xref: /openbmc/linux/fs/f2fs/segment.c (revision a8fe58ce)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31 
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34 	unsigned long tmp = 0;
35 	int shift = 24, idx = 0;
36 
37 #if BITS_PER_LONG == 64
38 	shift = 56;
39 #endif
40 	while (shift >= 0) {
41 		tmp |= (unsigned long)str[idx++] << shift;
42 		shift -= BITS_PER_BYTE;
43 	}
44 	return tmp;
45 }
46 
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53 	int num = 0;
54 
55 #if BITS_PER_LONG == 64
56 	if ((word & 0xffffffff00000000UL) == 0)
57 		num += 32;
58 	else
59 		word >>= 32;
60 #endif
61 	if ((word & 0xffff0000) == 0)
62 		num += 16;
63 	else
64 		word >>= 16;
65 
66 	if ((word & 0xff00) == 0)
67 		num += 8;
68 	else
69 		word >>= 8;
70 
71 	if ((word & 0xf0) == 0)
72 		num += 4;
73 	else
74 		word >>= 4;
75 
76 	if ((word & 0xc) == 0)
77 		num += 2;
78 	else
79 		word >>= 2;
80 
81 	if ((word & 0x2) == 0)
82 		num += 1;
83 	return num;
84 }
85 
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * @size must be integral times of unsigned long.
90  * Example:
91  *                             MSB <--> LSB
92  *   f2fs_set_bit(0, bitmap) => 1000 0000
93  *   f2fs_set_bit(7, bitmap) => 0000 0001
94  */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 			unsigned long size, unsigned long offset)
97 {
98 	const unsigned long *p = addr + BIT_WORD(offset);
99 	unsigned long result = size;
100 	unsigned long tmp;
101 
102 	if (offset >= size)
103 		return size;
104 
105 	size -= (offset & ~(BITS_PER_LONG - 1));
106 	offset %= BITS_PER_LONG;
107 
108 	while (1) {
109 		if (*p == 0)
110 			goto pass;
111 
112 		tmp = __reverse_ulong((unsigned char *)p);
113 
114 		tmp &= ~0UL >> offset;
115 		if (size < BITS_PER_LONG)
116 			tmp &= (~0UL << (BITS_PER_LONG - size));
117 		if (tmp)
118 			goto found;
119 pass:
120 		if (size <= BITS_PER_LONG)
121 			break;
122 		size -= BITS_PER_LONG;
123 		offset = 0;
124 		p++;
125 	}
126 	return result;
127 found:
128 	return result - size + __reverse_ffs(tmp);
129 }
130 
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 			unsigned long size, unsigned long offset)
133 {
134 	const unsigned long *p = addr + BIT_WORD(offset);
135 	unsigned long result = size;
136 	unsigned long tmp;
137 
138 	if (offset >= size)
139 		return size;
140 
141 	size -= (offset & ~(BITS_PER_LONG - 1));
142 	offset %= BITS_PER_LONG;
143 
144 	while (1) {
145 		if (*p == ~0UL)
146 			goto pass;
147 
148 		tmp = __reverse_ulong((unsigned char *)p);
149 
150 		if (offset)
151 			tmp |= ~0UL << (BITS_PER_LONG - offset);
152 		if (size < BITS_PER_LONG)
153 			tmp |= ~0UL >> size;
154 		if (tmp != ~0UL)
155 			goto found;
156 pass:
157 		if (size <= BITS_PER_LONG)
158 			break;
159 		size -= BITS_PER_LONG;
160 		offset = 0;
161 		p++;
162 	}
163 	return result;
164 found:
165 	return result - size + __reverse_ffz(tmp);
166 }
167 
168 void register_inmem_page(struct inode *inode, struct page *page)
169 {
170 	struct f2fs_inode_info *fi = F2FS_I(inode);
171 	struct inmem_pages *new;
172 
173 	f2fs_trace_pid(page);
174 
175 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
176 	SetPagePrivate(page);
177 
178 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
179 
180 	/* add atomic page indices to the list */
181 	new->page = page;
182 	INIT_LIST_HEAD(&new->list);
183 
184 	/* increase reference count with clean state */
185 	mutex_lock(&fi->inmem_lock);
186 	get_page(page);
187 	list_add_tail(&new->list, &fi->inmem_pages);
188 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
189 	mutex_unlock(&fi->inmem_lock);
190 
191 	trace_f2fs_register_inmem_page(page, INMEM);
192 }
193 
194 int commit_inmem_pages(struct inode *inode, bool abort)
195 {
196 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
197 	struct f2fs_inode_info *fi = F2FS_I(inode);
198 	struct inmem_pages *cur, *tmp;
199 	bool submit_bio = false;
200 	struct f2fs_io_info fio = {
201 		.sbi = sbi,
202 		.type = DATA,
203 		.rw = WRITE_SYNC | REQ_PRIO,
204 		.encrypted_page = NULL,
205 	};
206 	int err = 0;
207 
208 	/*
209 	 * The abort is true only when f2fs_evict_inode is called.
210 	 * Basically, the f2fs_evict_inode doesn't produce any data writes, so
211 	 * that we don't need to call f2fs_balance_fs.
212 	 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
213 	 * inode becomes free by iget_locked in f2fs_iget.
214 	 */
215 	if (!abort) {
216 		f2fs_balance_fs(sbi, true);
217 		f2fs_lock_op(sbi);
218 	}
219 
220 	mutex_lock(&fi->inmem_lock);
221 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
222 		lock_page(cur->page);
223 		if (!abort) {
224 			if (cur->page->mapping == inode->i_mapping) {
225 				set_page_dirty(cur->page);
226 				f2fs_wait_on_page_writeback(cur->page, DATA);
227 				if (clear_page_dirty_for_io(cur->page))
228 					inode_dec_dirty_pages(inode);
229 				trace_f2fs_commit_inmem_page(cur->page, INMEM);
230 				fio.page = cur->page;
231 				err = do_write_data_page(&fio);
232 				if (err) {
233 					unlock_page(cur->page);
234 					break;
235 				}
236 				clear_cold_data(cur->page);
237 				submit_bio = true;
238 			}
239 		} else {
240 			ClearPageUptodate(cur->page);
241 			trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP);
242 		}
243 		set_page_private(cur->page, 0);
244 		ClearPagePrivate(cur->page);
245 		f2fs_put_page(cur->page, 1);
246 
247 		list_del(&cur->list);
248 		kmem_cache_free(inmem_entry_slab, cur);
249 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
250 	}
251 	mutex_unlock(&fi->inmem_lock);
252 
253 	if (!abort) {
254 		f2fs_unlock_op(sbi);
255 		if (submit_bio)
256 			f2fs_submit_merged_bio(sbi, DATA, WRITE);
257 	}
258 	return err;
259 }
260 
261 /*
262  * This function balances dirty node and dentry pages.
263  * In addition, it controls garbage collection.
264  */
265 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
266 {
267 	if (!need)
268 		return;
269 	/*
270 	 * We should do GC or end up with checkpoint, if there are so many dirty
271 	 * dir/node pages without enough free segments.
272 	 */
273 	if (has_not_enough_free_secs(sbi, 0)) {
274 		mutex_lock(&sbi->gc_mutex);
275 		f2fs_gc(sbi, false);
276 	}
277 }
278 
279 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
280 {
281 	/* try to shrink extent cache when there is no enough memory */
282 	if (!available_free_memory(sbi, EXTENT_CACHE))
283 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
284 
285 	/* check the # of cached NAT entries */
286 	if (!available_free_memory(sbi, NAT_ENTRIES))
287 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
288 
289 	if (!available_free_memory(sbi, FREE_NIDS))
290 		try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
291 
292 	/* checkpoint is the only way to shrink partial cached entries */
293 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
294 			excess_prefree_segs(sbi) ||
295 			!available_free_memory(sbi, INO_ENTRIES) ||
296 			(is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
297 		if (test_opt(sbi, DATA_FLUSH))
298 			sync_dirty_inodes(sbi, FILE_INODE);
299 		f2fs_sync_fs(sbi->sb, true);
300 		stat_inc_bg_cp_count(sbi->stat_info);
301 	}
302 }
303 
304 static int issue_flush_thread(void *data)
305 {
306 	struct f2fs_sb_info *sbi = data;
307 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
308 	wait_queue_head_t *q = &fcc->flush_wait_queue;
309 repeat:
310 	if (kthread_should_stop())
311 		return 0;
312 
313 	if (!llist_empty(&fcc->issue_list)) {
314 		struct bio *bio;
315 		struct flush_cmd *cmd, *next;
316 		int ret;
317 
318 		bio = f2fs_bio_alloc(0);
319 
320 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
321 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
322 
323 		bio->bi_bdev = sbi->sb->s_bdev;
324 		ret = submit_bio_wait(WRITE_FLUSH, bio);
325 
326 		llist_for_each_entry_safe(cmd, next,
327 					  fcc->dispatch_list, llnode) {
328 			cmd->ret = ret;
329 			complete(&cmd->wait);
330 		}
331 		bio_put(bio);
332 		fcc->dispatch_list = NULL;
333 	}
334 
335 	wait_event_interruptible(*q,
336 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
337 	goto repeat;
338 }
339 
340 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
341 {
342 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
343 	struct flush_cmd cmd;
344 
345 	trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
346 					test_opt(sbi, FLUSH_MERGE));
347 
348 	if (test_opt(sbi, NOBARRIER))
349 		return 0;
350 
351 	if (!test_opt(sbi, FLUSH_MERGE)) {
352 		struct bio *bio = f2fs_bio_alloc(0);
353 		int ret;
354 
355 		bio->bi_bdev = sbi->sb->s_bdev;
356 		ret = submit_bio_wait(WRITE_FLUSH, bio);
357 		bio_put(bio);
358 		return ret;
359 	}
360 
361 	init_completion(&cmd.wait);
362 
363 	llist_add(&cmd.llnode, &fcc->issue_list);
364 
365 	if (!fcc->dispatch_list)
366 		wake_up(&fcc->flush_wait_queue);
367 
368 	wait_for_completion(&cmd.wait);
369 
370 	return cmd.ret;
371 }
372 
373 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
374 {
375 	dev_t dev = sbi->sb->s_bdev->bd_dev;
376 	struct flush_cmd_control *fcc;
377 	int err = 0;
378 
379 	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
380 	if (!fcc)
381 		return -ENOMEM;
382 	init_waitqueue_head(&fcc->flush_wait_queue);
383 	init_llist_head(&fcc->issue_list);
384 	SM_I(sbi)->cmd_control_info = fcc;
385 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
386 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
387 	if (IS_ERR(fcc->f2fs_issue_flush)) {
388 		err = PTR_ERR(fcc->f2fs_issue_flush);
389 		kfree(fcc);
390 		SM_I(sbi)->cmd_control_info = NULL;
391 		return err;
392 	}
393 
394 	return err;
395 }
396 
397 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
398 {
399 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
400 
401 	if (fcc && fcc->f2fs_issue_flush)
402 		kthread_stop(fcc->f2fs_issue_flush);
403 	kfree(fcc);
404 	SM_I(sbi)->cmd_control_info = NULL;
405 }
406 
407 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
408 		enum dirty_type dirty_type)
409 {
410 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
411 
412 	/* need not be added */
413 	if (IS_CURSEG(sbi, segno))
414 		return;
415 
416 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
417 		dirty_i->nr_dirty[dirty_type]++;
418 
419 	if (dirty_type == DIRTY) {
420 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
421 		enum dirty_type t = sentry->type;
422 
423 		if (unlikely(t >= DIRTY)) {
424 			f2fs_bug_on(sbi, 1);
425 			return;
426 		}
427 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
428 			dirty_i->nr_dirty[t]++;
429 	}
430 }
431 
432 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
433 		enum dirty_type dirty_type)
434 {
435 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
436 
437 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
438 		dirty_i->nr_dirty[dirty_type]--;
439 
440 	if (dirty_type == DIRTY) {
441 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
442 		enum dirty_type t = sentry->type;
443 
444 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
445 			dirty_i->nr_dirty[t]--;
446 
447 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
448 			clear_bit(GET_SECNO(sbi, segno),
449 						dirty_i->victim_secmap);
450 	}
451 }
452 
453 /*
454  * Should not occur error such as -ENOMEM.
455  * Adding dirty entry into seglist is not critical operation.
456  * If a given segment is one of current working segments, it won't be added.
457  */
458 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
459 {
460 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
461 	unsigned short valid_blocks;
462 
463 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
464 		return;
465 
466 	mutex_lock(&dirty_i->seglist_lock);
467 
468 	valid_blocks = get_valid_blocks(sbi, segno, 0);
469 
470 	if (valid_blocks == 0) {
471 		__locate_dirty_segment(sbi, segno, PRE);
472 		__remove_dirty_segment(sbi, segno, DIRTY);
473 	} else if (valid_blocks < sbi->blocks_per_seg) {
474 		__locate_dirty_segment(sbi, segno, DIRTY);
475 	} else {
476 		/* Recovery routine with SSR needs this */
477 		__remove_dirty_segment(sbi, segno, DIRTY);
478 	}
479 
480 	mutex_unlock(&dirty_i->seglist_lock);
481 }
482 
483 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
484 				block_t blkstart, block_t blklen)
485 {
486 	sector_t start = SECTOR_FROM_BLOCK(blkstart);
487 	sector_t len = SECTOR_FROM_BLOCK(blklen);
488 	struct seg_entry *se;
489 	unsigned int offset;
490 	block_t i;
491 
492 	for (i = blkstart; i < blkstart + blklen; i++) {
493 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
494 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
495 
496 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
497 			sbi->discard_blks--;
498 	}
499 	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
500 	return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
501 }
502 
503 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
504 {
505 	int err = -ENOTSUPP;
506 
507 	if (test_opt(sbi, DISCARD)) {
508 		struct seg_entry *se = get_seg_entry(sbi,
509 				GET_SEGNO(sbi, blkaddr));
510 		unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
511 
512 		if (f2fs_test_bit(offset, se->discard_map))
513 			return false;
514 
515 		err = f2fs_issue_discard(sbi, blkaddr, 1);
516 	}
517 
518 	if (err) {
519 		update_meta_page(sbi, NULL, blkaddr);
520 		return true;
521 	}
522 	return false;
523 }
524 
525 static void __add_discard_entry(struct f2fs_sb_info *sbi,
526 		struct cp_control *cpc, struct seg_entry *se,
527 		unsigned int start, unsigned int end)
528 {
529 	struct list_head *head = &SM_I(sbi)->discard_list;
530 	struct discard_entry *new, *last;
531 
532 	if (!list_empty(head)) {
533 		last = list_last_entry(head, struct discard_entry, list);
534 		if (START_BLOCK(sbi, cpc->trim_start) + start ==
535 						last->blkaddr + last->len) {
536 			last->len += end - start;
537 			goto done;
538 		}
539 	}
540 
541 	new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
542 	INIT_LIST_HEAD(&new->list);
543 	new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
544 	new->len = end - start;
545 	list_add_tail(&new->list, head);
546 done:
547 	SM_I(sbi)->nr_discards += end - start;
548 }
549 
550 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
551 {
552 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
553 	int max_blocks = sbi->blocks_per_seg;
554 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
555 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
556 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
557 	unsigned long *discard_map = (unsigned long *)se->discard_map;
558 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
559 	unsigned int start = 0, end = -1;
560 	bool force = (cpc->reason == CP_DISCARD);
561 	int i;
562 
563 	if (se->valid_blocks == max_blocks)
564 		return;
565 
566 	if (!force) {
567 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
568 		    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
569 			return;
570 	}
571 
572 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
573 	for (i = 0; i < entries; i++)
574 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
575 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
576 
577 	while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
578 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
579 		if (start >= max_blocks)
580 			break;
581 
582 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
583 		__add_discard_entry(sbi, cpc, se, start, end);
584 	}
585 }
586 
587 void release_discard_addrs(struct f2fs_sb_info *sbi)
588 {
589 	struct list_head *head = &(SM_I(sbi)->discard_list);
590 	struct discard_entry *entry, *this;
591 
592 	/* drop caches */
593 	list_for_each_entry_safe(entry, this, head, list) {
594 		list_del(&entry->list);
595 		kmem_cache_free(discard_entry_slab, entry);
596 	}
597 }
598 
599 /*
600  * Should call clear_prefree_segments after checkpoint is done.
601  */
602 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
603 {
604 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
605 	unsigned int segno;
606 
607 	mutex_lock(&dirty_i->seglist_lock);
608 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
609 		__set_test_and_free(sbi, segno);
610 	mutex_unlock(&dirty_i->seglist_lock);
611 }
612 
613 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
614 {
615 	struct list_head *head = &(SM_I(sbi)->discard_list);
616 	struct discard_entry *entry, *this;
617 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
618 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
619 	unsigned int start = 0, end = -1;
620 
621 	mutex_lock(&dirty_i->seglist_lock);
622 
623 	while (1) {
624 		int i;
625 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
626 		if (start >= MAIN_SEGS(sbi))
627 			break;
628 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
629 								start + 1);
630 
631 		for (i = start; i < end; i++)
632 			clear_bit(i, prefree_map);
633 
634 		dirty_i->nr_dirty[PRE] -= end - start;
635 
636 		if (!test_opt(sbi, DISCARD))
637 			continue;
638 
639 		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
640 				(end - start) << sbi->log_blocks_per_seg);
641 	}
642 	mutex_unlock(&dirty_i->seglist_lock);
643 
644 	/* send small discards */
645 	list_for_each_entry_safe(entry, this, head, list) {
646 		if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
647 			goto skip;
648 		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
649 		cpc->trimmed += entry->len;
650 skip:
651 		list_del(&entry->list);
652 		SM_I(sbi)->nr_discards -= entry->len;
653 		kmem_cache_free(discard_entry_slab, entry);
654 	}
655 }
656 
657 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
658 {
659 	struct sit_info *sit_i = SIT_I(sbi);
660 
661 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
662 		sit_i->dirty_sentries++;
663 		return false;
664 	}
665 
666 	return true;
667 }
668 
669 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
670 					unsigned int segno, int modified)
671 {
672 	struct seg_entry *se = get_seg_entry(sbi, segno);
673 	se->type = type;
674 	if (modified)
675 		__mark_sit_entry_dirty(sbi, segno);
676 }
677 
678 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
679 {
680 	struct seg_entry *se;
681 	unsigned int segno, offset;
682 	long int new_vblocks;
683 
684 	segno = GET_SEGNO(sbi, blkaddr);
685 
686 	se = get_seg_entry(sbi, segno);
687 	new_vblocks = se->valid_blocks + del;
688 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
689 
690 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
691 				(new_vblocks > sbi->blocks_per_seg)));
692 
693 	se->valid_blocks = new_vblocks;
694 	se->mtime = get_mtime(sbi);
695 	SIT_I(sbi)->max_mtime = se->mtime;
696 
697 	/* Update valid block bitmap */
698 	if (del > 0) {
699 		if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
700 			f2fs_bug_on(sbi, 1);
701 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
702 			sbi->discard_blks--;
703 	} else {
704 		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
705 			f2fs_bug_on(sbi, 1);
706 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
707 			sbi->discard_blks++;
708 	}
709 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
710 		se->ckpt_valid_blocks += del;
711 
712 	__mark_sit_entry_dirty(sbi, segno);
713 
714 	/* update total number of valid blocks to be written in ckpt area */
715 	SIT_I(sbi)->written_valid_blocks += del;
716 
717 	if (sbi->segs_per_sec > 1)
718 		get_sec_entry(sbi, segno)->valid_blocks += del;
719 }
720 
721 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
722 {
723 	update_sit_entry(sbi, new, 1);
724 	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
725 		update_sit_entry(sbi, old, -1);
726 
727 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
728 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
729 }
730 
731 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
732 {
733 	unsigned int segno = GET_SEGNO(sbi, addr);
734 	struct sit_info *sit_i = SIT_I(sbi);
735 
736 	f2fs_bug_on(sbi, addr == NULL_ADDR);
737 	if (addr == NEW_ADDR)
738 		return;
739 
740 	/* add it into sit main buffer */
741 	mutex_lock(&sit_i->sentry_lock);
742 
743 	update_sit_entry(sbi, addr, -1);
744 
745 	/* add it into dirty seglist */
746 	locate_dirty_segment(sbi, segno);
747 
748 	mutex_unlock(&sit_i->sentry_lock);
749 }
750 
751 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
752 {
753 	struct sit_info *sit_i = SIT_I(sbi);
754 	unsigned int segno, offset;
755 	struct seg_entry *se;
756 	bool is_cp = false;
757 
758 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
759 		return true;
760 
761 	mutex_lock(&sit_i->sentry_lock);
762 
763 	segno = GET_SEGNO(sbi, blkaddr);
764 	se = get_seg_entry(sbi, segno);
765 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
766 
767 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
768 		is_cp = true;
769 
770 	mutex_unlock(&sit_i->sentry_lock);
771 
772 	return is_cp;
773 }
774 
775 /*
776  * This function should be resided under the curseg_mutex lock
777  */
778 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
779 					struct f2fs_summary *sum)
780 {
781 	struct curseg_info *curseg = CURSEG_I(sbi, type);
782 	void *addr = curseg->sum_blk;
783 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
784 	memcpy(addr, sum, sizeof(struct f2fs_summary));
785 }
786 
787 /*
788  * Calculate the number of current summary pages for writing
789  */
790 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
791 {
792 	int valid_sum_count = 0;
793 	int i, sum_in_page;
794 
795 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
796 		if (sbi->ckpt->alloc_type[i] == SSR)
797 			valid_sum_count += sbi->blocks_per_seg;
798 		else {
799 			if (for_ra)
800 				valid_sum_count += le16_to_cpu(
801 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
802 			else
803 				valid_sum_count += curseg_blkoff(sbi, i);
804 		}
805 	}
806 
807 	sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
808 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
809 	if (valid_sum_count <= sum_in_page)
810 		return 1;
811 	else if ((valid_sum_count - sum_in_page) <=
812 		(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
813 		return 2;
814 	return 3;
815 }
816 
817 /*
818  * Caller should put this summary page
819  */
820 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
821 {
822 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
823 }
824 
825 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
826 {
827 	struct page *page = grab_meta_page(sbi, blk_addr);
828 	void *dst = page_address(page);
829 
830 	if (src)
831 		memcpy(dst, src, PAGE_CACHE_SIZE);
832 	else
833 		memset(dst, 0, PAGE_CACHE_SIZE);
834 	set_page_dirty(page);
835 	f2fs_put_page(page, 1);
836 }
837 
838 static void write_sum_page(struct f2fs_sb_info *sbi,
839 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
840 {
841 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
842 }
843 
844 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
845 {
846 	struct curseg_info *curseg = CURSEG_I(sbi, type);
847 	unsigned int segno = curseg->segno + 1;
848 	struct free_segmap_info *free_i = FREE_I(sbi);
849 
850 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
851 		return !test_bit(segno, free_i->free_segmap);
852 	return 0;
853 }
854 
855 /*
856  * Find a new segment from the free segments bitmap to right order
857  * This function should be returned with success, otherwise BUG
858  */
859 static void get_new_segment(struct f2fs_sb_info *sbi,
860 			unsigned int *newseg, bool new_sec, int dir)
861 {
862 	struct free_segmap_info *free_i = FREE_I(sbi);
863 	unsigned int segno, secno, zoneno;
864 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
865 	unsigned int hint = *newseg / sbi->segs_per_sec;
866 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
867 	unsigned int left_start = hint;
868 	bool init = true;
869 	int go_left = 0;
870 	int i;
871 
872 	spin_lock(&free_i->segmap_lock);
873 
874 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
875 		segno = find_next_zero_bit(free_i->free_segmap,
876 					MAIN_SEGS(sbi), *newseg + 1);
877 		if (segno - *newseg < sbi->segs_per_sec -
878 					(*newseg % sbi->segs_per_sec))
879 			goto got_it;
880 	}
881 find_other_zone:
882 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
883 	if (secno >= MAIN_SECS(sbi)) {
884 		if (dir == ALLOC_RIGHT) {
885 			secno = find_next_zero_bit(free_i->free_secmap,
886 							MAIN_SECS(sbi), 0);
887 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
888 		} else {
889 			go_left = 1;
890 			left_start = hint - 1;
891 		}
892 	}
893 	if (go_left == 0)
894 		goto skip_left;
895 
896 	while (test_bit(left_start, free_i->free_secmap)) {
897 		if (left_start > 0) {
898 			left_start--;
899 			continue;
900 		}
901 		left_start = find_next_zero_bit(free_i->free_secmap,
902 							MAIN_SECS(sbi), 0);
903 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
904 		break;
905 	}
906 	secno = left_start;
907 skip_left:
908 	hint = secno;
909 	segno = secno * sbi->segs_per_sec;
910 	zoneno = secno / sbi->secs_per_zone;
911 
912 	/* give up on finding another zone */
913 	if (!init)
914 		goto got_it;
915 	if (sbi->secs_per_zone == 1)
916 		goto got_it;
917 	if (zoneno == old_zoneno)
918 		goto got_it;
919 	if (dir == ALLOC_LEFT) {
920 		if (!go_left && zoneno + 1 >= total_zones)
921 			goto got_it;
922 		if (go_left && zoneno == 0)
923 			goto got_it;
924 	}
925 	for (i = 0; i < NR_CURSEG_TYPE; i++)
926 		if (CURSEG_I(sbi, i)->zone == zoneno)
927 			break;
928 
929 	if (i < NR_CURSEG_TYPE) {
930 		/* zone is in user, try another */
931 		if (go_left)
932 			hint = zoneno * sbi->secs_per_zone - 1;
933 		else if (zoneno + 1 >= total_zones)
934 			hint = 0;
935 		else
936 			hint = (zoneno + 1) * sbi->secs_per_zone;
937 		init = false;
938 		goto find_other_zone;
939 	}
940 got_it:
941 	/* set it as dirty segment in free segmap */
942 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
943 	__set_inuse(sbi, segno);
944 	*newseg = segno;
945 	spin_unlock(&free_i->segmap_lock);
946 }
947 
948 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
949 {
950 	struct curseg_info *curseg = CURSEG_I(sbi, type);
951 	struct summary_footer *sum_footer;
952 
953 	curseg->segno = curseg->next_segno;
954 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
955 	curseg->next_blkoff = 0;
956 	curseg->next_segno = NULL_SEGNO;
957 
958 	sum_footer = &(curseg->sum_blk->footer);
959 	memset(sum_footer, 0, sizeof(struct summary_footer));
960 	if (IS_DATASEG(type))
961 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
962 	if (IS_NODESEG(type))
963 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
964 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
965 }
966 
967 /*
968  * Allocate a current working segment.
969  * This function always allocates a free segment in LFS manner.
970  */
971 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
972 {
973 	struct curseg_info *curseg = CURSEG_I(sbi, type);
974 	unsigned int segno = curseg->segno;
975 	int dir = ALLOC_LEFT;
976 
977 	write_sum_page(sbi, curseg->sum_blk,
978 				GET_SUM_BLOCK(sbi, segno));
979 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
980 		dir = ALLOC_RIGHT;
981 
982 	if (test_opt(sbi, NOHEAP))
983 		dir = ALLOC_RIGHT;
984 
985 	get_new_segment(sbi, &segno, new_sec, dir);
986 	curseg->next_segno = segno;
987 	reset_curseg(sbi, type, 1);
988 	curseg->alloc_type = LFS;
989 }
990 
991 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
992 			struct curseg_info *seg, block_t start)
993 {
994 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
995 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
996 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
997 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
998 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
999 	int i, pos;
1000 
1001 	for (i = 0; i < entries; i++)
1002 		target_map[i] = ckpt_map[i] | cur_map[i];
1003 
1004 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1005 
1006 	seg->next_blkoff = pos;
1007 }
1008 
1009 /*
1010  * If a segment is written by LFS manner, next block offset is just obtained
1011  * by increasing the current block offset. However, if a segment is written by
1012  * SSR manner, next block offset obtained by calling __next_free_blkoff
1013  */
1014 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1015 				struct curseg_info *seg)
1016 {
1017 	if (seg->alloc_type == SSR)
1018 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1019 	else
1020 		seg->next_blkoff++;
1021 }
1022 
1023 /*
1024  * This function always allocates a used segment(from dirty seglist) by SSR
1025  * manner, so it should recover the existing segment information of valid blocks
1026  */
1027 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1028 {
1029 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1030 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1031 	unsigned int new_segno = curseg->next_segno;
1032 	struct f2fs_summary_block *sum_node;
1033 	struct page *sum_page;
1034 
1035 	write_sum_page(sbi, curseg->sum_blk,
1036 				GET_SUM_BLOCK(sbi, curseg->segno));
1037 	__set_test_and_inuse(sbi, new_segno);
1038 
1039 	mutex_lock(&dirty_i->seglist_lock);
1040 	__remove_dirty_segment(sbi, new_segno, PRE);
1041 	__remove_dirty_segment(sbi, new_segno, DIRTY);
1042 	mutex_unlock(&dirty_i->seglist_lock);
1043 
1044 	reset_curseg(sbi, type, 1);
1045 	curseg->alloc_type = SSR;
1046 	__next_free_blkoff(sbi, curseg, 0);
1047 
1048 	if (reuse) {
1049 		sum_page = get_sum_page(sbi, new_segno);
1050 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1051 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1052 		f2fs_put_page(sum_page, 1);
1053 	}
1054 }
1055 
1056 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1057 {
1058 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1059 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1060 
1061 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1062 		return v_ops->get_victim(sbi,
1063 				&(curseg)->next_segno, BG_GC, type, SSR);
1064 
1065 	/* For data segments, let's do SSR more intensively */
1066 	for (; type >= CURSEG_HOT_DATA; type--)
1067 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1068 						BG_GC, type, SSR))
1069 			return 1;
1070 	return 0;
1071 }
1072 
1073 /*
1074  * flush out current segment and replace it with new segment
1075  * This function should be returned with success, otherwise BUG
1076  */
1077 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1078 						int type, bool force)
1079 {
1080 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1081 
1082 	if (force)
1083 		new_curseg(sbi, type, true);
1084 	else if (type == CURSEG_WARM_NODE)
1085 		new_curseg(sbi, type, false);
1086 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1087 		new_curseg(sbi, type, false);
1088 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1089 		change_curseg(sbi, type, true);
1090 	else
1091 		new_curseg(sbi, type, false);
1092 
1093 	stat_inc_seg_type(sbi, curseg);
1094 }
1095 
1096 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1097 {
1098 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1099 	unsigned int old_segno;
1100 
1101 	old_segno = curseg->segno;
1102 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1103 	locate_dirty_segment(sbi, old_segno);
1104 }
1105 
1106 void allocate_new_segments(struct f2fs_sb_info *sbi)
1107 {
1108 	int i;
1109 
1110 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1111 		__allocate_new_segments(sbi, i);
1112 }
1113 
1114 static const struct segment_allocation default_salloc_ops = {
1115 	.allocate_segment = allocate_segment_by_default,
1116 };
1117 
1118 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1119 {
1120 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
1121 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1122 	unsigned int start_segno, end_segno;
1123 	struct cp_control cpc;
1124 	int err = 0;
1125 
1126 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1127 		return -EINVAL;
1128 
1129 	cpc.trimmed = 0;
1130 	if (end <= MAIN_BLKADDR(sbi))
1131 		goto out;
1132 
1133 	/* start/end segment number in main_area */
1134 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1135 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1136 						GET_SEGNO(sbi, end);
1137 	cpc.reason = CP_DISCARD;
1138 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1139 
1140 	/* do checkpoint to issue discard commands safely */
1141 	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1142 		cpc.trim_start = start_segno;
1143 
1144 		if (sbi->discard_blks == 0)
1145 			break;
1146 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1147 			cpc.trim_end = end_segno;
1148 		else
1149 			cpc.trim_end = min_t(unsigned int,
1150 				rounddown(start_segno +
1151 				BATCHED_TRIM_SEGMENTS(sbi),
1152 				sbi->segs_per_sec) - 1, end_segno);
1153 
1154 		mutex_lock(&sbi->gc_mutex);
1155 		err = write_checkpoint(sbi, &cpc);
1156 		mutex_unlock(&sbi->gc_mutex);
1157 	}
1158 out:
1159 	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1160 	return err;
1161 }
1162 
1163 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1164 {
1165 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1166 	if (curseg->next_blkoff < sbi->blocks_per_seg)
1167 		return true;
1168 	return false;
1169 }
1170 
1171 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1172 {
1173 	if (p_type == DATA)
1174 		return CURSEG_HOT_DATA;
1175 	else
1176 		return CURSEG_HOT_NODE;
1177 }
1178 
1179 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1180 {
1181 	if (p_type == DATA) {
1182 		struct inode *inode = page->mapping->host;
1183 
1184 		if (S_ISDIR(inode->i_mode))
1185 			return CURSEG_HOT_DATA;
1186 		else
1187 			return CURSEG_COLD_DATA;
1188 	} else {
1189 		if (IS_DNODE(page) && is_cold_node(page))
1190 			return CURSEG_WARM_NODE;
1191 		else
1192 			return CURSEG_COLD_NODE;
1193 	}
1194 }
1195 
1196 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1197 {
1198 	if (p_type == DATA) {
1199 		struct inode *inode = page->mapping->host;
1200 
1201 		if (S_ISDIR(inode->i_mode))
1202 			return CURSEG_HOT_DATA;
1203 		else if (is_cold_data(page) || file_is_cold(inode))
1204 			return CURSEG_COLD_DATA;
1205 		else
1206 			return CURSEG_WARM_DATA;
1207 	} else {
1208 		if (IS_DNODE(page))
1209 			return is_cold_node(page) ? CURSEG_WARM_NODE :
1210 						CURSEG_HOT_NODE;
1211 		else
1212 			return CURSEG_COLD_NODE;
1213 	}
1214 }
1215 
1216 static int __get_segment_type(struct page *page, enum page_type p_type)
1217 {
1218 	switch (F2FS_P_SB(page)->active_logs) {
1219 	case 2:
1220 		return __get_segment_type_2(page, p_type);
1221 	case 4:
1222 		return __get_segment_type_4(page, p_type);
1223 	}
1224 	/* NR_CURSEG_TYPE(6) logs by default */
1225 	f2fs_bug_on(F2FS_P_SB(page),
1226 		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1227 	return __get_segment_type_6(page, p_type);
1228 }
1229 
1230 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1231 		block_t old_blkaddr, block_t *new_blkaddr,
1232 		struct f2fs_summary *sum, int type)
1233 {
1234 	struct sit_info *sit_i = SIT_I(sbi);
1235 	struct curseg_info *curseg;
1236 	bool direct_io = (type == CURSEG_DIRECT_IO);
1237 
1238 	type = direct_io ? CURSEG_WARM_DATA : type;
1239 
1240 	curseg = CURSEG_I(sbi, type);
1241 
1242 	mutex_lock(&curseg->curseg_mutex);
1243 	mutex_lock(&sit_i->sentry_lock);
1244 
1245 	/* direct_io'ed data is aligned to the segment for better performance */
1246 	if (direct_io && curseg->next_blkoff &&
1247 				!has_not_enough_free_secs(sbi, 0))
1248 		__allocate_new_segments(sbi, type);
1249 
1250 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1251 
1252 	/*
1253 	 * __add_sum_entry should be resided under the curseg_mutex
1254 	 * because, this function updates a summary entry in the
1255 	 * current summary block.
1256 	 */
1257 	__add_sum_entry(sbi, type, sum);
1258 
1259 	__refresh_next_blkoff(sbi, curseg);
1260 
1261 	stat_inc_block_count(sbi, curseg);
1262 
1263 	if (!__has_curseg_space(sbi, type))
1264 		sit_i->s_ops->allocate_segment(sbi, type, false);
1265 	/*
1266 	 * SIT information should be updated before segment allocation,
1267 	 * since SSR needs latest valid block information.
1268 	 */
1269 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1270 
1271 	mutex_unlock(&sit_i->sentry_lock);
1272 
1273 	if (page && IS_NODESEG(type))
1274 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1275 
1276 	mutex_unlock(&curseg->curseg_mutex);
1277 }
1278 
1279 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1280 {
1281 	int type = __get_segment_type(fio->page, fio->type);
1282 
1283 	allocate_data_block(fio->sbi, fio->page, fio->blk_addr,
1284 					&fio->blk_addr, sum, type);
1285 
1286 	/* writeout dirty page into bdev */
1287 	f2fs_submit_page_mbio(fio);
1288 }
1289 
1290 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1291 {
1292 	struct f2fs_io_info fio = {
1293 		.sbi = sbi,
1294 		.type = META,
1295 		.rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1296 		.blk_addr = page->index,
1297 		.page = page,
1298 		.encrypted_page = NULL,
1299 	};
1300 
1301 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1302 		fio.rw &= ~REQ_META;
1303 
1304 	set_page_writeback(page);
1305 	f2fs_submit_page_mbio(&fio);
1306 }
1307 
1308 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1309 {
1310 	struct f2fs_summary sum;
1311 
1312 	set_summary(&sum, nid, 0, 0);
1313 	do_write_page(&sum, fio);
1314 }
1315 
1316 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1317 {
1318 	struct f2fs_sb_info *sbi = fio->sbi;
1319 	struct f2fs_summary sum;
1320 	struct node_info ni;
1321 
1322 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1323 	get_node_info(sbi, dn->nid, &ni);
1324 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1325 	do_write_page(&sum, fio);
1326 	dn->data_blkaddr = fio->blk_addr;
1327 }
1328 
1329 void rewrite_data_page(struct f2fs_io_info *fio)
1330 {
1331 	stat_inc_inplace_blocks(fio->sbi);
1332 	f2fs_submit_page_mbio(fio);
1333 }
1334 
1335 static void __f2fs_replace_block(struct f2fs_sb_info *sbi,
1336 				struct f2fs_summary *sum,
1337 				block_t old_blkaddr, block_t new_blkaddr,
1338 				bool recover_curseg)
1339 {
1340 	struct sit_info *sit_i = SIT_I(sbi);
1341 	struct curseg_info *curseg;
1342 	unsigned int segno, old_cursegno;
1343 	struct seg_entry *se;
1344 	int type;
1345 	unsigned short old_blkoff;
1346 
1347 	segno = GET_SEGNO(sbi, new_blkaddr);
1348 	se = get_seg_entry(sbi, segno);
1349 	type = se->type;
1350 
1351 	if (!recover_curseg) {
1352 		/* for recovery flow */
1353 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1354 			if (old_blkaddr == NULL_ADDR)
1355 				type = CURSEG_COLD_DATA;
1356 			else
1357 				type = CURSEG_WARM_DATA;
1358 		}
1359 	} else {
1360 		if (!IS_CURSEG(sbi, segno))
1361 			type = CURSEG_WARM_DATA;
1362 	}
1363 
1364 	curseg = CURSEG_I(sbi, type);
1365 
1366 	mutex_lock(&curseg->curseg_mutex);
1367 	mutex_lock(&sit_i->sentry_lock);
1368 
1369 	old_cursegno = curseg->segno;
1370 	old_blkoff = curseg->next_blkoff;
1371 
1372 	/* change the current segment */
1373 	if (segno != curseg->segno) {
1374 		curseg->next_segno = segno;
1375 		change_curseg(sbi, type, true);
1376 	}
1377 
1378 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1379 	__add_sum_entry(sbi, type, sum);
1380 
1381 	if (!recover_curseg)
1382 		update_sit_entry(sbi, new_blkaddr, 1);
1383 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1384 		update_sit_entry(sbi, old_blkaddr, -1);
1385 
1386 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1387 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1388 
1389 	locate_dirty_segment(sbi, old_cursegno);
1390 
1391 	if (recover_curseg) {
1392 		if (old_cursegno != curseg->segno) {
1393 			curseg->next_segno = old_cursegno;
1394 			change_curseg(sbi, type, true);
1395 		}
1396 		curseg->next_blkoff = old_blkoff;
1397 	}
1398 
1399 	mutex_unlock(&sit_i->sentry_lock);
1400 	mutex_unlock(&curseg->curseg_mutex);
1401 }
1402 
1403 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1404 				block_t old_addr, block_t new_addr,
1405 				unsigned char version, bool recover_curseg)
1406 {
1407 	struct f2fs_summary sum;
1408 
1409 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1410 
1411 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg);
1412 
1413 	dn->data_blkaddr = new_addr;
1414 	set_data_blkaddr(dn);
1415 	f2fs_update_extent_cache(dn);
1416 }
1417 
1418 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1419 					struct page *page, enum page_type type)
1420 {
1421 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
1422 	struct f2fs_bio_info *io = &sbi->write_io[btype];
1423 	struct bio_vec *bvec;
1424 	struct page *target;
1425 	int i;
1426 
1427 	down_read(&io->io_rwsem);
1428 	if (!io->bio) {
1429 		up_read(&io->io_rwsem);
1430 		return false;
1431 	}
1432 
1433 	bio_for_each_segment_all(bvec, io->bio, i) {
1434 
1435 		if (bvec->bv_page->mapping) {
1436 			target = bvec->bv_page;
1437 		} else {
1438 			struct f2fs_crypto_ctx *ctx;
1439 
1440 			/* encrypted page */
1441 			ctx = (struct f2fs_crypto_ctx *)page_private(
1442 								bvec->bv_page);
1443 			target = ctx->w.control_page;
1444 		}
1445 
1446 		if (page == target) {
1447 			up_read(&io->io_rwsem);
1448 			return true;
1449 		}
1450 	}
1451 
1452 	up_read(&io->io_rwsem);
1453 	return false;
1454 }
1455 
1456 void f2fs_wait_on_page_writeback(struct page *page,
1457 				enum page_type type)
1458 {
1459 	if (PageWriteback(page)) {
1460 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1461 
1462 		if (is_merged_page(sbi, page, type))
1463 			f2fs_submit_merged_bio(sbi, type, WRITE);
1464 		wait_on_page_writeback(page);
1465 	}
1466 }
1467 
1468 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1469 							block_t blkaddr)
1470 {
1471 	struct page *cpage;
1472 
1473 	if (blkaddr == NEW_ADDR)
1474 		return;
1475 
1476 	f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1477 
1478 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1479 	if (cpage) {
1480 		f2fs_wait_on_page_writeback(cpage, DATA);
1481 		f2fs_put_page(cpage, 1);
1482 	}
1483 }
1484 
1485 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1486 {
1487 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1488 	struct curseg_info *seg_i;
1489 	unsigned char *kaddr;
1490 	struct page *page;
1491 	block_t start;
1492 	int i, j, offset;
1493 
1494 	start = start_sum_block(sbi);
1495 
1496 	page = get_meta_page(sbi, start++);
1497 	kaddr = (unsigned char *)page_address(page);
1498 
1499 	/* Step 1: restore nat cache */
1500 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1501 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1502 
1503 	/* Step 2: restore sit cache */
1504 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1505 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1506 						SUM_JOURNAL_SIZE);
1507 	offset = 2 * SUM_JOURNAL_SIZE;
1508 
1509 	/* Step 3: restore summary entries */
1510 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1511 		unsigned short blk_off;
1512 		unsigned int segno;
1513 
1514 		seg_i = CURSEG_I(sbi, i);
1515 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1516 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1517 		seg_i->next_segno = segno;
1518 		reset_curseg(sbi, i, 0);
1519 		seg_i->alloc_type = ckpt->alloc_type[i];
1520 		seg_i->next_blkoff = blk_off;
1521 
1522 		if (seg_i->alloc_type == SSR)
1523 			blk_off = sbi->blocks_per_seg;
1524 
1525 		for (j = 0; j < blk_off; j++) {
1526 			struct f2fs_summary *s;
1527 			s = (struct f2fs_summary *)(kaddr + offset);
1528 			seg_i->sum_blk->entries[j] = *s;
1529 			offset += SUMMARY_SIZE;
1530 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1531 						SUM_FOOTER_SIZE)
1532 				continue;
1533 
1534 			f2fs_put_page(page, 1);
1535 			page = NULL;
1536 
1537 			page = get_meta_page(sbi, start++);
1538 			kaddr = (unsigned char *)page_address(page);
1539 			offset = 0;
1540 		}
1541 	}
1542 	f2fs_put_page(page, 1);
1543 	return 0;
1544 }
1545 
1546 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1547 {
1548 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1549 	struct f2fs_summary_block *sum;
1550 	struct curseg_info *curseg;
1551 	struct page *new;
1552 	unsigned short blk_off;
1553 	unsigned int segno = 0;
1554 	block_t blk_addr = 0;
1555 
1556 	/* get segment number and block addr */
1557 	if (IS_DATASEG(type)) {
1558 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1559 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1560 							CURSEG_HOT_DATA]);
1561 		if (__exist_node_summaries(sbi))
1562 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1563 		else
1564 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1565 	} else {
1566 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1567 							CURSEG_HOT_NODE]);
1568 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1569 							CURSEG_HOT_NODE]);
1570 		if (__exist_node_summaries(sbi))
1571 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1572 							type - CURSEG_HOT_NODE);
1573 		else
1574 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1575 	}
1576 
1577 	new = get_meta_page(sbi, blk_addr);
1578 	sum = (struct f2fs_summary_block *)page_address(new);
1579 
1580 	if (IS_NODESEG(type)) {
1581 		if (__exist_node_summaries(sbi)) {
1582 			struct f2fs_summary *ns = &sum->entries[0];
1583 			int i;
1584 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1585 				ns->version = 0;
1586 				ns->ofs_in_node = 0;
1587 			}
1588 		} else {
1589 			int err;
1590 
1591 			err = restore_node_summary(sbi, segno, sum);
1592 			if (err) {
1593 				f2fs_put_page(new, 1);
1594 				return err;
1595 			}
1596 		}
1597 	}
1598 
1599 	/* set uncompleted segment to curseg */
1600 	curseg = CURSEG_I(sbi, type);
1601 	mutex_lock(&curseg->curseg_mutex);
1602 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1603 	curseg->next_segno = segno;
1604 	reset_curseg(sbi, type, 0);
1605 	curseg->alloc_type = ckpt->alloc_type[type];
1606 	curseg->next_blkoff = blk_off;
1607 	mutex_unlock(&curseg->curseg_mutex);
1608 	f2fs_put_page(new, 1);
1609 	return 0;
1610 }
1611 
1612 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1613 {
1614 	int type = CURSEG_HOT_DATA;
1615 	int err;
1616 
1617 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1618 		int npages = npages_for_summary_flush(sbi, true);
1619 
1620 		if (npages >= 2)
1621 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
1622 							META_CP, true);
1623 
1624 		/* restore for compacted data summary */
1625 		if (read_compacted_summaries(sbi))
1626 			return -EINVAL;
1627 		type = CURSEG_HOT_NODE;
1628 	}
1629 
1630 	if (__exist_node_summaries(sbi))
1631 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1632 					NR_CURSEG_TYPE - type, META_CP, true);
1633 
1634 	for (; type <= CURSEG_COLD_NODE; type++) {
1635 		err = read_normal_summaries(sbi, type);
1636 		if (err)
1637 			return err;
1638 	}
1639 
1640 	return 0;
1641 }
1642 
1643 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1644 {
1645 	struct page *page;
1646 	unsigned char *kaddr;
1647 	struct f2fs_summary *summary;
1648 	struct curseg_info *seg_i;
1649 	int written_size = 0;
1650 	int i, j;
1651 
1652 	page = grab_meta_page(sbi, blkaddr++);
1653 	kaddr = (unsigned char *)page_address(page);
1654 
1655 	/* Step 1: write nat cache */
1656 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1657 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1658 	written_size += SUM_JOURNAL_SIZE;
1659 
1660 	/* Step 2: write sit cache */
1661 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1662 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1663 						SUM_JOURNAL_SIZE);
1664 	written_size += SUM_JOURNAL_SIZE;
1665 
1666 	/* Step 3: write summary entries */
1667 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1668 		unsigned short blkoff;
1669 		seg_i = CURSEG_I(sbi, i);
1670 		if (sbi->ckpt->alloc_type[i] == SSR)
1671 			blkoff = sbi->blocks_per_seg;
1672 		else
1673 			blkoff = curseg_blkoff(sbi, i);
1674 
1675 		for (j = 0; j < blkoff; j++) {
1676 			if (!page) {
1677 				page = grab_meta_page(sbi, blkaddr++);
1678 				kaddr = (unsigned char *)page_address(page);
1679 				written_size = 0;
1680 			}
1681 			summary = (struct f2fs_summary *)(kaddr + written_size);
1682 			*summary = seg_i->sum_blk->entries[j];
1683 			written_size += SUMMARY_SIZE;
1684 
1685 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1686 							SUM_FOOTER_SIZE)
1687 				continue;
1688 
1689 			set_page_dirty(page);
1690 			f2fs_put_page(page, 1);
1691 			page = NULL;
1692 		}
1693 	}
1694 	if (page) {
1695 		set_page_dirty(page);
1696 		f2fs_put_page(page, 1);
1697 	}
1698 }
1699 
1700 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1701 					block_t blkaddr, int type)
1702 {
1703 	int i, end;
1704 	if (IS_DATASEG(type))
1705 		end = type + NR_CURSEG_DATA_TYPE;
1706 	else
1707 		end = type + NR_CURSEG_NODE_TYPE;
1708 
1709 	for (i = type; i < end; i++) {
1710 		struct curseg_info *sum = CURSEG_I(sbi, i);
1711 		mutex_lock(&sum->curseg_mutex);
1712 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1713 		mutex_unlock(&sum->curseg_mutex);
1714 	}
1715 }
1716 
1717 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1718 {
1719 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1720 		write_compacted_summaries(sbi, start_blk);
1721 	else
1722 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1723 }
1724 
1725 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1726 {
1727 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1728 }
1729 
1730 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1731 					unsigned int val, int alloc)
1732 {
1733 	int i;
1734 
1735 	if (type == NAT_JOURNAL) {
1736 		for (i = 0; i < nats_in_cursum(sum); i++) {
1737 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1738 				return i;
1739 		}
1740 		if (alloc && __has_cursum_space(sum, 1, NAT_JOURNAL))
1741 			return update_nats_in_cursum(sum, 1);
1742 	} else if (type == SIT_JOURNAL) {
1743 		for (i = 0; i < sits_in_cursum(sum); i++)
1744 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1745 				return i;
1746 		if (alloc && __has_cursum_space(sum, 1, SIT_JOURNAL))
1747 			return update_sits_in_cursum(sum, 1);
1748 	}
1749 	return -1;
1750 }
1751 
1752 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1753 					unsigned int segno)
1754 {
1755 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
1756 }
1757 
1758 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1759 					unsigned int start)
1760 {
1761 	struct sit_info *sit_i = SIT_I(sbi);
1762 	struct page *src_page, *dst_page;
1763 	pgoff_t src_off, dst_off;
1764 	void *src_addr, *dst_addr;
1765 
1766 	src_off = current_sit_addr(sbi, start);
1767 	dst_off = next_sit_addr(sbi, src_off);
1768 
1769 	/* get current sit block page without lock */
1770 	src_page = get_meta_page(sbi, src_off);
1771 	dst_page = grab_meta_page(sbi, dst_off);
1772 	f2fs_bug_on(sbi, PageDirty(src_page));
1773 
1774 	src_addr = page_address(src_page);
1775 	dst_addr = page_address(dst_page);
1776 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1777 
1778 	set_page_dirty(dst_page);
1779 	f2fs_put_page(src_page, 1);
1780 
1781 	set_to_next_sit(sit_i, start);
1782 
1783 	return dst_page;
1784 }
1785 
1786 static struct sit_entry_set *grab_sit_entry_set(void)
1787 {
1788 	struct sit_entry_set *ses =
1789 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1790 
1791 	ses->entry_cnt = 0;
1792 	INIT_LIST_HEAD(&ses->set_list);
1793 	return ses;
1794 }
1795 
1796 static void release_sit_entry_set(struct sit_entry_set *ses)
1797 {
1798 	list_del(&ses->set_list);
1799 	kmem_cache_free(sit_entry_set_slab, ses);
1800 }
1801 
1802 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1803 						struct list_head *head)
1804 {
1805 	struct sit_entry_set *next = ses;
1806 
1807 	if (list_is_last(&ses->set_list, head))
1808 		return;
1809 
1810 	list_for_each_entry_continue(next, head, set_list)
1811 		if (ses->entry_cnt <= next->entry_cnt)
1812 			break;
1813 
1814 	list_move_tail(&ses->set_list, &next->set_list);
1815 }
1816 
1817 static void add_sit_entry(unsigned int segno, struct list_head *head)
1818 {
1819 	struct sit_entry_set *ses;
1820 	unsigned int start_segno = START_SEGNO(segno);
1821 
1822 	list_for_each_entry(ses, head, set_list) {
1823 		if (ses->start_segno == start_segno) {
1824 			ses->entry_cnt++;
1825 			adjust_sit_entry_set(ses, head);
1826 			return;
1827 		}
1828 	}
1829 
1830 	ses = grab_sit_entry_set();
1831 
1832 	ses->start_segno = start_segno;
1833 	ses->entry_cnt++;
1834 	list_add(&ses->set_list, head);
1835 }
1836 
1837 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1838 {
1839 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1840 	struct list_head *set_list = &sm_info->sit_entry_set;
1841 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1842 	unsigned int segno;
1843 
1844 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1845 		add_sit_entry(segno, set_list);
1846 }
1847 
1848 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1849 {
1850 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1851 	struct f2fs_summary_block *sum = curseg->sum_blk;
1852 	int i;
1853 
1854 	for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1855 		unsigned int segno;
1856 		bool dirtied;
1857 
1858 		segno = le32_to_cpu(segno_in_journal(sum, i));
1859 		dirtied = __mark_sit_entry_dirty(sbi, segno);
1860 
1861 		if (!dirtied)
1862 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1863 	}
1864 	update_sits_in_cursum(sum, -sits_in_cursum(sum));
1865 }
1866 
1867 /*
1868  * CP calls this function, which flushes SIT entries including sit_journal,
1869  * and moves prefree segs to free segs.
1870  */
1871 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1872 {
1873 	struct sit_info *sit_i = SIT_I(sbi);
1874 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1875 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1876 	struct f2fs_summary_block *sum = curseg->sum_blk;
1877 	struct sit_entry_set *ses, *tmp;
1878 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
1879 	bool to_journal = true;
1880 	struct seg_entry *se;
1881 
1882 	mutex_lock(&curseg->curseg_mutex);
1883 	mutex_lock(&sit_i->sentry_lock);
1884 
1885 	if (!sit_i->dirty_sentries)
1886 		goto out;
1887 
1888 	/*
1889 	 * add and account sit entries of dirty bitmap in sit entry
1890 	 * set temporarily
1891 	 */
1892 	add_sits_in_set(sbi);
1893 
1894 	/*
1895 	 * if there are no enough space in journal to store dirty sit
1896 	 * entries, remove all entries from journal and add and account
1897 	 * them in sit entry set.
1898 	 */
1899 	if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1900 		remove_sits_in_journal(sbi);
1901 
1902 	/*
1903 	 * there are two steps to flush sit entries:
1904 	 * #1, flush sit entries to journal in current cold data summary block.
1905 	 * #2, flush sit entries to sit page.
1906 	 */
1907 	list_for_each_entry_safe(ses, tmp, head, set_list) {
1908 		struct page *page = NULL;
1909 		struct f2fs_sit_block *raw_sit = NULL;
1910 		unsigned int start_segno = ses->start_segno;
1911 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1912 						(unsigned long)MAIN_SEGS(sbi));
1913 		unsigned int segno = start_segno;
1914 
1915 		if (to_journal &&
1916 			!__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1917 			to_journal = false;
1918 
1919 		if (!to_journal) {
1920 			page = get_next_sit_page(sbi, start_segno);
1921 			raw_sit = page_address(page);
1922 		}
1923 
1924 		/* flush dirty sit entries in region of current sit set */
1925 		for_each_set_bit_from(segno, bitmap, end) {
1926 			int offset, sit_offset;
1927 
1928 			se = get_seg_entry(sbi, segno);
1929 
1930 			/* add discard candidates */
1931 			if (cpc->reason != CP_DISCARD) {
1932 				cpc->trim_start = segno;
1933 				add_discard_addrs(sbi, cpc);
1934 			}
1935 
1936 			if (to_journal) {
1937 				offset = lookup_journal_in_cursum(sum,
1938 							SIT_JOURNAL, segno, 1);
1939 				f2fs_bug_on(sbi, offset < 0);
1940 				segno_in_journal(sum, offset) =
1941 							cpu_to_le32(segno);
1942 				seg_info_to_raw_sit(se,
1943 						&sit_in_journal(sum, offset));
1944 			} else {
1945 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1946 				seg_info_to_raw_sit(se,
1947 						&raw_sit->entries[sit_offset]);
1948 			}
1949 
1950 			__clear_bit(segno, bitmap);
1951 			sit_i->dirty_sentries--;
1952 			ses->entry_cnt--;
1953 		}
1954 
1955 		if (!to_journal)
1956 			f2fs_put_page(page, 1);
1957 
1958 		f2fs_bug_on(sbi, ses->entry_cnt);
1959 		release_sit_entry_set(ses);
1960 	}
1961 
1962 	f2fs_bug_on(sbi, !list_empty(head));
1963 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
1964 out:
1965 	if (cpc->reason == CP_DISCARD) {
1966 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1967 			add_discard_addrs(sbi, cpc);
1968 	}
1969 	mutex_unlock(&sit_i->sentry_lock);
1970 	mutex_unlock(&curseg->curseg_mutex);
1971 
1972 	set_prefree_as_free_segments(sbi);
1973 }
1974 
1975 static int build_sit_info(struct f2fs_sb_info *sbi)
1976 {
1977 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1978 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1979 	struct sit_info *sit_i;
1980 	unsigned int sit_segs, start;
1981 	char *src_bitmap, *dst_bitmap;
1982 	unsigned int bitmap_size;
1983 
1984 	/* allocate memory for SIT information */
1985 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1986 	if (!sit_i)
1987 		return -ENOMEM;
1988 
1989 	SM_I(sbi)->sit_info = sit_i;
1990 
1991 	sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
1992 					sizeof(struct seg_entry), GFP_KERNEL);
1993 	if (!sit_i->sentries)
1994 		return -ENOMEM;
1995 
1996 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1997 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
1998 	if (!sit_i->dirty_sentries_bitmap)
1999 		return -ENOMEM;
2000 
2001 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2002 		sit_i->sentries[start].cur_valid_map
2003 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2004 		sit_i->sentries[start].ckpt_valid_map
2005 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2006 		sit_i->sentries[start].discard_map
2007 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2008 		if (!sit_i->sentries[start].cur_valid_map ||
2009 				!sit_i->sentries[start].ckpt_valid_map ||
2010 				!sit_i->sentries[start].discard_map)
2011 			return -ENOMEM;
2012 	}
2013 
2014 	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2015 	if (!sit_i->tmp_map)
2016 		return -ENOMEM;
2017 
2018 	if (sbi->segs_per_sec > 1) {
2019 		sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2020 					sizeof(struct sec_entry), GFP_KERNEL);
2021 		if (!sit_i->sec_entries)
2022 			return -ENOMEM;
2023 	}
2024 
2025 	/* get information related with SIT */
2026 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2027 
2028 	/* setup SIT bitmap from ckeckpoint pack */
2029 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2030 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2031 
2032 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2033 	if (!dst_bitmap)
2034 		return -ENOMEM;
2035 
2036 	/* init SIT information */
2037 	sit_i->s_ops = &default_salloc_ops;
2038 
2039 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2040 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2041 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2042 	sit_i->sit_bitmap = dst_bitmap;
2043 	sit_i->bitmap_size = bitmap_size;
2044 	sit_i->dirty_sentries = 0;
2045 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2046 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2047 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2048 	mutex_init(&sit_i->sentry_lock);
2049 	return 0;
2050 }
2051 
2052 static int build_free_segmap(struct f2fs_sb_info *sbi)
2053 {
2054 	struct free_segmap_info *free_i;
2055 	unsigned int bitmap_size, sec_bitmap_size;
2056 
2057 	/* allocate memory for free segmap information */
2058 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2059 	if (!free_i)
2060 		return -ENOMEM;
2061 
2062 	SM_I(sbi)->free_info = free_i;
2063 
2064 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2065 	free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2066 	if (!free_i->free_segmap)
2067 		return -ENOMEM;
2068 
2069 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2070 	free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2071 	if (!free_i->free_secmap)
2072 		return -ENOMEM;
2073 
2074 	/* set all segments as dirty temporarily */
2075 	memset(free_i->free_segmap, 0xff, bitmap_size);
2076 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2077 
2078 	/* init free segmap information */
2079 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2080 	free_i->free_segments = 0;
2081 	free_i->free_sections = 0;
2082 	spin_lock_init(&free_i->segmap_lock);
2083 	return 0;
2084 }
2085 
2086 static int build_curseg(struct f2fs_sb_info *sbi)
2087 {
2088 	struct curseg_info *array;
2089 	int i;
2090 
2091 	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2092 	if (!array)
2093 		return -ENOMEM;
2094 
2095 	SM_I(sbi)->curseg_array = array;
2096 
2097 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2098 		mutex_init(&array[i].curseg_mutex);
2099 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
2100 		if (!array[i].sum_blk)
2101 			return -ENOMEM;
2102 		array[i].segno = NULL_SEGNO;
2103 		array[i].next_blkoff = 0;
2104 	}
2105 	return restore_curseg_summaries(sbi);
2106 }
2107 
2108 static void build_sit_entries(struct f2fs_sb_info *sbi)
2109 {
2110 	struct sit_info *sit_i = SIT_I(sbi);
2111 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2112 	struct f2fs_summary_block *sum = curseg->sum_blk;
2113 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2114 	unsigned int i, start, end;
2115 	unsigned int readed, start_blk = 0;
2116 	int nrpages = MAX_BIO_BLOCKS(sbi);
2117 
2118 	do {
2119 		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2120 
2121 		start = start_blk * sit_i->sents_per_block;
2122 		end = (start_blk + readed) * sit_i->sents_per_block;
2123 
2124 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
2125 			struct seg_entry *se = &sit_i->sentries[start];
2126 			struct f2fs_sit_block *sit_blk;
2127 			struct f2fs_sit_entry sit;
2128 			struct page *page;
2129 
2130 			mutex_lock(&curseg->curseg_mutex);
2131 			for (i = 0; i < sits_in_cursum(sum); i++) {
2132 				if (le32_to_cpu(segno_in_journal(sum, i))
2133 								== start) {
2134 					sit = sit_in_journal(sum, i);
2135 					mutex_unlock(&curseg->curseg_mutex);
2136 					goto got_it;
2137 				}
2138 			}
2139 			mutex_unlock(&curseg->curseg_mutex);
2140 
2141 			page = get_current_sit_page(sbi, start);
2142 			sit_blk = (struct f2fs_sit_block *)page_address(page);
2143 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2144 			f2fs_put_page(page, 1);
2145 got_it:
2146 			check_block_count(sbi, start, &sit);
2147 			seg_info_from_raw_sit(se, &sit);
2148 
2149 			/* build discard map only one time */
2150 			memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2151 			sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2152 
2153 			if (sbi->segs_per_sec > 1) {
2154 				struct sec_entry *e = get_sec_entry(sbi, start);
2155 				e->valid_blocks += se->valid_blocks;
2156 			}
2157 		}
2158 		start_blk += readed;
2159 	} while (start_blk < sit_blk_cnt);
2160 }
2161 
2162 static void init_free_segmap(struct f2fs_sb_info *sbi)
2163 {
2164 	unsigned int start;
2165 	int type;
2166 
2167 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2168 		struct seg_entry *sentry = get_seg_entry(sbi, start);
2169 		if (!sentry->valid_blocks)
2170 			__set_free(sbi, start);
2171 	}
2172 
2173 	/* set use the current segments */
2174 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2175 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2176 		__set_test_and_inuse(sbi, curseg_t->segno);
2177 	}
2178 }
2179 
2180 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2181 {
2182 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2183 	struct free_segmap_info *free_i = FREE_I(sbi);
2184 	unsigned int segno = 0, offset = 0;
2185 	unsigned short valid_blocks;
2186 
2187 	while (1) {
2188 		/* find dirty segment based on free segmap */
2189 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2190 		if (segno >= MAIN_SEGS(sbi))
2191 			break;
2192 		offset = segno + 1;
2193 		valid_blocks = get_valid_blocks(sbi, segno, 0);
2194 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2195 			continue;
2196 		if (valid_blocks > sbi->blocks_per_seg) {
2197 			f2fs_bug_on(sbi, 1);
2198 			continue;
2199 		}
2200 		mutex_lock(&dirty_i->seglist_lock);
2201 		__locate_dirty_segment(sbi, segno, DIRTY);
2202 		mutex_unlock(&dirty_i->seglist_lock);
2203 	}
2204 }
2205 
2206 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2207 {
2208 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2209 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2210 
2211 	dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2212 	if (!dirty_i->victim_secmap)
2213 		return -ENOMEM;
2214 	return 0;
2215 }
2216 
2217 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2218 {
2219 	struct dirty_seglist_info *dirty_i;
2220 	unsigned int bitmap_size, i;
2221 
2222 	/* allocate memory for dirty segments list information */
2223 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2224 	if (!dirty_i)
2225 		return -ENOMEM;
2226 
2227 	SM_I(sbi)->dirty_info = dirty_i;
2228 	mutex_init(&dirty_i->seglist_lock);
2229 
2230 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2231 
2232 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
2233 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2234 		if (!dirty_i->dirty_segmap[i])
2235 			return -ENOMEM;
2236 	}
2237 
2238 	init_dirty_segmap(sbi);
2239 	return init_victim_secmap(sbi);
2240 }
2241 
2242 /*
2243  * Update min, max modified time for cost-benefit GC algorithm
2244  */
2245 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2246 {
2247 	struct sit_info *sit_i = SIT_I(sbi);
2248 	unsigned int segno;
2249 
2250 	mutex_lock(&sit_i->sentry_lock);
2251 
2252 	sit_i->min_mtime = LLONG_MAX;
2253 
2254 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2255 		unsigned int i;
2256 		unsigned long long mtime = 0;
2257 
2258 		for (i = 0; i < sbi->segs_per_sec; i++)
2259 			mtime += get_seg_entry(sbi, segno + i)->mtime;
2260 
2261 		mtime = div_u64(mtime, sbi->segs_per_sec);
2262 
2263 		if (sit_i->min_mtime > mtime)
2264 			sit_i->min_mtime = mtime;
2265 	}
2266 	sit_i->max_mtime = get_mtime(sbi);
2267 	mutex_unlock(&sit_i->sentry_lock);
2268 }
2269 
2270 int build_segment_manager(struct f2fs_sb_info *sbi)
2271 {
2272 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2273 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2274 	struct f2fs_sm_info *sm_info;
2275 	int err;
2276 
2277 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2278 	if (!sm_info)
2279 		return -ENOMEM;
2280 
2281 	/* init sm info */
2282 	sbi->sm_info = sm_info;
2283 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2284 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2285 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2286 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2287 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2288 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2289 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2290 	sm_info->rec_prefree_segments = sm_info->main_segments *
2291 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2292 	sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2293 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2294 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2295 
2296 	INIT_LIST_HEAD(&sm_info->discard_list);
2297 	sm_info->nr_discards = 0;
2298 	sm_info->max_discards = 0;
2299 
2300 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2301 
2302 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
2303 
2304 	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2305 		err = create_flush_cmd_control(sbi);
2306 		if (err)
2307 			return err;
2308 	}
2309 
2310 	err = build_sit_info(sbi);
2311 	if (err)
2312 		return err;
2313 	err = build_free_segmap(sbi);
2314 	if (err)
2315 		return err;
2316 	err = build_curseg(sbi);
2317 	if (err)
2318 		return err;
2319 
2320 	/* reinit free segmap based on SIT */
2321 	build_sit_entries(sbi);
2322 
2323 	init_free_segmap(sbi);
2324 	err = build_dirty_segmap(sbi);
2325 	if (err)
2326 		return err;
2327 
2328 	init_min_max_mtime(sbi);
2329 	return 0;
2330 }
2331 
2332 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2333 		enum dirty_type dirty_type)
2334 {
2335 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2336 
2337 	mutex_lock(&dirty_i->seglist_lock);
2338 	kvfree(dirty_i->dirty_segmap[dirty_type]);
2339 	dirty_i->nr_dirty[dirty_type] = 0;
2340 	mutex_unlock(&dirty_i->seglist_lock);
2341 }
2342 
2343 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2344 {
2345 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2346 	kvfree(dirty_i->victim_secmap);
2347 }
2348 
2349 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2350 {
2351 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2352 	int i;
2353 
2354 	if (!dirty_i)
2355 		return;
2356 
2357 	/* discard pre-free/dirty segments list */
2358 	for (i = 0; i < NR_DIRTY_TYPE; i++)
2359 		discard_dirty_segmap(sbi, i);
2360 
2361 	destroy_victim_secmap(sbi);
2362 	SM_I(sbi)->dirty_info = NULL;
2363 	kfree(dirty_i);
2364 }
2365 
2366 static void destroy_curseg(struct f2fs_sb_info *sbi)
2367 {
2368 	struct curseg_info *array = SM_I(sbi)->curseg_array;
2369 	int i;
2370 
2371 	if (!array)
2372 		return;
2373 	SM_I(sbi)->curseg_array = NULL;
2374 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2375 		kfree(array[i].sum_blk);
2376 	kfree(array);
2377 }
2378 
2379 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2380 {
2381 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2382 	if (!free_i)
2383 		return;
2384 	SM_I(sbi)->free_info = NULL;
2385 	kvfree(free_i->free_segmap);
2386 	kvfree(free_i->free_secmap);
2387 	kfree(free_i);
2388 }
2389 
2390 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2391 {
2392 	struct sit_info *sit_i = SIT_I(sbi);
2393 	unsigned int start;
2394 
2395 	if (!sit_i)
2396 		return;
2397 
2398 	if (sit_i->sentries) {
2399 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
2400 			kfree(sit_i->sentries[start].cur_valid_map);
2401 			kfree(sit_i->sentries[start].ckpt_valid_map);
2402 			kfree(sit_i->sentries[start].discard_map);
2403 		}
2404 	}
2405 	kfree(sit_i->tmp_map);
2406 
2407 	kvfree(sit_i->sentries);
2408 	kvfree(sit_i->sec_entries);
2409 	kvfree(sit_i->dirty_sentries_bitmap);
2410 
2411 	SM_I(sbi)->sit_info = NULL;
2412 	kfree(sit_i->sit_bitmap);
2413 	kfree(sit_i);
2414 }
2415 
2416 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2417 {
2418 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2419 
2420 	if (!sm_info)
2421 		return;
2422 	destroy_flush_cmd_control(sbi);
2423 	destroy_dirty_segmap(sbi);
2424 	destroy_curseg(sbi);
2425 	destroy_free_segmap(sbi);
2426 	destroy_sit_info(sbi);
2427 	sbi->sm_info = NULL;
2428 	kfree(sm_info);
2429 }
2430 
2431 int __init create_segment_manager_caches(void)
2432 {
2433 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2434 			sizeof(struct discard_entry));
2435 	if (!discard_entry_slab)
2436 		goto fail;
2437 
2438 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2439 			sizeof(struct sit_entry_set));
2440 	if (!sit_entry_set_slab)
2441 		goto destory_discard_entry;
2442 
2443 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2444 			sizeof(struct inmem_pages));
2445 	if (!inmem_entry_slab)
2446 		goto destroy_sit_entry_set;
2447 	return 0;
2448 
2449 destroy_sit_entry_set:
2450 	kmem_cache_destroy(sit_entry_set_slab);
2451 destory_discard_entry:
2452 	kmem_cache_destroy(discard_entry_slab);
2453 fail:
2454 	return -ENOMEM;
2455 }
2456 
2457 void destroy_segment_manager_caches(void)
2458 {
2459 	kmem_cache_destroy(sit_entry_set_slab);
2460 	kmem_cache_destroy(discard_entry_slab);
2461 	kmem_cache_destroy(inmem_entry_slab);
2462 }
2463