xref: /openbmc/linux/fs/f2fs/segment.c (revision 8ef9ea1503d0a129cc6f5cf48fb63633efa5d766)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
203 		clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
204 		f2fs_mark_inode_dirty_sync(inode, true);
205 	}
206 	stat_dec_atomic_inode(inode);
207 
208 	F2FS_I(inode)->atomic_write_task = NULL;
209 
210 	if (clean) {
211 		f2fs_i_size_write(inode, fi->original_i_size);
212 		fi->original_i_size = 0;
213 	}
214 	/* avoid stale dirty inode during eviction */
215 	sync_inode_metadata(inode, 0);
216 }
217 
218 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
219 			block_t new_addr, block_t *old_addr, bool recover)
220 {
221 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 	struct dnode_of_data dn;
223 	struct node_info ni;
224 	int err;
225 
226 retry:
227 	set_new_dnode(&dn, inode, NULL, NULL, 0);
228 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
229 	if (err) {
230 		if (err == -ENOMEM) {
231 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
232 			goto retry;
233 		}
234 		return err;
235 	}
236 
237 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
238 	if (err) {
239 		f2fs_put_dnode(&dn);
240 		return err;
241 	}
242 
243 	if (recover) {
244 		/* dn.data_blkaddr is always valid */
245 		if (!__is_valid_data_blkaddr(new_addr)) {
246 			if (new_addr == NULL_ADDR)
247 				dec_valid_block_count(sbi, inode, 1);
248 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
249 			f2fs_update_data_blkaddr(&dn, new_addr);
250 		} else {
251 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
252 				new_addr, ni.version, true, true);
253 		}
254 	} else {
255 		blkcnt_t count = 1;
256 
257 		err = inc_valid_block_count(sbi, inode, &count, true);
258 		if (err) {
259 			f2fs_put_dnode(&dn);
260 			return err;
261 		}
262 
263 		*old_addr = dn.data_blkaddr;
264 		f2fs_truncate_data_blocks_range(&dn, 1);
265 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
266 
267 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
268 					ni.version, true, false);
269 	}
270 
271 	f2fs_put_dnode(&dn);
272 
273 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
274 			index, old_addr ? *old_addr : 0, new_addr, recover);
275 	return 0;
276 }
277 
278 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
279 					bool revoke)
280 {
281 	struct revoke_entry *cur, *tmp;
282 	pgoff_t start_index = 0;
283 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
284 
285 	list_for_each_entry_safe(cur, tmp, head, list) {
286 		if (revoke) {
287 			__replace_atomic_write_block(inode, cur->index,
288 						cur->old_addr, NULL, true);
289 		} else if (truncate) {
290 			f2fs_truncate_hole(inode, start_index, cur->index);
291 			start_index = cur->index + 1;
292 		}
293 
294 		list_del(&cur->list);
295 		kmem_cache_free(revoke_entry_slab, cur);
296 	}
297 
298 	if (!revoke && truncate)
299 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
300 }
301 
302 static int __f2fs_commit_atomic_write(struct inode *inode)
303 {
304 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
305 	struct f2fs_inode_info *fi = F2FS_I(inode);
306 	struct inode *cow_inode = fi->cow_inode;
307 	struct revoke_entry *new;
308 	struct list_head revoke_list;
309 	block_t blkaddr;
310 	struct dnode_of_data dn;
311 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
312 	pgoff_t off = 0, blen, index;
313 	int ret = 0, i;
314 
315 	INIT_LIST_HEAD(&revoke_list);
316 
317 	while (len) {
318 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
319 
320 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
321 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
322 		if (ret && ret != -ENOENT) {
323 			goto out;
324 		} else if (ret == -ENOENT) {
325 			ret = 0;
326 			if (dn.max_level == 0)
327 				goto out;
328 			goto next;
329 		}
330 
331 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
332 				len);
333 		index = off;
334 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
335 			blkaddr = f2fs_data_blkaddr(&dn);
336 
337 			if (!__is_valid_data_blkaddr(blkaddr)) {
338 				continue;
339 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
340 					DATA_GENERIC_ENHANCE)) {
341 				f2fs_put_dnode(&dn);
342 				ret = -EFSCORRUPTED;
343 				f2fs_handle_error(sbi,
344 						ERROR_INVALID_BLKADDR);
345 				goto out;
346 			}
347 
348 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
349 							true, NULL);
350 
351 			ret = __replace_atomic_write_block(inode, index, blkaddr,
352 							&new->old_addr, false);
353 			if (ret) {
354 				f2fs_put_dnode(&dn);
355 				kmem_cache_free(revoke_entry_slab, new);
356 				goto out;
357 			}
358 
359 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
360 			new->index = index;
361 			list_add_tail(&new->list, &revoke_list);
362 		}
363 		f2fs_put_dnode(&dn);
364 next:
365 		off += blen;
366 		len -= blen;
367 	}
368 
369 out:
370 	if (ret) {
371 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
372 	} else {
373 		sbi->committed_atomic_block += fi->atomic_write_cnt;
374 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
375 		if (is_inode_flag_set(inode, FI_ATOMIC_DIRTIED)) {
376 			clear_inode_flag(inode, FI_ATOMIC_DIRTIED);
377 			f2fs_mark_inode_dirty_sync(inode, true);
378 		}
379 	}
380 
381 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
382 
383 	return ret;
384 }
385 
386 int f2fs_commit_atomic_write(struct inode *inode)
387 {
388 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
389 	struct f2fs_inode_info *fi = F2FS_I(inode);
390 	int err;
391 
392 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
393 	if (err)
394 		return err;
395 
396 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
397 	f2fs_lock_op(sbi);
398 
399 	err = __f2fs_commit_atomic_write(inode);
400 
401 	f2fs_unlock_op(sbi);
402 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
403 
404 	return err;
405 }
406 
407 /*
408  * This function balances dirty node and dentry pages.
409  * In addition, it controls garbage collection.
410  */
411 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
412 {
413 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
414 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
415 
416 	/* balance_fs_bg is able to be pending */
417 	if (need && excess_cached_nats(sbi))
418 		f2fs_balance_fs_bg(sbi, false);
419 
420 	if (!f2fs_is_checkpoint_ready(sbi))
421 		return;
422 
423 	/*
424 	 * We should do GC or end up with checkpoint, if there are so many dirty
425 	 * dir/node pages without enough free segments.
426 	 */
427 	if (has_enough_free_secs(sbi, 0, 0))
428 		return;
429 
430 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
431 				sbi->gc_thread->f2fs_gc_task) {
432 		DEFINE_WAIT(wait);
433 
434 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
435 					TASK_UNINTERRUPTIBLE);
436 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
437 		io_schedule();
438 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
439 	} else {
440 		struct f2fs_gc_control gc_control = {
441 			.victim_segno = NULL_SEGNO,
442 			.init_gc_type = BG_GC,
443 			.no_bg_gc = true,
444 			.should_migrate_blocks = false,
445 			.err_gc_skipped = false,
446 			.nr_free_secs = 1 };
447 		f2fs_down_write(&sbi->gc_lock);
448 		stat_inc_gc_call_count(sbi, FOREGROUND);
449 		f2fs_gc(sbi, &gc_control);
450 	}
451 }
452 
453 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
454 {
455 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
456 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
457 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
458 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
459 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
460 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
461 	unsigned int threshold = (factor * DEFAULT_DIRTY_THRESHOLD) <<
462 				sbi->log_blocks_per_seg;
463 	unsigned int global_threshold = threshold * 3 / 2;
464 
465 	if (dents >= threshold || qdata >= threshold ||
466 		nodes >= threshold || meta >= threshold ||
467 		imeta >= threshold)
468 		return true;
469 	return dents + qdata + nodes + meta + imeta >  global_threshold;
470 }
471 
472 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
473 {
474 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
475 		return;
476 
477 	/* try to shrink extent cache when there is no enough memory */
478 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
479 		f2fs_shrink_read_extent_tree(sbi,
480 				READ_EXTENT_CACHE_SHRINK_NUMBER);
481 
482 	/* try to shrink age extent cache when there is no enough memory */
483 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
484 		f2fs_shrink_age_extent_tree(sbi,
485 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
486 
487 	/* check the # of cached NAT entries */
488 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
489 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
490 
491 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
492 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
493 	else
494 		f2fs_build_free_nids(sbi, false, false);
495 
496 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
497 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
498 		goto do_sync;
499 
500 	/* there is background inflight IO or foreground operation recently */
501 	if (is_inflight_io(sbi, REQ_TIME) ||
502 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
503 		return;
504 
505 	/* exceed periodical checkpoint timeout threshold */
506 	if (f2fs_time_over(sbi, CP_TIME))
507 		goto do_sync;
508 
509 	/* checkpoint is the only way to shrink partial cached entries */
510 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
511 		f2fs_available_free_memory(sbi, INO_ENTRIES))
512 		return;
513 
514 do_sync:
515 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
516 		struct blk_plug plug;
517 
518 		mutex_lock(&sbi->flush_lock);
519 
520 		blk_start_plug(&plug);
521 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
522 		blk_finish_plug(&plug);
523 
524 		mutex_unlock(&sbi->flush_lock);
525 	}
526 	stat_inc_cp_call_count(sbi, BACKGROUND);
527 	f2fs_sync_fs(sbi->sb, 1);
528 }
529 
530 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
531 				struct block_device *bdev)
532 {
533 	int ret = blkdev_issue_flush(bdev);
534 
535 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
536 				test_opt(sbi, FLUSH_MERGE), ret);
537 	if (!ret)
538 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
539 	return ret;
540 }
541 
542 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
543 {
544 	int ret = 0;
545 	int i;
546 
547 	if (!f2fs_is_multi_device(sbi))
548 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
549 
550 	for (i = 0; i < sbi->s_ndevs; i++) {
551 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
552 			continue;
553 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
554 		if (ret)
555 			break;
556 	}
557 	return ret;
558 }
559 
560 static int issue_flush_thread(void *data)
561 {
562 	struct f2fs_sb_info *sbi = data;
563 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
564 	wait_queue_head_t *q = &fcc->flush_wait_queue;
565 repeat:
566 	if (kthread_should_stop())
567 		return 0;
568 
569 	if (!llist_empty(&fcc->issue_list)) {
570 		struct flush_cmd *cmd, *next;
571 		int ret;
572 
573 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
574 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
575 
576 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
577 
578 		ret = submit_flush_wait(sbi, cmd->ino);
579 		atomic_inc(&fcc->issued_flush);
580 
581 		llist_for_each_entry_safe(cmd, next,
582 					  fcc->dispatch_list, llnode) {
583 			cmd->ret = ret;
584 			complete(&cmd->wait);
585 		}
586 		fcc->dispatch_list = NULL;
587 	}
588 
589 	wait_event_interruptible(*q,
590 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
591 	goto repeat;
592 }
593 
594 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
595 {
596 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
597 	struct flush_cmd cmd;
598 	int ret;
599 
600 	if (test_opt(sbi, NOBARRIER))
601 		return 0;
602 
603 	if (!test_opt(sbi, FLUSH_MERGE)) {
604 		atomic_inc(&fcc->queued_flush);
605 		ret = submit_flush_wait(sbi, ino);
606 		atomic_dec(&fcc->queued_flush);
607 		atomic_inc(&fcc->issued_flush);
608 		return ret;
609 	}
610 
611 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
612 	    f2fs_is_multi_device(sbi)) {
613 		ret = submit_flush_wait(sbi, ino);
614 		atomic_dec(&fcc->queued_flush);
615 
616 		atomic_inc(&fcc->issued_flush);
617 		return ret;
618 	}
619 
620 	cmd.ino = ino;
621 	init_completion(&cmd.wait);
622 
623 	llist_add(&cmd.llnode, &fcc->issue_list);
624 
625 	/*
626 	 * update issue_list before we wake up issue_flush thread, this
627 	 * smp_mb() pairs with another barrier in ___wait_event(), see
628 	 * more details in comments of waitqueue_active().
629 	 */
630 	smp_mb();
631 
632 	if (waitqueue_active(&fcc->flush_wait_queue))
633 		wake_up(&fcc->flush_wait_queue);
634 
635 	if (fcc->f2fs_issue_flush) {
636 		wait_for_completion(&cmd.wait);
637 		atomic_dec(&fcc->queued_flush);
638 	} else {
639 		struct llist_node *list;
640 
641 		list = llist_del_all(&fcc->issue_list);
642 		if (!list) {
643 			wait_for_completion(&cmd.wait);
644 			atomic_dec(&fcc->queued_flush);
645 		} else {
646 			struct flush_cmd *tmp, *next;
647 
648 			ret = submit_flush_wait(sbi, ino);
649 
650 			llist_for_each_entry_safe(tmp, next, list, llnode) {
651 				if (tmp == &cmd) {
652 					cmd.ret = ret;
653 					atomic_dec(&fcc->queued_flush);
654 					continue;
655 				}
656 				tmp->ret = ret;
657 				complete(&tmp->wait);
658 			}
659 		}
660 	}
661 
662 	return cmd.ret;
663 }
664 
665 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
666 {
667 	dev_t dev = sbi->sb->s_bdev->bd_dev;
668 	struct flush_cmd_control *fcc;
669 
670 	if (SM_I(sbi)->fcc_info) {
671 		fcc = SM_I(sbi)->fcc_info;
672 		if (fcc->f2fs_issue_flush)
673 			return 0;
674 		goto init_thread;
675 	}
676 
677 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
678 	if (!fcc)
679 		return -ENOMEM;
680 	atomic_set(&fcc->issued_flush, 0);
681 	atomic_set(&fcc->queued_flush, 0);
682 	init_waitqueue_head(&fcc->flush_wait_queue);
683 	init_llist_head(&fcc->issue_list);
684 	SM_I(sbi)->fcc_info = fcc;
685 	if (!test_opt(sbi, FLUSH_MERGE))
686 		return 0;
687 
688 init_thread:
689 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
690 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
691 	if (IS_ERR(fcc->f2fs_issue_flush)) {
692 		int err = PTR_ERR(fcc->f2fs_issue_flush);
693 
694 		fcc->f2fs_issue_flush = NULL;
695 		return err;
696 	}
697 
698 	return 0;
699 }
700 
701 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
702 {
703 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
704 
705 	if (fcc && fcc->f2fs_issue_flush) {
706 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
707 
708 		fcc->f2fs_issue_flush = NULL;
709 		kthread_stop(flush_thread);
710 	}
711 	if (free) {
712 		kfree(fcc);
713 		SM_I(sbi)->fcc_info = NULL;
714 	}
715 }
716 
717 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
718 {
719 	int ret = 0, i;
720 
721 	if (!f2fs_is_multi_device(sbi))
722 		return 0;
723 
724 	if (test_opt(sbi, NOBARRIER))
725 		return 0;
726 
727 	for (i = 1; i < sbi->s_ndevs; i++) {
728 		int count = DEFAULT_RETRY_IO_COUNT;
729 
730 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
731 			continue;
732 
733 		do {
734 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
735 			if (ret)
736 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
737 		} while (ret && --count);
738 
739 		if (ret) {
740 			f2fs_stop_checkpoint(sbi, false,
741 					STOP_CP_REASON_FLUSH_FAIL);
742 			break;
743 		}
744 
745 		spin_lock(&sbi->dev_lock);
746 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
747 		spin_unlock(&sbi->dev_lock);
748 	}
749 
750 	return ret;
751 }
752 
753 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
754 		enum dirty_type dirty_type)
755 {
756 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
757 
758 	/* need not be added */
759 	if (IS_CURSEG(sbi, segno))
760 		return;
761 
762 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
763 		dirty_i->nr_dirty[dirty_type]++;
764 
765 	if (dirty_type == DIRTY) {
766 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
767 		enum dirty_type t = sentry->type;
768 
769 		if (unlikely(t >= DIRTY)) {
770 			f2fs_bug_on(sbi, 1);
771 			return;
772 		}
773 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
774 			dirty_i->nr_dirty[t]++;
775 
776 		if (__is_large_section(sbi)) {
777 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
778 			block_t valid_blocks =
779 				get_valid_blocks(sbi, segno, true);
780 
781 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
782 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
783 
784 			if (!IS_CURSEC(sbi, secno))
785 				set_bit(secno, dirty_i->dirty_secmap);
786 		}
787 	}
788 }
789 
790 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
791 		enum dirty_type dirty_type)
792 {
793 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
794 	block_t valid_blocks;
795 
796 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
797 		dirty_i->nr_dirty[dirty_type]--;
798 
799 	if (dirty_type == DIRTY) {
800 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
801 		enum dirty_type t = sentry->type;
802 
803 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
804 			dirty_i->nr_dirty[t]--;
805 
806 		valid_blocks = get_valid_blocks(sbi, segno, true);
807 		if (valid_blocks == 0) {
808 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
809 						dirty_i->victim_secmap);
810 #ifdef CONFIG_F2FS_CHECK_FS
811 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
812 #endif
813 		}
814 		if (__is_large_section(sbi)) {
815 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
816 
817 			if (!valid_blocks ||
818 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
819 				clear_bit(secno, dirty_i->dirty_secmap);
820 				return;
821 			}
822 
823 			if (!IS_CURSEC(sbi, secno))
824 				set_bit(secno, dirty_i->dirty_secmap);
825 		}
826 	}
827 }
828 
829 /*
830  * Should not occur error such as -ENOMEM.
831  * Adding dirty entry into seglist is not critical operation.
832  * If a given segment is one of current working segments, it won't be added.
833  */
834 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
835 {
836 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
837 	unsigned short valid_blocks, ckpt_valid_blocks;
838 	unsigned int usable_blocks;
839 
840 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
841 		return;
842 
843 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
844 	mutex_lock(&dirty_i->seglist_lock);
845 
846 	valid_blocks = get_valid_blocks(sbi, segno, false);
847 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
848 
849 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
850 		ckpt_valid_blocks == usable_blocks)) {
851 		__locate_dirty_segment(sbi, segno, PRE);
852 		__remove_dirty_segment(sbi, segno, DIRTY);
853 	} else if (valid_blocks < usable_blocks) {
854 		__locate_dirty_segment(sbi, segno, DIRTY);
855 	} else {
856 		/* Recovery routine with SSR needs this */
857 		__remove_dirty_segment(sbi, segno, DIRTY);
858 	}
859 
860 	mutex_unlock(&dirty_i->seglist_lock);
861 }
862 
863 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
864 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
865 {
866 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
867 	unsigned int segno;
868 
869 	mutex_lock(&dirty_i->seglist_lock);
870 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
871 		if (get_valid_blocks(sbi, segno, false))
872 			continue;
873 		if (IS_CURSEG(sbi, segno))
874 			continue;
875 		__locate_dirty_segment(sbi, segno, PRE);
876 		__remove_dirty_segment(sbi, segno, DIRTY);
877 	}
878 	mutex_unlock(&dirty_i->seglist_lock);
879 }
880 
881 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
882 {
883 	int ovp_hole_segs =
884 		(overprovision_segments(sbi) - reserved_segments(sbi));
885 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
886 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
887 	block_t holes[2] = {0, 0};	/* DATA and NODE */
888 	block_t unusable;
889 	struct seg_entry *se;
890 	unsigned int segno;
891 
892 	mutex_lock(&dirty_i->seglist_lock);
893 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
894 		se = get_seg_entry(sbi, segno);
895 		if (IS_NODESEG(se->type))
896 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
897 							se->valid_blocks;
898 		else
899 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
900 							se->valid_blocks;
901 	}
902 	mutex_unlock(&dirty_i->seglist_lock);
903 
904 	unusable = max(holes[DATA], holes[NODE]);
905 	if (unusable > ovp_holes)
906 		return unusable - ovp_holes;
907 	return 0;
908 }
909 
910 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
911 {
912 	int ovp_hole_segs =
913 		(overprovision_segments(sbi) - reserved_segments(sbi));
914 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
915 		return -EAGAIN;
916 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
917 		dirty_segments(sbi) > ovp_hole_segs)
918 		return -EAGAIN;
919 	return 0;
920 }
921 
922 /* This is only used by SBI_CP_DISABLED */
923 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
924 {
925 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
926 	unsigned int segno = 0;
927 
928 	mutex_lock(&dirty_i->seglist_lock);
929 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
930 		if (get_valid_blocks(sbi, segno, false))
931 			continue;
932 		if (get_ckpt_valid_blocks(sbi, segno, false))
933 			continue;
934 		mutex_unlock(&dirty_i->seglist_lock);
935 		return segno;
936 	}
937 	mutex_unlock(&dirty_i->seglist_lock);
938 	return NULL_SEGNO;
939 }
940 
941 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
942 		struct block_device *bdev, block_t lstart,
943 		block_t start, block_t len)
944 {
945 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
946 	struct list_head *pend_list;
947 	struct discard_cmd *dc;
948 
949 	f2fs_bug_on(sbi, !len);
950 
951 	pend_list = &dcc->pend_list[plist_idx(len)];
952 
953 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
954 	INIT_LIST_HEAD(&dc->list);
955 	dc->bdev = bdev;
956 	dc->di.lstart = lstart;
957 	dc->di.start = start;
958 	dc->di.len = len;
959 	dc->ref = 0;
960 	dc->state = D_PREP;
961 	dc->queued = 0;
962 	dc->error = 0;
963 	init_completion(&dc->wait);
964 	list_add_tail(&dc->list, pend_list);
965 	spin_lock_init(&dc->lock);
966 	dc->bio_ref = 0;
967 	atomic_inc(&dcc->discard_cmd_cnt);
968 	dcc->undiscard_blks += len;
969 
970 	return dc;
971 }
972 
973 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
974 {
975 #ifdef CONFIG_F2FS_CHECK_FS
976 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
977 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
978 	struct discard_cmd *cur_dc, *next_dc;
979 
980 	while (cur) {
981 		next = rb_next(cur);
982 		if (!next)
983 			return true;
984 
985 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
986 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
987 
988 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
989 			f2fs_info(sbi, "broken discard_rbtree, "
990 				"cur(%u, %u) next(%u, %u)",
991 				cur_dc->di.lstart, cur_dc->di.len,
992 				next_dc->di.lstart, next_dc->di.len);
993 			return false;
994 		}
995 		cur = next;
996 	}
997 #endif
998 	return true;
999 }
1000 
1001 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
1002 						block_t blkaddr)
1003 {
1004 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1005 	struct rb_node *node = dcc->root.rb_root.rb_node;
1006 	struct discard_cmd *dc;
1007 
1008 	while (node) {
1009 		dc = rb_entry(node, struct discard_cmd, rb_node);
1010 
1011 		if (blkaddr < dc->di.lstart)
1012 			node = node->rb_left;
1013 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1014 			node = node->rb_right;
1015 		else
1016 			return dc;
1017 	}
1018 	return NULL;
1019 }
1020 
1021 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1022 				block_t blkaddr,
1023 				struct discard_cmd **prev_entry,
1024 				struct discard_cmd **next_entry,
1025 				struct rb_node ***insert_p,
1026 				struct rb_node **insert_parent)
1027 {
1028 	struct rb_node **pnode = &root->rb_root.rb_node;
1029 	struct rb_node *parent = NULL, *tmp_node;
1030 	struct discard_cmd *dc;
1031 
1032 	*insert_p = NULL;
1033 	*insert_parent = NULL;
1034 	*prev_entry = NULL;
1035 	*next_entry = NULL;
1036 
1037 	if (RB_EMPTY_ROOT(&root->rb_root))
1038 		return NULL;
1039 
1040 	while (*pnode) {
1041 		parent = *pnode;
1042 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1043 
1044 		if (blkaddr < dc->di.lstart)
1045 			pnode = &(*pnode)->rb_left;
1046 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1047 			pnode = &(*pnode)->rb_right;
1048 		else
1049 			goto lookup_neighbors;
1050 	}
1051 
1052 	*insert_p = pnode;
1053 	*insert_parent = parent;
1054 
1055 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1056 	tmp_node = parent;
1057 	if (parent && blkaddr > dc->di.lstart)
1058 		tmp_node = rb_next(parent);
1059 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1060 
1061 	tmp_node = parent;
1062 	if (parent && blkaddr < dc->di.lstart)
1063 		tmp_node = rb_prev(parent);
1064 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1065 	return NULL;
1066 
1067 lookup_neighbors:
1068 	/* lookup prev node for merging backward later */
1069 	tmp_node = rb_prev(&dc->rb_node);
1070 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1071 
1072 	/* lookup next node for merging frontward later */
1073 	tmp_node = rb_next(&dc->rb_node);
1074 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1075 	return dc;
1076 }
1077 
1078 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1079 							struct discard_cmd *dc)
1080 {
1081 	if (dc->state == D_DONE)
1082 		atomic_sub(dc->queued, &dcc->queued_discard);
1083 
1084 	list_del(&dc->list);
1085 	rb_erase_cached(&dc->rb_node, &dcc->root);
1086 	dcc->undiscard_blks -= dc->di.len;
1087 
1088 	kmem_cache_free(discard_cmd_slab, dc);
1089 
1090 	atomic_dec(&dcc->discard_cmd_cnt);
1091 }
1092 
1093 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1094 							struct discard_cmd *dc)
1095 {
1096 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1097 	unsigned long flags;
1098 
1099 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1100 
1101 	spin_lock_irqsave(&dc->lock, flags);
1102 	if (dc->bio_ref) {
1103 		spin_unlock_irqrestore(&dc->lock, flags);
1104 		return;
1105 	}
1106 	spin_unlock_irqrestore(&dc->lock, flags);
1107 
1108 	f2fs_bug_on(sbi, dc->ref);
1109 
1110 	if (dc->error == -EOPNOTSUPP)
1111 		dc->error = 0;
1112 
1113 	if (dc->error)
1114 		f2fs_info_ratelimited(sbi,
1115 			"Issue discard(%u, %u, %u) failed, ret: %d",
1116 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1117 	__detach_discard_cmd(dcc, dc);
1118 }
1119 
1120 static void f2fs_submit_discard_endio(struct bio *bio)
1121 {
1122 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1123 	unsigned long flags;
1124 
1125 	spin_lock_irqsave(&dc->lock, flags);
1126 	if (!dc->error)
1127 		dc->error = blk_status_to_errno(bio->bi_status);
1128 	dc->bio_ref--;
1129 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1130 		dc->state = D_DONE;
1131 		complete_all(&dc->wait);
1132 	}
1133 	spin_unlock_irqrestore(&dc->lock, flags);
1134 	bio_put(bio);
1135 }
1136 
1137 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1138 				block_t start, block_t end)
1139 {
1140 #ifdef CONFIG_F2FS_CHECK_FS
1141 	struct seg_entry *sentry;
1142 	unsigned int segno;
1143 	block_t blk = start;
1144 	unsigned long offset, size, *map;
1145 
1146 	while (blk < end) {
1147 		segno = GET_SEGNO(sbi, blk);
1148 		sentry = get_seg_entry(sbi, segno);
1149 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1150 
1151 		if (end < START_BLOCK(sbi, segno + 1))
1152 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1153 		else
1154 			size = BLKS_PER_SEG(sbi);
1155 		map = (unsigned long *)(sentry->cur_valid_map);
1156 		offset = __find_rev_next_bit(map, size, offset);
1157 		f2fs_bug_on(sbi, offset != size);
1158 		blk = START_BLOCK(sbi, segno + 1);
1159 	}
1160 #endif
1161 }
1162 
1163 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1164 				struct discard_policy *dpolicy,
1165 				int discard_type, unsigned int granularity)
1166 {
1167 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1168 
1169 	/* common policy */
1170 	dpolicy->type = discard_type;
1171 	dpolicy->sync = true;
1172 	dpolicy->ordered = false;
1173 	dpolicy->granularity = granularity;
1174 
1175 	dpolicy->max_requests = dcc->max_discard_request;
1176 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1177 	dpolicy->timeout = false;
1178 
1179 	if (discard_type == DPOLICY_BG) {
1180 		dpolicy->min_interval = dcc->min_discard_issue_time;
1181 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1182 		dpolicy->max_interval = dcc->max_discard_issue_time;
1183 		dpolicy->io_aware = true;
1184 		dpolicy->sync = false;
1185 		dpolicy->ordered = true;
1186 		if (utilization(sbi) > dcc->discard_urgent_util) {
1187 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1188 			if (atomic_read(&dcc->discard_cmd_cnt))
1189 				dpolicy->max_interval =
1190 					dcc->min_discard_issue_time;
1191 		}
1192 	} else if (discard_type == DPOLICY_FORCE) {
1193 		dpolicy->min_interval = dcc->min_discard_issue_time;
1194 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1195 		dpolicy->max_interval = dcc->max_discard_issue_time;
1196 		dpolicy->io_aware = false;
1197 	} else if (discard_type == DPOLICY_FSTRIM) {
1198 		dpolicy->io_aware = false;
1199 	} else if (discard_type == DPOLICY_UMOUNT) {
1200 		dpolicy->io_aware = false;
1201 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1202 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1203 		dpolicy->timeout = true;
1204 	}
1205 }
1206 
1207 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1208 				struct block_device *bdev, block_t lstart,
1209 				block_t start, block_t len);
1210 
1211 #ifdef CONFIG_BLK_DEV_ZONED
1212 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1213 				   struct discard_cmd *dc, blk_opf_t flag,
1214 				   struct list_head *wait_list,
1215 				   unsigned int *issued)
1216 {
1217 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1218 	struct block_device *bdev = dc->bdev;
1219 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1220 	unsigned long flags;
1221 
1222 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1223 
1224 	spin_lock_irqsave(&dc->lock, flags);
1225 	dc->state = D_SUBMIT;
1226 	dc->bio_ref++;
1227 	spin_unlock_irqrestore(&dc->lock, flags);
1228 
1229 	if (issued)
1230 		(*issued)++;
1231 
1232 	atomic_inc(&dcc->queued_discard);
1233 	dc->queued++;
1234 	list_move_tail(&dc->list, wait_list);
1235 
1236 	/* sanity check on discard range */
1237 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1238 
1239 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1240 	bio->bi_private = dc;
1241 	bio->bi_end_io = f2fs_submit_discard_endio;
1242 	submit_bio(bio);
1243 
1244 	atomic_inc(&dcc->issued_discard);
1245 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1246 }
1247 #endif
1248 
1249 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1250 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1251 				struct discard_policy *dpolicy,
1252 				struct discard_cmd *dc, int *issued)
1253 {
1254 	struct block_device *bdev = dc->bdev;
1255 	unsigned int max_discard_blocks =
1256 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1257 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1258 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1259 					&(dcc->fstrim_list) : &(dcc->wait_list);
1260 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1261 	block_t lstart, start, len, total_len;
1262 	int err = 0;
1263 
1264 	if (dc->state != D_PREP)
1265 		return 0;
1266 
1267 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1268 		return 0;
1269 
1270 #ifdef CONFIG_BLK_DEV_ZONED
1271 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1272 		int devi = f2fs_bdev_index(sbi, bdev);
1273 
1274 		if (devi < 0)
1275 			return -EINVAL;
1276 
1277 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1278 			__submit_zone_reset_cmd(sbi, dc, flag,
1279 						wait_list, issued);
1280 			return 0;
1281 		}
1282 	}
1283 #endif
1284 
1285 	/*
1286 	 * stop issuing discard for any of below cases:
1287 	 * 1. device is conventional zone, but it doesn't support discard.
1288 	 * 2. device is regulare device, after snapshot it doesn't support
1289 	 * discard.
1290 	 */
1291 	if (!bdev_max_discard_sectors(bdev))
1292 		return -EOPNOTSUPP;
1293 
1294 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1295 
1296 	lstart = dc->di.lstart;
1297 	start = dc->di.start;
1298 	len = dc->di.len;
1299 	total_len = len;
1300 
1301 	dc->di.len = 0;
1302 
1303 	while (total_len && *issued < dpolicy->max_requests && !err) {
1304 		struct bio *bio = NULL;
1305 		unsigned long flags;
1306 		bool last = true;
1307 
1308 		if (len > max_discard_blocks) {
1309 			len = max_discard_blocks;
1310 			last = false;
1311 		}
1312 
1313 		(*issued)++;
1314 		if (*issued == dpolicy->max_requests)
1315 			last = true;
1316 
1317 		dc->di.len += len;
1318 
1319 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1320 			err = -EIO;
1321 		} else {
1322 			err = __blkdev_issue_discard(bdev,
1323 					SECTOR_FROM_BLOCK(start),
1324 					SECTOR_FROM_BLOCK(len),
1325 					GFP_NOFS, &bio);
1326 		}
1327 		if (err) {
1328 			spin_lock_irqsave(&dc->lock, flags);
1329 			if (dc->state == D_PARTIAL)
1330 				dc->state = D_SUBMIT;
1331 			spin_unlock_irqrestore(&dc->lock, flags);
1332 
1333 			break;
1334 		}
1335 
1336 		f2fs_bug_on(sbi, !bio);
1337 
1338 		/*
1339 		 * should keep before submission to avoid D_DONE
1340 		 * right away
1341 		 */
1342 		spin_lock_irqsave(&dc->lock, flags);
1343 		if (last)
1344 			dc->state = D_SUBMIT;
1345 		else
1346 			dc->state = D_PARTIAL;
1347 		dc->bio_ref++;
1348 		spin_unlock_irqrestore(&dc->lock, flags);
1349 
1350 		atomic_inc(&dcc->queued_discard);
1351 		dc->queued++;
1352 		list_move_tail(&dc->list, wait_list);
1353 
1354 		/* sanity check on discard range */
1355 		__check_sit_bitmap(sbi, lstart, lstart + len);
1356 
1357 		bio->bi_private = dc;
1358 		bio->bi_end_io = f2fs_submit_discard_endio;
1359 		bio->bi_opf |= flag;
1360 		submit_bio(bio);
1361 
1362 		atomic_inc(&dcc->issued_discard);
1363 
1364 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1365 
1366 		lstart += len;
1367 		start += len;
1368 		total_len -= len;
1369 		len = total_len;
1370 	}
1371 
1372 	if (!err && len) {
1373 		dcc->undiscard_blks -= len;
1374 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1375 	}
1376 	return err;
1377 }
1378 
1379 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1380 				struct block_device *bdev, block_t lstart,
1381 				block_t start, block_t len)
1382 {
1383 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1384 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1385 	struct rb_node *parent = NULL;
1386 	struct discard_cmd *dc;
1387 	bool leftmost = true;
1388 
1389 	/* look up rb tree to find parent node */
1390 	while (*p) {
1391 		parent = *p;
1392 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1393 
1394 		if (lstart < dc->di.lstart) {
1395 			p = &(*p)->rb_left;
1396 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1397 			p = &(*p)->rb_right;
1398 			leftmost = false;
1399 		} else {
1400 			f2fs_bug_on(sbi, 1);
1401 		}
1402 	}
1403 
1404 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1405 
1406 	rb_link_node(&dc->rb_node, parent, p);
1407 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1408 }
1409 
1410 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1411 						struct discard_cmd *dc)
1412 {
1413 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1414 }
1415 
1416 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1417 				struct discard_cmd *dc, block_t blkaddr)
1418 {
1419 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1420 	struct discard_info di = dc->di;
1421 	bool modified = false;
1422 
1423 	if (dc->state == D_DONE || dc->di.len == 1) {
1424 		__remove_discard_cmd(sbi, dc);
1425 		return;
1426 	}
1427 
1428 	dcc->undiscard_blks -= di.len;
1429 
1430 	if (blkaddr > di.lstart) {
1431 		dc->di.len = blkaddr - dc->di.lstart;
1432 		dcc->undiscard_blks += dc->di.len;
1433 		__relocate_discard_cmd(dcc, dc);
1434 		modified = true;
1435 	}
1436 
1437 	if (blkaddr < di.lstart + di.len - 1) {
1438 		if (modified) {
1439 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1440 					di.start + blkaddr + 1 - di.lstart,
1441 					di.lstart + di.len - 1 - blkaddr);
1442 		} else {
1443 			dc->di.lstart++;
1444 			dc->di.len--;
1445 			dc->di.start++;
1446 			dcc->undiscard_blks += dc->di.len;
1447 			__relocate_discard_cmd(dcc, dc);
1448 		}
1449 	}
1450 }
1451 
1452 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1453 				struct block_device *bdev, block_t lstart,
1454 				block_t start, block_t len)
1455 {
1456 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1457 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1458 	struct discard_cmd *dc;
1459 	struct discard_info di = {0};
1460 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1461 	unsigned int max_discard_blocks =
1462 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1463 	block_t end = lstart + len;
1464 
1465 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1466 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1467 	if (dc)
1468 		prev_dc = dc;
1469 
1470 	if (!prev_dc) {
1471 		di.lstart = lstart;
1472 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1473 		di.len = min(di.len, len);
1474 		di.start = start;
1475 	}
1476 
1477 	while (1) {
1478 		struct rb_node *node;
1479 		bool merged = false;
1480 		struct discard_cmd *tdc = NULL;
1481 
1482 		if (prev_dc) {
1483 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1484 			if (di.lstart < lstart)
1485 				di.lstart = lstart;
1486 			if (di.lstart >= end)
1487 				break;
1488 
1489 			if (!next_dc || next_dc->di.lstart > end)
1490 				di.len = end - di.lstart;
1491 			else
1492 				di.len = next_dc->di.lstart - di.lstart;
1493 			di.start = start + di.lstart - lstart;
1494 		}
1495 
1496 		if (!di.len)
1497 			goto next;
1498 
1499 		if (prev_dc && prev_dc->state == D_PREP &&
1500 			prev_dc->bdev == bdev &&
1501 			__is_discard_back_mergeable(&di, &prev_dc->di,
1502 							max_discard_blocks)) {
1503 			prev_dc->di.len += di.len;
1504 			dcc->undiscard_blks += di.len;
1505 			__relocate_discard_cmd(dcc, prev_dc);
1506 			di = prev_dc->di;
1507 			tdc = prev_dc;
1508 			merged = true;
1509 		}
1510 
1511 		if (next_dc && next_dc->state == D_PREP &&
1512 			next_dc->bdev == bdev &&
1513 			__is_discard_front_mergeable(&di, &next_dc->di,
1514 							max_discard_blocks)) {
1515 			next_dc->di.lstart = di.lstart;
1516 			next_dc->di.len += di.len;
1517 			next_dc->di.start = di.start;
1518 			dcc->undiscard_blks += di.len;
1519 			__relocate_discard_cmd(dcc, next_dc);
1520 			if (tdc)
1521 				__remove_discard_cmd(sbi, tdc);
1522 			merged = true;
1523 		}
1524 
1525 		if (!merged)
1526 			__insert_discard_cmd(sbi, bdev,
1527 						di.lstart, di.start, di.len);
1528  next:
1529 		prev_dc = next_dc;
1530 		if (!prev_dc)
1531 			break;
1532 
1533 		node = rb_next(&prev_dc->rb_node);
1534 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1535 	}
1536 }
1537 
1538 #ifdef CONFIG_BLK_DEV_ZONED
1539 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1540 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1541 		block_t blklen)
1542 {
1543 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1544 
1545 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1546 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1547 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1548 }
1549 #endif
1550 
1551 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1552 		struct block_device *bdev, block_t blkstart, block_t blklen)
1553 {
1554 	block_t lblkstart = blkstart;
1555 
1556 	if (!f2fs_bdev_support_discard(bdev))
1557 		return;
1558 
1559 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1560 
1561 	if (f2fs_is_multi_device(sbi)) {
1562 		int devi = f2fs_target_device_index(sbi, blkstart);
1563 
1564 		blkstart -= FDEV(devi).start_blk;
1565 	}
1566 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1567 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1568 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1569 }
1570 
1571 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1572 		struct discard_policy *dpolicy, int *issued)
1573 {
1574 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1575 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1576 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1577 	struct discard_cmd *dc;
1578 	struct blk_plug plug;
1579 	bool io_interrupted = false;
1580 
1581 	mutex_lock(&dcc->cmd_lock);
1582 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1583 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1584 	if (!dc)
1585 		dc = next_dc;
1586 
1587 	blk_start_plug(&plug);
1588 
1589 	while (dc) {
1590 		struct rb_node *node;
1591 		int err = 0;
1592 
1593 		if (dc->state != D_PREP)
1594 			goto next;
1595 
1596 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1597 			io_interrupted = true;
1598 			break;
1599 		}
1600 
1601 		dcc->next_pos = dc->di.lstart + dc->di.len;
1602 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1603 
1604 		if (*issued >= dpolicy->max_requests)
1605 			break;
1606 next:
1607 		node = rb_next(&dc->rb_node);
1608 		if (err)
1609 			__remove_discard_cmd(sbi, dc);
1610 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1611 	}
1612 
1613 	blk_finish_plug(&plug);
1614 
1615 	if (!dc)
1616 		dcc->next_pos = 0;
1617 
1618 	mutex_unlock(&dcc->cmd_lock);
1619 
1620 	if (!(*issued) && io_interrupted)
1621 		*issued = -1;
1622 }
1623 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1624 					struct discard_policy *dpolicy);
1625 
1626 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1627 					struct discard_policy *dpolicy)
1628 {
1629 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1630 	struct list_head *pend_list;
1631 	struct discard_cmd *dc, *tmp;
1632 	struct blk_plug plug;
1633 	int i, issued;
1634 	bool io_interrupted = false;
1635 
1636 	if (dpolicy->timeout)
1637 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1638 
1639 retry:
1640 	issued = 0;
1641 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1642 		if (dpolicy->timeout &&
1643 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1644 			break;
1645 
1646 		if (i + 1 < dpolicy->granularity)
1647 			break;
1648 
1649 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1650 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1651 			return issued;
1652 		}
1653 
1654 		pend_list = &dcc->pend_list[i];
1655 
1656 		mutex_lock(&dcc->cmd_lock);
1657 		if (list_empty(pend_list))
1658 			goto next;
1659 		if (unlikely(dcc->rbtree_check))
1660 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1661 		blk_start_plug(&plug);
1662 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1663 			f2fs_bug_on(sbi, dc->state != D_PREP);
1664 
1665 			if (dpolicy->timeout &&
1666 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1667 				break;
1668 
1669 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1670 						!is_idle(sbi, DISCARD_TIME)) {
1671 				io_interrupted = true;
1672 				break;
1673 			}
1674 
1675 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1676 
1677 			if (issued >= dpolicy->max_requests)
1678 				break;
1679 		}
1680 		blk_finish_plug(&plug);
1681 next:
1682 		mutex_unlock(&dcc->cmd_lock);
1683 
1684 		if (issued >= dpolicy->max_requests || io_interrupted)
1685 			break;
1686 	}
1687 
1688 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1689 		__wait_all_discard_cmd(sbi, dpolicy);
1690 		goto retry;
1691 	}
1692 
1693 	if (!issued && io_interrupted)
1694 		issued = -1;
1695 
1696 	return issued;
1697 }
1698 
1699 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1700 {
1701 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1702 	struct list_head *pend_list;
1703 	struct discard_cmd *dc, *tmp;
1704 	int i;
1705 	bool dropped = false;
1706 
1707 	mutex_lock(&dcc->cmd_lock);
1708 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1709 		pend_list = &dcc->pend_list[i];
1710 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1711 			f2fs_bug_on(sbi, dc->state != D_PREP);
1712 			__remove_discard_cmd(sbi, dc);
1713 			dropped = true;
1714 		}
1715 	}
1716 	mutex_unlock(&dcc->cmd_lock);
1717 
1718 	return dropped;
1719 }
1720 
1721 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1722 {
1723 	__drop_discard_cmd(sbi);
1724 }
1725 
1726 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1727 							struct discard_cmd *dc)
1728 {
1729 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1730 	unsigned int len = 0;
1731 
1732 	wait_for_completion_io(&dc->wait);
1733 	mutex_lock(&dcc->cmd_lock);
1734 	f2fs_bug_on(sbi, dc->state != D_DONE);
1735 	dc->ref--;
1736 	if (!dc->ref) {
1737 		if (!dc->error)
1738 			len = dc->di.len;
1739 		__remove_discard_cmd(sbi, dc);
1740 	}
1741 	mutex_unlock(&dcc->cmd_lock);
1742 
1743 	return len;
1744 }
1745 
1746 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1747 						struct discard_policy *dpolicy,
1748 						block_t start, block_t end)
1749 {
1750 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1751 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1752 					&(dcc->fstrim_list) : &(dcc->wait_list);
1753 	struct discard_cmd *dc = NULL, *iter, *tmp;
1754 	unsigned int trimmed = 0;
1755 
1756 next:
1757 	dc = NULL;
1758 
1759 	mutex_lock(&dcc->cmd_lock);
1760 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1761 		if (iter->di.lstart + iter->di.len <= start ||
1762 					end <= iter->di.lstart)
1763 			continue;
1764 		if (iter->di.len < dpolicy->granularity)
1765 			continue;
1766 		if (iter->state == D_DONE && !iter->ref) {
1767 			wait_for_completion_io(&iter->wait);
1768 			if (!iter->error)
1769 				trimmed += iter->di.len;
1770 			__remove_discard_cmd(sbi, iter);
1771 		} else {
1772 			iter->ref++;
1773 			dc = iter;
1774 			break;
1775 		}
1776 	}
1777 	mutex_unlock(&dcc->cmd_lock);
1778 
1779 	if (dc) {
1780 		trimmed += __wait_one_discard_bio(sbi, dc);
1781 		goto next;
1782 	}
1783 
1784 	return trimmed;
1785 }
1786 
1787 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1788 						struct discard_policy *dpolicy)
1789 {
1790 	struct discard_policy dp;
1791 	unsigned int discard_blks;
1792 
1793 	if (dpolicy)
1794 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1795 
1796 	/* wait all */
1797 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1798 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1799 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1800 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1801 
1802 	return discard_blks;
1803 }
1804 
1805 /* This should be covered by global mutex, &sit_i->sentry_lock */
1806 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1807 {
1808 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1809 	struct discard_cmd *dc;
1810 	bool need_wait = false;
1811 
1812 	mutex_lock(&dcc->cmd_lock);
1813 	dc = __lookup_discard_cmd(sbi, blkaddr);
1814 #ifdef CONFIG_BLK_DEV_ZONED
1815 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1816 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1817 
1818 		if (devi < 0) {
1819 			mutex_unlock(&dcc->cmd_lock);
1820 			return;
1821 		}
1822 
1823 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1824 			/* force submit zone reset */
1825 			if (dc->state == D_PREP)
1826 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1827 							&dcc->wait_list, NULL);
1828 			dc->ref++;
1829 			mutex_unlock(&dcc->cmd_lock);
1830 			/* wait zone reset */
1831 			__wait_one_discard_bio(sbi, dc);
1832 			return;
1833 		}
1834 	}
1835 #endif
1836 	if (dc) {
1837 		if (dc->state == D_PREP) {
1838 			__punch_discard_cmd(sbi, dc, blkaddr);
1839 		} else {
1840 			dc->ref++;
1841 			need_wait = true;
1842 		}
1843 	}
1844 	mutex_unlock(&dcc->cmd_lock);
1845 
1846 	if (need_wait)
1847 		__wait_one_discard_bio(sbi, dc);
1848 }
1849 
1850 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1851 {
1852 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1853 
1854 	if (dcc && dcc->f2fs_issue_discard) {
1855 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1856 
1857 		dcc->f2fs_issue_discard = NULL;
1858 		kthread_stop(discard_thread);
1859 	}
1860 }
1861 
1862 /**
1863  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1864  * @sbi: the f2fs_sb_info data for discard cmd to issue
1865  *
1866  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1867  *
1868  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1869  */
1870 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1871 {
1872 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1873 	struct discard_policy dpolicy;
1874 	bool dropped;
1875 
1876 	if (!atomic_read(&dcc->discard_cmd_cnt))
1877 		return true;
1878 
1879 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1880 					dcc->discard_granularity);
1881 	__issue_discard_cmd(sbi, &dpolicy);
1882 	dropped = __drop_discard_cmd(sbi);
1883 
1884 	/* just to make sure there is no pending discard commands */
1885 	__wait_all_discard_cmd(sbi, NULL);
1886 
1887 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1888 	return !dropped;
1889 }
1890 
1891 static int issue_discard_thread(void *data)
1892 {
1893 	struct f2fs_sb_info *sbi = data;
1894 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1895 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1896 	struct discard_policy dpolicy;
1897 	unsigned int wait_ms = dcc->min_discard_issue_time;
1898 	int issued;
1899 
1900 	set_freezable();
1901 
1902 	do {
1903 		wait_event_interruptible_timeout(*q,
1904 				kthread_should_stop() || freezing(current) ||
1905 				dcc->discard_wake,
1906 				msecs_to_jiffies(wait_ms));
1907 
1908 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1909 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1910 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1911 						MIN_DISCARD_GRANULARITY);
1912 		else
1913 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1914 						dcc->discard_granularity);
1915 
1916 		if (dcc->discard_wake)
1917 			dcc->discard_wake = false;
1918 
1919 		/* clean up pending candidates before going to sleep */
1920 		if (atomic_read(&dcc->queued_discard))
1921 			__wait_all_discard_cmd(sbi, NULL);
1922 
1923 		if (try_to_freeze())
1924 			continue;
1925 		if (f2fs_readonly(sbi->sb))
1926 			continue;
1927 		if (kthread_should_stop())
1928 			return 0;
1929 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1930 			!atomic_read(&dcc->discard_cmd_cnt)) {
1931 			wait_ms = dpolicy.max_interval;
1932 			continue;
1933 		}
1934 
1935 		sb_start_intwrite(sbi->sb);
1936 
1937 		issued = __issue_discard_cmd(sbi, &dpolicy);
1938 		if (issued > 0) {
1939 			__wait_all_discard_cmd(sbi, &dpolicy);
1940 			wait_ms = dpolicy.min_interval;
1941 		} else if (issued == -1) {
1942 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1943 			if (!wait_ms)
1944 				wait_ms = dpolicy.mid_interval;
1945 		} else {
1946 			wait_ms = dpolicy.max_interval;
1947 		}
1948 		if (!atomic_read(&dcc->discard_cmd_cnt))
1949 			wait_ms = dpolicy.max_interval;
1950 
1951 		sb_end_intwrite(sbi->sb);
1952 
1953 	} while (!kthread_should_stop());
1954 	return 0;
1955 }
1956 
1957 #ifdef CONFIG_BLK_DEV_ZONED
1958 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1959 		struct block_device *bdev, block_t blkstart, block_t blklen)
1960 {
1961 	sector_t sector, nr_sects;
1962 	block_t lblkstart = blkstart;
1963 	int devi = 0;
1964 	u64 remainder = 0;
1965 
1966 	if (f2fs_is_multi_device(sbi)) {
1967 		devi = f2fs_target_device_index(sbi, blkstart);
1968 		if (blkstart < FDEV(devi).start_blk ||
1969 		    blkstart > FDEV(devi).end_blk) {
1970 			f2fs_err(sbi, "Invalid block %x", blkstart);
1971 			return -EIO;
1972 		}
1973 		blkstart -= FDEV(devi).start_blk;
1974 	}
1975 
1976 	/* For sequential zones, reset the zone write pointer */
1977 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1978 		sector = SECTOR_FROM_BLOCK(blkstart);
1979 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1980 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1981 
1982 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1983 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1984 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1985 				 blkstart, blklen);
1986 			return -EIO;
1987 		}
1988 
1989 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1990 			trace_f2fs_issue_reset_zone(bdev, blkstart);
1991 			return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1992 						sector, nr_sects, GFP_NOFS);
1993 		}
1994 
1995 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1996 		return 0;
1997 	}
1998 
1999 	/* For conventional zones, use regular discard if supported */
2000 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
2001 	return 0;
2002 }
2003 #endif
2004 
2005 static int __issue_discard_async(struct f2fs_sb_info *sbi,
2006 		struct block_device *bdev, block_t blkstart, block_t blklen)
2007 {
2008 #ifdef CONFIG_BLK_DEV_ZONED
2009 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
2010 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
2011 #endif
2012 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
2013 	return 0;
2014 }
2015 
2016 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2017 				block_t blkstart, block_t blklen)
2018 {
2019 	sector_t start = blkstart, len = 0;
2020 	struct block_device *bdev;
2021 	struct seg_entry *se;
2022 	unsigned int offset;
2023 	block_t i;
2024 	int err = 0;
2025 
2026 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2027 
2028 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2029 		if (i != start) {
2030 			struct block_device *bdev2 =
2031 				f2fs_target_device(sbi, i, NULL);
2032 
2033 			if (bdev2 != bdev) {
2034 				err = __issue_discard_async(sbi, bdev,
2035 						start, len);
2036 				if (err)
2037 					return err;
2038 				bdev = bdev2;
2039 				start = i;
2040 				len = 0;
2041 			}
2042 		}
2043 
2044 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2045 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2046 
2047 		if (f2fs_block_unit_discard(sbi) &&
2048 				!f2fs_test_and_set_bit(offset, se->discard_map))
2049 			sbi->discard_blks--;
2050 	}
2051 
2052 	if (len)
2053 		err = __issue_discard_async(sbi, bdev, start, len);
2054 	return err;
2055 }
2056 
2057 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2058 							bool check_only)
2059 {
2060 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2061 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2062 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2063 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2064 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2065 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2066 	unsigned int start = 0, end = -1;
2067 	bool force = (cpc->reason & CP_DISCARD);
2068 	struct discard_entry *de = NULL;
2069 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2070 	int i;
2071 
2072 	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2073 	    !f2fs_hw_support_discard(sbi) ||
2074 	    !f2fs_block_unit_discard(sbi))
2075 		return false;
2076 
2077 	if (!force) {
2078 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2079 			SM_I(sbi)->dcc_info->nr_discards >=
2080 				SM_I(sbi)->dcc_info->max_discards)
2081 			return false;
2082 	}
2083 
2084 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2085 	for (i = 0; i < entries; i++)
2086 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2087 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2088 
2089 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2090 				SM_I(sbi)->dcc_info->max_discards) {
2091 		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2092 		if (start >= BLKS_PER_SEG(sbi))
2093 			break;
2094 
2095 		end = __find_rev_next_zero_bit(dmap,
2096 						BLKS_PER_SEG(sbi), start + 1);
2097 		if (force && start && end != BLKS_PER_SEG(sbi) &&
2098 		    (end - start) < cpc->trim_minlen)
2099 			continue;
2100 
2101 		if (check_only)
2102 			return true;
2103 
2104 		if (!de) {
2105 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2106 						GFP_F2FS_ZERO, true, NULL);
2107 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2108 			list_add_tail(&de->list, head);
2109 		}
2110 
2111 		for (i = start; i < end; i++)
2112 			__set_bit_le(i, (void *)de->discard_map);
2113 
2114 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2115 	}
2116 	return false;
2117 }
2118 
2119 static void release_discard_addr(struct discard_entry *entry)
2120 {
2121 	list_del(&entry->list);
2122 	kmem_cache_free(discard_entry_slab, entry);
2123 }
2124 
2125 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2126 {
2127 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2128 	struct discard_entry *entry, *this;
2129 
2130 	/* drop caches */
2131 	list_for_each_entry_safe(entry, this, head, list)
2132 		release_discard_addr(entry);
2133 }
2134 
2135 /*
2136  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2137  */
2138 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2139 {
2140 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2141 	unsigned int segno;
2142 
2143 	mutex_lock(&dirty_i->seglist_lock);
2144 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2145 		__set_test_and_free(sbi, segno, false);
2146 	mutex_unlock(&dirty_i->seglist_lock);
2147 }
2148 
2149 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2150 						struct cp_control *cpc)
2151 {
2152 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2153 	struct list_head *head = &dcc->entry_list;
2154 	struct discard_entry *entry, *this;
2155 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2156 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2157 	unsigned int start = 0, end = -1;
2158 	unsigned int secno, start_segno;
2159 	bool force = (cpc->reason & CP_DISCARD);
2160 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2161 						DISCARD_UNIT_SECTION;
2162 
2163 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2164 		section_alignment = true;
2165 
2166 	mutex_lock(&dirty_i->seglist_lock);
2167 
2168 	while (1) {
2169 		int i;
2170 
2171 		if (section_alignment && end != -1)
2172 			end--;
2173 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2174 		if (start >= MAIN_SEGS(sbi))
2175 			break;
2176 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2177 								start + 1);
2178 
2179 		if (section_alignment) {
2180 			start = rounddown(start, SEGS_PER_SEC(sbi));
2181 			end = roundup(end, SEGS_PER_SEC(sbi));
2182 		}
2183 
2184 		for (i = start; i < end; i++) {
2185 			if (test_and_clear_bit(i, prefree_map))
2186 				dirty_i->nr_dirty[PRE]--;
2187 		}
2188 
2189 		if (!f2fs_realtime_discard_enable(sbi))
2190 			continue;
2191 
2192 		if (force && start >= cpc->trim_start &&
2193 					(end - 1) <= cpc->trim_end)
2194 			continue;
2195 
2196 		/* Should cover 2MB zoned device for zone-based reset */
2197 		if (!f2fs_sb_has_blkzoned(sbi) &&
2198 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2199 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2200 				(end - start) << sbi->log_blocks_per_seg);
2201 			continue;
2202 		}
2203 next:
2204 		secno = GET_SEC_FROM_SEG(sbi, start);
2205 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2206 		if (!IS_CURSEC(sbi, secno) &&
2207 			!get_valid_blocks(sbi, start, true))
2208 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2209 						BLKS_PER_SEC(sbi));
2210 
2211 		start = start_segno + SEGS_PER_SEC(sbi);
2212 		if (start < end)
2213 			goto next;
2214 		else
2215 			end = start - 1;
2216 	}
2217 	mutex_unlock(&dirty_i->seglist_lock);
2218 
2219 	if (!f2fs_block_unit_discard(sbi))
2220 		goto wakeup;
2221 
2222 	/* send small discards */
2223 	list_for_each_entry_safe(entry, this, head, list) {
2224 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2225 		bool is_valid = test_bit_le(0, entry->discard_map);
2226 
2227 find_next:
2228 		if (is_valid) {
2229 			next_pos = find_next_zero_bit_le(entry->discard_map,
2230 						BLKS_PER_SEG(sbi), cur_pos);
2231 			len = next_pos - cur_pos;
2232 
2233 			if (f2fs_sb_has_blkzoned(sbi) ||
2234 			    (force && len < cpc->trim_minlen))
2235 				goto skip;
2236 
2237 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2238 									len);
2239 			total_len += len;
2240 		} else {
2241 			next_pos = find_next_bit_le(entry->discard_map,
2242 						BLKS_PER_SEG(sbi), cur_pos);
2243 		}
2244 skip:
2245 		cur_pos = next_pos;
2246 		is_valid = !is_valid;
2247 
2248 		if (cur_pos < BLKS_PER_SEG(sbi))
2249 			goto find_next;
2250 
2251 		release_discard_addr(entry);
2252 		dcc->nr_discards -= total_len;
2253 	}
2254 
2255 wakeup:
2256 	wake_up_discard_thread(sbi, false);
2257 }
2258 
2259 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2260 {
2261 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2262 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2263 	int err = 0;
2264 
2265 	if (!f2fs_realtime_discard_enable(sbi))
2266 		return 0;
2267 
2268 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2269 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2270 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2271 		err = PTR_ERR(dcc->f2fs_issue_discard);
2272 		dcc->f2fs_issue_discard = NULL;
2273 	}
2274 
2275 	return err;
2276 }
2277 
2278 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2279 {
2280 	struct discard_cmd_control *dcc;
2281 	int err = 0, i;
2282 
2283 	if (SM_I(sbi)->dcc_info) {
2284 		dcc = SM_I(sbi)->dcc_info;
2285 		goto init_thread;
2286 	}
2287 
2288 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2289 	if (!dcc)
2290 		return -ENOMEM;
2291 
2292 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2293 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2294 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2295 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2296 		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2297 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2298 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2299 
2300 	INIT_LIST_HEAD(&dcc->entry_list);
2301 	for (i = 0; i < MAX_PLIST_NUM; i++)
2302 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2303 	INIT_LIST_HEAD(&dcc->wait_list);
2304 	INIT_LIST_HEAD(&dcc->fstrim_list);
2305 	mutex_init(&dcc->cmd_lock);
2306 	atomic_set(&dcc->issued_discard, 0);
2307 	atomic_set(&dcc->queued_discard, 0);
2308 	atomic_set(&dcc->discard_cmd_cnt, 0);
2309 	dcc->nr_discards = 0;
2310 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2311 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2312 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2313 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2314 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2315 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2316 	dcc->undiscard_blks = 0;
2317 	dcc->next_pos = 0;
2318 	dcc->root = RB_ROOT_CACHED;
2319 	dcc->rbtree_check = false;
2320 
2321 	init_waitqueue_head(&dcc->discard_wait_queue);
2322 	SM_I(sbi)->dcc_info = dcc;
2323 init_thread:
2324 	err = f2fs_start_discard_thread(sbi);
2325 	if (err) {
2326 		kfree(dcc);
2327 		SM_I(sbi)->dcc_info = NULL;
2328 	}
2329 
2330 	return err;
2331 }
2332 
2333 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2334 {
2335 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2336 
2337 	if (!dcc)
2338 		return;
2339 
2340 	f2fs_stop_discard_thread(sbi);
2341 
2342 	/*
2343 	 * Recovery can cache discard commands, so in error path of
2344 	 * fill_super(), it needs to give a chance to handle them.
2345 	 */
2346 	f2fs_issue_discard_timeout(sbi);
2347 
2348 	kfree(dcc);
2349 	SM_I(sbi)->dcc_info = NULL;
2350 }
2351 
2352 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2353 {
2354 	struct sit_info *sit_i = SIT_I(sbi);
2355 
2356 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2357 		sit_i->dirty_sentries++;
2358 		return false;
2359 	}
2360 
2361 	return true;
2362 }
2363 
2364 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2365 					unsigned int segno, int modified)
2366 {
2367 	struct seg_entry *se = get_seg_entry(sbi, segno);
2368 
2369 	se->type = type;
2370 	if (modified)
2371 		__mark_sit_entry_dirty(sbi, segno);
2372 }
2373 
2374 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2375 								block_t blkaddr)
2376 {
2377 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2378 
2379 	if (segno == NULL_SEGNO)
2380 		return 0;
2381 	return get_seg_entry(sbi, segno)->mtime;
2382 }
2383 
2384 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2385 						unsigned long long old_mtime)
2386 {
2387 	struct seg_entry *se;
2388 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2389 	unsigned long long ctime = get_mtime(sbi, false);
2390 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2391 
2392 	if (segno == NULL_SEGNO)
2393 		return;
2394 
2395 	se = get_seg_entry(sbi, segno);
2396 
2397 	if (!se->mtime)
2398 		se->mtime = mtime;
2399 	else
2400 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2401 						se->valid_blocks + 1);
2402 
2403 	if (ctime > SIT_I(sbi)->max_mtime)
2404 		SIT_I(sbi)->max_mtime = ctime;
2405 }
2406 
2407 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2408 {
2409 	struct seg_entry *se;
2410 	unsigned int segno, offset;
2411 	long int new_vblocks;
2412 	bool exist;
2413 #ifdef CONFIG_F2FS_CHECK_FS
2414 	bool mir_exist;
2415 #endif
2416 
2417 	segno = GET_SEGNO(sbi, blkaddr);
2418 	if (segno == NULL_SEGNO)
2419 		return;
2420 
2421 	se = get_seg_entry(sbi, segno);
2422 	new_vblocks = se->valid_blocks + del;
2423 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2424 
2425 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2426 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2427 
2428 	se->valid_blocks = new_vblocks;
2429 
2430 	/* Update valid block bitmap */
2431 	if (del > 0) {
2432 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2433 #ifdef CONFIG_F2FS_CHECK_FS
2434 		mir_exist = f2fs_test_and_set_bit(offset,
2435 						se->cur_valid_map_mir);
2436 		if (unlikely(exist != mir_exist)) {
2437 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2438 				 blkaddr, exist);
2439 			f2fs_bug_on(sbi, 1);
2440 		}
2441 #endif
2442 		if (unlikely(exist)) {
2443 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2444 				 blkaddr);
2445 			f2fs_bug_on(sbi, 1);
2446 			se->valid_blocks--;
2447 			del = 0;
2448 		}
2449 
2450 		if (f2fs_block_unit_discard(sbi) &&
2451 				!f2fs_test_and_set_bit(offset, se->discard_map))
2452 			sbi->discard_blks--;
2453 
2454 		/*
2455 		 * SSR should never reuse block which is checkpointed
2456 		 * or newly invalidated.
2457 		 */
2458 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2459 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2460 				se->ckpt_valid_blocks++;
2461 		}
2462 	} else {
2463 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2464 #ifdef CONFIG_F2FS_CHECK_FS
2465 		mir_exist = f2fs_test_and_clear_bit(offset,
2466 						se->cur_valid_map_mir);
2467 		if (unlikely(exist != mir_exist)) {
2468 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2469 				 blkaddr, exist);
2470 			f2fs_bug_on(sbi, 1);
2471 		}
2472 #endif
2473 		if (unlikely(!exist)) {
2474 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2475 				 blkaddr);
2476 			f2fs_bug_on(sbi, 1);
2477 			se->valid_blocks++;
2478 			del = 0;
2479 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2480 			/*
2481 			 * If checkpoints are off, we must not reuse data that
2482 			 * was used in the previous checkpoint. If it was used
2483 			 * before, we must track that to know how much space we
2484 			 * really have.
2485 			 */
2486 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2487 				spin_lock(&sbi->stat_lock);
2488 				sbi->unusable_block_count++;
2489 				spin_unlock(&sbi->stat_lock);
2490 			}
2491 		}
2492 
2493 		if (f2fs_block_unit_discard(sbi) &&
2494 			f2fs_test_and_clear_bit(offset, se->discard_map))
2495 			sbi->discard_blks++;
2496 	}
2497 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2498 		se->ckpt_valid_blocks += del;
2499 
2500 	__mark_sit_entry_dirty(sbi, segno);
2501 
2502 	/* update total number of valid blocks to be written in ckpt area */
2503 	SIT_I(sbi)->written_valid_blocks += del;
2504 
2505 	if (__is_large_section(sbi))
2506 		get_sec_entry(sbi, segno)->valid_blocks += del;
2507 }
2508 
2509 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2510 {
2511 	unsigned int segno = GET_SEGNO(sbi, addr);
2512 	struct sit_info *sit_i = SIT_I(sbi);
2513 
2514 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2515 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2516 		return;
2517 
2518 	f2fs_invalidate_internal_cache(sbi, addr);
2519 
2520 	/* add it into sit main buffer */
2521 	down_write(&sit_i->sentry_lock);
2522 
2523 	update_segment_mtime(sbi, addr, 0);
2524 	update_sit_entry(sbi, addr, -1);
2525 
2526 	/* add it into dirty seglist */
2527 	locate_dirty_segment(sbi, segno);
2528 
2529 	up_write(&sit_i->sentry_lock);
2530 }
2531 
2532 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2533 {
2534 	struct sit_info *sit_i = SIT_I(sbi);
2535 	unsigned int segno, offset;
2536 	struct seg_entry *se;
2537 	bool is_cp = false;
2538 
2539 	if (!__is_valid_data_blkaddr(blkaddr))
2540 		return true;
2541 
2542 	down_read(&sit_i->sentry_lock);
2543 
2544 	segno = GET_SEGNO(sbi, blkaddr);
2545 	se = get_seg_entry(sbi, segno);
2546 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2547 
2548 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2549 		is_cp = true;
2550 
2551 	up_read(&sit_i->sentry_lock);
2552 
2553 	return is_cp;
2554 }
2555 
2556 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2557 {
2558 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2559 
2560 	if (sbi->ckpt->alloc_type[type] == SSR)
2561 		return BLKS_PER_SEG(sbi);
2562 	return curseg->next_blkoff;
2563 }
2564 
2565 /*
2566  * Calculate the number of current summary pages for writing
2567  */
2568 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2569 {
2570 	int valid_sum_count = 0;
2571 	int i, sum_in_page;
2572 
2573 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2574 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2575 			valid_sum_count +=
2576 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2577 		else
2578 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2579 	}
2580 
2581 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2582 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2583 	if (valid_sum_count <= sum_in_page)
2584 		return 1;
2585 	else if ((valid_sum_count - sum_in_page) <=
2586 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2587 		return 2;
2588 	return 3;
2589 }
2590 
2591 /*
2592  * Caller should put this summary page
2593  */
2594 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2595 {
2596 	if (unlikely(f2fs_cp_error(sbi)))
2597 		return ERR_PTR(-EIO);
2598 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2599 }
2600 
2601 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2602 					void *src, block_t blk_addr)
2603 {
2604 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2605 
2606 	memcpy(page_address(page), src, PAGE_SIZE);
2607 	set_page_dirty(page);
2608 	f2fs_put_page(page, 1);
2609 }
2610 
2611 static void write_sum_page(struct f2fs_sb_info *sbi,
2612 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2613 {
2614 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2615 }
2616 
2617 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2618 						int type, block_t blk_addr)
2619 {
2620 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2621 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2622 	struct f2fs_summary_block *src = curseg->sum_blk;
2623 	struct f2fs_summary_block *dst;
2624 
2625 	dst = (struct f2fs_summary_block *)page_address(page);
2626 	memset(dst, 0, PAGE_SIZE);
2627 
2628 	mutex_lock(&curseg->curseg_mutex);
2629 
2630 	down_read(&curseg->journal_rwsem);
2631 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2632 	up_read(&curseg->journal_rwsem);
2633 
2634 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2635 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2636 
2637 	mutex_unlock(&curseg->curseg_mutex);
2638 
2639 	set_page_dirty(page);
2640 	f2fs_put_page(page, 1);
2641 }
2642 
2643 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2644 				struct curseg_info *curseg, int type)
2645 {
2646 	unsigned int segno = curseg->segno + 1;
2647 	struct free_segmap_info *free_i = FREE_I(sbi);
2648 
2649 	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2650 		return !test_bit(segno, free_i->free_segmap);
2651 	return 0;
2652 }
2653 
2654 /*
2655  * Find a new segment from the free segments bitmap to right order
2656  * This function should be returned with success, otherwise BUG
2657  */
2658 static void get_new_segment(struct f2fs_sb_info *sbi,
2659 			unsigned int *newseg, bool new_sec, bool pinning)
2660 {
2661 	struct free_segmap_info *free_i = FREE_I(sbi);
2662 	unsigned int segno, secno, zoneno;
2663 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2664 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2665 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2666 	bool init = true;
2667 	int i;
2668 	int ret = 0;
2669 
2670 	spin_lock(&free_i->segmap_lock);
2671 
2672 	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2673 		segno = find_next_zero_bit(free_i->free_segmap,
2674 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2675 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2676 			goto got_it;
2677 	}
2678 
2679 	/*
2680 	 * If we format f2fs on zoned storage, let's try to get pinned sections
2681 	 * from beginning of the storage, which should be a conventional one.
2682 	 */
2683 	if (f2fs_sb_has_blkzoned(sbi)) {
2684 		segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg);
2685 		hint = GET_SEC_FROM_SEG(sbi, segno);
2686 	}
2687 
2688 find_other_zone:
2689 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2690 	if (secno >= MAIN_SECS(sbi)) {
2691 		secno = find_first_zero_bit(free_i->free_secmap,
2692 							MAIN_SECS(sbi));
2693 		if (secno >= MAIN_SECS(sbi)) {
2694 			ret = -ENOSPC;
2695 			goto out_unlock;
2696 		}
2697 	}
2698 	segno = GET_SEG_FROM_SEC(sbi, secno);
2699 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2700 
2701 	/* give up on finding another zone */
2702 	if (!init)
2703 		goto got_it;
2704 	if (sbi->secs_per_zone == 1)
2705 		goto got_it;
2706 	if (zoneno == old_zoneno)
2707 		goto got_it;
2708 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2709 		if (CURSEG_I(sbi, i)->zone == zoneno)
2710 			break;
2711 
2712 	if (i < NR_CURSEG_TYPE) {
2713 		/* zone is in user, try another */
2714 		if (zoneno + 1 >= total_zones)
2715 			hint = 0;
2716 		else
2717 			hint = (zoneno + 1) * sbi->secs_per_zone;
2718 		init = false;
2719 		goto find_other_zone;
2720 	}
2721 got_it:
2722 	/* set it as dirty segment in free segmap */
2723 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2724 	__set_inuse(sbi, segno);
2725 	*newseg = segno;
2726 out_unlock:
2727 	spin_unlock(&free_i->segmap_lock);
2728 
2729 	if (ret) {
2730 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_NO_SEGMENT);
2731 		f2fs_bug_on(sbi, 1);
2732 	}
2733 }
2734 
2735 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2736 {
2737 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2738 	struct summary_footer *sum_footer;
2739 	unsigned short seg_type = curseg->seg_type;
2740 
2741 	curseg->inited = true;
2742 	curseg->segno = curseg->next_segno;
2743 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2744 	curseg->next_blkoff = 0;
2745 	curseg->next_segno = NULL_SEGNO;
2746 
2747 	sum_footer = &(curseg->sum_blk->footer);
2748 	memset(sum_footer, 0, sizeof(struct summary_footer));
2749 
2750 	sanity_check_seg_type(sbi, seg_type);
2751 
2752 	if (IS_DATASEG(seg_type))
2753 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2754 	if (IS_NODESEG(seg_type))
2755 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2756 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2757 }
2758 
2759 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2760 {
2761 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2762 	unsigned short seg_type = curseg->seg_type;
2763 
2764 	sanity_check_seg_type(sbi, seg_type);
2765 	if (f2fs_need_rand_seg(sbi))
2766 		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2767 
2768 	if (__is_large_section(sbi))
2769 		return curseg->segno;
2770 
2771 	/* inmem log may not locate on any segment after mount */
2772 	if (!curseg->inited)
2773 		return 0;
2774 
2775 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2776 		return 0;
2777 
2778 	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2779 		return 0;
2780 
2781 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2782 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2783 
2784 	/* find segments from 0 to reuse freed segments */
2785 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2786 		return 0;
2787 
2788 	return curseg->segno;
2789 }
2790 
2791 /*
2792  * Allocate a current working segment.
2793  * This function always allocates a free segment in LFS manner.
2794  */
2795 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2796 {
2797 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2798 	unsigned int segno = curseg->segno;
2799 	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2800 
2801 	if (curseg->inited)
2802 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2803 
2804 	segno = __get_next_segno(sbi, type);
2805 	get_new_segment(sbi, &segno, new_sec, pinning);
2806 	if (new_sec && pinning &&
2807 	    !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2808 		__set_free(sbi, segno);
2809 		return -EAGAIN;
2810 	}
2811 
2812 	curseg->next_segno = segno;
2813 	reset_curseg(sbi, type, 1);
2814 	curseg->alloc_type = LFS;
2815 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2816 		curseg->fragment_remained_chunk =
2817 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2818 	return 0;
2819 }
2820 
2821 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2822 					int segno, block_t start)
2823 {
2824 	struct seg_entry *se = get_seg_entry(sbi, segno);
2825 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2826 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2827 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2828 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2829 	int i;
2830 
2831 	for (i = 0; i < entries; i++)
2832 		target_map[i] = ckpt_map[i] | cur_map[i];
2833 
2834 	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2835 }
2836 
2837 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2838 		struct curseg_info *seg)
2839 {
2840 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2841 }
2842 
2843 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2844 {
2845 	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2846 }
2847 
2848 /*
2849  * This function always allocates a used segment(from dirty seglist) by SSR
2850  * manner, so it should recover the existing segment information of valid blocks
2851  */
2852 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2853 {
2854 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2855 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2856 	unsigned int new_segno = curseg->next_segno;
2857 	struct f2fs_summary_block *sum_node;
2858 	struct page *sum_page;
2859 
2860 	if (curseg->inited)
2861 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2862 
2863 	__set_test_and_inuse(sbi, new_segno);
2864 
2865 	mutex_lock(&dirty_i->seglist_lock);
2866 	__remove_dirty_segment(sbi, new_segno, PRE);
2867 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2868 	mutex_unlock(&dirty_i->seglist_lock);
2869 
2870 	reset_curseg(sbi, type, 1);
2871 	curseg->alloc_type = SSR;
2872 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2873 
2874 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2875 	if (IS_ERR(sum_page)) {
2876 		/* GC won't be able to use stale summary pages by cp_error */
2877 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2878 		return;
2879 	}
2880 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2881 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2882 	f2fs_put_page(sum_page, 1);
2883 }
2884 
2885 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2886 				int alloc_mode, unsigned long long age);
2887 
2888 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2889 					int target_type, int alloc_mode,
2890 					unsigned long long age)
2891 {
2892 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2893 
2894 	curseg->seg_type = target_type;
2895 
2896 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2897 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2898 
2899 		curseg->seg_type = se->type;
2900 		change_curseg(sbi, type);
2901 	} else {
2902 		/* allocate cold segment by default */
2903 		curseg->seg_type = CURSEG_COLD_DATA;
2904 		new_curseg(sbi, type, true);
2905 	}
2906 	stat_inc_seg_type(sbi, curseg);
2907 }
2908 
2909 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2910 {
2911 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2912 
2913 	if (!sbi->am.atgc_enabled)
2914 		return;
2915 
2916 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2917 
2918 	mutex_lock(&curseg->curseg_mutex);
2919 	down_write(&SIT_I(sbi)->sentry_lock);
2920 
2921 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2922 
2923 	up_write(&SIT_I(sbi)->sentry_lock);
2924 	mutex_unlock(&curseg->curseg_mutex);
2925 
2926 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2927 
2928 }
2929 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2930 {
2931 	__f2fs_init_atgc_curseg(sbi);
2932 }
2933 
2934 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2935 {
2936 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2937 
2938 	mutex_lock(&curseg->curseg_mutex);
2939 	if (!curseg->inited)
2940 		goto out;
2941 
2942 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2943 		write_sum_page(sbi, curseg->sum_blk,
2944 				GET_SUM_BLOCK(sbi, curseg->segno));
2945 	} else {
2946 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2947 		__set_test_and_free(sbi, curseg->segno, true);
2948 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2949 	}
2950 out:
2951 	mutex_unlock(&curseg->curseg_mutex);
2952 }
2953 
2954 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2955 {
2956 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2957 
2958 	if (sbi->am.atgc_enabled)
2959 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2960 }
2961 
2962 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2963 {
2964 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2965 
2966 	mutex_lock(&curseg->curseg_mutex);
2967 	if (!curseg->inited)
2968 		goto out;
2969 	if (get_valid_blocks(sbi, curseg->segno, false))
2970 		goto out;
2971 
2972 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2973 	__set_test_and_inuse(sbi, curseg->segno);
2974 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2975 out:
2976 	mutex_unlock(&curseg->curseg_mutex);
2977 }
2978 
2979 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2980 {
2981 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2982 
2983 	if (sbi->am.atgc_enabled)
2984 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2985 }
2986 
2987 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2988 				int alloc_mode, unsigned long long age)
2989 {
2990 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2991 	unsigned segno = NULL_SEGNO;
2992 	unsigned short seg_type = curseg->seg_type;
2993 	int i, cnt;
2994 	bool reversed = false;
2995 
2996 	sanity_check_seg_type(sbi, seg_type);
2997 
2998 	/* f2fs_need_SSR() already forces to do this */
2999 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
3000 		curseg->next_segno = segno;
3001 		return 1;
3002 	}
3003 
3004 	/* For node segments, let's do SSR more intensively */
3005 	if (IS_NODESEG(seg_type)) {
3006 		if (seg_type >= CURSEG_WARM_NODE) {
3007 			reversed = true;
3008 			i = CURSEG_COLD_NODE;
3009 		} else {
3010 			i = CURSEG_HOT_NODE;
3011 		}
3012 		cnt = NR_CURSEG_NODE_TYPE;
3013 	} else {
3014 		if (seg_type >= CURSEG_WARM_DATA) {
3015 			reversed = true;
3016 			i = CURSEG_COLD_DATA;
3017 		} else {
3018 			i = CURSEG_HOT_DATA;
3019 		}
3020 		cnt = NR_CURSEG_DATA_TYPE;
3021 	}
3022 
3023 	for (; cnt-- > 0; reversed ? i-- : i++) {
3024 		if (i == seg_type)
3025 			continue;
3026 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
3027 			curseg->next_segno = segno;
3028 			return 1;
3029 		}
3030 	}
3031 
3032 	/* find valid_blocks=0 in dirty list */
3033 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3034 		segno = get_free_segment(sbi);
3035 		if (segno != NULL_SEGNO) {
3036 			curseg->next_segno = segno;
3037 			return 1;
3038 		}
3039 	}
3040 	return 0;
3041 }
3042 
3043 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3044 {
3045 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3046 
3047 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3048 	    curseg->seg_type == CURSEG_WARM_NODE)
3049 		return true;
3050 	if (curseg->alloc_type == LFS &&
3051 	    is_next_segment_free(sbi, curseg, type) &&
3052 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3053 		return true;
3054 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3055 		return true;
3056 	return false;
3057 }
3058 
3059 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3060 					unsigned int start, unsigned int end)
3061 {
3062 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3063 	unsigned int segno;
3064 
3065 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3066 	mutex_lock(&curseg->curseg_mutex);
3067 	down_write(&SIT_I(sbi)->sentry_lock);
3068 
3069 	segno = CURSEG_I(sbi, type)->segno;
3070 	if (segno < start || segno > end)
3071 		goto unlock;
3072 
3073 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3074 		change_curseg(sbi, type);
3075 	else
3076 		new_curseg(sbi, type, true);
3077 
3078 	stat_inc_seg_type(sbi, curseg);
3079 
3080 	locate_dirty_segment(sbi, segno);
3081 unlock:
3082 	up_write(&SIT_I(sbi)->sentry_lock);
3083 
3084 	if (segno != curseg->segno)
3085 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3086 			    type, segno, curseg->segno);
3087 
3088 	mutex_unlock(&curseg->curseg_mutex);
3089 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3090 }
3091 
3092 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3093 						bool new_sec, bool force)
3094 {
3095 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3096 	unsigned int old_segno;
3097 
3098 	if (!force && curseg->inited &&
3099 	    !curseg->next_blkoff &&
3100 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3101 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3102 		return 0;
3103 
3104 	old_segno = curseg->segno;
3105 	if (new_curseg(sbi, type, true))
3106 		return -EAGAIN;
3107 	stat_inc_seg_type(sbi, curseg);
3108 	locate_dirty_segment(sbi, old_segno);
3109 	return 0;
3110 }
3111 
3112 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3113 {
3114 	int ret;
3115 
3116 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3117 	down_write(&SIT_I(sbi)->sentry_lock);
3118 	ret = __allocate_new_segment(sbi, type, true, force);
3119 	up_write(&SIT_I(sbi)->sentry_lock);
3120 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3121 
3122 	return ret;
3123 }
3124 
3125 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3126 {
3127 	int err;
3128 	bool gc_required = true;
3129 
3130 retry:
3131 	f2fs_lock_op(sbi);
3132 	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3133 	f2fs_unlock_op(sbi);
3134 
3135 	if (f2fs_sb_has_blkzoned(sbi) && err && gc_required) {
3136 		f2fs_down_write(&sbi->gc_lock);
3137 		f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1);
3138 		f2fs_up_write(&sbi->gc_lock);
3139 
3140 		gc_required = false;
3141 		goto retry;
3142 	}
3143 
3144 	return err;
3145 }
3146 
3147 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3148 {
3149 	int i;
3150 
3151 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3152 	down_write(&SIT_I(sbi)->sentry_lock);
3153 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3154 		__allocate_new_segment(sbi, i, false, false);
3155 	up_write(&SIT_I(sbi)->sentry_lock);
3156 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3157 }
3158 
3159 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3160 						struct cp_control *cpc)
3161 {
3162 	__u64 trim_start = cpc->trim_start;
3163 	bool has_candidate = false;
3164 
3165 	down_write(&SIT_I(sbi)->sentry_lock);
3166 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3167 		if (add_discard_addrs(sbi, cpc, true)) {
3168 			has_candidate = true;
3169 			break;
3170 		}
3171 	}
3172 	up_write(&SIT_I(sbi)->sentry_lock);
3173 
3174 	cpc->trim_start = trim_start;
3175 	return has_candidate;
3176 }
3177 
3178 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3179 					struct discard_policy *dpolicy,
3180 					unsigned int start, unsigned int end)
3181 {
3182 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3183 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3184 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3185 	struct discard_cmd *dc;
3186 	struct blk_plug plug;
3187 	int issued;
3188 	unsigned int trimmed = 0;
3189 
3190 next:
3191 	issued = 0;
3192 
3193 	mutex_lock(&dcc->cmd_lock);
3194 	if (unlikely(dcc->rbtree_check))
3195 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3196 
3197 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3198 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3199 	if (!dc)
3200 		dc = next_dc;
3201 
3202 	blk_start_plug(&plug);
3203 
3204 	while (dc && dc->di.lstart <= end) {
3205 		struct rb_node *node;
3206 		int err = 0;
3207 
3208 		if (dc->di.len < dpolicy->granularity)
3209 			goto skip;
3210 
3211 		if (dc->state != D_PREP) {
3212 			list_move_tail(&dc->list, &dcc->fstrim_list);
3213 			goto skip;
3214 		}
3215 
3216 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3217 
3218 		if (issued >= dpolicy->max_requests) {
3219 			start = dc->di.lstart + dc->di.len;
3220 
3221 			if (err)
3222 				__remove_discard_cmd(sbi, dc);
3223 
3224 			blk_finish_plug(&plug);
3225 			mutex_unlock(&dcc->cmd_lock);
3226 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3227 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3228 			goto next;
3229 		}
3230 skip:
3231 		node = rb_next(&dc->rb_node);
3232 		if (err)
3233 			__remove_discard_cmd(sbi, dc);
3234 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3235 
3236 		if (fatal_signal_pending(current))
3237 			break;
3238 	}
3239 
3240 	blk_finish_plug(&plug);
3241 	mutex_unlock(&dcc->cmd_lock);
3242 
3243 	return trimmed;
3244 }
3245 
3246 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3247 {
3248 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3249 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3250 	unsigned int start_segno, end_segno;
3251 	block_t start_block, end_block;
3252 	struct cp_control cpc;
3253 	struct discard_policy dpolicy;
3254 	unsigned long long trimmed = 0;
3255 	int err = 0;
3256 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3257 
3258 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3259 		return -EINVAL;
3260 
3261 	if (end < MAIN_BLKADDR(sbi))
3262 		goto out;
3263 
3264 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3265 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3266 		return -EFSCORRUPTED;
3267 	}
3268 
3269 	/* start/end segment number in main_area */
3270 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3271 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3272 						GET_SEGNO(sbi, end);
3273 	if (need_align) {
3274 		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3275 		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3276 	}
3277 
3278 	cpc.reason = CP_DISCARD;
3279 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3280 	cpc.trim_start = start_segno;
3281 	cpc.trim_end = end_segno;
3282 
3283 	if (sbi->discard_blks == 0)
3284 		goto out;
3285 
3286 	f2fs_down_write(&sbi->gc_lock);
3287 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3288 	err = f2fs_write_checkpoint(sbi, &cpc);
3289 	f2fs_up_write(&sbi->gc_lock);
3290 	if (err)
3291 		goto out;
3292 
3293 	/*
3294 	 * We filed discard candidates, but actually we don't need to wait for
3295 	 * all of them, since they'll be issued in idle time along with runtime
3296 	 * discard option. User configuration looks like using runtime discard
3297 	 * or periodic fstrim instead of it.
3298 	 */
3299 	if (f2fs_realtime_discard_enable(sbi))
3300 		goto out;
3301 
3302 	start_block = START_BLOCK(sbi, start_segno);
3303 	end_block = START_BLOCK(sbi, end_segno + 1);
3304 
3305 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3306 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3307 					start_block, end_block);
3308 
3309 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3310 					start_block, end_block);
3311 out:
3312 	if (!err)
3313 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3314 	return err;
3315 }
3316 
3317 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3318 {
3319 	switch (hint) {
3320 	case WRITE_LIFE_SHORT:
3321 		return CURSEG_HOT_DATA;
3322 	case WRITE_LIFE_EXTREME:
3323 		return CURSEG_COLD_DATA;
3324 	default:
3325 		return CURSEG_WARM_DATA;
3326 	}
3327 }
3328 
3329 static int __get_segment_type_2(struct f2fs_io_info *fio)
3330 {
3331 	if (fio->type == DATA)
3332 		return CURSEG_HOT_DATA;
3333 	else
3334 		return CURSEG_HOT_NODE;
3335 }
3336 
3337 static int __get_segment_type_4(struct f2fs_io_info *fio)
3338 {
3339 	if (fio->type == DATA) {
3340 		struct inode *inode = fio->page->mapping->host;
3341 
3342 		if (S_ISDIR(inode->i_mode))
3343 			return CURSEG_HOT_DATA;
3344 		else
3345 			return CURSEG_COLD_DATA;
3346 	} else {
3347 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3348 			return CURSEG_WARM_NODE;
3349 		else
3350 			return CURSEG_COLD_NODE;
3351 	}
3352 }
3353 
3354 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3355 {
3356 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3357 	struct extent_info ei = {};
3358 
3359 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3360 		if (!ei.age)
3361 			return NO_CHECK_TYPE;
3362 		if (ei.age <= sbi->hot_data_age_threshold)
3363 			return CURSEG_HOT_DATA;
3364 		if (ei.age <= sbi->warm_data_age_threshold)
3365 			return CURSEG_WARM_DATA;
3366 		return CURSEG_COLD_DATA;
3367 	}
3368 	return NO_CHECK_TYPE;
3369 }
3370 
3371 static int __get_segment_type_6(struct f2fs_io_info *fio)
3372 {
3373 	if (fio->type == DATA) {
3374 		struct inode *inode = fio->page->mapping->host;
3375 		int type;
3376 
3377 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3378 			return CURSEG_COLD_DATA_PINNED;
3379 
3380 		if (page_private_gcing(fio->page)) {
3381 			if (fio->sbi->am.atgc_enabled &&
3382 				(fio->io_type == FS_DATA_IO) &&
3383 				(fio->sbi->gc_mode != GC_URGENT_HIGH) &&
3384 				__is_valid_data_blkaddr(fio->old_blkaddr) &&
3385 				!is_inode_flag_set(inode, FI_OPU_WRITE))
3386 				return CURSEG_ALL_DATA_ATGC;
3387 			else
3388 				return CURSEG_COLD_DATA;
3389 		}
3390 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3391 			return CURSEG_COLD_DATA;
3392 
3393 		type = __get_age_segment_type(inode, fio->page->index);
3394 		if (type != NO_CHECK_TYPE)
3395 			return type;
3396 
3397 		if (file_is_hot(inode) ||
3398 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3399 				f2fs_is_cow_file(inode))
3400 			return CURSEG_HOT_DATA;
3401 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3402 	} else {
3403 		if (IS_DNODE(fio->page))
3404 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3405 						CURSEG_HOT_NODE;
3406 		return CURSEG_COLD_NODE;
3407 	}
3408 }
3409 
3410 static int __get_segment_type(struct f2fs_io_info *fio)
3411 {
3412 	int type = 0;
3413 
3414 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3415 	case 2:
3416 		type = __get_segment_type_2(fio);
3417 		break;
3418 	case 4:
3419 		type = __get_segment_type_4(fio);
3420 		break;
3421 	case 6:
3422 		type = __get_segment_type_6(fio);
3423 		break;
3424 	default:
3425 		f2fs_bug_on(fio->sbi, true);
3426 	}
3427 
3428 	if (IS_HOT(type))
3429 		fio->temp = HOT;
3430 	else if (IS_WARM(type))
3431 		fio->temp = WARM;
3432 	else
3433 		fio->temp = COLD;
3434 	return type;
3435 }
3436 
3437 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3438 		struct curseg_info *seg)
3439 {
3440 	/* To allocate block chunks in different sizes, use random number */
3441 	if (--seg->fragment_remained_chunk > 0)
3442 		return;
3443 
3444 	seg->fragment_remained_chunk =
3445 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3446 	seg->next_blkoff +=
3447 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3448 }
3449 
3450 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3451 		block_t old_blkaddr, block_t *new_blkaddr,
3452 		struct f2fs_summary *sum, int type,
3453 		struct f2fs_io_info *fio)
3454 {
3455 	struct sit_info *sit_i = SIT_I(sbi);
3456 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3457 	unsigned long long old_mtime;
3458 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3459 	struct seg_entry *se = NULL;
3460 	bool segment_full = false;
3461 
3462 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3463 
3464 	mutex_lock(&curseg->curseg_mutex);
3465 	down_write(&sit_i->sentry_lock);
3466 
3467 	if (from_gc) {
3468 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3469 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3470 		sanity_check_seg_type(sbi, se->type);
3471 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3472 	}
3473 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3474 
3475 	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3476 
3477 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3478 
3479 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3480 	if (curseg->alloc_type == SSR) {
3481 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3482 	} else {
3483 		curseg->next_blkoff++;
3484 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3485 			f2fs_randomize_chunk(sbi, curseg);
3486 	}
3487 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3488 		segment_full = true;
3489 	stat_inc_block_count(sbi, curseg);
3490 
3491 	if (from_gc) {
3492 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3493 	} else {
3494 		update_segment_mtime(sbi, old_blkaddr, 0);
3495 		old_mtime = 0;
3496 	}
3497 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3498 
3499 	/*
3500 	 * SIT information should be updated before segment allocation,
3501 	 * since SSR needs latest valid block information.
3502 	 */
3503 	update_sit_entry(sbi, *new_blkaddr, 1);
3504 	update_sit_entry(sbi, old_blkaddr, -1);
3505 
3506 	/*
3507 	 * If the current segment is full, flush it out and replace it with a
3508 	 * new segment.
3509 	 */
3510 	if (segment_full) {
3511 		if (type == CURSEG_COLD_DATA_PINNED &&
3512 		    !((curseg->segno + 1) % sbi->segs_per_sec)) {
3513 			write_sum_page(sbi, curseg->sum_blk,
3514 					GET_SUM_BLOCK(sbi, curseg->segno));
3515 			goto skip_new_segment;
3516 		}
3517 
3518 		if (from_gc) {
3519 			get_atssr_segment(sbi, type, se->type,
3520 						AT_SSR, se->mtime);
3521 		} else {
3522 			if (need_new_seg(sbi, type))
3523 				new_curseg(sbi, type, false);
3524 			else
3525 				change_curseg(sbi, type);
3526 			stat_inc_seg_type(sbi, curseg);
3527 		}
3528 	}
3529 
3530 skip_new_segment:
3531 	/*
3532 	 * segment dirty status should be updated after segment allocation,
3533 	 * so we just need to update status only one time after previous
3534 	 * segment being closed.
3535 	 */
3536 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3537 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3538 
3539 	if (IS_DATASEG(curseg->seg_type))
3540 		atomic64_inc(&sbi->allocated_data_blocks);
3541 
3542 	up_write(&sit_i->sentry_lock);
3543 
3544 	if (page && IS_NODESEG(curseg->seg_type)) {
3545 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3546 
3547 		f2fs_inode_chksum_set(sbi, page);
3548 	}
3549 
3550 	if (fio) {
3551 		struct f2fs_bio_info *io;
3552 
3553 		INIT_LIST_HEAD(&fio->list);
3554 		fio->in_list = 1;
3555 		io = sbi->write_io[fio->type] + fio->temp;
3556 		spin_lock(&io->io_lock);
3557 		list_add_tail(&fio->list, &io->io_list);
3558 		spin_unlock(&io->io_lock);
3559 	}
3560 
3561 	mutex_unlock(&curseg->curseg_mutex);
3562 
3563 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3564 }
3565 
3566 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3567 					block_t blkaddr, unsigned int blkcnt)
3568 {
3569 	if (!f2fs_is_multi_device(sbi))
3570 		return;
3571 
3572 	while (1) {
3573 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3574 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3575 
3576 		/* update device state for fsync */
3577 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3578 
3579 		/* update device state for checkpoint */
3580 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3581 			spin_lock(&sbi->dev_lock);
3582 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3583 			spin_unlock(&sbi->dev_lock);
3584 		}
3585 
3586 		if (blkcnt <= blks)
3587 			break;
3588 		blkcnt -= blks;
3589 		blkaddr += blks;
3590 	}
3591 }
3592 
3593 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3594 {
3595 	int type = __get_segment_type(fio);
3596 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3597 
3598 	if (keep_order)
3599 		f2fs_down_read(&fio->sbi->io_order_lock);
3600 
3601 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3602 			&fio->new_blkaddr, sum, type, fio);
3603 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3604 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3605 
3606 	/* writeout dirty page into bdev */
3607 	f2fs_submit_page_write(fio);
3608 
3609 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3610 
3611 	if (keep_order)
3612 		f2fs_up_read(&fio->sbi->io_order_lock);
3613 }
3614 
3615 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3616 					enum iostat_type io_type)
3617 {
3618 	struct f2fs_io_info fio = {
3619 		.sbi = sbi,
3620 		.type = META,
3621 		.temp = HOT,
3622 		.op = REQ_OP_WRITE,
3623 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3624 		.old_blkaddr = page->index,
3625 		.new_blkaddr = page->index,
3626 		.page = page,
3627 		.encrypted_page = NULL,
3628 		.in_list = 0,
3629 	};
3630 
3631 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3632 		fio.op_flags &= ~REQ_META;
3633 
3634 	set_page_writeback(page);
3635 	f2fs_submit_page_write(&fio);
3636 
3637 	stat_inc_meta_count(sbi, page->index);
3638 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3639 }
3640 
3641 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3642 {
3643 	struct f2fs_summary sum;
3644 
3645 	set_summary(&sum, nid, 0, 0);
3646 	do_write_page(&sum, fio);
3647 
3648 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3649 }
3650 
3651 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3652 					struct f2fs_io_info *fio)
3653 {
3654 	struct f2fs_sb_info *sbi = fio->sbi;
3655 	struct f2fs_summary sum;
3656 
3657 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3658 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3659 		f2fs_update_age_extent_cache(dn);
3660 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3661 	do_write_page(&sum, fio);
3662 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3663 
3664 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3665 }
3666 
3667 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3668 {
3669 	int err;
3670 	struct f2fs_sb_info *sbi = fio->sbi;
3671 	unsigned int segno;
3672 
3673 	fio->new_blkaddr = fio->old_blkaddr;
3674 	/* i/o temperature is needed for passing down write hints */
3675 	__get_segment_type(fio);
3676 
3677 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3678 
3679 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3680 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3681 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3682 			  __func__, segno);
3683 		err = -EFSCORRUPTED;
3684 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3685 		goto drop_bio;
3686 	}
3687 
3688 	if (f2fs_cp_error(sbi)) {
3689 		err = -EIO;
3690 		goto drop_bio;
3691 	}
3692 
3693 	if (fio->meta_gc)
3694 		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3695 
3696 	stat_inc_inplace_blocks(fio->sbi);
3697 
3698 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3699 		err = f2fs_merge_page_bio(fio);
3700 	else
3701 		err = f2fs_submit_page_bio(fio);
3702 	if (!err) {
3703 		f2fs_update_device_state(fio->sbi, fio->ino,
3704 						fio->new_blkaddr, 1);
3705 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3706 						fio->io_type, F2FS_BLKSIZE);
3707 	}
3708 
3709 	return err;
3710 drop_bio:
3711 	if (fio->bio && *(fio->bio)) {
3712 		struct bio *bio = *(fio->bio);
3713 
3714 		bio->bi_status = BLK_STS_IOERR;
3715 		bio_endio(bio);
3716 		*(fio->bio) = NULL;
3717 	}
3718 	return err;
3719 }
3720 
3721 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3722 						unsigned int segno)
3723 {
3724 	int i;
3725 
3726 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3727 		if (CURSEG_I(sbi, i)->segno == segno)
3728 			break;
3729 	}
3730 	return i;
3731 }
3732 
3733 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3734 				block_t old_blkaddr, block_t new_blkaddr,
3735 				bool recover_curseg, bool recover_newaddr,
3736 				bool from_gc)
3737 {
3738 	struct sit_info *sit_i = SIT_I(sbi);
3739 	struct curseg_info *curseg;
3740 	unsigned int segno, old_cursegno;
3741 	struct seg_entry *se;
3742 	int type;
3743 	unsigned short old_blkoff;
3744 	unsigned char old_alloc_type;
3745 
3746 	segno = GET_SEGNO(sbi, new_blkaddr);
3747 	se = get_seg_entry(sbi, segno);
3748 	type = se->type;
3749 
3750 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3751 
3752 	if (!recover_curseg) {
3753 		/* for recovery flow */
3754 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3755 			if (old_blkaddr == NULL_ADDR)
3756 				type = CURSEG_COLD_DATA;
3757 			else
3758 				type = CURSEG_WARM_DATA;
3759 		}
3760 	} else {
3761 		if (IS_CURSEG(sbi, segno)) {
3762 			/* se->type is volatile as SSR allocation */
3763 			type = __f2fs_get_curseg(sbi, segno);
3764 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3765 		} else {
3766 			type = CURSEG_WARM_DATA;
3767 		}
3768 	}
3769 
3770 	curseg = CURSEG_I(sbi, type);
3771 	f2fs_bug_on(sbi, !IS_DATASEG(curseg->seg_type));
3772 
3773 	mutex_lock(&curseg->curseg_mutex);
3774 	down_write(&sit_i->sentry_lock);
3775 
3776 	old_cursegno = curseg->segno;
3777 	old_blkoff = curseg->next_blkoff;
3778 	old_alloc_type = curseg->alloc_type;
3779 
3780 	/* change the current segment */
3781 	if (segno != curseg->segno) {
3782 		curseg->next_segno = segno;
3783 		change_curseg(sbi, type);
3784 	}
3785 
3786 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3787 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3788 
3789 	if (!recover_curseg || recover_newaddr) {
3790 		if (!from_gc)
3791 			update_segment_mtime(sbi, new_blkaddr, 0);
3792 		update_sit_entry(sbi, new_blkaddr, 1);
3793 	}
3794 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3795 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3796 		if (!from_gc)
3797 			update_segment_mtime(sbi, old_blkaddr, 0);
3798 		update_sit_entry(sbi, old_blkaddr, -1);
3799 	}
3800 
3801 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3802 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3803 
3804 	locate_dirty_segment(sbi, old_cursegno);
3805 
3806 	if (recover_curseg) {
3807 		if (old_cursegno != curseg->segno) {
3808 			curseg->next_segno = old_cursegno;
3809 			change_curseg(sbi, type);
3810 		}
3811 		curseg->next_blkoff = old_blkoff;
3812 		curseg->alloc_type = old_alloc_type;
3813 	}
3814 
3815 	up_write(&sit_i->sentry_lock);
3816 	mutex_unlock(&curseg->curseg_mutex);
3817 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3818 }
3819 
3820 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3821 				block_t old_addr, block_t new_addr,
3822 				unsigned char version, bool recover_curseg,
3823 				bool recover_newaddr)
3824 {
3825 	struct f2fs_summary sum;
3826 
3827 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3828 
3829 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3830 					recover_curseg, recover_newaddr, false);
3831 
3832 	f2fs_update_data_blkaddr(dn, new_addr);
3833 }
3834 
3835 void f2fs_wait_on_page_writeback(struct page *page,
3836 				enum page_type type, bool ordered, bool locked)
3837 {
3838 	if (PageWriteback(page)) {
3839 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3840 
3841 		/* submit cached LFS IO */
3842 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3843 		/* submit cached IPU IO */
3844 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3845 		if (ordered) {
3846 			wait_on_page_writeback(page);
3847 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3848 		} else {
3849 			wait_for_stable_page(page);
3850 		}
3851 	}
3852 }
3853 
3854 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3855 {
3856 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3857 	struct page *cpage;
3858 
3859 	if (!f2fs_meta_inode_gc_required(inode))
3860 		return;
3861 
3862 	if (!__is_valid_data_blkaddr(blkaddr))
3863 		return;
3864 
3865 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3866 	if (cpage) {
3867 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3868 		f2fs_put_page(cpage, 1);
3869 	}
3870 }
3871 
3872 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3873 								block_t len)
3874 {
3875 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3876 	block_t i;
3877 
3878 	if (!f2fs_meta_inode_gc_required(inode))
3879 		return;
3880 
3881 	for (i = 0; i < len; i++)
3882 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3883 
3884 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
3885 }
3886 
3887 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3888 {
3889 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3890 	struct curseg_info *seg_i;
3891 	unsigned char *kaddr;
3892 	struct page *page;
3893 	block_t start;
3894 	int i, j, offset;
3895 
3896 	start = start_sum_block(sbi);
3897 
3898 	page = f2fs_get_meta_page(sbi, start++);
3899 	if (IS_ERR(page))
3900 		return PTR_ERR(page);
3901 	kaddr = (unsigned char *)page_address(page);
3902 
3903 	/* Step 1: restore nat cache */
3904 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3905 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3906 
3907 	/* Step 2: restore sit cache */
3908 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3909 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3910 	offset = 2 * SUM_JOURNAL_SIZE;
3911 
3912 	/* Step 3: restore summary entries */
3913 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3914 		unsigned short blk_off;
3915 		unsigned int segno;
3916 
3917 		seg_i = CURSEG_I(sbi, i);
3918 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3919 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3920 		seg_i->next_segno = segno;
3921 		reset_curseg(sbi, i, 0);
3922 		seg_i->alloc_type = ckpt->alloc_type[i];
3923 		seg_i->next_blkoff = blk_off;
3924 
3925 		if (seg_i->alloc_type == SSR)
3926 			blk_off = BLKS_PER_SEG(sbi);
3927 
3928 		for (j = 0; j < blk_off; j++) {
3929 			struct f2fs_summary *s;
3930 
3931 			s = (struct f2fs_summary *)(kaddr + offset);
3932 			seg_i->sum_blk->entries[j] = *s;
3933 			offset += SUMMARY_SIZE;
3934 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3935 						SUM_FOOTER_SIZE)
3936 				continue;
3937 
3938 			f2fs_put_page(page, 1);
3939 			page = NULL;
3940 
3941 			page = f2fs_get_meta_page(sbi, start++);
3942 			if (IS_ERR(page))
3943 				return PTR_ERR(page);
3944 			kaddr = (unsigned char *)page_address(page);
3945 			offset = 0;
3946 		}
3947 	}
3948 	f2fs_put_page(page, 1);
3949 	return 0;
3950 }
3951 
3952 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3953 {
3954 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3955 	struct f2fs_summary_block *sum;
3956 	struct curseg_info *curseg;
3957 	struct page *new;
3958 	unsigned short blk_off;
3959 	unsigned int segno = 0;
3960 	block_t blk_addr = 0;
3961 	int err = 0;
3962 
3963 	/* get segment number and block addr */
3964 	if (IS_DATASEG(type)) {
3965 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3966 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3967 							CURSEG_HOT_DATA]);
3968 		if (__exist_node_summaries(sbi))
3969 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3970 		else
3971 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3972 	} else {
3973 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3974 							CURSEG_HOT_NODE]);
3975 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3976 							CURSEG_HOT_NODE]);
3977 		if (__exist_node_summaries(sbi))
3978 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3979 							type - CURSEG_HOT_NODE);
3980 		else
3981 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3982 	}
3983 
3984 	new = f2fs_get_meta_page(sbi, blk_addr);
3985 	if (IS_ERR(new))
3986 		return PTR_ERR(new);
3987 	sum = (struct f2fs_summary_block *)page_address(new);
3988 
3989 	if (IS_NODESEG(type)) {
3990 		if (__exist_node_summaries(sbi)) {
3991 			struct f2fs_summary *ns = &sum->entries[0];
3992 			int i;
3993 
3994 			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
3995 				ns->version = 0;
3996 				ns->ofs_in_node = 0;
3997 			}
3998 		} else {
3999 			err = f2fs_restore_node_summary(sbi, segno, sum);
4000 			if (err)
4001 				goto out;
4002 		}
4003 	}
4004 
4005 	/* set uncompleted segment to curseg */
4006 	curseg = CURSEG_I(sbi, type);
4007 	mutex_lock(&curseg->curseg_mutex);
4008 
4009 	/* update journal info */
4010 	down_write(&curseg->journal_rwsem);
4011 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
4012 	up_write(&curseg->journal_rwsem);
4013 
4014 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
4015 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
4016 	curseg->next_segno = segno;
4017 	reset_curseg(sbi, type, 0);
4018 	curseg->alloc_type = ckpt->alloc_type[type];
4019 	curseg->next_blkoff = blk_off;
4020 	mutex_unlock(&curseg->curseg_mutex);
4021 out:
4022 	f2fs_put_page(new, 1);
4023 	return err;
4024 }
4025 
4026 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
4027 {
4028 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
4029 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
4030 	int type = CURSEG_HOT_DATA;
4031 	int err;
4032 
4033 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4034 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4035 
4036 		if (npages >= 2)
4037 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4038 							META_CP, true);
4039 
4040 		/* restore for compacted data summary */
4041 		err = read_compacted_summaries(sbi);
4042 		if (err)
4043 			return err;
4044 		type = CURSEG_HOT_NODE;
4045 	}
4046 
4047 	if (__exist_node_summaries(sbi))
4048 		f2fs_ra_meta_pages(sbi,
4049 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4050 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4051 
4052 	for (; type <= CURSEG_COLD_NODE; type++) {
4053 		err = read_normal_summaries(sbi, type);
4054 		if (err)
4055 			return err;
4056 	}
4057 
4058 	/* sanity check for summary blocks */
4059 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4060 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4061 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4062 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4063 		return -EINVAL;
4064 	}
4065 
4066 	return 0;
4067 }
4068 
4069 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4070 {
4071 	struct page *page;
4072 	unsigned char *kaddr;
4073 	struct f2fs_summary *summary;
4074 	struct curseg_info *seg_i;
4075 	int written_size = 0;
4076 	int i, j;
4077 
4078 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4079 	kaddr = (unsigned char *)page_address(page);
4080 	memset(kaddr, 0, PAGE_SIZE);
4081 
4082 	/* Step 1: write nat cache */
4083 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4084 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4085 	written_size += SUM_JOURNAL_SIZE;
4086 
4087 	/* Step 2: write sit cache */
4088 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4089 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4090 	written_size += SUM_JOURNAL_SIZE;
4091 
4092 	/* Step 3: write summary entries */
4093 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4094 		seg_i = CURSEG_I(sbi, i);
4095 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4096 			if (!page) {
4097 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4098 				kaddr = (unsigned char *)page_address(page);
4099 				memset(kaddr, 0, PAGE_SIZE);
4100 				written_size = 0;
4101 			}
4102 			summary = (struct f2fs_summary *)(kaddr + written_size);
4103 			*summary = seg_i->sum_blk->entries[j];
4104 			written_size += SUMMARY_SIZE;
4105 
4106 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4107 							SUM_FOOTER_SIZE)
4108 				continue;
4109 
4110 			set_page_dirty(page);
4111 			f2fs_put_page(page, 1);
4112 			page = NULL;
4113 		}
4114 	}
4115 	if (page) {
4116 		set_page_dirty(page);
4117 		f2fs_put_page(page, 1);
4118 	}
4119 }
4120 
4121 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4122 					block_t blkaddr, int type)
4123 {
4124 	int i, end;
4125 
4126 	if (IS_DATASEG(type))
4127 		end = type + NR_CURSEG_DATA_TYPE;
4128 	else
4129 		end = type + NR_CURSEG_NODE_TYPE;
4130 
4131 	for (i = type; i < end; i++)
4132 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4133 }
4134 
4135 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4136 {
4137 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4138 		write_compacted_summaries(sbi, start_blk);
4139 	else
4140 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4141 }
4142 
4143 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4144 {
4145 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4146 }
4147 
4148 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4149 					unsigned int val, int alloc)
4150 {
4151 	int i;
4152 
4153 	if (type == NAT_JOURNAL) {
4154 		for (i = 0; i < nats_in_cursum(journal); i++) {
4155 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4156 				return i;
4157 		}
4158 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4159 			return update_nats_in_cursum(journal, 1);
4160 	} else if (type == SIT_JOURNAL) {
4161 		for (i = 0; i < sits_in_cursum(journal); i++)
4162 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4163 				return i;
4164 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4165 			return update_sits_in_cursum(journal, 1);
4166 	}
4167 	return -1;
4168 }
4169 
4170 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4171 					unsigned int segno)
4172 {
4173 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4174 }
4175 
4176 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4177 					unsigned int start)
4178 {
4179 	struct sit_info *sit_i = SIT_I(sbi);
4180 	struct page *page;
4181 	pgoff_t src_off, dst_off;
4182 
4183 	src_off = current_sit_addr(sbi, start);
4184 	dst_off = next_sit_addr(sbi, src_off);
4185 
4186 	page = f2fs_grab_meta_page(sbi, dst_off);
4187 	seg_info_to_sit_page(sbi, page, start);
4188 
4189 	set_page_dirty(page);
4190 	set_to_next_sit(sit_i, start);
4191 
4192 	return page;
4193 }
4194 
4195 static struct sit_entry_set *grab_sit_entry_set(void)
4196 {
4197 	struct sit_entry_set *ses =
4198 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4199 						GFP_NOFS, true, NULL);
4200 
4201 	ses->entry_cnt = 0;
4202 	INIT_LIST_HEAD(&ses->set_list);
4203 	return ses;
4204 }
4205 
4206 static void release_sit_entry_set(struct sit_entry_set *ses)
4207 {
4208 	list_del(&ses->set_list);
4209 	kmem_cache_free(sit_entry_set_slab, ses);
4210 }
4211 
4212 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4213 						struct list_head *head)
4214 {
4215 	struct sit_entry_set *next = ses;
4216 
4217 	if (list_is_last(&ses->set_list, head))
4218 		return;
4219 
4220 	list_for_each_entry_continue(next, head, set_list)
4221 		if (ses->entry_cnt <= next->entry_cnt) {
4222 			list_move_tail(&ses->set_list, &next->set_list);
4223 			return;
4224 		}
4225 
4226 	list_move_tail(&ses->set_list, head);
4227 }
4228 
4229 static void add_sit_entry(unsigned int segno, struct list_head *head)
4230 {
4231 	struct sit_entry_set *ses;
4232 	unsigned int start_segno = START_SEGNO(segno);
4233 
4234 	list_for_each_entry(ses, head, set_list) {
4235 		if (ses->start_segno == start_segno) {
4236 			ses->entry_cnt++;
4237 			adjust_sit_entry_set(ses, head);
4238 			return;
4239 		}
4240 	}
4241 
4242 	ses = grab_sit_entry_set();
4243 
4244 	ses->start_segno = start_segno;
4245 	ses->entry_cnt++;
4246 	list_add(&ses->set_list, head);
4247 }
4248 
4249 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4250 {
4251 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4252 	struct list_head *set_list = &sm_info->sit_entry_set;
4253 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4254 	unsigned int segno;
4255 
4256 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4257 		add_sit_entry(segno, set_list);
4258 }
4259 
4260 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4261 {
4262 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4263 	struct f2fs_journal *journal = curseg->journal;
4264 	int i;
4265 
4266 	down_write(&curseg->journal_rwsem);
4267 	for (i = 0; i < sits_in_cursum(journal); i++) {
4268 		unsigned int segno;
4269 		bool dirtied;
4270 
4271 		segno = le32_to_cpu(segno_in_journal(journal, i));
4272 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4273 
4274 		if (!dirtied)
4275 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4276 	}
4277 	update_sits_in_cursum(journal, -i);
4278 	up_write(&curseg->journal_rwsem);
4279 }
4280 
4281 /*
4282  * CP calls this function, which flushes SIT entries including sit_journal,
4283  * and moves prefree segs to free segs.
4284  */
4285 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4286 {
4287 	struct sit_info *sit_i = SIT_I(sbi);
4288 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4289 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4290 	struct f2fs_journal *journal = curseg->journal;
4291 	struct sit_entry_set *ses, *tmp;
4292 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4293 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4294 	struct seg_entry *se;
4295 
4296 	down_write(&sit_i->sentry_lock);
4297 
4298 	if (!sit_i->dirty_sentries)
4299 		goto out;
4300 
4301 	/*
4302 	 * add and account sit entries of dirty bitmap in sit entry
4303 	 * set temporarily
4304 	 */
4305 	add_sits_in_set(sbi);
4306 
4307 	/*
4308 	 * if there are no enough space in journal to store dirty sit
4309 	 * entries, remove all entries from journal and add and account
4310 	 * them in sit entry set.
4311 	 */
4312 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4313 								!to_journal)
4314 		remove_sits_in_journal(sbi);
4315 
4316 	/*
4317 	 * there are two steps to flush sit entries:
4318 	 * #1, flush sit entries to journal in current cold data summary block.
4319 	 * #2, flush sit entries to sit page.
4320 	 */
4321 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4322 		struct page *page = NULL;
4323 		struct f2fs_sit_block *raw_sit = NULL;
4324 		unsigned int start_segno = ses->start_segno;
4325 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4326 						(unsigned long)MAIN_SEGS(sbi));
4327 		unsigned int segno = start_segno;
4328 
4329 		if (to_journal &&
4330 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4331 			to_journal = false;
4332 
4333 		if (to_journal) {
4334 			down_write(&curseg->journal_rwsem);
4335 		} else {
4336 			page = get_next_sit_page(sbi, start_segno);
4337 			raw_sit = page_address(page);
4338 		}
4339 
4340 		/* flush dirty sit entries in region of current sit set */
4341 		for_each_set_bit_from(segno, bitmap, end) {
4342 			int offset, sit_offset;
4343 
4344 			se = get_seg_entry(sbi, segno);
4345 #ifdef CONFIG_F2FS_CHECK_FS
4346 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4347 						SIT_VBLOCK_MAP_SIZE))
4348 				f2fs_bug_on(sbi, 1);
4349 #endif
4350 
4351 			/* add discard candidates */
4352 			if (!(cpc->reason & CP_DISCARD)) {
4353 				cpc->trim_start = segno;
4354 				add_discard_addrs(sbi, cpc, false);
4355 			}
4356 
4357 			if (to_journal) {
4358 				offset = f2fs_lookup_journal_in_cursum(journal,
4359 							SIT_JOURNAL, segno, 1);
4360 				f2fs_bug_on(sbi, offset < 0);
4361 				segno_in_journal(journal, offset) =
4362 							cpu_to_le32(segno);
4363 				seg_info_to_raw_sit(se,
4364 					&sit_in_journal(journal, offset));
4365 				check_block_count(sbi, segno,
4366 					&sit_in_journal(journal, offset));
4367 			} else {
4368 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4369 				seg_info_to_raw_sit(se,
4370 						&raw_sit->entries[sit_offset]);
4371 				check_block_count(sbi, segno,
4372 						&raw_sit->entries[sit_offset]);
4373 			}
4374 
4375 			__clear_bit(segno, bitmap);
4376 			sit_i->dirty_sentries--;
4377 			ses->entry_cnt--;
4378 		}
4379 
4380 		if (to_journal)
4381 			up_write(&curseg->journal_rwsem);
4382 		else
4383 			f2fs_put_page(page, 1);
4384 
4385 		f2fs_bug_on(sbi, ses->entry_cnt);
4386 		release_sit_entry_set(ses);
4387 	}
4388 
4389 	f2fs_bug_on(sbi, !list_empty(head));
4390 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4391 out:
4392 	if (cpc->reason & CP_DISCARD) {
4393 		__u64 trim_start = cpc->trim_start;
4394 
4395 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4396 			add_discard_addrs(sbi, cpc, false);
4397 
4398 		cpc->trim_start = trim_start;
4399 	}
4400 	up_write(&sit_i->sentry_lock);
4401 
4402 	set_prefree_as_free_segments(sbi);
4403 }
4404 
4405 static int build_sit_info(struct f2fs_sb_info *sbi)
4406 {
4407 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4408 	struct sit_info *sit_i;
4409 	unsigned int sit_segs, start;
4410 	char *src_bitmap, *bitmap;
4411 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4412 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4413 
4414 	/* allocate memory for SIT information */
4415 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4416 	if (!sit_i)
4417 		return -ENOMEM;
4418 
4419 	SM_I(sbi)->sit_info = sit_i;
4420 
4421 	sit_i->sentries =
4422 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4423 					      MAIN_SEGS(sbi)),
4424 			      GFP_KERNEL);
4425 	if (!sit_i->sentries)
4426 		return -ENOMEM;
4427 
4428 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4429 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4430 								GFP_KERNEL);
4431 	if (!sit_i->dirty_sentries_bitmap)
4432 		return -ENOMEM;
4433 
4434 #ifdef CONFIG_F2FS_CHECK_FS
4435 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4436 #else
4437 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4438 #endif
4439 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4440 	if (!sit_i->bitmap)
4441 		return -ENOMEM;
4442 
4443 	bitmap = sit_i->bitmap;
4444 
4445 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4446 		sit_i->sentries[start].cur_valid_map = bitmap;
4447 		bitmap += SIT_VBLOCK_MAP_SIZE;
4448 
4449 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4450 		bitmap += SIT_VBLOCK_MAP_SIZE;
4451 
4452 #ifdef CONFIG_F2FS_CHECK_FS
4453 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4454 		bitmap += SIT_VBLOCK_MAP_SIZE;
4455 #endif
4456 
4457 		if (discard_map) {
4458 			sit_i->sentries[start].discard_map = bitmap;
4459 			bitmap += SIT_VBLOCK_MAP_SIZE;
4460 		}
4461 	}
4462 
4463 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4464 	if (!sit_i->tmp_map)
4465 		return -ENOMEM;
4466 
4467 	if (__is_large_section(sbi)) {
4468 		sit_i->sec_entries =
4469 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4470 						      MAIN_SECS(sbi)),
4471 				      GFP_KERNEL);
4472 		if (!sit_i->sec_entries)
4473 			return -ENOMEM;
4474 	}
4475 
4476 	/* get information related with SIT */
4477 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4478 
4479 	/* setup SIT bitmap from ckeckpoint pack */
4480 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4481 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4482 
4483 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4484 	if (!sit_i->sit_bitmap)
4485 		return -ENOMEM;
4486 
4487 #ifdef CONFIG_F2FS_CHECK_FS
4488 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4489 					sit_bitmap_size, GFP_KERNEL);
4490 	if (!sit_i->sit_bitmap_mir)
4491 		return -ENOMEM;
4492 
4493 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4494 					main_bitmap_size, GFP_KERNEL);
4495 	if (!sit_i->invalid_segmap)
4496 		return -ENOMEM;
4497 #endif
4498 
4499 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4500 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4501 	sit_i->written_valid_blocks = 0;
4502 	sit_i->bitmap_size = sit_bitmap_size;
4503 	sit_i->dirty_sentries = 0;
4504 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4505 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4506 	sit_i->mounted_time = ktime_get_boottime_seconds();
4507 	init_rwsem(&sit_i->sentry_lock);
4508 	return 0;
4509 }
4510 
4511 static int build_free_segmap(struct f2fs_sb_info *sbi)
4512 {
4513 	struct free_segmap_info *free_i;
4514 	unsigned int bitmap_size, sec_bitmap_size;
4515 
4516 	/* allocate memory for free segmap information */
4517 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4518 	if (!free_i)
4519 		return -ENOMEM;
4520 
4521 	SM_I(sbi)->free_info = free_i;
4522 
4523 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4524 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4525 	if (!free_i->free_segmap)
4526 		return -ENOMEM;
4527 
4528 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4529 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4530 	if (!free_i->free_secmap)
4531 		return -ENOMEM;
4532 
4533 	/* set all segments as dirty temporarily */
4534 	memset(free_i->free_segmap, 0xff, bitmap_size);
4535 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4536 
4537 	/* init free segmap information */
4538 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4539 	free_i->free_segments = 0;
4540 	free_i->free_sections = 0;
4541 	spin_lock_init(&free_i->segmap_lock);
4542 	return 0;
4543 }
4544 
4545 static int build_curseg(struct f2fs_sb_info *sbi)
4546 {
4547 	struct curseg_info *array;
4548 	int i;
4549 
4550 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4551 					sizeof(*array)), GFP_KERNEL);
4552 	if (!array)
4553 		return -ENOMEM;
4554 
4555 	SM_I(sbi)->curseg_array = array;
4556 
4557 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4558 		mutex_init(&array[i].curseg_mutex);
4559 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4560 		if (!array[i].sum_blk)
4561 			return -ENOMEM;
4562 		init_rwsem(&array[i].journal_rwsem);
4563 		array[i].journal = f2fs_kzalloc(sbi,
4564 				sizeof(struct f2fs_journal), GFP_KERNEL);
4565 		if (!array[i].journal)
4566 			return -ENOMEM;
4567 		if (i < NR_PERSISTENT_LOG)
4568 			array[i].seg_type = CURSEG_HOT_DATA + i;
4569 		else if (i == CURSEG_COLD_DATA_PINNED)
4570 			array[i].seg_type = CURSEG_COLD_DATA;
4571 		else if (i == CURSEG_ALL_DATA_ATGC)
4572 			array[i].seg_type = CURSEG_COLD_DATA;
4573 		array[i].segno = NULL_SEGNO;
4574 		array[i].next_blkoff = 0;
4575 		array[i].inited = false;
4576 	}
4577 	return restore_curseg_summaries(sbi);
4578 }
4579 
4580 static int build_sit_entries(struct f2fs_sb_info *sbi)
4581 {
4582 	struct sit_info *sit_i = SIT_I(sbi);
4583 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4584 	struct f2fs_journal *journal = curseg->journal;
4585 	struct seg_entry *se;
4586 	struct f2fs_sit_entry sit;
4587 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4588 	unsigned int i, start, end;
4589 	unsigned int readed, start_blk = 0;
4590 	int err = 0;
4591 	block_t sit_valid_blocks[2] = {0, 0};
4592 
4593 	do {
4594 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4595 							META_SIT, true);
4596 
4597 		start = start_blk * sit_i->sents_per_block;
4598 		end = (start_blk + readed) * sit_i->sents_per_block;
4599 
4600 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4601 			struct f2fs_sit_block *sit_blk;
4602 			struct page *page;
4603 
4604 			se = &sit_i->sentries[start];
4605 			page = get_current_sit_page(sbi, start);
4606 			if (IS_ERR(page))
4607 				return PTR_ERR(page);
4608 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4609 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4610 			f2fs_put_page(page, 1);
4611 
4612 			err = check_block_count(sbi, start, &sit);
4613 			if (err)
4614 				return err;
4615 			seg_info_from_raw_sit(se, &sit);
4616 
4617 			if (se->type >= NR_PERSISTENT_LOG) {
4618 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4619 							se->type, start);
4620 				f2fs_handle_error(sbi,
4621 						ERROR_INCONSISTENT_SUM_TYPE);
4622 				return -EFSCORRUPTED;
4623 			}
4624 
4625 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4626 
4627 			if (!f2fs_block_unit_discard(sbi))
4628 				goto init_discard_map_done;
4629 
4630 			/* build discard map only one time */
4631 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4632 				memset(se->discard_map, 0xff,
4633 						SIT_VBLOCK_MAP_SIZE);
4634 				goto init_discard_map_done;
4635 			}
4636 			memcpy(se->discard_map, se->cur_valid_map,
4637 						SIT_VBLOCK_MAP_SIZE);
4638 			sbi->discard_blks += BLKS_PER_SEG(sbi) -
4639 						se->valid_blocks;
4640 init_discard_map_done:
4641 			if (__is_large_section(sbi))
4642 				get_sec_entry(sbi, start)->valid_blocks +=
4643 							se->valid_blocks;
4644 		}
4645 		start_blk += readed;
4646 	} while (start_blk < sit_blk_cnt);
4647 
4648 	down_read(&curseg->journal_rwsem);
4649 	for (i = 0; i < sits_in_cursum(journal); i++) {
4650 		unsigned int old_valid_blocks;
4651 
4652 		start = le32_to_cpu(segno_in_journal(journal, i));
4653 		if (start >= MAIN_SEGS(sbi)) {
4654 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4655 				 start);
4656 			err = -EFSCORRUPTED;
4657 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4658 			break;
4659 		}
4660 
4661 		se = &sit_i->sentries[start];
4662 		sit = sit_in_journal(journal, i);
4663 
4664 		old_valid_blocks = se->valid_blocks;
4665 
4666 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4667 
4668 		err = check_block_count(sbi, start, &sit);
4669 		if (err)
4670 			break;
4671 		seg_info_from_raw_sit(se, &sit);
4672 
4673 		if (se->type >= NR_PERSISTENT_LOG) {
4674 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4675 							se->type, start);
4676 			err = -EFSCORRUPTED;
4677 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4678 			break;
4679 		}
4680 
4681 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4682 
4683 		if (f2fs_block_unit_discard(sbi)) {
4684 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4685 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4686 			} else {
4687 				memcpy(se->discard_map, se->cur_valid_map,
4688 							SIT_VBLOCK_MAP_SIZE);
4689 				sbi->discard_blks += old_valid_blocks;
4690 				sbi->discard_blks -= se->valid_blocks;
4691 			}
4692 		}
4693 
4694 		if (__is_large_section(sbi)) {
4695 			get_sec_entry(sbi, start)->valid_blocks +=
4696 							se->valid_blocks;
4697 			get_sec_entry(sbi, start)->valid_blocks -=
4698 							old_valid_blocks;
4699 		}
4700 	}
4701 	up_read(&curseg->journal_rwsem);
4702 
4703 	if (err)
4704 		return err;
4705 
4706 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4707 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4708 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4709 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4710 		return -EFSCORRUPTED;
4711 	}
4712 
4713 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4714 				valid_user_blocks(sbi)) {
4715 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4716 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4717 			 valid_user_blocks(sbi));
4718 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4719 		return -EFSCORRUPTED;
4720 	}
4721 
4722 	return 0;
4723 }
4724 
4725 static void init_free_segmap(struct f2fs_sb_info *sbi)
4726 {
4727 	unsigned int start;
4728 	int type;
4729 	struct seg_entry *sentry;
4730 
4731 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4732 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4733 			continue;
4734 		sentry = get_seg_entry(sbi, start);
4735 		if (!sentry->valid_blocks)
4736 			__set_free(sbi, start);
4737 		else
4738 			SIT_I(sbi)->written_valid_blocks +=
4739 						sentry->valid_blocks;
4740 	}
4741 
4742 	/* set use the current segments */
4743 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4744 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4745 
4746 		__set_test_and_inuse(sbi, curseg_t->segno);
4747 	}
4748 }
4749 
4750 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4751 {
4752 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4753 	struct free_segmap_info *free_i = FREE_I(sbi);
4754 	unsigned int segno = 0, offset = 0, secno;
4755 	block_t valid_blocks, usable_blks_in_seg;
4756 
4757 	while (1) {
4758 		/* find dirty segment based on free segmap */
4759 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4760 		if (segno >= MAIN_SEGS(sbi))
4761 			break;
4762 		offset = segno + 1;
4763 		valid_blocks = get_valid_blocks(sbi, segno, false);
4764 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4765 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4766 			continue;
4767 		if (valid_blocks > usable_blks_in_seg) {
4768 			f2fs_bug_on(sbi, 1);
4769 			continue;
4770 		}
4771 		mutex_lock(&dirty_i->seglist_lock);
4772 		__locate_dirty_segment(sbi, segno, DIRTY);
4773 		mutex_unlock(&dirty_i->seglist_lock);
4774 	}
4775 
4776 	if (!__is_large_section(sbi))
4777 		return;
4778 
4779 	mutex_lock(&dirty_i->seglist_lock);
4780 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
4781 		valid_blocks = get_valid_blocks(sbi, segno, true);
4782 		secno = GET_SEC_FROM_SEG(sbi, segno);
4783 
4784 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4785 			continue;
4786 		if (IS_CURSEC(sbi, secno))
4787 			continue;
4788 		set_bit(secno, dirty_i->dirty_secmap);
4789 	}
4790 	mutex_unlock(&dirty_i->seglist_lock);
4791 }
4792 
4793 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4794 {
4795 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4796 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4797 
4798 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4799 	if (!dirty_i->victim_secmap)
4800 		return -ENOMEM;
4801 
4802 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4803 	if (!dirty_i->pinned_secmap)
4804 		return -ENOMEM;
4805 
4806 	dirty_i->pinned_secmap_cnt = 0;
4807 	dirty_i->enable_pin_section = true;
4808 	return 0;
4809 }
4810 
4811 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4812 {
4813 	struct dirty_seglist_info *dirty_i;
4814 	unsigned int bitmap_size, i;
4815 
4816 	/* allocate memory for dirty segments list information */
4817 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4818 								GFP_KERNEL);
4819 	if (!dirty_i)
4820 		return -ENOMEM;
4821 
4822 	SM_I(sbi)->dirty_info = dirty_i;
4823 	mutex_init(&dirty_i->seglist_lock);
4824 
4825 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4826 
4827 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4828 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4829 								GFP_KERNEL);
4830 		if (!dirty_i->dirty_segmap[i])
4831 			return -ENOMEM;
4832 	}
4833 
4834 	if (__is_large_section(sbi)) {
4835 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4836 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4837 						bitmap_size, GFP_KERNEL);
4838 		if (!dirty_i->dirty_secmap)
4839 			return -ENOMEM;
4840 	}
4841 
4842 	init_dirty_segmap(sbi);
4843 	return init_victim_secmap(sbi);
4844 }
4845 
4846 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4847 {
4848 	int i;
4849 
4850 	/*
4851 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4852 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4853 	 */
4854 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4855 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4856 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4857 		unsigned int blkofs = curseg->next_blkoff;
4858 
4859 		if (f2fs_sb_has_readonly(sbi) &&
4860 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4861 			continue;
4862 
4863 		sanity_check_seg_type(sbi, curseg->seg_type);
4864 
4865 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4866 			f2fs_err(sbi,
4867 				 "Current segment has invalid alloc_type:%d",
4868 				 curseg->alloc_type);
4869 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4870 			return -EFSCORRUPTED;
4871 		}
4872 
4873 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4874 			goto out;
4875 
4876 		if (curseg->alloc_type == SSR)
4877 			continue;
4878 
4879 		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
4880 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4881 				continue;
4882 out:
4883 			f2fs_err(sbi,
4884 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4885 				 i, curseg->segno, curseg->alloc_type,
4886 				 curseg->next_blkoff, blkofs);
4887 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4888 			return -EFSCORRUPTED;
4889 		}
4890 	}
4891 	return 0;
4892 }
4893 
4894 #ifdef CONFIG_BLK_DEV_ZONED
4895 
4896 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4897 				    struct f2fs_dev_info *fdev,
4898 				    struct blk_zone *zone)
4899 {
4900 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4901 	block_t zone_block, wp_block, last_valid_block;
4902 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4903 	int i, s, b, ret;
4904 	struct seg_entry *se;
4905 
4906 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4907 		return 0;
4908 
4909 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4910 	wp_segno = GET_SEGNO(sbi, wp_block);
4911 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4912 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4913 	zone_segno = GET_SEGNO(sbi, zone_block);
4914 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4915 
4916 	if (zone_segno >= MAIN_SEGS(sbi))
4917 		return 0;
4918 
4919 	/*
4920 	 * Skip check of zones cursegs point to, since
4921 	 * fix_curseg_write_pointer() checks them.
4922 	 */
4923 	for (i = 0; i < NO_CHECK_TYPE; i++)
4924 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4925 						   CURSEG_I(sbi, i)->segno))
4926 			return 0;
4927 
4928 	/*
4929 	 * Get last valid block of the zone.
4930 	 */
4931 	last_valid_block = zone_block - 1;
4932 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4933 		segno = zone_segno + s;
4934 		se = get_seg_entry(sbi, segno);
4935 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4936 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4937 				last_valid_block = START_BLOCK(sbi, segno) + b;
4938 				break;
4939 			}
4940 		if (last_valid_block >= zone_block)
4941 			break;
4942 	}
4943 
4944 	/*
4945 	 * The write pointer matches with the valid blocks or
4946 	 * already points to the end of the zone.
4947 	 */
4948 	if ((last_valid_block + 1 == wp_block) ||
4949 			(zone->wp == zone->start + zone->len))
4950 		return 0;
4951 
4952 	if (last_valid_block + 1 == zone_block) {
4953 		/*
4954 		 * If there is no valid block in the zone and if write pointer
4955 		 * is not at zone start, reset the write pointer.
4956 		 */
4957 		f2fs_notice(sbi,
4958 			    "Zone without valid block has non-zero write "
4959 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4960 			    wp_segno, wp_blkoff);
4961 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4962 					zone->len >> log_sectors_per_block);
4963 		if (ret)
4964 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4965 				 fdev->path, ret);
4966 
4967 		return ret;
4968 	}
4969 
4970 	/*
4971 	 * If there are valid blocks and the write pointer doesn't
4972 	 * match with them, we need to report the inconsistency and
4973 	 * fill the zone till the end to close the zone. This inconsistency
4974 	 * does not cause write error because the zone will not be selected
4975 	 * for write operation until it get discarded.
4976 	 */
4977 	f2fs_notice(sbi, "Valid blocks are not aligned with write pointer: "
4978 		    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4979 		    GET_SEGNO(sbi, last_valid_block),
4980 		    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4981 		    wp_segno, wp_blkoff);
4982 
4983 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
4984 				zone->start, zone->len, GFP_NOFS);
4985 	if (ret == -EOPNOTSUPP) {
4986 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4987 					zone->len - (zone->wp - zone->start),
4988 					GFP_NOFS, 0);
4989 		if (ret)
4990 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4991 					fdev->path, ret);
4992 	} else if (ret) {
4993 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
4994 				fdev->path, ret);
4995 	}
4996 
4997 	return ret;
4998 }
4999 
5000 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
5001 						  block_t zone_blkaddr)
5002 {
5003 	int i;
5004 
5005 	for (i = 0; i < sbi->s_ndevs; i++) {
5006 		if (!bdev_is_zoned(FDEV(i).bdev))
5007 			continue;
5008 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
5009 				zone_blkaddr <= FDEV(i).end_blk))
5010 			return &FDEV(i);
5011 	}
5012 
5013 	return NULL;
5014 }
5015 
5016 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
5017 			      void *data)
5018 {
5019 	memcpy(data, zone, sizeof(struct blk_zone));
5020 	return 0;
5021 }
5022 
5023 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
5024 {
5025 	struct curseg_info *cs = CURSEG_I(sbi, type);
5026 	struct f2fs_dev_info *zbd;
5027 	struct blk_zone zone;
5028 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
5029 	block_t cs_zone_block, wp_block;
5030 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
5031 	sector_t zone_sector;
5032 	int err;
5033 
5034 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5035 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5036 
5037 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5038 	if (!zbd)
5039 		return 0;
5040 
5041 	/* report zone for the sector the curseg points to */
5042 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5043 		<< log_sectors_per_block;
5044 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5045 				  report_one_zone_cb, &zone);
5046 	if (err != 1) {
5047 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5048 			 zbd->path, err);
5049 		return err;
5050 	}
5051 
5052 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5053 		return 0;
5054 
5055 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5056 	wp_segno = GET_SEGNO(sbi, wp_block);
5057 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5058 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5059 
5060 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5061 		wp_sector_off == 0)
5062 		return 0;
5063 
5064 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5065 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
5066 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
5067 
5068 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5069 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
5070 
5071 	f2fs_allocate_new_section(sbi, type, true);
5072 
5073 	/* check consistency of the zone curseg pointed to */
5074 	if (check_zone_write_pointer(sbi, zbd, &zone))
5075 		return -EIO;
5076 
5077 	/* check newly assigned zone */
5078 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5079 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5080 
5081 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5082 	if (!zbd)
5083 		return 0;
5084 
5085 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5086 		<< log_sectors_per_block;
5087 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5088 				  report_one_zone_cb, &zone);
5089 	if (err != 1) {
5090 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5091 			 zbd->path, err);
5092 		return err;
5093 	}
5094 
5095 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5096 		return 0;
5097 
5098 	if (zone.wp != zone.start) {
5099 		f2fs_notice(sbi,
5100 			    "New zone for curseg[%d] is not yet discarded. "
5101 			    "Reset the zone: curseg[0x%x,0x%x]",
5102 			    type, cs->segno, cs->next_blkoff);
5103 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5104 					zone.len >> log_sectors_per_block);
5105 		if (err) {
5106 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5107 				 zbd->path, err);
5108 			return err;
5109 		}
5110 	}
5111 
5112 	return 0;
5113 }
5114 
5115 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5116 {
5117 	int i, ret;
5118 
5119 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5120 		ret = fix_curseg_write_pointer(sbi, i);
5121 		if (ret)
5122 			return ret;
5123 	}
5124 
5125 	return 0;
5126 }
5127 
5128 struct check_zone_write_pointer_args {
5129 	struct f2fs_sb_info *sbi;
5130 	struct f2fs_dev_info *fdev;
5131 };
5132 
5133 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5134 				      void *data)
5135 {
5136 	struct check_zone_write_pointer_args *args;
5137 
5138 	args = (struct check_zone_write_pointer_args *)data;
5139 
5140 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5141 }
5142 
5143 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5144 {
5145 	int i, ret;
5146 	struct check_zone_write_pointer_args args;
5147 
5148 	for (i = 0; i < sbi->s_ndevs; i++) {
5149 		if (!bdev_is_zoned(FDEV(i).bdev))
5150 			continue;
5151 
5152 		args.sbi = sbi;
5153 		args.fdev = &FDEV(i);
5154 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5155 					  check_zone_write_pointer_cb, &args);
5156 		if (ret < 0)
5157 			return ret;
5158 	}
5159 
5160 	return 0;
5161 }
5162 
5163 /*
5164  * Return the number of usable blocks in a segment. The number of blocks
5165  * returned is always equal to the number of blocks in a segment for
5166  * segments fully contained within a sequential zone capacity or a
5167  * conventional zone. For segments partially contained in a sequential
5168  * zone capacity, the number of usable blocks up to the zone capacity
5169  * is returned. 0 is returned in all other cases.
5170  */
5171 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5172 			struct f2fs_sb_info *sbi, unsigned int segno)
5173 {
5174 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5175 	unsigned int secno;
5176 
5177 	if (!sbi->unusable_blocks_per_sec)
5178 		return BLKS_PER_SEG(sbi);
5179 
5180 	secno = GET_SEC_FROM_SEG(sbi, segno);
5181 	seg_start = START_BLOCK(sbi, segno);
5182 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5183 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5184 
5185 	/*
5186 	 * If segment starts before zone capacity and spans beyond
5187 	 * zone capacity, then usable blocks are from seg start to
5188 	 * zone capacity. If the segment starts after the zone capacity,
5189 	 * then there are no usable blocks.
5190 	 */
5191 	if (seg_start >= sec_cap_blkaddr)
5192 		return 0;
5193 	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5194 		return sec_cap_blkaddr - seg_start;
5195 
5196 	return BLKS_PER_SEG(sbi);
5197 }
5198 #else
5199 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5200 {
5201 	return 0;
5202 }
5203 
5204 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5205 {
5206 	return 0;
5207 }
5208 
5209 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5210 							unsigned int segno)
5211 {
5212 	return 0;
5213 }
5214 
5215 #endif
5216 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5217 					unsigned int segno)
5218 {
5219 	if (f2fs_sb_has_blkzoned(sbi))
5220 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5221 
5222 	return BLKS_PER_SEG(sbi);
5223 }
5224 
5225 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5226 					unsigned int segno)
5227 {
5228 	if (f2fs_sb_has_blkzoned(sbi))
5229 		return CAP_SEGS_PER_SEC(sbi);
5230 
5231 	return SEGS_PER_SEC(sbi);
5232 }
5233 
5234 /*
5235  * Update min, max modified time for cost-benefit GC algorithm
5236  */
5237 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5238 {
5239 	struct sit_info *sit_i = SIT_I(sbi);
5240 	unsigned int segno;
5241 
5242 	down_write(&sit_i->sentry_lock);
5243 
5244 	sit_i->min_mtime = ULLONG_MAX;
5245 
5246 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5247 		unsigned int i;
5248 		unsigned long long mtime = 0;
5249 
5250 		for (i = 0; i < SEGS_PER_SEC(sbi); i++)
5251 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5252 
5253 		mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
5254 
5255 		if (sit_i->min_mtime > mtime)
5256 			sit_i->min_mtime = mtime;
5257 	}
5258 	sit_i->max_mtime = get_mtime(sbi, false);
5259 	sit_i->dirty_max_mtime = 0;
5260 	up_write(&sit_i->sentry_lock);
5261 }
5262 
5263 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5264 {
5265 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5266 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5267 	struct f2fs_sm_info *sm_info;
5268 	int err;
5269 
5270 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5271 	if (!sm_info)
5272 		return -ENOMEM;
5273 
5274 	/* init sm info */
5275 	sbi->sm_info = sm_info;
5276 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5277 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5278 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5279 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5280 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5281 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5282 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5283 	sm_info->rec_prefree_segments = sm_info->main_segments *
5284 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5285 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5286 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5287 
5288 	if (!f2fs_lfs_mode(sbi))
5289 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5290 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5291 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5292 	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5293 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5294 	sm_info->min_ssr_sections = reserved_sections(sbi);
5295 
5296 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5297 
5298 	init_f2fs_rwsem(&sm_info->curseg_lock);
5299 
5300 	err = f2fs_create_flush_cmd_control(sbi);
5301 	if (err)
5302 		return err;
5303 
5304 	err = create_discard_cmd_control(sbi);
5305 	if (err)
5306 		return err;
5307 
5308 	err = build_sit_info(sbi);
5309 	if (err)
5310 		return err;
5311 	err = build_free_segmap(sbi);
5312 	if (err)
5313 		return err;
5314 	err = build_curseg(sbi);
5315 	if (err)
5316 		return err;
5317 
5318 	/* reinit free segmap based on SIT */
5319 	err = build_sit_entries(sbi);
5320 	if (err)
5321 		return err;
5322 
5323 	init_free_segmap(sbi);
5324 	err = build_dirty_segmap(sbi);
5325 	if (err)
5326 		return err;
5327 
5328 	err = sanity_check_curseg(sbi);
5329 	if (err)
5330 		return err;
5331 
5332 	init_min_max_mtime(sbi);
5333 	return 0;
5334 }
5335 
5336 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5337 		enum dirty_type dirty_type)
5338 {
5339 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5340 
5341 	mutex_lock(&dirty_i->seglist_lock);
5342 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5343 	dirty_i->nr_dirty[dirty_type] = 0;
5344 	mutex_unlock(&dirty_i->seglist_lock);
5345 }
5346 
5347 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5348 {
5349 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5350 
5351 	kvfree(dirty_i->pinned_secmap);
5352 	kvfree(dirty_i->victim_secmap);
5353 }
5354 
5355 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5356 {
5357 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5358 	int i;
5359 
5360 	if (!dirty_i)
5361 		return;
5362 
5363 	/* discard pre-free/dirty segments list */
5364 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5365 		discard_dirty_segmap(sbi, i);
5366 
5367 	if (__is_large_section(sbi)) {
5368 		mutex_lock(&dirty_i->seglist_lock);
5369 		kvfree(dirty_i->dirty_secmap);
5370 		mutex_unlock(&dirty_i->seglist_lock);
5371 	}
5372 
5373 	destroy_victim_secmap(sbi);
5374 	SM_I(sbi)->dirty_info = NULL;
5375 	kfree(dirty_i);
5376 }
5377 
5378 static void destroy_curseg(struct f2fs_sb_info *sbi)
5379 {
5380 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5381 	int i;
5382 
5383 	if (!array)
5384 		return;
5385 	SM_I(sbi)->curseg_array = NULL;
5386 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5387 		kfree(array[i].sum_blk);
5388 		kfree(array[i].journal);
5389 	}
5390 	kfree(array);
5391 }
5392 
5393 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5394 {
5395 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5396 
5397 	if (!free_i)
5398 		return;
5399 	SM_I(sbi)->free_info = NULL;
5400 	kvfree(free_i->free_segmap);
5401 	kvfree(free_i->free_secmap);
5402 	kfree(free_i);
5403 }
5404 
5405 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5406 {
5407 	struct sit_info *sit_i = SIT_I(sbi);
5408 
5409 	if (!sit_i)
5410 		return;
5411 
5412 	if (sit_i->sentries)
5413 		kvfree(sit_i->bitmap);
5414 	kfree(sit_i->tmp_map);
5415 
5416 	kvfree(sit_i->sentries);
5417 	kvfree(sit_i->sec_entries);
5418 	kvfree(sit_i->dirty_sentries_bitmap);
5419 
5420 	SM_I(sbi)->sit_info = NULL;
5421 	kvfree(sit_i->sit_bitmap);
5422 #ifdef CONFIG_F2FS_CHECK_FS
5423 	kvfree(sit_i->sit_bitmap_mir);
5424 	kvfree(sit_i->invalid_segmap);
5425 #endif
5426 	kfree(sit_i);
5427 }
5428 
5429 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5430 {
5431 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5432 
5433 	if (!sm_info)
5434 		return;
5435 	f2fs_destroy_flush_cmd_control(sbi, true);
5436 	destroy_discard_cmd_control(sbi);
5437 	destroy_dirty_segmap(sbi);
5438 	destroy_curseg(sbi);
5439 	destroy_free_segmap(sbi);
5440 	destroy_sit_info(sbi);
5441 	sbi->sm_info = NULL;
5442 	kfree(sm_info);
5443 }
5444 
5445 int __init f2fs_create_segment_manager_caches(void)
5446 {
5447 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5448 			sizeof(struct discard_entry));
5449 	if (!discard_entry_slab)
5450 		goto fail;
5451 
5452 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5453 			sizeof(struct discard_cmd));
5454 	if (!discard_cmd_slab)
5455 		goto destroy_discard_entry;
5456 
5457 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5458 			sizeof(struct sit_entry_set));
5459 	if (!sit_entry_set_slab)
5460 		goto destroy_discard_cmd;
5461 
5462 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5463 			sizeof(struct revoke_entry));
5464 	if (!revoke_entry_slab)
5465 		goto destroy_sit_entry_set;
5466 	return 0;
5467 
5468 destroy_sit_entry_set:
5469 	kmem_cache_destroy(sit_entry_set_slab);
5470 destroy_discard_cmd:
5471 	kmem_cache_destroy(discard_cmd_slab);
5472 destroy_discard_entry:
5473 	kmem_cache_destroy(discard_entry_slab);
5474 fail:
5475 	return -ENOMEM;
5476 }
5477 
5478 void f2fs_destroy_segment_manager_caches(void)
5479 {
5480 	kmem_cache_destroy(sit_entry_set_slab);
5481 	kmem_cache_destroy(discard_cmd_slab);
5482 	kmem_cache_destroy(discard_entry_slab);
5483 	kmem_cache_destroy(revoke_entry_slab);
5484 }
5485