xref: /openbmc/linux/fs/f2fs/segment.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17 
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
21 
22 /*
23  * This function balances dirty node and dentry pages.
24  * In addition, it controls garbage collection.
25  */
26 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
27 {
28 	/*
29 	 * We should do GC or end up with checkpoint, if there are so many dirty
30 	 * dir/node pages without enough free segments.
31 	 */
32 	if (has_not_enough_free_secs(sbi, 0)) {
33 		mutex_lock(&sbi->gc_mutex);
34 		f2fs_gc(sbi);
35 	}
36 }
37 
38 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
39 		enum dirty_type dirty_type)
40 {
41 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
42 
43 	/* need not be added */
44 	if (IS_CURSEG(sbi, segno))
45 		return;
46 
47 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
48 		dirty_i->nr_dirty[dirty_type]++;
49 
50 	if (dirty_type == DIRTY) {
51 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
52 		dirty_type = sentry->type;
53 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
54 			dirty_i->nr_dirty[dirty_type]++;
55 	}
56 }
57 
58 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
59 		enum dirty_type dirty_type)
60 {
61 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
62 
63 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
64 		dirty_i->nr_dirty[dirty_type]--;
65 
66 	if (dirty_type == DIRTY) {
67 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
68 		dirty_type = sentry->type;
69 		if (test_and_clear_bit(segno,
70 					dirty_i->dirty_segmap[dirty_type]))
71 			dirty_i->nr_dirty[dirty_type]--;
72 		clear_bit(segno, dirty_i->victim_segmap[FG_GC]);
73 		clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
74 	}
75 }
76 
77 /*
78  * Should not occur error such as -ENOMEM.
79  * Adding dirty entry into seglist is not critical operation.
80  * If a given segment is one of current working segments, it won't be added.
81  */
82 void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
83 {
84 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
85 	unsigned short valid_blocks;
86 
87 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
88 		return;
89 
90 	mutex_lock(&dirty_i->seglist_lock);
91 
92 	valid_blocks = get_valid_blocks(sbi, segno, 0);
93 
94 	if (valid_blocks == 0) {
95 		__locate_dirty_segment(sbi, segno, PRE);
96 		__remove_dirty_segment(sbi, segno, DIRTY);
97 	} else if (valid_blocks < sbi->blocks_per_seg) {
98 		__locate_dirty_segment(sbi, segno, DIRTY);
99 	} else {
100 		/* Recovery routine with SSR needs this */
101 		__remove_dirty_segment(sbi, segno, DIRTY);
102 	}
103 
104 	mutex_unlock(&dirty_i->seglist_lock);
105 	return;
106 }
107 
108 /*
109  * Should call clear_prefree_segments after checkpoint is done.
110  */
111 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
112 {
113 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
114 	unsigned int segno, offset = 0;
115 	unsigned int total_segs = TOTAL_SEGS(sbi);
116 
117 	mutex_lock(&dirty_i->seglist_lock);
118 	while (1) {
119 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
120 				offset);
121 		if (segno >= total_segs)
122 			break;
123 		__set_test_and_free(sbi, segno);
124 		offset = segno + 1;
125 	}
126 	mutex_unlock(&dirty_i->seglist_lock);
127 }
128 
129 void clear_prefree_segments(struct f2fs_sb_info *sbi)
130 {
131 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
132 	unsigned int segno, offset = 0;
133 	unsigned int total_segs = TOTAL_SEGS(sbi);
134 
135 	mutex_lock(&dirty_i->seglist_lock);
136 	while (1) {
137 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
138 				offset);
139 		if (segno >= total_segs)
140 			break;
141 
142 		offset = segno + 1;
143 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
144 			dirty_i->nr_dirty[PRE]--;
145 
146 		/* Let's use trim */
147 		if (test_opt(sbi, DISCARD))
148 			blkdev_issue_discard(sbi->sb->s_bdev,
149 					START_BLOCK(sbi, segno) <<
150 					sbi->log_sectors_per_block,
151 					1 << (sbi->log_sectors_per_block +
152 						sbi->log_blocks_per_seg),
153 					GFP_NOFS, 0);
154 	}
155 	mutex_unlock(&dirty_i->seglist_lock);
156 }
157 
158 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
159 {
160 	struct sit_info *sit_i = SIT_I(sbi);
161 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
162 		sit_i->dirty_sentries++;
163 }
164 
165 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
166 					unsigned int segno, int modified)
167 {
168 	struct seg_entry *se = get_seg_entry(sbi, segno);
169 	se->type = type;
170 	if (modified)
171 		__mark_sit_entry_dirty(sbi, segno);
172 }
173 
174 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
175 {
176 	struct seg_entry *se;
177 	unsigned int segno, offset;
178 	long int new_vblocks;
179 
180 	segno = GET_SEGNO(sbi, blkaddr);
181 
182 	se = get_seg_entry(sbi, segno);
183 	new_vblocks = se->valid_blocks + del;
184 	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
185 
186 	BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
187 				(new_vblocks > sbi->blocks_per_seg)));
188 
189 	se->valid_blocks = new_vblocks;
190 	se->mtime = get_mtime(sbi);
191 	SIT_I(sbi)->max_mtime = se->mtime;
192 
193 	/* Update valid block bitmap */
194 	if (del > 0) {
195 		if (f2fs_set_bit(offset, se->cur_valid_map))
196 			BUG();
197 	} else {
198 		if (!f2fs_clear_bit(offset, se->cur_valid_map))
199 			BUG();
200 	}
201 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
202 		se->ckpt_valid_blocks += del;
203 
204 	__mark_sit_entry_dirty(sbi, segno);
205 
206 	/* update total number of valid blocks to be written in ckpt area */
207 	SIT_I(sbi)->written_valid_blocks += del;
208 
209 	if (sbi->segs_per_sec > 1)
210 		get_sec_entry(sbi, segno)->valid_blocks += del;
211 }
212 
213 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
214 			block_t old_blkaddr, block_t new_blkaddr)
215 {
216 	update_sit_entry(sbi, new_blkaddr, 1);
217 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
218 		update_sit_entry(sbi, old_blkaddr, -1);
219 }
220 
221 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
222 {
223 	unsigned int segno = GET_SEGNO(sbi, addr);
224 	struct sit_info *sit_i = SIT_I(sbi);
225 
226 	BUG_ON(addr == NULL_ADDR);
227 	if (addr == NEW_ADDR)
228 		return;
229 
230 	/* add it into sit main buffer */
231 	mutex_lock(&sit_i->sentry_lock);
232 
233 	update_sit_entry(sbi, addr, -1);
234 
235 	/* add it into dirty seglist */
236 	locate_dirty_segment(sbi, segno);
237 
238 	mutex_unlock(&sit_i->sentry_lock);
239 }
240 
241 /*
242  * This function should be resided under the curseg_mutex lock
243  */
244 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
245 		struct f2fs_summary *sum, unsigned short offset)
246 {
247 	struct curseg_info *curseg = CURSEG_I(sbi, type);
248 	void *addr = curseg->sum_blk;
249 	addr += offset * sizeof(struct f2fs_summary);
250 	memcpy(addr, sum, sizeof(struct f2fs_summary));
251 	return;
252 }
253 
254 /*
255  * Calculate the number of current summary pages for writing
256  */
257 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
258 {
259 	int total_size_bytes = 0;
260 	int valid_sum_count = 0;
261 	int i, sum_space;
262 
263 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
264 		if (sbi->ckpt->alloc_type[i] == SSR)
265 			valid_sum_count += sbi->blocks_per_seg;
266 		else
267 			valid_sum_count += curseg_blkoff(sbi, i);
268 	}
269 
270 	total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
271 			+ sizeof(struct nat_journal) + 2
272 			+ sizeof(struct sit_journal) + 2;
273 	sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
274 	if (total_size_bytes < sum_space)
275 		return 1;
276 	else if (total_size_bytes < 2 * sum_space)
277 		return 2;
278 	return 3;
279 }
280 
281 /*
282  * Caller should put this summary page
283  */
284 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
285 {
286 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
287 }
288 
289 static void write_sum_page(struct f2fs_sb_info *sbi,
290 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
291 {
292 	struct page *page = grab_meta_page(sbi, blk_addr);
293 	void *kaddr = page_address(page);
294 	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
295 	set_page_dirty(page);
296 	f2fs_put_page(page, 1);
297 }
298 
299 static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi,
300 					int ofs_unit, int type)
301 {
302 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
303 	unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE];
304 	unsigned int segno, next_segno, i;
305 	int ofs = 0;
306 
307 	/*
308 	 * If there is not enough reserved sections,
309 	 * we should not reuse prefree segments.
310 	 */
311 	if (has_not_enough_free_secs(sbi, 0))
312 		return NULL_SEGNO;
313 
314 	/*
315 	 * NODE page should not reuse prefree segment,
316 	 * since those information is used for SPOR.
317 	 */
318 	if (IS_NODESEG(type))
319 		return NULL_SEGNO;
320 next:
321 	segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs++);
322 	ofs = ((segno / ofs_unit) * ofs_unit) + ofs_unit;
323 	if (segno < TOTAL_SEGS(sbi)) {
324 		/* skip intermediate segments in a section */
325 		if (segno % ofs_unit)
326 			goto next;
327 
328 		/* skip if whole section is not prefree */
329 		next_segno = find_next_zero_bit(prefree_segmap,
330 						TOTAL_SEGS(sbi), segno + 1);
331 		if (next_segno - segno < ofs_unit)
332 			goto next;
333 
334 		/* skip if whole section was not free at the last checkpoint */
335 		for (i = 0; i < ofs_unit; i++)
336 			if (get_seg_entry(sbi, segno)->ckpt_valid_blocks)
337 				goto next;
338 		return segno;
339 	}
340 	return NULL_SEGNO;
341 }
342 
343 /*
344  * Find a new segment from the free segments bitmap to right order
345  * This function should be returned with success, otherwise BUG
346  */
347 static void get_new_segment(struct f2fs_sb_info *sbi,
348 			unsigned int *newseg, bool new_sec, int dir)
349 {
350 	struct free_segmap_info *free_i = FREE_I(sbi);
351 	unsigned int total_secs = sbi->total_sections;
352 	unsigned int segno, secno, zoneno;
353 	unsigned int total_zones = sbi->total_sections / sbi->secs_per_zone;
354 	unsigned int hint = *newseg / sbi->segs_per_sec;
355 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
356 	unsigned int left_start = hint;
357 	bool init = true;
358 	int go_left = 0;
359 	int i;
360 
361 	write_lock(&free_i->segmap_lock);
362 
363 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
364 		segno = find_next_zero_bit(free_i->free_segmap,
365 					TOTAL_SEGS(sbi), *newseg + 1);
366 		if (segno < TOTAL_SEGS(sbi))
367 			goto got_it;
368 	}
369 find_other_zone:
370 	secno = find_next_zero_bit(free_i->free_secmap, total_secs, hint);
371 	if (secno >= total_secs) {
372 		if (dir == ALLOC_RIGHT) {
373 			secno = find_next_zero_bit(free_i->free_secmap,
374 						total_secs, 0);
375 			BUG_ON(secno >= total_secs);
376 		} else {
377 			go_left = 1;
378 			left_start = hint - 1;
379 		}
380 	}
381 	if (go_left == 0)
382 		goto skip_left;
383 
384 	while (test_bit(left_start, free_i->free_secmap)) {
385 		if (left_start > 0) {
386 			left_start--;
387 			continue;
388 		}
389 		left_start = find_next_zero_bit(free_i->free_secmap,
390 						total_secs, 0);
391 		BUG_ON(left_start >= total_secs);
392 		break;
393 	}
394 	secno = left_start;
395 skip_left:
396 	hint = secno;
397 	segno = secno * sbi->segs_per_sec;
398 	zoneno = secno / sbi->secs_per_zone;
399 
400 	/* give up on finding another zone */
401 	if (!init)
402 		goto got_it;
403 	if (sbi->secs_per_zone == 1)
404 		goto got_it;
405 	if (zoneno == old_zoneno)
406 		goto got_it;
407 	if (dir == ALLOC_LEFT) {
408 		if (!go_left && zoneno + 1 >= total_zones)
409 			goto got_it;
410 		if (go_left && zoneno == 0)
411 			goto got_it;
412 	}
413 	for (i = 0; i < NR_CURSEG_TYPE; i++)
414 		if (CURSEG_I(sbi, i)->zone == zoneno)
415 			break;
416 
417 	if (i < NR_CURSEG_TYPE) {
418 		/* zone is in user, try another */
419 		if (go_left)
420 			hint = zoneno * sbi->secs_per_zone - 1;
421 		else if (zoneno + 1 >= total_zones)
422 			hint = 0;
423 		else
424 			hint = (zoneno + 1) * sbi->secs_per_zone;
425 		init = false;
426 		goto find_other_zone;
427 	}
428 got_it:
429 	/* set it as dirty segment in free segmap */
430 	BUG_ON(test_bit(segno, free_i->free_segmap));
431 	__set_inuse(sbi, segno);
432 	*newseg = segno;
433 	write_unlock(&free_i->segmap_lock);
434 }
435 
436 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
437 {
438 	struct curseg_info *curseg = CURSEG_I(sbi, type);
439 	struct summary_footer *sum_footer;
440 
441 	curseg->segno = curseg->next_segno;
442 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
443 	curseg->next_blkoff = 0;
444 	curseg->next_segno = NULL_SEGNO;
445 
446 	sum_footer = &(curseg->sum_blk->footer);
447 	memset(sum_footer, 0, sizeof(struct summary_footer));
448 	if (IS_DATASEG(type))
449 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
450 	if (IS_NODESEG(type))
451 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
452 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
453 }
454 
455 /*
456  * Allocate a current working segment.
457  * This function always allocates a free segment in LFS manner.
458  */
459 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
460 {
461 	struct curseg_info *curseg = CURSEG_I(sbi, type);
462 	unsigned int segno = curseg->segno;
463 	int dir = ALLOC_LEFT;
464 
465 	write_sum_page(sbi, curseg->sum_blk,
466 				GET_SUM_BLOCK(sbi, curseg->segno));
467 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
468 		dir = ALLOC_RIGHT;
469 
470 	if (test_opt(sbi, NOHEAP))
471 		dir = ALLOC_RIGHT;
472 
473 	get_new_segment(sbi, &segno, new_sec, dir);
474 	curseg->next_segno = segno;
475 	reset_curseg(sbi, type, 1);
476 	curseg->alloc_type = LFS;
477 }
478 
479 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
480 			struct curseg_info *seg, block_t start)
481 {
482 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
483 	block_t ofs;
484 	for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
485 		if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
486 			&& !f2fs_test_bit(ofs, se->cur_valid_map))
487 			break;
488 	}
489 	seg->next_blkoff = ofs;
490 }
491 
492 /*
493  * If a segment is written by LFS manner, next block offset is just obtained
494  * by increasing the current block offset. However, if a segment is written by
495  * SSR manner, next block offset obtained by calling __next_free_blkoff
496  */
497 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
498 				struct curseg_info *seg)
499 {
500 	if (seg->alloc_type == SSR)
501 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
502 	else
503 		seg->next_blkoff++;
504 }
505 
506 /*
507  * This function always allocates a used segment (from dirty seglist) by SSR
508  * manner, so it should recover the existing segment information of valid blocks
509  */
510 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
511 {
512 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
513 	struct curseg_info *curseg = CURSEG_I(sbi, type);
514 	unsigned int new_segno = curseg->next_segno;
515 	struct f2fs_summary_block *sum_node;
516 	struct page *sum_page;
517 
518 	write_sum_page(sbi, curseg->sum_blk,
519 				GET_SUM_BLOCK(sbi, curseg->segno));
520 	__set_test_and_inuse(sbi, new_segno);
521 
522 	mutex_lock(&dirty_i->seglist_lock);
523 	__remove_dirty_segment(sbi, new_segno, PRE);
524 	__remove_dirty_segment(sbi, new_segno, DIRTY);
525 	mutex_unlock(&dirty_i->seglist_lock);
526 
527 	reset_curseg(sbi, type, 1);
528 	curseg->alloc_type = SSR;
529 	__next_free_blkoff(sbi, curseg, 0);
530 
531 	if (reuse) {
532 		sum_page = get_sum_page(sbi, new_segno);
533 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
534 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
535 		f2fs_put_page(sum_page, 1);
536 	}
537 }
538 
539 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
540 {
541 	struct curseg_info *curseg = CURSEG_I(sbi, type);
542 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
543 
544 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
545 		return v_ops->get_victim(sbi,
546 				&(curseg)->next_segno, BG_GC, type, SSR);
547 
548 	/* For data segments, let's do SSR more intensively */
549 	for (; type >= CURSEG_HOT_DATA; type--)
550 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
551 						BG_GC, type, SSR))
552 			return 1;
553 	return 0;
554 }
555 
556 /*
557  * flush out current segment and replace it with new segment
558  * This function should be returned with success, otherwise BUG
559  */
560 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
561 						int type, bool force)
562 {
563 	struct curseg_info *curseg = CURSEG_I(sbi, type);
564 	unsigned int ofs_unit;
565 
566 	if (force) {
567 		new_curseg(sbi, type, true);
568 		goto out;
569 	}
570 
571 	ofs_unit = need_SSR(sbi) ? 1 : sbi->segs_per_sec;
572 	curseg->next_segno = check_prefree_segments(sbi, ofs_unit, type);
573 
574 	if (curseg->next_segno != NULL_SEGNO)
575 		change_curseg(sbi, type, false);
576 	else if (type == CURSEG_WARM_NODE)
577 		new_curseg(sbi, type, false);
578 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
579 		change_curseg(sbi, type, true);
580 	else
581 		new_curseg(sbi, type, false);
582 out:
583 	sbi->segment_count[curseg->alloc_type]++;
584 }
585 
586 void allocate_new_segments(struct f2fs_sb_info *sbi)
587 {
588 	struct curseg_info *curseg;
589 	unsigned int old_curseg;
590 	int i;
591 
592 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
593 		curseg = CURSEG_I(sbi, i);
594 		old_curseg = curseg->segno;
595 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
596 		locate_dirty_segment(sbi, old_curseg);
597 	}
598 }
599 
600 static const struct segment_allocation default_salloc_ops = {
601 	.allocate_segment = allocate_segment_by_default,
602 };
603 
604 static void f2fs_end_io_write(struct bio *bio, int err)
605 {
606 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
607 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
608 	struct bio_private *p = bio->bi_private;
609 
610 	do {
611 		struct page *page = bvec->bv_page;
612 
613 		if (--bvec >= bio->bi_io_vec)
614 			prefetchw(&bvec->bv_page->flags);
615 		if (!uptodate) {
616 			SetPageError(page);
617 			if (page->mapping)
618 				set_bit(AS_EIO, &page->mapping->flags);
619 			set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
620 			p->sbi->sb->s_flags |= MS_RDONLY;
621 		}
622 		end_page_writeback(page);
623 		dec_page_count(p->sbi, F2FS_WRITEBACK);
624 	} while (bvec >= bio->bi_io_vec);
625 
626 	if (p->is_sync)
627 		complete(p->wait);
628 	kfree(p);
629 	bio_put(bio);
630 }
631 
632 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
633 {
634 	struct bio *bio;
635 	struct bio_private *priv;
636 retry:
637 	priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
638 	if (!priv) {
639 		cond_resched();
640 		goto retry;
641 	}
642 
643 	/* No failure on bio allocation */
644 	bio = bio_alloc(GFP_NOIO, npages);
645 	bio->bi_bdev = bdev;
646 	bio->bi_private = priv;
647 	return bio;
648 }
649 
650 static void do_submit_bio(struct f2fs_sb_info *sbi,
651 				enum page_type type, bool sync)
652 {
653 	int rw = sync ? WRITE_SYNC : WRITE;
654 	enum page_type btype = type > META ? META : type;
655 
656 	if (type >= META_FLUSH)
657 		rw = WRITE_FLUSH_FUA;
658 
659 	if (sbi->bio[btype]) {
660 		struct bio_private *p = sbi->bio[btype]->bi_private;
661 		p->sbi = sbi;
662 		sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
663 		if (type == META_FLUSH) {
664 			DECLARE_COMPLETION_ONSTACK(wait);
665 			p->is_sync = true;
666 			p->wait = &wait;
667 			submit_bio(rw, sbi->bio[btype]);
668 			wait_for_completion(&wait);
669 		} else {
670 			p->is_sync = false;
671 			submit_bio(rw, sbi->bio[btype]);
672 		}
673 		sbi->bio[btype] = NULL;
674 	}
675 }
676 
677 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
678 {
679 	down_write(&sbi->bio_sem);
680 	do_submit_bio(sbi, type, sync);
681 	up_write(&sbi->bio_sem);
682 }
683 
684 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
685 				block_t blk_addr, enum page_type type)
686 {
687 	struct block_device *bdev = sbi->sb->s_bdev;
688 
689 	verify_block_addr(sbi, blk_addr);
690 
691 	down_write(&sbi->bio_sem);
692 
693 	inc_page_count(sbi, F2FS_WRITEBACK);
694 
695 	if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
696 		do_submit_bio(sbi, type, false);
697 alloc_new:
698 	if (sbi->bio[type] == NULL) {
699 		sbi->bio[type] = f2fs_bio_alloc(bdev, bio_get_nr_vecs(bdev));
700 		sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
701 		/*
702 		 * The end_io will be assigned at the sumbission phase.
703 		 * Until then, let bio_add_page() merge consecutive IOs as much
704 		 * as possible.
705 		 */
706 	}
707 
708 	if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
709 							PAGE_CACHE_SIZE) {
710 		do_submit_bio(sbi, type, false);
711 		goto alloc_new;
712 	}
713 
714 	sbi->last_block_in_bio[type] = blk_addr;
715 
716 	up_write(&sbi->bio_sem);
717 }
718 
719 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
720 {
721 	struct curseg_info *curseg = CURSEG_I(sbi, type);
722 	if (curseg->next_blkoff < sbi->blocks_per_seg)
723 		return true;
724 	return false;
725 }
726 
727 static int __get_segment_type_2(struct page *page, enum page_type p_type)
728 {
729 	if (p_type == DATA)
730 		return CURSEG_HOT_DATA;
731 	else
732 		return CURSEG_HOT_NODE;
733 }
734 
735 static int __get_segment_type_4(struct page *page, enum page_type p_type)
736 {
737 	if (p_type == DATA) {
738 		struct inode *inode = page->mapping->host;
739 
740 		if (S_ISDIR(inode->i_mode))
741 			return CURSEG_HOT_DATA;
742 		else
743 			return CURSEG_COLD_DATA;
744 	} else {
745 		if (IS_DNODE(page) && !is_cold_node(page))
746 			return CURSEG_HOT_NODE;
747 		else
748 			return CURSEG_COLD_NODE;
749 	}
750 }
751 
752 static int __get_segment_type_6(struct page *page, enum page_type p_type)
753 {
754 	if (p_type == DATA) {
755 		struct inode *inode = page->mapping->host;
756 
757 		if (S_ISDIR(inode->i_mode))
758 			return CURSEG_HOT_DATA;
759 		else if (is_cold_data(page) || is_cold_file(inode))
760 			return CURSEG_COLD_DATA;
761 		else
762 			return CURSEG_WARM_DATA;
763 	} else {
764 		if (IS_DNODE(page))
765 			return is_cold_node(page) ? CURSEG_WARM_NODE :
766 						CURSEG_HOT_NODE;
767 		else
768 			return CURSEG_COLD_NODE;
769 	}
770 }
771 
772 static int __get_segment_type(struct page *page, enum page_type p_type)
773 {
774 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
775 	switch (sbi->active_logs) {
776 	case 2:
777 		return __get_segment_type_2(page, p_type);
778 	case 4:
779 		return __get_segment_type_4(page, p_type);
780 	}
781 	/* NR_CURSEG_TYPE(6) logs by default */
782 	BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
783 	return __get_segment_type_6(page, p_type);
784 }
785 
786 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
787 			block_t old_blkaddr, block_t *new_blkaddr,
788 			struct f2fs_summary *sum, enum page_type p_type)
789 {
790 	struct sit_info *sit_i = SIT_I(sbi);
791 	struct curseg_info *curseg;
792 	unsigned int old_cursegno;
793 	int type;
794 
795 	type = __get_segment_type(page, p_type);
796 	curseg = CURSEG_I(sbi, type);
797 
798 	mutex_lock(&curseg->curseg_mutex);
799 
800 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
801 	old_cursegno = curseg->segno;
802 
803 	/*
804 	 * __add_sum_entry should be resided under the curseg_mutex
805 	 * because, this function updates a summary entry in the
806 	 * current summary block.
807 	 */
808 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
809 
810 	mutex_lock(&sit_i->sentry_lock);
811 	__refresh_next_blkoff(sbi, curseg);
812 	sbi->block_count[curseg->alloc_type]++;
813 
814 	/*
815 	 * SIT information should be updated before segment allocation,
816 	 * since SSR needs latest valid block information.
817 	 */
818 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
819 
820 	if (!__has_curseg_space(sbi, type))
821 		sit_i->s_ops->allocate_segment(sbi, type, false);
822 
823 	locate_dirty_segment(sbi, old_cursegno);
824 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
825 	mutex_unlock(&sit_i->sentry_lock);
826 
827 	if (p_type == NODE)
828 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
829 
830 	/* writeout dirty page into bdev */
831 	submit_write_page(sbi, page, *new_blkaddr, p_type);
832 
833 	mutex_unlock(&curseg->curseg_mutex);
834 }
835 
836 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
837 {
838 	set_page_writeback(page);
839 	submit_write_page(sbi, page, page->index, META);
840 }
841 
842 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
843 		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
844 {
845 	struct f2fs_summary sum;
846 	set_summary(&sum, nid, 0, 0);
847 	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
848 }
849 
850 void write_data_page(struct inode *inode, struct page *page,
851 		struct dnode_of_data *dn, block_t old_blkaddr,
852 		block_t *new_blkaddr)
853 {
854 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
855 	struct f2fs_summary sum;
856 	struct node_info ni;
857 
858 	BUG_ON(old_blkaddr == NULL_ADDR);
859 	get_node_info(sbi, dn->nid, &ni);
860 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
861 
862 	do_write_page(sbi, page, old_blkaddr,
863 			new_blkaddr, &sum, DATA);
864 }
865 
866 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
867 					block_t old_blk_addr)
868 {
869 	submit_write_page(sbi, page, old_blk_addr, DATA);
870 }
871 
872 void recover_data_page(struct f2fs_sb_info *sbi,
873 			struct page *page, struct f2fs_summary *sum,
874 			block_t old_blkaddr, block_t new_blkaddr)
875 {
876 	struct sit_info *sit_i = SIT_I(sbi);
877 	struct curseg_info *curseg;
878 	unsigned int segno, old_cursegno;
879 	struct seg_entry *se;
880 	int type;
881 
882 	segno = GET_SEGNO(sbi, new_blkaddr);
883 	se = get_seg_entry(sbi, segno);
884 	type = se->type;
885 
886 	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
887 		if (old_blkaddr == NULL_ADDR)
888 			type = CURSEG_COLD_DATA;
889 		else
890 			type = CURSEG_WARM_DATA;
891 	}
892 	curseg = CURSEG_I(sbi, type);
893 
894 	mutex_lock(&curseg->curseg_mutex);
895 	mutex_lock(&sit_i->sentry_lock);
896 
897 	old_cursegno = curseg->segno;
898 
899 	/* change the current segment */
900 	if (segno != curseg->segno) {
901 		curseg->next_segno = segno;
902 		change_curseg(sbi, type, true);
903 	}
904 
905 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
906 					(sbi->blocks_per_seg - 1);
907 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
908 
909 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
910 
911 	locate_dirty_segment(sbi, old_cursegno);
912 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
913 
914 	mutex_unlock(&sit_i->sentry_lock);
915 	mutex_unlock(&curseg->curseg_mutex);
916 }
917 
918 void rewrite_node_page(struct f2fs_sb_info *sbi,
919 			struct page *page, struct f2fs_summary *sum,
920 			block_t old_blkaddr, block_t new_blkaddr)
921 {
922 	struct sit_info *sit_i = SIT_I(sbi);
923 	int type = CURSEG_WARM_NODE;
924 	struct curseg_info *curseg;
925 	unsigned int segno, old_cursegno;
926 	block_t next_blkaddr = next_blkaddr_of_node(page);
927 	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
928 
929 	curseg = CURSEG_I(sbi, type);
930 
931 	mutex_lock(&curseg->curseg_mutex);
932 	mutex_lock(&sit_i->sentry_lock);
933 
934 	segno = GET_SEGNO(sbi, new_blkaddr);
935 	old_cursegno = curseg->segno;
936 
937 	/* change the current segment */
938 	if (segno != curseg->segno) {
939 		curseg->next_segno = segno;
940 		change_curseg(sbi, type, true);
941 	}
942 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
943 					(sbi->blocks_per_seg - 1);
944 	__add_sum_entry(sbi, type, sum, curseg->next_blkoff);
945 
946 	/* change the current log to the next block addr in advance */
947 	if (next_segno != segno) {
948 		curseg->next_segno = next_segno;
949 		change_curseg(sbi, type, true);
950 	}
951 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
952 					(sbi->blocks_per_seg - 1);
953 
954 	/* rewrite node page */
955 	set_page_writeback(page);
956 	submit_write_page(sbi, page, new_blkaddr, NODE);
957 	f2fs_submit_bio(sbi, NODE, true);
958 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
959 
960 	locate_dirty_segment(sbi, old_cursegno);
961 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
962 
963 	mutex_unlock(&sit_i->sentry_lock);
964 	mutex_unlock(&curseg->curseg_mutex);
965 }
966 
967 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
968 {
969 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
970 	struct curseg_info *seg_i;
971 	unsigned char *kaddr;
972 	struct page *page;
973 	block_t start;
974 	int i, j, offset;
975 
976 	start = start_sum_block(sbi);
977 
978 	page = get_meta_page(sbi, start++);
979 	kaddr = (unsigned char *)page_address(page);
980 
981 	/* Step 1: restore nat cache */
982 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
983 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
984 
985 	/* Step 2: restore sit cache */
986 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
987 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
988 						SUM_JOURNAL_SIZE);
989 	offset = 2 * SUM_JOURNAL_SIZE;
990 
991 	/* Step 3: restore summary entries */
992 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
993 		unsigned short blk_off;
994 		unsigned int segno;
995 
996 		seg_i = CURSEG_I(sbi, i);
997 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
998 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
999 		seg_i->next_segno = segno;
1000 		reset_curseg(sbi, i, 0);
1001 		seg_i->alloc_type = ckpt->alloc_type[i];
1002 		seg_i->next_blkoff = blk_off;
1003 
1004 		if (seg_i->alloc_type == SSR)
1005 			blk_off = sbi->blocks_per_seg;
1006 
1007 		for (j = 0; j < blk_off; j++) {
1008 			struct f2fs_summary *s;
1009 			s = (struct f2fs_summary *)(kaddr + offset);
1010 			seg_i->sum_blk->entries[j] = *s;
1011 			offset += SUMMARY_SIZE;
1012 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1013 						SUM_FOOTER_SIZE)
1014 				continue;
1015 
1016 			f2fs_put_page(page, 1);
1017 			page = NULL;
1018 
1019 			page = get_meta_page(sbi, start++);
1020 			kaddr = (unsigned char *)page_address(page);
1021 			offset = 0;
1022 		}
1023 	}
1024 	f2fs_put_page(page, 1);
1025 	return 0;
1026 }
1027 
1028 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1029 {
1030 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1031 	struct f2fs_summary_block *sum;
1032 	struct curseg_info *curseg;
1033 	struct page *new;
1034 	unsigned short blk_off;
1035 	unsigned int segno = 0;
1036 	block_t blk_addr = 0;
1037 
1038 	/* get segment number and block addr */
1039 	if (IS_DATASEG(type)) {
1040 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1041 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1042 							CURSEG_HOT_DATA]);
1043 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1044 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1045 		else
1046 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1047 	} else {
1048 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1049 							CURSEG_HOT_NODE]);
1050 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1051 							CURSEG_HOT_NODE]);
1052 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1053 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1054 							type - CURSEG_HOT_NODE);
1055 		else
1056 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1057 	}
1058 
1059 	new = get_meta_page(sbi, blk_addr);
1060 	sum = (struct f2fs_summary_block *)page_address(new);
1061 
1062 	if (IS_NODESEG(type)) {
1063 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1064 			struct f2fs_summary *ns = &sum->entries[0];
1065 			int i;
1066 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1067 				ns->version = 0;
1068 				ns->ofs_in_node = 0;
1069 			}
1070 		} else {
1071 			if (restore_node_summary(sbi, segno, sum)) {
1072 				f2fs_put_page(new, 1);
1073 				return -EINVAL;
1074 			}
1075 		}
1076 	}
1077 
1078 	/* set uncompleted segment to curseg */
1079 	curseg = CURSEG_I(sbi, type);
1080 	mutex_lock(&curseg->curseg_mutex);
1081 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1082 	curseg->next_segno = segno;
1083 	reset_curseg(sbi, type, 0);
1084 	curseg->alloc_type = ckpt->alloc_type[type];
1085 	curseg->next_blkoff = blk_off;
1086 	mutex_unlock(&curseg->curseg_mutex);
1087 	f2fs_put_page(new, 1);
1088 	return 0;
1089 }
1090 
1091 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1092 {
1093 	int type = CURSEG_HOT_DATA;
1094 
1095 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1096 		/* restore for compacted data summary */
1097 		if (read_compacted_summaries(sbi))
1098 			return -EINVAL;
1099 		type = CURSEG_HOT_NODE;
1100 	}
1101 
1102 	for (; type <= CURSEG_COLD_NODE; type++)
1103 		if (read_normal_summaries(sbi, type))
1104 			return -EINVAL;
1105 	return 0;
1106 }
1107 
1108 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1109 {
1110 	struct page *page;
1111 	unsigned char *kaddr;
1112 	struct f2fs_summary *summary;
1113 	struct curseg_info *seg_i;
1114 	int written_size = 0;
1115 	int i, j;
1116 
1117 	page = grab_meta_page(sbi, blkaddr++);
1118 	kaddr = (unsigned char *)page_address(page);
1119 
1120 	/* Step 1: write nat cache */
1121 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1122 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1123 	written_size += SUM_JOURNAL_SIZE;
1124 
1125 	/* Step 2: write sit cache */
1126 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1127 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1128 						SUM_JOURNAL_SIZE);
1129 	written_size += SUM_JOURNAL_SIZE;
1130 
1131 	set_page_dirty(page);
1132 
1133 	/* Step 3: write summary entries */
1134 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1135 		unsigned short blkoff;
1136 		seg_i = CURSEG_I(sbi, i);
1137 		if (sbi->ckpt->alloc_type[i] == SSR)
1138 			blkoff = sbi->blocks_per_seg;
1139 		else
1140 			blkoff = curseg_blkoff(sbi, i);
1141 
1142 		for (j = 0; j < blkoff; j++) {
1143 			if (!page) {
1144 				page = grab_meta_page(sbi, blkaddr++);
1145 				kaddr = (unsigned char *)page_address(page);
1146 				written_size = 0;
1147 			}
1148 			summary = (struct f2fs_summary *)(kaddr + written_size);
1149 			*summary = seg_i->sum_blk->entries[j];
1150 			written_size += SUMMARY_SIZE;
1151 			set_page_dirty(page);
1152 
1153 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1154 							SUM_FOOTER_SIZE)
1155 				continue;
1156 
1157 			f2fs_put_page(page, 1);
1158 			page = NULL;
1159 		}
1160 	}
1161 	if (page)
1162 		f2fs_put_page(page, 1);
1163 }
1164 
1165 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1166 					block_t blkaddr, int type)
1167 {
1168 	int i, end;
1169 	if (IS_DATASEG(type))
1170 		end = type + NR_CURSEG_DATA_TYPE;
1171 	else
1172 		end = type + NR_CURSEG_NODE_TYPE;
1173 
1174 	for (i = type; i < end; i++) {
1175 		struct curseg_info *sum = CURSEG_I(sbi, i);
1176 		mutex_lock(&sum->curseg_mutex);
1177 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1178 		mutex_unlock(&sum->curseg_mutex);
1179 	}
1180 }
1181 
1182 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1183 {
1184 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1185 		write_compacted_summaries(sbi, start_blk);
1186 	else
1187 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1188 }
1189 
1190 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1191 {
1192 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1193 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1194 	return;
1195 }
1196 
1197 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1198 					unsigned int val, int alloc)
1199 {
1200 	int i;
1201 
1202 	if (type == NAT_JOURNAL) {
1203 		for (i = 0; i < nats_in_cursum(sum); i++) {
1204 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1205 				return i;
1206 		}
1207 		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1208 			return update_nats_in_cursum(sum, 1);
1209 	} else if (type == SIT_JOURNAL) {
1210 		for (i = 0; i < sits_in_cursum(sum); i++)
1211 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1212 				return i;
1213 		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1214 			return update_sits_in_cursum(sum, 1);
1215 	}
1216 	return -1;
1217 }
1218 
1219 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1220 					unsigned int segno)
1221 {
1222 	struct sit_info *sit_i = SIT_I(sbi);
1223 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1224 	block_t blk_addr = sit_i->sit_base_addr + offset;
1225 
1226 	check_seg_range(sbi, segno);
1227 
1228 	/* calculate sit block address */
1229 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1230 		blk_addr += sit_i->sit_blocks;
1231 
1232 	return get_meta_page(sbi, blk_addr);
1233 }
1234 
1235 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1236 					unsigned int start)
1237 {
1238 	struct sit_info *sit_i = SIT_I(sbi);
1239 	struct page *src_page, *dst_page;
1240 	pgoff_t src_off, dst_off;
1241 	void *src_addr, *dst_addr;
1242 
1243 	src_off = current_sit_addr(sbi, start);
1244 	dst_off = next_sit_addr(sbi, src_off);
1245 
1246 	/* get current sit block page without lock */
1247 	src_page = get_meta_page(sbi, src_off);
1248 	dst_page = grab_meta_page(sbi, dst_off);
1249 	BUG_ON(PageDirty(src_page));
1250 
1251 	src_addr = page_address(src_page);
1252 	dst_addr = page_address(dst_page);
1253 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1254 
1255 	set_page_dirty(dst_page);
1256 	f2fs_put_page(src_page, 1);
1257 
1258 	set_to_next_sit(sit_i, start);
1259 
1260 	return dst_page;
1261 }
1262 
1263 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1264 {
1265 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1266 	struct f2fs_summary_block *sum = curseg->sum_blk;
1267 	int i;
1268 
1269 	/*
1270 	 * If the journal area in the current summary is full of sit entries,
1271 	 * all the sit entries will be flushed. Otherwise the sit entries
1272 	 * are not able to replace with newly hot sit entries.
1273 	 */
1274 	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1275 		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1276 			unsigned int segno;
1277 			segno = le32_to_cpu(segno_in_journal(sum, i));
1278 			__mark_sit_entry_dirty(sbi, segno);
1279 		}
1280 		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1281 		return 1;
1282 	}
1283 	return 0;
1284 }
1285 
1286 /*
1287  * CP calls this function, which flushes SIT entries including sit_journal,
1288  * and moves prefree segs to free segs.
1289  */
1290 void flush_sit_entries(struct f2fs_sb_info *sbi)
1291 {
1292 	struct sit_info *sit_i = SIT_I(sbi);
1293 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1294 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1295 	struct f2fs_summary_block *sum = curseg->sum_blk;
1296 	unsigned long nsegs = TOTAL_SEGS(sbi);
1297 	struct page *page = NULL;
1298 	struct f2fs_sit_block *raw_sit = NULL;
1299 	unsigned int start = 0, end = 0;
1300 	unsigned int segno = -1;
1301 	bool flushed;
1302 
1303 	mutex_lock(&curseg->curseg_mutex);
1304 	mutex_lock(&sit_i->sentry_lock);
1305 
1306 	/*
1307 	 * "flushed" indicates whether sit entries in journal are flushed
1308 	 * to the SIT area or not.
1309 	 */
1310 	flushed = flush_sits_in_journal(sbi);
1311 
1312 	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1313 		struct seg_entry *se = get_seg_entry(sbi, segno);
1314 		int sit_offset, offset;
1315 
1316 		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1317 
1318 		if (flushed)
1319 			goto to_sit_page;
1320 
1321 		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1322 		if (offset >= 0) {
1323 			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1324 			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1325 			goto flush_done;
1326 		}
1327 to_sit_page:
1328 		if (!page || (start > segno) || (segno > end)) {
1329 			if (page) {
1330 				f2fs_put_page(page, 1);
1331 				page = NULL;
1332 			}
1333 
1334 			start = START_SEGNO(sit_i, segno);
1335 			end = start + SIT_ENTRY_PER_BLOCK - 1;
1336 
1337 			/* read sit block that will be updated */
1338 			page = get_next_sit_page(sbi, start);
1339 			raw_sit = page_address(page);
1340 		}
1341 
1342 		/* udpate entry in SIT block */
1343 		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1344 flush_done:
1345 		__clear_bit(segno, bitmap);
1346 		sit_i->dirty_sentries--;
1347 	}
1348 	mutex_unlock(&sit_i->sentry_lock);
1349 	mutex_unlock(&curseg->curseg_mutex);
1350 
1351 	/* writeout last modified SIT block */
1352 	f2fs_put_page(page, 1);
1353 
1354 	set_prefree_as_free_segments(sbi);
1355 }
1356 
1357 static int build_sit_info(struct f2fs_sb_info *sbi)
1358 {
1359 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1360 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1361 	struct sit_info *sit_i;
1362 	unsigned int sit_segs, start;
1363 	char *src_bitmap, *dst_bitmap;
1364 	unsigned int bitmap_size;
1365 
1366 	/* allocate memory for SIT information */
1367 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1368 	if (!sit_i)
1369 		return -ENOMEM;
1370 
1371 	SM_I(sbi)->sit_info = sit_i;
1372 
1373 	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1374 	if (!sit_i->sentries)
1375 		return -ENOMEM;
1376 
1377 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1378 	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1379 	if (!sit_i->dirty_sentries_bitmap)
1380 		return -ENOMEM;
1381 
1382 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1383 		sit_i->sentries[start].cur_valid_map
1384 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1385 		sit_i->sentries[start].ckpt_valid_map
1386 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1387 		if (!sit_i->sentries[start].cur_valid_map
1388 				|| !sit_i->sentries[start].ckpt_valid_map)
1389 			return -ENOMEM;
1390 	}
1391 
1392 	if (sbi->segs_per_sec > 1) {
1393 		sit_i->sec_entries = vzalloc(sbi->total_sections *
1394 					sizeof(struct sec_entry));
1395 		if (!sit_i->sec_entries)
1396 			return -ENOMEM;
1397 	}
1398 
1399 	/* get information related with SIT */
1400 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1401 
1402 	/* setup SIT bitmap from ckeckpoint pack */
1403 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1404 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1405 
1406 	dst_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1407 	if (!dst_bitmap)
1408 		return -ENOMEM;
1409 	memcpy(dst_bitmap, src_bitmap, bitmap_size);
1410 
1411 	/* init SIT information */
1412 	sit_i->s_ops = &default_salloc_ops;
1413 
1414 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1415 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1416 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1417 	sit_i->sit_bitmap = dst_bitmap;
1418 	sit_i->bitmap_size = bitmap_size;
1419 	sit_i->dirty_sentries = 0;
1420 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1421 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1422 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1423 	mutex_init(&sit_i->sentry_lock);
1424 	return 0;
1425 }
1426 
1427 static int build_free_segmap(struct f2fs_sb_info *sbi)
1428 {
1429 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1430 	struct free_segmap_info *free_i;
1431 	unsigned int bitmap_size, sec_bitmap_size;
1432 
1433 	/* allocate memory for free segmap information */
1434 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1435 	if (!free_i)
1436 		return -ENOMEM;
1437 
1438 	SM_I(sbi)->free_info = free_i;
1439 
1440 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1441 	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1442 	if (!free_i->free_segmap)
1443 		return -ENOMEM;
1444 
1445 	sec_bitmap_size = f2fs_bitmap_size(sbi->total_sections);
1446 	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1447 	if (!free_i->free_secmap)
1448 		return -ENOMEM;
1449 
1450 	/* set all segments as dirty temporarily */
1451 	memset(free_i->free_segmap, 0xff, bitmap_size);
1452 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1453 
1454 	/* init free segmap information */
1455 	free_i->start_segno =
1456 		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1457 	free_i->free_segments = 0;
1458 	free_i->free_sections = 0;
1459 	rwlock_init(&free_i->segmap_lock);
1460 	return 0;
1461 }
1462 
1463 static int build_curseg(struct f2fs_sb_info *sbi)
1464 {
1465 	struct curseg_info *array;
1466 	int i;
1467 
1468 	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1469 	if (!array)
1470 		return -ENOMEM;
1471 
1472 	SM_I(sbi)->curseg_array = array;
1473 
1474 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1475 		mutex_init(&array[i].curseg_mutex);
1476 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1477 		if (!array[i].sum_blk)
1478 			return -ENOMEM;
1479 		array[i].segno = NULL_SEGNO;
1480 		array[i].next_blkoff = 0;
1481 	}
1482 	return restore_curseg_summaries(sbi);
1483 }
1484 
1485 static void build_sit_entries(struct f2fs_sb_info *sbi)
1486 {
1487 	struct sit_info *sit_i = SIT_I(sbi);
1488 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1489 	struct f2fs_summary_block *sum = curseg->sum_blk;
1490 	unsigned int start;
1491 
1492 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1493 		struct seg_entry *se = &sit_i->sentries[start];
1494 		struct f2fs_sit_block *sit_blk;
1495 		struct f2fs_sit_entry sit;
1496 		struct page *page;
1497 		int i;
1498 
1499 		mutex_lock(&curseg->curseg_mutex);
1500 		for (i = 0; i < sits_in_cursum(sum); i++) {
1501 			if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1502 				sit = sit_in_journal(sum, i);
1503 				mutex_unlock(&curseg->curseg_mutex);
1504 				goto got_it;
1505 			}
1506 		}
1507 		mutex_unlock(&curseg->curseg_mutex);
1508 		page = get_current_sit_page(sbi, start);
1509 		sit_blk = (struct f2fs_sit_block *)page_address(page);
1510 		sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1511 		f2fs_put_page(page, 1);
1512 got_it:
1513 		check_block_count(sbi, start, &sit);
1514 		seg_info_from_raw_sit(se, &sit);
1515 		if (sbi->segs_per_sec > 1) {
1516 			struct sec_entry *e = get_sec_entry(sbi, start);
1517 			e->valid_blocks += se->valid_blocks;
1518 		}
1519 	}
1520 }
1521 
1522 static void init_free_segmap(struct f2fs_sb_info *sbi)
1523 {
1524 	unsigned int start;
1525 	int type;
1526 
1527 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1528 		struct seg_entry *sentry = get_seg_entry(sbi, start);
1529 		if (!sentry->valid_blocks)
1530 			__set_free(sbi, start);
1531 	}
1532 
1533 	/* set use the current segments */
1534 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1535 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1536 		__set_test_and_inuse(sbi, curseg_t->segno);
1537 	}
1538 }
1539 
1540 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1541 {
1542 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1543 	struct free_segmap_info *free_i = FREE_I(sbi);
1544 	unsigned int segno = 0, offset = 0;
1545 	unsigned short valid_blocks;
1546 
1547 	while (segno < TOTAL_SEGS(sbi)) {
1548 		/* find dirty segment based on free segmap */
1549 		segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset);
1550 		if (segno >= TOTAL_SEGS(sbi))
1551 			break;
1552 		offset = segno + 1;
1553 		valid_blocks = get_valid_blocks(sbi, segno, 0);
1554 		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1555 			continue;
1556 		mutex_lock(&dirty_i->seglist_lock);
1557 		__locate_dirty_segment(sbi, segno, DIRTY);
1558 		mutex_unlock(&dirty_i->seglist_lock);
1559 	}
1560 }
1561 
1562 static int init_victim_segmap(struct f2fs_sb_info *sbi)
1563 {
1564 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1565 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1566 
1567 	dirty_i->victim_segmap[FG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
1568 	dirty_i->victim_segmap[BG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
1569 	if (!dirty_i->victim_segmap[FG_GC] || !dirty_i->victim_segmap[BG_GC])
1570 		return -ENOMEM;
1571 	return 0;
1572 }
1573 
1574 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1575 {
1576 	struct dirty_seglist_info *dirty_i;
1577 	unsigned int bitmap_size, i;
1578 
1579 	/* allocate memory for dirty segments list information */
1580 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1581 	if (!dirty_i)
1582 		return -ENOMEM;
1583 
1584 	SM_I(sbi)->dirty_info = dirty_i;
1585 	mutex_init(&dirty_i->seglist_lock);
1586 
1587 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1588 
1589 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1590 		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1591 		if (!dirty_i->dirty_segmap[i])
1592 			return -ENOMEM;
1593 	}
1594 
1595 	init_dirty_segmap(sbi);
1596 	return init_victim_segmap(sbi);
1597 }
1598 
1599 /*
1600  * Update min, max modified time for cost-benefit GC algorithm
1601  */
1602 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1603 {
1604 	struct sit_info *sit_i = SIT_I(sbi);
1605 	unsigned int segno;
1606 
1607 	mutex_lock(&sit_i->sentry_lock);
1608 
1609 	sit_i->min_mtime = LLONG_MAX;
1610 
1611 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1612 		unsigned int i;
1613 		unsigned long long mtime = 0;
1614 
1615 		for (i = 0; i < sbi->segs_per_sec; i++)
1616 			mtime += get_seg_entry(sbi, segno + i)->mtime;
1617 
1618 		mtime = div_u64(mtime, sbi->segs_per_sec);
1619 
1620 		if (sit_i->min_mtime > mtime)
1621 			sit_i->min_mtime = mtime;
1622 	}
1623 	sit_i->max_mtime = get_mtime(sbi);
1624 	mutex_unlock(&sit_i->sentry_lock);
1625 }
1626 
1627 int build_segment_manager(struct f2fs_sb_info *sbi)
1628 {
1629 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1630 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1631 	struct f2fs_sm_info *sm_info;
1632 	int err;
1633 
1634 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1635 	if (!sm_info)
1636 		return -ENOMEM;
1637 
1638 	/* init sm info */
1639 	sbi->sm_info = sm_info;
1640 	INIT_LIST_HEAD(&sm_info->wblist_head);
1641 	spin_lock_init(&sm_info->wblist_lock);
1642 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1643 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1644 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1645 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1646 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1647 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1648 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1649 
1650 	err = build_sit_info(sbi);
1651 	if (err)
1652 		return err;
1653 	err = build_free_segmap(sbi);
1654 	if (err)
1655 		return err;
1656 	err = build_curseg(sbi);
1657 	if (err)
1658 		return err;
1659 
1660 	/* reinit free segmap based on SIT */
1661 	build_sit_entries(sbi);
1662 
1663 	init_free_segmap(sbi);
1664 	err = build_dirty_segmap(sbi);
1665 	if (err)
1666 		return err;
1667 
1668 	init_min_max_mtime(sbi);
1669 	return 0;
1670 }
1671 
1672 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1673 		enum dirty_type dirty_type)
1674 {
1675 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1676 
1677 	mutex_lock(&dirty_i->seglist_lock);
1678 	kfree(dirty_i->dirty_segmap[dirty_type]);
1679 	dirty_i->nr_dirty[dirty_type] = 0;
1680 	mutex_unlock(&dirty_i->seglist_lock);
1681 }
1682 
1683 void reset_victim_segmap(struct f2fs_sb_info *sbi)
1684 {
1685 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1686 	memset(DIRTY_I(sbi)->victim_segmap[FG_GC], 0, bitmap_size);
1687 }
1688 
1689 static void destroy_victim_segmap(struct f2fs_sb_info *sbi)
1690 {
1691 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1692 
1693 	kfree(dirty_i->victim_segmap[FG_GC]);
1694 	kfree(dirty_i->victim_segmap[BG_GC]);
1695 }
1696 
1697 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1698 {
1699 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1700 	int i;
1701 
1702 	if (!dirty_i)
1703 		return;
1704 
1705 	/* discard pre-free/dirty segments list */
1706 	for (i = 0; i < NR_DIRTY_TYPE; i++)
1707 		discard_dirty_segmap(sbi, i);
1708 
1709 	destroy_victim_segmap(sbi);
1710 	SM_I(sbi)->dirty_info = NULL;
1711 	kfree(dirty_i);
1712 }
1713 
1714 static void destroy_curseg(struct f2fs_sb_info *sbi)
1715 {
1716 	struct curseg_info *array = SM_I(sbi)->curseg_array;
1717 	int i;
1718 
1719 	if (!array)
1720 		return;
1721 	SM_I(sbi)->curseg_array = NULL;
1722 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1723 		kfree(array[i].sum_blk);
1724 	kfree(array);
1725 }
1726 
1727 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1728 {
1729 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1730 	if (!free_i)
1731 		return;
1732 	SM_I(sbi)->free_info = NULL;
1733 	kfree(free_i->free_segmap);
1734 	kfree(free_i->free_secmap);
1735 	kfree(free_i);
1736 }
1737 
1738 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1739 {
1740 	struct sit_info *sit_i = SIT_I(sbi);
1741 	unsigned int start;
1742 
1743 	if (!sit_i)
1744 		return;
1745 
1746 	if (sit_i->sentries) {
1747 		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1748 			kfree(sit_i->sentries[start].cur_valid_map);
1749 			kfree(sit_i->sentries[start].ckpt_valid_map);
1750 		}
1751 	}
1752 	vfree(sit_i->sentries);
1753 	vfree(sit_i->sec_entries);
1754 	kfree(sit_i->dirty_sentries_bitmap);
1755 
1756 	SM_I(sbi)->sit_info = NULL;
1757 	kfree(sit_i->sit_bitmap);
1758 	kfree(sit_i);
1759 }
1760 
1761 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1762 {
1763 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1764 	destroy_dirty_segmap(sbi);
1765 	destroy_curseg(sbi);
1766 	destroy_free_segmap(sbi);
1767 	destroy_sit_info(sbi);
1768 	sbi->sm_info = NULL;
1769 	kfree(sm_info);
1770 }
1771