xref: /openbmc/linux/fs/f2fs/segment.c (revision a2cce7a9)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31 
32 /*
33  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
34  * MSB and LSB are reversed in a byte by f2fs_set_bit.
35  */
36 static inline unsigned long __reverse_ffs(unsigned long word)
37 {
38 	int num = 0;
39 
40 #if BITS_PER_LONG == 64
41 	if ((word & 0xffffffff) == 0) {
42 		num += 32;
43 		word >>= 32;
44 	}
45 #endif
46 	if ((word & 0xffff) == 0) {
47 		num += 16;
48 		word >>= 16;
49 	}
50 	if ((word & 0xff) == 0) {
51 		num += 8;
52 		word >>= 8;
53 	}
54 	if ((word & 0xf0) == 0)
55 		num += 4;
56 	else
57 		word >>= 4;
58 	if ((word & 0xc) == 0)
59 		num += 2;
60 	else
61 		word >>= 2;
62 	if ((word & 0x2) == 0)
63 		num += 1;
64 	return num;
65 }
66 
67 /*
68  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
69  * f2fs_set_bit makes MSB and LSB reversed in a byte.
70  * Example:
71  *                             LSB <--> MSB
72  *   f2fs_set_bit(0, bitmap) => 0000 0001
73  *   f2fs_set_bit(7, bitmap) => 1000 0000
74  */
75 static unsigned long __find_rev_next_bit(const unsigned long *addr,
76 			unsigned long size, unsigned long offset)
77 {
78 	while (!f2fs_test_bit(offset, (unsigned char *)addr))
79 		offset++;
80 
81 	if (offset > size)
82 		offset = size;
83 
84 	return offset;
85 #if 0
86 	const unsigned long *p = addr + BIT_WORD(offset);
87 	unsigned long result = offset & ~(BITS_PER_LONG - 1);
88 	unsigned long tmp;
89 	unsigned long mask, submask;
90 	unsigned long quot, rest;
91 
92 	if (offset >= size)
93 		return size;
94 
95 	size -= result;
96 	offset %= BITS_PER_LONG;
97 	if (!offset)
98 		goto aligned;
99 
100 	tmp = *(p++);
101 	quot = (offset >> 3) << 3;
102 	rest = offset & 0x7;
103 	mask = ~0UL << quot;
104 	submask = (unsigned char)(0xff << rest) >> rest;
105 	submask <<= quot;
106 	mask &= submask;
107 	tmp &= mask;
108 	if (size < BITS_PER_LONG)
109 		goto found_first;
110 	if (tmp)
111 		goto found_middle;
112 
113 	size -= BITS_PER_LONG;
114 	result += BITS_PER_LONG;
115 aligned:
116 	while (size & ~(BITS_PER_LONG-1)) {
117 		tmp = *(p++);
118 		if (tmp)
119 			goto found_middle;
120 		result += BITS_PER_LONG;
121 		size -= BITS_PER_LONG;
122 	}
123 	if (!size)
124 		return result;
125 	tmp = *p;
126 found_first:
127 	tmp &= (~0UL >> (BITS_PER_LONG - size));
128 	if (tmp == 0UL)		/* Are any bits set? */
129 		return result + size;   /* Nope. */
130 found_middle:
131 	return result + __reverse_ffs(tmp);
132 #endif
133 }
134 
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 			unsigned long size, unsigned long offset)
137 {
138 	while (f2fs_test_bit(offset, (unsigned char *)addr))
139 		offset++;
140 
141 	if (offset > size)
142 		offset = size;
143 
144 	return offset;
145 #if 0
146 	const unsigned long *p = addr + BIT_WORD(offset);
147 	unsigned long result = offset & ~(BITS_PER_LONG - 1);
148 	unsigned long tmp;
149 	unsigned long mask, submask;
150 	unsigned long quot, rest;
151 
152 	if (offset >= size)
153 		return size;
154 
155 	size -= result;
156 	offset %= BITS_PER_LONG;
157 	if (!offset)
158 		goto aligned;
159 
160 	tmp = *(p++);
161 	quot = (offset >> 3) << 3;
162 	rest = offset & 0x7;
163 	mask = ~(~0UL << quot);
164 	submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
165 	submask <<= quot;
166 	mask += submask;
167 	tmp |= mask;
168 	if (size < BITS_PER_LONG)
169 		goto found_first;
170 	if (~tmp)
171 		goto found_middle;
172 
173 	size -= BITS_PER_LONG;
174 	result += BITS_PER_LONG;
175 aligned:
176 	while (size & ~(BITS_PER_LONG - 1)) {
177 		tmp = *(p++);
178 		if (~tmp)
179 			goto found_middle;
180 		result += BITS_PER_LONG;
181 		size -= BITS_PER_LONG;
182 	}
183 	if (!size)
184 		return result;
185 	tmp = *p;
186 
187 found_first:
188 	tmp |= ~0UL << size;
189 	if (tmp == ~0UL)        /* Are any bits zero? */
190 		return result + size;   /* Nope. */
191 found_middle:
192 	return result + __reverse_ffz(tmp);
193 #endif
194 }
195 
196 void register_inmem_page(struct inode *inode, struct page *page)
197 {
198 	struct f2fs_inode_info *fi = F2FS_I(inode);
199 	struct inmem_pages *new;
200 
201 	f2fs_trace_pid(page);
202 
203 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
204 	SetPagePrivate(page);
205 
206 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
207 
208 	/* add atomic page indices to the list */
209 	new->page = page;
210 	INIT_LIST_HEAD(&new->list);
211 
212 	/* increase reference count with clean state */
213 	mutex_lock(&fi->inmem_lock);
214 	get_page(page);
215 	list_add_tail(&new->list, &fi->inmem_pages);
216 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
217 	mutex_unlock(&fi->inmem_lock);
218 
219 	trace_f2fs_register_inmem_page(page, INMEM);
220 }
221 
222 int commit_inmem_pages(struct inode *inode, bool abort)
223 {
224 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
225 	struct f2fs_inode_info *fi = F2FS_I(inode);
226 	struct inmem_pages *cur, *tmp;
227 	bool submit_bio = false;
228 	struct f2fs_io_info fio = {
229 		.sbi = sbi,
230 		.type = DATA,
231 		.rw = WRITE_SYNC | REQ_PRIO,
232 		.encrypted_page = NULL,
233 	};
234 	int err = 0;
235 
236 	/*
237 	 * The abort is true only when f2fs_evict_inode is called.
238 	 * Basically, the f2fs_evict_inode doesn't produce any data writes, so
239 	 * that we don't need to call f2fs_balance_fs.
240 	 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this
241 	 * inode becomes free by iget_locked in f2fs_iget.
242 	 */
243 	if (!abort) {
244 		f2fs_balance_fs(sbi);
245 		f2fs_lock_op(sbi);
246 	}
247 
248 	mutex_lock(&fi->inmem_lock);
249 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
250 		lock_page(cur->page);
251 		if (!abort) {
252 			if (cur->page->mapping == inode->i_mapping) {
253 				set_page_dirty(cur->page);
254 				f2fs_wait_on_page_writeback(cur->page, DATA);
255 				if (clear_page_dirty_for_io(cur->page))
256 					inode_dec_dirty_pages(inode);
257 				trace_f2fs_commit_inmem_page(cur->page, INMEM);
258 				fio.page = cur->page;
259 				err = do_write_data_page(&fio);
260 				submit_bio = true;
261 				if (err) {
262 					unlock_page(cur->page);
263 					break;
264 				}
265 			}
266 		} else {
267 			trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP);
268 		}
269 		set_page_private(cur->page, 0);
270 		ClearPagePrivate(cur->page);
271 		f2fs_put_page(cur->page, 1);
272 
273 		list_del(&cur->list);
274 		kmem_cache_free(inmem_entry_slab, cur);
275 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
276 	}
277 	mutex_unlock(&fi->inmem_lock);
278 
279 	if (!abort) {
280 		f2fs_unlock_op(sbi);
281 		if (submit_bio)
282 			f2fs_submit_merged_bio(sbi, DATA, WRITE);
283 	}
284 	return err;
285 }
286 
287 /*
288  * This function balances dirty node and dentry pages.
289  * In addition, it controls garbage collection.
290  */
291 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
292 {
293 	/*
294 	 * We should do GC or end up with checkpoint, if there are so many dirty
295 	 * dir/node pages without enough free segments.
296 	 */
297 	if (has_not_enough_free_secs(sbi, 0)) {
298 		mutex_lock(&sbi->gc_mutex);
299 		f2fs_gc(sbi);
300 	}
301 }
302 
303 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
304 {
305 	/* try to shrink extent cache when there is no enough memory */
306 	if (!available_free_memory(sbi, EXTENT_CACHE))
307 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
308 
309 	/* check the # of cached NAT entries */
310 	if (!available_free_memory(sbi, NAT_ENTRIES))
311 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
312 
313 	if (!available_free_memory(sbi, FREE_NIDS))
314 		try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
315 
316 	/* checkpoint is the only way to shrink partial cached entries */
317 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
318 			excess_prefree_segs(sbi) ||
319 			!available_free_memory(sbi, INO_ENTRIES))
320 		f2fs_sync_fs(sbi->sb, true);
321 }
322 
323 static int issue_flush_thread(void *data)
324 {
325 	struct f2fs_sb_info *sbi = data;
326 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
327 	wait_queue_head_t *q = &fcc->flush_wait_queue;
328 repeat:
329 	if (kthread_should_stop())
330 		return 0;
331 
332 	if (!llist_empty(&fcc->issue_list)) {
333 		struct bio *bio;
334 		struct flush_cmd *cmd, *next;
335 		int ret;
336 
337 		bio = f2fs_bio_alloc(0);
338 
339 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
340 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
341 
342 		bio->bi_bdev = sbi->sb->s_bdev;
343 		ret = submit_bio_wait(WRITE_FLUSH, bio);
344 
345 		llist_for_each_entry_safe(cmd, next,
346 					  fcc->dispatch_list, llnode) {
347 			cmd->ret = ret;
348 			complete(&cmd->wait);
349 		}
350 		bio_put(bio);
351 		fcc->dispatch_list = NULL;
352 	}
353 
354 	wait_event_interruptible(*q,
355 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
356 	goto repeat;
357 }
358 
359 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
360 {
361 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
362 	struct flush_cmd cmd;
363 
364 	trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
365 					test_opt(sbi, FLUSH_MERGE));
366 
367 	if (test_opt(sbi, NOBARRIER))
368 		return 0;
369 
370 	if (!test_opt(sbi, FLUSH_MERGE)) {
371 		struct bio *bio = f2fs_bio_alloc(0);
372 		int ret;
373 
374 		bio->bi_bdev = sbi->sb->s_bdev;
375 		ret = submit_bio_wait(WRITE_FLUSH, bio);
376 		bio_put(bio);
377 		return ret;
378 	}
379 
380 	init_completion(&cmd.wait);
381 
382 	llist_add(&cmd.llnode, &fcc->issue_list);
383 
384 	if (!fcc->dispatch_list)
385 		wake_up(&fcc->flush_wait_queue);
386 
387 	wait_for_completion(&cmd.wait);
388 
389 	return cmd.ret;
390 }
391 
392 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
393 {
394 	dev_t dev = sbi->sb->s_bdev->bd_dev;
395 	struct flush_cmd_control *fcc;
396 	int err = 0;
397 
398 	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
399 	if (!fcc)
400 		return -ENOMEM;
401 	init_waitqueue_head(&fcc->flush_wait_queue);
402 	init_llist_head(&fcc->issue_list);
403 	SM_I(sbi)->cmd_control_info = fcc;
404 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
405 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
406 	if (IS_ERR(fcc->f2fs_issue_flush)) {
407 		err = PTR_ERR(fcc->f2fs_issue_flush);
408 		kfree(fcc);
409 		SM_I(sbi)->cmd_control_info = NULL;
410 		return err;
411 	}
412 
413 	return err;
414 }
415 
416 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
417 {
418 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
419 
420 	if (fcc && fcc->f2fs_issue_flush)
421 		kthread_stop(fcc->f2fs_issue_flush);
422 	kfree(fcc);
423 	SM_I(sbi)->cmd_control_info = NULL;
424 }
425 
426 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
427 		enum dirty_type dirty_type)
428 {
429 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
430 
431 	/* need not be added */
432 	if (IS_CURSEG(sbi, segno))
433 		return;
434 
435 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
436 		dirty_i->nr_dirty[dirty_type]++;
437 
438 	if (dirty_type == DIRTY) {
439 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
440 		enum dirty_type t = sentry->type;
441 
442 		if (unlikely(t >= DIRTY)) {
443 			f2fs_bug_on(sbi, 1);
444 			return;
445 		}
446 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
447 			dirty_i->nr_dirty[t]++;
448 	}
449 }
450 
451 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
452 		enum dirty_type dirty_type)
453 {
454 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
455 
456 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
457 		dirty_i->nr_dirty[dirty_type]--;
458 
459 	if (dirty_type == DIRTY) {
460 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
461 		enum dirty_type t = sentry->type;
462 
463 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
464 			dirty_i->nr_dirty[t]--;
465 
466 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
467 			clear_bit(GET_SECNO(sbi, segno),
468 						dirty_i->victim_secmap);
469 	}
470 }
471 
472 /*
473  * Should not occur error such as -ENOMEM.
474  * Adding dirty entry into seglist is not critical operation.
475  * If a given segment is one of current working segments, it won't be added.
476  */
477 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
478 {
479 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
480 	unsigned short valid_blocks;
481 
482 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
483 		return;
484 
485 	mutex_lock(&dirty_i->seglist_lock);
486 
487 	valid_blocks = get_valid_blocks(sbi, segno, 0);
488 
489 	if (valid_blocks == 0) {
490 		__locate_dirty_segment(sbi, segno, PRE);
491 		__remove_dirty_segment(sbi, segno, DIRTY);
492 	} else if (valid_blocks < sbi->blocks_per_seg) {
493 		__locate_dirty_segment(sbi, segno, DIRTY);
494 	} else {
495 		/* Recovery routine with SSR needs this */
496 		__remove_dirty_segment(sbi, segno, DIRTY);
497 	}
498 
499 	mutex_unlock(&dirty_i->seglist_lock);
500 }
501 
502 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
503 				block_t blkstart, block_t blklen)
504 {
505 	sector_t start = SECTOR_FROM_BLOCK(blkstart);
506 	sector_t len = SECTOR_FROM_BLOCK(blklen);
507 	struct seg_entry *se;
508 	unsigned int offset;
509 	block_t i;
510 
511 	for (i = blkstart; i < blkstart + blklen; i++) {
512 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
513 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
514 
515 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
516 			sbi->discard_blks--;
517 	}
518 	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
519 	return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
520 }
521 
522 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
523 {
524 	int err = -ENOTSUPP;
525 
526 	if (test_opt(sbi, DISCARD)) {
527 		struct seg_entry *se = get_seg_entry(sbi,
528 				GET_SEGNO(sbi, blkaddr));
529 		unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
530 
531 		if (f2fs_test_bit(offset, se->discard_map))
532 			return false;
533 
534 		err = f2fs_issue_discard(sbi, blkaddr, 1);
535 	}
536 
537 	if (err) {
538 		update_meta_page(sbi, NULL, blkaddr);
539 		return true;
540 	}
541 	return false;
542 }
543 
544 static void __add_discard_entry(struct f2fs_sb_info *sbi,
545 		struct cp_control *cpc, struct seg_entry *se,
546 		unsigned int start, unsigned int end)
547 {
548 	struct list_head *head = &SM_I(sbi)->discard_list;
549 	struct discard_entry *new, *last;
550 
551 	if (!list_empty(head)) {
552 		last = list_last_entry(head, struct discard_entry, list);
553 		if (START_BLOCK(sbi, cpc->trim_start) + start ==
554 						last->blkaddr + last->len) {
555 			last->len += end - start;
556 			goto done;
557 		}
558 	}
559 
560 	new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
561 	INIT_LIST_HEAD(&new->list);
562 	new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
563 	new->len = end - start;
564 	list_add_tail(&new->list, head);
565 done:
566 	SM_I(sbi)->nr_discards += end - start;
567 }
568 
569 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
570 {
571 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
572 	int max_blocks = sbi->blocks_per_seg;
573 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
574 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
575 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
576 	unsigned long *discard_map = (unsigned long *)se->discard_map;
577 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
578 	unsigned int start = 0, end = -1;
579 	bool force = (cpc->reason == CP_DISCARD);
580 	int i;
581 
582 	if (se->valid_blocks == max_blocks)
583 		return;
584 
585 	if (!force) {
586 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
587 		    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
588 			return;
589 	}
590 
591 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
592 	for (i = 0; i < entries; i++)
593 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
594 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
595 
596 	while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
597 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
598 		if (start >= max_blocks)
599 			break;
600 
601 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
602 		__add_discard_entry(sbi, cpc, se, start, end);
603 	}
604 }
605 
606 void release_discard_addrs(struct f2fs_sb_info *sbi)
607 {
608 	struct list_head *head = &(SM_I(sbi)->discard_list);
609 	struct discard_entry *entry, *this;
610 
611 	/* drop caches */
612 	list_for_each_entry_safe(entry, this, head, list) {
613 		list_del(&entry->list);
614 		kmem_cache_free(discard_entry_slab, entry);
615 	}
616 }
617 
618 /*
619  * Should call clear_prefree_segments after checkpoint is done.
620  */
621 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
622 {
623 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
624 	unsigned int segno;
625 
626 	mutex_lock(&dirty_i->seglist_lock);
627 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
628 		__set_test_and_free(sbi, segno);
629 	mutex_unlock(&dirty_i->seglist_lock);
630 }
631 
632 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
633 {
634 	struct list_head *head = &(SM_I(sbi)->discard_list);
635 	struct discard_entry *entry, *this;
636 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
637 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
638 	unsigned int start = 0, end = -1;
639 
640 	mutex_lock(&dirty_i->seglist_lock);
641 
642 	while (1) {
643 		int i;
644 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
645 		if (start >= MAIN_SEGS(sbi))
646 			break;
647 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
648 								start + 1);
649 
650 		for (i = start; i < end; i++)
651 			clear_bit(i, prefree_map);
652 
653 		dirty_i->nr_dirty[PRE] -= end - start;
654 
655 		if (!test_opt(sbi, DISCARD))
656 			continue;
657 
658 		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
659 				(end - start) << sbi->log_blocks_per_seg);
660 	}
661 	mutex_unlock(&dirty_i->seglist_lock);
662 
663 	/* send small discards */
664 	list_for_each_entry_safe(entry, this, head, list) {
665 		if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
666 			goto skip;
667 		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
668 		cpc->trimmed += entry->len;
669 skip:
670 		list_del(&entry->list);
671 		SM_I(sbi)->nr_discards -= entry->len;
672 		kmem_cache_free(discard_entry_slab, entry);
673 	}
674 }
675 
676 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
677 {
678 	struct sit_info *sit_i = SIT_I(sbi);
679 
680 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
681 		sit_i->dirty_sentries++;
682 		return false;
683 	}
684 
685 	return true;
686 }
687 
688 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
689 					unsigned int segno, int modified)
690 {
691 	struct seg_entry *se = get_seg_entry(sbi, segno);
692 	se->type = type;
693 	if (modified)
694 		__mark_sit_entry_dirty(sbi, segno);
695 }
696 
697 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
698 {
699 	struct seg_entry *se;
700 	unsigned int segno, offset;
701 	long int new_vblocks;
702 
703 	segno = GET_SEGNO(sbi, blkaddr);
704 
705 	se = get_seg_entry(sbi, segno);
706 	new_vblocks = se->valid_blocks + del;
707 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
708 
709 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
710 				(new_vblocks > sbi->blocks_per_seg)));
711 
712 	se->valid_blocks = new_vblocks;
713 	se->mtime = get_mtime(sbi);
714 	SIT_I(sbi)->max_mtime = se->mtime;
715 
716 	/* Update valid block bitmap */
717 	if (del > 0) {
718 		if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
719 			f2fs_bug_on(sbi, 1);
720 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
721 			sbi->discard_blks--;
722 	} else {
723 		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
724 			f2fs_bug_on(sbi, 1);
725 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
726 			sbi->discard_blks++;
727 	}
728 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
729 		se->ckpt_valid_blocks += del;
730 
731 	__mark_sit_entry_dirty(sbi, segno);
732 
733 	/* update total number of valid blocks to be written in ckpt area */
734 	SIT_I(sbi)->written_valid_blocks += del;
735 
736 	if (sbi->segs_per_sec > 1)
737 		get_sec_entry(sbi, segno)->valid_blocks += del;
738 }
739 
740 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
741 {
742 	update_sit_entry(sbi, new, 1);
743 	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
744 		update_sit_entry(sbi, old, -1);
745 
746 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
747 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
748 }
749 
750 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
751 {
752 	unsigned int segno = GET_SEGNO(sbi, addr);
753 	struct sit_info *sit_i = SIT_I(sbi);
754 
755 	f2fs_bug_on(sbi, addr == NULL_ADDR);
756 	if (addr == NEW_ADDR)
757 		return;
758 
759 	/* add it into sit main buffer */
760 	mutex_lock(&sit_i->sentry_lock);
761 
762 	update_sit_entry(sbi, addr, -1);
763 
764 	/* add it into dirty seglist */
765 	locate_dirty_segment(sbi, segno);
766 
767 	mutex_unlock(&sit_i->sentry_lock);
768 }
769 
770 /*
771  * This function should be resided under the curseg_mutex lock
772  */
773 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
774 					struct f2fs_summary *sum)
775 {
776 	struct curseg_info *curseg = CURSEG_I(sbi, type);
777 	void *addr = curseg->sum_blk;
778 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
779 	memcpy(addr, sum, sizeof(struct f2fs_summary));
780 }
781 
782 /*
783  * Calculate the number of current summary pages for writing
784  */
785 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
786 {
787 	int valid_sum_count = 0;
788 	int i, sum_in_page;
789 
790 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
791 		if (sbi->ckpt->alloc_type[i] == SSR)
792 			valid_sum_count += sbi->blocks_per_seg;
793 		else {
794 			if (for_ra)
795 				valid_sum_count += le16_to_cpu(
796 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
797 			else
798 				valid_sum_count += curseg_blkoff(sbi, i);
799 		}
800 	}
801 
802 	sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
803 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
804 	if (valid_sum_count <= sum_in_page)
805 		return 1;
806 	else if ((valid_sum_count - sum_in_page) <=
807 		(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
808 		return 2;
809 	return 3;
810 }
811 
812 /*
813  * Caller should put this summary page
814  */
815 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
816 {
817 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
818 }
819 
820 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
821 {
822 	struct page *page = grab_meta_page(sbi, blk_addr);
823 	void *dst = page_address(page);
824 
825 	if (src)
826 		memcpy(dst, src, PAGE_CACHE_SIZE);
827 	else
828 		memset(dst, 0, PAGE_CACHE_SIZE);
829 	set_page_dirty(page);
830 	f2fs_put_page(page, 1);
831 }
832 
833 static void write_sum_page(struct f2fs_sb_info *sbi,
834 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
835 {
836 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
837 }
838 
839 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
840 {
841 	struct curseg_info *curseg = CURSEG_I(sbi, type);
842 	unsigned int segno = curseg->segno + 1;
843 	struct free_segmap_info *free_i = FREE_I(sbi);
844 
845 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
846 		return !test_bit(segno, free_i->free_segmap);
847 	return 0;
848 }
849 
850 /*
851  * Find a new segment from the free segments bitmap to right order
852  * This function should be returned with success, otherwise BUG
853  */
854 static void get_new_segment(struct f2fs_sb_info *sbi,
855 			unsigned int *newseg, bool new_sec, int dir)
856 {
857 	struct free_segmap_info *free_i = FREE_I(sbi);
858 	unsigned int segno, secno, zoneno;
859 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
860 	unsigned int hint = *newseg / sbi->segs_per_sec;
861 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
862 	unsigned int left_start = hint;
863 	bool init = true;
864 	int go_left = 0;
865 	int i;
866 
867 	spin_lock(&free_i->segmap_lock);
868 
869 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
870 		segno = find_next_zero_bit(free_i->free_segmap,
871 					MAIN_SEGS(sbi), *newseg + 1);
872 		if (segno - *newseg < sbi->segs_per_sec -
873 					(*newseg % sbi->segs_per_sec))
874 			goto got_it;
875 	}
876 find_other_zone:
877 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
878 	if (secno >= MAIN_SECS(sbi)) {
879 		if (dir == ALLOC_RIGHT) {
880 			secno = find_next_zero_bit(free_i->free_secmap,
881 							MAIN_SECS(sbi), 0);
882 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
883 		} else {
884 			go_left = 1;
885 			left_start = hint - 1;
886 		}
887 	}
888 	if (go_left == 0)
889 		goto skip_left;
890 
891 	while (test_bit(left_start, free_i->free_secmap)) {
892 		if (left_start > 0) {
893 			left_start--;
894 			continue;
895 		}
896 		left_start = find_next_zero_bit(free_i->free_secmap,
897 							MAIN_SECS(sbi), 0);
898 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
899 		break;
900 	}
901 	secno = left_start;
902 skip_left:
903 	hint = secno;
904 	segno = secno * sbi->segs_per_sec;
905 	zoneno = secno / sbi->secs_per_zone;
906 
907 	/* give up on finding another zone */
908 	if (!init)
909 		goto got_it;
910 	if (sbi->secs_per_zone == 1)
911 		goto got_it;
912 	if (zoneno == old_zoneno)
913 		goto got_it;
914 	if (dir == ALLOC_LEFT) {
915 		if (!go_left && zoneno + 1 >= total_zones)
916 			goto got_it;
917 		if (go_left && zoneno == 0)
918 			goto got_it;
919 	}
920 	for (i = 0; i < NR_CURSEG_TYPE; i++)
921 		if (CURSEG_I(sbi, i)->zone == zoneno)
922 			break;
923 
924 	if (i < NR_CURSEG_TYPE) {
925 		/* zone is in user, try another */
926 		if (go_left)
927 			hint = zoneno * sbi->secs_per_zone - 1;
928 		else if (zoneno + 1 >= total_zones)
929 			hint = 0;
930 		else
931 			hint = (zoneno + 1) * sbi->secs_per_zone;
932 		init = false;
933 		goto find_other_zone;
934 	}
935 got_it:
936 	/* set it as dirty segment in free segmap */
937 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
938 	__set_inuse(sbi, segno);
939 	*newseg = segno;
940 	spin_unlock(&free_i->segmap_lock);
941 }
942 
943 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
944 {
945 	struct curseg_info *curseg = CURSEG_I(sbi, type);
946 	struct summary_footer *sum_footer;
947 
948 	curseg->segno = curseg->next_segno;
949 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
950 	curseg->next_blkoff = 0;
951 	curseg->next_segno = NULL_SEGNO;
952 
953 	sum_footer = &(curseg->sum_blk->footer);
954 	memset(sum_footer, 0, sizeof(struct summary_footer));
955 	if (IS_DATASEG(type))
956 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
957 	if (IS_NODESEG(type))
958 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
959 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
960 }
961 
962 /*
963  * Allocate a current working segment.
964  * This function always allocates a free segment in LFS manner.
965  */
966 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
967 {
968 	struct curseg_info *curseg = CURSEG_I(sbi, type);
969 	unsigned int segno = curseg->segno;
970 	int dir = ALLOC_LEFT;
971 
972 	write_sum_page(sbi, curseg->sum_blk,
973 				GET_SUM_BLOCK(sbi, segno));
974 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
975 		dir = ALLOC_RIGHT;
976 
977 	if (test_opt(sbi, NOHEAP))
978 		dir = ALLOC_RIGHT;
979 
980 	get_new_segment(sbi, &segno, new_sec, dir);
981 	curseg->next_segno = segno;
982 	reset_curseg(sbi, type, 1);
983 	curseg->alloc_type = LFS;
984 }
985 
986 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
987 			struct curseg_info *seg, block_t start)
988 {
989 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
990 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
991 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
992 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
993 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
994 	int i, pos;
995 
996 	for (i = 0; i < entries; i++)
997 		target_map[i] = ckpt_map[i] | cur_map[i];
998 
999 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1000 
1001 	seg->next_blkoff = pos;
1002 }
1003 
1004 /*
1005  * If a segment is written by LFS manner, next block offset is just obtained
1006  * by increasing the current block offset. However, if a segment is written by
1007  * SSR manner, next block offset obtained by calling __next_free_blkoff
1008  */
1009 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1010 				struct curseg_info *seg)
1011 {
1012 	if (seg->alloc_type == SSR)
1013 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1014 	else
1015 		seg->next_blkoff++;
1016 }
1017 
1018 /*
1019  * This function always allocates a used segment(from dirty seglist) by SSR
1020  * manner, so it should recover the existing segment information of valid blocks
1021  */
1022 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1023 {
1024 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1025 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1026 	unsigned int new_segno = curseg->next_segno;
1027 	struct f2fs_summary_block *sum_node;
1028 	struct page *sum_page;
1029 
1030 	write_sum_page(sbi, curseg->sum_blk,
1031 				GET_SUM_BLOCK(sbi, curseg->segno));
1032 	__set_test_and_inuse(sbi, new_segno);
1033 
1034 	mutex_lock(&dirty_i->seglist_lock);
1035 	__remove_dirty_segment(sbi, new_segno, PRE);
1036 	__remove_dirty_segment(sbi, new_segno, DIRTY);
1037 	mutex_unlock(&dirty_i->seglist_lock);
1038 
1039 	reset_curseg(sbi, type, 1);
1040 	curseg->alloc_type = SSR;
1041 	__next_free_blkoff(sbi, curseg, 0);
1042 
1043 	if (reuse) {
1044 		sum_page = get_sum_page(sbi, new_segno);
1045 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1046 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1047 		f2fs_put_page(sum_page, 1);
1048 	}
1049 }
1050 
1051 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1052 {
1053 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1054 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1055 
1056 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1057 		return v_ops->get_victim(sbi,
1058 				&(curseg)->next_segno, BG_GC, type, SSR);
1059 
1060 	/* For data segments, let's do SSR more intensively */
1061 	for (; type >= CURSEG_HOT_DATA; type--)
1062 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1063 						BG_GC, type, SSR))
1064 			return 1;
1065 	return 0;
1066 }
1067 
1068 /*
1069  * flush out current segment and replace it with new segment
1070  * This function should be returned with success, otherwise BUG
1071  */
1072 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1073 						int type, bool force)
1074 {
1075 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1076 
1077 	if (force)
1078 		new_curseg(sbi, type, true);
1079 	else if (type == CURSEG_WARM_NODE)
1080 		new_curseg(sbi, type, false);
1081 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1082 		new_curseg(sbi, type, false);
1083 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1084 		change_curseg(sbi, type, true);
1085 	else
1086 		new_curseg(sbi, type, false);
1087 
1088 	stat_inc_seg_type(sbi, curseg);
1089 }
1090 
1091 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1092 {
1093 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1094 	unsigned int old_segno;
1095 
1096 	old_segno = curseg->segno;
1097 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1098 	locate_dirty_segment(sbi, old_segno);
1099 }
1100 
1101 void allocate_new_segments(struct f2fs_sb_info *sbi)
1102 {
1103 	int i;
1104 
1105 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1106 		__allocate_new_segments(sbi, i);
1107 }
1108 
1109 static const struct segment_allocation default_salloc_ops = {
1110 	.allocate_segment = allocate_segment_by_default,
1111 };
1112 
1113 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1114 {
1115 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
1116 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1117 	unsigned int start_segno, end_segno;
1118 	struct cp_control cpc;
1119 
1120 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1121 		return -EINVAL;
1122 
1123 	cpc.trimmed = 0;
1124 	if (end <= MAIN_BLKADDR(sbi))
1125 		goto out;
1126 
1127 	/* start/end segment number in main_area */
1128 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1129 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1130 						GET_SEGNO(sbi, end);
1131 	cpc.reason = CP_DISCARD;
1132 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1133 
1134 	/* do checkpoint to issue discard commands safely */
1135 	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1136 		cpc.trim_start = start_segno;
1137 
1138 		if (sbi->discard_blks == 0)
1139 			break;
1140 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1141 			cpc.trim_end = end_segno;
1142 		else
1143 			cpc.trim_end = min_t(unsigned int,
1144 				rounddown(start_segno +
1145 				BATCHED_TRIM_SEGMENTS(sbi),
1146 				sbi->segs_per_sec) - 1, end_segno);
1147 
1148 		mutex_lock(&sbi->gc_mutex);
1149 		write_checkpoint(sbi, &cpc);
1150 		mutex_unlock(&sbi->gc_mutex);
1151 	}
1152 out:
1153 	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1154 	return 0;
1155 }
1156 
1157 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1158 {
1159 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1160 	if (curseg->next_blkoff < sbi->blocks_per_seg)
1161 		return true;
1162 	return false;
1163 }
1164 
1165 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1166 {
1167 	if (p_type == DATA)
1168 		return CURSEG_HOT_DATA;
1169 	else
1170 		return CURSEG_HOT_NODE;
1171 }
1172 
1173 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1174 {
1175 	if (p_type == DATA) {
1176 		struct inode *inode = page->mapping->host;
1177 
1178 		if (S_ISDIR(inode->i_mode))
1179 			return CURSEG_HOT_DATA;
1180 		else
1181 			return CURSEG_COLD_DATA;
1182 	} else {
1183 		if (IS_DNODE(page) && is_cold_node(page))
1184 			return CURSEG_WARM_NODE;
1185 		else
1186 			return CURSEG_COLD_NODE;
1187 	}
1188 }
1189 
1190 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1191 {
1192 	if (p_type == DATA) {
1193 		struct inode *inode = page->mapping->host;
1194 
1195 		if (S_ISDIR(inode->i_mode))
1196 			return CURSEG_HOT_DATA;
1197 		else if (is_cold_data(page) || file_is_cold(inode))
1198 			return CURSEG_COLD_DATA;
1199 		else
1200 			return CURSEG_WARM_DATA;
1201 	} else {
1202 		if (IS_DNODE(page))
1203 			return is_cold_node(page) ? CURSEG_WARM_NODE :
1204 						CURSEG_HOT_NODE;
1205 		else
1206 			return CURSEG_COLD_NODE;
1207 	}
1208 }
1209 
1210 static int __get_segment_type(struct page *page, enum page_type p_type)
1211 {
1212 	switch (F2FS_P_SB(page)->active_logs) {
1213 	case 2:
1214 		return __get_segment_type_2(page, p_type);
1215 	case 4:
1216 		return __get_segment_type_4(page, p_type);
1217 	}
1218 	/* NR_CURSEG_TYPE(6) logs by default */
1219 	f2fs_bug_on(F2FS_P_SB(page),
1220 		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1221 	return __get_segment_type_6(page, p_type);
1222 }
1223 
1224 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1225 		block_t old_blkaddr, block_t *new_blkaddr,
1226 		struct f2fs_summary *sum, int type)
1227 {
1228 	struct sit_info *sit_i = SIT_I(sbi);
1229 	struct curseg_info *curseg;
1230 	bool direct_io = (type == CURSEG_DIRECT_IO);
1231 
1232 	type = direct_io ? CURSEG_WARM_DATA : type;
1233 
1234 	curseg = CURSEG_I(sbi, type);
1235 
1236 	mutex_lock(&curseg->curseg_mutex);
1237 	mutex_lock(&sit_i->sentry_lock);
1238 
1239 	/* direct_io'ed data is aligned to the segment for better performance */
1240 	if (direct_io && curseg->next_blkoff &&
1241 				!has_not_enough_free_secs(sbi, 0))
1242 		__allocate_new_segments(sbi, type);
1243 
1244 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1245 
1246 	/*
1247 	 * __add_sum_entry should be resided under the curseg_mutex
1248 	 * because, this function updates a summary entry in the
1249 	 * current summary block.
1250 	 */
1251 	__add_sum_entry(sbi, type, sum);
1252 
1253 	__refresh_next_blkoff(sbi, curseg);
1254 
1255 	stat_inc_block_count(sbi, curseg);
1256 
1257 	if (!__has_curseg_space(sbi, type))
1258 		sit_i->s_ops->allocate_segment(sbi, type, false);
1259 	/*
1260 	 * SIT information should be updated before segment allocation,
1261 	 * since SSR needs latest valid block information.
1262 	 */
1263 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1264 
1265 	mutex_unlock(&sit_i->sentry_lock);
1266 
1267 	if (page && IS_NODESEG(type))
1268 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1269 
1270 	mutex_unlock(&curseg->curseg_mutex);
1271 }
1272 
1273 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1274 {
1275 	int type = __get_segment_type(fio->page, fio->type);
1276 
1277 	allocate_data_block(fio->sbi, fio->page, fio->blk_addr,
1278 					&fio->blk_addr, sum, type);
1279 
1280 	/* writeout dirty page into bdev */
1281 	f2fs_submit_page_mbio(fio);
1282 }
1283 
1284 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1285 {
1286 	struct f2fs_io_info fio = {
1287 		.sbi = sbi,
1288 		.type = META,
1289 		.rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1290 		.blk_addr = page->index,
1291 		.page = page,
1292 		.encrypted_page = NULL,
1293 	};
1294 
1295 	set_page_writeback(page);
1296 	f2fs_submit_page_mbio(&fio);
1297 }
1298 
1299 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1300 {
1301 	struct f2fs_summary sum;
1302 
1303 	set_summary(&sum, nid, 0, 0);
1304 	do_write_page(&sum, fio);
1305 }
1306 
1307 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1308 {
1309 	struct f2fs_sb_info *sbi = fio->sbi;
1310 	struct f2fs_summary sum;
1311 	struct node_info ni;
1312 
1313 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1314 	get_node_info(sbi, dn->nid, &ni);
1315 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1316 	do_write_page(&sum, fio);
1317 	dn->data_blkaddr = fio->blk_addr;
1318 }
1319 
1320 void rewrite_data_page(struct f2fs_io_info *fio)
1321 {
1322 	stat_inc_inplace_blocks(fio->sbi);
1323 	f2fs_submit_page_mbio(fio);
1324 }
1325 
1326 static void __f2fs_replace_block(struct f2fs_sb_info *sbi,
1327 				struct f2fs_summary *sum,
1328 				block_t old_blkaddr, block_t new_blkaddr,
1329 				bool recover_curseg)
1330 {
1331 	struct sit_info *sit_i = SIT_I(sbi);
1332 	struct curseg_info *curseg;
1333 	unsigned int segno, old_cursegno;
1334 	struct seg_entry *se;
1335 	int type;
1336 	unsigned short old_blkoff;
1337 
1338 	segno = GET_SEGNO(sbi, new_blkaddr);
1339 	se = get_seg_entry(sbi, segno);
1340 	type = se->type;
1341 
1342 	if (!recover_curseg) {
1343 		/* for recovery flow */
1344 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1345 			if (old_blkaddr == NULL_ADDR)
1346 				type = CURSEG_COLD_DATA;
1347 			else
1348 				type = CURSEG_WARM_DATA;
1349 		}
1350 	} else {
1351 		if (!IS_CURSEG(sbi, segno))
1352 			type = CURSEG_WARM_DATA;
1353 	}
1354 
1355 	curseg = CURSEG_I(sbi, type);
1356 
1357 	mutex_lock(&curseg->curseg_mutex);
1358 	mutex_lock(&sit_i->sentry_lock);
1359 
1360 	old_cursegno = curseg->segno;
1361 	old_blkoff = curseg->next_blkoff;
1362 
1363 	/* change the current segment */
1364 	if (segno != curseg->segno) {
1365 		curseg->next_segno = segno;
1366 		change_curseg(sbi, type, true);
1367 	}
1368 
1369 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1370 	__add_sum_entry(sbi, type, sum);
1371 
1372 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1373 	locate_dirty_segment(sbi, old_cursegno);
1374 
1375 	if (recover_curseg) {
1376 		if (old_cursegno != curseg->segno) {
1377 			curseg->next_segno = old_cursegno;
1378 			change_curseg(sbi, type, true);
1379 		}
1380 		curseg->next_blkoff = old_blkoff;
1381 	}
1382 
1383 	mutex_unlock(&sit_i->sentry_lock);
1384 	mutex_unlock(&curseg->curseg_mutex);
1385 }
1386 
1387 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1388 				block_t old_addr, block_t new_addr,
1389 				unsigned char version, bool recover_curseg)
1390 {
1391 	struct f2fs_summary sum;
1392 
1393 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1394 
1395 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr, recover_curseg);
1396 
1397 	dn->data_blkaddr = new_addr;
1398 	set_data_blkaddr(dn);
1399 	f2fs_update_extent_cache(dn);
1400 }
1401 
1402 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1403 					struct page *page, enum page_type type)
1404 {
1405 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
1406 	struct f2fs_bio_info *io = &sbi->write_io[btype];
1407 	struct bio_vec *bvec;
1408 	struct page *target;
1409 	int i;
1410 
1411 	down_read(&io->io_rwsem);
1412 	if (!io->bio) {
1413 		up_read(&io->io_rwsem);
1414 		return false;
1415 	}
1416 
1417 	bio_for_each_segment_all(bvec, io->bio, i) {
1418 
1419 		if (bvec->bv_page->mapping) {
1420 			target = bvec->bv_page;
1421 		} else {
1422 			struct f2fs_crypto_ctx *ctx;
1423 
1424 			/* encrypted page */
1425 			ctx = (struct f2fs_crypto_ctx *)page_private(
1426 								bvec->bv_page);
1427 			target = ctx->w.control_page;
1428 		}
1429 
1430 		if (page == target) {
1431 			up_read(&io->io_rwsem);
1432 			return true;
1433 		}
1434 	}
1435 
1436 	up_read(&io->io_rwsem);
1437 	return false;
1438 }
1439 
1440 void f2fs_wait_on_page_writeback(struct page *page,
1441 				enum page_type type)
1442 {
1443 	if (PageWriteback(page)) {
1444 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1445 
1446 		if (is_merged_page(sbi, page, type))
1447 			f2fs_submit_merged_bio(sbi, type, WRITE);
1448 		wait_on_page_writeback(page);
1449 	}
1450 }
1451 
1452 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1453 {
1454 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1455 	struct curseg_info *seg_i;
1456 	unsigned char *kaddr;
1457 	struct page *page;
1458 	block_t start;
1459 	int i, j, offset;
1460 
1461 	start = start_sum_block(sbi);
1462 
1463 	page = get_meta_page(sbi, start++);
1464 	kaddr = (unsigned char *)page_address(page);
1465 
1466 	/* Step 1: restore nat cache */
1467 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1468 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1469 
1470 	/* Step 2: restore sit cache */
1471 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1472 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1473 						SUM_JOURNAL_SIZE);
1474 	offset = 2 * SUM_JOURNAL_SIZE;
1475 
1476 	/* Step 3: restore summary entries */
1477 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1478 		unsigned short blk_off;
1479 		unsigned int segno;
1480 
1481 		seg_i = CURSEG_I(sbi, i);
1482 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1483 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1484 		seg_i->next_segno = segno;
1485 		reset_curseg(sbi, i, 0);
1486 		seg_i->alloc_type = ckpt->alloc_type[i];
1487 		seg_i->next_blkoff = blk_off;
1488 
1489 		if (seg_i->alloc_type == SSR)
1490 			blk_off = sbi->blocks_per_seg;
1491 
1492 		for (j = 0; j < blk_off; j++) {
1493 			struct f2fs_summary *s;
1494 			s = (struct f2fs_summary *)(kaddr + offset);
1495 			seg_i->sum_blk->entries[j] = *s;
1496 			offset += SUMMARY_SIZE;
1497 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1498 						SUM_FOOTER_SIZE)
1499 				continue;
1500 
1501 			f2fs_put_page(page, 1);
1502 			page = NULL;
1503 
1504 			page = get_meta_page(sbi, start++);
1505 			kaddr = (unsigned char *)page_address(page);
1506 			offset = 0;
1507 		}
1508 	}
1509 	f2fs_put_page(page, 1);
1510 	return 0;
1511 }
1512 
1513 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1514 {
1515 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1516 	struct f2fs_summary_block *sum;
1517 	struct curseg_info *curseg;
1518 	struct page *new;
1519 	unsigned short blk_off;
1520 	unsigned int segno = 0;
1521 	block_t blk_addr = 0;
1522 
1523 	/* get segment number and block addr */
1524 	if (IS_DATASEG(type)) {
1525 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1526 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1527 							CURSEG_HOT_DATA]);
1528 		if (__exist_node_summaries(sbi))
1529 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1530 		else
1531 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1532 	} else {
1533 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1534 							CURSEG_HOT_NODE]);
1535 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1536 							CURSEG_HOT_NODE]);
1537 		if (__exist_node_summaries(sbi))
1538 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1539 							type - CURSEG_HOT_NODE);
1540 		else
1541 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1542 	}
1543 
1544 	new = get_meta_page(sbi, blk_addr);
1545 	sum = (struct f2fs_summary_block *)page_address(new);
1546 
1547 	if (IS_NODESEG(type)) {
1548 		if (__exist_node_summaries(sbi)) {
1549 			struct f2fs_summary *ns = &sum->entries[0];
1550 			int i;
1551 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1552 				ns->version = 0;
1553 				ns->ofs_in_node = 0;
1554 			}
1555 		} else {
1556 			int err;
1557 
1558 			err = restore_node_summary(sbi, segno, sum);
1559 			if (err) {
1560 				f2fs_put_page(new, 1);
1561 				return err;
1562 			}
1563 		}
1564 	}
1565 
1566 	/* set uncompleted segment to curseg */
1567 	curseg = CURSEG_I(sbi, type);
1568 	mutex_lock(&curseg->curseg_mutex);
1569 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1570 	curseg->next_segno = segno;
1571 	reset_curseg(sbi, type, 0);
1572 	curseg->alloc_type = ckpt->alloc_type[type];
1573 	curseg->next_blkoff = blk_off;
1574 	mutex_unlock(&curseg->curseg_mutex);
1575 	f2fs_put_page(new, 1);
1576 	return 0;
1577 }
1578 
1579 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1580 {
1581 	int type = CURSEG_HOT_DATA;
1582 	int err;
1583 
1584 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1585 		int npages = npages_for_summary_flush(sbi, true);
1586 
1587 		if (npages >= 2)
1588 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
1589 								META_CP);
1590 
1591 		/* restore for compacted data summary */
1592 		if (read_compacted_summaries(sbi))
1593 			return -EINVAL;
1594 		type = CURSEG_HOT_NODE;
1595 	}
1596 
1597 	if (__exist_node_summaries(sbi))
1598 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1599 					NR_CURSEG_TYPE - type, META_CP);
1600 
1601 	for (; type <= CURSEG_COLD_NODE; type++) {
1602 		err = read_normal_summaries(sbi, type);
1603 		if (err)
1604 			return err;
1605 	}
1606 
1607 	return 0;
1608 }
1609 
1610 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1611 {
1612 	struct page *page;
1613 	unsigned char *kaddr;
1614 	struct f2fs_summary *summary;
1615 	struct curseg_info *seg_i;
1616 	int written_size = 0;
1617 	int i, j;
1618 
1619 	page = grab_meta_page(sbi, blkaddr++);
1620 	kaddr = (unsigned char *)page_address(page);
1621 
1622 	/* Step 1: write nat cache */
1623 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1624 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1625 	written_size += SUM_JOURNAL_SIZE;
1626 
1627 	/* Step 2: write sit cache */
1628 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1629 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1630 						SUM_JOURNAL_SIZE);
1631 	written_size += SUM_JOURNAL_SIZE;
1632 
1633 	/* Step 3: write summary entries */
1634 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1635 		unsigned short blkoff;
1636 		seg_i = CURSEG_I(sbi, i);
1637 		if (sbi->ckpt->alloc_type[i] == SSR)
1638 			blkoff = sbi->blocks_per_seg;
1639 		else
1640 			blkoff = curseg_blkoff(sbi, i);
1641 
1642 		for (j = 0; j < blkoff; j++) {
1643 			if (!page) {
1644 				page = grab_meta_page(sbi, blkaddr++);
1645 				kaddr = (unsigned char *)page_address(page);
1646 				written_size = 0;
1647 			}
1648 			summary = (struct f2fs_summary *)(kaddr + written_size);
1649 			*summary = seg_i->sum_blk->entries[j];
1650 			written_size += SUMMARY_SIZE;
1651 
1652 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1653 							SUM_FOOTER_SIZE)
1654 				continue;
1655 
1656 			set_page_dirty(page);
1657 			f2fs_put_page(page, 1);
1658 			page = NULL;
1659 		}
1660 	}
1661 	if (page) {
1662 		set_page_dirty(page);
1663 		f2fs_put_page(page, 1);
1664 	}
1665 }
1666 
1667 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1668 					block_t blkaddr, int type)
1669 {
1670 	int i, end;
1671 	if (IS_DATASEG(type))
1672 		end = type + NR_CURSEG_DATA_TYPE;
1673 	else
1674 		end = type + NR_CURSEG_NODE_TYPE;
1675 
1676 	for (i = type; i < end; i++) {
1677 		struct curseg_info *sum = CURSEG_I(sbi, i);
1678 		mutex_lock(&sum->curseg_mutex);
1679 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1680 		mutex_unlock(&sum->curseg_mutex);
1681 	}
1682 }
1683 
1684 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1685 {
1686 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1687 		write_compacted_summaries(sbi, start_blk);
1688 	else
1689 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1690 }
1691 
1692 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1693 {
1694 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1695 }
1696 
1697 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1698 					unsigned int val, int alloc)
1699 {
1700 	int i;
1701 
1702 	if (type == NAT_JOURNAL) {
1703 		for (i = 0; i < nats_in_cursum(sum); i++) {
1704 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1705 				return i;
1706 		}
1707 		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1708 			return update_nats_in_cursum(sum, 1);
1709 	} else if (type == SIT_JOURNAL) {
1710 		for (i = 0; i < sits_in_cursum(sum); i++)
1711 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1712 				return i;
1713 		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1714 			return update_sits_in_cursum(sum, 1);
1715 	}
1716 	return -1;
1717 }
1718 
1719 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1720 					unsigned int segno)
1721 {
1722 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
1723 }
1724 
1725 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1726 					unsigned int start)
1727 {
1728 	struct sit_info *sit_i = SIT_I(sbi);
1729 	struct page *src_page, *dst_page;
1730 	pgoff_t src_off, dst_off;
1731 	void *src_addr, *dst_addr;
1732 
1733 	src_off = current_sit_addr(sbi, start);
1734 	dst_off = next_sit_addr(sbi, src_off);
1735 
1736 	/* get current sit block page without lock */
1737 	src_page = get_meta_page(sbi, src_off);
1738 	dst_page = grab_meta_page(sbi, dst_off);
1739 	f2fs_bug_on(sbi, PageDirty(src_page));
1740 
1741 	src_addr = page_address(src_page);
1742 	dst_addr = page_address(dst_page);
1743 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1744 
1745 	set_page_dirty(dst_page);
1746 	f2fs_put_page(src_page, 1);
1747 
1748 	set_to_next_sit(sit_i, start);
1749 
1750 	return dst_page;
1751 }
1752 
1753 static struct sit_entry_set *grab_sit_entry_set(void)
1754 {
1755 	struct sit_entry_set *ses =
1756 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1757 
1758 	ses->entry_cnt = 0;
1759 	INIT_LIST_HEAD(&ses->set_list);
1760 	return ses;
1761 }
1762 
1763 static void release_sit_entry_set(struct sit_entry_set *ses)
1764 {
1765 	list_del(&ses->set_list);
1766 	kmem_cache_free(sit_entry_set_slab, ses);
1767 }
1768 
1769 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1770 						struct list_head *head)
1771 {
1772 	struct sit_entry_set *next = ses;
1773 
1774 	if (list_is_last(&ses->set_list, head))
1775 		return;
1776 
1777 	list_for_each_entry_continue(next, head, set_list)
1778 		if (ses->entry_cnt <= next->entry_cnt)
1779 			break;
1780 
1781 	list_move_tail(&ses->set_list, &next->set_list);
1782 }
1783 
1784 static void add_sit_entry(unsigned int segno, struct list_head *head)
1785 {
1786 	struct sit_entry_set *ses;
1787 	unsigned int start_segno = START_SEGNO(segno);
1788 
1789 	list_for_each_entry(ses, head, set_list) {
1790 		if (ses->start_segno == start_segno) {
1791 			ses->entry_cnt++;
1792 			adjust_sit_entry_set(ses, head);
1793 			return;
1794 		}
1795 	}
1796 
1797 	ses = grab_sit_entry_set();
1798 
1799 	ses->start_segno = start_segno;
1800 	ses->entry_cnt++;
1801 	list_add(&ses->set_list, head);
1802 }
1803 
1804 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1805 {
1806 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1807 	struct list_head *set_list = &sm_info->sit_entry_set;
1808 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1809 	unsigned int segno;
1810 
1811 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1812 		add_sit_entry(segno, set_list);
1813 }
1814 
1815 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1816 {
1817 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1818 	struct f2fs_summary_block *sum = curseg->sum_blk;
1819 	int i;
1820 
1821 	for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1822 		unsigned int segno;
1823 		bool dirtied;
1824 
1825 		segno = le32_to_cpu(segno_in_journal(sum, i));
1826 		dirtied = __mark_sit_entry_dirty(sbi, segno);
1827 
1828 		if (!dirtied)
1829 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1830 	}
1831 	update_sits_in_cursum(sum, -sits_in_cursum(sum));
1832 }
1833 
1834 /*
1835  * CP calls this function, which flushes SIT entries including sit_journal,
1836  * and moves prefree segs to free segs.
1837  */
1838 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1839 {
1840 	struct sit_info *sit_i = SIT_I(sbi);
1841 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1842 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1843 	struct f2fs_summary_block *sum = curseg->sum_blk;
1844 	struct sit_entry_set *ses, *tmp;
1845 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
1846 	bool to_journal = true;
1847 	struct seg_entry *se;
1848 
1849 	mutex_lock(&curseg->curseg_mutex);
1850 	mutex_lock(&sit_i->sentry_lock);
1851 
1852 	if (!sit_i->dirty_sentries)
1853 		goto out;
1854 
1855 	/*
1856 	 * add and account sit entries of dirty bitmap in sit entry
1857 	 * set temporarily
1858 	 */
1859 	add_sits_in_set(sbi);
1860 
1861 	/*
1862 	 * if there are no enough space in journal to store dirty sit
1863 	 * entries, remove all entries from journal and add and account
1864 	 * them in sit entry set.
1865 	 */
1866 	if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL))
1867 		remove_sits_in_journal(sbi);
1868 
1869 	/*
1870 	 * there are two steps to flush sit entries:
1871 	 * #1, flush sit entries to journal in current cold data summary block.
1872 	 * #2, flush sit entries to sit page.
1873 	 */
1874 	list_for_each_entry_safe(ses, tmp, head, set_list) {
1875 		struct page *page = NULL;
1876 		struct f2fs_sit_block *raw_sit = NULL;
1877 		unsigned int start_segno = ses->start_segno;
1878 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1879 						(unsigned long)MAIN_SEGS(sbi));
1880 		unsigned int segno = start_segno;
1881 
1882 		if (to_journal &&
1883 			!__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL))
1884 			to_journal = false;
1885 
1886 		if (!to_journal) {
1887 			page = get_next_sit_page(sbi, start_segno);
1888 			raw_sit = page_address(page);
1889 		}
1890 
1891 		/* flush dirty sit entries in region of current sit set */
1892 		for_each_set_bit_from(segno, bitmap, end) {
1893 			int offset, sit_offset;
1894 
1895 			se = get_seg_entry(sbi, segno);
1896 
1897 			/* add discard candidates */
1898 			if (cpc->reason != CP_DISCARD) {
1899 				cpc->trim_start = segno;
1900 				add_discard_addrs(sbi, cpc);
1901 			}
1902 
1903 			if (to_journal) {
1904 				offset = lookup_journal_in_cursum(sum,
1905 							SIT_JOURNAL, segno, 1);
1906 				f2fs_bug_on(sbi, offset < 0);
1907 				segno_in_journal(sum, offset) =
1908 							cpu_to_le32(segno);
1909 				seg_info_to_raw_sit(se,
1910 						&sit_in_journal(sum, offset));
1911 			} else {
1912 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1913 				seg_info_to_raw_sit(se,
1914 						&raw_sit->entries[sit_offset]);
1915 			}
1916 
1917 			__clear_bit(segno, bitmap);
1918 			sit_i->dirty_sentries--;
1919 			ses->entry_cnt--;
1920 		}
1921 
1922 		if (!to_journal)
1923 			f2fs_put_page(page, 1);
1924 
1925 		f2fs_bug_on(sbi, ses->entry_cnt);
1926 		release_sit_entry_set(ses);
1927 	}
1928 
1929 	f2fs_bug_on(sbi, !list_empty(head));
1930 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
1931 out:
1932 	if (cpc->reason == CP_DISCARD) {
1933 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
1934 			add_discard_addrs(sbi, cpc);
1935 	}
1936 	mutex_unlock(&sit_i->sentry_lock);
1937 	mutex_unlock(&curseg->curseg_mutex);
1938 
1939 	set_prefree_as_free_segments(sbi);
1940 }
1941 
1942 static int build_sit_info(struct f2fs_sb_info *sbi)
1943 {
1944 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1945 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1946 	struct sit_info *sit_i;
1947 	unsigned int sit_segs, start;
1948 	char *src_bitmap, *dst_bitmap;
1949 	unsigned int bitmap_size;
1950 
1951 	/* allocate memory for SIT information */
1952 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1953 	if (!sit_i)
1954 		return -ENOMEM;
1955 
1956 	SM_I(sbi)->sit_info = sit_i;
1957 
1958 	sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry));
1959 	if (!sit_i->sentries)
1960 		return -ENOMEM;
1961 
1962 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
1963 	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1964 	if (!sit_i->dirty_sentries_bitmap)
1965 		return -ENOMEM;
1966 
1967 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
1968 		sit_i->sentries[start].cur_valid_map
1969 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1970 		sit_i->sentries[start].ckpt_valid_map
1971 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1972 		sit_i->sentries[start].discard_map
1973 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1974 		if (!sit_i->sentries[start].cur_valid_map ||
1975 				!sit_i->sentries[start].ckpt_valid_map ||
1976 				!sit_i->sentries[start].discard_map)
1977 			return -ENOMEM;
1978 	}
1979 
1980 	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1981 	if (!sit_i->tmp_map)
1982 		return -ENOMEM;
1983 
1984 	if (sbi->segs_per_sec > 1) {
1985 		sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) *
1986 					sizeof(struct sec_entry));
1987 		if (!sit_i->sec_entries)
1988 			return -ENOMEM;
1989 	}
1990 
1991 	/* get information related with SIT */
1992 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1993 
1994 	/* setup SIT bitmap from ckeckpoint pack */
1995 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1996 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1997 
1998 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1999 	if (!dst_bitmap)
2000 		return -ENOMEM;
2001 
2002 	/* init SIT information */
2003 	sit_i->s_ops = &default_salloc_ops;
2004 
2005 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2006 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2007 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2008 	sit_i->sit_bitmap = dst_bitmap;
2009 	sit_i->bitmap_size = bitmap_size;
2010 	sit_i->dirty_sentries = 0;
2011 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2012 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2013 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2014 	mutex_init(&sit_i->sentry_lock);
2015 	return 0;
2016 }
2017 
2018 static int build_free_segmap(struct f2fs_sb_info *sbi)
2019 {
2020 	struct free_segmap_info *free_i;
2021 	unsigned int bitmap_size, sec_bitmap_size;
2022 
2023 	/* allocate memory for free segmap information */
2024 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2025 	if (!free_i)
2026 		return -ENOMEM;
2027 
2028 	SM_I(sbi)->free_info = free_i;
2029 
2030 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2031 	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
2032 	if (!free_i->free_segmap)
2033 		return -ENOMEM;
2034 
2035 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2036 	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
2037 	if (!free_i->free_secmap)
2038 		return -ENOMEM;
2039 
2040 	/* set all segments as dirty temporarily */
2041 	memset(free_i->free_segmap, 0xff, bitmap_size);
2042 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2043 
2044 	/* init free segmap information */
2045 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2046 	free_i->free_segments = 0;
2047 	free_i->free_sections = 0;
2048 	spin_lock_init(&free_i->segmap_lock);
2049 	return 0;
2050 }
2051 
2052 static int build_curseg(struct f2fs_sb_info *sbi)
2053 {
2054 	struct curseg_info *array;
2055 	int i;
2056 
2057 	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2058 	if (!array)
2059 		return -ENOMEM;
2060 
2061 	SM_I(sbi)->curseg_array = array;
2062 
2063 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2064 		mutex_init(&array[i].curseg_mutex);
2065 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
2066 		if (!array[i].sum_blk)
2067 			return -ENOMEM;
2068 		array[i].segno = NULL_SEGNO;
2069 		array[i].next_blkoff = 0;
2070 	}
2071 	return restore_curseg_summaries(sbi);
2072 }
2073 
2074 static void build_sit_entries(struct f2fs_sb_info *sbi)
2075 {
2076 	struct sit_info *sit_i = SIT_I(sbi);
2077 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2078 	struct f2fs_summary_block *sum = curseg->sum_blk;
2079 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2080 	unsigned int i, start, end;
2081 	unsigned int readed, start_blk = 0;
2082 	int nrpages = MAX_BIO_BLOCKS(sbi);
2083 
2084 	do {
2085 		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
2086 
2087 		start = start_blk * sit_i->sents_per_block;
2088 		end = (start_blk + readed) * sit_i->sents_per_block;
2089 
2090 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
2091 			struct seg_entry *se = &sit_i->sentries[start];
2092 			struct f2fs_sit_block *sit_blk;
2093 			struct f2fs_sit_entry sit;
2094 			struct page *page;
2095 
2096 			mutex_lock(&curseg->curseg_mutex);
2097 			for (i = 0; i < sits_in_cursum(sum); i++) {
2098 				if (le32_to_cpu(segno_in_journal(sum, i))
2099 								== start) {
2100 					sit = sit_in_journal(sum, i);
2101 					mutex_unlock(&curseg->curseg_mutex);
2102 					goto got_it;
2103 				}
2104 			}
2105 			mutex_unlock(&curseg->curseg_mutex);
2106 
2107 			page = get_current_sit_page(sbi, start);
2108 			sit_blk = (struct f2fs_sit_block *)page_address(page);
2109 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2110 			f2fs_put_page(page, 1);
2111 got_it:
2112 			check_block_count(sbi, start, &sit);
2113 			seg_info_from_raw_sit(se, &sit);
2114 
2115 			/* build discard map only one time */
2116 			memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2117 			sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2118 
2119 			if (sbi->segs_per_sec > 1) {
2120 				struct sec_entry *e = get_sec_entry(sbi, start);
2121 				e->valid_blocks += se->valid_blocks;
2122 			}
2123 		}
2124 		start_blk += readed;
2125 	} while (start_blk < sit_blk_cnt);
2126 }
2127 
2128 static void init_free_segmap(struct f2fs_sb_info *sbi)
2129 {
2130 	unsigned int start;
2131 	int type;
2132 
2133 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2134 		struct seg_entry *sentry = get_seg_entry(sbi, start);
2135 		if (!sentry->valid_blocks)
2136 			__set_free(sbi, start);
2137 	}
2138 
2139 	/* set use the current segments */
2140 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2141 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2142 		__set_test_and_inuse(sbi, curseg_t->segno);
2143 	}
2144 }
2145 
2146 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2147 {
2148 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2149 	struct free_segmap_info *free_i = FREE_I(sbi);
2150 	unsigned int segno = 0, offset = 0;
2151 	unsigned short valid_blocks;
2152 
2153 	while (1) {
2154 		/* find dirty segment based on free segmap */
2155 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2156 		if (segno >= MAIN_SEGS(sbi))
2157 			break;
2158 		offset = segno + 1;
2159 		valid_blocks = get_valid_blocks(sbi, segno, 0);
2160 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2161 			continue;
2162 		if (valid_blocks > sbi->blocks_per_seg) {
2163 			f2fs_bug_on(sbi, 1);
2164 			continue;
2165 		}
2166 		mutex_lock(&dirty_i->seglist_lock);
2167 		__locate_dirty_segment(sbi, segno, DIRTY);
2168 		mutex_unlock(&dirty_i->seglist_lock);
2169 	}
2170 }
2171 
2172 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2173 {
2174 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2175 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2176 
2177 	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
2178 	if (!dirty_i->victim_secmap)
2179 		return -ENOMEM;
2180 	return 0;
2181 }
2182 
2183 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2184 {
2185 	struct dirty_seglist_info *dirty_i;
2186 	unsigned int bitmap_size, i;
2187 
2188 	/* allocate memory for dirty segments list information */
2189 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2190 	if (!dirty_i)
2191 		return -ENOMEM;
2192 
2193 	SM_I(sbi)->dirty_info = dirty_i;
2194 	mutex_init(&dirty_i->seglist_lock);
2195 
2196 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2197 
2198 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
2199 		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
2200 		if (!dirty_i->dirty_segmap[i])
2201 			return -ENOMEM;
2202 	}
2203 
2204 	init_dirty_segmap(sbi);
2205 	return init_victim_secmap(sbi);
2206 }
2207 
2208 /*
2209  * Update min, max modified time for cost-benefit GC algorithm
2210  */
2211 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2212 {
2213 	struct sit_info *sit_i = SIT_I(sbi);
2214 	unsigned int segno;
2215 
2216 	mutex_lock(&sit_i->sentry_lock);
2217 
2218 	sit_i->min_mtime = LLONG_MAX;
2219 
2220 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2221 		unsigned int i;
2222 		unsigned long long mtime = 0;
2223 
2224 		for (i = 0; i < sbi->segs_per_sec; i++)
2225 			mtime += get_seg_entry(sbi, segno + i)->mtime;
2226 
2227 		mtime = div_u64(mtime, sbi->segs_per_sec);
2228 
2229 		if (sit_i->min_mtime > mtime)
2230 			sit_i->min_mtime = mtime;
2231 	}
2232 	sit_i->max_mtime = get_mtime(sbi);
2233 	mutex_unlock(&sit_i->sentry_lock);
2234 }
2235 
2236 int build_segment_manager(struct f2fs_sb_info *sbi)
2237 {
2238 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2239 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2240 	struct f2fs_sm_info *sm_info;
2241 	int err;
2242 
2243 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2244 	if (!sm_info)
2245 		return -ENOMEM;
2246 
2247 	/* init sm info */
2248 	sbi->sm_info = sm_info;
2249 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2250 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2251 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2252 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2253 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2254 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2255 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2256 	sm_info->rec_prefree_segments = sm_info->main_segments *
2257 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2258 	sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2259 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2260 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2261 
2262 	INIT_LIST_HEAD(&sm_info->discard_list);
2263 	sm_info->nr_discards = 0;
2264 	sm_info->max_discards = 0;
2265 
2266 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2267 
2268 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
2269 
2270 	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2271 		err = create_flush_cmd_control(sbi);
2272 		if (err)
2273 			return err;
2274 	}
2275 
2276 	err = build_sit_info(sbi);
2277 	if (err)
2278 		return err;
2279 	err = build_free_segmap(sbi);
2280 	if (err)
2281 		return err;
2282 	err = build_curseg(sbi);
2283 	if (err)
2284 		return err;
2285 
2286 	/* reinit free segmap based on SIT */
2287 	build_sit_entries(sbi);
2288 
2289 	init_free_segmap(sbi);
2290 	err = build_dirty_segmap(sbi);
2291 	if (err)
2292 		return err;
2293 
2294 	init_min_max_mtime(sbi);
2295 	return 0;
2296 }
2297 
2298 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2299 		enum dirty_type dirty_type)
2300 {
2301 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2302 
2303 	mutex_lock(&dirty_i->seglist_lock);
2304 	kfree(dirty_i->dirty_segmap[dirty_type]);
2305 	dirty_i->nr_dirty[dirty_type] = 0;
2306 	mutex_unlock(&dirty_i->seglist_lock);
2307 }
2308 
2309 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2310 {
2311 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2312 	kfree(dirty_i->victim_secmap);
2313 }
2314 
2315 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2316 {
2317 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2318 	int i;
2319 
2320 	if (!dirty_i)
2321 		return;
2322 
2323 	/* discard pre-free/dirty segments list */
2324 	for (i = 0; i < NR_DIRTY_TYPE; i++)
2325 		discard_dirty_segmap(sbi, i);
2326 
2327 	destroy_victim_secmap(sbi);
2328 	SM_I(sbi)->dirty_info = NULL;
2329 	kfree(dirty_i);
2330 }
2331 
2332 static void destroy_curseg(struct f2fs_sb_info *sbi)
2333 {
2334 	struct curseg_info *array = SM_I(sbi)->curseg_array;
2335 	int i;
2336 
2337 	if (!array)
2338 		return;
2339 	SM_I(sbi)->curseg_array = NULL;
2340 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2341 		kfree(array[i].sum_blk);
2342 	kfree(array);
2343 }
2344 
2345 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2346 {
2347 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2348 	if (!free_i)
2349 		return;
2350 	SM_I(sbi)->free_info = NULL;
2351 	kfree(free_i->free_segmap);
2352 	kfree(free_i->free_secmap);
2353 	kfree(free_i);
2354 }
2355 
2356 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2357 {
2358 	struct sit_info *sit_i = SIT_I(sbi);
2359 	unsigned int start;
2360 
2361 	if (!sit_i)
2362 		return;
2363 
2364 	if (sit_i->sentries) {
2365 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
2366 			kfree(sit_i->sentries[start].cur_valid_map);
2367 			kfree(sit_i->sentries[start].ckpt_valid_map);
2368 			kfree(sit_i->sentries[start].discard_map);
2369 		}
2370 	}
2371 	kfree(sit_i->tmp_map);
2372 
2373 	vfree(sit_i->sentries);
2374 	vfree(sit_i->sec_entries);
2375 	kfree(sit_i->dirty_sentries_bitmap);
2376 
2377 	SM_I(sbi)->sit_info = NULL;
2378 	kfree(sit_i->sit_bitmap);
2379 	kfree(sit_i);
2380 }
2381 
2382 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2383 {
2384 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2385 
2386 	if (!sm_info)
2387 		return;
2388 	destroy_flush_cmd_control(sbi);
2389 	destroy_dirty_segmap(sbi);
2390 	destroy_curseg(sbi);
2391 	destroy_free_segmap(sbi);
2392 	destroy_sit_info(sbi);
2393 	sbi->sm_info = NULL;
2394 	kfree(sm_info);
2395 }
2396 
2397 int __init create_segment_manager_caches(void)
2398 {
2399 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2400 			sizeof(struct discard_entry));
2401 	if (!discard_entry_slab)
2402 		goto fail;
2403 
2404 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2405 			sizeof(struct sit_entry_set));
2406 	if (!sit_entry_set_slab)
2407 		goto destory_discard_entry;
2408 
2409 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2410 			sizeof(struct inmem_pages));
2411 	if (!inmem_entry_slab)
2412 		goto destroy_sit_entry_set;
2413 	return 0;
2414 
2415 destroy_sit_entry_set:
2416 	kmem_cache_destroy(sit_entry_set_slab);
2417 destory_discard_entry:
2418 	kmem_cache_destroy(discard_entry_slab);
2419 fail:
2420 	return -ENOMEM;
2421 }
2422 
2423 void destroy_segment_manager_caches(void)
2424 {
2425 	kmem_cache_destroy(sit_entry_set_slab);
2426 	kmem_cache_destroy(discard_entry_slab);
2427 	kmem_cache_destroy(inmem_entry_slab);
2428 }
2429