = NULL; 2748 kfree(sit_i->sit_bitmap); 2749 kfree(sit_i); 2750 } 2751 2752 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2753 { 2754 struct f2fs_sm_info *sm_info = SM_I(sbi); 2755 2756 if (!sm_info) 2757 return; 2758 destroy_flush_cmd_control(sbi, true); 2759 destroy_dirty_segmap(sbi); 2760 destroy_curseg(sbi); 2761 destroy_free_segmap(sbi); 2762 destroy_sit_info(sbi); 2763 sbi->sm_info = NULL; 2764 kfree(sm_info); 2765 } 2766 2767 int __init create_segment_manager_caches(void) 2768 { 2769 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2770 sizeof(struct discard_entry)); 2771 if (!discard_entry_slab) 2772 goto fail; 2773 2774 bio_entry_slab = f2fs_kmem_cache_create("bio_entry", 2775 sizeof(struct bio_entry)); 2776 if (!bio_entry_slab) 2777 goto destroy_discard_entry; 2778 2779 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2780 sizeof(struct sit_entry_set)); 2781 if (!sit_entry_set_slab) 2782 goto destroy_bio_entry; 2783 2784 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2785 sizeof(struct inmem_pages)); 2786 if (!inmem_entry_slab) 2787 goto destroy_sit_entry_set; 2788 return 0; 2789 2790 destroy_sit_entry_set: 2791 kmem_cache_destroy(sit_entry_set_slab); 2792 destroy_bio_entry: 2793 kmem_cache_destroy(bio_entry_slab); 2794 destroy_discard_entry: 2795 kmem_cache_destroy(discard_entry_slab); 2796 fail: 2797 return -ENOMEM; 2798 } 2799 2800 void destroy_segment_manager_caches(void) 2801 { 2802 kmem_cache_destroy(sit_entry_set_slab); 2803 kmem_cache_destroy(bio_entry_slab); 2804 kmem_cache_destroy(discard_entry_slab); 2805 kmem_cache_destroy(inmem_entry_slab); 2806 } 2807