xref: /openbmc/linux/fs/f2fs/segment.c (revision ac4dfccb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include <trace/events/f2fs.h>
24 
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26 
27 static struct kmem_cache *discard_entry_slab;
28 static struct kmem_cache *discard_cmd_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31 
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34 	unsigned long tmp = 0;
35 	int shift = 24, idx = 0;
36 
37 #if BITS_PER_LONG == 64
38 	shift = 56;
39 #endif
40 	while (shift >= 0) {
41 		tmp |= (unsigned long)str[idx++] << shift;
42 		shift -= BITS_PER_BYTE;
43 	}
44 	return tmp;
45 }
46 
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53 	int num = 0;
54 
55 #if BITS_PER_LONG == 64
56 	if ((word & 0xffffffff00000000UL) == 0)
57 		num += 32;
58 	else
59 		word >>= 32;
60 #endif
61 	if ((word & 0xffff0000) == 0)
62 		num += 16;
63 	else
64 		word >>= 16;
65 
66 	if ((word & 0xff00) == 0)
67 		num += 8;
68 	else
69 		word >>= 8;
70 
71 	if ((word & 0xf0) == 0)
72 		num += 4;
73 	else
74 		word >>= 4;
75 
76 	if ((word & 0xc) == 0)
77 		num += 2;
78 	else
79 		word >>= 2;
80 
81 	if ((word & 0x2) == 0)
82 		num += 1;
83 	return num;
84 }
85 
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * @size must be integral times of unsigned long.
90  * Example:
91  *                             MSB <--> LSB
92  *   f2fs_set_bit(0, bitmap) => 1000 0000
93  *   f2fs_set_bit(7, bitmap) => 0000 0001
94  */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 			unsigned long size, unsigned long offset)
97 {
98 	const unsigned long *p = addr + BIT_WORD(offset);
99 	unsigned long result = size;
100 	unsigned long tmp;
101 
102 	if (offset >= size)
103 		return size;
104 
105 	size -= (offset & ~(BITS_PER_LONG - 1));
106 	offset %= BITS_PER_LONG;
107 
108 	while (1) {
109 		if (*p == 0)
110 			goto pass;
111 
112 		tmp = __reverse_ulong((unsigned char *)p);
113 
114 		tmp &= ~0UL >> offset;
115 		if (size < BITS_PER_LONG)
116 			tmp &= (~0UL << (BITS_PER_LONG - size));
117 		if (tmp)
118 			goto found;
119 pass:
120 		if (size <= BITS_PER_LONG)
121 			break;
122 		size -= BITS_PER_LONG;
123 		offset = 0;
124 		p++;
125 	}
126 	return result;
127 found:
128 	return result - size + __reverse_ffs(tmp);
129 }
130 
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 			unsigned long size, unsigned long offset)
133 {
134 	const unsigned long *p = addr + BIT_WORD(offset);
135 	unsigned long result = size;
136 	unsigned long tmp;
137 
138 	if (offset >= size)
139 		return size;
140 
141 	size -= (offset & ~(BITS_PER_LONG - 1));
142 	offset %= BITS_PER_LONG;
143 
144 	while (1) {
145 		if (*p == ~0UL)
146 			goto pass;
147 
148 		tmp = __reverse_ulong((unsigned char *)p);
149 
150 		if (offset)
151 			tmp |= ~0UL << (BITS_PER_LONG - offset);
152 		if (size < BITS_PER_LONG)
153 			tmp |= ~0UL >> size;
154 		if (tmp != ~0UL)
155 			goto found;
156 pass:
157 		if (size <= BITS_PER_LONG)
158 			break;
159 		size -= BITS_PER_LONG;
160 		offset = 0;
161 		p++;
162 	}
163 	return result;
164 found:
165 	return result - size + __reverse_ffz(tmp);
166 }
167 
168 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
169 {
170 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
171 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
172 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
173 
174 	if (f2fs_lfs_mode(sbi))
175 		return false;
176 	if (sbi->gc_mode == GC_URGENT_HIGH)
177 		return true;
178 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
179 		return true;
180 
181 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
182 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
183 }
184 
185 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
186 {
187 	struct inmem_pages *new;
188 
189 	set_page_private_atomic(page);
190 
191 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
192 
193 	/* add atomic page indices to the list */
194 	new->page = page;
195 	INIT_LIST_HEAD(&new->list);
196 
197 	/* increase reference count with clean state */
198 	get_page(page);
199 	mutex_lock(&F2FS_I(inode)->inmem_lock);
200 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
201 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
202 	mutex_unlock(&F2FS_I(inode)->inmem_lock);
203 
204 	trace_f2fs_register_inmem_page(page, INMEM);
205 }
206 
207 static int __revoke_inmem_pages(struct inode *inode,
208 				struct list_head *head, bool drop, bool recover,
209 				bool trylock)
210 {
211 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
212 	struct inmem_pages *cur, *tmp;
213 	int err = 0;
214 
215 	list_for_each_entry_safe(cur, tmp, head, list) {
216 		struct page *page = cur->page;
217 
218 		if (drop)
219 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
220 
221 		if (trylock) {
222 			/*
223 			 * to avoid deadlock in between page lock and
224 			 * inmem_lock.
225 			 */
226 			if (!trylock_page(page))
227 				continue;
228 		} else {
229 			lock_page(page);
230 		}
231 
232 		f2fs_wait_on_page_writeback(page, DATA, true, true);
233 
234 		if (recover) {
235 			struct dnode_of_data dn;
236 			struct node_info ni;
237 
238 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
239 retry:
240 			set_new_dnode(&dn, inode, NULL, NULL, 0);
241 			err = f2fs_get_dnode_of_data(&dn, page->index,
242 								LOOKUP_NODE);
243 			if (err) {
244 				if (err == -ENOMEM) {
245 					congestion_wait(BLK_RW_ASYNC,
246 							DEFAULT_IO_TIMEOUT);
247 					cond_resched();
248 					goto retry;
249 				}
250 				err = -EAGAIN;
251 				goto next;
252 			}
253 
254 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
255 			if (err) {
256 				f2fs_put_dnode(&dn);
257 				return err;
258 			}
259 
260 			if (cur->old_addr == NEW_ADDR) {
261 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
262 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
263 			} else
264 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
265 					cur->old_addr, ni.version, true, true);
266 			f2fs_put_dnode(&dn);
267 		}
268 next:
269 		/* we don't need to invalidate this in the sccessful status */
270 		if (drop || recover) {
271 			ClearPageUptodate(page);
272 			clear_page_private_gcing(page);
273 		}
274 		detach_page_private(page);
275 		set_page_private(page, 0);
276 		f2fs_put_page(page, 1);
277 
278 		list_del(&cur->list);
279 		kmem_cache_free(inmem_entry_slab, cur);
280 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
281 	}
282 	return err;
283 }
284 
285 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
286 {
287 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
288 	struct inode *inode;
289 	struct f2fs_inode_info *fi;
290 	unsigned int count = sbi->atomic_files;
291 	unsigned int looped = 0;
292 next:
293 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
294 	if (list_empty(head)) {
295 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
296 		return;
297 	}
298 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
299 	inode = igrab(&fi->vfs_inode);
300 	if (inode)
301 		list_move_tail(&fi->inmem_ilist, head);
302 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
303 
304 	if (inode) {
305 		if (gc_failure) {
306 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
307 				goto skip;
308 		}
309 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
310 		f2fs_drop_inmem_pages(inode);
311 skip:
312 		iput(inode);
313 	}
314 	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
315 	cond_resched();
316 	if (gc_failure) {
317 		if (++looped >= count)
318 			return;
319 	}
320 	goto next;
321 }
322 
323 void f2fs_drop_inmem_pages(struct inode *inode)
324 {
325 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
326 	struct f2fs_inode_info *fi = F2FS_I(inode);
327 
328 	do {
329 		mutex_lock(&fi->inmem_lock);
330 		if (list_empty(&fi->inmem_pages)) {
331 			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
332 
333 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
334 			if (!list_empty(&fi->inmem_ilist))
335 				list_del_init(&fi->inmem_ilist);
336 			if (f2fs_is_atomic_file(inode)) {
337 				clear_inode_flag(inode, FI_ATOMIC_FILE);
338 				sbi->atomic_files--;
339 			}
340 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
341 
342 			mutex_unlock(&fi->inmem_lock);
343 			break;
344 		}
345 		__revoke_inmem_pages(inode, &fi->inmem_pages,
346 						true, false, true);
347 		mutex_unlock(&fi->inmem_lock);
348 	} while (1);
349 }
350 
351 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
352 {
353 	struct f2fs_inode_info *fi = F2FS_I(inode);
354 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
355 	struct list_head *head = &fi->inmem_pages;
356 	struct inmem_pages *cur = NULL;
357 
358 	f2fs_bug_on(sbi, !page_private_atomic(page));
359 
360 	mutex_lock(&fi->inmem_lock);
361 	list_for_each_entry(cur, head, list) {
362 		if (cur->page == page)
363 			break;
364 	}
365 
366 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
367 	list_del(&cur->list);
368 	mutex_unlock(&fi->inmem_lock);
369 
370 	dec_page_count(sbi, F2FS_INMEM_PAGES);
371 	kmem_cache_free(inmem_entry_slab, cur);
372 
373 	ClearPageUptodate(page);
374 	clear_page_private_atomic(page);
375 	f2fs_put_page(page, 0);
376 
377 	detach_page_private(page);
378 	set_page_private(page, 0);
379 
380 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
381 }
382 
383 static int __f2fs_commit_inmem_pages(struct inode *inode)
384 {
385 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
386 	struct f2fs_inode_info *fi = F2FS_I(inode);
387 	struct inmem_pages *cur, *tmp;
388 	struct f2fs_io_info fio = {
389 		.sbi = sbi,
390 		.ino = inode->i_ino,
391 		.type = DATA,
392 		.op = REQ_OP_WRITE,
393 		.op_flags = REQ_SYNC | REQ_PRIO,
394 		.io_type = FS_DATA_IO,
395 	};
396 	struct list_head revoke_list;
397 	bool submit_bio = false;
398 	int err = 0;
399 
400 	INIT_LIST_HEAD(&revoke_list);
401 
402 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
403 		struct page *page = cur->page;
404 
405 		lock_page(page);
406 		if (page->mapping == inode->i_mapping) {
407 			trace_f2fs_commit_inmem_page(page, INMEM);
408 
409 			f2fs_wait_on_page_writeback(page, DATA, true, true);
410 
411 			set_page_dirty(page);
412 			if (clear_page_dirty_for_io(page)) {
413 				inode_dec_dirty_pages(inode);
414 				f2fs_remove_dirty_inode(inode);
415 			}
416 retry:
417 			fio.page = page;
418 			fio.old_blkaddr = NULL_ADDR;
419 			fio.encrypted_page = NULL;
420 			fio.need_lock = LOCK_DONE;
421 			err = f2fs_do_write_data_page(&fio);
422 			if (err) {
423 				if (err == -ENOMEM) {
424 					congestion_wait(BLK_RW_ASYNC,
425 							DEFAULT_IO_TIMEOUT);
426 					cond_resched();
427 					goto retry;
428 				}
429 				unlock_page(page);
430 				break;
431 			}
432 			/* record old blkaddr for revoking */
433 			cur->old_addr = fio.old_blkaddr;
434 			submit_bio = true;
435 		}
436 		unlock_page(page);
437 		list_move_tail(&cur->list, &revoke_list);
438 	}
439 
440 	if (submit_bio)
441 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
442 
443 	if (err) {
444 		/*
445 		 * try to revoke all committed pages, but still we could fail
446 		 * due to no memory or other reason, if that happened, EAGAIN
447 		 * will be returned, which means in such case, transaction is
448 		 * already not integrity, caller should use journal to do the
449 		 * recovery or rewrite & commit last transaction. For other
450 		 * error number, revoking was done by filesystem itself.
451 		 */
452 		err = __revoke_inmem_pages(inode, &revoke_list,
453 						false, true, false);
454 
455 		/* drop all uncommitted pages */
456 		__revoke_inmem_pages(inode, &fi->inmem_pages,
457 						true, false, false);
458 	} else {
459 		__revoke_inmem_pages(inode, &revoke_list,
460 						false, false, false);
461 	}
462 
463 	return err;
464 }
465 
466 int f2fs_commit_inmem_pages(struct inode *inode)
467 {
468 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
469 	struct f2fs_inode_info *fi = F2FS_I(inode);
470 	int err;
471 
472 	f2fs_balance_fs(sbi, true);
473 
474 	down_write(&fi->i_gc_rwsem[WRITE]);
475 
476 	f2fs_lock_op(sbi);
477 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
478 
479 	mutex_lock(&fi->inmem_lock);
480 	err = __f2fs_commit_inmem_pages(inode);
481 	mutex_unlock(&fi->inmem_lock);
482 
483 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
484 
485 	f2fs_unlock_op(sbi);
486 	up_write(&fi->i_gc_rwsem[WRITE]);
487 
488 	return err;
489 }
490 
491 /*
492  * This function balances dirty node and dentry pages.
493  * In addition, it controls garbage collection.
494  */
495 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
496 {
497 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
498 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
499 		f2fs_stop_checkpoint(sbi, false);
500 	}
501 
502 	/* balance_fs_bg is able to be pending */
503 	if (need && excess_cached_nats(sbi))
504 		f2fs_balance_fs_bg(sbi, false);
505 
506 	if (!f2fs_is_checkpoint_ready(sbi))
507 		return;
508 
509 	/*
510 	 * We should do GC or end up with checkpoint, if there are so many dirty
511 	 * dir/node pages without enough free segments.
512 	 */
513 	if (has_not_enough_free_secs(sbi, 0, 0)) {
514 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
515 					sbi->gc_thread->f2fs_gc_task) {
516 			DEFINE_WAIT(wait);
517 
518 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
519 						TASK_UNINTERRUPTIBLE);
520 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
521 			io_schedule();
522 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
523 		} else {
524 			down_write(&sbi->gc_lock);
525 			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
526 		}
527 	}
528 }
529 
530 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
531 {
532 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
533 		return;
534 
535 	/* try to shrink extent cache when there is no enough memory */
536 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
537 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
538 
539 	/* check the # of cached NAT entries */
540 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
541 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
542 
543 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
544 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
545 	else
546 		f2fs_build_free_nids(sbi, false, false);
547 
548 	if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
549 		excess_prefree_segs(sbi))
550 		goto do_sync;
551 
552 	/* there is background inflight IO or foreground operation recently */
553 	if (is_inflight_io(sbi, REQ_TIME) ||
554 		(!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
555 		return;
556 
557 	/* exceed periodical checkpoint timeout threshold */
558 	if (f2fs_time_over(sbi, CP_TIME))
559 		goto do_sync;
560 
561 	/* checkpoint is the only way to shrink partial cached entries */
562 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
563 		f2fs_available_free_memory(sbi, INO_ENTRIES))
564 		return;
565 
566 do_sync:
567 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
568 		struct blk_plug plug;
569 
570 		mutex_lock(&sbi->flush_lock);
571 
572 		blk_start_plug(&plug);
573 		f2fs_sync_dirty_inodes(sbi, FILE_INODE);
574 		blk_finish_plug(&plug);
575 
576 		mutex_unlock(&sbi->flush_lock);
577 	}
578 	f2fs_sync_fs(sbi->sb, true);
579 	stat_inc_bg_cp_count(sbi->stat_info);
580 }
581 
582 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
583 				struct block_device *bdev)
584 {
585 	int ret = blkdev_issue_flush(bdev);
586 
587 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
588 				test_opt(sbi, FLUSH_MERGE), ret);
589 	return ret;
590 }
591 
592 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
593 {
594 	int ret = 0;
595 	int i;
596 
597 	if (!f2fs_is_multi_device(sbi))
598 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
599 
600 	for (i = 0; i < sbi->s_ndevs; i++) {
601 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
602 			continue;
603 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
604 		if (ret)
605 			break;
606 	}
607 	return ret;
608 }
609 
610 static int issue_flush_thread(void *data)
611 {
612 	struct f2fs_sb_info *sbi = data;
613 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
614 	wait_queue_head_t *q = &fcc->flush_wait_queue;
615 repeat:
616 	if (kthread_should_stop())
617 		return 0;
618 
619 	if (!llist_empty(&fcc->issue_list)) {
620 		struct flush_cmd *cmd, *next;
621 		int ret;
622 
623 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
624 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
625 
626 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
627 
628 		ret = submit_flush_wait(sbi, cmd->ino);
629 		atomic_inc(&fcc->issued_flush);
630 
631 		llist_for_each_entry_safe(cmd, next,
632 					  fcc->dispatch_list, llnode) {
633 			cmd->ret = ret;
634 			complete(&cmd->wait);
635 		}
636 		fcc->dispatch_list = NULL;
637 	}
638 
639 	wait_event_interruptible(*q,
640 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
641 	goto repeat;
642 }
643 
644 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
645 {
646 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
647 	struct flush_cmd cmd;
648 	int ret;
649 
650 	if (test_opt(sbi, NOBARRIER))
651 		return 0;
652 
653 	if (!test_opt(sbi, FLUSH_MERGE)) {
654 		atomic_inc(&fcc->queued_flush);
655 		ret = submit_flush_wait(sbi, ino);
656 		atomic_dec(&fcc->queued_flush);
657 		atomic_inc(&fcc->issued_flush);
658 		return ret;
659 	}
660 
661 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
662 	    f2fs_is_multi_device(sbi)) {
663 		ret = submit_flush_wait(sbi, ino);
664 		atomic_dec(&fcc->queued_flush);
665 
666 		atomic_inc(&fcc->issued_flush);
667 		return ret;
668 	}
669 
670 	cmd.ino = ino;
671 	init_completion(&cmd.wait);
672 
673 	llist_add(&cmd.llnode, &fcc->issue_list);
674 
675 	/*
676 	 * update issue_list before we wake up issue_flush thread, this
677 	 * smp_mb() pairs with another barrier in ___wait_event(), see
678 	 * more details in comments of waitqueue_active().
679 	 */
680 	smp_mb();
681 
682 	if (waitqueue_active(&fcc->flush_wait_queue))
683 		wake_up(&fcc->flush_wait_queue);
684 
685 	if (fcc->f2fs_issue_flush) {
686 		wait_for_completion(&cmd.wait);
687 		atomic_dec(&fcc->queued_flush);
688 	} else {
689 		struct llist_node *list;
690 
691 		list = llist_del_all(&fcc->issue_list);
692 		if (!list) {
693 			wait_for_completion(&cmd.wait);
694 			atomic_dec(&fcc->queued_flush);
695 		} else {
696 			struct flush_cmd *tmp, *next;
697 
698 			ret = submit_flush_wait(sbi, ino);
699 
700 			llist_for_each_entry_safe(tmp, next, list, llnode) {
701 				if (tmp == &cmd) {
702 					cmd.ret = ret;
703 					atomic_dec(&fcc->queued_flush);
704 					continue;
705 				}
706 				tmp->ret = ret;
707 				complete(&tmp->wait);
708 			}
709 		}
710 	}
711 
712 	return cmd.ret;
713 }
714 
715 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
716 {
717 	dev_t dev = sbi->sb->s_bdev->bd_dev;
718 	struct flush_cmd_control *fcc;
719 	int err = 0;
720 
721 	if (SM_I(sbi)->fcc_info) {
722 		fcc = SM_I(sbi)->fcc_info;
723 		if (fcc->f2fs_issue_flush)
724 			return err;
725 		goto init_thread;
726 	}
727 
728 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
729 	if (!fcc)
730 		return -ENOMEM;
731 	atomic_set(&fcc->issued_flush, 0);
732 	atomic_set(&fcc->queued_flush, 0);
733 	init_waitqueue_head(&fcc->flush_wait_queue);
734 	init_llist_head(&fcc->issue_list);
735 	SM_I(sbi)->fcc_info = fcc;
736 	if (!test_opt(sbi, FLUSH_MERGE))
737 		return err;
738 
739 init_thread:
740 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
741 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
742 	if (IS_ERR(fcc->f2fs_issue_flush)) {
743 		err = PTR_ERR(fcc->f2fs_issue_flush);
744 		kfree(fcc);
745 		SM_I(sbi)->fcc_info = NULL;
746 		return err;
747 	}
748 
749 	return err;
750 }
751 
752 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
753 {
754 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
755 
756 	if (fcc && fcc->f2fs_issue_flush) {
757 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
758 
759 		fcc->f2fs_issue_flush = NULL;
760 		kthread_stop(flush_thread);
761 	}
762 	if (free) {
763 		kfree(fcc);
764 		SM_I(sbi)->fcc_info = NULL;
765 	}
766 }
767 
768 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
769 {
770 	int ret = 0, i;
771 
772 	if (!f2fs_is_multi_device(sbi))
773 		return 0;
774 
775 	if (test_opt(sbi, NOBARRIER))
776 		return 0;
777 
778 	for (i = 1; i < sbi->s_ndevs; i++) {
779 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
780 			continue;
781 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
782 		if (ret)
783 			break;
784 
785 		spin_lock(&sbi->dev_lock);
786 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
787 		spin_unlock(&sbi->dev_lock);
788 	}
789 
790 	return ret;
791 }
792 
793 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
794 		enum dirty_type dirty_type)
795 {
796 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
797 
798 	/* need not be added */
799 	if (IS_CURSEG(sbi, segno))
800 		return;
801 
802 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
803 		dirty_i->nr_dirty[dirty_type]++;
804 
805 	if (dirty_type == DIRTY) {
806 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
807 		enum dirty_type t = sentry->type;
808 
809 		if (unlikely(t >= DIRTY)) {
810 			f2fs_bug_on(sbi, 1);
811 			return;
812 		}
813 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
814 			dirty_i->nr_dirty[t]++;
815 
816 		if (__is_large_section(sbi)) {
817 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
818 			block_t valid_blocks =
819 				get_valid_blocks(sbi, segno, true);
820 
821 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
822 					valid_blocks == BLKS_PER_SEC(sbi)));
823 
824 			if (!IS_CURSEC(sbi, secno))
825 				set_bit(secno, dirty_i->dirty_secmap);
826 		}
827 	}
828 }
829 
830 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
831 		enum dirty_type dirty_type)
832 {
833 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
834 	block_t valid_blocks;
835 
836 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
837 		dirty_i->nr_dirty[dirty_type]--;
838 
839 	if (dirty_type == DIRTY) {
840 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
841 		enum dirty_type t = sentry->type;
842 
843 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
844 			dirty_i->nr_dirty[t]--;
845 
846 		valid_blocks = get_valid_blocks(sbi, segno, true);
847 		if (valid_blocks == 0) {
848 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
849 						dirty_i->victim_secmap);
850 #ifdef CONFIG_F2FS_CHECK_FS
851 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
852 #endif
853 		}
854 		if (__is_large_section(sbi)) {
855 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
856 
857 			if (!valid_blocks ||
858 					valid_blocks == BLKS_PER_SEC(sbi)) {
859 				clear_bit(secno, dirty_i->dirty_secmap);
860 				return;
861 			}
862 
863 			if (!IS_CURSEC(sbi, secno))
864 				set_bit(secno, dirty_i->dirty_secmap);
865 		}
866 	}
867 }
868 
869 /*
870  * Should not occur error such as -ENOMEM.
871  * Adding dirty entry into seglist is not critical operation.
872  * If a given segment is one of current working segments, it won't be added.
873  */
874 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
875 {
876 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
877 	unsigned short valid_blocks, ckpt_valid_blocks;
878 	unsigned int usable_blocks;
879 
880 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
881 		return;
882 
883 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
884 	mutex_lock(&dirty_i->seglist_lock);
885 
886 	valid_blocks = get_valid_blocks(sbi, segno, false);
887 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
888 
889 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
890 		ckpt_valid_blocks == usable_blocks)) {
891 		__locate_dirty_segment(sbi, segno, PRE);
892 		__remove_dirty_segment(sbi, segno, DIRTY);
893 	} else if (valid_blocks < usable_blocks) {
894 		__locate_dirty_segment(sbi, segno, DIRTY);
895 	} else {
896 		/* Recovery routine with SSR needs this */
897 		__remove_dirty_segment(sbi, segno, DIRTY);
898 	}
899 
900 	mutex_unlock(&dirty_i->seglist_lock);
901 }
902 
903 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
904 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
905 {
906 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
907 	unsigned int segno;
908 
909 	mutex_lock(&dirty_i->seglist_lock);
910 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
911 		if (get_valid_blocks(sbi, segno, false))
912 			continue;
913 		if (IS_CURSEG(sbi, segno))
914 			continue;
915 		__locate_dirty_segment(sbi, segno, PRE);
916 		__remove_dirty_segment(sbi, segno, DIRTY);
917 	}
918 	mutex_unlock(&dirty_i->seglist_lock);
919 }
920 
921 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
922 {
923 	int ovp_hole_segs =
924 		(overprovision_segments(sbi) - reserved_segments(sbi));
925 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
926 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
927 	block_t holes[2] = {0, 0};	/* DATA and NODE */
928 	block_t unusable;
929 	struct seg_entry *se;
930 	unsigned int segno;
931 
932 	mutex_lock(&dirty_i->seglist_lock);
933 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
934 		se = get_seg_entry(sbi, segno);
935 		if (IS_NODESEG(se->type))
936 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
937 							se->valid_blocks;
938 		else
939 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
940 							se->valid_blocks;
941 	}
942 	mutex_unlock(&dirty_i->seglist_lock);
943 
944 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
945 	if (unusable > ovp_holes)
946 		return unusable - ovp_holes;
947 	return 0;
948 }
949 
950 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
951 {
952 	int ovp_hole_segs =
953 		(overprovision_segments(sbi) - reserved_segments(sbi));
954 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
955 		return -EAGAIN;
956 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
957 		dirty_segments(sbi) > ovp_hole_segs)
958 		return -EAGAIN;
959 	return 0;
960 }
961 
962 /* This is only used by SBI_CP_DISABLED */
963 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
964 {
965 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
966 	unsigned int segno = 0;
967 
968 	mutex_lock(&dirty_i->seglist_lock);
969 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
970 		if (get_valid_blocks(sbi, segno, false))
971 			continue;
972 		if (get_ckpt_valid_blocks(sbi, segno, false))
973 			continue;
974 		mutex_unlock(&dirty_i->seglist_lock);
975 		return segno;
976 	}
977 	mutex_unlock(&dirty_i->seglist_lock);
978 	return NULL_SEGNO;
979 }
980 
981 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
982 		struct block_device *bdev, block_t lstart,
983 		block_t start, block_t len)
984 {
985 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
986 	struct list_head *pend_list;
987 	struct discard_cmd *dc;
988 
989 	f2fs_bug_on(sbi, !len);
990 
991 	pend_list = &dcc->pend_list[plist_idx(len)];
992 
993 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
994 	INIT_LIST_HEAD(&dc->list);
995 	dc->bdev = bdev;
996 	dc->lstart = lstart;
997 	dc->start = start;
998 	dc->len = len;
999 	dc->ref = 0;
1000 	dc->state = D_PREP;
1001 	dc->queued = 0;
1002 	dc->error = 0;
1003 	init_completion(&dc->wait);
1004 	list_add_tail(&dc->list, pend_list);
1005 	spin_lock_init(&dc->lock);
1006 	dc->bio_ref = 0;
1007 	atomic_inc(&dcc->discard_cmd_cnt);
1008 	dcc->undiscard_blks += len;
1009 
1010 	return dc;
1011 }
1012 
1013 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1014 				struct block_device *bdev, block_t lstart,
1015 				block_t start, block_t len,
1016 				struct rb_node *parent, struct rb_node **p,
1017 				bool leftmost)
1018 {
1019 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1020 	struct discard_cmd *dc;
1021 
1022 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1023 
1024 	rb_link_node(&dc->rb_node, parent, p);
1025 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1026 
1027 	return dc;
1028 }
1029 
1030 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1031 							struct discard_cmd *dc)
1032 {
1033 	if (dc->state == D_DONE)
1034 		atomic_sub(dc->queued, &dcc->queued_discard);
1035 
1036 	list_del(&dc->list);
1037 	rb_erase_cached(&dc->rb_node, &dcc->root);
1038 	dcc->undiscard_blks -= dc->len;
1039 
1040 	kmem_cache_free(discard_cmd_slab, dc);
1041 
1042 	atomic_dec(&dcc->discard_cmd_cnt);
1043 }
1044 
1045 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1046 							struct discard_cmd *dc)
1047 {
1048 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1049 	unsigned long flags;
1050 
1051 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1052 
1053 	spin_lock_irqsave(&dc->lock, flags);
1054 	if (dc->bio_ref) {
1055 		spin_unlock_irqrestore(&dc->lock, flags);
1056 		return;
1057 	}
1058 	spin_unlock_irqrestore(&dc->lock, flags);
1059 
1060 	f2fs_bug_on(sbi, dc->ref);
1061 
1062 	if (dc->error == -EOPNOTSUPP)
1063 		dc->error = 0;
1064 
1065 	if (dc->error)
1066 		printk_ratelimited(
1067 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1068 			KERN_INFO, sbi->sb->s_id,
1069 			dc->lstart, dc->start, dc->len, dc->error);
1070 	__detach_discard_cmd(dcc, dc);
1071 }
1072 
1073 static void f2fs_submit_discard_endio(struct bio *bio)
1074 {
1075 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1076 	unsigned long flags;
1077 
1078 	spin_lock_irqsave(&dc->lock, flags);
1079 	if (!dc->error)
1080 		dc->error = blk_status_to_errno(bio->bi_status);
1081 	dc->bio_ref--;
1082 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1083 		dc->state = D_DONE;
1084 		complete_all(&dc->wait);
1085 	}
1086 	spin_unlock_irqrestore(&dc->lock, flags);
1087 	bio_put(bio);
1088 }
1089 
1090 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1091 				block_t start, block_t end)
1092 {
1093 #ifdef CONFIG_F2FS_CHECK_FS
1094 	struct seg_entry *sentry;
1095 	unsigned int segno;
1096 	block_t blk = start;
1097 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1098 	unsigned long *map;
1099 
1100 	while (blk < end) {
1101 		segno = GET_SEGNO(sbi, blk);
1102 		sentry = get_seg_entry(sbi, segno);
1103 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1104 
1105 		if (end < START_BLOCK(sbi, segno + 1))
1106 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1107 		else
1108 			size = max_blocks;
1109 		map = (unsigned long *)(sentry->cur_valid_map);
1110 		offset = __find_rev_next_bit(map, size, offset);
1111 		f2fs_bug_on(sbi, offset != size);
1112 		blk = START_BLOCK(sbi, segno + 1);
1113 	}
1114 #endif
1115 }
1116 
1117 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1118 				struct discard_policy *dpolicy,
1119 				int discard_type, unsigned int granularity)
1120 {
1121 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1122 
1123 	/* common policy */
1124 	dpolicy->type = discard_type;
1125 	dpolicy->sync = true;
1126 	dpolicy->ordered = false;
1127 	dpolicy->granularity = granularity;
1128 
1129 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1130 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1131 	dpolicy->timeout = false;
1132 
1133 	if (discard_type == DPOLICY_BG) {
1134 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1135 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1136 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1137 		dpolicy->io_aware = true;
1138 		dpolicy->sync = false;
1139 		dpolicy->ordered = true;
1140 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1141 			dpolicy->granularity = 1;
1142 			if (atomic_read(&dcc->discard_cmd_cnt))
1143 				dpolicy->max_interval =
1144 					DEF_MIN_DISCARD_ISSUE_TIME;
1145 		}
1146 	} else if (discard_type == DPOLICY_FORCE) {
1147 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1148 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1149 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1150 		dpolicy->io_aware = false;
1151 	} else if (discard_type == DPOLICY_FSTRIM) {
1152 		dpolicy->io_aware = false;
1153 	} else if (discard_type == DPOLICY_UMOUNT) {
1154 		dpolicy->io_aware = false;
1155 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1156 		dpolicy->granularity = 1;
1157 		dpolicy->timeout = true;
1158 	}
1159 }
1160 
1161 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1162 				struct block_device *bdev, block_t lstart,
1163 				block_t start, block_t len);
1164 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1165 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1166 						struct discard_policy *dpolicy,
1167 						struct discard_cmd *dc,
1168 						unsigned int *issued)
1169 {
1170 	struct block_device *bdev = dc->bdev;
1171 	struct request_queue *q = bdev_get_queue(bdev);
1172 	unsigned int max_discard_blocks =
1173 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1174 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1175 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1176 					&(dcc->fstrim_list) : &(dcc->wait_list);
1177 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1178 	block_t lstart, start, len, total_len;
1179 	int err = 0;
1180 
1181 	if (dc->state != D_PREP)
1182 		return 0;
1183 
1184 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1185 		return 0;
1186 
1187 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1188 
1189 	lstart = dc->lstart;
1190 	start = dc->start;
1191 	len = dc->len;
1192 	total_len = len;
1193 
1194 	dc->len = 0;
1195 
1196 	while (total_len && *issued < dpolicy->max_requests && !err) {
1197 		struct bio *bio = NULL;
1198 		unsigned long flags;
1199 		bool last = true;
1200 
1201 		if (len > max_discard_blocks) {
1202 			len = max_discard_blocks;
1203 			last = false;
1204 		}
1205 
1206 		(*issued)++;
1207 		if (*issued == dpolicy->max_requests)
1208 			last = true;
1209 
1210 		dc->len += len;
1211 
1212 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1213 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1214 			err = -EIO;
1215 			goto submit;
1216 		}
1217 		err = __blkdev_issue_discard(bdev,
1218 					SECTOR_FROM_BLOCK(start),
1219 					SECTOR_FROM_BLOCK(len),
1220 					GFP_NOFS, 0, &bio);
1221 submit:
1222 		if (err) {
1223 			spin_lock_irqsave(&dc->lock, flags);
1224 			if (dc->state == D_PARTIAL)
1225 				dc->state = D_SUBMIT;
1226 			spin_unlock_irqrestore(&dc->lock, flags);
1227 
1228 			break;
1229 		}
1230 
1231 		f2fs_bug_on(sbi, !bio);
1232 
1233 		/*
1234 		 * should keep before submission to avoid D_DONE
1235 		 * right away
1236 		 */
1237 		spin_lock_irqsave(&dc->lock, flags);
1238 		if (last)
1239 			dc->state = D_SUBMIT;
1240 		else
1241 			dc->state = D_PARTIAL;
1242 		dc->bio_ref++;
1243 		spin_unlock_irqrestore(&dc->lock, flags);
1244 
1245 		atomic_inc(&dcc->queued_discard);
1246 		dc->queued++;
1247 		list_move_tail(&dc->list, wait_list);
1248 
1249 		/* sanity check on discard range */
1250 		__check_sit_bitmap(sbi, lstart, lstart + len);
1251 
1252 		bio->bi_private = dc;
1253 		bio->bi_end_io = f2fs_submit_discard_endio;
1254 		bio->bi_opf |= flag;
1255 		submit_bio(bio);
1256 
1257 		atomic_inc(&dcc->issued_discard);
1258 
1259 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1260 
1261 		lstart += len;
1262 		start += len;
1263 		total_len -= len;
1264 		len = total_len;
1265 	}
1266 
1267 	if (!err && len) {
1268 		dcc->undiscard_blks -= len;
1269 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1270 	}
1271 	return err;
1272 }
1273 
1274 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1275 				struct block_device *bdev, block_t lstart,
1276 				block_t start, block_t len,
1277 				struct rb_node **insert_p,
1278 				struct rb_node *insert_parent)
1279 {
1280 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1281 	struct rb_node **p;
1282 	struct rb_node *parent = NULL;
1283 	bool leftmost = true;
1284 
1285 	if (insert_p && insert_parent) {
1286 		parent = insert_parent;
1287 		p = insert_p;
1288 		goto do_insert;
1289 	}
1290 
1291 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1292 							lstart, &leftmost);
1293 do_insert:
1294 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1295 								p, leftmost);
1296 }
1297 
1298 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1299 						struct discard_cmd *dc)
1300 {
1301 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1302 }
1303 
1304 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1305 				struct discard_cmd *dc, block_t blkaddr)
1306 {
1307 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1308 	struct discard_info di = dc->di;
1309 	bool modified = false;
1310 
1311 	if (dc->state == D_DONE || dc->len == 1) {
1312 		__remove_discard_cmd(sbi, dc);
1313 		return;
1314 	}
1315 
1316 	dcc->undiscard_blks -= di.len;
1317 
1318 	if (blkaddr > di.lstart) {
1319 		dc->len = blkaddr - dc->lstart;
1320 		dcc->undiscard_blks += dc->len;
1321 		__relocate_discard_cmd(dcc, dc);
1322 		modified = true;
1323 	}
1324 
1325 	if (blkaddr < di.lstart + di.len - 1) {
1326 		if (modified) {
1327 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1328 					di.start + blkaddr + 1 - di.lstart,
1329 					di.lstart + di.len - 1 - blkaddr,
1330 					NULL, NULL);
1331 		} else {
1332 			dc->lstart++;
1333 			dc->len--;
1334 			dc->start++;
1335 			dcc->undiscard_blks += dc->len;
1336 			__relocate_discard_cmd(dcc, dc);
1337 		}
1338 	}
1339 }
1340 
1341 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1342 				struct block_device *bdev, block_t lstart,
1343 				block_t start, block_t len)
1344 {
1345 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1346 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1347 	struct discard_cmd *dc;
1348 	struct discard_info di = {0};
1349 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1350 	struct request_queue *q = bdev_get_queue(bdev);
1351 	unsigned int max_discard_blocks =
1352 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1353 	block_t end = lstart + len;
1354 
1355 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1356 					NULL, lstart,
1357 					(struct rb_entry **)&prev_dc,
1358 					(struct rb_entry **)&next_dc,
1359 					&insert_p, &insert_parent, true, NULL);
1360 	if (dc)
1361 		prev_dc = dc;
1362 
1363 	if (!prev_dc) {
1364 		di.lstart = lstart;
1365 		di.len = next_dc ? next_dc->lstart - lstart : len;
1366 		di.len = min(di.len, len);
1367 		di.start = start;
1368 	}
1369 
1370 	while (1) {
1371 		struct rb_node *node;
1372 		bool merged = false;
1373 		struct discard_cmd *tdc = NULL;
1374 
1375 		if (prev_dc) {
1376 			di.lstart = prev_dc->lstart + prev_dc->len;
1377 			if (di.lstart < lstart)
1378 				di.lstart = lstart;
1379 			if (di.lstart >= end)
1380 				break;
1381 
1382 			if (!next_dc || next_dc->lstart > end)
1383 				di.len = end - di.lstart;
1384 			else
1385 				di.len = next_dc->lstart - di.lstart;
1386 			di.start = start + di.lstart - lstart;
1387 		}
1388 
1389 		if (!di.len)
1390 			goto next;
1391 
1392 		if (prev_dc && prev_dc->state == D_PREP &&
1393 			prev_dc->bdev == bdev &&
1394 			__is_discard_back_mergeable(&di, &prev_dc->di,
1395 							max_discard_blocks)) {
1396 			prev_dc->di.len += di.len;
1397 			dcc->undiscard_blks += di.len;
1398 			__relocate_discard_cmd(dcc, prev_dc);
1399 			di = prev_dc->di;
1400 			tdc = prev_dc;
1401 			merged = true;
1402 		}
1403 
1404 		if (next_dc && next_dc->state == D_PREP &&
1405 			next_dc->bdev == bdev &&
1406 			__is_discard_front_mergeable(&di, &next_dc->di,
1407 							max_discard_blocks)) {
1408 			next_dc->di.lstart = di.lstart;
1409 			next_dc->di.len += di.len;
1410 			next_dc->di.start = di.start;
1411 			dcc->undiscard_blks += di.len;
1412 			__relocate_discard_cmd(dcc, next_dc);
1413 			if (tdc)
1414 				__remove_discard_cmd(sbi, tdc);
1415 			merged = true;
1416 		}
1417 
1418 		if (!merged) {
1419 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1420 							di.len, NULL, NULL);
1421 		}
1422  next:
1423 		prev_dc = next_dc;
1424 		if (!prev_dc)
1425 			break;
1426 
1427 		node = rb_next(&prev_dc->rb_node);
1428 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1429 	}
1430 }
1431 
1432 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1433 		struct block_device *bdev, block_t blkstart, block_t blklen)
1434 {
1435 	block_t lblkstart = blkstart;
1436 
1437 	if (!f2fs_bdev_support_discard(bdev))
1438 		return 0;
1439 
1440 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1441 
1442 	if (f2fs_is_multi_device(sbi)) {
1443 		int devi = f2fs_target_device_index(sbi, blkstart);
1444 
1445 		blkstart -= FDEV(devi).start_blk;
1446 	}
1447 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1448 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1449 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1450 	return 0;
1451 }
1452 
1453 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1454 					struct discard_policy *dpolicy)
1455 {
1456 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1457 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1458 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1459 	struct discard_cmd *dc;
1460 	struct blk_plug plug;
1461 	unsigned int pos = dcc->next_pos;
1462 	unsigned int issued = 0;
1463 	bool io_interrupted = false;
1464 
1465 	mutex_lock(&dcc->cmd_lock);
1466 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1467 					NULL, pos,
1468 					(struct rb_entry **)&prev_dc,
1469 					(struct rb_entry **)&next_dc,
1470 					&insert_p, &insert_parent, true, NULL);
1471 	if (!dc)
1472 		dc = next_dc;
1473 
1474 	blk_start_plug(&plug);
1475 
1476 	while (dc) {
1477 		struct rb_node *node;
1478 		int err = 0;
1479 
1480 		if (dc->state != D_PREP)
1481 			goto next;
1482 
1483 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1484 			io_interrupted = true;
1485 			break;
1486 		}
1487 
1488 		dcc->next_pos = dc->lstart + dc->len;
1489 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1490 
1491 		if (issued >= dpolicy->max_requests)
1492 			break;
1493 next:
1494 		node = rb_next(&dc->rb_node);
1495 		if (err)
1496 			__remove_discard_cmd(sbi, dc);
1497 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1498 	}
1499 
1500 	blk_finish_plug(&plug);
1501 
1502 	if (!dc)
1503 		dcc->next_pos = 0;
1504 
1505 	mutex_unlock(&dcc->cmd_lock);
1506 
1507 	if (!issued && io_interrupted)
1508 		issued = -1;
1509 
1510 	return issued;
1511 }
1512 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1513 					struct discard_policy *dpolicy);
1514 
1515 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1516 					struct discard_policy *dpolicy)
1517 {
1518 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1519 	struct list_head *pend_list;
1520 	struct discard_cmd *dc, *tmp;
1521 	struct blk_plug plug;
1522 	int i, issued;
1523 	bool io_interrupted = false;
1524 
1525 	if (dpolicy->timeout)
1526 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1527 
1528 retry:
1529 	issued = 0;
1530 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1531 		if (dpolicy->timeout &&
1532 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1533 			break;
1534 
1535 		if (i + 1 < dpolicy->granularity)
1536 			break;
1537 
1538 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1539 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1540 
1541 		pend_list = &dcc->pend_list[i];
1542 
1543 		mutex_lock(&dcc->cmd_lock);
1544 		if (list_empty(pend_list))
1545 			goto next;
1546 		if (unlikely(dcc->rbtree_check))
1547 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1548 							&dcc->root, false));
1549 		blk_start_plug(&plug);
1550 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1551 			f2fs_bug_on(sbi, dc->state != D_PREP);
1552 
1553 			if (dpolicy->timeout &&
1554 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1555 				break;
1556 
1557 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1558 						!is_idle(sbi, DISCARD_TIME)) {
1559 				io_interrupted = true;
1560 				break;
1561 			}
1562 
1563 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1564 
1565 			if (issued >= dpolicy->max_requests)
1566 				break;
1567 		}
1568 		blk_finish_plug(&plug);
1569 next:
1570 		mutex_unlock(&dcc->cmd_lock);
1571 
1572 		if (issued >= dpolicy->max_requests || io_interrupted)
1573 			break;
1574 	}
1575 
1576 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1577 		__wait_all_discard_cmd(sbi, dpolicy);
1578 		goto retry;
1579 	}
1580 
1581 	if (!issued && io_interrupted)
1582 		issued = -1;
1583 
1584 	return issued;
1585 }
1586 
1587 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1588 {
1589 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1590 	struct list_head *pend_list;
1591 	struct discard_cmd *dc, *tmp;
1592 	int i;
1593 	bool dropped = false;
1594 
1595 	mutex_lock(&dcc->cmd_lock);
1596 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1597 		pend_list = &dcc->pend_list[i];
1598 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1599 			f2fs_bug_on(sbi, dc->state != D_PREP);
1600 			__remove_discard_cmd(sbi, dc);
1601 			dropped = true;
1602 		}
1603 	}
1604 	mutex_unlock(&dcc->cmd_lock);
1605 
1606 	return dropped;
1607 }
1608 
1609 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1610 {
1611 	__drop_discard_cmd(sbi);
1612 }
1613 
1614 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1615 							struct discard_cmd *dc)
1616 {
1617 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1618 	unsigned int len = 0;
1619 
1620 	wait_for_completion_io(&dc->wait);
1621 	mutex_lock(&dcc->cmd_lock);
1622 	f2fs_bug_on(sbi, dc->state != D_DONE);
1623 	dc->ref--;
1624 	if (!dc->ref) {
1625 		if (!dc->error)
1626 			len = dc->len;
1627 		__remove_discard_cmd(sbi, dc);
1628 	}
1629 	mutex_unlock(&dcc->cmd_lock);
1630 
1631 	return len;
1632 }
1633 
1634 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1635 						struct discard_policy *dpolicy,
1636 						block_t start, block_t end)
1637 {
1638 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1639 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1640 					&(dcc->fstrim_list) : &(dcc->wait_list);
1641 	struct discard_cmd *dc, *tmp;
1642 	bool need_wait;
1643 	unsigned int trimmed = 0;
1644 
1645 next:
1646 	need_wait = false;
1647 
1648 	mutex_lock(&dcc->cmd_lock);
1649 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1650 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1651 			continue;
1652 		if (dc->len < dpolicy->granularity)
1653 			continue;
1654 		if (dc->state == D_DONE && !dc->ref) {
1655 			wait_for_completion_io(&dc->wait);
1656 			if (!dc->error)
1657 				trimmed += dc->len;
1658 			__remove_discard_cmd(sbi, dc);
1659 		} else {
1660 			dc->ref++;
1661 			need_wait = true;
1662 			break;
1663 		}
1664 	}
1665 	mutex_unlock(&dcc->cmd_lock);
1666 
1667 	if (need_wait) {
1668 		trimmed += __wait_one_discard_bio(sbi, dc);
1669 		goto next;
1670 	}
1671 
1672 	return trimmed;
1673 }
1674 
1675 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1676 						struct discard_policy *dpolicy)
1677 {
1678 	struct discard_policy dp;
1679 	unsigned int discard_blks;
1680 
1681 	if (dpolicy)
1682 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1683 
1684 	/* wait all */
1685 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1686 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1687 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1688 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1689 
1690 	return discard_blks;
1691 }
1692 
1693 /* This should be covered by global mutex, &sit_i->sentry_lock */
1694 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1695 {
1696 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1697 	struct discard_cmd *dc;
1698 	bool need_wait = false;
1699 
1700 	mutex_lock(&dcc->cmd_lock);
1701 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1702 							NULL, blkaddr);
1703 	if (dc) {
1704 		if (dc->state == D_PREP) {
1705 			__punch_discard_cmd(sbi, dc, blkaddr);
1706 		} else {
1707 			dc->ref++;
1708 			need_wait = true;
1709 		}
1710 	}
1711 	mutex_unlock(&dcc->cmd_lock);
1712 
1713 	if (need_wait)
1714 		__wait_one_discard_bio(sbi, dc);
1715 }
1716 
1717 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1718 {
1719 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1720 
1721 	if (dcc && dcc->f2fs_issue_discard) {
1722 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1723 
1724 		dcc->f2fs_issue_discard = NULL;
1725 		kthread_stop(discard_thread);
1726 	}
1727 }
1728 
1729 /* This comes from f2fs_put_super */
1730 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1731 {
1732 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1733 	struct discard_policy dpolicy;
1734 	bool dropped;
1735 
1736 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1737 					dcc->discard_granularity);
1738 	__issue_discard_cmd(sbi, &dpolicy);
1739 	dropped = __drop_discard_cmd(sbi);
1740 
1741 	/* just to make sure there is no pending discard commands */
1742 	__wait_all_discard_cmd(sbi, NULL);
1743 
1744 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1745 	return dropped;
1746 }
1747 
1748 static int issue_discard_thread(void *data)
1749 {
1750 	struct f2fs_sb_info *sbi = data;
1751 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1752 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1753 	struct discard_policy dpolicy;
1754 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1755 	int issued;
1756 
1757 	set_freezable();
1758 
1759 	do {
1760 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1761 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1762 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1763 		else
1764 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1765 						dcc->discard_granularity);
1766 
1767 		if (!atomic_read(&dcc->discard_cmd_cnt))
1768 		       wait_ms = dpolicy.max_interval;
1769 
1770 		wait_event_interruptible_timeout(*q,
1771 				kthread_should_stop() || freezing(current) ||
1772 				dcc->discard_wake,
1773 				msecs_to_jiffies(wait_ms));
1774 
1775 		if (dcc->discard_wake)
1776 			dcc->discard_wake = 0;
1777 
1778 		/* clean up pending candidates before going to sleep */
1779 		if (atomic_read(&dcc->queued_discard))
1780 			__wait_all_discard_cmd(sbi, NULL);
1781 
1782 		if (try_to_freeze())
1783 			continue;
1784 		if (f2fs_readonly(sbi->sb))
1785 			continue;
1786 		if (kthread_should_stop())
1787 			return 0;
1788 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1789 			wait_ms = dpolicy.max_interval;
1790 			continue;
1791 		}
1792 		if (!atomic_read(&dcc->discard_cmd_cnt))
1793 			continue;
1794 
1795 		sb_start_intwrite(sbi->sb);
1796 
1797 		issued = __issue_discard_cmd(sbi, &dpolicy);
1798 		if (issued > 0) {
1799 			__wait_all_discard_cmd(sbi, &dpolicy);
1800 			wait_ms = dpolicy.min_interval;
1801 		} else if (issued == -1) {
1802 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1803 			if (!wait_ms)
1804 				wait_ms = dpolicy.mid_interval;
1805 		} else {
1806 			wait_ms = dpolicy.max_interval;
1807 		}
1808 
1809 		sb_end_intwrite(sbi->sb);
1810 
1811 	} while (!kthread_should_stop());
1812 	return 0;
1813 }
1814 
1815 #ifdef CONFIG_BLK_DEV_ZONED
1816 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1817 		struct block_device *bdev, block_t blkstart, block_t blklen)
1818 {
1819 	sector_t sector, nr_sects;
1820 	block_t lblkstart = blkstart;
1821 	int devi = 0;
1822 
1823 	if (f2fs_is_multi_device(sbi)) {
1824 		devi = f2fs_target_device_index(sbi, blkstart);
1825 		if (blkstart < FDEV(devi).start_blk ||
1826 		    blkstart > FDEV(devi).end_blk) {
1827 			f2fs_err(sbi, "Invalid block %x", blkstart);
1828 			return -EIO;
1829 		}
1830 		blkstart -= FDEV(devi).start_blk;
1831 	}
1832 
1833 	/* For sequential zones, reset the zone write pointer */
1834 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1835 		sector = SECTOR_FROM_BLOCK(blkstart);
1836 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1837 
1838 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1839 				nr_sects != bdev_zone_sectors(bdev)) {
1840 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1841 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1842 				 blkstart, blklen);
1843 			return -EIO;
1844 		}
1845 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1846 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1847 					sector, nr_sects, GFP_NOFS);
1848 	}
1849 
1850 	/* For conventional zones, use regular discard if supported */
1851 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1852 }
1853 #endif
1854 
1855 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1856 		struct block_device *bdev, block_t blkstart, block_t blklen)
1857 {
1858 #ifdef CONFIG_BLK_DEV_ZONED
1859 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1860 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1861 #endif
1862 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1863 }
1864 
1865 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1866 				block_t blkstart, block_t blklen)
1867 {
1868 	sector_t start = blkstart, len = 0;
1869 	struct block_device *bdev;
1870 	struct seg_entry *se;
1871 	unsigned int offset;
1872 	block_t i;
1873 	int err = 0;
1874 
1875 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1876 
1877 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1878 		if (i != start) {
1879 			struct block_device *bdev2 =
1880 				f2fs_target_device(sbi, i, NULL);
1881 
1882 			if (bdev2 != bdev) {
1883 				err = __issue_discard_async(sbi, bdev,
1884 						start, len);
1885 				if (err)
1886 					return err;
1887 				bdev = bdev2;
1888 				start = i;
1889 				len = 0;
1890 			}
1891 		}
1892 
1893 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1894 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1895 
1896 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1897 			sbi->discard_blks--;
1898 	}
1899 
1900 	if (len)
1901 		err = __issue_discard_async(sbi, bdev, start, len);
1902 	return err;
1903 }
1904 
1905 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1906 							bool check_only)
1907 {
1908 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1909 	int max_blocks = sbi->blocks_per_seg;
1910 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1911 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1912 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1913 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1914 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1915 	unsigned int start = 0, end = -1;
1916 	bool force = (cpc->reason & CP_DISCARD);
1917 	struct discard_entry *de = NULL;
1918 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1919 	int i;
1920 
1921 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1922 		return false;
1923 
1924 	if (!force) {
1925 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1926 			SM_I(sbi)->dcc_info->nr_discards >=
1927 				SM_I(sbi)->dcc_info->max_discards)
1928 			return false;
1929 	}
1930 
1931 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1932 	for (i = 0; i < entries; i++)
1933 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1934 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1935 
1936 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1937 				SM_I(sbi)->dcc_info->max_discards) {
1938 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1939 		if (start >= max_blocks)
1940 			break;
1941 
1942 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1943 		if (force && start && end != max_blocks
1944 					&& (end - start) < cpc->trim_minlen)
1945 			continue;
1946 
1947 		if (check_only)
1948 			return true;
1949 
1950 		if (!de) {
1951 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1952 								GFP_F2FS_ZERO);
1953 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1954 			list_add_tail(&de->list, head);
1955 		}
1956 
1957 		for (i = start; i < end; i++)
1958 			__set_bit_le(i, (void *)de->discard_map);
1959 
1960 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1961 	}
1962 	return false;
1963 }
1964 
1965 static void release_discard_addr(struct discard_entry *entry)
1966 {
1967 	list_del(&entry->list);
1968 	kmem_cache_free(discard_entry_slab, entry);
1969 }
1970 
1971 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1972 {
1973 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1974 	struct discard_entry *entry, *this;
1975 
1976 	/* drop caches */
1977 	list_for_each_entry_safe(entry, this, head, list)
1978 		release_discard_addr(entry);
1979 }
1980 
1981 /*
1982  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1983  */
1984 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1985 {
1986 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1987 	unsigned int segno;
1988 
1989 	mutex_lock(&dirty_i->seglist_lock);
1990 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1991 		__set_test_and_free(sbi, segno, false);
1992 	mutex_unlock(&dirty_i->seglist_lock);
1993 }
1994 
1995 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1996 						struct cp_control *cpc)
1997 {
1998 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1999 	struct list_head *head = &dcc->entry_list;
2000 	struct discard_entry *entry, *this;
2001 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2002 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2003 	unsigned int start = 0, end = -1;
2004 	unsigned int secno, start_segno;
2005 	bool force = (cpc->reason & CP_DISCARD);
2006 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2007 
2008 	mutex_lock(&dirty_i->seglist_lock);
2009 
2010 	while (1) {
2011 		int i;
2012 
2013 		if (need_align && end != -1)
2014 			end--;
2015 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2016 		if (start >= MAIN_SEGS(sbi))
2017 			break;
2018 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2019 								start + 1);
2020 
2021 		if (need_align) {
2022 			start = rounddown(start, sbi->segs_per_sec);
2023 			end = roundup(end, sbi->segs_per_sec);
2024 		}
2025 
2026 		for (i = start; i < end; i++) {
2027 			if (test_and_clear_bit(i, prefree_map))
2028 				dirty_i->nr_dirty[PRE]--;
2029 		}
2030 
2031 		if (!f2fs_realtime_discard_enable(sbi))
2032 			continue;
2033 
2034 		if (force && start >= cpc->trim_start &&
2035 					(end - 1) <= cpc->trim_end)
2036 				continue;
2037 
2038 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2039 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2040 				(end - start) << sbi->log_blocks_per_seg);
2041 			continue;
2042 		}
2043 next:
2044 		secno = GET_SEC_FROM_SEG(sbi, start);
2045 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2046 		if (!IS_CURSEC(sbi, secno) &&
2047 			!get_valid_blocks(sbi, start, true))
2048 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2049 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2050 
2051 		start = start_segno + sbi->segs_per_sec;
2052 		if (start < end)
2053 			goto next;
2054 		else
2055 			end = start - 1;
2056 	}
2057 	mutex_unlock(&dirty_i->seglist_lock);
2058 
2059 	/* send small discards */
2060 	list_for_each_entry_safe(entry, this, head, list) {
2061 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2062 		bool is_valid = test_bit_le(0, entry->discard_map);
2063 
2064 find_next:
2065 		if (is_valid) {
2066 			next_pos = find_next_zero_bit_le(entry->discard_map,
2067 					sbi->blocks_per_seg, cur_pos);
2068 			len = next_pos - cur_pos;
2069 
2070 			if (f2fs_sb_has_blkzoned(sbi) ||
2071 			    (force && len < cpc->trim_minlen))
2072 				goto skip;
2073 
2074 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2075 									len);
2076 			total_len += len;
2077 		} else {
2078 			next_pos = find_next_bit_le(entry->discard_map,
2079 					sbi->blocks_per_seg, cur_pos);
2080 		}
2081 skip:
2082 		cur_pos = next_pos;
2083 		is_valid = !is_valid;
2084 
2085 		if (cur_pos < sbi->blocks_per_seg)
2086 			goto find_next;
2087 
2088 		release_discard_addr(entry);
2089 		dcc->nr_discards -= total_len;
2090 	}
2091 
2092 	wake_up_discard_thread(sbi, false);
2093 }
2094 
2095 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2096 {
2097 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2098 	struct discard_cmd_control *dcc;
2099 	int err = 0, i;
2100 
2101 	if (SM_I(sbi)->dcc_info) {
2102 		dcc = SM_I(sbi)->dcc_info;
2103 		goto init_thread;
2104 	}
2105 
2106 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2107 	if (!dcc)
2108 		return -ENOMEM;
2109 
2110 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2111 	INIT_LIST_HEAD(&dcc->entry_list);
2112 	for (i = 0; i < MAX_PLIST_NUM; i++)
2113 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2114 	INIT_LIST_HEAD(&dcc->wait_list);
2115 	INIT_LIST_HEAD(&dcc->fstrim_list);
2116 	mutex_init(&dcc->cmd_lock);
2117 	atomic_set(&dcc->issued_discard, 0);
2118 	atomic_set(&dcc->queued_discard, 0);
2119 	atomic_set(&dcc->discard_cmd_cnt, 0);
2120 	dcc->nr_discards = 0;
2121 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2122 	dcc->undiscard_blks = 0;
2123 	dcc->next_pos = 0;
2124 	dcc->root = RB_ROOT_CACHED;
2125 	dcc->rbtree_check = false;
2126 
2127 	init_waitqueue_head(&dcc->discard_wait_queue);
2128 	SM_I(sbi)->dcc_info = dcc;
2129 init_thread:
2130 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2131 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2132 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2133 		err = PTR_ERR(dcc->f2fs_issue_discard);
2134 		kfree(dcc);
2135 		SM_I(sbi)->dcc_info = NULL;
2136 		return err;
2137 	}
2138 
2139 	return err;
2140 }
2141 
2142 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2143 {
2144 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2145 
2146 	if (!dcc)
2147 		return;
2148 
2149 	f2fs_stop_discard_thread(sbi);
2150 
2151 	/*
2152 	 * Recovery can cache discard commands, so in error path of
2153 	 * fill_super(), it needs to give a chance to handle them.
2154 	 */
2155 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2156 		f2fs_issue_discard_timeout(sbi);
2157 
2158 	kfree(dcc);
2159 	SM_I(sbi)->dcc_info = NULL;
2160 }
2161 
2162 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2163 {
2164 	struct sit_info *sit_i = SIT_I(sbi);
2165 
2166 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2167 		sit_i->dirty_sentries++;
2168 		return false;
2169 	}
2170 
2171 	return true;
2172 }
2173 
2174 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2175 					unsigned int segno, int modified)
2176 {
2177 	struct seg_entry *se = get_seg_entry(sbi, segno);
2178 
2179 	se->type = type;
2180 	if (modified)
2181 		__mark_sit_entry_dirty(sbi, segno);
2182 }
2183 
2184 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2185 								block_t blkaddr)
2186 {
2187 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2188 
2189 	if (segno == NULL_SEGNO)
2190 		return 0;
2191 	return get_seg_entry(sbi, segno)->mtime;
2192 }
2193 
2194 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2195 						unsigned long long old_mtime)
2196 {
2197 	struct seg_entry *se;
2198 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2199 	unsigned long long ctime = get_mtime(sbi, false);
2200 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2201 
2202 	if (segno == NULL_SEGNO)
2203 		return;
2204 
2205 	se = get_seg_entry(sbi, segno);
2206 
2207 	if (!se->mtime)
2208 		se->mtime = mtime;
2209 	else
2210 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2211 						se->valid_blocks + 1);
2212 
2213 	if (ctime > SIT_I(sbi)->max_mtime)
2214 		SIT_I(sbi)->max_mtime = ctime;
2215 }
2216 
2217 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2218 {
2219 	struct seg_entry *se;
2220 	unsigned int segno, offset;
2221 	long int new_vblocks;
2222 	bool exist;
2223 #ifdef CONFIG_F2FS_CHECK_FS
2224 	bool mir_exist;
2225 #endif
2226 
2227 	segno = GET_SEGNO(sbi, blkaddr);
2228 
2229 	se = get_seg_entry(sbi, segno);
2230 	new_vblocks = se->valid_blocks + del;
2231 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2232 
2233 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2234 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2235 
2236 	se->valid_blocks = new_vblocks;
2237 
2238 	/* Update valid block bitmap */
2239 	if (del > 0) {
2240 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2241 #ifdef CONFIG_F2FS_CHECK_FS
2242 		mir_exist = f2fs_test_and_set_bit(offset,
2243 						se->cur_valid_map_mir);
2244 		if (unlikely(exist != mir_exist)) {
2245 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2246 				 blkaddr, exist);
2247 			f2fs_bug_on(sbi, 1);
2248 		}
2249 #endif
2250 		if (unlikely(exist)) {
2251 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2252 				 blkaddr);
2253 			f2fs_bug_on(sbi, 1);
2254 			se->valid_blocks--;
2255 			del = 0;
2256 		}
2257 
2258 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2259 			sbi->discard_blks--;
2260 
2261 		/*
2262 		 * SSR should never reuse block which is checkpointed
2263 		 * or newly invalidated.
2264 		 */
2265 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2266 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2267 				se->ckpt_valid_blocks++;
2268 		}
2269 	} else {
2270 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2271 #ifdef CONFIG_F2FS_CHECK_FS
2272 		mir_exist = f2fs_test_and_clear_bit(offset,
2273 						se->cur_valid_map_mir);
2274 		if (unlikely(exist != mir_exist)) {
2275 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2276 				 blkaddr, exist);
2277 			f2fs_bug_on(sbi, 1);
2278 		}
2279 #endif
2280 		if (unlikely(!exist)) {
2281 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2282 				 blkaddr);
2283 			f2fs_bug_on(sbi, 1);
2284 			se->valid_blocks++;
2285 			del = 0;
2286 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2287 			/*
2288 			 * If checkpoints are off, we must not reuse data that
2289 			 * was used in the previous checkpoint. If it was used
2290 			 * before, we must track that to know how much space we
2291 			 * really have.
2292 			 */
2293 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2294 				spin_lock(&sbi->stat_lock);
2295 				sbi->unusable_block_count++;
2296 				spin_unlock(&sbi->stat_lock);
2297 			}
2298 		}
2299 
2300 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2301 			sbi->discard_blks++;
2302 	}
2303 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2304 		se->ckpt_valid_blocks += del;
2305 
2306 	__mark_sit_entry_dirty(sbi, segno);
2307 
2308 	/* update total number of valid blocks to be written in ckpt area */
2309 	SIT_I(sbi)->written_valid_blocks += del;
2310 
2311 	if (__is_large_section(sbi))
2312 		get_sec_entry(sbi, segno)->valid_blocks += del;
2313 }
2314 
2315 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2316 {
2317 	unsigned int segno = GET_SEGNO(sbi, addr);
2318 	struct sit_info *sit_i = SIT_I(sbi);
2319 
2320 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2321 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2322 		return;
2323 
2324 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2325 	f2fs_invalidate_compress_page(sbi, addr);
2326 
2327 	/* add it into sit main buffer */
2328 	down_write(&sit_i->sentry_lock);
2329 
2330 	update_segment_mtime(sbi, addr, 0);
2331 	update_sit_entry(sbi, addr, -1);
2332 
2333 	/* add it into dirty seglist */
2334 	locate_dirty_segment(sbi, segno);
2335 
2336 	up_write(&sit_i->sentry_lock);
2337 }
2338 
2339 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2340 {
2341 	struct sit_info *sit_i = SIT_I(sbi);
2342 	unsigned int segno, offset;
2343 	struct seg_entry *se;
2344 	bool is_cp = false;
2345 
2346 	if (!__is_valid_data_blkaddr(blkaddr))
2347 		return true;
2348 
2349 	down_read(&sit_i->sentry_lock);
2350 
2351 	segno = GET_SEGNO(sbi, blkaddr);
2352 	se = get_seg_entry(sbi, segno);
2353 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2354 
2355 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2356 		is_cp = true;
2357 
2358 	up_read(&sit_i->sentry_lock);
2359 
2360 	return is_cp;
2361 }
2362 
2363 /*
2364  * This function should be resided under the curseg_mutex lock
2365  */
2366 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2367 					struct f2fs_summary *sum)
2368 {
2369 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2370 	void *addr = curseg->sum_blk;
2371 
2372 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2373 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2374 }
2375 
2376 /*
2377  * Calculate the number of current summary pages for writing
2378  */
2379 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2380 {
2381 	int valid_sum_count = 0;
2382 	int i, sum_in_page;
2383 
2384 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2385 		if (sbi->ckpt->alloc_type[i] == SSR)
2386 			valid_sum_count += sbi->blocks_per_seg;
2387 		else {
2388 			if (for_ra)
2389 				valid_sum_count += le16_to_cpu(
2390 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2391 			else
2392 				valid_sum_count += curseg_blkoff(sbi, i);
2393 		}
2394 	}
2395 
2396 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2397 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2398 	if (valid_sum_count <= sum_in_page)
2399 		return 1;
2400 	else if ((valid_sum_count - sum_in_page) <=
2401 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2402 		return 2;
2403 	return 3;
2404 }
2405 
2406 /*
2407  * Caller should put this summary page
2408  */
2409 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2410 {
2411 	if (unlikely(f2fs_cp_error(sbi)))
2412 		return ERR_PTR(-EIO);
2413 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2414 }
2415 
2416 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2417 					void *src, block_t blk_addr)
2418 {
2419 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2420 
2421 	memcpy(page_address(page), src, PAGE_SIZE);
2422 	set_page_dirty(page);
2423 	f2fs_put_page(page, 1);
2424 }
2425 
2426 static void write_sum_page(struct f2fs_sb_info *sbi,
2427 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2428 {
2429 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2430 }
2431 
2432 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2433 						int type, block_t blk_addr)
2434 {
2435 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2436 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2437 	struct f2fs_summary_block *src = curseg->sum_blk;
2438 	struct f2fs_summary_block *dst;
2439 
2440 	dst = (struct f2fs_summary_block *)page_address(page);
2441 	memset(dst, 0, PAGE_SIZE);
2442 
2443 	mutex_lock(&curseg->curseg_mutex);
2444 
2445 	down_read(&curseg->journal_rwsem);
2446 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2447 	up_read(&curseg->journal_rwsem);
2448 
2449 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2450 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2451 
2452 	mutex_unlock(&curseg->curseg_mutex);
2453 
2454 	set_page_dirty(page);
2455 	f2fs_put_page(page, 1);
2456 }
2457 
2458 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2459 				struct curseg_info *curseg, int type)
2460 {
2461 	unsigned int segno = curseg->segno + 1;
2462 	struct free_segmap_info *free_i = FREE_I(sbi);
2463 
2464 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2465 		return !test_bit(segno, free_i->free_segmap);
2466 	return 0;
2467 }
2468 
2469 /*
2470  * Find a new segment from the free segments bitmap to right order
2471  * This function should be returned with success, otherwise BUG
2472  */
2473 static void get_new_segment(struct f2fs_sb_info *sbi,
2474 			unsigned int *newseg, bool new_sec, int dir)
2475 {
2476 	struct free_segmap_info *free_i = FREE_I(sbi);
2477 	unsigned int segno, secno, zoneno;
2478 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2479 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2480 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2481 	unsigned int left_start = hint;
2482 	bool init = true;
2483 	int go_left = 0;
2484 	int i;
2485 
2486 	spin_lock(&free_i->segmap_lock);
2487 
2488 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2489 		segno = find_next_zero_bit(free_i->free_segmap,
2490 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2491 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2492 			goto got_it;
2493 	}
2494 find_other_zone:
2495 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2496 	if (secno >= MAIN_SECS(sbi)) {
2497 		if (dir == ALLOC_RIGHT) {
2498 			secno = find_next_zero_bit(free_i->free_secmap,
2499 							MAIN_SECS(sbi), 0);
2500 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2501 		} else {
2502 			go_left = 1;
2503 			left_start = hint - 1;
2504 		}
2505 	}
2506 	if (go_left == 0)
2507 		goto skip_left;
2508 
2509 	while (test_bit(left_start, free_i->free_secmap)) {
2510 		if (left_start > 0) {
2511 			left_start--;
2512 			continue;
2513 		}
2514 		left_start = find_next_zero_bit(free_i->free_secmap,
2515 							MAIN_SECS(sbi), 0);
2516 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2517 		break;
2518 	}
2519 	secno = left_start;
2520 skip_left:
2521 	segno = GET_SEG_FROM_SEC(sbi, secno);
2522 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2523 
2524 	/* give up on finding another zone */
2525 	if (!init)
2526 		goto got_it;
2527 	if (sbi->secs_per_zone == 1)
2528 		goto got_it;
2529 	if (zoneno == old_zoneno)
2530 		goto got_it;
2531 	if (dir == ALLOC_LEFT) {
2532 		if (!go_left && zoneno + 1 >= total_zones)
2533 			goto got_it;
2534 		if (go_left && zoneno == 0)
2535 			goto got_it;
2536 	}
2537 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2538 		if (CURSEG_I(sbi, i)->zone == zoneno)
2539 			break;
2540 
2541 	if (i < NR_CURSEG_TYPE) {
2542 		/* zone is in user, try another */
2543 		if (go_left)
2544 			hint = zoneno * sbi->secs_per_zone - 1;
2545 		else if (zoneno + 1 >= total_zones)
2546 			hint = 0;
2547 		else
2548 			hint = (zoneno + 1) * sbi->secs_per_zone;
2549 		init = false;
2550 		goto find_other_zone;
2551 	}
2552 got_it:
2553 	/* set it as dirty segment in free segmap */
2554 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2555 	__set_inuse(sbi, segno);
2556 	*newseg = segno;
2557 	spin_unlock(&free_i->segmap_lock);
2558 }
2559 
2560 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2561 {
2562 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2563 	struct summary_footer *sum_footer;
2564 	unsigned short seg_type = curseg->seg_type;
2565 
2566 	curseg->inited = true;
2567 	curseg->segno = curseg->next_segno;
2568 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2569 	curseg->next_blkoff = 0;
2570 	curseg->next_segno = NULL_SEGNO;
2571 
2572 	sum_footer = &(curseg->sum_blk->footer);
2573 	memset(sum_footer, 0, sizeof(struct summary_footer));
2574 
2575 	sanity_check_seg_type(sbi, seg_type);
2576 
2577 	if (IS_DATASEG(seg_type))
2578 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2579 	if (IS_NODESEG(seg_type))
2580 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2581 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2582 }
2583 
2584 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2585 {
2586 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2587 	unsigned short seg_type = curseg->seg_type;
2588 
2589 	sanity_check_seg_type(sbi, seg_type);
2590 
2591 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2592 	if (__is_large_section(sbi))
2593 		return curseg->segno;
2594 
2595 	/* inmem log may not locate on any segment after mount */
2596 	if (!curseg->inited)
2597 		return 0;
2598 
2599 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2600 		return 0;
2601 
2602 	if (test_opt(sbi, NOHEAP) &&
2603 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2604 		return 0;
2605 
2606 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2607 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2608 
2609 	/* find segments from 0 to reuse freed segments */
2610 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2611 		return 0;
2612 
2613 	return curseg->segno;
2614 }
2615 
2616 /*
2617  * Allocate a current working segment.
2618  * This function always allocates a free segment in LFS manner.
2619  */
2620 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2621 {
2622 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2623 	unsigned short seg_type = curseg->seg_type;
2624 	unsigned int segno = curseg->segno;
2625 	int dir = ALLOC_LEFT;
2626 
2627 	if (curseg->inited)
2628 		write_sum_page(sbi, curseg->sum_blk,
2629 				GET_SUM_BLOCK(sbi, segno));
2630 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2631 		dir = ALLOC_RIGHT;
2632 
2633 	if (test_opt(sbi, NOHEAP))
2634 		dir = ALLOC_RIGHT;
2635 
2636 	segno = __get_next_segno(sbi, type);
2637 	get_new_segment(sbi, &segno, new_sec, dir);
2638 	curseg->next_segno = segno;
2639 	reset_curseg(sbi, type, 1);
2640 	curseg->alloc_type = LFS;
2641 }
2642 
2643 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2644 					int segno, block_t start)
2645 {
2646 	struct seg_entry *se = get_seg_entry(sbi, segno);
2647 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2648 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2649 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2650 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2651 	int i;
2652 
2653 	for (i = 0; i < entries; i++)
2654 		target_map[i] = ckpt_map[i] | cur_map[i];
2655 
2656 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2657 }
2658 
2659 /*
2660  * If a segment is written by LFS manner, next block offset is just obtained
2661  * by increasing the current block offset. However, if a segment is written by
2662  * SSR manner, next block offset obtained by calling __next_free_blkoff
2663  */
2664 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2665 				struct curseg_info *seg)
2666 {
2667 	if (seg->alloc_type == SSR)
2668 		seg->next_blkoff =
2669 			__next_free_blkoff(sbi, seg->segno,
2670 						seg->next_blkoff + 1);
2671 	else
2672 		seg->next_blkoff++;
2673 }
2674 
2675 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2676 {
2677 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2678 }
2679 
2680 /*
2681  * This function always allocates a used segment(from dirty seglist) by SSR
2682  * manner, so it should recover the existing segment information of valid blocks
2683  */
2684 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2685 {
2686 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2687 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2688 	unsigned int new_segno = curseg->next_segno;
2689 	struct f2fs_summary_block *sum_node;
2690 	struct page *sum_page;
2691 
2692 	if (flush)
2693 		write_sum_page(sbi, curseg->sum_blk,
2694 					GET_SUM_BLOCK(sbi, curseg->segno));
2695 
2696 	__set_test_and_inuse(sbi, new_segno);
2697 
2698 	mutex_lock(&dirty_i->seglist_lock);
2699 	__remove_dirty_segment(sbi, new_segno, PRE);
2700 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2701 	mutex_unlock(&dirty_i->seglist_lock);
2702 
2703 	reset_curseg(sbi, type, 1);
2704 	curseg->alloc_type = SSR;
2705 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2706 
2707 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2708 	if (IS_ERR(sum_page)) {
2709 		/* GC won't be able to use stale summary pages by cp_error */
2710 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2711 		return;
2712 	}
2713 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2714 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2715 	f2fs_put_page(sum_page, 1);
2716 }
2717 
2718 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2719 				int alloc_mode, unsigned long long age);
2720 
2721 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2722 					int target_type, int alloc_mode,
2723 					unsigned long long age)
2724 {
2725 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2726 
2727 	curseg->seg_type = target_type;
2728 
2729 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2730 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2731 
2732 		curseg->seg_type = se->type;
2733 		change_curseg(sbi, type, true);
2734 	} else {
2735 		/* allocate cold segment by default */
2736 		curseg->seg_type = CURSEG_COLD_DATA;
2737 		new_curseg(sbi, type, true);
2738 	}
2739 	stat_inc_seg_type(sbi, curseg);
2740 }
2741 
2742 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2743 {
2744 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2745 
2746 	if (!sbi->am.atgc_enabled)
2747 		return;
2748 
2749 	down_read(&SM_I(sbi)->curseg_lock);
2750 
2751 	mutex_lock(&curseg->curseg_mutex);
2752 	down_write(&SIT_I(sbi)->sentry_lock);
2753 
2754 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2755 
2756 	up_write(&SIT_I(sbi)->sentry_lock);
2757 	mutex_unlock(&curseg->curseg_mutex);
2758 
2759 	up_read(&SM_I(sbi)->curseg_lock);
2760 
2761 }
2762 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2763 {
2764 	__f2fs_init_atgc_curseg(sbi);
2765 }
2766 
2767 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2768 {
2769 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2770 
2771 	mutex_lock(&curseg->curseg_mutex);
2772 	if (!curseg->inited)
2773 		goto out;
2774 
2775 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2776 		write_sum_page(sbi, curseg->sum_blk,
2777 				GET_SUM_BLOCK(sbi, curseg->segno));
2778 	} else {
2779 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2780 		__set_test_and_free(sbi, curseg->segno, true);
2781 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2782 	}
2783 out:
2784 	mutex_unlock(&curseg->curseg_mutex);
2785 }
2786 
2787 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2788 {
2789 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2790 
2791 	if (sbi->am.atgc_enabled)
2792 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2793 }
2794 
2795 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2796 {
2797 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2798 
2799 	mutex_lock(&curseg->curseg_mutex);
2800 	if (!curseg->inited)
2801 		goto out;
2802 	if (get_valid_blocks(sbi, curseg->segno, false))
2803 		goto out;
2804 
2805 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2806 	__set_test_and_inuse(sbi, curseg->segno);
2807 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2808 out:
2809 	mutex_unlock(&curseg->curseg_mutex);
2810 }
2811 
2812 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2813 {
2814 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2815 
2816 	if (sbi->am.atgc_enabled)
2817 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2818 }
2819 
2820 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2821 				int alloc_mode, unsigned long long age)
2822 {
2823 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2824 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2825 	unsigned segno = NULL_SEGNO;
2826 	unsigned short seg_type = curseg->seg_type;
2827 	int i, cnt;
2828 	bool reversed = false;
2829 
2830 	sanity_check_seg_type(sbi, seg_type);
2831 
2832 	/* f2fs_need_SSR() already forces to do this */
2833 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2834 		curseg->next_segno = segno;
2835 		return 1;
2836 	}
2837 
2838 	/* For node segments, let's do SSR more intensively */
2839 	if (IS_NODESEG(seg_type)) {
2840 		if (seg_type >= CURSEG_WARM_NODE) {
2841 			reversed = true;
2842 			i = CURSEG_COLD_NODE;
2843 		} else {
2844 			i = CURSEG_HOT_NODE;
2845 		}
2846 		cnt = NR_CURSEG_NODE_TYPE;
2847 	} else {
2848 		if (seg_type >= CURSEG_WARM_DATA) {
2849 			reversed = true;
2850 			i = CURSEG_COLD_DATA;
2851 		} else {
2852 			i = CURSEG_HOT_DATA;
2853 		}
2854 		cnt = NR_CURSEG_DATA_TYPE;
2855 	}
2856 
2857 	for (; cnt-- > 0; reversed ? i-- : i++) {
2858 		if (i == seg_type)
2859 			continue;
2860 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2861 			curseg->next_segno = segno;
2862 			return 1;
2863 		}
2864 	}
2865 
2866 	/* find valid_blocks=0 in dirty list */
2867 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2868 		segno = get_free_segment(sbi);
2869 		if (segno != NULL_SEGNO) {
2870 			curseg->next_segno = segno;
2871 			return 1;
2872 		}
2873 	}
2874 	return 0;
2875 }
2876 
2877 /*
2878  * flush out current segment and replace it with new segment
2879  * This function should be returned with success, otherwise BUG
2880  */
2881 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2882 						int type, bool force)
2883 {
2884 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2885 
2886 	if (force)
2887 		new_curseg(sbi, type, true);
2888 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2889 					curseg->seg_type == CURSEG_WARM_NODE)
2890 		new_curseg(sbi, type, false);
2891 	else if (curseg->alloc_type == LFS &&
2892 			is_next_segment_free(sbi, curseg, type) &&
2893 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2894 		new_curseg(sbi, type, false);
2895 	else if (f2fs_need_SSR(sbi) &&
2896 			get_ssr_segment(sbi, type, SSR, 0))
2897 		change_curseg(sbi, type, true);
2898 	else
2899 		new_curseg(sbi, type, false);
2900 
2901 	stat_inc_seg_type(sbi, curseg);
2902 }
2903 
2904 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2905 					unsigned int start, unsigned int end)
2906 {
2907 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2908 	unsigned int segno;
2909 
2910 	down_read(&SM_I(sbi)->curseg_lock);
2911 	mutex_lock(&curseg->curseg_mutex);
2912 	down_write(&SIT_I(sbi)->sentry_lock);
2913 
2914 	segno = CURSEG_I(sbi, type)->segno;
2915 	if (segno < start || segno > end)
2916 		goto unlock;
2917 
2918 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2919 		change_curseg(sbi, type, true);
2920 	else
2921 		new_curseg(sbi, type, true);
2922 
2923 	stat_inc_seg_type(sbi, curseg);
2924 
2925 	locate_dirty_segment(sbi, segno);
2926 unlock:
2927 	up_write(&SIT_I(sbi)->sentry_lock);
2928 
2929 	if (segno != curseg->segno)
2930 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2931 			    type, segno, curseg->segno);
2932 
2933 	mutex_unlock(&curseg->curseg_mutex);
2934 	up_read(&SM_I(sbi)->curseg_lock);
2935 }
2936 
2937 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2938 						bool new_sec, bool force)
2939 {
2940 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2941 	unsigned int old_segno;
2942 
2943 	if (!curseg->inited)
2944 		goto alloc;
2945 
2946 	if (force || curseg->next_blkoff ||
2947 		get_valid_blocks(sbi, curseg->segno, new_sec))
2948 		goto alloc;
2949 
2950 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2951 		return;
2952 alloc:
2953 	old_segno = curseg->segno;
2954 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2955 	locate_dirty_segment(sbi, old_segno);
2956 }
2957 
2958 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2959 						int type, bool force)
2960 {
2961 	__allocate_new_segment(sbi, type, true, force);
2962 }
2963 
2964 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2965 {
2966 	down_read(&SM_I(sbi)->curseg_lock);
2967 	down_write(&SIT_I(sbi)->sentry_lock);
2968 	__allocate_new_section(sbi, type, force);
2969 	up_write(&SIT_I(sbi)->sentry_lock);
2970 	up_read(&SM_I(sbi)->curseg_lock);
2971 }
2972 
2973 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2974 {
2975 	int i;
2976 
2977 	down_read(&SM_I(sbi)->curseg_lock);
2978 	down_write(&SIT_I(sbi)->sentry_lock);
2979 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2980 		__allocate_new_segment(sbi, i, false, false);
2981 	up_write(&SIT_I(sbi)->sentry_lock);
2982 	up_read(&SM_I(sbi)->curseg_lock);
2983 }
2984 
2985 static const struct segment_allocation default_salloc_ops = {
2986 	.allocate_segment = allocate_segment_by_default,
2987 };
2988 
2989 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2990 						struct cp_control *cpc)
2991 {
2992 	__u64 trim_start = cpc->trim_start;
2993 	bool has_candidate = false;
2994 
2995 	down_write(&SIT_I(sbi)->sentry_lock);
2996 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2997 		if (add_discard_addrs(sbi, cpc, true)) {
2998 			has_candidate = true;
2999 			break;
3000 		}
3001 	}
3002 	up_write(&SIT_I(sbi)->sentry_lock);
3003 
3004 	cpc->trim_start = trim_start;
3005 	return has_candidate;
3006 }
3007 
3008 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3009 					struct discard_policy *dpolicy,
3010 					unsigned int start, unsigned int end)
3011 {
3012 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3013 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3014 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3015 	struct discard_cmd *dc;
3016 	struct blk_plug plug;
3017 	int issued;
3018 	unsigned int trimmed = 0;
3019 
3020 next:
3021 	issued = 0;
3022 
3023 	mutex_lock(&dcc->cmd_lock);
3024 	if (unlikely(dcc->rbtree_check))
3025 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3026 							&dcc->root, false));
3027 
3028 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3029 					NULL, start,
3030 					(struct rb_entry **)&prev_dc,
3031 					(struct rb_entry **)&next_dc,
3032 					&insert_p, &insert_parent, true, NULL);
3033 	if (!dc)
3034 		dc = next_dc;
3035 
3036 	blk_start_plug(&plug);
3037 
3038 	while (dc && dc->lstart <= end) {
3039 		struct rb_node *node;
3040 		int err = 0;
3041 
3042 		if (dc->len < dpolicy->granularity)
3043 			goto skip;
3044 
3045 		if (dc->state != D_PREP) {
3046 			list_move_tail(&dc->list, &dcc->fstrim_list);
3047 			goto skip;
3048 		}
3049 
3050 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3051 
3052 		if (issued >= dpolicy->max_requests) {
3053 			start = dc->lstart + dc->len;
3054 
3055 			if (err)
3056 				__remove_discard_cmd(sbi, dc);
3057 
3058 			blk_finish_plug(&plug);
3059 			mutex_unlock(&dcc->cmd_lock);
3060 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3061 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3062 			goto next;
3063 		}
3064 skip:
3065 		node = rb_next(&dc->rb_node);
3066 		if (err)
3067 			__remove_discard_cmd(sbi, dc);
3068 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3069 
3070 		if (fatal_signal_pending(current))
3071 			break;
3072 	}
3073 
3074 	blk_finish_plug(&plug);
3075 	mutex_unlock(&dcc->cmd_lock);
3076 
3077 	return trimmed;
3078 }
3079 
3080 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3081 {
3082 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3083 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3084 	unsigned int start_segno, end_segno;
3085 	block_t start_block, end_block;
3086 	struct cp_control cpc;
3087 	struct discard_policy dpolicy;
3088 	unsigned long long trimmed = 0;
3089 	int err = 0;
3090 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3091 
3092 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3093 		return -EINVAL;
3094 
3095 	if (end < MAIN_BLKADDR(sbi))
3096 		goto out;
3097 
3098 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3099 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3100 		return -EFSCORRUPTED;
3101 	}
3102 
3103 	/* start/end segment number in main_area */
3104 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3105 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3106 						GET_SEGNO(sbi, end);
3107 	if (need_align) {
3108 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3109 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3110 	}
3111 
3112 	cpc.reason = CP_DISCARD;
3113 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3114 	cpc.trim_start = start_segno;
3115 	cpc.trim_end = end_segno;
3116 
3117 	if (sbi->discard_blks == 0)
3118 		goto out;
3119 
3120 	down_write(&sbi->gc_lock);
3121 	err = f2fs_write_checkpoint(sbi, &cpc);
3122 	up_write(&sbi->gc_lock);
3123 	if (err)
3124 		goto out;
3125 
3126 	/*
3127 	 * We filed discard candidates, but actually we don't need to wait for
3128 	 * all of them, since they'll be issued in idle time along with runtime
3129 	 * discard option. User configuration looks like using runtime discard
3130 	 * or periodic fstrim instead of it.
3131 	 */
3132 	if (f2fs_realtime_discard_enable(sbi))
3133 		goto out;
3134 
3135 	start_block = START_BLOCK(sbi, start_segno);
3136 	end_block = START_BLOCK(sbi, end_segno + 1);
3137 
3138 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3139 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3140 					start_block, end_block);
3141 
3142 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3143 					start_block, end_block);
3144 out:
3145 	if (!err)
3146 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3147 	return err;
3148 }
3149 
3150 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3151 					struct curseg_info *curseg)
3152 {
3153 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3154 							curseg->segno);
3155 }
3156 
3157 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3158 {
3159 	switch (hint) {
3160 	case WRITE_LIFE_SHORT:
3161 		return CURSEG_HOT_DATA;
3162 	case WRITE_LIFE_EXTREME:
3163 		return CURSEG_COLD_DATA;
3164 	default:
3165 		return CURSEG_WARM_DATA;
3166 	}
3167 }
3168 
3169 /* This returns write hints for each segment type. This hints will be
3170  * passed down to block layer. There are mapping tables which depend on
3171  * the mount option 'whint_mode'.
3172  *
3173  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3174  *
3175  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3176  *
3177  * User                  F2FS                     Block
3178  * ----                  ----                     -----
3179  *                       META                     WRITE_LIFE_NOT_SET
3180  *                       HOT_NODE                 "
3181  *                       WARM_NODE                "
3182  *                       COLD_NODE                "
3183  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3184  * extension list        "                        "
3185  *
3186  * -- buffered io
3187  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3188  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3189  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3190  * WRITE_LIFE_NONE       "                        "
3191  * WRITE_LIFE_MEDIUM     "                        "
3192  * WRITE_LIFE_LONG       "                        "
3193  *
3194  * -- direct io
3195  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3196  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3197  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3198  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3199  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3200  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3201  *
3202  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3203  *
3204  * User                  F2FS                     Block
3205  * ----                  ----                     -----
3206  *                       META                     WRITE_LIFE_MEDIUM;
3207  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3208  *                       WARM_NODE                "
3209  *                       COLD_NODE                WRITE_LIFE_NONE
3210  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3211  * extension list        "                        "
3212  *
3213  * -- buffered io
3214  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3215  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3216  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3217  * WRITE_LIFE_NONE       "                        "
3218  * WRITE_LIFE_MEDIUM     "                        "
3219  * WRITE_LIFE_LONG       "                        "
3220  *
3221  * -- direct io
3222  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3223  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3224  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3225  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3226  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3227  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3228  */
3229 
3230 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3231 				enum page_type type, enum temp_type temp)
3232 {
3233 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3234 		if (type == DATA) {
3235 			if (temp == WARM)
3236 				return WRITE_LIFE_NOT_SET;
3237 			else if (temp == HOT)
3238 				return WRITE_LIFE_SHORT;
3239 			else if (temp == COLD)
3240 				return WRITE_LIFE_EXTREME;
3241 		} else {
3242 			return WRITE_LIFE_NOT_SET;
3243 		}
3244 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3245 		if (type == DATA) {
3246 			if (temp == WARM)
3247 				return WRITE_LIFE_LONG;
3248 			else if (temp == HOT)
3249 				return WRITE_LIFE_SHORT;
3250 			else if (temp == COLD)
3251 				return WRITE_LIFE_EXTREME;
3252 		} else if (type == NODE) {
3253 			if (temp == WARM || temp == HOT)
3254 				return WRITE_LIFE_NOT_SET;
3255 			else if (temp == COLD)
3256 				return WRITE_LIFE_NONE;
3257 		} else if (type == META) {
3258 			return WRITE_LIFE_MEDIUM;
3259 		}
3260 	}
3261 	return WRITE_LIFE_NOT_SET;
3262 }
3263 
3264 static int __get_segment_type_2(struct f2fs_io_info *fio)
3265 {
3266 	if (fio->type == DATA)
3267 		return CURSEG_HOT_DATA;
3268 	else
3269 		return CURSEG_HOT_NODE;
3270 }
3271 
3272 static int __get_segment_type_4(struct f2fs_io_info *fio)
3273 {
3274 	if (fio->type == DATA) {
3275 		struct inode *inode = fio->page->mapping->host;
3276 
3277 		if (S_ISDIR(inode->i_mode))
3278 			return CURSEG_HOT_DATA;
3279 		else
3280 			return CURSEG_COLD_DATA;
3281 	} else {
3282 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3283 			return CURSEG_WARM_NODE;
3284 		else
3285 			return CURSEG_COLD_NODE;
3286 	}
3287 }
3288 
3289 static int __get_segment_type_6(struct f2fs_io_info *fio)
3290 {
3291 	if (fio->type == DATA) {
3292 		struct inode *inode = fio->page->mapping->host;
3293 
3294 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3295 			return CURSEG_COLD_DATA_PINNED;
3296 
3297 		if (page_private_gcing(fio->page)) {
3298 			if (fio->sbi->am.atgc_enabled &&
3299 				(fio->io_type == FS_DATA_IO) &&
3300 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3301 				return CURSEG_ALL_DATA_ATGC;
3302 			else
3303 				return CURSEG_COLD_DATA;
3304 		}
3305 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3306 			return CURSEG_COLD_DATA;
3307 		if (file_is_hot(inode) ||
3308 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3309 				f2fs_is_atomic_file(inode) ||
3310 				f2fs_is_volatile_file(inode))
3311 			return CURSEG_HOT_DATA;
3312 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3313 	} else {
3314 		if (IS_DNODE(fio->page))
3315 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3316 						CURSEG_HOT_NODE;
3317 		return CURSEG_COLD_NODE;
3318 	}
3319 }
3320 
3321 static int __get_segment_type(struct f2fs_io_info *fio)
3322 {
3323 	int type = 0;
3324 
3325 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3326 	case 2:
3327 		type = __get_segment_type_2(fio);
3328 		break;
3329 	case 4:
3330 		type = __get_segment_type_4(fio);
3331 		break;
3332 	case 6:
3333 		type = __get_segment_type_6(fio);
3334 		break;
3335 	default:
3336 		f2fs_bug_on(fio->sbi, true);
3337 	}
3338 
3339 	if (IS_HOT(type))
3340 		fio->temp = HOT;
3341 	else if (IS_WARM(type))
3342 		fio->temp = WARM;
3343 	else
3344 		fio->temp = COLD;
3345 	return type;
3346 }
3347 
3348 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3349 		block_t old_blkaddr, block_t *new_blkaddr,
3350 		struct f2fs_summary *sum, int type,
3351 		struct f2fs_io_info *fio)
3352 {
3353 	struct sit_info *sit_i = SIT_I(sbi);
3354 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3355 	unsigned long long old_mtime;
3356 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3357 	struct seg_entry *se = NULL;
3358 
3359 	down_read(&SM_I(sbi)->curseg_lock);
3360 
3361 	mutex_lock(&curseg->curseg_mutex);
3362 	down_write(&sit_i->sentry_lock);
3363 
3364 	if (from_gc) {
3365 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3366 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3367 		sanity_check_seg_type(sbi, se->type);
3368 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3369 	}
3370 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3371 
3372 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3373 
3374 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3375 
3376 	/*
3377 	 * __add_sum_entry should be resided under the curseg_mutex
3378 	 * because, this function updates a summary entry in the
3379 	 * current summary block.
3380 	 */
3381 	__add_sum_entry(sbi, type, sum);
3382 
3383 	__refresh_next_blkoff(sbi, curseg);
3384 
3385 	stat_inc_block_count(sbi, curseg);
3386 
3387 	if (from_gc) {
3388 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3389 	} else {
3390 		update_segment_mtime(sbi, old_blkaddr, 0);
3391 		old_mtime = 0;
3392 	}
3393 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3394 
3395 	/*
3396 	 * SIT information should be updated before segment allocation,
3397 	 * since SSR needs latest valid block information.
3398 	 */
3399 	update_sit_entry(sbi, *new_blkaddr, 1);
3400 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3401 		update_sit_entry(sbi, old_blkaddr, -1);
3402 
3403 	if (!__has_curseg_space(sbi, curseg)) {
3404 		if (from_gc)
3405 			get_atssr_segment(sbi, type, se->type,
3406 						AT_SSR, se->mtime);
3407 		else
3408 			sit_i->s_ops->allocate_segment(sbi, type, false);
3409 	}
3410 	/*
3411 	 * segment dirty status should be updated after segment allocation,
3412 	 * so we just need to update status only one time after previous
3413 	 * segment being closed.
3414 	 */
3415 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3416 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3417 
3418 	up_write(&sit_i->sentry_lock);
3419 
3420 	if (page && IS_NODESEG(type)) {
3421 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3422 
3423 		f2fs_inode_chksum_set(sbi, page);
3424 	}
3425 
3426 	if (fio) {
3427 		struct f2fs_bio_info *io;
3428 
3429 		if (F2FS_IO_ALIGNED(sbi))
3430 			fio->retry = false;
3431 
3432 		INIT_LIST_HEAD(&fio->list);
3433 		fio->in_list = true;
3434 		io = sbi->write_io[fio->type] + fio->temp;
3435 		spin_lock(&io->io_lock);
3436 		list_add_tail(&fio->list, &io->io_list);
3437 		spin_unlock(&io->io_lock);
3438 	}
3439 
3440 	mutex_unlock(&curseg->curseg_mutex);
3441 
3442 	up_read(&SM_I(sbi)->curseg_lock);
3443 }
3444 
3445 static void update_device_state(struct f2fs_io_info *fio)
3446 {
3447 	struct f2fs_sb_info *sbi = fio->sbi;
3448 	unsigned int devidx;
3449 
3450 	if (!f2fs_is_multi_device(sbi))
3451 		return;
3452 
3453 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3454 
3455 	/* update device state for fsync */
3456 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3457 
3458 	/* update device state for checkpoint */
3459 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3460 		spin_lock(&sbi->dev_lock);
3461 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3462 		spin_unlock(&sbi->dev_lock);
3463 	}
3464 }
3465 
3466 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3467 {
3468 	int type = __get_segment_type(fio);
3469 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3470 
3471 	if (keep_order)
3472 		down_read(&fio->sbi->io_order_lock);
3473 reallocate:
3474 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3475 			&fio->new_blkaddr, sum, type, fio);
3476 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3477 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3478 					fio->old_blkaddr, fio->old_blkaddr);
3479 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3480 	}
3481 
3482 	/* writeout dirty page into bdev */
3483 	f2fs_submit_page_write(fio);
3484 	if (fio->retry) {
3485 		fio->old_blkaddr = fio->new_blkaddr;
3486 		goto reallocate;
3487 	}
3488 
3489 	update_device_state(fio);
3490 
3491 	if (keep_order)
3492 		up_read(&fio->sbi->io_order_lock);
3493 }
3494 
3495 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3496 					enum iostat_type io_type)
3497 {
3498 	struct f2fs_io_info fio = {
3499 		.sbi = sbi,
3500 		.type = META,
3501 		.temp = HOT,
3502 		.op = REQ_OP_WRITE,
3503 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3504 		.old_blkaddr = page->index,
3505 		.new_blkaddr = page->index,
3506 		.page = page,
3507 		.encrypted_page = NULL,
3508 		.in_list = false,
3509 	};
3510 
3511 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3512 		fio.op_flags &= ~REQ_META;
3513 
3514 	set_page_writeback(page);
3515 	ClearPageError(page);
3516 	f2fs_submit_page_write(&fio);
3517 
3518 	stat_inc_meta_count(sbi, page->index);
3519 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3520 }
3521 
3522 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3523 {
3524 	struct f2fs_summary sum;
3525 
3526 	set_summary(&sum, nid, 0, 0);
3527 	do_write_page(&sum, fio);
3528 
3529 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3530 }
3531 
3532 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3533 					struct f2fs_io_info *fio)
3534 {
3535 	struct f2fs_sb_info *sbi = fio->sbi;
3536 	struct f2fs_summary sum;
3537 
3538 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3539 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3540 	do_write_page(&sum, fio);
3541 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3542 
3543 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3544 }
3545 
3546 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3547 {
3548 	int err;
3549 	struct f2fs_sb_info *sbi = fio->sbi;
3550 	unsigned int segno;
3551 
3552 	fio->new_blkaddr = fio->old_blkaddr;
3553 	/* i/o temperature is needed for passing down write hints */
3554 	__get_segment_type(fio);
3555 
3556 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3557 
3558 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3559 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3560 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3561 			  __func__, segno);
3562 		err = -EFSCORRUPTED;
3563 		goto drop_bio;
3564 	}
3565 
3566 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || f2fs_cp_error(sbi)) {
3567 		err = -EIO;
3568 		goto drop_bio;
3569 	}
3570 
3571 	stat_inc_inplace_blocks(fio->sbi);
3572 
3573 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3574 		err = f2fs_merge_page_bio(fio);
3575 	else
3576 		err = f2fs_submit_page_bio(fio);
3577 	if (!err) {
3578 		update_device_state(fio);
3579 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3580 	}
3581 
3582 	return err;
3583 drop_bio:
3584 	if (fio->bio && *(fio->bio)) {
3585 		struct bio *bio = *(fio->bio);
3586 
3587 		bio->bi_status = BLK_STS_IOERR;
3588 		bio_endio(bio);
3589 		*(fio->bio) = NULL;
3590 	}
3591 	return err;
3592 }
3593 
3594 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3595 						unsigned int segno)
3596 {
3597 	int i;
3598 
3599 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3600 		if (CURSEG_I(sbi, i)->segno == segno)
3601 			break;
3602 	}
3603 	return i;
3604 }
3605 
3606 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3607 				block_t old_blkaddr, block_t new_blkaddr,
3608 				bool recover_curseg, bool recover_newaddr,
3609 				bool from_gc)
3610 {
3611 	struct sit_info *sit_i = SIT_I(sbi);
3612 	struct curseg_info *curseg;
3613 	unsigned int segno, old_cursegno;
3614 	struct seg_entry *se;
3615 	int type;
3616 	unsigned short old_blkoff;
3617 	unsigned char old_alloc_type;
3618 
3619 	segno = GET_SEGNO(sbi, new_blkaddr);
3620 	se = get_seg_entry(sbi, segno);
3621 	type = se->type;
3622 
3623 	down_write(&SM_I(sbi)->curseg_lock);
3624 
3625 	if (!recover_curseg) {
3626 		/* for recovery flow */
3627 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3628 			if (old_blkaddr == NULL_ADDR)
3629 				type = CURSEG_COLD_DATA;
3630 			else
3631 				type = CURSEG_WARM_DATA;
3632 		}
3633 	} else {
3634 		if (IS_CURSEG(sbi, segno)) {
3635 			/* se->type is volatile as SSR allocation */
3636 			type = __f2fs_get_curseg(sbi, segno);
3637 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3638 		} else {
3639 			type = CURSEG_WARM_DATA;
3640 		}
3641 	}
3642 
3643 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3644 	curseg = CURSEG_I(sbi, type);
3645 
3646 	mutex_lock(&curseg->curseg_mutex);
3647 	down_write(&sit_i->sentry_lock);
3648 
3649 	old_cursegno = curseg->segno;
3650 	old_blkoff = curseg->next_blkoff;
3651 	old_alloc_type = curseg->alloc_type;
3652 
3653 	/* change the current segment */
3654 	if (segno != curseg->segno) {
3655 		curseg->next_segno = segno;
3656 		change_curseg(sbi, type, true);
3657 	}
3658 
3659 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3660 	__add_sum_entry(sbi, type, sum);
3661 
3662 	if (!recover_curseg || recover_newaddr) {
3663 		if (!from_gc)
3664 			update_segment_mtime(sbi, new_blkaddr, 0);
3665 		update_sit_entry(sbi, new_blkaddr, 1);
3666 	}
3667 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3668 		invalidate_mapping_pages(META_MAPPING(sbi),
3669 					old_blkaddr, old_blkaddr);
3670 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3671 		if (!from_gc)
3672 			update_segment_mtime(sbi, old_blkaddr, 0);
3673 		update_sit_entry(sbi, old_blkaddr, -1);
3674 	}
3675 
3676 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3677 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3678 
3679 	locate_dirty_segment(sbi, old_cursegno);
3680 
3681 	if (recover_curseg) {
3682 		if (old_cursegno != curseg->segno) {
3683 			curseg->next_segno = old_cursegno;
3684 			change_curseg(sbi, type, true);
3685 		}
3686 		curseg->next_blkoff = old_blkoff;
3687 		curseg->alloc_type = old_alloc_type;
3688 	}
3689 
3690 	up_write(&sit_i->sentry_lock);
3691 	mutex_unlock(&curseg->curseg_mutex);
3692 	up_write(&SM_I(sbi)->curseg_lock);
3693 }
3694 
3695 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3696 				block_t old_addr, block_t new_addr,
3697 				unsigned char version, bool recover_curseg,
3698 				bool recover_newaddr)
3699 {
3700 	struct f2fs_summary sum;
3701 
3702 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3703 
3704 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3705 					recover_curseg, recover_newaddr, false);
3706 
3707 	f2fs_update_data_blkaddr(dn, new_addr);
3708 }
3709 
3710 void f2fs_wait_on_page_writeback(struct page *page,
3711 				enum page_type type, bool ordered, bool locked)
3712 {
3713 	if (PageWriteback(page)) {
3714 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3715 
3716 		/* submit cached LFS IO */
3717 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3718 		/* sbumit cached IPU IO */
3719 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3720 		if (ordered) {
3721 			wait_on_page_writeback(page);
3722 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3723 		} else {
3724 			wait_for_stable_page(page);
3725 		}
3726 	}
3727 }
3728 
3729 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3730 {
3731 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3732 	struct page *cpage;
3733 
3734 	if (!f2fs_post_read_required(inode))
3735 		return;
3736 
3737 	if (!__is_valid_data_blkaddr(blkaddr))
3738 		return;
3739 
3740 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3741 	if (cpage) {
3742 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3743 		f2fs_put_page(cpage, 1);
3744 	}
3745 }
3746 
3747 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3748 								block_t len)
3749 {
3750 	block_t i;
3751 
3752 	for (i = 0; i < len; i++)
3753 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3754 }
3755 
3756 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3757 {
3758 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3759 	struct curseg_info *seg_i;
3760 	unsigned char *kaddr;
3761 	struct page *page;
3762 	block_t start;
3763 	int i, j, offset;
3764 
3765 	start = start_sum_block(sbi);
3766 
3767 	page = f2fs_get_meta_page(sbi, start++);
3768 	if (IS_ERR(page))
3769 		return PTR_ERR(page);
3770 	kaddr = (unsigned char *)page_address(page);
3771 
3772 	/* Step 1: restore nat cache */
3773 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3774 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3775 
3776 	/* Step 2: restore sit cache */
3777 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3778 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3779 	offset = 2 * SUM_JOURNAL_SIZE;
3780 
3781 	/* Step 3: restore summary entries */
3782 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3783 		unsigned short blk_off;
3784 		unsigned int segno;
3785 
3786 		seg_i = CURSEG_I(sbi, i);
3787 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3788 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3789 		seg_i->next_segno = segno;
3790 		reset_curseg(sbi, i, 0);
3791 		seg_i->alloc_type = ckpt->alloc_type[i];
3792 		seg_i->next_blkoff = blk_off;
3793 
3794 		if (seg_i->alloc_type == SSR)
3795 			blk_off = sbi->blocks_per_seg;
3796 
3797 		for (j = 0; j < blk_off; j++) {
3798 			struct f2fs_summary *s;
3799 
3800 			s = (struct f2fs_summary *)(kaddr + offset);
3801 			seg_i->sum_blk->entries[j] = *s;
3802 			offset += SUMMARY_SIZE;
3803 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3804 						SUM_FOOTER_SIZE)
3805 				continue;
3806 
3807 			f2fs_put_page(page, 1);
3808 			page = NULL;
3809 
3810 			page = f2fs_get_meta_page(sbi, start++);
3811 			if (IS_ERR(page))
3812 				return PTR_ERR(page);
3813 			kaddr = (unsigned char *)page_address(page);
3814 			offset = 0;
3815 		}
3816 	}
3817 	f2fs_put_page(page, 1);
3818 	return 0;
3819 }
3820 
3821 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3822 {
3823 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3824 	struct f2fs_summary_block *sum;
3825 	struct curseg_info *curseg;
3826 	struct page *new;
3827 	unsigned short blk_off;
3828 	unsigned int segno = 0;
3829 	block_t blk_addr = 0;
3830 	int err = 0;
3831 
3832 	/* get segment number and block addr */
3833 	if (IS_DATASEG(type)) {
3834 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3835 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3836 							CURSEG_HOT_DATA]);
3837 		if (__exist_node_summaries(sbi))
3838 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3839 		else
3840 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3841 	} else {
3842 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3843 							CURSEG_HOT_NODE]);
3844 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3845 							CURSEG_HOT_NODE]);
3846 		if (__exist_node_summaries(sbi))
3847 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3848 							type - CURSEG_HOT_NODE);
3849 		else
3850 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3851 	}
3852 
3853 	new = f2fs_get_meta_page(sbi, blk_addr);
3854 	if (IS_ERR(new))
3855 		return PTR_ERR(new);
3856 	sum = (struct f2fs_summary_block *)page_address(new);
3857 
3858 	if (IS_NODESEG(type)) {
3859 		if (__exist_node_summaries(sbi)) {
3860 			struct f2fs_summary *ns = &sum->entries[0];
3861 			int i;
3862 
3863 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3864 				ns->version = 0;
3865 				ns->ofs_in_node = 0;
3866 			}
3867 		} else {
3868 			err = f2fs_restore_node_summary(sbi, segno, sum);
3869 			if (err)
3870 				goto out;
3871 		}
3872 	}
3873 
3874 	/* set uncompleted segment to curseg */
3875 	curseg = CURSEG_I(sbi, type);
3876 	mutex_lock(&curseg->curseg_mutex);
3877 
3878 	/* update journal info */
3879 	down_write(&curseg->journal_rwsem);
3880 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3881 	up_write(&curseg->journal_rwsem);
3882 
3883 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3884 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3885 	curseg->next_segno = segno;
3886 	reset_curseg(sbi, type, 0);
3887 	curseg->alloc_type = ckpt->alloc_type[type];
3888 	curseg->next_blkoff = blk_off;
3889 	mutex_unlock(&curseg->curseg_mutex);
3890 out:
3891 	f2fs_put_page(new, 1);
3892 	return err;
3893 }
3894 
3895 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3896 {
3897 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3898 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3899 	int type = CURSEG_HOT_DATA;
3900 	int err;
3901 
3902 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3903 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3904 
3905 		if (npages >= 2)
3906 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3907 							META_CP, true);
3908 
3909 		/* restore for compacted data summary */
3910 		err = read_compacted_summaries(sbi);
3911 		if (err)
3912 			return err;
3913 		type = CURSEG_HOT_NODE;
3914 	}
3915 
3916 	if (__exist_node_summaries(sbi))
3917 		f2fs_ra_meta_pages(sbi,
3918 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3919 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3920 
3921 	for (; type <= CURSEG_COLD_NODE; type++) {
3922 		err = read_normal_summaries(sbi, type);
3923 		if (err)
3924 			return err;
3925 	}
3926 
3927 	/* sanity check for summary blocks */
3928 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3929 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3930 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3931 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3932 		return -EINVAL;
3933 	}
3934 
3935 	return 0;
3936 }
3937 
3938 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3939 {
3940 	struct page *page;
3941 	unsigned char *kaddr;
3942 	struct f2fs_summary *summary;
3943 	struct curseg_info *seg_i;
3944 	int written_size = 0;
3945 	int i, j;
3946 
3947 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3948 	kaddr = (unsigned char *)page_address(page);
3949 	memset(kaddr, 0, PAGE_SIZE);
3950 
3951 	/* Step 1: write nat cache */
3952 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3953 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3954 	written_size += SUM_JOURNAL_SIZE;
3955 
3956 	/* Step 2: write sit cache */
3957 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3958 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3959 	written_size += SUM_JOURNAL_SIZE;
3960 
3961 	/* Step 3: write summary entries */
3962 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3963 		unsigned short blkoff;
3964 
3965 		seg_i = CURSEG_I(sbi, i);
3966 		if (sbi->ckpt->alloc_type[i] == SSR)
3967 			blkoff = sbi->blocks_per_seg;
3968 		else
3969 			blkoff = curseg_blkoff(sbi, i);
3970 
3971 		for (j = 0; j < blkoff; j++) {
3972 			if (!page) {
3973 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3974 				kaddr = (unsigned char *)page_address(page);
3975 				memset(kaddr, 0, PAGE_SIZE);
3976 				written_size = 0;
3977 			}
3978 			summary = (struct f2fs_summary *)(kaddr + written_size);
3979 			*summary = seg_i->sum_blk->entries[j];
3980 			written_size += SUMMARY_SIZE;
3981 
3982 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3983 							SUM_FOOTER_SIZE)
3984 				continue;
3985 
3986 			set_page_dirty(page);
3987 			f2fs_put_page(page, 1);
3988 			page = NULL;
3989 		}
3990 	}
3991 	if (page) {
3992 		set_page_dirty(page);
3993 		f2fs_put_page(page, 1);
3994 	}
3995 }
3996 
3997 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3998 					block_t blkaddr, int type)
3999 {
4000 	int i, end;
4001 
4002 	if (IS_DATASEG(type))
4003 		end = type + NR_CURSEG_DATA_TYPE;
4004 	else
4005 		end = type + NR_CURSEG_NODE_TYPE;
4006 
4007 	for (i = type; i < end; i++)
4008 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4009 }
4010 
4011 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4012 {
4013 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4014 		write_compacted_summaries(sbi, start_blk);
4015 	else
4016 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4017 }
4018 
4019 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4020 {
4021 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4022 }
4023 
4024 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4025 					unsigned int val, int alloc)
4026 {
4027 	int i;
4028 
4029 	if (type == NAT_JOURNAL) {
4030 		for (i = 0; i < nats_in_cursum(journal); i++) {
4031 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4032 				return i;
4033 		}
4034 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4035 			return update_nats_in_cursum(journal, 1);
4036 	} else if (type == SIT_JOURNAL) {
4037 		for (i = 0; i < sits_in_cursum(journal); i++)
4038 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4039 				return i;
4040 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4041 			return update_sits_in_cursum(journal, 1);
4042 	}
4043 	return -1;
4044 }
4045 
4046 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4047 					unsigned int segno)
4048 {
4049 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4050 }
4051 
4052 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4053 					unsigned int start)
4054 {
4055 	struct sit_info *sit_i = SIT_I(sbi);
4056 	struct page *page;
4057 	pgoff_t src_off, dst_off;
4058 
4059 	src_off = current_sit_addr(sbi, start);
4060 	dst_off = next_sit_addr(sbi, src_off);
4061 
4062 	page = f2fs_grab_meta_page(sbi, dst_off);
4063 	seg_info_to_sit_page(sbi, page, start);
4064 
4065 	set_page_dirty(page);
4066 	set_to_next_sit(sit_i, start);
4067 
4068 	return page;
4069 }
4070 
4071 static struct sit_entry_set *grab_sit_entry_set(void)
4072 {
4073 	struct sit_entry_set *ses =
4074 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4075 
4076 	ses->entry_cnt = 0;
4077 	INIT_LIST_HEAD(&ses->set_list);
4078 	return ses;
4079 }
4080 
4081 static void release_sit_entry_set(struct sit_entry_set *ses)
4082 {
4083 	list_del(&ses->set_list);
4084 	kmem_cache_free(sit_entry_set_slab, ses);
4085 }
4086 
4087 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4088 						struct list_head *head)
4089 {
4090 	struct sit_entry_set *next = ses;
4091 
4092 	if (list_is_last(&ses->set_list, head))
4093 		return;
4094 
4095 	list_for_each_entry_continue(next, head, set_list)
4096 		if (ses->entry_cnt <= next->entry_cnt)
4097 			break;
4098 
4099 	list_move_tail(&ses->set_list, &next->set_list);
4100 }
4101 
4102 static void add_sit_entry(unsigned int segno, struct list_head *head)
4103 {
4104 	struct sit_entry_set *ses;
4105 	unsigned int start_segno = START_SEGNO(segno);
4106 
4107 	list_for_each_entry(ses, head, set_list) {
4108 		if (ses->start_segno == start_segno) {
4109 			ses->entry_cnt++;
4110 			adjust_sit_entry_set(ses, head);
4111 			return;
4112 		}
4113 	}
4114 
4115 	ses = grab_sit_entry_set();
4116 
4117 	ses->start_segno = start_segno;
4118 	ses->entry_cnt++;
4119 	list_add(&ses->set_list, head);
4120 }
4121 
4122 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4123 {
4124 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4125 	struct list_head *set_list = &sm_info->sit_entry_set;
4126 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4127 	unsigned int segno;
4128 
4129 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4130 		add_sit_entry(segno, set_list);
4131 }
4132 
4133 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4134 {
4135 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4136 	struct f2fs_journal *journal = curseg->journal;
4137 	int i;
4138 
4139 	down_write(&curseg->journal_rwsem);
4140 	for (i = 0; i < sits_in_cursum(journal); i++) {
4141 		unsigned int segno;
4142 		bool dirtied;
4143 
4144 		segno = le32_to_cpu(segno_in_journal(journal, i));
4145 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4146 
4147 		if (!dirtied)
4148 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4149 	}
4150 	update_sits_in_cursum(journal, -i);
4151 	up_write(&curseg->journal_rwsem);
4152 }
4153 
4154 /*
4155  * CP calls this function, which flushes SIT entries including sit_journal,
4156  * and moves prefree segs to free segs.
4157  */
4158 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4159 {
4160 	struct sit_info *sit_i = SIT_I(sbi);
4161 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4162 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4163 	struct f2fs_journal *journal = curseg->journal;
4164 	struct sit_entry_set *ses, *tmp;
4165 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4166 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4167 	struct seg_entry *se;
4168 
4169 	down_write(&sit_i->sentry_lock);
4170 
4171 	if (!sit_i->dirty_sentries)
4172 		goto out;
4173 
4174 	/*
4175 	 * add and account sit entries of dirty bitmap in sit entry
4176 	 * set temporarily
4177 	 */
4178 	add_sits_in_set(sbi);
4179 
4180 	/*
4181 	 * if there are no enough space in journal to store dirty sit
4182 	 * entries, remove all entries from journal and add and account
4183 	 * them in sit entry set.
4184 	 */
4185 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4186 								!to_journal)
4187 		remove_sits_in_journal(sbi);
4188 
4189 	/*
4190 	 * there are two steps to flush sit entries:
4191 	 * #1, flush sit entries to journal in current cold data summary block.
4192 	 * #2, flush sit entries to sit page.
4193 	 */
4194 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4195 		struct page *page = NULL;
4196 		struct f2fs_sit_block *raw_sit = NULL;
4197 		unsigned int start_segno = ses->start_segno;
4198 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4199 						(unsigned long)MAIN_SEGS(sbi));
4200 		unsigned int segno = start_segno;
4201 
4202 		if (to_journal &&
4203 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4204 			to_journal = false;
4205 
4206 		if (to_journal) {
4207 			down_write(&curseg->journal_rwsem);
4208 		} else {
4209 			page = get_next_sit_page(sbi, start_segno);
4210 			raw_sit = page_address(page);
4211 		}
4212 
4213 		/* flush dirty sit entries in region of current sit set */
4214 		for_each_set_bit_from(segno, bitmap, end) {
4215 			int offset, sit_offset;
4216 
4217 			se = get_seg_entry(sbi, segno);
4218 #ifdef CONFIG_F2FS_CHECK_FS
4219 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4220 						SIT_VBLOCK_MAP_SIZE))
4221 				f2fs_bug_on(sbi, 1);
4222 #endif
4223 
4224 			/* add discard candidates */
4225 			if (!(cpc->reason & CP_DISCARD)) {
4226 				cpc->trim_start = segno;
4227 				add_discard_addrs(sbi, cpc, false);
4228 			}
4229 
4230 			if (to_journal) {
4231 				offset = f2fs_lookup_journal_in_cursum(journal,
4232 							SIT_JOURNAL, segno, 1);
4233 				f2fs_bug_on(sbi, offset < 0);
4234 				segno_in_journal(journal, offset) =
4235 							cpu_to_le32(segno);
4236 				seg_info_to_raw_sit(se,
4237 					&sit_in_journal(journal, offset));
4238 				check_block_count(sbi, segno,
4239 					&sit_in_journal(journal, offset));
4240 			} else {
4241 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4242 				seg_info_to_raw_sit(se,
4243 						&raw_sit->entries[sit_offset]);
4244 				check_block_count(sbi, segno,
4245 						&raw_sit->entries[sit_offset]);
4246 			}
4247 
4248 			__clear_bit(segno, bitmap);
4249 			sit_i->dirty_sentries--;
4250 			ses->entry_cnt--;
4251 		}
4252 
4253 		if (to_journal)
4254 			up_write(&curseg->journal_rwsem);
4255 		else
4256 			f2fs_put_page(page, 1);
4257 
4258 		f2fs_bug_on(sbi, ses->entry_cnt);
4259 		release_sit_entry_set(ses);
4260 	}
4261 
4262 	f2fs_bug_on(sbi, !list_empty(head));
4263 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4264 out:
4265 	if (cpc->reason & CP_DISCARD) {
4266 		__u64 trim_start = cpc->trim_start;
4267 
4268 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4269 			add_discard_addrs(sbi, cpc, false);
4270 
4271 		cpc->trim_start = trim_start;
4272 	}
4273 	up_write(&sit_i->sentry_lock);
4274 
4275 	set_prefree_as_free_segments(sbi);
4276 }
4277 
4278 static int build_sit_info(struct f2fs_sb_info *sbi)
4279 {
4280 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4281 	struct sit_info *sit_i;
4282 	unsigned int sit_segs, start;
4283 	char *src_bitmap, *bitmap;
4284 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4285 
4286 	/* allocate memory for SIT information */
4287 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4288 	if (!sit_i)
4289 		return -ENOMEM;
4290 
4291 	SM_I(sbi)->sit_info = sit_i;
4292 
4293 	sit_i->sentries =
4294 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4295 					      MAIN_SEGS(sbi)),
4296 			      GFP_KERNEL);
4297 	if (!sit_i->sentries)
4298 		return -ENOMEM;
4299 
4300 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4301 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4302 								GFP_KERNEL);
4303 	if (!sit_i->dirty_sentries_bitmap)
4304 		return -ENOMEM;
4305 
4306 #ifdef CONFIG_F2FS_CHECK_FS
4307 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4308 #else
4309 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4310 #endif
4311 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4312 	if (!sit_i->bitmap)
4313 		return -ENOMEM;
4314 
4315 	bitmap = sit_i->bitmap;
4316 
4317 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4318 		sit_i->sentries[start].cur_valid_map = bitmap;
4319 		bitmap += SIT_VBLOCK_MAP_SIZE;
4320 
4321 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4322 		bitmap += SIT_VBLOCK_MAP_SIZE;
4323 
4324 #ifdef CONFIG_F2FS_CHECK_FS
4325 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4326 		bitmap += SIT_VBLOCK_MAP_SIZE;
4327 #endif
4328 
4329 		sit_i->sentries[start].discard_map = bitmap;
4330 		bitmap += SIT_VBLOCK_MAP_SIZE;
4331 	}
4332 
4333 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4334 	if (!sit_i->tmp_map)
4335 		return -ENOMEM;
4336 
4337 	if (__is_large_section(sbi)) {
4338 		sit_i->sec_entries =
4339 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4340 						      MAIN_SECS(sbi)),
4341 				      GFP_KERNEL);
4342 		if (!sit_i->sec_entries)
4343 			return -ENOMEM;
4344 	}
4345 
4346 	/* get information related with SIT */
4347 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4348 
4349 	/* setup SIT bitmap from ckeckpoint pack */
4350 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4351 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4352 
4353 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4354 	if (!sit_i->sit_bitmap)
4355 		return -ENOMEM;
4356 
4357 #ifdef CONFIG_F2FS_CHECK_FS
4358 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4359 					sit_bitmap_size, GFP_KERNEL);
4360 	if (!sit_i->sit_bitmap_mir)
4361 		return -ENOMEM;
4362 
4363 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4364 					main_bitmap_size, GFP_KERNEL);
4365 	if (!sit_i->invalid_segmap)
4366 		return -ENOMEM;
4367 #endif
4368 
4369 	/* init SIT information */
4370 	sit_i->s_ops = &default_salloc_ops;
4371 
4372 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4373 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4374 	sit_i->written_valid_blocks = 0;
4375 	sit_i->bitmap_size = sit_bitmap_size;
4376 	sit_i->dirty_sentries = 0;
4377 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4378 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4379 	sit_i->mounted_time = ktime_get_boottime_seconds();
4380 	init_rwsem(&sit_i->sentry_lock);
4381 	return 0;
4382 }
4383 
4384 static int build_free_segmap(struct f2fs_sb_info *sbi)
4385 {
4386 	struct free_segmap_info *free_i;
4387 	unsigned int bitmap_size, sec_bitmap_size;
4388 
4389 	/* allocate memory for free segmap information */
4390 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4391 	if (!free_i)
4392 		return -ENOMEM;
4393 
4394 	SM_I(sbi)->free_info = free_i;
4395 
4396 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4397 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4398 	if (!free_i->free_segmap)
4399 		return -ENOMEM;
4400 
4401 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4402 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4403 	if (!free_i->free_secmap)
4404 		return -ENOMEM;
4405 
4406 	/* set all segments as dirty temporarily */
4407 	memset(free_i->free_segmap, 0xff, bitmap_size);
4408 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4409 
4410 	/* init free segmap information */
4411 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4412 	free_i->free_segments = 0;
4413 	free_i->free_sections = 0;
4414 	spin_lock_init(&free_i->segmap_lock);
4415 	return 0;
4416 }
4417 
4418 static int build_curseg(struct f2fs_sb_info *sbi)
4419 {
4420 	struct curseg_info *array;
4421 	int i;
4422 
4423 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4424 					sizeof(*array)), GFP_KERNEL);
4425 	if (!array)
4426 		return -ENOMEM;
4427 
4428 	SM_I(sbi)->curseg_array = array;
4429 
4430 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4431 		mutex_init(&array[i].curseg_mutex);
4432 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4433 		if (!array[i].sum_blk)
4434 			return -ENOMEM;
4435 		init_rwsem(&array[i].journal_rwsem);
4436 		array[i].journal = f2fs_kzalloc(sbi,
4437 				sizeof(struct f2fs_journal), GFP_KERNEL);
4438 		if (!array[i].journal)
4439 			return -ENOMEM;
4440 		if (i < NR_PERSISTENT_LOG)
4441 			array[i].seg_type = CURSEG_HOT_DATA + i;
4442 		else if (i == CURSEG_COLD_DATA_PINNED)
4443 			array[i].seg_type = CURSEG_COLD_DATA;
4444 		else if (i == CURSEG_ALL_DATA_ATGC)
4445 			array[i].seg_type = CURSEG_COLD_DATA;
4446 		array[i].segno = NULL_SEGNO;
4447 		array[i].next_blkoff = 0;
4448 		array[i].inited = false;
4449 	}
4450 	return restore_curseg_summaries(sbi);
4451 }
4452 
4453 static int build_sit_entries(struct f2fs_sb_info *sbi)
4454 {
4455 	struct sit_info *sit_i = SIT_I(sbi);
4456 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4457 	struct f2fs_journal *journal = curseg->journal;
4458 	struct seg_entry *se;
4459 	struct f2fs_sit_entry sit;
4460 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4461 	unsigned int i, start, end;
4462 	unsigned int readed, start_blk = 0;
4463 	int err = 0;
4464 	block_t total_node_blocks = 0;
4465 
4466 	do {
4467 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4468 							META_SIT, true);
4469 
4470 		start = start_blk * sit_i->sents_per_block;
4471 		end = (start_blk + readed) * sit_i->sents_per_block;
4472 
4473 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4474 			struct f2fs_sit_block *sit_blk;
4475 			struct page *page;
4476 
4477 			se = &sit_i->sentries[start];
4478 			page = get_current_sit_page(sbi, start);
4479 			if (IS_ERR(page))
4480 				return PTR_ERR(page);
4481 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4482 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4483 			f2fs_put_page(page, 1);
4484 
4485 			err = check_block_count(sbi, start, &sit);
4486 			if (err)
4487 				return err;
4488 			seg_info_from_raw_sit(se, &sit);
4489 			if (IS_NODESEG(se->type))
4490 				total_node_blocks += se->valid_blocks;
4491 
4492 			/* build discard map only one time */
4493 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4494 				memset(se->discard_map, 0xff,
4495 					SIT_VBLOCK_MAP_SIZE);
4496 			} else {
4497 				memcpy(se->discard_map,
4498 					se->cur_valid_map,
4499 					SIT_VBLOCK_MAP_SIZE);
4500 				sbi->discard_blks +=
4501 					sbi->blocks_per_seg -
4502 					se->valid_blocks;
4503 			}
4504 
4505 			if (__is_large_section(sbi))
4506 				get_sec_entry(sbi, start)->valid_blocks +=
4507 							se->valid_blocks;
4508 		}
4509 		start_blk += readed;
4510 	} while (start_blk < sit_blk_cnt);
4511 
4512 	down_read(&curseg->journal_rwsem);
4513 	for (i = 0; i < sits_in_cursum(journal); i++) {
4514 		unsigned int old_valid_blocks;
4515 
4516 		start = le32_to_cpu(segno_in_journal(journal, i));
4517 		if (start >= MAIN_SEGS(sbi)) {
4518 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4519 				 start);
4520 			err = -EFSCORRUPTED;
4521 			break;
4522 		}
4523 
4524 		se = &sit_i->sentries[start];
4525 		sit = sit_in_journal(journal, i);
4526 
4527 		old_valid_blocks = se->valid_blocks;
4528 		if (IS_NODESEG(se->type))
4529 			total_node_blocks -= old_valid_blocks;
4530 
4531 		err = check_block_count(sbi, start, &sit);
4532 		if (err)
4533 			break;
4534 		seg_info_from_raw_sit(se, &sit);
4535 		if (IS_NODESEG(se->type))
4536 			total_node_blocks += se->valid_blocks;
4537 
4538 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4539 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4540 		} else {
4541 			memcpy(se->discard_map, se->cur_valid_map,
4542 						SIT_VBLOCK_MAP_SIZE);
4543 			sbi->discard_blks += old_valid_blocks;
4544 			sbi->discard_blks -= se->valid_blocks;
4545 		}
4546 
4547 		if (__is_large_section(sbi)) {
4548 			get_sec_entry(sbi, start)->valid_blocks +=
4549 							se->valid_blocks;
4550 			get_sec_entry(sbi, start)->valid_blocks -=
4551 							old_valid_blocks;
4552 		}
4553 	}
4554 	up_read(&curseg->journal_rwsem);
4555 
4556 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4557 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4558 			 total_node_blocks, valid_node_count(sbi));
4559 		err = -EFSCORRUPTED;
4560 	}
4561 
4562 	return err;
4563 }
4564 
4565 static void init_free_segmap(struct f2fs_sb_info *sbi)
4566 {
4567 	unsigned int start;
4568 	int type;
4569 	struct seg_entry *sentry;
4570 
4571 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4572 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4573 			continue;
4574 		sentry = get_seg_entry(sbi, start);
4575 		if (!sentry->valid_blocks)
4576 			__set_free(sbi, start);
4577 		else
4578 			SIT_I(sbi)->written_valid_blocks +=
4579 						sentry->valid_blocks;
4580 	}
4581 
4582 	/* set use the current segments */
4583 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4584 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4585 
4586 		__set_test_and_inuse(sbi, curseg_t->segno);
4587 	}
4588 }
4589 
4590 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4591 {
4592 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4593 	struct free_segmap_info *free_i = FREE_I(sbi);
4594 	unsigned int segno = 0, offset = 0, secno;
4595 	block_t valid_blocks, usable_blks_in_seg;
4596 	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4597 
4598 	while (1) {
4599 		/* find dirty segment based on free segmap */
4600 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4601 		if (segno >= MAIN_SEGS(sbi))
4602 			break;
4603 		offset = segno + 1;
4604 		valid_blocks = get_valid_blocks(sbi, segno, false);
4605 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4606 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4607 			continue;
4608 		if (valid_blocks > usable_blks_in_seg) {
4609 			f2fs_bug_on(sbi, 1);
4610 			continue;
4611 		}
4612 		mutex_lock(&dirty_i->seglist_lock);
4613 		__locate_dirty_segment(sbi, segno, DIRTY);
4614 		mutex_unlock(&dirty_i->seglist_lock);
4615 	}
4616 
4617 	if (!__is_large_section(sbi))
4618 		return;
4619 
4620 	mutex_lock(&dirty_i->seglist_lock);
4621 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4622 		valid_blocks = get_valid_blocks(sbi, segno, true);
4623 		secno = GET_SEC_FROM_SEG(sbi, segno);
4624 
4625 		if (!valid_blocks || valid_blocks == blks_per_sec)
4626 			continue;
4627 		if (IS_CURSEC(sbi, secno))
4628 			continue;
4629 		set_bit(secno, dirty_i->dirty_secmap);
4630 	}
4631 	mutex_unlock(&dirty_i->seglist_lock);
4632 }
4633 
4634 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4635 {
4636 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4637 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4638 
4639 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4640 	if (!dirty_i->victim_secmap)
4641 		return -ENOMEM;
4642 	return 0;
4643 }
4644 
4645 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4646 {
4647 	struct dirty_seglist_info *dirty_i;
4648 	unsigned int bitmap_size, i;
4649 
4650 	/* allocate memory for dirty segments list information */
4651 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4652 								GFP_KERNEL);
4653 	if (!dirty_i)
4654 		return -ENOMEM;
4655 
4656 	SM_I(sbi)->dirty_info = dirty_i;
4657 	mutex_init(&dirty_i->seglist_lock);
4658 
4659 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4660 
4661 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4662 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4663 								GFP_KERNEL);
4664 		if (!dirty_i->dirty_segmap[i])
4665 			return -ENOMEM;
4666 	}
4667 
4668 	if (__is_large_section(sbi)) {
4669 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4670 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4671 						bitmap_size, GFP_KERNEL);
4672 		if (!dirty_i->dirty_secmap)
4673 			return -ENOMEM;
4674 	}
4675 
4676 	init_dirty_segmap(sbi);
4677 	return init_victim_secmap(sbi);
4678 }
4679 
4680 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4681 {
4682 	int i;
4683 
4684 	/*
4685 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4686 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4687 	 */
4688 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4689 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4690 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4691 		unsigned int blkofs = curseg->next_blkoff;
4692 
4693 		if (f2fs_sb_has_readonly(sbi) &&
4694 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4695 			continue;
4696 
4697 		sanity_check_seg_type(sbi, curseg->seg_type);
4698 
4699 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4700 			goto out;
4701 
4702 		if (curseg->alloc_type == SSR)
4703 			continue;
4704 
4705 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4706 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4707 				continue;
4708 out:
4709 			f2fs_err(sbi,
4710 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4711 				 i, curseg->segno, curseg->alloc_type,
4712 				 curseg->next_blkoff, blkofs);
4713 			return -EFSCORRUPTED;
4714 		}
4715 	}
4716 	return 0;
4717 }
4718 
4719 #ifdef CONFIG_BLK_DEV_ZONED
4720 
4721 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4722 				    struct f2fs_dev_info *fdev,
4723 				    struct blk_zone *zone)
4724 {
4725 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4726 	block_t zone_block, wp_block, last_valid_block;
4727 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4728 	int i, s, b, ret;
4729 	struct seg_entry *se;
4730 
4731 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4732 		return 0;
4733 
4734 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4735 	wp_segno = GET_SEGNO(sbi, wp_block);
4736 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4737 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4738 	zone_segno = GET_SEGNO(sbi, zone_block);
4739 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4740 
4741 	if (zone_segno >= MAIN_SEGS(sbi))
4742 		return 0;
4743 
4744 	/*
4745 	 * Skip check of zones cursegs point to, since
4746 	 * fix_curseg_write_pointer() checks them.
4747 	 */
4748 	for (i = 0; i < NO_CHECK_TYPE; i++)
4749 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4750 						   CURSEG_I(sbi, i)->segno))
4751 			return 0;
4752 
4753 	/*
4754 	 * Get last valid block of the zone.
4755 	 */
4756 	last_valid_block = zone_block - 1;
4757 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4758 		segno = zone_segno + s;
4759 		se = get_seg_entry(sbi, segno);
4760 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4761 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4762 				last_valid_block = START_BLOCK(sbi, segno) + b;
4763 				break;
4764 			}
4765 		if (last_valid_block >= zone_block)
4766 			break;
4767 	}
4768 
4769 	/*
4770 	 * If last valid block is beyond the write pointer, report the
4771 	 * inconsistency. This inconsistency does not cause write error
4772 	 * because the zone will not be selected for write operation until
4773 	 * it get discarded. Just report it.
4774 	 */
4775 	if (last_valid_block >= wp_block) {
4776 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4777 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4778 			    GET_SEGNO(sbi, last_valid_block),
4779 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4780 			    wp_segno, wp_blkoff);
4781 		return 0;
4782 	}
4783 
4784 	/*
4785 	 * If there is no valid block in the zone and if write pointer is
4786 	 * not at zone start, reset the write pointer.
4787 	 */
4788 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4789 		f2fs_notice(sbi,
4790 			    "Zone without valid block has non-zero write "
4791 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4792 			    wp_segno, wp_blkoff);
4793 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4794 					zone->len >> log_sectors_per_block);
4795 		if (ret) {
4796 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4797 				 fdev->path, ret);
4798 			return ret;
4799 		}
4800 	}
4801 
4802 	return 0;
4803 }
4804 
4805 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4806 						  block_t zone_blkaddr)
4807 {
4808 	int i;
4809 
4810 	for (i = 0; i < sbi->s_ndevs; i++) {
4811 		if (!bdev_is_zoned(FDEV(i).bdev))
4812 			continue;
4813 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4814 				zone_blkaddr <= FDEV(i).end_blk))
4815 			return &FDEV(i);
4816 	}
4817 
4818 	return NULL;
4819 }
4820 
4821 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4822 			      void *data)
4823 {
4824 	memcpy(data, zone, sizeof(struct blk_zone));
4825 	return 0;
4826 }
4827 
4828 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4829 {
4830 	struct curseg_info *cs = CURSEG_I(sbi, type);
4831 	struct f2fs_dev_info *zbd;
4832 	struct blk_zone zone;
4833 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4834 	block_t cs_zone_block, wp_block;
4835 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4836 	sector_t zone_sector;
4837 	int err;
4838 
4839 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4840 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4841 
4842 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4843 	if (!zbd)
4844 		return 0;
4845 
4846 	/* report zone for the sector the curseg points to */
4847 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4848 		<< log_sectors_per_block;
4849 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4850 				  report_one_zone_cb, &zone);
4851 	if (err != 1) {
4852 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4853 			 zbd->path, err);
4854 		return err;
4855 	}
4856 
4857 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4858 		return 0;
4859 
4860 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4861 	wp_segno = GET_SEGNO(sbi, wp_block);
4862 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4863 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4864 
4865 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4866 		wp_sector_off == 0)
4867 		return 0;
4868 
4869 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4870 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4871 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4872 
4873 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4874 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4875 
4876 	f2fs_allocate_new_section(sbi, type, true);
4877 
4878 	/* check consistency of the zone curseg pointed to */
4879 	if (check_zone_write_pointer(sbi, zbd, &zone))
4880 		return -EIO;
4881 
4882 	/* check newly assigned zone */
4883 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4884 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4885 
4886 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4887 	if (!zbd)
4888 		return 0;
4889 
4890 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4891 		<< log_sectors_per_block;
4892 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4893 				  report_one_zone_cb, &zone);
4894 	if (err != 1) {
4895 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4896 			 zbd->path, err);
4897 		return err;
4898 	}
4899 
4900 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4901 		return 0;
4902 
4903 	if (zone.wp != zone.start) {
4904 		f2fs_notice(sbi,
4905 			    "New zone for curseg[%d] is not yet discarded. "
4906 			    "Reset the zone: curseg[0x%x,0x%x]",
4907 			    type, cs->segno, cs->next_blkoff);
4908 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4909 				zone_sector >> log_sectors_per_block,
4910 				zone.len >> log_sectors_per_block);
4911 		if (err) {
4912 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4913 				 zbd->path, err);
4914 			return err;
4915 		}
4916 	}
4917 
4918 	return 0;
4919 }
4920 
4921 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4922 {
4923 	int i, ret;
4924 
4925 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4926 		ret = fix_curseg_write_pointer(sbi, i);
4927 		if (ret)
4928 			return ret;
4929 	}
4930 
4931 	return 0;
4932 }
4933 
4934 struct check_zone_write_pointer_args {
4935 	struct f2fs_sb_info *sbi;
4936 	struct f2fs_dev_info *fdev;
4937 };
4938 
4939 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4940 				      void *data)
4941 {
4942 	struct check_zone_write_pointer_args *args;
4943 
4944 	args = (struct check_zone_write_pointer_args *)data;
4945 
4946 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4947 }
4948 
4949 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4950 {
4951 	int i, ret;
4952 	struct check_zone_write_pointer_args args;
4953 
4954 	for (i = 0; i < sbi->s_ndevs; i++) {
4955 		if (!bdev_is_zoned(FDEV(i).bdev))
4956 			continue;
4957 
4958 		args.sbi = sbi;
4959 		args.fdev = &FDEV(i);
4960 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4961 					  check_zone_write_pointer_cb, &args);
4962 		if (ret < 0)
4963 			return ret;
4964 	}
4965 
4966 	return 0;
4967 }
4968 
4969 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4970 						unsigned int dev_idx)
4971 {
4972 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4973 		return true;
4974 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4975 }
4976 
4977 /* Return the zone index in the given device */
4978 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4979 					int dev_idx)
4980 {
4981 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4982 
4983 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4984 						sbi->log_blocks_per_blkz;
4985 }
4986 
4987 /*
4988  * Return the usable segments in a section based on the zone's
4989  * corresponding zone capacity. Zone is equal to a section.
4990  */
4991 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4992 		struct f2fs_sb_info *sbi, unsigned int segno)
4993 {
4994 	unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4995 
4996 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4997 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4998 
4999 	/* Conventional zone's capacity is always equal to zone size */
5000 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5001 		return sbi->segs_per_sec;
5002 
5003 	/*
5004 	 * If the zone_capacity_blocks array is NULL, then zone capacity
5005 	 * is equal to the zone size for all zones
5006 	 */
5007 	if (!FDEV(dev_idx).zone_capacity_blocks)
5008 		return sbi->segs_per_sec;
5009 
5010 	/* Get the segment count beyond zone capacity block */
5011 	unusable_segs_in_sec = (sbi->blocks_per_blkz -
5012 				FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5013 				sbi->log_blocks_per_seg;
5014 	return sbi->segs_per_sec - unusable_segs_in_sec;
5015 }
5016 
5017 /*
5018  * Return the number of usable blocks in a segment. The number of blocks
5019  * returned is always equal to the number of blocks in a segment for
5020  * segments fully contained within a sequential zone capacity or a
5021  * conventional zone. For segments partially contained in a sequential
5022  * zone capacity, the number of usable blocks up to the zone capacity
5023  * is returned. 0 is returned in all other cases.
5024  */
5025 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5026 			struct f2fs_sb_info *sbi, unsigned int segno)
5027 {
5028 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5029 	unsigned int zone_idx, dev_idx, secno;
5030 
5031 	secno = GET_SEC_FROM_SEG(sbi, segno);
5032 	seg_start = START_BLOCK(sbi, segno);
5033 	dev_idx = f2fs_target_device_index(sbi, seg_start);
5034 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5035 
5036 	/*
5037 	 * Conventional zone's capacity is always equal to zone size,
5038 	 * so, blocks per segment is unchanged.
5039 	 */
5040 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5041 		return sbi->blocks_per_seg;
5042 
5043 	if (!FDEV(dev_idx).zone_capacity_blocks)
5044 		return sbi->blocks_per_seg;
5045 
5046 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5047 	sec_cap_blkaddr = sec_start_blkaddr +
5048 				FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5049 
5050 	/*
5051 	 * If segment starts before zone capacity and spans beyond
5052 	 * zone capacity, then usable blocks are from seg start to
5053 	 * zone capacity. If the segment starts after the zone capacity,
5054 	 * then there are no usable blocks.
5055 	 */
5056 	if (seg_start >= sec_cap_blkaddr)
5057 		return 0;
5058 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5059 		return sec_cap_blkaddr - seg_start;
5060 
5061 	return sbi->blocks_per_seg;
5062 }
5063 #else
5064 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5065 {
5066 	return 0;
5067 }
5068 
5069 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5070 {
5071 	return 0;
5072 }
5073 
5074 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5075 							unsigned int segno)
5076 {
5077 	return 0;
5078 }
5079 
5080 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5081 							unsigned int segno)
5082 {
5083 	return 0;
5084 }
5085 #endif
5086 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5087 					unsigned int segno)
5088 {
5089 	if (f2fs_sb_has_blkzoned(sbi))
5090 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5091 
5092 	return sbi->blocks_per_seg;
5093 }
5094 
5095 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5096 					unsigned int segno)
5097 {
5098 	if (f2fs_sb_has_blkzoned(sbi))
5099 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5100 
5101 	return sbi->segs_per_sec;
5102 }
5103 
5104 /*
5105  * Update min, max modified time for cost-benefit GC algorithm
5106  */
5107 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5108 {
5109 	struct sit_info *sit_i = SIT_I(sbi);
5110 	unsigned int segno;
5111 
5112 	down_write(&sit_i->sentry_lock);
5113 
5114 	sit_i->min_mtime = ULLONG_MAX;
5115 
5116 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5117 		unsigned int i;
5118 		unsigned long long mtime = 0;
5119 
5120 		for (i = 0; i < sbi->segs_per_sec; i++)
5121 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5122 
5123 		mtime = div_u64(mtime, sbi->segs_per_sec);
5124 
5125 		if (sit_i->min_mtime > mtime)
5126 			sit_i->min_mtime = mtime;
5127 	}
5128 	sit_i->max_mtime = get_mtime(sbi, false);
5129 	sit_i->dirty_max_mtime = 0;
5130 	up_write(&sit_i->sentry_lock);
5131 }
5132 
5133 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5134 {
5135 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5136 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5137 	struct f2fs_sm_info *sm_info;
5138 	int err;
5139 
5140 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5141 	if (!sm_info)
5142 		return -ENOMEM;
5143 
5144 	/* init sm info */
5145 	sbi->sm_info = sm_info;
5146 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5147 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5148 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5149 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5150 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5151 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5152 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5153 	sm_info->rec_prefree_segments = sm_info->main_segments *
5154 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5155 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5156 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5157 
5158 	if (!f2fs_lfs_mode(sbi))
5159 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5160 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5161 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5162 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5163 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5164 	sm_info->min_ssr_sections = reserved_sections(sbi);
5165 
5166 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5167 
5168 	init_rwsem(&sm_info->curseg_lock);
5169 
5170 	if (!f2fs_readonly(sbi->sb)) {
5171 		err = f2fs_create_flush_cmd_control(sbi);
5172 		if (err)
5173 			return err;
5174 	}
5175 
5176 	err = create_discard_cmd_control(sbi);
5177 	if (err)
5178 		return err;
5179 
5180 	err = build_sit_info(sbi);
5181 	if (err)
5182 		return err;
5183 	err = build_free_segmap(sbi);
5184 	if (err)
5185 		return err;
5186 	err = build_curseg(sbi);
5187 	if (err)
5188 		return err;
5189 
5190 	/* reinit free segmap based on SIT */
5191 	err = build_sit_entries(sbi);
5192 	if (err)
5193 		return err;
5194 
5195 	init_free_segmap(sbi);
5196 	err = build_dirty_segmap(sbi);
5197 	if (err)
5198 		return err;
5199 
5200 	err = sanity_check_curseg(sbi);
5201 	if (err)
5202 		return err;
5203 
5204 	init_min_max_mtime(sbi);
5205 	return 0;
5206 }
5207 
5208 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5209 		enum dirty_type dirty_type)
5210 {
5211 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5212 
5213 	mutex_lock(&dirty_i->seglist_lock);
5214 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5215 	dirty_i->nr_dirty[dirty_type] = 0;
5216 	mutex_unlock(&dirty_i->seglist_lock);
5217 }
5218 
5219 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5220 {
5221 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5222 
5223 	kvfree(dirty_i->victim_secmap);
5224 }
5225 
5226 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5227 {
5228 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5229 	int i;
5230 
5231 	if (!dirty_i)
5232 		return;
5233 
5234 	/* discard pre-free/dirty segments list */
5235 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5236 		discard_dirty_segmap(sbi, i);
5237 
5238 	if (__is_large_section(sbi)) {
5239 		mutex_lock(&dirty_i->seglist_lock);
5240 		kvfree(dirty_i->dirty_secmap);
5241 		mutex_unlock(&dirty_i->seglist_lock);
5242 	}
5243 
5244 	destroy_victim_secmap(sbi);
5245 	SM_I(sbi)->dirty_info = NULL;
5246 	kfree(dirty_i);
5247 }
5248 
5249 static void destroy_curseg(struct f2fs_sb_info *sbi)
5250 {
5251 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5252 	int i;
5253 
5254 	if (!array)
5255 		return;
5256 	SM_I(sbi)->curseg_array = NULL;
5257 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5258 		kfree(array[i].sum_blk);
5259 		kfree(array[i].journal);
5260 	}
5261 	kfree(array);
5262 }
5263 
5264 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5265 {
5266 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5267 
5268 	if (!free_i)
5269 		return;
5270 	SM_I(sbi)->free_info = NULL;
5271 	kvfree(free_i->free_segmap);
5272 	kvfree(free_i->free_secmap);
5273 	kfree(free_i);
5274 }
5275 
5276 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5277 {
5278 	struct sit_info *sit_i = SIT_I(sbi);
5279 
5280 	if (!sit_i)
5281 		return;
5282 
5283 	if (sit_i->sentries)
5284 		kvfree(sit_i->bitmap);
5285 	kfree(sit_i->tmp_map);
5286 
5287 	kvfree(sit_i->sentries);
5288 	kvfree(sit_i->sec_entries);
5289 	kvfree(sit_i->dirty_sentries_bitmap);
5290 
5291 	SM_I(sbi)->sit_info = NULL;
5292 	kvfree(sit_i->sit_bitmap);
5293 #ifdef CONFIG_F2FS_CHECK_FS
5294 	kvfree(sit_i->sit_bitmap_mir);
5295 	kvfree(sit_i->invalid_segmap);
5296 #endif
5297 	kfree(sit_i);
5298 }
5299 
5300 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5301 {
5302 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5303 
5304 	if (!sm_info)
5305 		return;
5306 	f2fs_destroy_flush_cmd_control(sbi, true);
5307 	destroy_discard_cmd_control(sbi);
5308 	destroy_dirty_segmap(sbi);
5309 	destroy_curseg(sbi);
5310 	destroy_free_segmap(sbi);
5311 	destroy_sit_info(sbi);
5312 	sbi->sm_info = NULL;
5313 	kfree(sm_info);
5314 }
5315 
5316 int __init f2fs_create_segment_manager_caches(void)
5317 {
5318 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5319 			sizeof(struct discard_entry));
5320 	if (!discard_entry_slab)
5321 		goto fail;
5322 
5323 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5324 			sizeof(struct discard_cmd));
5325 	if (!discard_cmd_slab)
5326 		goto destroy_discard_entry;
5327 
5328 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5329 			sizeof(struct sit_entry_set));
5330 	if (!sit_entry_set_slab)
5331 		goto destroy_discard_cmd;
5332 
5333 	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5334 			sizeof(struct inmem_pages));
5335 	if (!inmem_entry_slab)
5336 		goto destroy_sit_entry_set;
5337 	return 0;
5338 
5339 destroy_sit_entry_set:
5340 	kmem_cache_destroy(sit_entry_set_slab);
5341 destroy_discard_cmd:
5342 	kmem_cache_destroy(discard_cmd_slab);
5343 destroy_discard_entry:
5344 	kmem_cache_destroy(discard_entry_slab);
5345 fail:
5346 	return -ENOMEM;
5347 }
5348 
5349 void f2fs_destroy_segment_manager_caches(void)
5350 {
5351 	kmem_cache_destroy(sit_entry_set_slab);
5352 	kmem_cache_destroy(discard_cmd_slab);
5353 	kmem_cache_destroy(discard_entry_slab);
5354 	kmem_cache_destroy(inmem_entry_slab);
5355 }
5356