xref: /openbmc/linux/fs/f2fs/segment.c (revision 86bee12f)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 
20 #include "f2fs.h"
21 #include "segment.h"
22 #include "node.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25 
26 #define __reverse_ffz(x) __reverse_ffs(~(x))
27 
28 static struct kmem_cache *discard_entry_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31 
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34 	unsigned long tmp = 0;
35 	int shift = 24, idx = 0;
36 
37 #if BITS_PER_LONG == 64
38 	shift = 56;
39 #endif
40 	while (shift >= 0) {
41 		tmp |= (unsigned long)str[idx++] << shift;
42 		shift -= BITS_PER_BYTE;
43 	}
44 	return tmp;
45 }
46 
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53 	int num = 0;
54 
55 #if BITS_PER_LONG == 64
56 	if ((word & 0xffffffff00000000UL) == 0)
57 		num += 32;
58 	else
59 		word >>= 32;
60 #endif
61 	if ((word & 0xffff0000) == 0)
62 		num += 16;
63 	else
64 		word >>= 16;
65 
66 	if ((word & 0xff00) == 0)
67 		num += 8;
68 	else
69 		word >>= 8;
70 
71 	if ((word & 0xf0) == 0)
72 		num += 4;
73 	else
74 		word >>= 4;
75 
76 	if ((word & 0xc) == 0)
77 		num += 2;
78 	else
79 		word >>= 2;
80 
81 	if ((word & 0x2) == 0)
82 		num += 1;
83 	return num;
84 }
85 
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * @size must be integral times of unsigned long.
90  * Example:
91  *                             MSB <--> LSB
92  *   f2fs_set_bit(0, bitmap) => 1000 0000
93  *   f2fs_set_bit(7, bitmap) => 0000 0001
94  */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 			unsigned long size, unsigned long offset)
97 {
98 	const unsigned long *p = addr + BIT_WORD(offset);
99 	unsigned long result = size;
100 	unsigned long tmp;
101 
102 	if (offset >= size)
103 		return size;
104 
105 	size -= (offset & ~(BITS_PER_LONG - 1));
106 	offset %= BITS_PER_LONG;
107 
108 	while (1) {
109 		if (*p == 0)
110 			goto pass;
111 
112 		tmp = __reverse_ulong((unsigned char *)p);
113 
114 		tmp &= ~0UL >> offset;
115 		if (size < BITS_PER_LONG)
116 			tmp &= (~0UL << (BITS_PER_LONG - size));
117 		if (tmp)
118 			goto found;
119 pass:
120 		if (size <= BITS_PER_LONG)
121 			break;
122 		size -= BITS_PER_LONG;
123 		offset = 0;
124 		p++;
125 	}
126 	return result;
127 found:
128 	return result - size + __reverse_ffs(tmp);
129 }
130 
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 			unsigned long size, unsigned long offset)
133 {
134 	const unsigned long *p = addr + BIT_WORD(offset);
135 	unsigned long result = size;
136 	unsigned long tmp;
137 
138 	if (offset >= size)
139 		return size;
140 
141 	size -= (offset & ~(BITS_PER_LONG - 1));
142 	offset %= BITS_PER_LONG;
143 
144 	while (1) {
145 		if (*p == ~0UL)
146 			goto pass;
147 
148 		tmp = __reverse_ulong((unsigned char *)p);
149 
150 		if (offset)
151 			tmp |= ~0UL << (BITS_PER_LONG - offset);
152 		if (size < BITS_PER_LONG)
153 			tmp |= ~0UL >> size;
154 		if (tmp != ~0UL)
155 			goto found;
156 pass:
157 		if (size <= BITS_PER_LONG)
158 			break;
159 		size -= BITS_PER_LONG;
160 		offset = 0;
161 		p++;
162 	}
163 	return result;
164 found:
165 	return result - size + __reverse_ffz(tmp);
166 }
167 
168 void register_inmem_page(struct inode *inode, struct page *page)
169 {
170 	struct f2fs_inode_info *fi = F2FS_I(inode);
171 	struct inmem_pages *new;
172 
173 	f2fs_trace_pid(page);
174 
175 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
176 	SetPagePrivate(page);
177 
178 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
179 
180 	/* add atomic page indices to the list */
181 	new->page = page;
182 	INIT_LIST_HEAD(&new->list);
183 
184 	/* increase reference count with clean state */
185 	mutex_lock(&fi->inmem_lock);
186 	get_page(page);
187 	list_add_tail(&new->list, &fi->inmem_pages);
188 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
189 	mutex_unlock(&fi->inmem_lock);
190 
191 	trace_f2fs_register_inmem_page(page, INMEM);
192 }
193 
194 static int __revoke_inmem_pages(struct inode *inode,
195 				struct list_head *head, bool drop, bool recover)
196 {
197 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
198 	struct inmem_pages *cur, *tmp;
199 	int err = 0;
200 
201 	list_for_each_entry_safe(cur, tmp, head, list) {
202 		struct page *page = cur->page;
203 
204 		if (drop)
205 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
206 
207 		lock_page(page);
208 
209 		if (recover) {
210 			struct dnode_of_data dn;
211 			struct node_info ni;
212 
213 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
214 
215 			set_new_dnode(&dn, inode, NULL, NULL, 0);
216 			if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) {
217 				err = -EAGAIN;
218 				goto next;
219 			}
220 			get_node_info(sbi, dn.nid, &ni);
221 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
222 					cur->old_addr, ni.version, true, true);
223 			f2fs_put_dnode(&dn);
224 		}
225 next:
226 		/* we don't need to invalidate this in the sccessful status */
227 		if (drop || recover)
228 			ClearPageUptodate(page);
229 		set_page_private(page, 0);
230 		ClearPagePrivate(page);
231 		f2fs_put_page(page, 1);
232 
233 		list_del(&cur->list);
234 		kmem_cache_free(inmem_entry_slab, cur);
235 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
236 	}
237 	return err;
238 }
239 
240 void drop_inmem_pages(struct inode *inode)
241 {
242 	struct f2fs_inode_info *fi = F2FS_I(inode);
243 
244 	clear_inode_flag(F2FS_I(inode), FI_ATOMIC_FILE);
245 
246 	mutex_lock(&fi->inmem_lock);
247 	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
248 	mutex_unlock(&fi->inmem_lock);
249 }
250 
251 static int __commit_inmem_pages(struct inode *inode,
252 					struct list_head *revoke_list)
253 {
254 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
255 	struct f2fs_inode_info *fi = F2FS_I(inode);
256 	struct inmem_pages *cur, *tmp;
257 	struct f2fs_io_info fio = {
258 		.sbi = sbi,
259 		.type = DATA,
260 		.rw = WRITE_SYNC | REQ_PRIO,
261 		.encrypted_page = NULL,
262 	};
263 	bool submit_bio = false;
264 	int err = 0;
265 
266 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
267 		struct page *page = cur->page;
268 
269 		lock_page(page);
270 		if (page->mapping == inode->i_mapping) {
271 			trace_f2fs_commit_inmem_page(page, INMEM);
272 
273 			set_page_dirty(page);
274 			f2fs_wait_on_page_writeback(page, DATA, true);
275 			if (clear_page_dirty_for_io(page))
276 				inode_dec_dirty_pages(inode);
277 
278 			fio.page = page;
279 			err = do_write_data_page(&fio);
280 			if (err) {
281 				unlock_page(page);
282 				break;
283 			}
284 
285 			/* record old blkaddr for revoking */
286 			cur->old_addr = fio.old_blkaddr;
287 
288 			clear_cold_data(page);
289 			submit_bio = true;
290 		}
291 		unlock_page(page);
292 		list_move_tail(&cur->list, revoke_list);
293 	}
294 
295 	if (submit_bio)
296 		f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE);
297 
298 	if (!err)
299 		__revoke_inmem_pages(inode, revoke_list, false, false);
300 
301 	return err;
302 }
303 
304 int commit_inmem_pages(struct inode *inode)
305 {
306 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
307 	struct f2fs_inode_info *fi = F2FS_I(inode);
308 	struct list_head revoke_list;
309 	int err;
310 
311 	INIT_LIST_HEAD(&revoke_list);
312 	f2fs_balance_fs(sbi, true);
313 	f2fs_lock_op(sbi);
314 
315 	mutex_lock(&fi->inmem_lock);
316 	err = __commit_inmem_pages(inode, &revoke_list);
317 	if (err) {
318 		int ret;
319 		/*
320 		 * try to revoke all committed pages, but still we could fail
321 		 * due to no memory or other reason, if that happened, EAGAIN
322 		 * will be returned, which means in such case, transaction is
323 		 * already not integrity, caller should use journal to do the
324 		 * recovery or rewrite & commit last transaction. For other
325 		 * error number, revoking was done by filesystem itself.
326 		 */
327 		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
328 		if (ret)
329 			err = ret;
330 
331 		/* drop all uncommitted pages */
332 		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
333 	}
334 	mutex_unlock(&fi->inmem_lock);
335 
336 	f2fs_unlock_op(sbi);
337 	return err;
338 }
339 
340 /*
341  * This function balances dirty node and dentry pages.
342  * In addition, it controls garbage collection.
343  */
344 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
345 {
346 	if (!need)
347 		return;
348 	/*
349 	 * We should do GC or end up with checkpoint, if there are so many dirty
350 	 * dir/node pages without enough free segments.
351 	 */
352 	if (has_not_enough_free_secs(sbi, 0)) {
353 		mutex_lock(&sbi->gc_mutex);
354 		f2fs_gc(sbi, false);
355 	}
356 }
357 
358 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
359 {
360 	/* try to shrink extent cache when there is no enough memory */
361 	if (!available_free_memory(sbi, EXTENT_CACHE))
362 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
363 
364 	/* check the # of cached NAT entries */
365 	if (!available_free_memory(sbi, NAT_ENTRIES))
366 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
367 
368 	if (!available_free_memory(sbi, FREE_NIDS))
369 		try_to_free_nids(sbi, NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES);
370 
371 	/* checkpoint is the only way to shrink partial cached entries */
372 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
373 			!available_free_memory(sbi, INO_ENTRIES) ||
374 			excess_prefree_segs(sbi) ||
375 			excess_dirty_nats(sbi) ||
376 			(is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) {
377 		if (test_opt(sbi, DATA_FLUSH)) {
378 			struct blk_plug plug;
379 
380 			blk_start_plug(&plug);
381 			sync_dirty_inodes(sbi, FILE_INODE);
382 			blk_finish_plug(&plug);
383 		}
384 		f2fs_sync_fs(sbi->sb, true);
385 		stat_inc_bg_cp_count(sbi->stat_info);
386 	}
387 }
388 
389 static int issue_flush_thread(void *data)
390 {
391 	struct f2fs_sb_info *sbi = data;
392 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
393 	wait_queue_head_t *q = &fcc->flush_wait_queue;
394 repeat:
395 	if (kthread_should_stop())
396 		return 0;
397 
398 	if (!llist_empty(&fcc->issue_list)) {
399 		struct bio *bio;
400 		struct flush_cmd *cmd, *next;
401 		int ret;
402 
403 		bio = f2fs_bio_alloc(0);
404 
405 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
406 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
407 
408 		bio->bi_bdev = sbi->sb->s_bdev;
409 		ret = submit_bio_wait(WRITE_FLUSH, bio);
410 
411 		llist_for_each_entry_safe(cmd, next,
412 					  fcc->dispatch_list, llnode) {
413 			cmd->ret = ret;
414 			complete(&cmd->wait);
415 		}
416 		bio_put(bio);
417 		fcc->dispatch_list = NULL;
418 	}
419 
420 	wait_event_interruptible(*q,
421 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
422 	goto repeat;
423 }
424 
425 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
426 {
427 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
428 	struct flush_cmd cmd;
429 
430 	trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER),
431 					test_opt(sbi, FLUSH_MERGE));
432 
433 	if (test_opt(sbi, NOBARRIER))
434 		return 0;
435 
436 	if (!test_opt(sbi, FLUSH_MERGE)) {
437 		struct bio *bio = f2fs_bio_alloc(0);
438 		int ret;
439 
440 		bio->bi_bdev = sbi->sb->s_bdev;
441 		ret = submit_bio_wait(WRITE_FLUSH, bio);
442 		bio_put(bio);
443 		return ret;
444 	}
445 
446 	init_completion(&cmd.wait);
447 
448 	llist_add(&cmd.llnode, &fcc->issue_list);
449 
450 	if (!fcc->dispatch_list)
451 		wake_up(&fcc->flush_wait_queue);
452 
453 	wait_for_completion(&cmd.wait);
454 
455 	return cmd.ret;
456 }
457 
458 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
459 {
460 	dev_t dev = sbi->sb->s_bdev->bd_dev;
461 	struct flush_cmd_control *fcc;
462 	int err = 0;
463 
464 	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
465 	if (!fcc)
466 		return -ENOMEM;
467 	init_waitqueue_head(&fcc->flush_wait_queue);
468 	init_llist_head(&fcc->issue_list);
469 	SM_I(sbi)->cmd_control_info = fcc;
470 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
471 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
472 	if (IS_ERR(fcc->f2fs_issue_flush)) {
473 		err = PTR_ERR(fcc->f2fs_issue_flush);
474 		kfree(fcc);
475 		SM_I(sbi)->cmd_control_info = NULL;
476 		return err;
477 	}
478 
479 	return err;
480 }
481 
482 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi)
483 {
484 	struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info;
485 
486 	if (fcc && fcc->f2fs_issue_flush)
487 		kthread_stop(fcc->f2fs_issue_flush);
488 	kfree(fcc);
489 	SM_I(sbi)->cmd_control_info = NULL;
490 }
491 
492 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
493 		enum dirty_type dirty_type)
494 {
495 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
496 
497 	/* need not be added */
498 	if (IS_CURSEG(sbi, segno))
499 		return;
500 
501 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
502 		dirty_i->nr_dirty[dirty_type]++;
503 
504 	if (dirty_type == DIRTY) {
505 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
506 		enum dirty_type t = sentry->type;
507 
508 		if (unlikely(t >= DIRTY)) {
509 			f2fs_bug_on(sbi, 1);
510 			return;
511 		}
512 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
513 			dirty_i->nr_dirty[t]++;
514 	}
515 }
516 
517 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
518 		enum dirty_type dirty_type)
519 {
520 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
521 
522 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
523 		dirty_i->nr_dirty[dirty_type]--;
524 
525 	if (dirty_type == DIRTY) {
526 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
527 		enum dirty_type t = sentry->type;
528 
529 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
530 			dirty_i->nr_dirty[t]--;
531 
532 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
533 			clear_bit(GET_SECNO(sbi, segno),
534 						dirty_i->victim_secmap);
535 	}
536 }
537 
538 /*
539  * Should not occur error such as -ENOMEM.
540  * Adding dirty entry into seglist is not critical operation.
541  * If a given segment is one of current working segments, it won't be added.
542  */
543 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
544 {
545 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
546 	unsigned short valid_blocks;
547 
548 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
549 		return;
550 
551 	mutex_lock(&dirty_i->seglist_lock);
552 
553 	valid_blocks = get_valid_blocks(sbi, segno, 0);
554 
555 	if (valid_blocks == 0) {
556 		__locate_dirty_segment(sbi, segno, PRE);
557 		__remove_dirty_segment(sbi, segno, DIRTY);
558 	} else if (valid_blocks < sbi->blocks_per_seg) {
559 		__locate_dirty_segment(sbi, segno, DIRTY);
560 	} else {
561 		/* Recovery routine with SSR needs this */
562 		__remove_dirty_segment(sbi, segno, DIRTY);
563 	}
564 
565 	mutex_unlock(&dirty_i->seglist_lock);
566 }
567 
568 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
569 				block_t blkstart, block_t blklen)
570 {
571 	sector_t start = SECTOR_FROM_BLOCK(blkstart);
572 	sector_t len = SECTOR_FROM_BLOCK(blklen);
573 	struct seg_entry *se;
574 	unsigned int offset;
575 	block_t i;
576 
577 	for (i = blkstart; i < blkstart + blklen; i++) {
578 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
579 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
580 
581 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
582 			sbi->discard_blks--;
583 	}
584 	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
585 	return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
586 }
587 
588 bool discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr)
589 {
590 	int err = -EOPNOTSUPP;
591 
592 	if (test_opt(sbi, DISCARD)) {
593 		struct seg_entry *se = get_seg_entry(sbi,
594 				GET_SEGNO(sbi, blkaddr));
595 		unsigned int offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
596 
597 		if (f2fs_test_bit(offset, se->discard_map))
598 			return false;
599 
600 		err = f2fs_issue_discard(sbi, blkaddr, 1);
601 	}
602 
603 	if (err) {
604 		update_meta_page(sbi, NULL, blkaddr);
605 		return true;
606 	}
607 	return false;
608 }
609 
610 static void __add_discard_entry(struct f2fs_sb_info *sbi,
611 		struct cp_control *cpc, struct seg_entry *se,
612 		unsigned int start, unsigned int end)
613 {
614 	struct list_head *head = &SM_I(sbi)->discard_list;
615 	struct discard_entry *new, *last;
616 
617 	if (!list_empty(head)) {
618 		last = list_last_entry(head, struct discard_entry, list);
619 		if (START_BLOCK(sbi, cpc->trim_start) + start ==
620 						last->blkaddr + last->len) {
621 			last->len += end - start;
622 			goto done;
623 		}
624 	}
625 
626 	new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
627 	INIT_LIST_HEAD(&new->list);
628 	new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start;
629 	new->len = end - start;
630 	list_add_tail(&new->list, head);
631 done:
632 	SM_I(sbi)->nr_discards += end - start;
633 }
634 
635 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc)
636 {
637 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
638 	int max_blocks = sbi->blocks_per_seg;
639 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
640 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
641 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
642 	unsigned long *discard_map = (unsigned long *)se->discard_map;
643 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
644 	unsigned int start = 0, end = -1;
645 	bool force = (cpc->reason == CP_DISCARD);
646 	int i;
647 
648 	if (se->valid_blocks == max_blocks)
649 		return;
650 
651 	if (!force) {
652 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
653 		    SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)
654 			return;
655 	}
656 
657 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
658 	for (i = 0; i < entries; i++)
659 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
660 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
661 
662 	while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
663 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
664 		if (start >= max_blocks)
665 			break;
666 
667 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
668 		__add_discard_entry(sbi, cpc, se, start, end);
669 	}
670 }
671 
672 void release_discard_addrs(struct f2fs_sb_info *sbi)
673 {
674 	struct list_head *head = &(SM_I(sbi)->discard_list);
675 	struct discard_entry *entry, *this;
676 
677 	/* drop caches */
678 	list_for_each_entry_safe(entry, this, head, list) {
679 		list_del(&entry->list);
680 		kmem_cache_free(discard_entry_slab, entry);
681 	}
682 }
683 
684 /*
685  * Should call clear_prefree_segments after checkpoint is done.
686  */
687 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
688 {
689 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
690 	unsigned int segno;
691 
692 	mutex_lock(&dirty_i->seglist_lock);
693 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
694 		__set_test_and_free(sbi, segno);
695 	mutex_unlock(&dirty_i->seglist_lock);
696 }
697 
698 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
699 {
700 	struct list_head *head = &(SM_I(sbi)->discard_list);
701 	struct discard_entry *entry, *this;
702 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
703 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
704 	unsigned int start = 0, end = -1;
705 
706 	mutex_lock(&dirty_i->seglist_lock);
707 
708 	while (1) {
709 		int i;
710 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
711 		if (start >= MAIN_SEGS(sbi))
712 			break;
713 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
714 								start + 1);
715 
716 		for (i = start; i < end; i++)
717 			clear_bit(i, prefree_map);
718 
719 		dirty_i->nr_dirty[PRE] -= end - start;
720 
721 		if (!test_opt(sbi, DISCARD))
722 			continue;
723 
724 		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
725 				(end - start) << sbi->log_blocks_per_seg);
726 	}
727 	mutex_unlock(&dirty_i->seglist_lock);
728 
729 	/* send small discards */
730 	list_for_each_entry_safe(entry, this, head, list) {
731 		if (cpc->reason == CP_DISCARD && entry->len < cpc->trim_minlen)
732 			goto skip;
733 		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
734 		cpc->trimmed += entry->len;
735 skip:
736 		list_del(&entry->list);
737 		SM_I(sbi)->nr_discards -= entry->len;
738 		kmem_cache_free(discard_entry_slab, entry);
739 	}
740 }
741 
742 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
743 {
744 	struct sit_info *sit_i = SIT_I(sbi);
745 
746 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
747 		sit_i->dirty_sentries++;
748 		return false;
749 	}
750 
751 	return true;
752 }
753 
754 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
755 					unsigned int segno, int modified)
756 {
757 	struct seg_entry *se = get_seg_entry(sbi, segno);
758 	se->type = type;
759 	if (modified)
760 		__mark_sit_entry_dirty(sbi, segno);
761 }
762 
763 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
764 {
765 	struct seg_entry *se;
766 	unsigned int segno, offset;
767 	long int new_vblocks;
768 
769 	segno = GET_SEGNO(sbi, blkaddr);
770 
771 	se = get_seg_entry(sbi, segno);
772 	new_vblocks = se->valid_blocks + del;
773 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
774 
775 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
776 				(new_vblocks > sbi->blocks_per_seg)));
777 
778 	se->valid_blocks = new_vblocks;
779 	se->mtime = get_mtime(sbi);
780 	SIT_I(sbi)->max_mtime = se->mtime;
781 
782 	/* Update valid block bitmap */
783 	if (del > 0) {
784 		if (f2fs_test_and_set_bit(offset, se->cur_valid_map))
785 			f2fs_bug_on(sbi, 1);
786 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
787 			sbi->discard_blks--;
788 	} else {
789 		if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map))
790 			f2fs_bug_on(sbi, 1);
791 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
792 			sbi->discard_blks++;
793 	}
794 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
795 		se->ckpt_valid_blocks += del;
796 
797 	__mark_sit_entry_dirty(sbi, segno);
798 
799 	/* update total number of valid blocks to be written in ckpt area */
800 	SIT_I(sbi)->written_valid_blocks += del;
801 
802 	if (sbi->segs_per_sec > 1)
803 		get_sec_entry(sbi, segno)->valid_blocks += del;
804 }
805 
806 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
807 {
808 	update_sit_entry(sbi, new, 1);
809 	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
810 		update_sit_entry(sbi, old, -1);
811 
812 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
813 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
814 }
815 
816 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
817 {
818 	unsigned int segno = GET_SEGNO(sbi, addr);
819 	struct sit_info *sit_i = SIT_I(sbi);
820 
821 	f2fs_bug_on(sbi, addr == NULL_ADDR);
822 	if (addr == NEW_ADDR)
823 		return;
824 
825 	/* add it into sit main buffer */
826 	mutex_lock(&sit_i->sentry_lock);
827 
828 	update_sit_entry(sbi, addr, -1);
829 
830 	/* add it into dirty seglist */
831 	locate_dirty_segment(sbi, segno);
832 
833 	mutex_unlock(&sit_i->sentry_lock);
834 }
835 
836 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
837 {
838 	struct sit_info *sit_i = SIT_I(sbi);
839 	unsigned int segno, offset;
840 	struct seg_entry *se;
841 	bool is_cp = false;
842 
843 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
844 		return true;
845 
846 	mutex_lock(&sit_i->sentry_lock);
847 
848 	segno = GET_SEGNO(sbi, blkaddr);
849 	se = get_seg_entry(sbi, segno);
850 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
851 
852 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
853 		is_cp = true;
854 
855 	mutex_unlock(&sit_i->sentry_lock);
856 
857 	return is_cp;
858 }
859 
860 /*
861  * This function should be resided under the curseg_mutex lock
862  */
863 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
864 					struct f2fs_summary *sum)
865 {
866 	struct curseg_info *curseg = CURSEG_I(sbi, type);
867 	void *addr = curseg->sum_blk;
868 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
869 	memcpy(addr, sum, sizeof(struct f2fs_summary));
870 }
871 
872 /*
873  * Calculate the number of current summary pages for writing
874  */
875 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
876 {
877 	int valid_sum_count = 0;
878 	int i, sum_in_page;
879 
880 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
881 		if (sbi->ckpt->alloc_type[i] == SSR)
882 			valid_sum_count += sbi->blocks_per_seg;
883 		else {
884 			if (for_ra)
885 				valid_sum_count += le16_to_cpu(
886 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
887 			else
888 				valid_sum_count += curseg_blkoff(sbi, i);
889 		}
890 	}
891 
892 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
893 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
894 	if (valid_sum_count <= sum_in_page)
895 		return 1;
896 	else if ((valid_sum_count - sum_in_page) <=
897 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
898 		return 2;
899 	return 3;
900 }
901 
902 /*
903  * Caller should put this summary page
904  */
905 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
906 {
907 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
908 }
909 
910 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
911 {
912 	struct page *page = grab_meta_page(sbi, blk_addr);
913 	void *dst = page_address(page);
914 
915 	if (src)
916 		memcpy(dst, src, PAGE_SIZE);
917 	else
918 		memset(dst, 0, PAGE_SIZE);
919 	set_page_dirty(page);
920 	f2fs_put_page(page, 1);
921 }
922 
923 static void write_sum_page(struct f2fs_sb_info *sbi,
924 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
925 {
926 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
927 }
928 
929 static void write_current_sum_page(struct f2fs_sb_info *sbi,
930 						int type, block_t blk_addr)
931 {
932 	struct curseg_info *curseg = CURSEG_I(sbi, type);
933 	struct page *page = grab_meta_page(sbi, blk_addr);
934 	struct f2fs_summary_block *src = curseg->sum_blk;
935 	struct f2fs_summary_block *dst;
936 
937 	dst = (struct f2fs_summary_block *)page_address(page);
938 
939 	mutex_lock(&curseg->curseg_mutex);
940 
941 	down_read(&curseg->journal_rwsem);
942 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
943 	up_read(&curseg->journal_rwsem);
944 
945 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
946 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
947 
948 	mutex_unlock(&curseg->curseg_mutex);
949 
950 	set_page_dirty(page);
951 	f2fs_put_page(page, 1);
952 }
953 
954 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
955 {
956 	struct curseg_info *curseg = CURSEG_I(sbi, type);
957 	unsigned int segno = curseg->segno + 1;
958 	struct free_segmap_info *free_i = FREE_I(sbi);
959 
960 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
961 		return !test_bit(segno, free_i->free_segmap);
962 	return 0;
963 }
964 
965 /*
966  * Find a new segment from the free segments bitmap to right order
967  * This function should be returned with success, otherwise BUG
968  */
969 static void get_new_segment(struct f2fs_sb_info *sbi,
970 			unsigned int *newseg, bool new_sec, int dir)
971 {
972 	struct free_segmap_info *free_i = FREE_I(sbi);
973 	unsigned int segno, secno, zoneno;
974 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
975 	unsigned int hint = *newseg / sbi->segs_per_sec;
976 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
977 	unsigned int left_start = hint;
978 	bool init = true;
979 	int go_left = 0;
980 	int i;
981 
982 	spin_lock(&free_i->segmap_lock);
983 
984 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
985 		segno = find_next_zero_bit(free_i->free_segmap,
986 				(hint + 1) * sbi->segs_per_sec, *newseg + 1);
987 		if (segno < (hint + 1) * sbi->segs_per_sec)
988 			goto got_it;
989 	}
990 find_other_zone:
991 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
992 	if (secno >= MAIN_SECS(sbi)) {
993 		if (dir == ALLOC_RIGHT) {
994 			secno = find_next_zero_bit(free_i->free_secmap,
995 							MAIN_SECS(sbi), 0);
996 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
997 		} else {
998 			go_left = 1;
999 			left_start = hint - 1;
1000 		}
1001 	}
1002 	if (go_left == 0)
1003 		goto skip_left;
1004 
1005 	while (test_bit(left_start, free_i->free_secmap)) {
1006 		if (left_start > 0) {
1007 			left_start--;
1008 			continue;
1009 		}
1010 		left_start = find_next_zero_bit(free_i->free_secmap,
1011 							MAIN_SECS(sbi), 0);
1012 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1013 		break;
1014 	}
1015 	secno = left_start;
1016 skip_left:
1017 	hint = secno;
1018 	segno = secno * sbi->segs_per_sec;
1019 	zoneno = secno / sbi->secs_per_zone;
1020 
1021 	/* give up on finding another zone */
1022 	if (!init)
1023 		goto got_it;
1024 	if (sbi->secs_per_zone == 1)
1025 		goto got_it;
1026 	if (zoneno == old_zoneno)
1027 		goto got_it;
1028 	if (dir == ALLOC_LEFT) {
1029 		if (!go_left && zoneno + 1 >= total_zones)
1030 			goto got_it;
1031 		if (go_left && zoneno == 0)
1032 			goto got_it;
1033 	}
1034 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1035 		if (CURSEG_I(sbi, i)->zone == zoneno)
1036 			break;
1037 
1038 	if (i < NR_CURSEG_TYPE) {
1039 		/* zone is in user, try another */
1040 		if (go_left)
1041 			hint = zoneno * sbi->secs_per_zone - 1;
1042 		else if (zoneno + 1 >= total_zones)
1043 			hint = 0;
1044 		else
1045 			hint = (zoneno + 1) * sbi->secs_per_zone;
1046 		init = false;
1047 		goto find_other_zone;
1048 	}
1049 got_it:
1050 	/* set it as dirty segment in free segmap */
1051 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1052 	__set_inuse(sbi, segno);
1053 	*newseg = segno;
1054 	spin_unlock(&free_i->segmap_lock);
1055 }
1056 
1057 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1058 {
1059 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1060 	struct summary_footer *sum_footer;
1061 
1062 	curseg->segno = curseg->next_segno;
1063 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
1064 	curseg->next_blkoff = 0;
1065 	curseg->next_segno = NULL_SEGNO;
1066 
1067 	sum_footer = &(curseg->sum_blk->footer);
1068 	memset(sum_footer, 0, sizeof(struct summary_footer));
1069 	if (IS_DATASEG(type))
1070 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1071 	if (IS_NODESEG(type))
1072 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1073 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
1074 }
1075 
1076 /*
1077  * Allocate a current working segment.
1078  * This function always allocates a free segment in LFS manner.
1079  */
1080 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
1081 {
1082 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1083 	unsigned int segno = curseg->segno;
1084 	int dir = ALLOC_LEFT;
1085 
1086 	write_sum_page(sbi, curseg->sum_blk,
1087 				GET_SUM_BLOCK(sbi, segno));
1088 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
1089 		dir = ALLOC_RIGHT;
1090 
1091 	if (test_opt(sbi, NOHEAP))
1092 		dir = ALLOC_RIGHT;
1093 
1094 	get_new_segment(sbi, &segno, new_sec, dir);
1095 	curseg->next_segno = segno;
1096 	reset_curseg(sbi, type, 1);
1097 	curseg->alloc_type = LFS;
1098 }
1099 
1100 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
1101 			struct curseg_info *seg, block_t start)
1102 {
1103 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
1104 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1105 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
1106 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1107 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1108 	int i, pos;
1109 
1110 	for (i = 0; i < entries; i++)
1111 		target_map[i] = ckpt_map[i] | cur_map[i];
1112 
1113 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
1114 
1115 	seg->next_blkoff = pos;
1116 }
1117 
1118 /*
1119  * If a segment is written by LFS manner, next block offset is just obtained
1120  * by increasing the current block offset. However, if a segment is written by
1121  * SSR manner, next block offset obtained by calling __next_free_blkoff
1122  */
1123 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
1124 				struct curseg_info *seg)
1125 {
1126 	if (seg->alloc_type == SSR)
1127 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
1128 	else
1129 		seg->next_blkoff++;
1130 }
1131 
1132 /*
1133  * This function always allocates a used segment(from dirty seglist) by SSR
1134  * manner, so it should recover the existing segment information of valid blocks
1135  */
1136 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
1137 {
1138 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1139 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1140 	unsigned int new_segno = curseg->next_segno;
1141 	struct f2fs_summary_block *sum_node;
1142 	struct page *sum_page;
1143 
1144 	write_sum_page(sbi, curseg->sum_blk,
1145 				GET_SUM_BLOCK(sbi, curseg->segno));
1146 	__set_test_and_inuse(sbi, new_segno);
1147 
1148 	mutex_lock(&dirty_i->seglist_lock);
1149 	__remove_dirty_segment(sbi, new_segno, PRE);
1150 	__remove_dirty_segment(sbi, new_segno, DIRTY);
1151 	mutex_unlock(&dirty_i->seglist_lock);
1152 
1153 	reset_curseg(sbi, type, 1);
1154 	curseg->alloc_type = SSR;
1155 	__next_free_blkoff(sbi, curseg, 0);
1156 
1157 	if (reuse) {
1158 		sum_page = get_sum_page(sbi, new_segno);
1159 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
1160 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
1161 		f2fs_put_page(sum_page, 1);
1162 	}
1163 }
1164 
1165 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
1166 {
1167 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1168 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
1169 
1170 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
1171 		return v_ops->get_victim(sbi,
1172 				&(curseg)->next_segno, BG_GC, type, SSR);
1173 
1174 	/* For data segments, let's do SSR more intensively */
1175 	for (; type >= CURSEG_HOT_DATA; type--)
1176 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
1177 						BG_GC, type, SSR))
1178 			return 1;
1179 	return 0;
1180 }
1181 
1182 /*
1183  * flush out current segment and replace it with new segment
1184  * This function should be returned with success, otherwise BUG
1185  */
1186 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
1187 						int type, bool force)
1188 {
1189 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1190 
1191 	if (force)
1192 		new_curseg(sbi, type, true);
1193 	else if (type == CURSEG_WARM_NODE)
1194 		new_curseg(sbi, type, false);
1195 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
1196 		new_curseg(sbi, type, false);
1197 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
1198 		change_curseg(sbi, type, true);
1199 	else
1200 		new_curseg(sbi, type, false);
1201 
1202 	stat_inc_seg_type(sbi, curseg);
1203 }
1204 
1205 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type)
1206 {
1207 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1208 	unsigned int old_segno;
1209 
1210 	old_segno = curseg->segno;
1211 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
1212 	locate_dirty_segment(sbi, old_segno);
1213 }
1214 
1215 void allocate_new_segments(struct f2fs_sb_info *sbi)
1216 {
1217 	int i;
1218 
1219 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
1220 		__allocate_new_segments(sbi, i);
1221 }
1222 
1223 static const struct segment_allocation default_salloc_ops = {
1224 	.allocate_segment = allocate_segment_by_default,
1225 };
1226 
1227 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
1228 {
1229 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
1230 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
1231 	unsigned int start_segno, end_segno;
1232 	struct cp_control cpc;
1233 	int err = 0;
1234 
1235 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
1236 		return -EINVAL;
1237 
1238 	cpc.trimmed = 0;
1239 	if (end <= MAIN_BLKADDR(sbi))
1240 		goto out;
1241 
1242 	/* start/end segment number in main_area */
1243 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
1244 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
1245 						GET_SEGNO(sbi, end);
1246 	cpc.reason = CP_DISCARD;
1247 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
1248 
1249 	/* do checkpoint to issue discard commands safely */
1250 	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
1251 		cpc.trim_start = start_segno;
1252 
1253 		if (sbi->discard_blks == 0)
1254 			break;
1255 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
1256 			cpc.trim_end = end_segno;
1257 		else
1258 			cpc.trim_end = min_t(unsigned int,
1259 				rounddown(start_segno +
1260 				BATCHED_TRIM_SEGMENTS(sbi),
1261 				sbi->segs_per_sec) - 1, end_segno);
1262 
1263 		mutex_lock(&sbi->gc_mutex);
1264 		err = write_checkpoint(sbi, &cpc);
1265 		mutex_unlock(&sbi->gc_mutex);
1266 	}
1267 out:
1268 	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
1269 	return err;
1270 }
1271 
1272 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
1273 {
1274 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1275 	if (curseg->next_blkoff < sbi->blocks_per_seg)
1276 		return true;
1277 	return false;
1278 }
1279 
1280 static int __get_segment_type_2(struct page *page, enum page_type p_type)
1281 {
1282 	if (p_type == DATA)
1283 		return CURSEG_HOT_DATA;
1284 	else
1285 		return CURSEG_HOT_NODE;
1286 }
1287 
1288 static int __get_segment_type_4(struct page *page, enum page_type p_type)
1289 {
1290 	if (p_type == DATA) {
1291 		struct inode *inode = page->mapping->host;
1292 
1293 		if (S_ISDIR(inode->i_mode))
1294 			return CURSEG_HOT_DATA;
1295 		else
1296 			return CURSEG_COLD_DATA;
1297 	} else {
1298 		if (IS_DNODE(page) && is_cold_node(page))
1299 			return CURSEG_WARM_NODE;
1300 		else
1301 			return CURSEG_COLD_NODE;
1302 	}
1303 }
1304 
1305 static int __get_segment_type_6(struct page *page, enum page_type p_type)
1306 {
1307 	if (p_type == DATA) {
1308 		struct inode *inode = page->mapping->host;
1309 
1310 		if (S_ISDIR(inode->i_mode))
1311 			return CURSEG_HOT_DATA;
1312 		else if (is_cold_data(page) || file_is_cold(inode))
1313 			return CURSEG_COLD_DATA;
1314 		else
1315 			return CURSEG_WARM_DATA;
1316 	} else {
1317 		if (IS_DNODE(page))
1318 			return is_cold_node(page) ? CURSEG_WARM_NODE :
1319 						CURSEG_HOT_NODE;
1320 		else
1321 			return CURSEG_COLD_NODE;
1322 	}
1323 }
1324 
1325 static int __get_segment_type(struct page *page, enum page_type p_type)
1326 {
1327 	switch (F2FS_P_SB(page)->active_logs) {
1328 	case 2:
1329 		return __get_segment_type_2(page, p_type);
1330 	case 4:
1331 		return __get_segment_type_4(page, p_type);
1332 	}
1333 	/* NR_CURSEG_TYPE(6) logs by default */
1334 	f2fs_bug_on(F2FS_P_SB(page),
1335 		F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE);
1336 	return __get_segment_type_6(page, p_type);
1337 }
1338 
1339 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
1340 		block_t old_blkaddr, block_t *new_blkaddr,
1341 		struct f2fs_summary *sum, int type)
1342 {
1343 	struct sit_info *sit_i = SIT_I(sbi);
1344 	struct curseg_info *curseg;
1345 	bool direct_io = (type == CURSEG_DIRECT_IO);
1346 
1347 	type = direct_io ? CURSEG_WARM_DATA : type;
1348 
1349 	curseg = CURSEG_I(sbi, type);
1350 
1351 	mutex_lock(&curseg->curseg_mutex);
1352 	mutex_lock(&sit_i->sentry_lock);
1353 
1354 	/* direct_io'ed data is aligned to the segment for better performance */
1355 	if (direct_io && curseg->next_blkoff &&
1356 				!has_not_enough_free_secs(sbi, 0))
1357 		__allocate_new_segments(sbi, type);
1358 
1359 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
1360 
1361 	/*
1362 	 * __add_sum_entry should be resided under the curseg_mutex
1363 	 * because, this function updates a summary entry in the
1364 	 * current summary block.
1365 	 */
1366 	__add_sum_entry(sbi, type, sum);
1367 
1368 	__refresh_next_blkoff(sbi, curseg);
1369 
1370 	stat_inc_block_count(sbi, curseg);
1371 
1372 	if (!__has_curseg_space(sbi, type))
1373 		sit_i->s_ops->allocate_segment(sbi, type, false);
1374 	/*
1375 	 * SIT information should be updated before segment allocation,
1376 	 * since SSR needs latest valid block information.
1377 	 */
1378 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
1379 
1380 	mutex_unlock(&sit_i->sentry_lock);
1381 
1382 	if (page && IS_NODESEG(type))
1383 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
1384 
1385 	mutex_unlock(&curseg->curseg_mutex);
1386 }
1387 
1388 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
1389 {
1390 	int type = __get_segment_type(fio->page, fio->type);
1391 
1392 	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
1393 					&fio->new_blkaddr, sum, type);
1394 
1395 	/* writeout dirty page into bdev */
1396 	f2fs_submit_page_mbio(fio);
1397 }
1398 
1399 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
1400 {
1401 	struct f2fs_io_info fio = {
1402 		.sbi = sbi,
1403 		.type = META,
1404 		.rw = WRITE_SYNC | REQ_META | REQ_PRIO,
1405 		.old_blkaddr = page->index,
1406 		.new_blkaddr = page->index,
1407 		.page = page,
1408 		.encrypted_page = NULL,
1409 	};
1410 
1411 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
1412 		fio.rw &= ~REQ_META;
1413 
1414 	set_page_writeback(page);
1415 	f2fs_submit_page_mbio(&fio);
1416 }
1417 
1418 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
1419 {
1420 	struct f2fs_summary sum;
1421 
1422 	set_summary(&sum, nid, 0, 0);
1423 	do_write_page(&sum, fio);
1424 }
1425 
1426 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
1427 {
1428 	struct f2fs_sb_info *sbi = fio->sbi;
1429 	struct f2fs_summary sum;
1430 	struct node_info ni;
1431 
1432 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
1433 	get_node_info(sbi, dn->nid, &ni);
1434 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1435 	do_write_page(&sum, fio);
1436 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
1437 }
1438 
1439 void rewrite_data_page(struct f2fs_io_info *fio)
1440 {
1441 	fio->new_blkaddr = fio->old_blkaddr;
1442 	stat_inc_inplace_blocks(fio->sbi);
1443 	f2fs_submit_page_mbio(fio);
1444 }
1445 
1446 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
1447 				block_t old_blkaddr, block_t new_blkaddr,
1448 				bool recover_curseg, bool recover_newaddr)
1449 {
1450 	struct sit_info *sit_i = SIT_I(sbi);
1451 	struct curseg_info *curseg;
1452 	unsigned int segno, old_cursegno;
1453 	struct seg_entry *se;
1454 	int type;
1455 	unsigned short old_blkoff;
1456 
1457 	segno = GET_SEGNO(sbi, new_blkaddr);
1458 	se = get_seg_entry(sbi, segno);
1459 	type = se->type;
1460 
1461 	if (!recover_curseg) {
1462 		/* for recovery flow */
1463 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
1464 			if (old_blkaddr == NULL_ADDR)
1465 				type = CURSEG_COLD_DATA;
1466 			else
1467 				type = CURSEG_WARM_DATA;
1468 		}
1469 	} else {
1470 		if (!IS_CURSEG(sbi, segno))
1471 			type = CURSEG_WARM_DATA;
1472 	}
1473 
1474 	curseg = CURSEG_I(sbi, type);
1475 
1476 	mutex_lock(&curseg->curseg_mutex);
1477 	mutex_lock(&sit_i->sentry_lock);
1478 
1479 	old_cursegno = curseg->segno;
1480 	old_blkoff = curseg->next_blkoff;
1481 
1482 	/* change the current segment */
1483 	if (segno != curseg->segno) {
1484 		curseg->next_segno = segno;
1485 		change_curseg(sbi, type, true);
1486 	}
1487 
1488 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
1489 	__add_sum_entry(sbi, type, sum);
1490 
1491 	if (!recover_curseg || recover_newaddr)
1492 		update_sit_entry(sbi, new_blkaddr, 1);
1493 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
1494 		update_sit_entry(sbi, old_blkaddr, -1);
1495 
1496 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1497 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
1498 
1499 	locate_dirty_segment(sbi, old_cursegno);
1500 
1501 	if (recover_curseg) {
1502 		if (old_cursegno != curseg->segno) {
1503 			curseg->next_segno = old_cursegno;
1504 			change_curseg(sbi, type, true);
1505 		}
1506 		curseg->next_blkoff = old_blkoff;
1507 	}
1508 
1509 	mutex_unlock(&sit_i->sentry_lock);
1510 	mutex_unlock(&curseg->curseg_mutex);
1511 }
1512 
1513 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
1514 				block_t old_addr, block_t new_addr,
1515 				unsigned char version, bool recover_curseg,
1516 				bool recover_newaddr)
1517 {
1518 	struct f2fs_summary sum;
1519 
1520 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
1521 
1522 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
1523 					recover_curseg, recover_newaddr);
1524 
1525 	f2fs_update_data_blkaddr(dn, new_addr);
1526 }
1527 
1528 void f2fs_wait_on_page_writeback(struct page *page,
1529 				enum page_type type, bool ordered)
1530 {
1531 	if (PageWriteback(page)) {
1532 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1533 
1534 		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE);
1535 		if (ordered)
1536 			wait_on_page_writeback(page);
1537 		else
1538 			wait_for_stable_page(page);
1539 	}
1540 }
1541 
1542 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi,
1543 							block_t blkaddr)
1544 {
1545 	struct page *cpage;
1546 
1547 	if (blkaddr == NEW_ADDR)
1548 		return;
1549 
1550 	f2fs_bug_on(sbi, blkaddr == NULL_ADDR);
1551 
1552 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
1553 	if (cpage) {
1554 		f2fs_wait_on_page_writeback(cpage, DATA, true);
1555 		f2fs_put_page(cpage, 1);
1556 	}
1557 }
1558 
1559 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1560 {
1561 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1562 	struct curseg_info *seg_i;
1563 	unsigned char *kaddr;
1564 	struct page *page;
1565 	block_t start;
1566 	int i, j, offset;
1567 
1568 	start = start_sum_block(sbi);
1569 
1570 	page = get_meta_page(sbi, start++);
1571 	kaddr = (unsigned char *)page_address(page);
1572 
1573 	/* Step 1: restore nat cache */
1574 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1575 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
1576 
1577 	/* Step 2: restore sit cache */
1578 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1579 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
1580 	offset = 2 * SUM_JOURNAL_SIZE;
1581 
1582 	/* Step 3: restore summary entries */
1583 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1584 		unsigned short blk_off;
1585 		unsigned int segno;
1586 
1587 		seg_i = CURSEG_I(sbi, i);
1588 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1589 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1590 		seg_i->next_segno = segno;
1591 		reset_curseg(sbi, i, 0);
1592 		seg_i->alloc_type = ckpt->alloc_type[i];
1593 		seg_i->next_blkoff = blk_off;
1594 
1595 		if (seg_i->alloc_type == SSR)
1596 			blk_off = sbi->blocks_per_seg;
1597 
1598 		for (j = 0; j < blk_off; j++) {
1599 			struct f2fs_summary *s;
1600 			s = (struct f2fs_summary *)(kaddr + offset);
1601 			seg_i->sum_blk->entries[j] = *s;
1602 			offset += SUMMARY_SIZE;
1603 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
1604 						SUM_FOOTER_SIZE)
1605 				continue;
1606 
1607 			f2fs_put_page(page, 1);
1608 			page = NULL;
1609 
1610 			page = get_meta_page(sbi, start++);
1611 			kaddr = (unsigned char *)page_address(page);
1612 			offset = 0;
1613 		}
1614 	}
1615 	f2fs_put_page(page, 1);
1616 	return 0;
1617 }
1618 
1619 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1620 {
1621 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1622 	struct f2fs_summary_block *sum;
1623 	struct curseg_info *curseg;
1624 	struct page *new;
1625 	unsigned short blk_off;
1626 	unsigned int segno = 0;
1627 	block_t blk_addr = 0;
1628 
1629 	/* get segment number and block addr */
1630 	if (IS_DATASEG(type)) {
1631 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1632 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1633 							CURSEG_HOT_DATA]);
1634 		if (__exist_node_summaries(sbi))
1635 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1636 		else
1637 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1638 	} else {
1639 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1640 							CURSEG_HOT_NODE]);
1641 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1642 							CURSEG_HOT_NODE]);
1643 		if (__exist_node_summaries(sbi))
1644 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1645 							type - CURSEG_HOT_NODE);
1646 		else
1647 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1648 	}
1649 
1650 	new = get_meta_page(sbi, blk_addr);
1651 	sum = (struct f2fs_summary_block *)page_address(new);
1652 
1653 	if (IS_NODESEG(type)) {
1654 		if (__exist_node_summaries(sbi)) {
1655 			struct f2fs_summary *ns = &sum->entries[0];
1656 			int i;
1657 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1658 				ns->version = 0;
1659 				ns->ofs_in_node = 0;
1660 			}
1661 		} else {
1662 			int err;
1663 
1664 			err = restore_node_summary(sbi, segno, sum);
1665 			if (err) {
1666 				f2fs_put_page(new, 1);
1667 				return err;
1668 			}
1669 		}
1670 	}
1671 
1672 	/* set uncompleted segment to curseg */
1673 	curseg = CURSEG_I(sbi, type);
1674 	mutex_lock(&curseg->curseg_mutex);
1675 
1676 	/* update journal info */
1677 	down_write(&curseg->journal_rwsem);
1678 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
1679 	up_write(&curseg->journal_rwsem);
1680 
1681 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
1682 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
1683 	curseg->next_segno = segno;
1684 	reset_curseg(sbi, type, 0);
1685 	curseg->alloc_type = ckpt->alloc_type[type];
1686 	curseg->next_blkoff = blk_off;
1687 	mutex_unlock(&curseg->curseg_mutex);
1688 	f2fs_put_page(new, 1);
1689 	return 0;
1690 }
1691 
1692 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1693 {
1694 	int type = CURSEG_HOT_DATA;
1695 	int err;
1696 
1697 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1698 		int npages = npages_for_summary_flush(sbi, true);
1699 
1700 		if (npages >= 2)
1701 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
1702 							META_CP, true);
1703 
1704 		/* restore for compacted data summary */
1705 		if (read_compacted_summaries(sbi))
1706 			return -EINVAL;
1707 		type = CURSEG_HOT_NODE;
1708 	}
1709 
1710 	if (__exist_node_summaries(sbi))
1711 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
1712 					NR_CURSEG_TYPE - type, META_CP, true);
1713 
1714 	for (; type <= CURSEG_COLD_NODE; type++) {
1715 		err = read_normal_summaries(sbi, type);
1716 		if (err)
1717 			return err;
1718 	}
1719 
1720 	return 0;
1721 }
1722 
1723 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1724 {
1725 	struct page *page;
1726 	unsigned char *kaddr;
1727 	struct f2fs_summary *summary;
1728 	struct curseg_info *seg_i;
1729 	int written_size = 0;
1730 	int i, j;
1731 
1732 	page = grab_meta_page(sbi, blkaddr++);
1733 	kaddr = (unsigned char *)page_address(page);
1734 
1735 	/* Step 1: write nat cache */
1736 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1737 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
1738 	written_size += SUM_JOURNAL_SIZE;
1739 
1740 	/* Step 2: write sit cache */
1741 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1742 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
1743 	written_size += SUM_JOURNAL_SIZE;
1744 
1745 	/* Step 3: write summary entries */
1746 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1747 		unsigned short blkoff;
1748 		seg_i = CURSEG_I(sbi, i);
1749 		if (sbi->ckpt->alloc_type[i] == SSR)
1750 			blkoff = sbi->blocks_per_seg;
1751 		else
1752 			blkoff = curseg_blkoff(sbi, i);
1753 
1754 		for (j = 0; j < blkoff; j++) {
1755 			if (!page) {
1756 				page = grab_meta_page(sbi, blkaddr++);
1757 				kaddr = (unsigned char *)page_address(page);
1758 				written_size = 0;
1759 			}
1760 			summary = (struct f2fs_summary *)(kaddr + written_size);
1761 			*summary = seg_i->sum_blk->entries[j];
1762 			written_size += SUMMARY_SIZE;
1763 
1764 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
1765 							SUM_FOOTER_SIZE)
1766 				continue;
1767 
1768 			set_page_dirty(page);
1769 			f2fs_put_page(page, 1);
1770 			page = NULL;
1771 		}
1772 	}
1773 	if (page) {
1774 		set_page_dirty(page);
1775 		f2fs_put_page(page, 1);
1776 	}
1777 }
1778 
1779 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1780 					block_t blkaddr, int type)
1781 {
1782 	int i, end;
1783 	if (IS_DATASEG(type))
1784 		end = type + NR_CURSEG_DATA_TYPE;
1785 	else
1786 		end = type + NR_CURSEG_NODE_TYPE;
1787 
1788 	for (i = type; i < end; i++)
1789 		write_current_sum_page(sbi, i, blkaddr + (i - type));
1790 }
1791 
1792 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1793 {
1794 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1795 		write_compacted_summaries(sbi, start_blk);
1796 	else
1797 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1798 }
1799 
1800 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1801 {
1802 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1803 }
1804 
1805 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
1806 					unsigned int val, int alloc)
1807 {
1808 	int i;
1809 
1810 	if (type == NAT_JOURNAL) {
1811 		for (i = 0; i < nats_in_cursum(journal); i++) {
1812 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
1813 				return i;
1814 		}
1815 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
1816 			return update_nats_in_cursum(journal, 1);
1817 	} else if (type == SIT_JOURNAL) {
1818 		for (i = 0; i < sits_in_cursum(journal); i++)
1819 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
1820 				return i;
1821 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
1822 			return update_sits_in_cursum(journal, 1);
1823 	}
1824 	return -1;
1825 }
1826 
1827 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1828 					unsigned int segno)
1829 {
1830 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
1831 }
1832 
1833 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1834 					unsigned int start)
1835 {
1836 	struct sit_info *sit_i = SIT_I(sbi);
1837 	struct page *src_page, *dst_page;
1838 	pgoff_t src_off, dst_off;
1839 	void *src_addr, *dst_addr;
1840 
1841 	src_off = current_sit_addr(sbi, start);
1842 	dst_off = next_sit_addr(sbi, src_off);
1843 
1844 	/* get current sit block page without lock */
1845 	src_page = get_meta_page(sbi, src_off);
1846 	dst_page = grab_meta_page(sbi, dst_off);
1847 	f2fs_bug_on(sbi, PageDirty(src_page));
1848 
1849 	src_addr = page_address(src_page);
1850 	dst_addr = page_address(dst_page);
1851 	memcpy(dst_addr, src_addr, PAGE_SIZE);
1852 
1853 	set_page_dirty(dst_page);
1854 	f2fs_put_page(src_page, 1);
1855 
1856 	set_to_next_sit(sit_i, start);
1857 
1858 	return dst_page;
1859 }
1860 
1861 static struct sit_entry_set *grab_sit_entry_set(void)
1862 {
1863 	struct sit_entry_set *ses =
1864 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
1865 
1866 	ses->entry_cnt = 0;
1867 	INIT_LIST_HEAD(&ses->set_list);
1868 	return ses;
1869 }
1870 
1871 static void release_sit_entry_set(struct sit_entry_set *ses)
1872 {
1873 	list_del(&ses->set_list);
1874 	kmem_cache_free(sit_entry_set_slab, ses);
1875 }
1876 
1877 static void adjust_sit_entry_set(struct sit_entry_set *ses,
1878 						struct list_head *head)
1879 {
1880 	struct sit_entry_set *next = ses;
1881 
1882 	if (list_is_last(&ses->set_list, head))
1883 		return;
1884 
1885 	list_for_each_entry_continue(next, head, set_list)
1886 		if (ses->entry_cnt <= next->entry_cnt)
1887 			break;
1888 
1889 	list_move_tail(&ses->set_list, &next->set_list);
1890 }
1891 
1892 static void add_sit_entry(unsigned int segno, struct list_head *head)
1893 {
1894 	struct sit_entry_set *ses;
1895 	unsigned int start_segno = START_SEGNO(segno);
1896 
1897 	list_for_each_entry(ses, head, set_list) {
1898 		if (ses->start_segno == start_segno) {
1899 			ses->entry_cnt++;
1900 			adjust_sit_entry_set(ses, head);
1901 			return;
1902 		}
1903 	}
1904 
1905 	ses = grab_sit_entry_set();
1906 
1907 	ses->start_segno = start_segno;
1908 	ses->entry_cnt++;
1909 	list_add(&ses->set_list, head);
1910 }
1911 
1912 static void add_sits_in_set(struct f2fs_sb_info *sbi)
1913 {
1914 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1915 	struct list_head *set_list = &sm_info->sit_entry_set;
1916 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
1917 	unsigned int segno;
1918 
1919 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
1920 		add_sit_entry(segno, set_list);
1921 }
1922 
1923 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
1924 {
1925 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1926 	struct f2fs_journal *journal = curseg->journal;
1927 	int i;
1928 
1929 	down_write(&curseg->journal_rwsem);
1930 	for (i = 0; i < sits_in_cursum(journal); i++) {
1931 		unsigned int segno;
1932 		bool dirtied;
1933 
1934 		segno = le32_to_cpu(segno_in_journal(journal, i));
1935 		dirtied = __mark_sit_entry_dirty(sbi, segno);
1936 
1937 		if (!dirtied)
1938 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
1939 	}
1940 	update_sits_in_cursum(journal, -i);
1941 	up_write(&curseg->journal_rwsem);
1942 }
1943 
1944 /*
1945  * CP calls this function, which flushes SIT entries including sit_journal,
1946  * and moves prefree segs to free segs.
1947  */
1948 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1949 {
1950 	struct sit_info *sit_i = SIT_I(sbi);
1951 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1952 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1953 	struct f2fs_journal *journal = curseg->journal;
1954 	struct sit_entry_set *ses, *tmp;
1955 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
1956 	bool to_journal = true;
1957 	struct seg_entry *se;
1958 
1959 	mutex_lock(&sit_i->sentry_lock);
1960 
1961 	if (!sit_i->dirty_sentries)
1962 		goto out;
1963 
1964 	/*
1965 	 * add and account sit entries of dirty bitmap in sit entry
1966 	 * set temporarily
1967 	 */
1968 	add_sits_in_set(sbi);
1969 
1970 	/*
1971 	 * if there are no enough space in journal to store dirty sit
1972 	 * entries, remove all entries from journal and add and account
1973 	 * them in sit entry set.
1974 	 */
1975 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
1976 		remove_sits_in_journal(sbi);
1977 
1978 	/*
1979 	 * there are two steps to flush sit entries:
1980 	 * #1, flush sit entries to journal in current cold data summary block.
1981 	 * #2, flush sit entries to sit page.
1982 	 */
1983 	list_for_each_entry_safe(ses, tmp, head, set_list) {
1984 		struct page *page = NULL;
1985 		struct f2fs_sit_block *raw_sit = NULL;
1986 		unsigned int start_segno = ses->start_segno;
1987 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
1988 						(unsigned long)MAIN_SEGS(sbi));
1989 		unsigned int segno = start_segno;
1990 
1991 		if (to_journal &&
1992 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
1993 			to_journal = false;
1994 
1995 		if (to_journal) {
1996 			down_write(&curseg->journal_rwsem);
1997 		} else {
1998 			page = get_next_sit_page(sbi, start_segno);
1999 			raw_sit = page_address(page);
2000 		}
2001 
2002 		/* flush dirty sit entries in region of current sit set */
2003 		for_each_set_bit_from(segno, bitmap, end) {
2004 			int offset, sit_offset;
2005 
2006 			se = get_seg_entry(sbi, segno);
2007 
2008 			/* add discard candidates */
2009 			if (cpc->reason != CP_DISCARD) {
2010 				cpc->trim_start = segno;
2011 				add_discard_addrs(sbi, cpc);
2012 			}
2013 
2014 			if (to_journal) {
2015 				offset = lookup_journal_in_cursum(journal,
2016 							SIT_JOURNAL, segno, 1);
2017 				f2fs_bug_on(sbi, offset < 0);
2018 				segno_in_journal(journal, offset) =
2019 							cpu_to_le32(segno);
2020 				seg_info_to_raw_sit(se,
2021 					&sit_in_journal(journal, offset));
2022 			} else {
2023 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
2024 				seg_info_to_raw_sit(se,
2025 						&raw_sit->entries[sit_offset]);
2026 			}
2027 
2028 			__clear_bit(segno, bitmap);
2029 			sit_i->dirty_sentries--;
2030 			ses->entry_cnt--;
2031 		}
2032 
2033 		if (to_journal)
2034 			up_write(&curseg->journal_rwsem);
2035 		else
2036 			f2fs_put_page(page, 1);
2037 
2038 		f2fs_bug_on(sbi, ses->entry_cnt);
2039 		release_sit_entry_set(ses);
2040 	}
2041 
2042 	f2fs_bug_on(sbi, !list_empty(head));
2043 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
2044 out:
2045 	if (cpc->reason == CP_DISCARD) {
2046 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
2047 			add_discard_addrs(sbi, cpc);
2048 	}
2049 	mutex_unlock(&sit_i->sentry_lock);
2050 
2051 	set_prefree_as_free_segments(sbi);
2052 }
2053 
2054 static int build_sit_info(struct f2fs_sb_info *sbi)
2055 {
2056 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2057 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2058 	struct sit_info *sit_i;
2059 	unsigned int sit_segs, start;
2060 	char *src_bitmap, *dst_bitmap;
2061 	unsigned int bitmap_size;
2062 
2063 	/* allocate memory for SIT information */
2064 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
2065 	if (!sit_i)
2066 		return -ENOMEM;
2067 
2068 	SM_I(sbi)->sit_info = sit_i;
2069 
2070 	sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) *
2071 					sizeof(struct seg_entry), GFP_KERNEL);
2072 	if (!sit_i->sentries)
2073 		return -ENOMEM;
2074 
2075 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2076 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2077 	if (!sit_i->dirty_sentries_bitmap)
2078 		return -ENOMEM;
2079 
2080 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2081 		sit_i->sentries[start].cur_valid_map
2082 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2083 		sit_i->sentries[start].ckpt_valid_map
2084 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2085 		sit_i->sentries[start].discard_map
2086 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2087 		if (!sit_i->sentries[start].cur_valid_map ||
2088 				!sit_i->sentries[start].ckpt_valid_map ||
2089 				!sit_i->sentries[start].discard_map)
2090 			return -ENOMEM;
2091 	}
2092 
2093 	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
2094 	if (!sit_i->tmp_map)
2095 		return -ENOMEM;
2096 
2097 	if (sbi->segs_per_sec > 1) {
2098 		sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) *
2099 					sizeof(struct sec_entry), GFP_KERNEL);
2100 		if (!sit_i->sec_entries)
2101 			return -ENOMEM;
2102 	}
2103 
2104 	/* get information related with SIT */
2105 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
2106 
2107 	/* setup SIT bitmap from ckeckpoint pack */
2108 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
2109 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
2110 
2111 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
2112 	if (!dst_bitmap)
2113 		return -ENOMEM;
2114 
2115 	/* init SIT information */
2116 	sit_i->s_ops = &default_salloc_ops;
2117 
2118 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
2119 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
2120 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
2121 	sit_i->sit_bitmap = dst_bitmap;
2122 	sit_i->bitmap_size = bitmap_size;
2123 	sit_i->dirty_sentries = 0;
2124 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
2125 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
2126 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
2127 	mutex_init(&sit_i->sentry_lock);
2128 	return 0;
2129 }
2130 
2131 static int build_free_segmap(struct f2fs_sb_info *sbi)
2132 {
2133 	struct free_segmap_info *free_i;
2134 	unsigned int bitmap_size, sec_bitmap_size;
2135 
2136 	/* allocate memory for free segmap information */
2137 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
2138 	if (!free_i)
2139 		return -ENOMEM;
2140 
2141 	SM_I(sbi)->free_info = free_i;
2142 
2143 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2144 	free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL);
2145 	if (!free_i->free_segmap)
2146 		return -ENOMEM;
2147 
2148 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2149 	free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL);
2150 	if (!free_i->free_secmap)
2151 		return -ENOMEM;
2152 
2153 	/* set all segments as dirty temporarily */
2154 	memset(free_i->free_segmap, 0xff, bitmap_size);
2155 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
2156 
2157 	/* init free segmap information */
2158 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
2159 	free_i->free_segments = 0;
2160 	free_i->free_sections = 0;
2161 	spin_lock_init(&free_i->segmap_lock);
2162 	return 0;
2163 }
2164 
2165 static int build_curseg(struct f2fs_sb_info *sbi)
2166 {
2167 	struct curseg_info *array;
2168 	int i;
2169 
2170 	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
2171 	if (!array)
2172 		return -ENOMEM;
2173 
2174 	SM_I(sbi)->curseg_array = array;
2175 
2176 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2177 		mutex_init(&array[i].curseg_mutex);
2178 		array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
2179 		if (!array[i].sum_blk)
2180 			return -ENOMEM;
2181 		init_rwsem(&array[i].journal_rwsem);
2182 		array[i].journal = kzalloc(sizeof(struct f2fs_journal),
2183 							GFP_KERNEL);
2184 		if (!array[i].journal)
2185 			return -ENOMEM;
2186 		array[i].segno = NULL_SEGNO;
2187 		array[i].next_blkoff = 0;
2188 	}
2189 	return restore_curseg_summaries(sbi);
2190 }
2191 
2192 static void build_sit_entries(struct f2fs_sb_info *sbi)
2193 {
2194 	struct sit_info *sit_i = SIT_I(sbi);
2195 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2196 	struct f2fs_journal *journal = curseg->journal;
2197 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
2198 	unsigned int i, start, end;
2199 	unsigned int readed, start_blk = 0;
2200 	int nrpages = MAX_BIO_BLOCKS(sbi) * 8;
2201 
2202 	do {
2203 		readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true);
2204 
2205 		start = start_blk * sit_i->sents_per_block;
2206 		end = (start_blk + readed) * sit_i->sents_per_block;
2207 
2208 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
2209 			struct seg_entry *se = &sit_i->sentries[start];
2210 			struct f2fs_sit_block *sit_blk;
2211 			struct f2fs_sit_entry sit;
2212 			struct page *page;
2213 
2214 			down_read(&curseg->journal_rwsem);
2215 			for (i = 0; i < sits_in_cursum(journal); i++) {
2216 				if (le32_to_cpu(segno_in_journal(journal, i))
2217 								== start) {
2218 					sit = sit_in_journal(journal, i);
2219 					up_read(&curseg->journal_rwsem);
2220 					goto got_it;
2221 				}
2222 			}
2223 			up_read(&curseg->journal_rwsem);
2224 
2225 			page = get_current_sit_page(sbi, start);
2226 			sit_blk = (struct f2fs_sit_block *)page_address(page);
2227 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
2228 			f2fs_put_page(page, 1);
2229 got_it:
2230 			check_block_count(sbi, start, &sit);
2231 			seg_info_from_raw_sit(se, &sit);
2232 
2233 			/* build discard map only one time */
2234 			memcpy(se->discard_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
2235 			sbi->discard_blks += sbi->blocks_per_seg - se->valid_blocks;
2236 
2237 			if (sbi->segs_per_sec > 1) {
2238 				struct sec_entry *e = get_sec_entry(sbi, start);
2239 				e->valid_blocks += se->valid_blocks;
2240 			}
2241 		}
2242 		start_blk += readed;
2243 	} while (start_blk < sit_blk_cnt);
2244 }
2245 
2246 static void init_free_segmap(struct f2fs_sb_info *sbi)
2247 {
2248 	unsigned int start;
2249 	int type;
2250 
2251 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
2252 		struct seg_entry *sentry = get_seg_entry(sbi, start);
2253 		if (!sentry->valid_blocks)
2254 			__set_free(sbi, start);
2255 	}
2256 
2257 	/* set use the current segments */
2258 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
2259 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
2260 		__set_test_and_inuse(sbi, curseg_t->segno);
2261 	}
2262 }
2263 
2264 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
2265 {
2266 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2267 	struct free_segmap_info *free_i = FREE_I(sbi);
2268 	unsigned int segno = 0, offset = 0;
2269 	unsigned short valid_blocks;
2270 
2271 	while (1) {
2272 		/* find dirty segment based on free segmap */
2273 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
2274 		if (segno >= MAIN_SEGS(sbi))
2275 			break;
2276 		offset = segno + 1;
2277 		valid_blocks = get_valid_blocks(sbi, segno, 0);
2278 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
2279 			continue;
2280 		if (valid_blocks > sbi->blocks_per_seg) {
2281 			f2fs_bug_on(sbi, 1);
2282 			continue;
2283 		}
2284 		mutex_lock(&dirty_i->seglist_lock);
2285 		__locate_dirty_segment(sbi, segno, DIRTY);
2286 		mutex_unlock(&dirty_i->seglist_lock);
2287 	}
2288 }
2289 
2290 static int init_victim_secmap(struct f2fs_sb_info *sbi)
2291 {
2292 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2293 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
2294 
2295 	dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2296 	if (!dirty_i->victim_secmap)
2297 		return -ENOMEM;
2298 	return 0;
2299 }
2300 
2301 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
2302 {
2303 	struct dirty_seglist_info *dirty_i;
2304 	unsigned int bitmap_size, i;
2305 
2306 	/* allocate memory for dirty segments list information */
2307 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
2308 	if (!dirty_i)
2309 		return -ENOMEM;
2310 
2311 	SM_I(sbi)->dirty_info = dirty_i;
2312 	mutex_init(&dirty_i->seglist_lock);
2313 
2314 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
2315 
2316 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
2317 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL);
2318 		if (!dirty_i->dirty_segmap[i])
2319 			return -ENOMEM;
2320 	}
2321 
2322 	init_dirty_segmap(sbi);
2323 	return init_victim_secmap(sbi);
2324 }
2325 
2326 /*
2327  * Update min, max modified time for cost-benefit GC algorithm
2328  */
2329 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
2330 {
2331 	struct sit_info *sit_i = SIT_I(sbi);
2332 	unsigned int segno;
2333 
2334 	mutex_lock(&sit_i->sentry_lock);
2335 
2336 	sit_i->min_mtime = LLONG_MAX;
2337 
2338 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
2339 		unsigned int i;
2340 		unsigned long long mtime = 0;
2341 
2342 		for (i = 0; i < sbi->segs_per_sec; i++)
2343 			mtime += get_seg_entry(sbi, segno + i)->mtime;
2344 
2345 		mtime = div_u64(mtime, sbi->segs_per_sec);
2346 
2347 		if (sit_i->min_mtime > mtime)
2348 			sit_i->min_mtime = mtime;
2349 	}
2350 	sit_i->max_mtime = get_mtime(sbi);
2351 	mutex_unlock(&sit_i->sentry_lock);
2352 }
2353 
2354 int build_segment_manager(struct f2fs_sb_info *sbi)
2355 {
2356 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2357 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2358 	struct f2fs_sm_info *sm_info;
2359 	int err;
2360 
2361 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
2362 	if (!sm_info)
2363 		return -ENOMEM;
2364 
2365 	/* init sm info */
2366 	sbi->sm_info = sm_info;
2367 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2368 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2369 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
2370 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2371 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2372 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
2373 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2374 	sm_info->rec_prefree_segments = sm_info->main_segments *
2375 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
2376 	sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
2377 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
2378 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
2379 
2380 	INIT_LIST_HEAD(&sm_info->discard_list);
2381 	sm_info->nr_discards = 0;
2382 	sm_info->max_discards = 0;
2383 
2384 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
2385 
2386 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
2387 
2388 	if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) {
2389 		err = create_flush_cmd_control(sbi);
2390 		if (err)
2391 			return err;
2392 	}
2393 
2394 	err = build_sit_info(sbi);
2395 	if (err)
2396 		return err;
2397 	err = build_free_segmap(sbi);
2398 	if (err)
2399 		return err;
2400 	err = build_curseg(sbi);
2401 	if (err)
2402 		return err;
2403 
2404 	/* reinit free segmap based on SIT */
2405 	build_sit_entries(sbi);
2406 
2407 	init_free_segmap(sbi);
2408 	err = build_dirty_segmap(sbi);
2409 	if (err)
2410 		return err;
2411 
2412 	init_min_max_mtime(sbi);
2413 	return 0;
2414 }
2415 
2416 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
2417 		enum dirty_type dirty_type)
2418 {
2419 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2420 
2421 	mutex_lock(&dirty_i->seglist_lock);
2422 	kvfree(dirty_i->dirty_segmap[dirty_type]);
2423 	dirty_i->nr_dirty[dirty_type] = 0;
2424 	mutex_unlock(&dirty_i->seglist_lock);
2425 }
2426 
2427 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
2428 {
2429 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2430 	kvfree(dirty_i->victim_secmap);
2431 }
2432 
2433 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
2434 {
2435 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2436 	int i;
2437 
2438 	if (!dirty_i)
2439 		return;
2440 
2441 	/* discard pre-free/dirty segments list */
2442 	for (i = 0; i < NR_DIRTY_TYPE; i++)
2443 		discard_dirty_segmap(sbi, i);
2444 
2445 	destroy_victim_secmap(sbi);
2446 	SM_I(sbi)->dirty_info = NULL;
2447 	kfree(dirty_i);
2448 }
2449 
2450 static void destroy_curseg(struct f2fs_sb_info *sbi)
2451 {
2452 	struct curseg_info *array = SM_I(sbi)->curseg_array;
2453 	int i;
2454 
2455 	if (!array)
2456 		return;
2457 	SM_I(sbi)->curseg_array = NULL;
2458 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
2459 		kfree(array[i].sum_blk);
2460 		kfree(array[i].journal);
2461 	}
2462 	kfree(array);
2463 }
2464 
2465 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
2466 {
2467 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
2468 	if (!free_i)
2469 		return;
2470 	SM_I(sbi)->free_info = NULL;
2471 	kvfree(free_i->free_segmap);
2472 	kvfree(free_i->free_secmap);
2473 	kfree(free_i);
2474 }
2475 
2476 static void destroy_sit_info(struct f2fs_sb_info *sbi)
2477 {
2478 	struct sit_info *sit_i = SIT_I(sbi);
2479 	unsigned int start;
2480 
2481 	if (!sit_i)
2482 		return;
2483 
2484 	if (sit_i->sentries) {
2485 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
2486 			kfree(sit_i->sentries[start].cur_valid_map);
2487 			kfree(sit_i->sentries[start].ckpt_valid_map);
2488 			kfree(sit_i->sentries[start].discard_map);
2489 		}
2490 	}
2491 	kfree(sit_i->tmp_map);
2492 
2493 	kvfree(sit_i->sentries);
2494 	kvfree(sit_i->sec_entries);
2495 	kvfree(sit_i->dirty_sentries_bitmap);
2496 
2497 	SM_I(sbi)->sit_info = NULL;
2498 	kfree(sit_i->sit_bitmap);
2499 	kfree(sit_i);
2500 }
2501 
2502 void destroy_segment_manager(struct f2fs_sb_info *sbi)
2503 {
2504 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2505 
2506 	if (!sm_info)
2507 		return;
2508 	destroy_flush_cmd_control(sbi);
2509 	destroy_dirty_segmap(sbi);
2510 	destroy_curseg(sbi);
2511 	destroy_free_segmap(sbi);
2512 	destroy_sit_info(sbi);
2513 	sbi->sm_info = NULL;
2514 	kfree(sm_info);
2515 }
2516 
2517 int __init create_segment_manager_caches(void)
2518 {
2519 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
2520 			sizeof(struct discard_entry));
2521 	if (!discard_entry_slab)
2522 		goto fail;
2523 
2524 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
2525 			sizeof(struct sit_entry_set));
2526 	if (!sit_entry_set_slab)
2527 		goto destory_discard_entry;
2528 
2529 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
2530 			sizeof(struct inmem_pages));
2531 	if (!inmem_entry_slab)
2532 		goto destroy_sit_entry_set;
2533 	return 0;
2534 
2535 destroy_sit_entry_set:
2536 	kmem_cache_destroy(sit_entry_set_slab);
2537 destory_discard_entry:
2538 	kmem_cache_destroy(discard_entry_slab);
2539 fail:
2540 	return -ENOMEM;
2541 }
2542 
2543 void destroy_segment_manager_caches(void)
2544 {
2545 	kmem_cache_destroy(sit_entry_set_slab);
2546 	kmem_cache_destroy(discard_entry_slab);
2547 	kmem_cache_destroy(inmem_entry_slab);
2548 }
2549