xref: /openbmc/linux/fs/f2fs/segment.c (revision 94c7b6fc)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/vmalloc.h>
18 #include <linux/swap.h>
19 
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include <trace/events/f2fs.h>
24 
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26 
27 static struct kmem_cache *discard_entry_slab;
28 
29 /*
30  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
31  * MSB and LSB are reversed in a byte by f2fs_set_bit.
32  */
33 static inline unsigned long __reverse_ffs(unsigned long word)
34 {
35 	int num = 0;
36 
37 #if BITS_PER_LONG == 64
38 	if ((word & 0xffffffff) == 0) {
39 		num += 32;
40 		word >>= 32;
41 	}
42 #endif
43 	if ((word & 0xffff) == 0) {
44 		num += 16;
45 		word >>= 16;
46 	}
47 	if ((word & 0xff) == 0) {
48 		num += 8;
49 		word >>= 8;
50 	}
51 	if ((word & 0xf0) == 0)
52 		num += 4;
53 	else
54 		word >>= 4;
55 	if ((word & 0xc) == 0)
56 		num += 2;
57 	else
58 		word >>= 2;
59 	if ((word & 0x2) == 0)
60 		num += 1;
61 	return num;
62 }
63 
64 /*
65  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
66  * f2fs_set_bit makes MSB and LSB reversed in a byte.
67  * Example:
68  *                             LSB <--> MSB
69  *   f2fs_set_bit(0, bitmap) => 0000 0001
70  *   f2fs_set_bit(7, bitmap) => 1000 0000
71  */
72 static unsigned long __find_rev_next_bit(const unsigned long *addr,
73 			unsigned long size, unsigned long offset)
74 {
75 	const unsigned long *p = addr + BIT_WORD(offset);
76 	unsigned long result = offset & ~(BITS_PER_LONG - 1);
77 	unsigned long tmp;
78 	unsigned long mask, submask;
79 	unsigned long quot, rest;
80 
81 	if (offset >= size)
82 		return size;
83 
84 	size -= result;
85 	offset %= BITS_PER_LONG;
86 	if (!offset)
87 		goto aligned;
88 
89 	tmp = *(p++);
90 	quot = (offset >> 3) << 3;
91 	rest = offset & 0x7;
92 	mask = ~0UL << quot;
93 	submask = (unsigned char)(0xff << rest) >> rest;
94 	submask <<= quot;
95 	mask &= submask;
96 	tmp &= mask;
97 	if (size < BITS_PER_LONG)
98 		goto found_first;
99 	if (tmp)
100 		goto found_middle;
101 
102 	size -= BITS_PER_LONG;
103 	result += BITS_PER_LONG;
104 aligned:
105 	while (size & ~(BITS_PER_LONG-1)) {
106 		tmp = *(p++);
107 		if (tmp)
108 			goto found_middle;
109 		result += BITS_PER_LONG;
110 		size -= BITS_PER_LONG;
111 	}
112 	if (!size)
113 		return result;
114 	tmp = *p;
115 found_first:
116 	tmp &= (~0UL >> (BITS_PER_LONG - size));
117 	if (tmp == 0UL)		/* Are any bits set? */
118 		return result + size;   /* Nope. */
119 found_middle:
120 	return result + __reverse_ffs(tmp);
121 }
122 
123 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
124 			unsigned long size, unsigned long offset)
125 {
126 	const unsigned long *p = addr + BIT_WORD(offset);
127 	unsigned long result = offset & ~(BITS_PER_LONG - 1);
128 	unsigned long tmp;
129 	unsigned long mask, submask;
130 	unsigned long quot, rest;
131 
132 	if (offset >= size)
133 		return size;
134 
135 	size -= result;
136 	offset %= BITS_PER_LONG;
137 	if (!offset)
138 		goto aligned;
139 
140 	tmp = *(p++);
141 	quot = (offset >> 3) << 3;
142 	rest = offset & 0x7;
143 	mask = ~(~0UL << quot);
144 	submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
145 	submask <<= quot;
146 	mask += submask;
147 	tmp |= mask;
148 	if (size < BITS_PER_LONG)
149 		goto found_first;
150 	if (~tmp)
151 		goto found_middle;
152 
153 	size -= BITS_PER_LONG;
154 	result += BITS_PER_LONG;
155 aligned:
156 	while (size & ~(BITS_PER_LONG - 1)) {
157 		tmp = *(p++);
158 		if (~tmp)
159 			goto found_middle;
160 		result += BITS_PER_LONG;
161 		size -= BITS_PER_LONG;
162 	}
163 	if (!size)
164 		return result;
165 	tmp = *p;
166 
167 found_first:
168 	tmp |= ~0UL << size;
169 	if (tmp == ~0UL)        /* Are any bits zero? */
170 		return result + size;   /* Nope. */
171 found_middle:
172 	return result + __reverse_ffz(tmp);
173 }
174 
175 /*
176  * This function balances dirty node and dentry pages.
177  * In addition, it controls garbage collection.
178  */
179 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
180 {
181 	/*
182 	 * We should do GC or end up with checkpoint, if there are so many dirty
183 	 * dir/node pages without enough free segments.
184 	 */
185 	if (has_not_enough_free_secs(sbi, 0)) {
186 		mutex_lock(&sbi->gc_mutex);
187 		f2fs_gc(sbi);
188 	}
189 }
190 
191 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
192 {
193 	/* check the # of cached NAT entries and prefree segments */
194 	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
195 				excess_prefree_segs(sbi))
196 		f2fs_sync_fs(sbi->sb, true);
197 }
198 
199 static int issue_flush_thread(void *data)
200 {
201 	struct f2fs_sb_info *sbi = data;
202 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
203 	wait_queue_head_t *q = &fcc->flush_wait_queue;
204 repeat:
205 	if (kthread_should_stop())
206 		return 0;
207 
208 	spin_lock(&fcc->issue_lock);
209 	if (fcc->issue_list) {
210 		fcc->dispatch_list = fcc->issue_list;
211 		fcc->issue_list = fcc->issue_tail = NULL;
212 	}
213 	spin_unlock(&fcc->issue_lock);
214 
215 	if (fcc->dispatch_list) {
216 		struct bio *bio = bio_alloc(GFP_NOIO, 0);
217 		struct flush_cmd *cmd, *next;
218 		int ret;
219 
220 		bio->bi_bdev = sbi->sb->s_bdev;
221 		ret = submit_bio_wait(WRITE_FLUSH, bio);
222 
223 		for (cmd = fcc->dispatch_list; cmd; cmd = next) {
224 			cmd->ret = ret;
225 			next = cmd->next;
226 			complete(&cmd->wait);
227 		}
228 		bio_put(bio);
229 		fcc->dispatch_list = NULL;
230 	}
231 
232 	wait_event_interruptible(*q,
233 			kthread_should_stop() || fcc->issue_list);
234 	goto repeat;
235 }
236 
237 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
238 {
239 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
240 	struct flush_cmd cmd;
241 
242 	if (!test_opt(sbi, FLUSH_MERGE))
243 		return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL);
244 
245 	init_completion(&cmd.wait);
246 	cmd.next = NULL;
247 
248 	spin_lock(&fcc->issue_lock);
249 	if (fcc->issue_list)
250 		fcc->issue_tail->next = &cmd;
251 	else
252 		fcc->issue_list = &cmd;
253 	fcc->issue_tail = &cmd;
254 	spin_unlock(&fcc->issue_lock);
255 
256 	if (!fcc->dispatch_list)
257 		wake_up(&fcc->flush_wait_queue);
258 
259 	wait_for_completion(&cmd.wait);
260 
261 	return cmd.ret;
262 }
263 
264 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
265 {
266 	dev_t dev = sbi->sb->s_bdev->bd_dev;
267 	struct flush_cmd_control *fcc;
268 	int err = 0;
269 
270 	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
271 	if (!fcc)
272 		return -ENOMEM;
273 	spin_lock_init(&fcc->issue_lock);
274 	init_waitqueue_head(&fcc->flush_wait_queue);
275 	sbi->sm_info->cmd_control_info = fcc;
276 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
277 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
278 	if (IS_ERR(fcc->f2fs_issue_flush)) {
279 		err = PTR_ERR(fcc->f2fs_issue_flush);
280 		kfree(fcc);
281 		sbi->sm_info->cmd_control_info = NULL;
282 		return err;
283 	}
284 
285 	return err;
286 }
287 
288 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
289 {
290 	struct flush_cmd_control *fcc =
291 				sbi->sm_info->cmd_control_info;
292 
293 	if (fcc && fcc->f2fs_issue_flush)
294 		kthread_stop(fcc->f2fs_issue_flush);
295 	kfree(fcc);
296 	sbi->sm_info->cmd_control_info = NULL;
297 }
298 
299 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
300 		enum dirty_type dirty_type)
301 {
302 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
303 
304 	/* need not be added */
305 	if (IS_CURSEG(sbi, segno))
306 		return;
307 
308 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
309 		dirty_i->nr_dirty[dirty_type]++;
310 
311 	if (dirty_type == DIRTY) {
312 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
313 		enum dirty_type t = sentry->type;
314 
315 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
316 			dirty_i->nr_dirty[t]++;
317 	}
318 }
319 
320 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
321 		enum dirty_type dirty_type)
322 {
323 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
324 
325 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
326 		dirty_i->nr_dirty[dirty_type]--;
327 
328 	if (dirty_type == DIRTY) {
329 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
330 		enum dirty_type t = sentry->type;
331 
332 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
333 			dirty_i->nr_dirty[t]--;
334 
335 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
336 			clear_bit(GET_SECNO(sbi, segno),
337 						dirty_i->victim_secmap);
338 	}
339 }
340 
341 /*
342  * Should not occur error such as -ENOMEM.
343  * Adding dirty entry into seglist is not critical operation.
344  * If a given segment is one of current working segments, it won't be added.
345  */
346 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
347 {
348 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
349 	unsigned short valid_blocks;
350 
351 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
352 		return;
353 
354 	mutex_lock(&dirty_i->seglist_lock);
355 
356 	valid_blocks = get_valid_blocks(sbi, segno, 0);
357 
358 	if (valid_blocks == 0) {
359 		__locate_dirty_segment(sbi, segno, PRE);
360 		__remove_dirty_segment(sbi, segno, DIRTY);
361 	} else if (valid_blocks < sbi->blocks_per_seg) {
362 		__locate_dirty_segment(sbi, segno, DIRTY);
363 	} else {
364 		/* Recovery routine with SSR needs this */
365 		__remove_dirty_segment(sbi, segno, DIRTY);
366 	}
367 
368 	mutex_unlock(&dirty_i->seglist_lock);
369 }
370 
371 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
372 				block_t blkstart, block_t blklen)
373 {
374 	sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
375 	sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
376 	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
377 	return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
378 }
379 
380 void discard_next_dnode(struct f2fs_sb_info *sbi)
381 {
382 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
383 	block_t blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
384 
385 	if (f2fs_issue_discard(sbi, blkaddr, 1)) {
386 		struct page *page = grab_meta_page(sbi, blkaddr);
387 		/* zero-filled page */
388 		set_page_dirty(page);
389 		f2fs_put_page(page, 1);
390 	}
391 }
392 
393 static void add_discard_addrs(struct f2fs_sb_info *sbi,
394 			unsigned int segno, struct seg_entry *se)
395 {
396 	struct list_head *head = &SM_I(sbi)->discard_list;
397 	struct discard_entry *new;
398 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
399 	int max_blocks = sbi->blocks_per_seg;
400 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
401 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
402 	unsigned long dmap[entries];
403 	unsigned int start = 0, end = -1;
404 	int i;
405 
406 	if (!test_opt(sbi, DISCARD))
407 		return;
408 
409 	/* zero block will be discarded through the prefree list */
410 	if (!se->valid_blocks || se->valid_blocks == max_blocks)
411 		return;
412 
413 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
414 	for (i = 0; i < entries; i++)
415 		dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
416 
417 	while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
418 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
419 		if (start >= max_blocks)
420 			break;
421 
422 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
423 
424 		new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
425 		INIT_LIST_HEAD(&new->list);
426 		new->blkaddr = START_BLOCK(sbi, segno) + start;
427 		new->len = end - start;
428 
429 		list_add_tail(&new->list, head);
430 		SM_I(sbi)->nr_discards += end - start;
431 	}
432 }
433 
434 /*
435  * Should call clear_prefree_segments after checkpoint is done.
436  */
437 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
438 {
439 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
440 	unsigned int segno = -1;
441 	unsigned int total_segs = TOTAL_SEGS(sbi);
442 
443 	mutex_lock(&dirty_i->seglist_lock);
444 	while (1) {
445 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
446 				segno + 1);
447 		if (segno >= total_segs)
448 			break;
449 		__set_test_and_free(sbi, segno);
450 	}
451 	mutex_unlock(&dirty_i->seglist_lock);
452 }
453 
454 void clear_prefree_segments(struct f2fs_sb_info *sbi)
455 {
456 	struct list_head *head = &(SM_I(sbi)->discard_list);
457 	struct discard_entry *entry, *this;
458 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
459 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
460 	unsigned int total_segs = TOTAL_SEGS(sbi);
461 	unsigned int start = 0, end = -1;
462 
463 	mutex_lock(&dirty_i->seglist_lock);
464 
465 	while (1) {
466 		int i;
467 		start = find_next_bit(prefree_map, total_segs, end + 1);
468 		if (start >= total_segs)
469 			break;
470 		end = find_next_zero_bit(prefree_map, total_segs, start + 1);
471 
472 		for (i = start; i < end; i++)
473 			clear_bit(i, prefree_map);
474 
475 		dirty_i->nr_dirty[PRE] -= end - start;
476 
477 		if (!test_opt(sbi, DISCARD))
478 			continue;
479 
480 		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
481 				(end - start) << sbi->log_blocks_per_seg);
482 	}
483 	mutex_unlock(&dirty_i->seglist_lock);
484 
485 	/* send small discards */
486 	list_for_each_entry_safe(entry, this, head, list) {
487 		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
488 		list_del(&entry->list);
489 		SM_I(sbi)->nr_discards -= entry->len;
490 		kmem_cache_free(discard_entry_slab, entry);
491 	}
492 }
493 
494 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
495 {
496 	struct sit_info *sit_i = SIT_I(sbi);
497 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
498 		sit_i->dirty_sentries++;
499 }
500 
501 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
502 					unsigned int segno, int modified)
503 {
504 	struct seg_entry *se = get_seg_entry(sbi, segno);
505 	se->type = type;
506 	if (modified)
507 		__mark_sit_entry_dirty(sbi, segno);
508 }
509 
510 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
511 {
512 	struct seg_entry *se;
513 	unsigned int segno, offset;
514 	long int new_vblocks;
515 
516 	segno = GET_SEGNO(sbi, blkaddr);
517 
518 	se = get_seg_entry(sbi, segno);
519 	new_vblocks = se->valid_blocks + del;
520 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
521 
522 	f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
523 				(new_vblocks > sbi->blocks_per_seg)));
524 
525 	se->valid_blocks = new_vblocks;
526 	se->mtime = get_mtime(sbi);
527 	SIT_I(sbi)->max_mtime = se->mtime;
528 
529 	/* Update valid block bitmap */
530 	if (del > 0) {
531 		if (f2fs_set_bit(offset, se->cur_valid_map))
532 			BUG();
533 	} else {
534 		if (!f2fs_clear_bit(offset, se->cur_valid_map))
535 			BUG();
536 	}
537 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
538 		se->ckpt_valid_blocks += del;
539 
540 	__mark_sit_entry_dirty(sbi, segno);
541 
542 	/* update total number of valid blocks to be written in ckpt area */
543 	SIT_I(sbi)->written_valid_blocks += del;
544 
545 	if (sbi->segs_per_sec > 1)
546 		get_sec_entry(sbi, segno)->valid_blocks += del;
547 }
548 
549 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
550 {
551 	update_sit_entry(sbi, new, 1);
552 	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
553 		update_sit_entry(sbi, old, -1);
554 
555 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
556 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
557 }
558 
559 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
560 {
561 	unsigned int segno = GET_SEGNO(sbi, addr);
562 	struct sit_info *sit_i = SIT_I(sbi);
563 
564 	f2fs_bug_on(addr == NULL_ADDR);
565 	if (addr == NEW_ADDR)
566 		return;
567 
568 	/* add it into sit main buffer */
569 	mutex_lock(&sit_i->sentry_lock);
570 
571 	update_sit_entry(sbi, addr, -1);
572 
573 	/* add it into dirty seglist */
574 	locate_dirty_segment(sbi, segno);
575 
576 	mutex_unlock(&sit_i->sentry_lock);
577 }
578 
579 /*
580  * This function should be resided under the curseg_mutex lock
581  */
582 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
583 					struct f2fs_summary *sum)
584 {
585 	struct curseg_info *curseg = CURSEG_I(sbi, type);
586 	void *addr = curseg->sum_blk;
587 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
588 	memcpy(addr, sum, sizeof(struct f2fs_summary));
589 }
590 
591 /*
592  * Calculate the number of current summary pages for writing
593  */
594 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
595 {
596 	int valid_sum_count = 0;
597 	int i, sum_in_page;
598 
599 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
600 		if (sbi->ckpt->alloc_type[i] == SSR)
601 			valid_sum_count += sbi->blocks_per_seg;
602 		else
603 			valid_sum_count += curseg_blkoff(sbi, i);
604 	}
605 
606 	sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
607 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
608 	if (valid_sum_count <= sum_in_page)
609 		return 1;
610 	else if ((valid_sum_count - sum_in_page) <=
611 		(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
612 		return 2;
613 	return 3;
614 }
615 
616 /*
617  * Caller should put this summary page
618  */
619 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
620 {
621 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
622 }
623 
624 static void write_sum_page(struct f2fs_sb_info *sbi,
625 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
626 {
627 	struct page *page = grab_meta_page(sbi, blk_addr);
628 	void *kaddr = page_address(page);
629 	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
630 	set_page_dirty(page);
631 	f2fs_put_page(page, 1);
632 }
633 
634 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
635 {
636 	struct curseg_info *curseg = CURSEG_I(sbi, type);
637 	unsigned int segno = curseg->segno + 1;
638 	struct free_segmap_info *free_i = FREE_I(sbi);
639 
640 	if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
641 		return !test_bit(segno, free_i->free_segmap);
642 	return 0;
643 }
644 
645 /*
646  * Find a new segment from the free segments bitmap to right order
647  * This function should be returned with success, otherwise BUG
648  */
649 static void get_new_segment(struct f2fs_sb_info *sbi,
650 			unsigned int *newseg, bool new_sec, int dir)
651 {
652 	struct free_segmap_info *free_i = FREE_I(sbi);
653 	unsigned int segno, secno, zoneno;
654 	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
655 	unsigned int hint = *newseg / sbi->segs_per_sec;
656 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
657 	unsigned int left_start = hint;
658 	bool init = true;
659 	int go_left = 0;
660 	int i;
661 
662 	write_lock(&free_i->segmap_lock);
663 
664 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
665 		segno = find_next_zero_bit(free_i->free_segmap,
666 					TOTAL_SEGS(sbi), *newseg + 1);
667 		if (segno - *newseg < sbi->segs_per_sec -
668 					(*newseg % sbi->segs_per_sec))
669 			goto got_it;
670 	}
671 find_other_zone:
672 	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
673 	if (secno >= TOTAL_SECS(sbi)) {
674 		if (dir == ALLOC_RIGHT) {
675 			secno = find_next_zero_bit(free_i->free_secmap,
676 							TOTAL_SECS(sbi), 0);
677 			f2fs_bug_on(secno >= TOTAL_SECS(sbi));
678 		} else {
679 			go_left = 1;
680 			left_start = hint - 1;
681 		}
682 	}
683 	if (go_left == 0)
684 		goto skip_left;
685 
686 	while (test_bit(left_start, free_i->free_secmap)) {
687 		if (left_start > 0) {
688 			left_start--;
689 			continue;
690 		}
691 		left_start = find_next_zero_bit(free_i->free_secmap,
692 							TOTAL_SECS(sbi), 0);
693 		f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
694 		break;
695 	}
696 	secno = left_start;
697 skip_left:
698 	hint = secno;
699 	segno = secno * sbi->segs_per_sec;
700 	zoneno = secno / sbi->secs_per_zone;
701 
702 	/* give up on finding another zone */
703 	if (!init)
704 		goto got_it;
705 	if (sbi->secs_per_zone == 1)
706 		goto got_it;
707 	if (zoneno == old_zoneno)
708 		goto got_it;
709 	if (dir == ALLOC_LEFT) {
710 		if (!go_left && zoneno + 1 >= total_zones)
711 			goto got_it;
712 		if (go_left && zoneno == 0)
713 			goto got_it;
714 	}
715 	for (i = 0; i < NR_CURSEG_TYPE; i++)
716 		if (CURSEG_I(sbi, i)->zone == zoneno)
717 			break;
718 
719 	if (i < NR_CURSEG_TYPE) {
720 		/* zone is in user, try another */
721 		if (go_left)
722 			hint = zoneno * sbi->secs_per_zone - 1;
723 		else if (zoneno + 1 >= total_zones)
724 			hint = 0;
725 		else
726 			hint = (zoneno + 1) * sbi->secs_per_zone;
727 		init = false;
728 		goto find_other_zone;
729 	}
730 got_it:
731 	/* set it as dirty segment in free segmap */
732 	f2fs_bug_on(test_bit(segno, free_i->free_segmap));
733 	__set_inuse(sbi, segno);
734 	*newseg = segno;
735 	write_unlock(&free_i->segmap_lock);
736 }
737 
738 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
739 {
740 	struct curseg_info *curseg = CURSEG_I(sbi, type);
741 	struct summary_footer *sum_footer;
742 
743 	curseg->segno = curseg->next_segno;
744 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
745 	curseg->next_blkoff = 0;
746 	curseg->next_segno = NULL_SEGNO;
747 
748 	sum_footer = &(curseg->sum_blk->footer);
749 	memset(sum_footer, 0, sizeof(struct summary_footer));
750 	if (IS_DATASEG(type))
751 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
752 	if (IS_NODESEG(type))
753 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
754 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
755 }
756 
757 /*
758  * Allocate a current working segment.
759  * This function always allocates a free segment in LFS manner.
760  */
761 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
762 {
763 	struct curseg_info *curseg = CURSEG_I(sbi, type);
764 	unsigned int segno = curseg->segno;
765 	int dir = ALLOC_LEFT;
766 
767 	write_sum_page(sbi, curseg->sum_blk,
768 				GET_SUM_BLOCK(sbi, segno));
769 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
770 		dir = ALLOC_RIGHT;
771 
772 	if (test_opt(sbi, NOHEAP))
773 		dir = ALLOC_RIGHT;
774 
775 	get_new_segment(sbi, &segno, new_sec, dir);
776 	curseg->next_segno = segno;
777 	reset_curseg(sbi, type, 1);
778 	curseg->alloc_type = LFS;
779 }
780 
781 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
782 			struct curseg_info *seg, block_t start)
783 {
784 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
785 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
786 	unsigned long target_map[entries];
787 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
788 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
789 	int i, pos;
790 
791 	for (i = 0; i < entries; i++)
792 		target_map[i] = ckpt_map[i] | cur_map[i];
793 
794 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
795 
796 	seg->next_blkoff = pos;
797 }
798 
799 /*
800  * If a segment is written by LFS manner, next block offset is just obtained
801  * by increasing the current block offset. However, if a segment is written by
802  * SSR manner, next block offset obtained by calling __next_free_blkoff
803  */
804 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
805 				struct curseg_info *seg)
806 {
807 	if (seg->alloc_type == SSR)
808 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
809 	else
810 		seg->next_blkoff++;
811 }
812 
813 /*
814  * This function always allocates a used segment (from dirty seglist) by SSR
815  * manner, so it should recover the existing segment information of valid blocks
816  */
817 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
818 {
819 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
820 	struct curseg_info *curseg = CURSEG_I(sbi, type);
821 	unsigned int new_segno = curseg->next_segno;
822 	struct f2fs_summary_block *sum_node;
823 	struct page *sum_page;
824 
825 	write_sum_page(sbi, curseg->sum_blk,
826 				GET_SUM_BLOCK(sbi, curseg->segno));
827 	__set_test_and_inuse(sbi, new_segno);
828 
829 	mutex_lock(&dirty_i->seglist_lock);
830 	__remove_dirty_segment(sbi, new_segno, PRE);
831 	__remove_dirty_segment(sbi, new_segno, DIRTY);
832 	mutex_unlock(&dirty_i->seglist_lock);
833 
834 	reset_curseg(sbi, type, 1);
835 	curseg->alloc_type = SSR;
836 	__next_free_blkoff(sbi, curseg, 0);
837 
838 	if (reuse) {
839 		sum_page = get_sum_page(sbi, new_segno);
840 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
841 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
842 		f2fs_put_page(sum_page, 1);
843 	}
844 }
845 
846 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
847 {
848 	struct curseg_info *curseg = CURSEG_I(sbi, type);
849 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
850 
851 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
852 		return v_ops->get_victim(sbi,
853 				&(curseg)->next_segno, BG_GC, type, SSR);
854 
855 	/* For data segments, let's do SSR more intensively */
856 	for (; type >= CURSEG_HOT_DATA; type--)
857 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
858 						BG_GC, type, SSR))
859 			return 1;
860 	return 0;
861 }
862 
863 /*
864  * flush out current segment and replace it with new segment
865  * This function should be returned with success, otherwise BUG
866  */
867 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
868 						int type, bool force)
869 {
870 	struct curseg_info *curseg = CURSEG_I(sbi, type);
871 
872 	if (force)
873 		new_curseg(sbi, type, true);
874 	else if (type == CURSEG_WARM_NODE)
875 		new_curseg(sbi, type, false);
876 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
877 		new_curseg(sbi, type, false);
878 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
879 		change_curseg(sbi, type, true);
880 	else
881 		new_curseg(sbi, type, false);
882 
883 	stat_inc_seg_type(sbi, curseg);
884 }
885 
886 void allocate_new_segments(struct f2fs_sb_info *sbi)
887 {
888 	struct curseg_info *curseg;
889 	unsigned int old_curseg;
890 	int i;
891 
892 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
893 		curseg = CURSEG_I(sbi, i);
894 		old_curseg = curseg->segno;
895 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
896 		locate_dirty_segment(sbi, old_curseg);
897 	}
898 }
899 
900 static const struct segment_allocation default_salloc_ops = {
901 	.allocate_segment = allocate_segment_by_default,
902 };
903 
904 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
905 {
906 	struct curseg_info *curseg = CURSEG_I(sbi, type);
907 	if (curseg->next_blkoff < sbi->blocks_per_seg)
908 		return true;
909 	return false;
910 }
911 
912 static int __get_segment_type_2(struct page *page, enum page_type p_type)
913 {
914 	if (p_type == DATA)
915 		return CURSEG_HOT_DATA;
916 	else
917 		return CURSEG_HOT_NODE;
918 }
919 
920 static int __get_segment_type_4(struct page *page, enum page_type p_type)
921 {
922 	if (p_type == DATA) {
923 		struct inode *inode = page->mapping->host;
924 
925 		if (S_ISDIR(inode->i_mode))
926 			return CURSEG_HOT_DATA;
927 		else
928 			return CURSEG_COLD_DATA;
929 	} else {
930 		if (IS_DNODE(page) && !is_cold_node(page))
931 			return CURSEG_HOT_NODE;
932 		else
933 			return CURSEG_COLD_NODE;
934 	}
935 }
936 
937 static int __get_segment_type_6(struct page *page, enum page_type p_type)
938 {
939 	if (p_type == DATA) {
940 		struct inode *inode = page->mapping->host;
941 
942 		if (S_ISDIR(inode->i_mode))
943 			return CURSEG_HOT_DATA;
944 		else if (is_cold_data(page) || file_is_cold(inode))
945 			return CURSEG_COLD_DATA;
946 		else
947 			return CURSEG_WARM_DATA;
948 	} else {
949 		if (IS_DNODE(page))
950 			return is_cold_node(page) ? CURSEG_WARM_NODE :
951 						CURSEG_HOT_NODE;
952 		else
953 			return CURSEG_COLD_NODE;
954 	}
955 }
956 
957 static int __get_segment_type(struct page *page, enum page_type p_type)
958 {
959 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
960 	switch (sbi->active_logs) {
961 	case 2:
962 		return __get_segment_type_2(page, p_type);
963 	case 4:
964 		return __get_segment_type_4(page, p_type);
965 	}
966 	/* NR_CURSEG_TYPE(6) logs by default */
967 	f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
968 	return __get_segment_type_6(page, p_type);
969 }
970 
971 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
972 		block_t old_blkaddr, block_t *new_blkaddr,
973 		struct f2fs_summary *sum, int type)
974 {
975 	struct sit_info *sit_i = SIT_I(sbi);
976 	struct curseg_info *curseg;
977 	unsigned int old_cursegno;
978 
979 	curseg = CURSEG_I(sbi, type);
980 
981 	mutex_lock(&curseg->curseg_mutex);
982 
983 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
984 	old_cursegno = curseg->segno;
985 
986 	/*
987 	 * __add_sum_entry should be resided under the curseg_mutex
988 	 * because, this function updates a summary entry in the
989 	 * current summary block.
990 	 */
991 	__add_sum_entry(sbi, type, sum);
992 
993 	mutex_lock(&sit_i->sentry_lock);
994 	__refresh_next_blkoff(sbi, curseg);
995 
996 	stat_inc_block_count(sbi, curseg);
997 
998 	if (!__has_curseg_space(sbi, type))
999 		sit_i->s_ops->allocate_segment(sbi, type, false);
1000 	/*
1001 	 * SIT information should be updated before segment allocation,
1002 	 * since SSR needs latest valid block information.
1003 	 */
1004 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1005 	locate_dirty_segment(sbi, old_cursegno);
1006 
1007 	mutex_unlock(&sit_i->sentry_lock);
1008 
1009 	if (page && IS_NODESEG(type))
1010 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1011 
1012 	mutex_unlock(&curseg->curseg_mutex);
1013 }
1014 
1015 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
1016 			block_t old_blkaddr, block_t *new_blkaddr,
1017 			struct f2fs_summary *sum, struct f2fs_io_info *fio)
1018 {
1019 	int type = __get_segment_type(page, fio->type);
1020 
1021 	allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
1022 
1023 	/* writeout dirty page into bdev */
1024 	f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
1025 }
1026 
1027 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1028 {
1029 	struct f2fs_io_info fio = {
1030 		.type = META,
1031 		.rw = WRITE_SYNC | REQ_META | REQ_PRIO
1032 	};
1033 
1034 	set_page_writeback(page);
1035 	f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1036 }
1037 
1038 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
1039 		struct f2fs_io_info *fio,
1040 		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
1041 {
1042 	struct f2fs_summary sum;
1043 	set_summary(&sum, nid, 0, 0);
1044 	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
1045 }
1046 
1047 void write_data_page(struct page *page, struct dnode_of_data *dn,
1048 		block_t *new_blkaddr, struct f2fs_io_info *fio)
1049 {
1050 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
1051 	struct f2fs_summary sum;
1052 	struct node_info ni;
1053 
1054 	f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
1055 	get_node_info(sbi, dn->nid, &ni);
1056 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1057 
1058 	do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
1059 }
1060 
1061 void rewrite_data_page(struct page *page, block_t old_blkaddr,
1062 					struct f2fs_io_info *fio)
1063 {
1064 	struct inode *inode = page->mapping->host;
1065 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1066 	f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
1067 }
1068 
1069 void recover_data_page(struct f2fs_sb_info *sbi,
1070 			struct page *page, struct f2fs_summary *sum,
1071 			block_t old_blkaddr, block_t new_blkaddr)
1072 {
1073 	struct sit_info *sit_i = SIT_I(sbi);
1074 	struct curseg_info *curseg;
1075 	unsigned int segno, old_cursegno;
1076 	struct seg_entry *se;
1077 	int type;
1078 
1079 	segno = GET_SEGNO(sbi, new_blkaddr);
1080 	se = get_seg_entry(sbi, segno);
1081 	type = se->type;
1082 
1083 	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1084 		if (old_blkaddr == NULL_ADDR)
1085 			type = CURSEG_COLD_DATA;
1086 		else
1087 			type = CURSEG_WARM_DATA;
1088 	}
1089 	curseg = CURSEG_I(sbi, type);
1090 
1091 	mutex_lock(&curseg->curseg_mutex);
1092 	mutex_lock(&sit_i->sentry_lock);
1093 
1094 	old_cursegno = curseg->segno;
1095 
1096 	/* change the current segment */
1097 	if (segno != curseg->segno) {
1098 		curseg->next_segno = segno;
1099 		change_curseg(sbi, type, true);
1100 	}
1101 
1102 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1103 	__add_sum_entry(sbi, type, sum);
1104 
1105 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1106 	locate_dirty_segment(sbi, old_cursegno);
1107 
1108 	mutex_unlock(&sit_i->sentry_lock);
1109 	mutex_unlock(&curseg->curseg_mutex);
1110 }
1111 
1112 void rewrite_node_page(struct f2fs_sb_info *sbi,
1113 			struct page *page, struct f2fs_summary *sum,
1114 			block_t old_blkaddr, block_t new_blkaddr)
1115 {
1116 	struct sit_info *sit_i = SIT_I(sbi);
1117 	int type = CURSEG_WARM_NODE;
1118 	struct curseg_info *curseg;
1119 	unsigned int segno, old_cursegno;
1120 	block_t next_blkaddr = next_blkaddr_of_node(page);
1121 	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1122 	struct f2fs_io_info fio = {
1123 		.type = NODE,
1124 		.rw = WRITE_SYNC,
1125 	};
1126 
1127 	curseg = CURSEG_I(sbi, type);
1128 
1129 	mutex_lock(&curseg->curseg_mutex);
1130 	mutex_lock(&sit_i->sentry_lock);
1131 
1132 	segno = GET_SEGNO(sbi, new_blkaddr);
1133 	old_cursegno = curseg->segno;
1134 
1135 	/* change the current segment */
1136 	if (segno != curseg->segno) {
1137 		curseg->next_segno = segno;
1138 		change_curseg(sbi, type, true);
1139 	}
1140 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1141 	__add_sum_entry(sbi, type, sum);
1142 
1143 	/* change the current log to the next block addr in advance */
1144 	if (next_segno != segno) {
1145 		curseg->next_segno = next_segno;
1146 		change_curseg(sbi, type, true);
1147 	}
1148 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, next_blkaddr);
1149 
1150 	/* rewrite node page */
1151 	set_page_writeback(page);
1152 	f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1153 	f2fs_submit_merged_bio(sbi, NODE, WRITE);
1154 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1155 	locate_dirty_segment(sbi, old_cursegno);
1156 
1157 	mutex_unlock(&sit_i->sentry_lock);
1158 	mutex_unlock(&curseg->curseg_mutex);
1159 }
1160 
1161 static inline bool is_merged_page(struct f2fs_sb_info *sbi,
1162 					struct page *page, enum page_type type)
1163 {
1164 	enum page_type btype = PAGE_TYPE_OF_BIO(type);
1165 	struct f2fs_bio_info *io = &sbi->write_io[btype];
1166 	struct bio_vec *bvec;
1167 	int i;
1168 
1169 	down_read(&io->io_rwsem);
1170 	if (!io->bio)
1171 		goto out;
1172 
1173 	bio_for_each_segment_all(bvec, io->bio, i) {
1174 		if (page == bvec->bv_page) {
1175 			up_read(&io->io_rwsem);
1176 			return true;
1177 		}
1178 	}
1179 
1180 out:
1181 	up_read(&io->io_rwsem);
1182 	return false;
1183 }
1184 
1185 void f2fs_wait_on_page_writeback(struct page *page,
1186 				enum page_type type)
1187 {
1188 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1189 	if (PageWriteback(page)) {
1190 		if (is_merged_page(sbi, page, type))
1191 			f2fs_submit_merged_bio(sbi, type, WRITE);
1192 		wait_on_page_writeback(page);
1193 	}
1194 }
1195 
1196 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1197 {
1198 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1199 	struct curseg_info *seg_i;
1200 	unsigned char *kaddr;
1201 	struct page *page;
1202 	block_t start;
1203 	int i, j, offset;
1204 
1205 	start = start_sum_block(sbi);
1206 
1207 	page = get_meta_page(sbi, start++);
1208 	kaddr = (unsigned char *)page_address(page);
1209 
1210 	/* Step 1: restore nat cache */
1211 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1212 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1213 
1214 	/* Step 2: restore sit cache */
1215 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1216 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1217 						SUM_JOURNAL_SIZE);
1218 	offset = 2 * SUM_JOURNAL_SIZE;
1219 
1220 	/* Step 3: restore summary entries */
1221 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1222 		unsigned short blk_off;
1223 		unsigned int segno;
1224 
1225 		seg_i = CURSEG_I(sbi, i);
1226 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1227 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1228 		seg_i->next_segno = segno;
1229 		reset_curseg(sbi, i, 0);
1230 		seg_i->alloc_type = ckpt->alloc_type[i];
1231 		seg_i->next_blkoff = blk_off;
1232 
1233 		if (seg_i->alloc_type == SSR)
1234 			blk_off = sbi->blocks_per_seg;
1235 
1236 		for (j = 0; j < blk_off; j++) {
1237 			struct f2fs_summary *s;
1238 			s = (struct f2fs_summary *)(kaddr + offset);
1239 			seg_i->sum_blk->entries[j] = *s;
1240 			offset += SUMMARY_SIZE;
1241 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1242 						SUM_FOOTER_SIZE)
1243 				continue;
1244 
1245 			f2fs_put_page(page, 1);
1246 			page = NULL;
1247 
1248 			page = get_meta_page(sbi, start++);
1249 			kaddr = (unsigned char *)page_address(page);
1250 			offset = 0;
1251 		}
1252 	}
1253 	f2fs_put_page(page, 1);
1254 	return 0;
1255 }
1256 
1257 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1258 {
1259 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1260 	struct f2fs_summary_block *sum;
1261 	struct curseg_info *curseg;
1262 	struct page *new;
1263 	unsigned short blk_off;
1264 	unsigned int segno = 0;
1265 	block_t blk_addr = 0;
1266 
1267 	/* get segment number and block addr */
1268 	if (IS_DATASEG(type)) {
1269 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1270 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1271 							CURSEG_HOT_DATA]);
1272 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1273 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1274 		else
1275 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1276 	} else {
1277 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1278 							CURSEG_HOT_NODE]);
1279 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1280 							CURSEG_HOT_NODE]);
1281 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1282 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1283 							type - CURSEG_HOT_NODE);
1284 		else
1285 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1286 	}
1287 
1288 	new = get_meta_page(sbi, blk_addr);
1289 	sum = (struct f2fs_summary_block *)page_address(new);
1290 
1291 	if (IS_NODESEG(type)) {
1292 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1293 			struct f2fs_summary *ns = &sum->entries[0];
1294 			int i;
1295 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1296 				ns->version = 0;
1297 				ns->ofs_in_node = 0;
1298 			}
1299 		} else {
1300 			int err;
1301 
1302 			err = restore_node_summary(sbi, segno, sum);
1303 			if (err) {
1304 				f2fs_put_page(new, 1);
1305 				return err;
1306 			}
1307 		}
1308 	}
1309 
1310 	/* set uncompleted segment to curseg */
1311 	curseg = CURSEG_I(sbi, type);
1312 	mutex_lock(&curseg->curseg_mutex);
1313 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1314 	curseg->next_segno = segno;
1315 	reset_curseg(sbi, type, 0);
1316 	curseg->alloc_type = ckpt->alloc_type[type];
1317 	curseg->next_blkoff = blk_off;
1318 	mutex_unlock(&curseg->curseg_mutex);
1319 	f2fs_put_page(new, 1);
1320 	return 0;
1321 }
1322 
1323 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1324 {
1325 	int type = CURSEG_HOT_DATA;
1326 	int err;
1327 
1328 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1329 		/* restore for compacted data summary */
1330 		if (read_compacted_summaries(sbi))
1331 			return -EINVAL;
1332 		type = CURSEG_HOT_NODE;
1333 	}
1334 
1335 	for (; type <= CURSEG_COLD_NODE; type++) {
1336 		err = read_normal_summaries(sbi, type);
1337 		if (err)
1338 			return err;
1339 	}
1340 
1341 	return 0;
1342 }
1343 
1344 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1345 {
1346 	struct page *page;
1347 	unsigned char *kaddr;
1348 	struct f2fs_summary *summary;
1349 	struct curseg_info *seg_i;
1350 	int written_size = 0;
1351 	int i, j;
1352 
1353 	page = grab_meta_page(sbi, blkaddr++);
1354 	kaddr = (unsigned char *)page_address(page);
1355 
1356 	/* Step 1: write nat cache */
1357 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1358 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1359 	written_size += SUM_JOURNAL_SIZE;
1360 
1361 	/* Step 2: write sit cache */
1362 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1363 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1364 						SUM_JOURNAL_SIZE);
1365 	written_size += SUM_JOURNAL_SIZE;
1366 
1367 	/* Step 3: write summary entries */
1368 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1369 		unsigned short blkoff;
1370 		seg_i = CURSEG_I(sbi, i);
1371 		if (sbi->ckpt->alloc_type[i] == SSR)
1372 			blkoff = sbi->blocks_per_seg;
1373 		else
1374 			blkoff = curseg_blkoff(sbi, i);
1375 
1376 		for (j = 0; j < blkoff; j++) {
1377 			if (!page) {
1378 				page = grab_meta_page(sbi, blkaddr++);
1379 				kaddr = (unsigned char *)page_address(page);
1380 				written_size = 0;
1381 			}
1382 			summary = (struct f2fs_summary *)(kaddr + written_size);
1383 			*summary = seg_i->sum_blk->entries[j];
1384 			written_size += SUMMARY_SIZE;
1385 
1386 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1387 							SUM_FOOTER_SIZE)
1388 				continue;
1389 
1390 			set_page_dirty(page);
1391 			f2fs_put_page(page, 1);
1392 			page = NULL;
1393 		}
1394 	}
1395 	if (page) {
1396 		set_page_dirty(page);
1397 		f2fs_put_page(page, 1);
1398 	}
1399 }
1400 
1401 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1402 					block_t blkaddr, int type)
1403 {
1404 	int i, end;
1405 	if (IS_DATASEG(type))
1406 		end = type + NR_CURSEG_DATA_TYPE;
1407 	else
1408 		end = type + NR_CURSEG_NODE_TYPE;
1409 
1410 	for (i = type; i < end; i++) {
1411 		struct curseg_info *sum = CURSEG_I(sbi, i);
1412 		mutex_lock(&sum->curseg_mutex);
1413 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1414 		mutex_unlock(&sum->curseg_mutex);
1415 	}
1416 }
1417 
1418 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1419 {
1420 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1421 		write_compacted_summaries(sbi, start_blk);
1422 	else
1423 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1424 }
1425 
1426 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1427 {
1428 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1429 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1430 }
1431 
1432 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1433 					unsigned int val, int alloc)
1434 {
1435 	int i;
1436 
1437 	if (type == NAT_JOURNAL) {
1438 		for (i = 0; i < nats_in_cursum(sum); i++) {
1439 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1440 				return i;
1441 		}
1442 		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1443 			return update_nats_in_cursum(sum, 1);
1444 	} else if (type == SIT_JOURNAL) {
1445 		for (i = 0; i < sits_in_cursum(sum); i++)
1446 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1447 				return i;
1448 		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1449 			return update_sits_in_cursum(sum, 1);
1450 	}
1451 	return -1;
1452 }
1453 
1454 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1455 					unsigned int segno)
1456 {
1457 	struct sit_info *sit_i = SIT_I(sbi);
1458 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1459 	block_t blk_addr = sit_i->sit_base_addr + offset;
1460 
1461 	check_seg_range(sbi, segno);
1462 
1463 	/* calculate sit block address */
1464 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1465 		blk_addr += sit_i->sit_blocks;
1466 
1467 	return get_meta_page(sbi, blk_addr);
1468 }
1469 
1470 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1471 					unsigned int start)
1472 {
1473 	struct sit_info *sit_i = SIT_I(sbi);
1474 	struct page *src_page, *dst_page;
1475 	pgoff_t src_off, dst_off;
1476 	void *src_addr, *dst_addr;
1477 
1478 	src_off = current_sit_addr(sbi, start);
1479 	dst_off = next_sit_addr(sbi, src_off);
1480 
1481 	/* get current sit block page without lock */
1482 	src_page = get_meta_page(sbi, src_off);
1483 	dst_page = grab_meta_page(sbi, dst_off);
1484 	f2fs_bug_on(PageDirty(src_page));
1485 
1486 	src_addr = page_address(src_page);
1487 	dst_addr = page_address(dst_page);
1488 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1489 
1490 	set_page_dirty(dst_page);
1491 	f2fs_put_page(src_page, 1);
1492 
1493 	set_to_next_sit(sit_i, start);
1494 
1495 	return dst_page;
1496 }
1497 
1498 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1499 {
1500 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1501 	struct f2fs_summary_block *sum = curseg->sum_blk;
1502 	int i;
1503 
1504 	/*
1505 	 * If the journal area in the current summary is full of sit entries,
1506 	 * all the sit entries will be flushed. Otherwise the sit entries
1507 	 * are not able to replace with newly hot sit entries.
1508 	 */
1509 	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1510 		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1511 			unsigned int segno;
1512 			segno = le32_to_cpu(segno_in_journal(sum, i));
1513 			__mark_sit_entry_dirty(sbi, segno);
1514 		}
1515 		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1516 		return true;
1517 	}
1518 	return false;
1519 }
1520 
1521 /*
1522  * CP calls this function, which flushes SIT entries including sit_journal,
1523  * and moves prefree segs to free segs.
1524  */
1525 void flush_sit_entries(struct f2fs_sb_info *sbi)
1526 {
1527 	struct sit_info *sit_i = SIT_I(sbi);
1528 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1529 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1530 	struct f2fs_summary_block *sum = curseg->sum_blk;
1531 	unsigned long nsegs = TOTAL_SEGS(sbi);
1532 	struct page *page = NULL;
1533 	struct f2fs_sit_block *raw_sit = NULL;
1534 	unsigned int start = 0, end = 0;
1535 	unsigned int segno = -1;
1536 	bool flushed;
1537 
1538 	mutex_lock(&curseg->curseg_mutex);
1539 	mutex_lock(&sit_i->sentry_lock);
1540 
1541 	/*
1542 	 * "flushed" indicates whether sit entries in journal are flushed
1543 	 * to the SIT area or not.
1544 	 */
1545 	flushed = flush_sits_in_journal(sbi);
1546 
1547 	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1548 		struct seg_entry *se = get_seg_entry(sbi, segno);
1549 		int sit_offset, offset;
1550 
1551 		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1552 
1553 		/* add discard candidates */
1554 		if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1555 			add_discard_addrs(sbi, segno, se);
1556 
1557 		if (flushed)
1558 			goto to_sit_page;
1559 
1560 		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1561 		if (offset >= 0) {
1562 			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1563 			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1564 			goto flush_done;
1565 		}
1566 to_sit_page:
1567 		if (!page || (start > segno) || (segno > end)) {
1568 			if (page) {
1569 				f2fs_put_page(page, 1);
1570 				page = NULL;
1571 			}
1572 
1573 			start = START_SEGNO(sit_i, segno);
1574 			end = start + SIT_ENTRY_PER_BLOCK - 1;
1575 
1576 			/* read sit block that will be updated */
1577 			page = get_next_sit_page(sbi, start);
1578 			raw_sit = page_address(page);
1579 		}
1580 
1581 		/* udpate entry in SIT block */
1582 		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1583 flush_done:
1584 		__clear_bit(segno, bitmap);
1585 		sit_i->dirty_sentries--;
1586 	}
1587 	mutex_unlock(&sit_i->sentry_lock);
1588 	mutex_unlock(&curseg->curseg_mutex);
1589 
1590 	/* writeout last modified SIT block */
1591 	f2fs_put_page(page, 1);
1592 
1593 	set_prefree_as_free_segments(sbi);
1594 }
1595 
1596 static int build_sit_info(struct f2fs_sb_info *sbi)
1597 {
1598 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1599 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1600 	struct sit_info *sit_i;
1601 	unsigned int sit_segs, start;
1602 	char *src_bitmap, *dst_bitmap;
1603 	unsigned int bitmap_size;
1604 
1605 	/* allocate memory for SIT information */
1606 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1607 	if (!sit_i)
1608 		return -ENOMEM;
1609 
1610 	SM_I(sbi)->sit_info = sit_i;
1611 
1612 	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1613 	if (!sit_i->sentries)
1614 		return -ENOMEM;
1615 
1616 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1617 	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1618 	if (!sit_i->dirty_sentries_bitmap)
1619 		return -ENOMEM;
1620 
1621 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1622 		sit_i->sentries[start].cur_valid_map
1623 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1624 		sit_i->sentries[start].ckpt_valid_map
1625 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1626 		if (!sit_i->sentries[start].cur_valid_map
1627 				|| !sit_i->sentries[start].ckpt_valid_map)
1628 			return -ENOMEM;
1629 	}
1630 
1631 	if (sbi->segs_per_sec > 1) {
1632 		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1633 					sizeof(struct sec_entry));
1634 		if (!sit_i->sec_entries)
1635 			return -ENOMEM;
1636 	}
1637 
1638 	/* get information related with SIT */
1639 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1640 
1641 	/* setup SIT bitmap from ckeckpoint pack */
1642 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1643 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1644 
1645 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1646 	if (!dst_bitmap)
1647 		return -ENOMEM;
1648 
1649 	/* init SIT information */
1650 	sit_i->s_ops = &default_salloc_ops;
1651 
1652 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1653 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1654 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1655 	sit_i->sit_bitmap = dst_bitmap;
1656 	sit_i->bitmap_size = bitmap_size;
1657 	sit_i->dirty_sentries = 0;
1658 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1659 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1660 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1661 	mutex_init(&sit_i->sentry_lock);
1662 	return 0;
1663 }
1664 
1665 static int build_free_segmap(struct f2fs_sb_info *sbi)
1666 {
1667 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1668 	struct free_segmap_info *free_i;
1669 	unsigned int bitmap_size, sec_bitmap_size;
1670 
1671 	/* allocate memory for free segmap information */
1672 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1673 	if (!free_i)
1674 		return -ENOMEM;
1675 
1676 	SM_I(sbi)->free_info = free_i;
1677 
1678 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1679 	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1680 	if (!free_i->free_segmap)
1681 		return -ENOMEM;
1682 
1683 	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1684 	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1685 	if (!free_i->free_secmap)
1686 		return -ENOMEM;
1687 
1688 	/* set all segments as dirty temporarily */
1689 	memset(free_i->free_segmap, 0xff, bitmap_size);
1690 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1691 
1692 	/* init free segmap information */
1693 	free_i->start_segno =
1694 		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1695 	free_i->free_segments = 0;
1696 	free_i->free_sections = 0;
1697 	rwlock_init(&free_i->segmap_lock);
1698 	return 0;
1699 }
1700 
1701 static int build_curseg(struct f2fs_sb_info *sbi)
1702 {
1703 	struct curseg_info *array;
1704 	int i;
1705 
1706 	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1707 	if (!array)
1708 		return -ENOMEM;
1709 
1710 	SM_I(sbi)->curseg_array = array;
1711 
1712 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1713 		mutex_init(&array[i].curseg_mutex);
1714 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1715 		if (!array[i].sum_blk)
1716 			return -ENOMEM;
1717 		array[i].segno = NULL_SEGNO;
1718 		array[i].next_blkoff = 0;
1719 	}
1720 	return restore_curseg_summaries(sbi);
1721 }
1722 
1723 static void build_sit_entries(struct f2fs_sb_info *sbi)
1724 {
1725 	struct sit_info *sit_i = SIT_I(sbi);
1726 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1727 	struct f2fs_summary_block *sum = curseg->sum_blk;
1728 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
1729 	unsigned int i, start, end;
1730 	unsigned int readed, start_blk = 0;
1731 	int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1732 
1733 	do {
1734 		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT);
1735 
1736 		start = start_blk * sit_i->sents_per_block;
1737 		end = (start_blk + readed) * sit_i->sents_per_block;
1738 
1739 		for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1740 			struct seg_entry *se = &sit_i->sentries[start];
1741 			struct f2fs_sit_block *sit_blk;
1742 			struct f2fs_sit_entry sit;
1743 			struct page *page;
1744 
1745 			mutex_lock(&curseg->curseg_mutex);
1746 			for (i = 0; i < sits_in_cursum(sum); i++) {
1747 				if (le32_to_cpu(segno_in_journal(sum, i))
1748 								== start) {
1749 					sit = sit_in_journal(sum, i);
1750 					mutex_unlock(&curseg->curseg_mutex);
1751 					goto got_it;
1752 				}
1753 			}
1754 			mutex_unlock(&curseg->curseg_mutex);
1755 
1756 			page = get_current_sit_page(sbi, start);
1757 			sit_blk = (struct f2fs_sit_block *)page_address(page);
1758 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1759 			f2fs_put_page(page, 1);
1760 got_it:
1761 			check_block_count(sbi, start, &sit);
1762 			seg_info_from_raw_sit(se, &sit);
1763 			if (sbi->segs_per_sec > 1) {
1764 				struct sec_entry *e = get_sec_entry(sbi, start);
1765 				e->valid_blocks += se->valid_blocks;
1766 			}
1767 		}
1768 		start_blk += readed;
1769 	} while (start_blk < sit_blk_cnt);
1770 }
1771 
1772 static void init_free_segmap(struct f2fs_sb_info *sbi)
1773 {
1774 	unsigned int start;
1775 	int type;
1776 
1777 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1778 		struct seg_entry *sentry = get_seg_entry(sbi, start);
1779 		if (!sentry->valid_blocks)
1780 			__set_free(sbi, start);
1781 	}
1782 
1783 	/* set use the current segments */
1784 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1785 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1786 		__set_test_and_inuse(sbi, curseg_t->segno);
1787 	}
1788 }
1789 
1790 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1791 {
1792 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1793 	struct free_segmap_info *free_i = FREE_I(sbi);
1794 	unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1795 	unsigned short valid_blocks;
1796 
1797 	while (1) {
1798 		/* find dirty segment based on free segmap */
1799 		segno = find_next_inuse(free_i, total_segs, offset);
1800 		if (segno >= total_segs)
1801 			break;
1802 		offset = segno + 1;
1803 		valid_blocks = get_valid_blocks(sbi, segno, 0);
1804 		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1805 			continue;
1806 		mutex_lock(&dirty_i->seglist_lock);
1807 		__locate_dirty_segment(sbi, segno, DIRTY);
1808 		mutex_unlock(&dirty_i->seglist_lock);
1809 	}
1810 }
1811 
1812 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1813 {
1814 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1815 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1816 
1817 	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1818 	if (!dirty_i->victim_secmap)
1819 		return -ENOMEM;
1820 	return 0;
1821 }
1822 
1823 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1824 {
1825 	struct dirty_seglist_info *dirty_i;
1826 	unsigned int bitmap_size, i;
1827 
1828 	/* allocate memory for dirty segments list information */
1829 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1830 	if (!dirty_i)
1831 		return -ENOMEM;
1832 
1833 	SM_I(sbi)->dirty_info = dirty_i;
1834 	mutex_init(&dirty_i->seglist_lock);
1835 
1836 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1837 
1838 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1839 		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1840 		if (!dirty_i->dirty_segmap[i])
1841 			return -ENOMEM;
1842 	}
1843 
1844 	init_dirty_segmap(sbi);
1845 	return init_victim_secmap(sbi);
1846 }
1847 
1848 /*
1849  * Update min, max modified time for cost-benefit GC algorithm
1850  */
1851 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1852 {
1853 	struct sit_info *sit_i = SIT_I(sbi);
1854 	unsigned int segno;
1855 
1856 	mutex_lock(&sit_i->sentry_lock);
1857 
1858 	sit_i->min_mtime = LLONG_MAX;
1859 
1860 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1861 		unsigned int i;
1862 		unsigned long long mtime = 0;
1863 
1864 		for (i = 0; i < sbi->segs_per_sec; i++)
1865 			mtime += get_seg_entry(sbi, segno + i)->mtime;
1866 
1867 		mtime = div_u64(mtime, sbi->segs_per_sec);
1868 
1869 		if (sit_i->min_mtime > mtime)
1870 			sit_i->min_mtime = mtime;
1871 	}
1872 	sit_i->max_mtime = get_mtime(sbi);
1873 	mutex_unlock(&sit_i->sentry_lock);
1874 }
1875 
1876 int build_segment_manager(struct f2fs_sb_info *sbi)
1877 {
1878 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1879 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1880 	struct f2fs_sm_info *sm_info;
1881 	int err;
1882 
1883 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1884 	if (!sm_info)
1885 		return -ENOMEM;
1886 
1887 	/* init sm info */
1888 	sbi->sm_info = sm_info;
1889 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1890 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1891 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1892 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1893 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1894 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1895 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1896 	sm_info->rec_prefree_segments = sm_info->main_segments *
1897 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
1898 	sm_info->ipu_policy = F2FS_IPU_DISABLE;
1899 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1900 
1901 	INIT_LIST_HEAD(&sm_info->discard_list);
1902 	sm_info->nr_discards = 0;
1903 	sm_info->max_discards = 0;
1904 
1905 	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
1906 		err = create_flush_cmd_control(sbi);
1907 		if (err)
1908 			return err;
1909 	}
1910 
1911 	err = build_sit_info(sbi);
1912 	if (err)
1913 		return err;
1914 	err = build_free_segmap(sbi);
1915 	if (err)
1916 		return err;
1917 	err = build_curseg(sbi);
1918 	if (err)
1919 		return err;
1920 
1921 	/* reinit free segmap based on SIT */
1922 	build_sit_entries(sbi);
1923 
1924 	init_free_segmap(sbi);
1925 	err = build_dirty_segmap(sbi);
1926 	if (err)
1927 		return err;
1928 
1929 	init_min_max_mtime(sbi);
1930 	return 0;
1931 }
1932 
1933 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1934 		enum dirty_type dirty_type)
1935 {
1936 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1937 
1938 	mutex_lock(&dirty_i->seglist_lock);
1939 	kfree(dirty_i->dirty_segmap[dirty_type]);
1940 	dirty_i->nr_dirty[dirty_type] = 0;
1941 	mutex_unlock(&dirty_i->seglist_lock);
1942 }
1943 
1944 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1945 {
1946 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1947 	kfree(dirty_i->victim_secmap);
1948 }
1949 
1950 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1951 {
1952 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1953 	int i;
1954 
1955 	if (!dirty_i)
1956 		return;
1957 
1958 	/* discard pre-free/dirty segments list */
1959 	for (i = 0; i < NR_DIRTY_TYPE; i++)
1960 		discard_dirty_segmap(sbi, i);
1961 
1962 	destroy_victim_secmap(sbi);
1963 	SM_I(sbi)->dirty_info = NULL;
1964 	kfree(dirty_i);
1965 }
1966 
1967 static void destroy_curseg(struct f2fs_sb_info *sbi)
1968 {
1969 	struct curseg_info *array = SM_I(sbi)->curseg_array;
1970 	int i;
1971 
1972 	if (!array)
1973 		return;
1974 	SM_I(sbi)->curseg_array = NULL;
1975 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1976 		kfree(array[i].sum_blk);
1977 	kfree(array);
1978 }
1979 
1980 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1981 {
1982 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1983 	if (!free_i)
1984 		return;
1985 	SM_I(sbi)->free_info = NULL;
1986 	kfree(free_i->free_segmap);
1987 	kfree(free_i->free_secmap);
1988 	kfree(free_i);
1989 }
1990 
1991 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1992 {
1993 	struct sit_info *sit_i = SIT_I(sbi);
1994 	unsigned int start;
1995 
1996 	if (!sit_i)
1997 		return;
1998 
1999 	if (sit_i->sentries) {
2000 		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
2001 			kfree(sit_i->sentries[start].cur_valid_map);
2002 			kfree(sit_i->sentries[start].ckpt_valid_map);
2003 		}
2004 	}
2005 	vfree(sit_i->sentries);
2006 	vfree(sit_i->sec_entries);
2007 	kfree(sit_i->dirty_sentries_bitmap);
2008 
2009 	SM_I(sbi)->sit_info = NULL;
2010 	kfree(sit_i->sit_bitmap);
2011 	kfree(sit_i);
2012 }
2013 
2014 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2015 {
2016 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2017 
2018 	if (!sm_info)
2019 		return;
2020 	destroy_flush_cmd_control(sbi);
2021 	destroy_dirty_segmap(sbi);
2022 	destroy_curseg(sbi);
2023 	destroy_free_segmap(sbi);
2024 	destroy_sit_info(sbi);
2025 	sbi->sm_info = NULL;
2026 	kfree(sm_info);
2027 }
2028 
2029 int __init create_segment_manager_caches(void)
2030 {
2031 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2032 			sizeof(struct discard_entry));
2033 	if (!discard_entry_slab)
2034 		return -ENOMEM;
2035 	return 0;
2036 }
2037 
2038 void destroy_segment_manager_caches(void)
2039 {
2040 	kmem_cache_destroy(discard_entry_slab);
2041 }
2042