xref: /openbmc/linux/fs/f2fs/segment.c (revision 7effbd18)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	release_atomic_write_cnt(inode);
196 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
197 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
198 	clear_inode_flag(inode, FI_ATOMIC_FILE);
199 	stat_dec_atomic_inode(inode);
200 
201 	F2FS_I(inode)->atomic_write_task = NULL;
202 
203 	if (clean) {
204 		truncate_inode_pages_final(inode->i_mapping);
205 		f2fs_i_size_write(inode, fi->original_i_size);
206 		fi->original_i_size = 0;
207 	}
208 }
209 
210 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
211 			block_t new_addr, block_t *old_addr, bool recover)
212 {
213 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
214 	struct dnode_of_data dn;
215 	struct node_info ni;
216 	int err;
217 
218 retry:
219 	set_new_dnode(&dn, inode, NULL, NULL, 0);
220 	err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA);
221 	if (err) {
222 		if (err == -ENOMEM) {
223 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
224 			goto retry;
225 		}
226 		return err;
227 	}
228 
229 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
230 	if (err) {
231 		f2fs_put_dnode(&dn);
232 		return err;
233 	}
234 
235 	if (recover) {
236 		/* dn.data_blkaddr is always valid */
237 		if (!__is_valid_data_blkaddr(new_addr)) {
238 			if (new_addr == NULL_ADDR)
239 				dec_valid_block_count(sbi, inode, 1);
240 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
241 			f2fs_update_data_blkaddr(&dn, new_addr);
242 		} else {
243 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
244 				new_addr, ni.version, true, true);
245 		}
246 	} else {
247 		blkcnt_t count = 1;
248 
249 		*old_addr = dn.data_blkaddr;
250 		f2fs_truncate_data_blocks_range(&dn, 1);
251 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
252 		inc_valid_block_count(sbi, inode, &count);
253 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
254 					ni.version, true, false);
255 	}
256 
257 	f2fs_put_dnode(&dn);
258 
259 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
260 					index, *old_addr, new_addr, recover);
261 	return 0;
262 }
263 
264 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
265 					bool revoke)
266 {
267 	struct revoke_entry *cur, *tmp;
268 	pgoff_t start_index = 0;
269 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
270 
271 	list_for_each_entry_safe(cur, tmp, head, list) {
272 		if (revoke) {
273 			__replace_atomic_write_block(inode, cur->index,
274 						cur->old_addr, NULL, true);
275 		} else if (truncate) {
276 			f2fs_truncate_hole(inode, start_index, cur->index);
277 			start_index = cur->index + 1;
278 		}
279 
280 		list_del(&cur->list);
281 		kmem_cache_free(revoke_entry_slab, cur);
282 	}
283 
284 	if (!revoke && truncate)
285 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
286 }
287 
288 static int __f2fs_commit_atomic_write(struct inode *inode)
289 {
290 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
291 	struct f2fs_inode_info *fi = F2FS_I(inode);
292 	struct inode *cow_inode = fi->cow_inode;
293 	struct revoke_entry *new;
294 	struct list_head revoke_list;
295 	block_t blkaddr;
296 	struct dnode_of_data dn;
297 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
298 	pgoff_t off = 0, blen, index;
299 	int ret = 0, i;
300 
301 	INIT_LIST_HEAD(&revoke_list);
302 
303 	while (len) {
304 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
305 
306 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
307 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
308 		if (ret && ret != -ENOENT) {
309 			goto out;
310 		} else if (ret == -ENOENT) {
311 			ret = 0;
312 			if (dn.max_level == 0)
313 				goto out;
314 			goto next;
315 		}
316 
317 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
318 				len);
319 		index = off;
320 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
321 			blkaddr = f2fs_data_blkaddr(&dn);
322 
323 			if (!__is_valid_data_blkaddr(blkaddr)) {
324 				continue;
325 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
326 					DATA_GENERIC_ENHANCE)) {
327 				f2fs_put_dnode(&dn);
328 				ret = -EFSCORRUPTED;
329 				f2fs_handle_error(sbi,
330 						ERROR_INVALID_BLKADDR);
331 				goto out;
332 			}
333 
334 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
335 							true, NULL);
336 
337 			ret = __replace_atomic_write_block(inode, index, blkaddr,
338 							&new->old_addr, false);
339 			if (ret) {
340 				f2fs_put_dnode(&dn);
341 				kmem_cache_free(revoke_entry_slab, new);
342 				goto out;
343 			}
344 
345 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
346 			new->index = index;
347 			list_add_tail(&new->list, &revoke_list);
348 		}
349 		f2fs_put_dnode(&dn);
350 next:
351 		off += blen;
352 		len -= blen;
353 	}
354 
355 out:
356 	if (ret) {
357 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
358 	} else {
359 		sbi->committed_atomic_block += fi->atomic_write_cnt;
360 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
361 	}
362 
363 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
364 
365 	return ret;
366 }
367 
368 int f2fs_commit_atomic_write(struct inode *inode)
369 {
370 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
371 	struct f2fs_inode_info *fi = F2FS_I(inode);
372 	int err;
373 
374 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
375 	if (err)
376 		return err;
377 
378 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
379 	f2fs_lock_op(sbi);
380 
381 	err = __f2fs_commit_atomic_write(inode);
382 
383 	f2fs_unlock_op(sbi);
384 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
385 
386 	return err;
387 }
388 
389 /*
390  * This function balances dirty node and dentry pages.
391  * In addition, it controls garbage collection.
392  */
393 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
394 {
395 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
396 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
397 
398 	/* balance_fs_bg is able to be pending */
399 	if (need && excess_cached_nats(sbi))
400 		f2fs_balance_fs_bg(sbi, false);
401 
402 	if (!f2fs_is_checkpoint_ready(sbi))
403 		return;
404 
405 	/*
406 	 * We should do GC or end up with checkpoint, if there are so many dirty
407 	 * dir/node pages without enough free segments.
408 	 */
409 	if (has_not_enough_free_secs(sbi, 0, 0)) {
410 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
411 					sbi->gc_thread->f2fs_gc_task) {
412 			DEFINE_WAIT(wait);
413 
414 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
415 						TASK_UNINTERRUPTIBLE);
416 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
417 			io_schedule();
418 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
419 		} else {
420 			struct f2fs_gc_control gc_control = {
421 				.victim_segno = NULL_SEGNO,
422 				.init_gc_type = BG_GC,
423 				.no_bg_gc = true,
424 				.should_migrate_blocks = false,
425 				.err_gc_skipped = false,
426 				.nr_free_secs = 1 };
427 			f2fs_down_write(&sbi->gc_lock);
428 			f2fs_gc(sbi, &gc_control);
429 		}
430 	}
431 }
432 
433 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
434 {
435 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
436 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
437 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
438 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
439 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
440 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
441 	unsigned int threshold = sbi->blocks_per_seg * factor *
442 					DEFAULT_DIRTY_THRESHOLD;
443 	unsigned int global_threshold = threshold * 3 / 2;
444 
445 	if (dents >= threshold || qdata >= threshold ||
446 		nodes >= threshold || meta >= threshold ||
447 		imeta >= threshold)
448 		return true;
449 	return dents + qdata + nodes + meta + imeta >  global_threshold;
450 }
451 
452 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
453 {
454 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
455 		return;
456 
457 	/* try to shrink extent cache when there is no enough memory */
458 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
459 		f2fs_shrink_read_extent_tree(sbi,
460 				READ_EXTENT_CACHE_SHRINK_NUMBER);
461 
462 	/* try to shrink age extent cache when there is no enough memory */
463 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
464 		f2fs_shrink_age_extent_tree(sbi,
465 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
466 
467 	/* check the # of cached NAT entries */
468 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
469 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
470 
471 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
472 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
473 	else
474 		f2fs_build_free_nids(sbi, false, false);
475 
476 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
477 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
478 		goto do_sync;
479 
480 	/* there is background inflight IO or foreground operation recently */
481 	if (is_inflight_io(sbi, REQ_TIME) ||
482 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
483 		return;
484 
485 	/* exceed periodical checkpoint timeout threshold */
486 	if (f2fs_time_over(sbi, CP_TIME))
487 		goto do_sync;
488 
489 	/* checkpoint is the only way to shrink partial cached entries */
490 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
491 		f2fs_available_free_memory(sbi, INO_ENTRIES))
492 		return;
493 
494 do_sync:
495 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
496 		struct blk_plug plug;
497 
498 		mutex_lock(&sbi->flush_lock);
499 
500 		blk_start_plug(&plug);
501 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
502 		blk_finish_plug(&plug);
503 
504 		mutex_unlock(&sbi->flush_lock);
505 	}
506 	f2fs_sync_fs(sbi->sb, 1);
507 	stat_inc_bg_cp_count(sbi->stat_info);
508 }
509 
510 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
511 				struct block_device *bdev)
512 {
513 	int ret = blkdev_issue_flush(bdev);
514 
515 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
516 				test_opt(sbi, FLUSH_MERGE), ret);
517 	if (!ret)
518 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
519 	return ret;
520 }
521 
522 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
523 {
524 	int ret = 0;
525 	int i;
526 
527 	if (!f2fs_is_multi_device(sbi))
528 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
529 
530 	for (i = 0; i < sbi->s_ndevs; i++) {
531 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
532 			continue;
533 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
534 		if (ret)
535 			break;
536 	}
537 	return ret;
538 }
539 
540 static int issue_flush_thread(void *data)
541 {
542 	struct f2fs_sb_info *sbi = data;
543 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
544 	wait_queue_head_t *q = &fcc->flush_wait_queue;
545 repeat:
546 	if (kthread_should_stop())
547 		return 0;
548 
549 	if (!llist_empty(&fcc->issue_list)) {
550 		struct flush_cmd *cmd, *next;
551 		int ret;
552 
553 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
554 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
555 
556 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
557 
558 		ret = submit_flush_wait(sbi, cmd->ino);
559 		atomic_inc(&fcc->issued_flush);
560 
561 		llist_for_each_entry_safe(cmd, next,
562 					  fcc->dispatch_list, llnode) {
563 			cmd->ret = ret;
564 			complete(&cmd->wait);
565 		}
566 		fcc->dispatch_list = NULL;
567 	}
568 
569 	wait_event_interruptible(*q,
570 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
571 	goto repeat;
572 }
573 
574 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
575 {
576 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
577 	struct flush_cmd cmd;
578 	int ret;
579 
580 	if (test_opt(sbi, NOBARRIER))
581 		return 0;
582 
583 	if (!test_opt(sbi, FLUSH_MERGE)) {
584 		atomic_inc(&fcc->queued_flush);
585 		ret = submit_flush_wait(sbi, ino);
586 		atomic_dec(&fcc->queued_flush);
587 		atomic_inc(&fcc->issued_flush);
588 		return ret;
589 	}
590 
591 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
592 	    f2fs_is_multi_device(sbi)) {
593 		ret = submit_flush_wait(sbi, ino);
594 		atomic_dec(&fcc->queued_flush);
595 
596 		atomic_inc(&fcc->issued_flush);
597 		return ret;
598 	}
599 
600 	cmd.ino = ino;
601 	init_completion(&cmd.wait);
602 
603 	llist_add(&cmd.llnode, &fcc->issue_list);
604 
605 	/*
606 	 * update issue_list before we wake up issue_flush thread, this
607 	 * smp_mb() pairs with another barrier in ___wait_event(), see
608 	 * more details in comments of waitqueue_active().
609 	 */
610 	smp_mb();
611 
612 	if (waitqueue_active(&fcc->flush_wait_queue))
613 		wake_up(&fcc->flush_wait_queue);
614 
615 	if (fcc->f2fs_issue_flush) {
616 		wait_for_completion(&cmd.wait);
617 		atomic_dec(&fcc->queued_flush);
618 	} else {
619 		struct llist_node *list;
620 
621 		list = llist_del_all(&fcc->issue_list);
622 		if (!list) {
623 			wait_for_completion(&cmd.wait);
624 			atomic_dec(&fcc->queued_flush);
625 		} else {
626 			struct flush_cmd *tmp, *next;
627 
628 			ret = submit_flush_wait(sbi, ino);
629 
630 			llist_for_each_entry_safe(tmp, next, list, llnode) {
631 				if (tmp == &cmd) {
632 					cmd.ret = ret;
633 					atomic_dec(&fcc->queued_flush);
634 					continue;
635 				}
636 				tmp->ret = ret;
637 				complete(&tmp->wait);
638 			}
639 		}
640 	}
641 
642 	return cmd.ret;
643 }
644 
645 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
646 {
647 	dev_t dev = sbi->sb->s_bdev->bd_dev;
648 	struct flush_cmd_control *fcc;
649 
650 	if (SM_I(sbi)->fcc_info) {
651 		fcc = SM_I(sbi)->fcc_info;
652 		if (fcc->f2fs_issue_flush)
653 			return 0;
654 		goto init_thread;
655 	}
656 
657 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
658 	if (!fcc)
659 		return -ENOMEM;
660 	atomic_set(&fcc->issued_flush, 0);
661 	atomic_set(&fcc->queued_flush, 0);
662 	init_waitqueue_head(&fcc->flush_wait_queue);
663 	init_llist_head(&fcc->issue_list);
664 	SM_I(sbi)->fcc_info = fcc;
665 	if (!test_opt(sbi, FLUSH_MERGE))
666 		return 0;
667 
668 init_thread:
669 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
670 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
671 	if (IS_ERR(fcc->f2fs_issue_flush)) {
672 		int err = PTR_ERR(fcc->f2fs_issue_flush);
673 
674 		fcc->f2fs_issue_flush = NULL;
675 		return err;
676 	}
677 
678 	return 0;
679 }
680 
681 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
682 {
683 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
684 
685 	if (fcc && fcc->f2fs_issue_flush) {
686 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
687 
688 		fcc->f2fs_issue_flush = NULL;
689 		kthread_stop(flush_thread);
690 	}
691 	if (free) {
692 		kfree(fcc);
693 		SM_I(sbi)->fcc_info = NULL;
694 	}
695 }
696 
697 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
698 {
699 	int ret = 0, i;
700 
701 	if (!f2fs_is_multi_device(sbi))
702 		return 0;
703 
704 	if (test_opt(sbi, NOBARRIER))
705 		return 0;
706 
707 	for (i = 1; i < sbi->s_ndevs; i++) {
708 		int count = DEFAULT_RETRY_IO_COUNT;
709 
710 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
711 			continue;
712 
713 		do {
714 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
715 			if (ret)
716 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
717 		} while (ret && --count);
718 
719 		if (ret) {
720 			f2fs_stop_checkpoint(sbi, false,
721 					STOP_CP_REASON_FLUSH_FAIL);
722 			break;
723 		}
724 
725 		spin_lock(&sbi->dev_lock);
726 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
727 		spin_unlock(&sbi->dev_lock);
728 	}
729 
730 	return ret;
731 }
732 
733 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
734 		enum dirty_type dirty_type)
735 {
736 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
737 
738 	/* need not be added */
739 	if (IS_CURSEG(sbi, segno))
740 		return;
741 
742 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
743 		dirty_i->nr_dirty[dirty_type]++;
744 
745 	if (dirty_type == DIRTY) {
746 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
747 		enum dirty_type t = sentry->type;
748 
749 		if (unlikely(t >= DIRTY)) {
750 			f2fs_bug_on(sbi, 1);
751 			return;
752 		}
753 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
754 			dirty_i->nr_dirty[t]++;
755 
756 		if (__is_large_section(sbi)) {
757 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
758 			block_t valid_blocks =
759 				get_valid_blocks(sbi, segno, true);
760 
761 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
762 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
763 
764 			if (!IS_CURSEC(sbi, secno))
765 				set_bit(secno, dirty_i->dirty_secmap);
766 		}
767 	}
768 }
769 
770 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
771 		enum dirty_type dirty_type)
772 {
773 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
774 	block_t valid_blocks;
775 
776 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
777 		dirty_i->nr_dirty[dirty_type]--;
778 
779 	if (dirty_type == DIRTY) {
780 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
781 		enum dirty_type t = sentry->type;
782 
783 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
784 			dirty_i->nr_dirty[t]--;
785 
786 		valid_blocks = get_valid_blocks(sbi, segno, true);
787 		if (valid_blocks == 0) {
788 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
789 						dirty_i->victim_secmap);
790 #ifdef CONFIG_F2FS_CHECK_FS
791 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
792 #endif
793 		}
794 		if (__is_large_section(sbi)) {
795 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
796 
797 			if (!valid_blocks ||
798 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
799 				clear_bit(secno, dirty_i->dirty_secmap);
800 				return;
801 			}
802 
803 			if (!IS_CURSEC(sbi, secno))
804 				set_bit(secno, dirty_i->dirty_secmap);
805 		}
806 	}
807 }
808 
809 /*
810  * Should not occur error such as -ENOMEM.
811  * Adding dirty entry into seglist is not critical operation.
812  * If a given segment is one of current working segments, it won't be added.
813  */
814 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
815 {
816 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
817 	unsigned short valid_blocks, ckpt_valid_blocks;
818 	unsigned int usable_blocks;
819 
820 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
821 		return;
822 
823 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
824 	mutex_lock(&dirty_i->seglist_lock);
825 
826 	valid_blocks = get_valid_blocks(sbi, segno, false);
827 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
828 
829 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
830 		ckpt_valid_blocks == usable_blocks)) {
831 		__locate_dirty_segment(sbi, segno, PRE);
832 		__remove_dirty_segment(sbi, segno, DIRTY);
833 	} else if (valid_blocks < usable_blocks) {
834 		__locate_dirty_segment(sbi, segno, DIRTY);
835 	} else {
836 		/* Recovery routine with SSR needs this */
837 		__remove_dirty_segment(sbi, segno, DIRTY);
838 	}
839 
840 	mutex_unlock(&dirty_i->seglist_lock);
841 }
842 
843 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
844 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
845 {
846 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
847 	unsigned int segno;
848 
849 	mutex_lock(&dirty_i->seglist_lock);
850 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
851 		if (get_valid_blocks(sbi, segno, false))
852 			continue;
853 		if (IS_CURSEG(sbi, segno))
854 			continue;
855 		__locate_dirty_segment(sbi, segno, PRE);
856 		__remove_dirty_segment(sbi, segno, DIRTY);
857 	}
858 	mutex_unlock(&dirty_i->seglist_lock);
859 }
860 
861 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
862 {
863 	int ovp_hole_segs =
864 		(overprovision_segments(sbi) - reserved_segments(sbi));
865 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
866 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
867 	block_t holes[2] = {0, 0};	/* DATA and NODE */
868 	block_t unusable;
869 	struct seg_entry *se;
870 	unsigned int segno;
871 
872 	mutex_lock(&dirty_i->seglist_lock);
873 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
874 		se = get_seg_entry(sbi, segno);
875 		if (IS_NODESEG(se->type))
876 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
877 							se->valid_blocks;
878 		else
879 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
880 							se->valid_blocks;
881 	}
882 	mutex_unlock(&dirty_i->seglist_lock);
883 
884 	unusable = max(holes[DATA], holes[NODE]);
885 	if (unusable > ovp_holes)
886 		return unusable - ovp_holes;
887 	return 0;
888 }
889 
890 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
891 {
892 	int ovp_hole_segs =
893 		(overprovision_segments(sbi) - reserved_segments(sbi));
894 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
895 		return -EAGAIN;
896 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
897 		dirty_segments(sbi) > ovp_hole_segs)
898 		return -EAGAIN;
899 	return 0;
900 }
901 
902 /* This is only used by SBI_CP_DISABLED */
903 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
904 {
905 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
906 	unsigned int segno = 0;
907 
908 	mutex_lock(&dirty_i->seglist_lock);
909 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
910 		if (get_valid_blocks(sbi, segno, false))
911 			continue;
912 		if (get_ckpt_valid_blocks(sbi, segno, false))
913 			continue;
914 		mutex_unlock(&dirty_i->seglist_lock);
915 		return segno;
916 	}
917 	mutex_unlock(&dirty_i->seglist_lock);
918 	return NULL_SEGNO;
919 }
920 
921 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
922 		struct block_device *bdev, block_t lstart,
923 		block_t start, block_t len)
924 {
925 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
926 	struct list_head *pend_list;
927 	struct discard_cmd *dc;
928 
929 	f2fs_bug_on(sbi, !len);
930 
931 	pend_list = &dcc->pend_list[plist_idx(len)];
932 
933 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
934 	INIT_LIST_HEAD(&dc->list);
935 	dc->bdev = bdev;
936 	dc->lstart = lstart;
937 	dc->start = start;
938 	dc->len = len;
939 	dc->ref = 0;
940 	dc->state = D_PREP;
941 	dc->queued = 0;
942 	dc->error = 0;
943 	init_completion(&dc->wait);
944 	list_add_tail(&dc->list, pend_list);
945 	spin_lock_init(&dc->lock);
946 	dc->bio_ref = 0;
947 	atomic_inc(&dcc->discard_cmd_cnt);
948 	dcc->undiscard_blks += len;
949 
950 	return dc;
951 }
952 
953 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
954 				struct block_device *bdev, block_t lstart,
955 				block_t start, block_t len,
956 				struct rb_node *parent, struct rb_node **p,
957 				bool leftmost)
958 {
959 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
960 	struct discard_cmd *dc;
961 
962 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
963 
964 	rb_link_node(&dc->rb_node, parent, p);
965 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
966 
967 	return dc;
968 }
969 
970 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
971 							struct discard_cmd *dc)
972 {
973 	if (dc->state == D_DONE)
974 		atomic_sub(dc->queued, &dcc->queued_discard);
975 
976 	list_del(&dc->list);
977 	rb_erase_cached(&dc->rb_node, &dcc->root);
978 	dcc->undiscard_blks -= dc->len;
979 
980 	kmem_cache_free(discard_cmd_slab, dc);
981 
982 	atomic_dec(&dcc->discard_cmd_cnt);
983 }
984 
985 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
986 							struct discard_cmd *dc)
987 {
988 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
989 	unsigned long flags;
990 
991 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
992 
993 	spin_lock_irqsave(&dc->lock, flags);
994 	if (dc->bio_ref) {
995 		spin_unlock_irqrestore(&dc->lock, flags);
996 		return;
997 	}
998 	spin_unlock_irqrestore(&dc->lock, flags);
999 
1000 	f2fs_bug_on(sbi, dc->ref);
1001 
1002 	if (dc->error == -EOPNOTSUPP)
1003 		dc->error = 0;
1004 
1005 	if (dc->error)
1006 		printk_ratelimited(
1007 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1008 			KERN_INFO, sbi->sb->s_id,
1009 			dc->lstart, dc->start, dc->len, dc->error);
1010 	__detach_discard_cmd(dcc, dc);
1011 }
1012 
1013 static void f2fs_submit_discard_endio(struct bio *bio)
1014 {
1015 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1016 	unsigned long flags;
1017 
1018 	spin_lock_irqsave(&dc->lock, flags);
1019 	if (!dc->error)
1020 		dc->error = blk_status_to_errno(bio->bi_status);
1021 	dc->bio_ref--;
1022 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1023 		dc->state = D_DONE;
1024 		complete_all(&dc->wait);
1025 	}
1026 	spin_unlock_irqrestore(&dc->lock, flags);
1027 	bio_put(bio);
1028 }
1029 
1030 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1031 				block_t start, block_t end)
1032 {
1033 #ifdef CONFIG_F2FS_CHECK_FS
1034 	struct seg_entry *sentry;
1035 	unsigned int segno;
1036 	block_t blk = start;
1037 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1038 	unsigned long *map;
1039 
1040 	while (blk < end) {
1041 		segno = GET_SEGNO(sbi, blk);
1042 		sentry = get_seg_entry(sbi, segno);
1043 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1044 
1045 		if (end < START_BLOCK(sbi, segno + 1))
1046 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1047 		else
1048 			size = max_blocks;
1049 		map = (unsigned long *)(sentry->cur_valid_map);
1050 		offset = __find_rev_next_bit(map, size, offset);
1051 		f2fs_bug_on(sbi, offset != size);
1052 		blk = START_BLOCK(sbi, segno + 1);
1053 	}
1054 #endif
1055 }
1056 
1057 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1058 				struct discard_policy *dpolicy,
1059 				int discard_type, unsigned int granularity)
1060 {
1061 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1062 
1063 	/* common policy */
1064 	dpolicy->type = discard_type;
1065 	dpolicy->sync = true;
1066 	dpolicy->ordered = false;
1067 	dpolicy->granularity = granularity;
1068 
1069 	dpolicy->max_requests = dcc->max_discard_request;
1070 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1071 	dpolicy->timeout = false;
1072 
1073 	if (discard_type == DPOLICY_BG) {
1074 		dpolicy->min_interval = dcc->min_discard_issue_time;
1075 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1076 		dpolicy->max_interval = dcc->max_discard_issue_time;
1077 		dpolicy->io_aware = true;
1078 		dpolicy->sync = false;
1079 		dpolicy->ordered = true;
1080 		if (utilization(sbi) > dcc->discard_urgent_util) {
1081 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1082 			if (atomic_read(&dcc->discard_cmd_cnt))
1083 				dpolicy->max_interval =
1084 					dcc->min_discard_issue_time;
1085 		}
1086 	} else if (discard_type == DPOLICY_FORCE) {
1087 		dpolicy->min_interval = dcc->min_discard_issue_time;
1088 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1089 		dpolicy->max_interval = dcc->max_discard_issue_time;
1090 		dpolicy->io_aware = false;
1091 	} else if (discard_type == DPOLICY_FSTRIM) {
1092 		dpolicy->io_aware = false;
1093 	} else if (discard_type == DPOLICY_UMOUNT) {
1094 		dpolicy->io_aware = false;
1095 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1096 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1097 		dpolicy->timeout = true;
1098 	}
1099 }
1100 
1101 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1102 				struct block_device *bdev, block_t lstart,
1103 				block_t start, block_t len);
1104 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1105 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1106 				struct discard_policy *dpolicy,
1107 				struct discard_cmd *dc, int *issued)
1108 {
1109 	struct block_device *bdev = dc->bdev;
1110 	unsigned int max_discard_blocks =
1111 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1112 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1113 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1114 					&(dcc->fstrim_list) : &(dcc->wait_list);
1115 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1116 	block_t lstart, start, len, total_len;
1117 	int err = 0;
1118 
1119 	if (dc->state != D_PREP)
1120 		return 0;
1121 
1122 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1123 		return 0;
1124 
1125 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1126 
1127 	lstart = dc->lstart;
1128 	start = dc->start;
1129 	len = dc->len;
1130 	total_len = len;
1131 
1132 	dc->len = 0;
1133 
1134 	while (total_len && *issued < dpolicy->max_requests && !err) {
1135 		struct bio *bio = NULL;
1136 		unsigned long flags;
1137 		bool last = true;
1138 
1139 		if (len > max_discard_blocks) {
1140 			len = max_discard_blocks;
1141 			last = false;
1142 		}
1143 
1144 		(*issued)++;
1145 		if (*issued == dpolicy->max_requests)
1146 			last = true;
1147 
1148 		dc->len += len;
1149 
1150 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1151 			err = -EIO;
1152 		} else {
1153 			err = __blkdev_issue_discard(bdev,
1154 					SECTOR_FROM_BLOCK(start),
1155 					SECTOR_FROM_BLOCK(len),
1156 					GFP_NOFS, &bio);
1157 		}
1158 		if (err) {
1159 			spin_lock_irqsave(&dc->lock, flags);
1160 			if (dc->state == D_PARTIAL)
1161 				dc->state = D_SUBMIT;
1162 			spin_unlock_irqrestore(&dc->lock, flags);
1163 
1164 			break;
1165 		}
1166 
1167 		f2fs_bug_on(sbi, !bio);
1168 
1169 		/*
1170 		 * should keep before submission to avoid D_DONE
1171 		 * right away
1172 		 */
1173 		spin_lock_irqsave(&dc->lock, flags);
1174 		if (last)
1175 			dc->state = D_SUBMIT;
1176 		else
1177 			dc->state = D_PARTIAL;
1178 		dc->bio_ref++;
1179 		spin_unlock_irqrestore(&dc->lock, flags);
1180 
1181 		atomic_inc(&dcc->queued_discard);
1182 		dc->queued++;
1183 		list_move_tail(&dc->list, wait_list);
1184 
1185 		/* sanity check on discard range */
1186 		__check_sit_bitmap(sbi, lstart, lstart + len);
1187 
1188 		bio->bi_private = dc;
1189 		bio->bi_end_io = f2fs_submit_discard_endio;
1190 		bio->bi_opf |= flag;
1191 		submit_bio(bio);
1192 
1193 		atomic_inc(&dcc->issued_discard);
1194 
1195 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1196 
1197 		lstart += len;
1198 		start += len;
1199 		total_len -= len;
1200 		len = total_len;
1201 	}
1202 
1203 	if (!err && len) {
1204 		dcc->undiscard_blks -= len;
1205 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1206 	}
1207 	return err;
1208 }
1209 
1210 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1211 				struct block_device *bdev, block_t lstart,
1212 				block_t start, block_t len,
1213 				struct rb_node **insert_p,
1214 				struct rb_node *insert_parent)
1215 {
1216 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1217 	struct rb_node **p;
1218 	struct rb_node *parent = NULL;
1219 	bool leftmost = true;
1220 
1221 	if (insert_p && insert_parent) {
1222 		parent = insert_parent;
1223 		p = insert_p;
1224 		goto do_insert;
1225 	}
1226 
1227 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1228 							lstart, &leftmost);
1229 do_insert:
1230 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1231 								p, leftmost);
1232 }
1233 
1234 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1235 						struct discard_cmd *dc)
1236 {
1237 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1238 }
1239 
1240 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1241 				struct discard_cmd *dc, block_t blkaddr)
1242 {
1243 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1244 	struct discard_info di = dc->di;
1245 	bool modified = false;
1246 
1247 	if (dc->state == D_DONE || dc->len == 1) {
1248 		__remove_discard_cmd(sbi, dc);
1249 		return;
1250 	}
1251 
1252 	dcc->undiscard_blks -= di.len;
1253 
1254 	if (blkaddr > di.lstart) {
1255 		dc->len = blkaddr - dc->lstart;
1256 		dcc->undiscard_blks += dc->len;
1257 		__relocate_discard_cmd(dcc, dc);
1258 		modified = true;
1259 	}
1260 
1261 	if (blkaddr < di.lstart + di.len - 1) {
1262 		if (modified) {
1263 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1264 					di.start + blkaddr + 1 - di.lstart,
1265 					di.lstart + di.len - 1 - blkaddr,
1266 					NULL, NULL);
1267 		} else {
1268 			dc->lstart++;
1269 			dc->len--;
1270 			dc->start++;
1271 			dcc->undiscard_blks += dc->len;
1272 			__relocate_discard_cmd(dcc, dc);
1273 		}
1274 	}
1275 }
1276 
1277 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1278 				struct block_device *bdev, block_t lstart,
1279 				block_t start, block_t len)
1280 {
1281 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1282 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1283 	struct discard_cmd *dc;
1284 	struct discard_info di = {0};
1285 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1286 	unsigned int max_discard_blocks =
1287 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1288 	block_t end = lstart + len;
1289 
1290 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1291 					NULL, lstart,
1292 					(struct rb_entry **)&prev_dc,
1293 					(struct rb_entry **)&next_dc,
1294 					&insert_p, &insert_parent, true, NULL);
1295 	if (dc)
1296 		prev_dc = dc;
1297 
1298 	if (!prev_dc) {
1299 		di.lstart = lstart;
1300 		di.len = next_dc ? next_dc->lstart - lstart : len;
1301 		di.len = min(di.len, len);
1302 		di.start = start;
1303 	}
1304 
1305 	while (1) {
1306 		struct rb_node *node;
1307 		bool merged = false;
1308 		struct discard_cmd *tdc = NULL;
1309 
1310 		if (prev_dc) {
1311 			di.lstart = prev_dc->lstart + prev_dc->len;
1312 			if (di.lstart < lstart)
1313 				di.lstart = lstart;
1314 			if (di.lstart >= end)
1315 				break;
1316 
1317 			if (!next_dc || next_dc->lstart > end)
1318 				di.len = end - di.lstart;
1319 			else
1320 				di.len = next_dc->lstart - di.lstart;
1321 			di.start = start + di.lstart - lstart;
1322 		}
1323 
1324 		if (!di.len)
1325 			goto next;
1326 
1327 		if (prev_dc && prev_dc->state == D_PREP &&
1328 			prev_dc->bdev == bdev &&
1329 			__is_discard_back_mergeable(&di, &prev_dc->di,
1330 							max_discard_blocks)) {
1331 			prev_dc->di.len += di.len;
1332 			dcc->undiscard_blks += di.len;
1333 			__relocate_discard_cmd(dcc, prev_dc);
1334 			di = prev_dc->di;
1335 			tdc = prev_dc;
1336 			merged = true;
1337 		}
1338 
1339 		if (next_dc && next_dc->state == D_PREP &&
1340 			next_dc->bdev == bdev &&
1341 			__is_discard_front_mergeable(&di, &next_dc->di,
1342 							max_discard_blocks)) {
1343 			next_dc->di.lstart = di.lstart;
1344 			next_dc->di.len += di.len;
1345 			next_dc->di.start = di.start;
1346 			dcc->undiscard_blks += di.len;
1347 			__relocate_discard_cmd(dcc, next_dc);
1348 			if (tdc)
1349 				__remove_discard_cmd(sbi, tdc);
1350 			merged = true;
1351 		}
1352 
1353 		if (!merged) {
1354 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1355 							di.len, NULL, NULL);
1356 		}
1357  next:
1358 		prev_dc = next_dc;
1359 		if (!prev_dc)
1360 			break;
1361 
1362 		node = rb_next(&prev_dc->rb_node);
1363 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1364 	}
1365 }
1366 
1367 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1368 		struct block_device *bdev, block_t blkstart, block_t blklen)
1369 {
1370 	block_t lblkstart = blkstart;
1371 
1372 	if (!f2fs_bdev_support_discard(bdev))
1373 		return;
1374 
1375 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1376 
1377 	if (f2fs_is_multi_device(sbi)) {
1378 		int devi = f2fs_target_device_index(sbi, blkstart);
1379 
1380 		blkstart -= FDEV(devi).start_blk;
1381 	}
1382 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1383 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1384 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1385 }
1386 
1387 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1388 		struct discard_policy *dpolicy, int *issued)
1389 {
1390 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1391 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1392 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1393 	struct discard_cmd *dc;
1394 	struct blk_plug plug;
1395 	unsigned int pos = dcc->next_pos;
1396 	bool io_interrupted = false;
1397 
1398 	mutex_lock(&dcc->cmd_lock);
1399 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1400 					NULL, pos,
1401 					(struct rb_entry **)&prev_dc,
1402 					(struct rb_entry **)&next_dc,
1403 					&insert_p, &insert_parent, true, NULL);
1404 	if (!dc)
1405 		dc = next_dc;
1406 
1407 	blk_start_plug(&plug);
1408 
1409 	while (dc) {
1410 		struct rb_node *node;
1411 		int err = 0;
1412 
1413 		if (dc->state != D_PREP)
1414 			goto next;
1415 
1416 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1417 			io_interrupted = true;
1418 			break;
1419 		}
1420 
1421 		dcc->next_pos = dc->lstart + dc->len;
1422 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1423 
1424 		if (*issued >= dpolicy->max_requests)
1425 			break;
1426 next:
1427 		node = rb_next(&dc->rb_node);
1428 		if (err)
1429 			__remove_discard_cmd(sbi, dc);
1430 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1431 	}
1432 
1433 	blk_finish_plug(&plug);
1434 
1435 	if (!dc)
1436 		dcc->next_pos = 0;
1437 
1438 	mutex_unlock(&dcc->cmd_lock);
1439 
1440 	if (!(*issued) && io_interrupted)
1441 		*issued = -1;
1442 }
1443 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1444 					struct discard_policy *dpolicy);
1445 
1446 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1447 					struct discard_policy *dpolicy)
1448 {
1449 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1450 	struct list_head *pend_list;
1451 	struct discard_cmd *dc, *tmp;
1452 	struct blk_plug plug;
1453 	int i, issued;
1454 	bool io_interrupted = false;
1455 
1456 	if (dpolicy->timeout)
1457 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1458 
1459 retry:
1460 	issued = 0;
1461 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1462 		if (dpolicy->timeout &&
1463 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1464 			break;
1465 
1466 		if (i + 1 < dpolicy->granularity)
1467 			break;
1468 
1469 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1470 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1471 			return issued;
1472 		}
1473 
1474 		pend_list = &dcc->pend_list[i];
1475 
1476 		mutex_lock(&dcc->cmd_lock);
1477 		if (list_empty(pend_list))
1478 			goto next;
1479 		if (unlikely(dcc->rbtree_check))
1480 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1481 							&dcc->root, false));
1482 		blk_start_plug(&plug);
1483 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1484 			f2fs_bug_on(sbi, dc->state != D_PREP);
1485 
1486 			if (dpolicy->timeout &&
1487 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1488 				break;
1489 
1490 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1491 						!is_idle(sbi, DISCARD_TIME)) {
1492 				io_interrupted = true;
1493 				break;
1494 			}
1495 
1496 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1497 
1498 			if (issued >= dpolicy->max_requests)
1499 				break;
1500 		}
1501 		blk_finish_plug(&plug);
1502 next:
1503 		mutex_unlock(&dcc->cmd_lock);
1504 
1505 		if (issued >= dpolicy->max_requests || io_interrupted)
1506 			break;
1507 	}
1508 
1509 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1510 		__wait_all_discard_cmd(sbi, dpolicy);
1511 		goto retry;
1512 	}
1513 
1514 	if (!issued && io_interrupted)
1515 		issued = -1;
1516 
1517 	return issued;
1518 }
1519 
1520 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1521 {
1522 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1523 	struct list_head *pend_list;
1524 	struct discard_cmd *dc, *tmp;
1525 	int i;
1526 	bool dropped = false;
1527 
1528 	mutex_lock(&dcc->cmd_lock);
1529 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1530 		pend_list = &dcc->pend_list[i];
1531 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1532 			f2fs_bug_on(sbi, dc->state != D_PREP);
1533 			__remove_discard_cmd(sbi, dc);
1534 			dropped = true;
1535 		}
1536 	}
1537 	mutex_unlock(&dcc->cmd_lock);
1538 
1539 	return dropped;
1540 }
1541 
1542 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1543 {
1544 	__drop_discard_cmd(sbi);
1545 }
1546 
1547 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1548 							struct discard_cmd *dc)
1549 {
1550 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1551 	unsigned int len = 0;
1552 
1553 	wait_for_completion_io(&dc->wait);
1554 	mutex_lock(&dcc->cmd_lock);
1555 	f2fs_bug_on(sbi, dc->state != D_DONE);
1556 	dc->ref--;
1557 	if (!dc->ref) {
1558 		if (!dc->error)
1559 			len = dc->len;
1560 		__remove_discard_cmd(sbi, dc);
1561 	}
1562 	mutex_unlock(&dcc->cmd_lock);
1563 
1564 	return len;
1565 }
1566 
1567 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1568 						struct discard_policy *dpolicy,
1569 						block_t start, block_t end)
1570 {
1571 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1572 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1573 					&(dcc->fstrim_list) : &(dcc->wait_list);
1574 	struct discard_cmd *dc = NULL, *iter, *tmp;
1575 	unsigned int trimmed = 0;
1576 
1577 next:
1578 	dc = NULL;
1579 
1580 	mutex_lock(&dcc->cmd_lock);
1581 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1582 		if (iter->lstart + iter->len <= start || end <= iter->lstart)
1583 			continue;
1584 		if (iter->len < dpolicy->granularity)
1585 			continue;
1586 		if (iter->state == D_DONE && !iter->ref) {
1587 			wait_for_completion_io(&iter->wait);
1588 			if (!iter->error)
1589 				trimmed += iter->len;
1590 			__remove_discard_cmd(sbi, iter);
1591 		} else {
1592 			iter->ref++;
1593 			dc = iter;
1594 			break;
1595 		}
1596 	}
1597 	mutex_unlock(&dcc->cmd_lock);
1598 
1599 	if (dc) {
1600 		trimmed += __wait_one_discard_bio(sbi, dc);
1601 		goto next;
1602 	}
1603 
1604 	return trimmed;
1605 }
1606 
1607 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1608 						struct discard_policy *dpolicy)
1609 {
1610 	struct discard_policy dp;
1611 	unsigned int discard_blks;
1612 
1613 	if (dpolicy)
1614 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1615 
1616 	/* wait all */
1617 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1618 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1619 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1620 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1621 
1622 	return discard_blks;
1623 }
1624 
1625 /* This should be covered by global mutex, &sit_i->sentry_lock */
1626 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1627 {
1628 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1629 	struct discard_cmd *dc;
1630 	bool need_wait = false;
1631 
1632 	mutex_lock(&dcc->cmd_lock);
1633 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1634 							NULL, blkaddr);
1635 	if (dc) {
1636 		if (dc->state == D_PREP) {
1637 			__punch_discard_cmd(sbi, dc, blkaddr);
1638 		} else {
1639 			dc->ref++;
1640 			need_wait = true;
1641 		}
1642 	}
1643 	mutex_unlock(&dcc->cmd_lock);
1644 
1645 	if (need_wait)
1646 		__wait_one_discard_bio(sbi, dc);
1647 }
1648 
1649 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1650 {
1651 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1652 
1653 	if (dcc && dcc->f2fs_issue_discard) {
1654 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1655 
1656 		dcc->f2fs_issue_discard = NULL;
1657 		kthread_stop(discard_thread);
1658 	}
1659 }
1660 
1661 /**
1662  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1663  * @sbi: the f2fs_sb_info data for discard cmd to issue
1664  *
1665  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1666  *
1667  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1668  */
1669 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1670 {
1671 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1672 	struct discard_policy dpolicy;
1673 	bool dropped;
1674 
1675 	if (!atomic_read(&dcc->discard_cmd_cnt))
1676 		return true;
1677 
1678 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1679 					dcc->discard_granularity);
1680 	__issue_discard_cmd(sbi, &dpolicy);
1681 	dropped = __drop_discard_cmd(sbi);
1682 
1683 	/* just to make sure there is no pending discard commands */
1684 	__wait_all_discard_cmd(sbi, NULL);
1685 
1686 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1687 	return !dropped;
1688 }
1689 
1690 static int issue_discard_thread(void *data)
1691 {
1692 	struct f2fs_sb_info *sbi = data;
1693 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1694 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1695 	struct discard_policy dpolicy;
1696 	unsigned int wait_ms = dcc->min_discard_issue_time;
1697 	int issued;
1698 
1699 	set_freezable();
1700 
1701 	do {
1702 		wait_event_interruptible_timeout(*q,
1703 				kthread_should_stop() || freezing(current) ||
1704 				dcc->discard_wake,
1705 				msecs_to_jiffies(wait_ms));
1706 
1707 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1708 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1709 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1710 						MIN_DISCARD_GRANULARITY);
1711 		else
1712 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1713 						dcc->discard_granularity);
1714 
1715 		if (dcc->discard_wake)
1716 			dcc->discard_wake = false;
1717 
1718 		/* clean up pending candidates before going to sleep */
1719 		if (atomic_read(&dcc->queued_discard))
1720 			__wait_all_discard_cmd(sbi, NULL);
1721 
1722 		if (try_to_freeze())
1723 			continue;
1724 		if (f2fs_readonly(sbi->sb))
1725 			continue;
1726 		if (kthread_should_stop())
1727 			return 0;
1728 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1729 			!atomic_read(&dcc->discard_cmd_cnt)) {
1730 			wait_ms = dpolicy.max_interval;
1731 			continue;
1732 		}
1733 
1734 		sb_start_intwrite(sbi->sb);
1735 
1736 		issued = __issue_discard_cmd(sbi, &dpolicy);
1737 		if (issued > 0) {
1738 			__wait_all_discard_cmd(sbi, &dpolicy);
1739 			wait_ms = dpolicy.min_interval;
1740 		} else if (issued == -1) {
1741 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1742 			if (!wait_ms)
1743 				wait_ms = dpolicy.mid_interval;
1744 		} else {
1745 			wait_ms = dpolicy.max_interval;
1746 		}
1747 		if (!atomic_read(&dcc->discard_cmd_cnt))
1748 			wait_ms = dpolicy.max_interval;
1749 
1750 		sb_end_intwrite(sbi->sb);
1751 
1752 	} while (!kthread_should_stop());
1753 	return 0;
1754 }
1755 
1756 #ifdef CONFIG_BLK_DEV_ZONED
1757 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1758 		struct block_device *bdev, block_t blkstart, block_t blklen)
1759 {
1760 	sector_t sector, nr_sects;
1761 	block_t lblkstart = blkstart;
1762 	int devi = 0;
1763 
1764 	if (f2fs_is_multi_device(sbi)) {
1765 		devi = f2fs_target_device_index(sbi, blkstart);
1766 		if (blkstart < FDEV(devi).start_blk ||
1767 		    blkstart > FDEV(devi).end_blk) {
1768 			f2fs_err(sbi, "Invalid block %x", blkstart);
1769 			return -EIO;
1770 		}
1771 		blkstart -= FDEV(devi).start_blk;
1772 	}
1773 
1774 	/* For sequential zones, reset the zone write pointer */
1775 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1776 		sector = SECTOR_FROM_BLOCK(blkstart);
1777 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1778 
1779 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1780 				nr_sects != bdev_zone_sectors(bdev)) {
1781 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1782 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1783 				 blkstart, blklen);
1784 			return -EIO;
1785 		}
1786 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1787 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1788 					sector, nr_sects, GFP_NOFS);
1789 	}
1790 
1791 	/* For conventional zones, use regular discard if supported */
1792 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1793 	return 0;
1794 }
1795 #endif
1796 
1797 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1798 		struct block_device *bdev, block_t blkstart, block_t blklen)
1799 {
1800 #ifdef CONFIG_BLK_DEV_ZONED
1801 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1802 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1803 #endif
1804 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1805 	return 0;
1806 }
1807 
1808 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1809 				block_t blkstart, block_t blklen)
1810 {
1811 	sector_t start = blkstart, len = 0;
1812 	struct block_device *bdev;
1813 	struct seg_entry *se;
1814 	unsigned int offset;
1815 	block_t i;
1816 	int err = 0;
1817 
1818 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1819 
1820 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1821 		if (i != start) {
1822 			struct block_device *bdev2 =
1823 				f2fs_target_device(sbi, i, NULL);
1824 
1825 			if (bdev2 != bdev) {
1826 				err = __issue_discard_async(sbi, bdev,
1827 						start, len);
1828 				if (err)
1829 					return err;
1830 				bdev = bdev2;
1831 				start = i;
1832 				len = 0;
1833 			}
1834 		}
1835 
1836 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1837 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1838 
1839 		if (f2fs_block_unit_discard(sbi) &&
1840 				!f2fs_test_and_set_bit(offset, se->discard_map))
1841 			sbi->discard_blks--;
1842 	}
1843 
1844 	if (len)
1845 		err = __issue_discard_async(sbi, bdev, start, len);
1846 	return err;
1847 }
1848 
1849 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1850 							bool check_only)
1851 {
1852 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1853 	int max_blocks = sbi->blocks_per_seg;
1854 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1855 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1856 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1857 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1858 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1859 	unsigned int start = 0, end = -1;
1860 	bool force = (cpc->reason & CP_DISCARD);
1861 	struct discard_entry *de = NULL;
1862 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1863 	int i;
1864 
1865 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1866 			!f2fs_block_unit_discard(sbi))
1867 		return false;
1868 
1869 	if (!force) {
1870 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1871 			SM_I(sbi)->dcc_info->nr_discards >=
1872 				SM_I(sbi)->dcc_info->max_discards)
1873 			return false;
1874 	}
1875 
1876 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1877 	for (i = 0; i < entries; i++)
1878 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1879 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1880 
1881 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1882 				SM_I(sbi)->dcc_info->max_discards) {
1883 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1884 		if (start >= max_blocks)
1885 			break;
1886 
1887 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1888 		if (force && start && end != max_blocks
1889 					&& (end - start) < cpc->trim_minlen)
1890 			continue;
1891 
1892 		if (check_only)
1893 			return true;
1894 
1895 		if (!de) {
1896 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1897 						GFP_F2FS_ZERO, true, NULL);
1898 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1899 			list_add_tail(&de->list, head);
1900 		}
1901 
1902 		for (i = start; i < end; i++)
1903 			__set_bit_le(i, (void *)de->discard_map);
1904 
1905 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1906 	}
1907 	return false;
1908 }
1909 
1910 static void release_discard_addr(struct discard_entry *entry)
1911 {
1912 	list_del(&entry->list);
1913 	kmem_cache_free(discard_entry_slab, entry);
1914 }
1915 
1916 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1917 {
1918 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1919 	struct discard_entry *entry, *this;
1920 
1921 	/* drop caches */
1922 	list_for_each_entry_safe(entry, this, head, list)
1923 		release_discard_addr(entry);
1924 }
1925 
1926 /*
1927  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1928  */
1929 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1930 {
1931 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1932 	unsigned int segno;
1933 
1934 	mutex_lock(&dirty_i->seglist_lock);
1935 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1936 		__set_test_and_free(sbi, segno, false);
1937 	mutex_unlock(&dirty_i->seglist_lock);
1938 }
1939 
1940 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1941 						struct cp_control *cpc)
1942 {
1943 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1944 	struct list_head *head = &dcc->entry_list;
1945 	struct discard_entry *entry, *this;
1946 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1947 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1948 	unsigned int start = 0, end = -1;
1949 	unsigned int secno, start_segno;
1950 	bool force = (cpc->reason & CP_DISCARD);
1951 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
1952 						DISCARD_UNIT_SECTION;
1953 
1954 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
1955 		section_alignment = true;
1956 
1957 	mutex_lock(&dirty_i->seglist_lock);
1958 
1959 	while (1) {
1960 		int i;
1961 
1962 		if (section_alignment && end != -1)
1963 			end--;
1964 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1965 		if (start >= MAIN_SEGS(sbi))
1966 			break;
1967 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1968 								start + 1);
1969 
1970 		if (section_alignment) {
1971 			start = rounddown(start, sbi->segs_per_sec);
1972 			end = roundup(end, sbi->segs_per_sec);
1973 		}
1974 
1975 		for (i = start; i < end; i++) {
1976 			if (test_and_clear_bit(i, prefree_map))
1977 				dirty_i->nr_dirty[PRE]--;
1978 		}
1979 
1980 		if (!f2fs_realtime_discard_enable(sbi))
1981 			continue;
1982 
1983 		if (force && start >= cpc->trim_start &&
1984 					(end - 1) <= cpc->trim_end)
1985 				continue;
1986 
1987 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
1988 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1989 				(end - start) << sbi->log_blocks_per_seg);
1990 			continue;
1991 		}
1992 next:
1993 		secno = GET_SEC_FROM_SEG(sbi, start);
1994 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1995 		if (!IS_CURSEC(sbi, secno) &&
1996 			!get_valid_blocks(sbi, start, true))
1997 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1998 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1999 
2000 		start = start_segno + sbi->segs_per_sec;
2001 		if (start < end)
2002 			goto next;
2003 		else
2004 			end = start - 1;
2005 	}
2006 	mutex_unlock(&dirty_i->seglist_lock);
2007 
2008 	if (!f2fs_block_unit_discard(sbi))
2009 		goto wakeup;
2010 
2011 	/* send small discards */
2012 	list_for_each_entry_safe(entry, this, head, list) {
2013 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2014 		bool is_valid = test_bit_le(0, entry->discard_map);
2015 
2016 find_next:
2017 		if (is_valid) {
2018 			next_pos = find_next_zero_bit_le(entry->discard_map,
2019 					sbi->blocks_per_seg, cur_pos);
2020 			len = next_pos - cur_pos;
2021 
2022 			if (f2fs_sb_has_blkzoned(sbi) ||
2023 			    (force && len < cpc->trim_minlen))
2024 				goto skip;
2025 
2026 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2027 									len);
2028 			total_len += len;
2029 		} else {
2030 			next_pos = find_next_bit_le(entry->discard_map,
2031 					sbi->blocks_per_seg, cur_pos);
2032 		}
2033 skip:
2034 		cur_pos = next_pos;
2035 		is_valid = !is_valid;
2036 
2037 		if (cur_pos < sbi->blocks_per_seg)
2038 			goto find_next;
2039 
2040 		release_discard_addr(entry);
2041 		dcc->nr_discards -= total_len;
2042 	}
2043 
2044 wakeup:
2045 	wake_up_discard_thread(sbi, false);
2046 }
2047 
2048 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2049 {
2050 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2051 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2052 	int err = 0;
2053 
2054 	if (!f2fs_realtime_discard_enable(sbi))
2055 		return 0;
2056 
2057 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2058 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2059 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2060 		err = PTR_ERR(dcc->f2fs_issue_discard);
2061 		dcc->f2fs_issue_discard = NULL;
2062 	}
2063 
2064 	return err;
2065 }
2066 
2067 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2068 {
2069 	struct discard_cmd_control *dcc;
2070 	int err = 0, i;
2071 
2072 	if (SM_I(sbi)->dcc_info) {
2073 		dcc = SM_I(sbi)->dcc_info;
2074 		goto init_thread;
2075 	}
2076 
2077 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2078 	if (!dcc)
2079 		return -ENOMEM;
2080 
2081 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2082 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2083 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2084 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2085 		dcc->discard_granularity = sbi->blocks_per_seg;
2086 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2087 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2088 
2089 	INIT_LIST_HEAD(&dcc->entry_list);
2090 	for (i = 0; i < MAX_PLIST_NUM; i++)
2091 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2092 	INIT_LIST_HEAD(&dcc->wait_list);
2093 	INIT_LIST_HEAD(&dcc->fstrim_list);
2094 	mutex_init(&dcc->cmd_lock);
2095 	atomic_set(&dcc->issued_discard, 0);
2096 	atomic_set(&dcc->queued_discard, 0);
2097 	atomic_set(&dcc->discard_cmd_cnt, 0);
2098 	dcc->nr_discards = 0;
2099 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2100 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2101 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2102 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2103 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2104 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2105 	dcc->undiscard_blks = 0;
2106 	dcc->next_pos = 0;
2107 	dcc->root = RB_ROOT_CACHED;
2108 	dcc->rbtree_check = false;
2109 
2110 	init_waitqueue_head(&dcc->discard_wait_queue);
2111 	SM_I(sbi)->dcc_info = dcc;
2112 init_thread:
2113 	err = f2fs_start_discard_thread(sbi);
2114 	if (err) {
2115 		kfree(dcc);
2116 		SM_I(sbi)->dcc_info = NULL;
2117 	}
2118 
2119 	return err;
2120 }
2121 
2122 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2123 {
2124 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2125 
2126 	if (!dcc)
2127 		return;
2128 
2129 	f2fs_stop_discard_thread(sbi);
2130 
2131 	/*
2132 	 * Recovery can cache discard commands, so in error path of
2133 	 * fill_super(), it needs to give a chance to handle them.
2134 	 */
2135 	f2fs_issue_discard_timeout(sbi);
2136 
2137 	kfree(dcc);
2138 	SM_I(sbi)->dcc_info = NULL;
2139 }
2140 
2141 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2142 {
2143 	struct sit_info *sit_i = SIT_I(sbi);
2144 
2145 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2146 		sit_i->dirty_sentries++;
2147 		return false;
2148 	}
2149 
2150 	return true;
2151 }
2152 
2153 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2154 					unsigned int segno, int modified)
2155 {
2156 	struct seg_entry *se = get_seg_entry(sbi, segno);
2157 
2158 	se->type = type;
2159 	if (modified)
2160 		__mark_sit_entry_dirty(sbi, segno);
2161 }
2162 
2163 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2164 								block_t blkaddr)
2165 {
2166 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2167 
2168 	if (segno == NULL_SEGNO)
2169 		return 0;
2170 	return get_seg_entry(sbi, segno)->mtime;
2171 }
2172 
2173 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2174 						unsigned long long old_mtime)
2175 {
2176 	struct seg_entry *se;
2177 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2178 	unsigned long long ctime = get_mtime(sbi, false);
2179 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2180 
2181 	if (segno == NULL_SEGNO)
2182 		return;
2183 
2184 	se = get_seg_entry(sbi, segno);
2185 
2186 	if (!se->mtime)
2187 		se->mtime = mtime;
2188 	else
2189 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2190 						se->valid_blocks + 1);
2191 
2192 	if (ctime > SIT_I(sbi)->max_mtime)
2193 		SIT_I(sbi)->max_mtime = ctime;
2194 }
2195 
2196 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2197 {
2198 	struct seg_entry *se;
2199 	unsigned int segno, offset;
2200 	long int new_vblocks;
2201 	bool exist;
2202 #ifdef CONFIG_F2FS_CHECK_FS
2203 	bool mir_exist;
2204 #endif
2205 
2206 	segno = GET_SEGNO(sbi, blkaddr);
2207 
2208 	se = get_seg_entry(sbi, segno);
2209 	new_vblocks = se->valid_blocks + del;
2210 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2211 
2212 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2213 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2214 
2215 	se->valid_blocks = new_vblocks;
2216 
2217 	/* Update valid block bitmap */
2218 	if (del > 0) {
2219 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2220 #ifdef CONFIG_F2FS_CHECK_FS
2221 		mir_exist = f2fs_test_and_set_bit(offset,
2222 						se->cur_valid_map_mir);
2223 		if (unlikely(exist != mir_exist)) {
2224 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2225 				 blkaddr, exist);
2226 			f2fs_bug_on(sbi, 1);
2227 		}
2228 #endif
2229 		if (unlikely(exist)) {
2230 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2231 				 blkaddr);
2232 			f2fs_bug_on(sbi, 1);
2233 			se->valid_blocks--;
2234 			del = 0;
2235 		}
2236 
2237 		if (f2fs_block_unit_discard(sbi) &&
2238 				!f2fs_test_and_set_bit(offset, se->discard_map))
2239 			sbi->discard_blks--;
2240 
2241 		/*
2242 		 * SSR should never reuse block which is checkpointed
2243 		 * or newly invalidated.
2244 		 */
2245 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2246 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2247 				se->ckpt_valid_blocks++;
2248 		}
2249 	} else {
2250 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2251 #ifdef CONFIG_F2FS_CHECK_FS
2252 		mir_exist = f2fs_test_and_clear_bit(offset,
2253 						se->cur_valid_map_mir);
2254 		if (unlikely(exist != mir_exist)) {
2255 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2256 				 blkaddr, exist);
2257 			f2fs_bug_on(sbi, 1);
2258 		}
2259 #endif
2260 		if (unlikely(!exist)) {
2261 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2262 				 blkaddr);
2263 			f2fs_bug_on(sbi, 1);
2264 			se->valid_blocks++;
2265 			del = 0;
2266 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2267 			/*
2268 			 * If checkpoints are off, we must not reuse data that
2269 			 * was used in the previous checkpoint. If it was used
2270 			 * before, we must track that to know how much space we
2271 			 * really have.
2272 			 */
2273 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2274 				spin_lock(&sbi->stat_lock);
2275 				sbi->unusable_block_count++;
2276 				spin_unlock(&sbi->stat_lock);
2277 			}
2278 		}
2279 
2280 		if (f2fs_block_unit_discard(sbi) &&
2281 			f2fs_test_and_clear_bit(offset, se->discard_map))
2282 			sbi->discard_blks++;
2283 	}
2284 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2285 		se->ckpt_valid_blocks += del;
2286 
2287 	__mark_sit_entry_dirty(sbi, segno);
2288 
2289 	/* update total number of valid blocks to be written in ckpt area */
2290 	SIT_I(sbi)->written_valid_blocks += del;
2291 
2292 	if (__is_large_section(sbi))
2293 		get_sec_entry(sbi, segno)->valid_blocks += del;
2294 }
2295 
2296 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2297 {
2298 	unsigned int segno = GET_SEGNO(sbi, addr);
2299 	struct sit_info *sit_i = SIT_I(sbi);
2300 
2301 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2302 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2303 		return;
2304 
2305 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2306 	f2fs_invalidate_compress_page(sbi, addr);
2307 
2308 	/* add it into sit main buffer */
2309 	down_write(&sit_i->sentry_lock);
2310 
2311 	update_segment_mtime(sbi, addr, 0);
2312 	update_sit_entry(sbi, addr, -1);
2313 
2314 	/* add it into dirty seglist */
2315 	locate_dirty_segment(sbi, segno);
2316 
2317 	up_write(&sit_i->sentry_lock);
2318 }
2319 
2320 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2321 {
2322 	struct sit_info *sit_i = SIT_I(sbi);
2323 	unsigned int segno, offset;
2324 	struct seg_entry *se;
2325 	bool is_cp = false;
2326 
2327 	if (!__is_valid_data_blkaddr(blkaddr))
2328 		return true;
2329 
2330 	down_read(&sit_i->sentry_lock);
2331 
2332 	segno = GET_SEGNO(sbi, blkaddr);
2333 	se = get_seg_entry(sbi, segno);
2334 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2335 
2336 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2337 		is_cp = true;
2338 
2339 	up_read(&sit_i->sentry_lock);
2340 
2341 	return is_cp;
2342 }
2343 
2344 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2345 {
2346 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2347 
2348 	if (sbi->ckpt->alloc_type[type] == SSR)
2349 		return sbi->blocks_per_seg;
2350 	return curseg->next_blkoff;
2351 }
2352 
2353 /*
2354  * Calculate the number of current summary pages for writing
2355  */
2356 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2357 {
2358 	int valid_sum_count = 0;
2359 	int i, sum_in_page;
2360 
2361 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2362 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2363 			valid_sum_count +=
2364 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2365 		else
2366 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2367 	}
2368 
2369 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2370 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2371 	if (valid_sum_count <= sum_in_page)
2372 		return 1;
2373 	else if ((valid_sum_count - sum_in_page) <=
2374 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2375 		return 2;
2376 	return 3;
2377 }
2378 
2379 /*
2380  * Caller should put this summary page
2381  */
2382 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2383 {
2384 	if (unlikely(f2fs_cp_error(sbi)))
2385 		return ERR_PTR(-EIO);
2386 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2387 }
2388 
2389 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2390 					void *src, block_t blk_addr)
2391 {
2392 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2393 
2394 	memcpy(page_address(page), src, PAGE_SIZE);
2395 	set_page_dirty(page);
2396 	f2fs_put_page(page, 1);
2397 }
2398 
2399 static void write_sum_page(struct f2fs_sb_info *sbi,
2400 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2401 {
2402 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2403 }
2404 
2405 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2406 						int type, block_t blk_addr)
2407 {
2408 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2409 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2410 	struct f2fs_summary_block *src = curseg->sum_blk;
2411 	struct f2fs_summary_block *dst;
2412 
2413 	dst = (struct f2fs_summary_block *)page_address(page);
2414 	memset(dst, 0, PAGE_SIZE);
2415 
2416 	mutex_lock(&curseg->curseg_mutex);
2417 
2418 	down_read(&curseg->journal_rwsem);
2419 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2420 	up_read(&curseg->journal_rwsem);
2421 
2422 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2423 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2424 
2425 	mutex_unlock(&curseg->curseg_mutex);
2426 
2427 	set_page_dirty(page);
2428 	f2fs_put_page(page, 1);
2429 }
2430 
2431 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2432 				struct curseg_info *curseg, int type)
2433 {
2434 	unsigned int segno = curseg->segno + 1;
2435 	struct free_segmap_info *free_i = FREE_I(sbi);
2436 
2437 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2438 		return !test_bit(segno, free_i->free_segmap);
2439 	return 0;
2440 }
2441 
2442 /*
2443  * Find a new segment from the free segments bitmap to right order
2444  * This function should be returned with success, otherwise BUG
2445  */
2446 static void get_new_segment(struct f2fs_sb_info *sbi,
2447 			unsigned int *newseg, bool new_sec, int dir)
2448 {
2449 	struct free_segmap_info *free_i = FREE_I(sbi);
2450 	unsigned int segno, secno, zoneno;
2451 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2452 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2453 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2454 	unsigned int left_start = hint;
2455 	bool init = true;
2456 	int go_left = 0;
2457 	int i;
2458 
2459 	spin_lock(&free_i->segmap_lock);
2460 
2461 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2462 		segno = find_next_zero_bit(free_i->free_segmap,
2463 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2464 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2465 			goto got_it;
2466 	}
2467 find_other_zone:
2468 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2469 	if (secno >= MAIN_SECS(sbi)) {
2470 		if (dir == ALLOC_RIGHT) {
2471 			secno = find_first_zero_bit(free_i->free_secmap,
2472 							MAIN_SECS(sbi));
2473 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2474 		} else {
2475 			go_left = 1;
2476 			left_start = hint - 1;
2477 		}
2478 	}
2479 	if (go_left == 0)
2480 		goto skip_left;
2481 
2482 	while (test_bit(left_start, free_i->free_secmap)) {
2483 		if (left_start > 0) {
2484 			left_start--;
2485 			continue;
2486 		}
2487 		left_start = find_first_zero_bit(free_i->free_secmap,
2488 							MAIN_SECS(sbi));
2489 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2490 		break;
2491 	}
2492 	secno = left_start;
2493 skip_left:
2494 	segno = GET_SEG_FROM_SEC(sbi, secno);
2495 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2496 
2497 	/* give up on finding another zone */
2498 	if (!init)
2499 		goto got_it;
2500 	if (sbi->secs_per_zone == 1)
2501 		goto got_it;
2502 	if (zoneno == old_zoneno)
2503 		goto got_it;
2504 	if (dir == ALLOC_LEFT) {
2505 		if (!go_left && zoneno + 1 >= total_zones)
2506 			goto got_it;
2507 		if (go_left && zoneno == 0)
2508 			goto got_it;
2509 	}
2510 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2511 		if (CURSEG_I(sbi, i)->zone == zoneno)
2512 			break;
2513 
2514 	if (i < NR_CURSEG_TYPE) {
2515 		/* zone is in user, try another */
2516 		if (go_left)
2517 			hint = zoneno * sbi->secs_per_zone - 1;
2518 		else if (zoneno + 1 >= total_zones)
2519 			hint = 0;
2520 		else
2521 			hint = (zoneno + 1) * sbi->secs_per_zone;
2522 		init = false;
2523 		goto find_other_zone;
2524 	}
2525 got_it:
2526 	/* set it as dirty segment in free segmap */
2527 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2528 	__set_inuse(sbi, segno);
2529 	*newseg = segno;
2530 	spin_unlock(&free_i->segmap_lock);
2531 }
2532 
2533 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2534 {
2535 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2536 	struct summary_footer *sum_footer;
2537 	unsigned short seg_type = curseg->seg_type;
2538 
2539 	curseg->inited = true;
2540 	curseg->segno = curseg->next_segno;
2541 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2542 	curseg->next_blkoff = 0;
2543 	curseg->next_segno = NULL_SEGNO;
2544 
2545 	sum_footer = &(curseg->sum_blk->footer);
2546 	memset(sum_footer, 0, sizeof(struct summary_footer));
2547 
2548 	sanity_check_seg_type(sbi, seg_type);
2549 
2550 	if (IS_DATASEG(seg_type))
2551 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2552 	if (IS_NODESEG(seg_type))
2553 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2554 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2555 }
2556 
2557 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2558 {
2559 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2560 	unsigned short seg_type = curseg->seg_type;
2561 
2562 	sanity_check_seg_type(sbi, seg_type);
2563 	if (f2fs_need_rand_seg(sbi))
2564 		return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec);
2565 
2566 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2567 	if (__is_large_section(sbi))
2568 		return curseg->segno;
2569 
2570 	/* inmem log may not locate on any segment after mount */
2571 	if (!curseg->inited)
2572 		return 0;
2573 
2574 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2575 		return 0;
2576 
2577 	if (test_opt(sbi, NOHEAP) &&
2578 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2579 		return 0;
2580 
2581 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2582 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2583 
2584 	/* find segments from 0 to reuse freed segments */
2585 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2586 		return 0;
2587 
2588 	return curseg->segno;
2589 }
2590 
2591 /*
2592  * Allocate a current working segment.
2593  * This function always allocates a free segment in LFS manner.
2594  */
2595 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2596 {
2597 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2598 	unsigned short seg_type = curseg->seg_type;
2599 	unsigned int segno = curseg->segno;
2600 	int dir = ALLOC_LEFT;
2601 
2602 	if (curseg->inited)
2603 		write_sum_page(sbi, curseg->sum_blk,
2604 				GET_SUM_BLOCK(sbi, segno));
2605 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2606 		dir = ALLOC_RIGHT;
2607 
2608 	if (test_opt(sbi, NOHEAP))
2609 		dir = ALLOC_RIGHT;
2610 
2611 	segno = __get_next_segno(sbi, type);
2612 	get_new_segment(sbi, &segno, new_sec, dir);
2613 	curseg->next_segno = segno;
2614 	reset_curseg(sbi, type, 1);
2615 	curseg->alloc_type = LFS;
2616 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2617 		curseg->fragment_remained_chunk =
2618 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2619 }
2620 
2621 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2622 					int segno, block_t start)
2623 {
2624 	struct seg_entry *se = get_seg_entry(sbi, segno);
2625 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2626 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2627 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2628 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2629 	int i;
2630 
2631 	for (i = 0; i < entries; i++)
2632 		target_map[i] = ckpt_map[i] | cur_map[i];
2633 
2634 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2635 }
2636 
2637 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2638 		struct curseg_info *seg)
2639 {
2640 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2641 }
2642 
2643 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2644 {
2645 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2646 }
2647 
2648 /*
2649  * This function always allocates a used segment(from dirty seglist) by SSR
2650  * manner, so it should recover the existing segment information of valid blocks
2651  */
2652 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2653 {
2654 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2655 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2656 	unsigned int new_segno = curseg->next_segno;
2657 	struct f2fs_summary_block *sum_node;
2658 	struct page *sum_page;
2659 
2660 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2661 
2662 	__set_test_and_inuse(sbi, new_segno);
2663 
2664 	mutex_lock(&dirty_i->seglist_lock);
2665 	__remove_dirty_segment(sbi, new_segno, PRE);
2666 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2667 	mutex_unlock(&dirty_i->seglist_lock);
2668 
2669 	reset_curseg(sbi, type, 1);
2670 	curseg->alloc_type = SSR;
2671 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2672 
2673 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2674 	if (IS_ERR(sum_page)) {
2675 		/* GC won't be able to use stale summary pages by cp_error */
2676 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2677 		return;
2678 	}
2679 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2680 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2681 	f2fs_put_page(sum_page, 1);
2682 }
2683 
2684 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2685 				int alloc_mode, unsigned long long age);
2686 
2687 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2688 					int target_type, int alloc_mode,
2689 					unsigned long long age)
2690 {
2691 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2692 
2693 	curseg->seg_type = target_type;
2694 
2695 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2696 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2697 
2698 		curseg->seg_type = se->type;
2699 		change_curseg(sbi, type);
2700 	} else {
2701 		/* allocate cold segment by default */
2702 		curseg->seg_type = CURSEG_COLD_DATA;
2703 		new_curseg(sbi, type, true);
2704 	}
2705 	stat_inc_seg_type(sbi, curseg);
2706 }
2707 
2708 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2709 {
2710 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2711 
2712 	if (!sbi->am.atgc_enabled)
2713 		return;
2714 
2715 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2716 
2717 	mutex_lock(&curseg->curseg_mutex);
2718 	down_write(&SIT_I(sbi)->sentry_lock);
2719 
2720 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2721 
2722 	up_write(&SIT_I(sbi)->sentry_lock);
2723 	mutex_unlock(&curseg->curseg_mutex);
2724 
2725 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2726 
2727 }
2728 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2729 {
2730 	__f2fs_init_atgc_curseg(sbi);
2731 }
2732 
2733 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2734 {
2735 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2736 
2737 	mutex_lock(&curseg->curseg_mutex);
2738 	if (!curseg->inited)
2739 		goto out;
2740 
2741 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2742 		write_sum_page(sbi, curseg->sum_blk,
2743 				GET_SUM_BLOCK(sbi, curseg->segno));
2744 	} else {
2745 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2746 		__set_test_and_free(sbi, curseg->segno, true);
2747 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2748 	}
2749 out:
2750 	mutex_unlock(&curseg->curseg_mutex);
2751 }
2752 
2753 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2754 {
2755 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2756 
2757 	if (sbi->am.atgc_enabled)
2758 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2759 }
2760 
2761 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2762 {
2763 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2764 
2765 	mutex_lock(&curseg->curseg_mutex);
2766 	if (!curseg->inited)
2767 		goto out;
2768 	if (get_valid_blocks(sbi, curseg->segno, false))
2769 		goto out;
2770 
2771 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2772 	__set_test_and_inuse(sbi, curseg->segno);
2773 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2774 out:
2775 	mutex_unlock(&curseg->curseg_mutex);
2776 }
2777 
2778 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2779 {
2780 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2781 
2782 	if (sbi->am.atgc_enabled)
2783 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2784 }
2785 
2786 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2787 				int alloc_mode, unsigned long long age)
2788 {
2789 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2790 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2791 	unsigned segno = NULL_SEGNO;
2792 	unsigned short seg_type = curseg->seg_type;
2793 	int i, cnt;
2794 	bool reversed = false;
2795 
2796 	sanity_check_seg_type(sbi, seg_type);
2797 
2798 	/* f2fs_need_SSR() already forces to do this */
2799 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2800 		curseg->next_segno = segno;
2801 		return 1;
2802 	}
2803 
2804 	/* For node segments, let's do SSR more intensively */
2805 	if (IS_NODESEG(seg_type)) {
2806 		if (seg_type >= CURSEG_WARM_NODE) {
2807 			reversed = true;
2808 			i = CURSEG_COLD_NODE;
2809 		} else {
2810 			i = CURSEG_HOT_NODE;
2811 		}
2812 		cnt = NR_CURSEG_NODE_TYPE;
2813 	} else {
2814 		if (seg_type >= CURSEG_WARM_DATA) {
2815 			reversed = true;
2816 			i = CURSEG_COLD_DATA;
2817 		} else {
2818 			i = CURSEG_HOT_DATA;
2819 		}
2820 		cnt = NR_CURSEG_DATA_TYPE;
2821 	}
2822 
2823 	for (; cnt-- > 0; reversed ? i-- : i++) {
2824 		if (i == seg_type)
2825 			continue;
2826 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2827 			curseg->next_segno = segno;
2828 			return 1;
2829 		}
2830 	}
2831 
2832 	/* find valid_blocks=0 in dirty list */
2833 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2834 		segno = get_free_segment(sbi);
2835 		if (segno != NULL_SEGNO) {
2836 			curseg->next_segno = segno;
2837 			return 1;
2838 		}
2839 	}
2840 	return 0;
2841 }
2842 
2843 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
2844 {
2845 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2846 
2847 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2848 	    curseg->seg_type == CURSEG_WARM_NODE)
2849 		return true;
2850 	if (curseg->alloc_type == LFS &&
2851 	    is_next_segment_free(sbi, curseg, type) &&
2852 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2853 		return true;
2854 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
2855 		return true;
2856 	return false;
2857 }
2858 
2859 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2860 					unsigned int start, unsigned int end)
2861 {
2862 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2863 	unsigned int segno;
2864 
2865 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2866 	mutex_lock(&curseg->curseg_mutex);
2867 	down_write(&SIT_I(sbi)->sentry_lock);
2868 
2869 	segno = CURSEG_I(sbi, type)->segno;
2870 	if (segno < start || segno > end)
2871 		goto unlock;
2872 
2873 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2874 		change_curseg(sbi, type);
2875 	else
2876 		new_curseg(sbi, type, true);
2877 
2878 	stat_inc_seg_type(sbi, curseg);
2879 
2880 	locate_dirty_segment(sbi, segno);
2881 unlock:
2882 	up_write(&SIT_I(sbi)->sentry_lock);
2883 
2884 	if (segno != curseg->segno)
2885 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2886 			    type, segno, curseg->segno);
2887 
2888 	mutex_unlock(&curseg->curseg_mutex);
2889 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2890 }
2891 
2892 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2893 						bool new_sec, bool force)
2894 {
2895 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2896 	unsigned int old_segno;
2897 
2898 	if (!force && curseg->inited &&
2899 	    !curseg->next_blkoff &&
2900 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
2901 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2902 		return;
2903 
2904 	old_segno = curseg->segno;
2905 	new_curseg(sbi, type, true);
2906 	stat_inc_seg_type(sbi, curseg);
2907 	locate_dirty_segment(sbi, old_segno);
2908 }
2909 
2910 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2911 {
2912 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2913 	down_write(&SIT_I(sbi)->sentry_lock);
2914 	__allocate_new_segment(sbi, type, true, force);
2915 	up_write(&SIT_I(sbi)->sentry_lock);
2916 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2917 }
2918 
2919 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2920 {
2921 	int i;
2922 
2923 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2924 	down_write(&SIT_I(sbi)->sentry_lock);
2925 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2926 		__allocate_new_segment(sbi, i, false, false);
2927 	up_write(&SIT_I(sbi)->sentry_lock);
2928 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2929 }
2930 
2931 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2932 						struct cp_control *cpc)
2933 {
2934 	__u64 trim_start = cpc->trim_start;
2935 	bool has_candidate = false;
2936 
2937 	down_write(&SIT_I(sbi)->sentry_lock);
2938 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2939 		if (add_discard_addrs(sbi, cpc, true)) {
2940 			has_candidate = true;
2941 			break;
2942 		}
2943 	}
2944 	up_write(&SIT_I(sbi)->sentry_lock);
2945 
2946 	cpc->trim_start = trim_start;
2947 	return has_candidate;
2948 }
2949 
2950 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
2951 					struct discard_policy *dpolicy,
2952 					unsigned int start, unsigned int end)
2953 {
2954 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2955 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
2956 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
2957 	struct discard_cmd *dc;
2958 	struct blk_plug plug;
2959 	int issued;
2960 	unsigned int trimmed = 0;
2961 
2962 next:
2963 	issued = 0;
2964 
2965 	mutex_lock(&dcc->cmd_lock);
2966 	if (unlikely(dcc->rbtree_check))
2967 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
2968 							&dcc->root, false));
2969 
2970 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
2971 					NULL, start,
2972 					(struct rb_entry **)&prev_dc,
2973 					(struct rb_entry **)&next_dc,
2974 					&insert_p, &insert_parent, true, NULL);
2975 	if (!dc)
2976 		dc = next_dc;
2977 
2978 	blk_start_plug(&plug);
2979 
2980 	while (dc && dc->lstart <= end) {
2981 		struct rb_node *node;
2982 		int err = 0;
2983 
2984 		if (dc->len < dpolicy->granularity)
2985 			goto skip;
2986 
2987 		if (dc->state != D_PREP) {
2988 			list_move_tail(&dc->list, &dcc->fstrim_list);
2989 			goto skip;
2990 		}
2991 
2992 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
2993 
2994 		if (issued >= dpolicy->max_requests) {
2995 			start = dc->lstart + dc->len;
2996 
2997 			if (err)
2998 				__remove_discard_cmd(sbi, dc);
2999 
3000 			blk_finish_plug(&plug);
3001 			mutex_unlock(&dcc->cmd_lock);
3002 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3003 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3004 			goto next;
3005 		}
3006 skip:
3007 		node = rb_next(&dc->rb_node);
3008 		if (err)
3009 			__remove_discard_cmd(sbi, dc);
3010 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3011 
3012 		if (fatal_signal_pending(current))
3013 			break;
3014 	}
3015 
3016 	blk_finish_plug(&plug);
3017 	mutex_unlock(&dcc->cmd_lock);
3018 
3019 	return trimmed;
3020 }
3021 
3022 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3023 {
3024 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3025 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3026 	unsigned int start_segno, end_segno;
3027 	block_t start_block, end_block;
3028 	struct cp_control cpc;
3029 	struct discard_policy dpolicy;
3030 	unsigned long long trimmed = 0;
3031 	int err = 0;
3032 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3033 
3034 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3035 		return -EINVAL;
3036 
3037 	if (end < MAIN_BLKADDR(sbi))
3038 		goto out;
3039 
3040 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3041 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3042 		return -EFSCORRUPTED;
3043 	}
3044 
3045 	/* start/end segment number in main_area */
3046 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3047 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3048 						GET_SEGNO(sbi, end);
3049 	if (need_align) {
3050 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3051 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3052 	}
3053 
3054 	cpc.reason = CP_DISCARD;
3055 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3056 	cpc.trim_start = start_segno;
3057 	cpc.trim_end = end_segno;
3058 
3059 	if (sbi->discard_blks == 0)
3060 		goto out;
3061 
3062 	f2fs_down_write(&sbi->gc_lock);
3063 	err = f2fs_write_checkpoint(sbi, &cpc);
3064 	f2fs_up_write(&sbi->gc_lock);
3065 	if (err)
3066 		goto out;
3067 
3068 	/*
3069 	 * We filed discard candidates, but actually we don't need to wait for
3070 	 * all of them, since they'll be issued in idle time along with runtime
3071 	 * discard option. User configuration looks like using runtime discard
3072 	 * or periodic fstrim instead of it.
3073 	 */
3074 	if (f2fs_realtime_discard_enable(sbi))
3075 		goto out;
3076 
3077 	start_block = START_BLOCK(sbi, start_segno);
3078 	end_block = START_BLOCK(sbi, end_segno + 1);
3079 
3080 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3081 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3082 					start_block, end_block);
3083 
3084 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3085 					start_block, end_block);
3086 out:
3087 	if (!err)
3088 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3089 	return err;
3090 }
3091 
3092 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3093 {
3094 	switch (hint) {
3095 	case WRITE_LIFE_SHORT:
3096 		return CURSEG_HOT_DATA;
3097 	case WRITE_LIFE_EXTREME:
3098 		return CURSEG_COLD_DATA;
3099 	default:
3100 		return CURSEG_WARM_DATA;
3101 	}
3102 }
3103 
3104 static int __get_segment_type_2(struct f2fs_io_info *fio)
3105 {
3106 	if (fio->type == DATA)
3107 		return CURSEG_HOT_DATA;
3108 	else
3109 		return CURSEG_HOT_NODE;
3110 }
3111 
3112 static int __get_segment_type_4(struct f2fs_io_info *fio)
3113 {
3114 	if (fio->type == DATA) {
3115 		struct inode *inode = fio->page->mapping->host;
3116 
3117 		if (S_ISDIR(inode->i_mode))
3118 			return CURSEG_HOT_DATA;
3119 		else
3120 			return CURSEG_COLD_DATA;
3121 	} else {
3122 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3123 			return CURSEG_WARM_NODE;
3124 		else
3125 			return CURSEG_COLD_NODE;
3126 	}
3127 }
3128 
3129 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3130 {
3131 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3132 	struct extent_info ei = {};
3133 
3134 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3135 		if (!ei.age)
3136 			return NO_CHECK_TYPE;
3137 		if (ei.age <= sbi->hot_data_age_threshold)
3138 			return CURSEG_HOT_DATA;
3139 		if (ei.age <= sbi->warm_data_age_threshold)
3140 			return CURSEG_WARM_DATA;
3141 		return CURSEG_COLD_DATA;
3142 	}
3143 	return NO_CHECK_TYPE;
3144 }
3145 
3146 static int __get_segment_type_6(struct f2fs_io_info *fio)
3147 {
3148 	if (fio->type == DATA) {
3149 		struct inode *inode = fio->page->mapping->host;
3150 		int type;
3151 
3152 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3153 			return CURSEG_COLD_DATA_PINNED;
3154 
3155 		if (page_private_gcing(fio->page)) {
3156 			if (fio->sbi->am.atgc_enabled &&
3157 				(fio->io_type == FS_DATA_IO) &&
3158 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3159 				return CURSEG_ALL_DATA_ATGC;
3160 			else
3161 				return CURSEG_COLD_DATA;
3162 		}
3163 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3164 			return CURSEG_COLD_DATA;
3165 
3166 		type = __get_age_segment_type(inode, fio->page->index);
3167 		if (type != NO_CHECK_TYPE)
3168 			return type;
3169 
3170 		if (file_is_hot(inode) ||
3171 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3172 				f2fs_is_cow_file(inode))
3173 			return CURSEG_HOT_DATA;
3174 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3175 	} else {
3176 		if (IS_DNODE(fio->page))
3177 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3178 						CURSEG_HOT_NODE;
3179 		return CURSEG_COLD_NODE;
3180 	}
3181 }
3182 
3183 static int __get_segment_type(struct f2fs_io_info *fio)
3184 {
3185 	int type = 0;
3186 
3187 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3188 	case 2:
3189 		type = __get_segment_type_2(fio);
3190 		break;
3191 	case 4:
3192 		type = __get_segment_type_4(fio);
3193 		break;
3194 	case 6:
3195 		type = __get_segment_type_6(fio);
3196 		break;
3197 	default:
3198 		f2fs_bug_on(fio->sbi, true);
3199 	}
3200 
3201 	if (IS_HOT(type))
3202 		fio->temp = HOT;
3203 	else if (IS_WARM(type))
3204 		fio->temp = WARM;
3205 	else
3206 		fio->temp = COLD;
3207 	return type;
3208 }
3209 
3210 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3211 		struct curseg_info *seg)
3212 {
3213 	/* To allocate block chunks in different sizes, use random number */
3214 	if (--seg->fragment_remained_chunk > 0)
3215 		return;
3216 
3217 	seg->fragment_remained_chunk =
3218 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3219 	seg->next_blkoff +=
3220 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3221 }
3222 
3223 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3224 		block_t old_blkaddr, block_t *new_blkaddr,
3225 		struct f2fs_summary *sum, int type,
3226 		struct f2fs_io_info *fio)
3227 {
3228 	struct sit_info *sit_i = SIT_I(sbi);
3229 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3230 	unsigned long long old_mtime;
3231 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3232 	struct seg_entry *se = NULL;
3233 	bool segment_full = false;
3234 
3235 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3236 
3237 	mutex_lock(&curseg->curseg_mutex);
3238 	down_write(&sit_i->sentry_lock);
3239 
3240 	if (from_gc) {
3241 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3242 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3243 		sanity_check_seg_type(sbi, se->type);
3244 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3245 	}
3246 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3247 
3248 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3249 
3250 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3251 
3252 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3253 	if (curseg->alloc_type == SSR) {
3254 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3255 	} else {
3256 		curseg->next_blkoff++;
3257 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3258 			f2fs_randomize_chunk(sbi, curseg);
3259 	}
3260 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3261 		segment_full = true;
3262 	stat_inc_block_count(sbi, curseg);
3263 
3264 	if (from_gc) {
3265 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3266 	} else {
3267 		update_segment_mtime(sbi, old_blkaddr, 0);
3268 		old_mtime = 0;
3269 	}
3270 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3271 
3272 	/*
3273 	 * SIT information should be updated before segment allocation,
3274 	 * since SSR needs latest valid block information.
3275 	 */
3276 	update_sit_entry(sbi, *new_blkaddr, 1);
3277 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3278 		update_sit_entry(sbi, old_blkaddr, -1);
3279 
3280 	/*
3281 	 * If the current segment is full, flush it out and replace it with a
3282 	 * new segment.
3283 	 */
3284 	if (segment_full) {
3285 		if (from_gc) {
3286 			get_atssr_segment(sbi, type, se->type,
3287 						AT_SSR, se->mtime);
3288 		} else {
3289 			if (need_new_seg(sbi, type))
3290 				new_curseg(sbi, type, false);
3291 			else
3292 				change_curseg(sbi, type);
3293 			stat_inc_seg_type(sbi, curseg);
3294 		}
3295 	}
3296 	/*
3297 	 * segment dirty status should be updated after segment allocation,
3298 	 * so we just need to update status only one time after previous
3299 	 * segment being closed.
3300 	 */
3301 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3302 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3303 
3304 	if (IS_DATASEG(type))
3305 		atomic64_inc(&sbi->allocated_data_blocks);
3306 
3307 	up_write(&sit_i->sentry_lock);
3308 
3309 	if (page && IS_NODESEG(type)) {
3310 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3311 
3312 		f2fs_inode_chksum_set(sbi, page);
3313 	}
3314 
3315 	if (fio) {
3316 		struct f2fs_bio_info *io;
3317 
3318 		if (F2FS_IO_ALIGNED(sbi))
3319 			fio->retry = 0;
3320 
3321 		INIT_LIST_HEAD(&fio->list);
3322 		fio->in_list = 1;
3323 		io = sbi->write_io[fio->type] + fio->temp;
3324 		spin_lock(&io->io_lock);
3325 		list_add_tail(&fio->list, &io->io_list);
3326 		spin_unlock(&io->io_lock);
3327 	}
3328 
3329 	mutex_unlock(&curseg->curseg_mutex);
3330 
3331 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3332 }
3333 
3334 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3335 					block_t blkaddr, unsigned int blkcnt)
3336 {
3337 	if (!f2fs_is_multi_device(sbi))
3338 		return;
3339 
3340 	while (1) {
3341 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3342 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3343 
3344 		/* update device state for fsync */
3345 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3346 
3347 		/* update device state for checkpoint */
3348 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3349 			spin_lock(&sbi->dev_lock);
3350 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3351 			spin_unlock(&sbi->dev_lock);
3352 		}
3353 
3354 		if (blkcnt <= blks)
3355 			break;
3356 		blkcnt -= blks;
3357 		blkaddr += blks;
3358 	}
3359 }
3360 
3361 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3362 {
3363 	int type = __get_segment_type(fio);
3364 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3365 
3366 	if (keep_order)
3367 		f2fs_down_read(&fio->sbi->io_order_lock);
3368 reallocate:
3369 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3370 			&fio->new_blkaddr, sum, type, fio);
3371 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3372 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3373 					fio->old_blkaddr, fio->old_blkaddr);
3374 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3375 	}
3376 
3377 	/* writeout dirty page into bdev */
3378 	f2fs_submit_page_write(fio);
3379 	if (fio->retry) {
3380 		fio->old_blkaddr = fio->new_blkaddr;
3381 		goto reallocate;
3382 	}
3383 
3384 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3385 
3386 	if (keep_order)
3387 		f2fs_up_read(&fio->sbi->io_order_lock);
3388 }
3389 
3390 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3391 					enum iostat_type io_type)
3392 {
3393 	struct f2fs_io_info fio = {
3394 		.sbi = sbi,
3395 		.type = META,
3396 		.temp = HOT,
3397 		.op = REQ_OP_WRITE,
3398 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3399 		.old_blkaddr = page->index,
3400 		.new_blkaddr = page->index,
3401 		.page = page,
3402 		.encrypted_page = NULL,
3403 		.in_list = 0,
3404 	};
3405 
3406 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3407 		fio.op_flags &= ~REQ_META;
3408 
3409 	set_page_writeback(page);
3410 	f2fs_submit_page_write(&fio);
3411 
3412 	stat_inc_meta_count(sbi, page->index);
3413 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3414 }
3415 
3416 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3417 {
3418 	struct f2fs_summary sum;
3419 
3420 	set_summary(&sum, nid, 0, 0);
3421 	do_write_page(&sum, fio);
3422 
3423 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3424 }
3425 
3426 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3427 					struct f2fs_io_info *fio)
3428 {
3429 	struct f2fs_sb_info *sbi = fio->sbi;
3430 	struct f2fs_summary sum;
3431 
3432 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3433 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3434 		f2fs_update_age_extent_cache(dn);
3435 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3436 	do_write_page(&sum, fio);
3437 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3438 
3439 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3440 }
3441 
3442 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3443 {
3444 	int err;
3445 	struct f2fs_sb_info *sbi = fio->sbi;
3446 	unsigned int segno;
3447 
3448 	fio->new_blkaddr = fio->old_blkaddr;
3449 	/* i/o temperature is needed for passing down write hints */
3450 	__get_segment_type(fio);
3451 
3452 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3453 
3454 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3455 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3456 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3457 			  __func__, segno);
3458 		err = -EFSCORRUPTED;
3459 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3460 		goto drop_bio;
3461 	}
3462 
3463 	if (f2fs_cp_error(sbi)) {
3464 		err = -EIO;
3465 		goto drop_bio;
3466 	}
3467 
3468 	if (fio->post_read)
3469 		invalidate_mapping_pages(META_MAPPING(sbi),
3470 				fio->new_blkaddr, fio->new_blkaddr);
3471 
3472 	stat_inc_inplace_blocks(fio->sbi);
3473 
3474 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3475 		err = f2fs_merge_page_bio(fio);
3476 	else
3477 		err = f2fs_submit_page_bio(fio);
3478 	if (!err) {
3479 		f2fs_update_device_state(fio->sbi, fio->ino,
3480 						fio->new_blkaddr, 1);
3481 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3482 						fio->io_type, F2FS_BLKSIZE);
3483 	}
3484 
3485 	return err;
3486 drop_bio:
3487 	if (fio->bio && *(fio->bio)) {
3488 		struct bio *bio = *(fio->bio);
3489 
3490 		bio->bi_status = BLK_STS_IOERR;
3491 		bio_endio(bio);
3492 		*(fio->bio) = NULL;
3493 	}
3494 	return err;
3495 }
3496 
3497 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3498 						unsigned int segno)
3499 {
3500 	int i;
3501 
3502 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3503 		if (CURSEG_I(sbi, i)->segno == segno)
3504 			break;
3505 	}
3506 	return i;
3507 }
3508 
3509 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3510 				block_t old_blkaddr, block_t new_blkaddr,
3511 				bool recover_curseg, bool recover_newaddr,
3512 				bool from_gc)
3513 {
3514 	struct sit_info *sit_i = SIT_I(sbi);
3515 	struct curseg_info *curseg;
3516 	unsigned int segno, old_cursegno;
3517 	struct seg_entry *se;
3518 	int type;
3519 	unsigned short old_blkoff;
3520 	unsigned char old_alloc_type;
3521 
3522 	segno = GET_SEGNO(sbi, new_blkaddr);
3523 	se = get_seg_entry(sbi, segno);
3524 	type = se->type;
3525 
3526 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3527 
3528 	if (!recover_curseg) {
3529 		/* for recovery flow */
3530 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3531 			if (old_blkaddr == NULL_ADDR)
3532 				type = CURSEG_COLD_DATA;
3533 			else
3534 				type = CURSEG_WARM_DATA;
3535 		}
3536 	} else {
3537 		if (IS_CURSEG(sbi, segno)) {
3538 			/* se->type is volatile as SSR allocation */
3539 			type = __f2fs_get_curseg(sbi, segno);
3540 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3541 		} else {
3542 			type = CURSEG_WARM_DATA;
3543 		}
3544 	}
3545 
3546 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3547 	curseg = CURSEG_I(sbi, type);
3548 
3549 	mutex_lock(&curseg->curseg_mutex);
3550 	down_write(&sit_i->sentry_lock);
3551 
3552 	old_cursegno = curseg->segno;
3553 	old_blkoff = curseg->next_blkoff;
3554 	old_alloc_type = curseg->alloc_type;
3555 
3556 	/* change the current segment */
3557 	if (segno != curseg->segno) {
3558 		curseg->next_segno = segno;
3559 		change_curseg(sbi, type);
3560 	}
3561 
3562 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3563 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3564 
3565 	if (!recover_curseg || recover_newaddr) {
3566 		if (!from_gc)
3567 			update_segment_mtime(sbi, new_blkaddr, 0);
3568 		update_sit_entry(sbi, new_blkaddr, 1);
3569 	}
3570 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3571 		invalidate_mapping_pages(META_MAPPING(sbi),
3572 					old_blkaddr, old_blkaddr);
3573 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3574 		if (!from_gc)
3575 			update_segment_mtime(sbi, old_blkaddr, 0);
3576 		update_sit_entry(sbi, old_blkaddr, -1);
3577 	}
3578 
3579 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3580 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3581 
3582 	locate_dirty_segment(sbi, old_cursegno);
3583 
3584 	if (recover_curseg) {
3585 		if (old_cursegno != curseg->segno) {
3586 			curseg->next_segno = old_cursegno;
3587 			change_curseg(sbi, type);
3588 		}
3589 		curseg->next_blkoff = old_blkoff;
3590 		curseg->alloc_type = old_alloc_type;
3591 	}
3592 
3593 	up_write(&sit_i->sentry_lock);
3594 	mutex_unlock(&curseg->curseg_mutex);
3595 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3596 }
3597 
3598 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3599 				block_t old_addr, block_t new_addr,
3600 				unsigned char version, bool recover_curseg,
3601 				bool recover_newaddr)
3602 {
3603 	struct f2fs_summary sum;
3604 
3605 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3606 
3607 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3608 					recover_curseg, recover_newaddr, false);
3609 
3610 	f2fs_update_data_blkaddr(dn, new_addr);
3611 }
3612 
3613 void f2fs_wait_on_page_writeback(struct page *page,
3614 				enum page_type type, bool ordered, bool locked)
3615 {
3616 	if (PageWriteback(page)) {
3617 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3618 
3619 		/* submit cached LFS IO */
3620 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3621 		/* submit cached IPU IO */
3622 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3623 		if (ordered) {
3624 			wait_on_page_writeback(page);
3625 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3626 		} else {
3627 			wait_for_stable_page(page);
3628 		}
3629 	}
3630 }
3631 
3632 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3633 {
3634 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3635 	struct page *cpage;
3636 
3637 	if (!f2fs_post_read_required(inode))
3638 		return;
3639 
3640 	if (!__is_valid_data_blkaddr(blkaddr))
3641 		return;
3642 
3643 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3644 	if (cpage) {
3645 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3646 		f2fs_put_page(cpage, 1);
3647 	}
3648 }
3649 
3650 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3651 								block_t len)
3652 {
3653 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3654 	block_t i;
3655 
3656 	if (!f2fs_post_read_required(inode))
3657 		return;
3658 
3659 	for (i = 0; i < len; i++)
3660 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3661 
3662 	invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1);
3663 }
3664 
3665 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3666 {
3667 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3668 	struct curseg_info *seg_i;
3669 	unsigned char *kaddr;
3670 	struct page *page;
3671 	block_t start;
3672 	int i, j, offset;
3673 
3674 	start = start_sum_block(sbi);
3675 
3676 	page = f2fs_get_meta_page(sbi, start++);
3677 	if (IS_ERR(page))
3678 		return PTR_ERR(page);
3679 	kaddr = (unsigned char *)page_address(page);
3680 
3681 	/* Step 1: restore nat cache */
3682 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3683 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3684 
3685 	/* Step 2: restore sit cache */
3686 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3687 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3688 	offset = 2 * SUM_JOURNAL_SIZE;
3689 
3690 	/* Step 3: restore summary entries */
3691 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3692 		unsigned short blk_off;
3693 		unsigned int segno;
3694 
3695 		seg_i = CURSEG_I(sbi, i);
3696 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3697 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3698 		seg_i->next_segno = segno;
3699 		reset_curseg(sbi, i, 0);
3700 		seg_i->alloc_type = ckpt->alloc_type[i];
3701 		seg_i->next_blkoff = blk_off;
3702 
3703 		if (seg_i->alloc_type == SSR)
3704 			blk_off = sbi->blocks_per_seg;
3705 
3706 		for (j = 0; j < blk_off; j++) {
3707 			struct f2fs_summary *s;
3708 
3709 			s = (struct f2fs_summary *)(kaddr + offset);
3710 			seg_i->sum_blk->entries[j] = *s;
3711 			offset += SUMMARY_SIZE;
3712 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3713 						SUM_FOOTER_SIZE)
3714 				continue;
3715 
3716 			f2fs_put_page(page, 1);
3717 			page = NULL;
3718 
3719 			page = f2fs_get_meta_page(sbi, start++);
3720 			if (IS_ERR(page))
3721 				return PTR_ERR(page);
3722 			kaddr = (unsigned char *)page_address(page);
3723 			offset = 0;
3724 		}
3725 	}
3726 	f2fs_put_page(page, 1);
3727 	return 0;
3728 }
3729 
3730 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3731 {
3732 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3733 	struct f2fs_summary_block *sum;
3734 	struct curseg_info *curseg;
3735 	struct page *new;
3736 	unsigned short blk_off;
3737 	unsigned int segno = 0;
3738 	block_t blk_addr = 0;
3739 	int err = 0;
3740 
3741 	/* get segment number and block addr */
3742 	if (IS_DATASEG(type)) {
3743 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3744 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3745 							CURSEG_HOT_DATA]);
3746 		if (__exist_node_summaries(sbi))
3747 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3748 		else
3749 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3750 	} else {
3751 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3752 							CURSEG_HOT_NODE]);
3753 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3754 							CURSEG_HOT_NODE]);
3755 		if (__exist_node_summaries(sbi))
3756 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3757 							type - CURSEG_HOT_NODE);
3758 		else
3759 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3760 	}
3761 
3762 	new = f2fs_get_meta_page(sbi, blk_addr);
3763 	if (IS_ERR(new))
3764 		return PTR_ERR(new);
3765 	sum = (struct f2fs_summary_block *)page_address(new);
3766 
3767 	if (IS_NODESEG(type)) {
3768 		if (__exist_node_summaries(sbi)) {
3769 			struct f2fs_summary *ns = &sum->entries[0];
3770 			int i;
3771 
3772 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3773 				ns->version = 0;
3774 				ns->ofs_in_node = 0;
3775 			}
3776 		} else {
3777 			err = f2fs_restore_node_summary(sbi, segno, sum);
3778 			if (err)
3779 				goto out;
3780 		}
3781 	}
3782 
3783 	/* set uncompleted segment to curseg */
3784 	curseg = CURSEG_I(sbi, type);
3785 	mutex_lock(&curseg->curseg_mutex);
3786 
3787 	/* update journal info */
3788 	down_write(&curseg->journal_rwsem);
3789 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3790 	up_write(&curseg->journal_rwsem);
3791 
3792 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3793 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3794 	curseg->next_segno = segno;
3795 	reset_curseg(sbi, type, 0);
3796 	curseg->alloc_type = ckpt->alloc_type[type];
3797 	curseg->next_blkoff = blk_off;
3798 	mutex_unlock(&curseg->curseg_mutex);
3799 out:
3800 	f2fs_put_page(new, 1);
3801 	return err;
3802 }
3803 
3804 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3805 {
3806 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3807 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3808 	int type = CURSEG_HOT_DATA;
3809 	int err;
3810 
3811 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3812 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3813 
3814 		if (npages >= 2)
3815 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3816 							META_CP, true);
3817 
3818 		/* restore for compacted data summary */
3819 		err = read_compacted_summaries(sbi);
3820 		if (err)
3821 			return err;
3822 		type = CURSEG_HOT_NODE;
3823 	}
3824 
3825 	if (__exist_node_summaries(sbi))
3826 		f2fs_ra_meta_pages(sbi,
3827 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3828 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3829 
3830 	for (; type <= CURSEG_COLD_NODE; type++) {
3831 		err = read_normal_summaries(sbi, type);
3832 		if (err)
3833 			return err;
3834 	}
3835 
3836 	/* sanity check for summary blocks */
3837 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3838 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3839 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
3840 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3841 		return -EINVAL;
3842 	}
3843 
3844 	return 0;
3845 }
3846 
3847 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3848 {
3849 	struct page *page;
3850 	unsigned char *kaddr;
3851 	struct f2fs_summary *summary;
3852 	struct curseg_info *seg_i;
3853 	int written_size = 0;
3854 	int i, j;
3855 
3856 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3857 	kaddr = (unsigned char *)page_address(page);
3858 	memset(kaddr, 0, PAGE_SIZE);
3859 
3860 	/* Step 1: write nat cache */
3861 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3862 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3863 	written_size += SUM_JOURNAL_SIZE;
3864 
3865 	/* Step 2: write sit cache */
3866 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3867 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3868 	written_size += SUM_JOURNAL_SIZE;
3869 
3870 	/* Step 3: write summary entries */
3871 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3872 		seg_i = CURSEG_I(sbi, i);
3873 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
3874 			if (!page) {
3875 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3876 				kaddr = (unsigned char *)page_address(page);
3877 				memset(kaddr, 0, PAGE_SIZE);
3878 				written_size = 0;
3879 			}
3880 			summary = (struct f2fs_summary *)(kaddr + written_size);
3881 			*summary = seg_i->sum_blk->entries[j];
3882 			written_size += SUMMARY_SIZE;
3883 
3884 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3885 							SUM_FOOTER_SIZE)
3886 				continue;
3887 
3888 			set_page_dirty(page);
3889 			f2fs_put_page(page, 1);
3890 			page = NULL;
3891 		}
3892 	}
3893 	if (page) {
3894 		set_page_dirty(page);
3895 		f2fs_put_page(page, 1);
3896 	}
3897 }
3898 
3899 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3900 					block_t blkaddr, int type)
3901 {
3902 	int i, end;
3903 
3904 	if (IS_DATASEG(type))
3905 		end = type + NR_CURSEG_DATA_TYPE;
3906 	else
3907 		end = type + NR_CURSEG_NODE_TYPE;
3908 
3909 	for (i = type; i < end; i++)
3910 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3911 }
3912 
3913 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3914 {
3915 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3916 		write_compacted_summaries(sbi, start_blk);
3917 	else
3918 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3919 }
3920 
3921 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3922 {
3923 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3924 }
3925 
3926 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3927 					unsigned int val, int alloc)
3928 {
3929 	int i;
3930 
3931 	if (type == NAT_JOURNAL) {
3932 		for (i = 0; i < nats_in_cursum(journal); i++) {
3933 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3934 				return i;
3935 		}
3936 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3937 			return update_nats_in_cursum(journal, 1);
3938 	} else if (type == SIT_JOURNAL) {
3939 		for (i = 0; i < sits_in_cursum(journal); i++)
3940 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3941 				return i;
3942 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3943 			return update_sits_in_cursum(journal, 1);
3944 	}
3945 	return -1;
3946 }
3947 
3948 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3949 					unsigned int segno)
3950 {
3951 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
3952 }
3953 
3954 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3955 					unsigned int start)
3956 {
3957 	struct sit_info *sit_i = SIT_I(sbi);
3958 	struct page *page;
3959 	pgoff_t src_off, dst_off;
3960 
3961 	src_off = current_sit_addr(sbi, start);
3962 	dst_off = next_sit_addr(sbi, src_off);
3963 
3964 	page = f2fs_grab_meta_page(sbi, dst_off);
3965 	seg_info_to_sit_page(sbi, page, start);
3966 
3967 	set_page_dirty(page);
3968 	set_to_next_sit(sit_i, start);
3969 
3970 	return page;
3971 }
3972 
3973 static struct sit_entry_set *grab_sit_entry_set(void)
3974 {
3975 	struct sit_entry_set *ses =
3976 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
3977 						GFP_NOFS, true, NULL);
3978 
3979 	ses->entry_cnt = 0;
3980 	INIT_LIST_HEAD(&ses->set_list);
3981 	return ses;
3982 }
3983 
3984 static void release_sit_entry_set(struct sit_entry_set *ses)
3985 {
3986 	list_del(&ses->set_list);
3987 	kmem_cache_free(sit_entry_set_slab, ses);
3988 }
3989 
3990 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3991 						struct list_head *head)
3992 {
3993 	struct sit_entry_set *next = ses;
3994 
3995 	if (list_is_last(&ses->set_list, head))
3996 		return;
3997 
3998 	list_for_each_entry_continue(next, head, set_list)
3999 		if (ses->entry_cnt <= next->entry_cnt) {
4000 			list_move_tail(&ses->set_list, &next->set_list);
4001 			return;
4002 		}
4003 
4004 	list_move_tail(&ses->set_list, head);
4005 }
4006 
4007 static void add_sit_entry(unsigned int segno, struct list_head *head)
4008 {
4009 	struct sit_entry_set *ses;
4010 	unsigned int start_segno = START_SEGNO(segno);
4011 
4012 	list_for_each_entry(ses, head, set_list) {
4013 		if (ses->start_segno == start_segno) {
4014 			ses->entry_cnt++;
4015 			adjust_sit_entry_set(ses, head);
4016 			return;
4017 		}
4018 	}
4019 
4020 	ses = grab_sit_entry_set();
4021 
4022 	ses->start_segno = start_segno;
4023 	ses->entry_cnt++;
4024 	list_add(&ses->set_list, head);
4025 }
4026 
4027 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4028 {
4029 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4030 	struct list_head *set_list = &sm_info->sit_entry_set;
4031 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4032 	unsigned int segno;
4033 
4034 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4035 		add_sit_entry(segno, set_list);
4036 }
4037 
4038 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4039 {
4040 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4041 	struct f2fs_journal *journal = curseg->journal;
4042 	int i;
4043 
4044 	down_write(&curseg->journal_rwsem);
4045 	for (i = 0; i < sits_in_cursum(journal); i++) {
4046 		unsigned int segno;
4047 		bool dirtied;
4048 
4049 		segno = le32_to_cpu(segno_in_journal(journal, i));
4050 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4051 
4052 		if (!dirtied)
4053 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4054 	}
4055 	update_sits_in_cursum(journal, -i);
4056 	up_write(&curseg->journal_rwsem);
4057 }
4058 
4059 /*
4060  * CP calls this function, which flushes SIT entries including sit_journal,
4061  * and moves prefree segs to free segs.
4062  */
4063 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4064 {
4065 	struct sit_info *sit_i = SIT_I(sbi);
4066 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4067 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4068 	struct f2fs_journal *journal = curseg->journal;
4069 	struct sit_entry_set *ses, *tmp;
4070 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4071 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4072 	struct seg_entry *se;
4073 
4074 	down_write(&sit_i->sentry_lock);
4075 
4076 	if (!sit_i->dirty_sentries)
4077 		goto out;
4078 
4079 	/*
4080 	 * add and account sit entries of dirty bitmap in sit entry
4081 	 * set temporarily
4082 	 */
4083 	add_sits_in_set(sbi);
4084 
4085 	/*
4086 	 * if there are no enough space in journal to store dirty sit
4087 	 * entries, remove all entries from journal and add and account
4088 	 * them in sit entry set.
4089 	 */
4090 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4091 								!to_journal)
4092 		remove_sits_in_journal(sbi);
4093 
4094 	/*
4095 	 * there are two steps to flush sit entries:
4096 	 * #1, flush sit entries to journal in current cold data summary block.
4097 	 * #2, flush sit entries to sit page.
4098 	 */
4099 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4100 		struct page *page = NULL;
4101 		struct f2fs_sit_block *raw_sit = NULL;
4102 		unsigned int start_segno = ses->start_segno;
4103 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4104 						(unsigned long)MAIN_SEGS(sbi));
4105 		unsigned int segno = start_segno;
4106 
4107 		if (to_journal &&
4108 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4109 			to_journal = false;
4110 
4111 		if (to_journal) {
4112 			down_write(&curseg->journal_rwsem);
4113 		} else {
4114 			page = get_next_sit_page(sbi, start_segno);
4115 			raw_sit = page_address(page);
4116 		}
4117 
4118 		/* flush dirty sit entries in region of current sit set */
4119 		for_each_set_bit_from(segno, bitmap, end) {
4120 			int offset, sit_offset;
4121 
4122 			se = get_seg_entry(sbi, segno);
4123 #ifdef CONFIG_F2FS_CHECK_FS
4124 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4125 						SIT_VBLOCK_MAP_SIZE))
4126 				f2fs_bug_on(sbi, 1);
4127 #endif
4128 
4129 			/* add discard candidates */
4130 			if (!(cpc->reason & CP_DISCARD)) {
4131 				cpc->trim_start = segno;
4132 				add_discard_addrs(sbi, cpc, false);
4133 			}
4134 
4135 			if (to_journal) {
4136 				offset = f2fs_lookup_journal_in_cursum(journal,
4137 							SIT_JOURNAL, segno, 1);
4138 				f2fs_bug_on(sbi, offset < 0);
4139 				segno_in_journal(journal, offset) =
4140 							cpu_to_le32(segno);
4141 				seg_info_to_raw_sit(se,
4142 					&sit_in_journal(journal, offset));
4143 				check_block_count(sbi, segno,
4144 					&sit_in_journal(journal, offset));
4145 			} else {
4146 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4147 				seg_info_to_raw_sit(se,
4148 						&raw_sit->entries[sit_offset]);
4149 				check_block_count(sbi, segno,
4150 						&raw_sit->entries[sit_offset]);
4151 			}
4152 
4153 			__clear_bit(segno, bitmap);
4154 			sit_i->dirty_sentries--;
4155 			ses->entry_cnt--;
4156 		}
4157 
4158 		if (to_journal)
4159 			up_write(&curseg->journal_rwsem);
4160 		else
4161 			f2fs_put_page(page, 1);
4162 
4163 		f2fs_bug_on(sbi, ses->entry_cnt);
4164 		release_sit_entry_set(ses);
4165 	}
4166 
4167 	f2fs_bug_on(sbi, !list_empty(head));
4168 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4169 out:
4170 	if (cpc->reason & CP_DISCARD) {
4171 		__u64 trim_start = cpc->trim_start;
4172 
4173 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4174 			add_discard_addrs(sbi, cpc, false);
4175 
4176 		cpc->trim_start = trim_start;
4177 	}
4178 	up_write(&sit_i->sentry_lock);
4179 
4180 	set_prefree_as_free_segments(sbi);
4181 }
4182 
4183 static int build_sit_info(struct f2fs_sb_info *sbi)
4184 {
4185 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4186 	struct sit_info *sit_i;
4187 	unsigned int sit_segs, start;
4188 	char *src_bitmap, *bitmap;
4189 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4190 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4191 
4192 	/* allocate memory for SIT information */
4193 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4194 	if (!sit_i)
4195 		return -ENOMEM;
4196 
4197 	SM_I(sbi)->sit_info = sit_i;
4198 
4199 	sit_i->sentries =
4200 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4201 					      MAIN_SEGS(sbi)),
4202 			      GFP_KERNEL);
4203 	if (!sit_i->sentries)
4204 		return -ENOMEM;
4205 
4206 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4207 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4208 								GFP_KERNEL);
4209 	if (!sit_i->dirty_sentries_bitmap)
4210 		return -ENOMEM;
4211 
4212 #ifdef CONFIG_F2FS_CHECK_FS
4213 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4214 #else
4215 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4216 #endif
4217 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4218 	if (!sit_i->bitmap)
4219 		return -ENOMEM;
4220 
4221 	bitmap = sit_i->bitmap;
4222 
4223 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4224 		sit_i->sentries[start].cur_valid_map = bitmap;
4225 		bitmap += SIT_VBLOCK_MAP_SIZE;
4226 
4227 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4228 		bitmap += SIT_VBLOCK_MAP_SIZE;
4229 
4230 #ifdef CONFIG_F2FS_CHECK_FS
4231 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4232 		bitmap += SIT_VBLOCK_MAP_SIZE;
4233 #endif
4234 
4235 		if (discard_map) {
4236 			sit_i->sentries[start].discard_map = bitmap;
4237 			bitmap += SIT_VBLOCK_MAP_SIZE;
4238 		}
4239 	}
4240 
4241 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4242 	if (!sit_i->tmp_map)
4243 		return -ENOMEM;
4244 
4245 	if (__is_large_section(sbi)) {
4246 		sit_i->sec_entries =
4247 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4248 						      MAIN_SECS(sbi)),
4249 				      GFP_KERNEL);
4250 		if (!sit_i->sec_entries)
4251 			return -ENOMEM;
4252 	}
4253 
4254 	/* get information related with SIT */
4255 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4256 
4257 	/* setup SIT bitmap from ckeckpoint pack */
4258 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4259 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4260 
4261 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4262 	if (!sit_i->sit_bitmap)
4263 		return -ENOMEM;
4264 
4265 #ifdef CONFIG_F2FS_CHECK_FS
4266 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4267 					sit_bitmap_size, GFP_KERNEL);
4268 	if (!sit_i->sit_bitmap_mir)
4269 		return -ENOMEM;
4270 
4271 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4272 					main_bitmap_size, GFP_KERNEL);
4273 	if (!sit_i->invalid_segmap)
4274 		return -ENOMEM;
4275 #endif
4276 
4277 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4278 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4279 	sit_i->written_valid_blocks = 0;
4280 	sit_i->bitmap_size = sit_bitmap_size;
4281 	sit_i->dirty_sentries = 0;
4282 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4283 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4284 	sit_i->mounted_time = ktime_get_boottime_seconds();
4285 	init_rwsem(&sit_i->sentry_lock);
4286 	return 0;
4287 }
4288 
4289 static int build_free_segmap(struct f2fs_sb_info *sbi)
4290 {
4291 	struct free_segmap_info *free_i;
4292 	unsigned int bitmap_size, sec_bitmap_size;
4293 
4294 	/* allocate memory for free segmap information */
4295 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4296 	if (!free_i)
4297 		return -ENOMEM;
4298 
4299 	SM_I(sbi)->free_info = free_i;
4300 
4301 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4302 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4303 	if (!free_i->free_segmap)
4304 		return -ENOMEM;
4305 
4306 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4307 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4308 	if (!free_i->free_secmap)
4309 		return -ENOMEM;
4310 
4311 	/* set all segments as dirty temporarily */
4312 	memset(free_i->free_segmap, 0xff, bitmap_size);
4313 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4314 
4315 	/* init free segmap information */
4316 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4317 	free_i->free_segments = 0;
4318 	free_i->free_sections = 0;
4319 	spin_lock_init(&free_i->segmap_lock);
4320 	return 0;
4321 }
4322 
4323 static int build_curseg(struct f2fs_sb_info *sbi)
4324 {
4325 	struct curseg_info *array;
4326 	int i;
4327 
4328 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4329 					sizeof(*array)), GFP_KERNEL);
4330 	if (!array)
4331 		return -ENOMEM;
4332 
4333 	SM_I(sbi)->curseg_array = array;
4334 
4335 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4336 		mutex_init(&array[i].curseg_mutex);
4337 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4338 		if (!array[i].sum_blk)
4339 			return -ENOMEM;
4340 		init_rwsem(&array[i].journal_rwsem);
4341 		array[i].journal = f2fs_kzalloc(sbi,
4342 				sizeof(struct f2fs_journal), GFP_KERNEL);
4343 		if (!array[i].journal)
4344 			return -ENOMEM;
4345 		if (i < NR_PERSISTENT_LOG)
4346 			array[i].seg_type = CURSEG_HOT_DATA + i;
4347 		else if (i == CURSEG_COLD_DATA_PINNED)
4348 			array[i].seg_type = CURSEG_COLD_DATA;
4349 		else if (i == CURSEG_ALL_DATA_ATGC)
4350 			array[i].seg_type = CURSEG_COLD_DATA;
4351 		array[i].segno = NULL_SEGNO;
4352 		array[i].next_blkoff = 0;
4353 		array[i].inited = false;
4354 	}
4355 	return restore_curseg_summaries(sbi);
4356 }
4357 
4358 static int build_sit_entries(struct f2fs_sb_info *sbi)
4359 {
4360 	struct sit_info *sit_i = SIT_I(sbi);
4361 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4362 	struct f2fs_journal *journal = curseg->journal;
4363 	struct seg_entry *se;
4364 	struct f2fs_sit_entry sit;
4365 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4366 	unsigned int i, start, end;
4367 	unsigned int readed, start_blk = 0;
4368 	int err = 0;
4369 	block_t sit_valid_blocks[2] = {0, 0};
4370 
4371 	do {
4372 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4373 							META_SIT, true);
4374 
4375 		start = start_blk * sit_i->sents_per_block;
4376 		end = (start_blk + readed) * sit_i->sents_per_block;
4377 
4378 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4379 			struct f2fs_sit_block *sit_blk;
4380 			struct page *page;
4381 
4382 			se = &sit_i->sentries[start];
4383 			page = get_current_sit_page(sbi, start);
4384 			if (IS_ERR(page))
4385 				return PTR_ERR(page);
4386 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4387 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4388 			f2fs_put_page(page, 1);
4389 
4390 			err = check_block_count(sbi, start, &sit);
4391 			if (err)
4392 				return err;
4393 			seg_info_from_raw_sit(se, &sit);
4394 
4395 			if (se->type >= NR_PERSISTENT_LOG) {
4396 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4397 							se->type, start);
4398 				f2fs_handle_error(sbi,
4399 						ERROR_INCONSISTENT_SUM_TYPE);
4400 				return -EFSCORRUPTED;
4401 			}
4402 
4403 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4404 
4405 			if (f2fs_block_unit_discard(sbi)) {
4406 				/* build discard map only one time */
4407 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4408 					memset(se->discard_map, 0xff,
4409 						SIT_VBLOCK_MAP_SIZE);
4410 				} else {
4411 					memcpy(se->discard_map,
4412 						se->cur_valid_map,
4413 						SIT_VBLOCK_MAP_SIZE);
4414 					sbi->discard_blks +=
4415 						sbi->blocks_per_seg -
4416 						se->valid_blocks;
4417 				}
4418 			}
4419 
4420 			if (__is_large_section(sbi))
4421 				get_sec_entry(sbi, start)->valid_blocks +=
4422 							se->valid_blocks;
4423 		}
4424 		start_blk += readed;
4425 	} while (start_blk < sit_blk_cnt);
4426 
4427 	down_read(&curseg->journal_rwsem);
4428 	for (i = 0; i < sits_in_cursum(journal); i++) {
4429 		unsigned int old_valid_blocks;
4430 
4431 		start = le32_to_cpu(segno_in_journal(journal, i));
4432 		if (start >= MAIN_SEGS(sbi)) {
4433 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4434 				 start);
4435 			err = -EFSCORRUPTED;
4436 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4437 			break;
4438 		}
4439 
4440 		se = &sit_i->sentries[start];
4441 		sit = sit_in_journal(journal, i);
4442 
4443 		old_valid_blocks = se->valid_blocks;
4444 
4445 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4446 
4447 		err = check_block_count(sbi, start, &sit);
4448 		if (err)
4449 			break;
4450 		seg_info_from_raw_sit(se, &sit);
4451 
4452 		if (se->type >= NR_PERSISTENT_LOG) {
4453 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4454 							se->type, start);
4455 			err = -EFSCORRUPTED;
4456 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4457 			break;
4458 		}
4459 
4460 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4461 
4462 		if (f2fs_block_unit_discard(sbi)) {
4463 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4464 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4465 			} else {
4466 				memcpy(se->discard_map, se->cur_valid_map,
4467 							SIT_VBLOCK_MAP_SIZE);
4468 				sbi->discard_blks += old_valid_blocks;
4469 				sbi->discard_blks -= se->valid_blocks;
4470 			}
4471 		}
4472 
4473 		if (__is_large_section(sbi)) {
4474 			get_sec_entry(sbi, start)->valid_blocks +=
4475 							se->valid_blocks;
4476 			get_sec_entry(sbi, start)->valid_blocks -=
4477 							old_valid_blocks;
4478 		}
4479 	}
4480 	up_read(&curseg->journal_rwsem);
4481 
4482 	if (err)
4483 		return err;
4484 
4485 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4486 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4487 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4488 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4489 		return -EFSCORRUPTED;
4490 	}
4491 
4492 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4493 				valid_user_blocks(sbi)) {
4494 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4495 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4496 			 valid_user_blocks(sbi));
4497 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4498 		return -EFSCORRUPTED;
4499 	}
4500 
4501 	return 0;
4502 }
4503 
4504 static void init_free_segmap(struct f2fs_sb_info *sbi)
4505 {
4506 	unsigned int start;
4507 	int type;
4508 	struct seg_entry *sentry;
4509 
4510 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4511 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4512 			continue;
4513 		sentry = get_seg_entry(sbi, start);
4514 		if (!sentry->valid_blocks)
4515 			__set_free(sbi, start);
4516 		else
4517 			SIT_I(sbi)->written_valid_blocks +=
4518 						sentry->valid_blocks;
4519 	}
4520 
4521 	/* set use the current segments */
4522 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4523 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4524 
4525 		__set_test_and_inuse(sbi, curseg_t->segno);
4526 	}
4527 }
4528 
4529 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4530 {
4531 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4532 	struct free_segmap_info *free_i = FREE_I(sbi);
4533 	unsigned int segno = 0, offset = 0, secno;
4534 	block_t valid_blocks, usable_blks_in_seg;
4535 
4536 	while (1) {
4537 		/* find dirty segment based on free segmap */
4538 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4539 		if (segno >= MAIN_SEGS(sbi))
4540 			break;
4541 		offset = segno + 1;
4542 		valid_blocks = get_valid_blocks(sbi, segno, false);
4543 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4544 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4545 			continue;
4546 		if (valid_blocks > usable_blks_in_seg) {
4547 			f2fs_bug_on(sbi, 1);
4548 			continue;
4549 		}
4550 		mutex_lock(&dirty_i->seglist_lock);
4551 		__locate_dirty_segment(sbi, segno, DIRTY);
4552 		mutex_unlock(&dirty_i->seglist_lock);
4553 	}
4554 
4555 	if (!__is_large_section(sbi))
4556 		return;
4557 
4558 	mutex_lock(&dirty_i->seglist_lock);
4559 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4560 		valid_blocks = get_valid_blocks(sbi, segno, true);
4561 		secno = GET_SEC_FROM_SEG(sbi, segno);
4562 
4563 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4564 			continue;
4565 		if (IS_CURSEC(sbi, secno))
4566 			continue;
4567 		set_bit(secno, dirty_i->dirty_secmap);
4568 	}
4569 	mutex_unlock(&dirty_i->seglist_lock);
4570 }
4571 
4572 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4573 {
4574 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4575 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4576 
4577 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4578 	if (!dirty_i->victim_secmap)
4579 		return -ENOMEM;
4580 
4581 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4582 	if (!dirty_i->pinned_secmap)
4583 		return -ENOMEM;
4584 
4585 	dirty_i->pinned_secmap_cnt = 0;
4586 	dirty_i->enable_pin_section = true;
4587 	return 0;
4588 }
4589 
4590 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4591 {
4592 	struct dirty_seglist_info *dirty_i;
4593 	unsigned int bitmap_size, i;
4594 
4595 	/* allocate memory for dirty segments list information */
4596 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4597 								GFP_KERNEL);
4598 	if (!dirty_i)
4599 		return -ENOMEM;
4600 
4601 	SM_I(sbi)->dirty_info = dirty_i;
4602 	mutex_init(&dirty_i->seglist_lock);
4603 
4604 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4605 
4606 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4607 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4608 								GFP_KERNEL);
4609 		if (!dirty_i->dirty_segmap[i])
4610 			return -ENOMEM;
4611 	}
4612 
4613 	if (__is_large_section(sbi)) {
4614 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4615 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4616 						bitmap_size, GFP_KERNEL);
4617 		if (!dirty_i->dirty_secmap)
4618 			return -ENOMEM;
4619 	}
4620 
4621 	init_dirty_segmap(sbi);
4622 	return init_victim_secmap(sbi);
4623 }
4624 
4625 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4626 {
4627 	int i;
4628 
4629 	/*
4630 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4631 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4632 	 */
4633 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4634 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4635 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4636 		unsigned int blkofs = curseg->next_blkoff;
4637 
4638 		if (f2fs_sb_has_readonly(sbi) &&
4639 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4640 			continue;
4641 
4642 		sanity_check_seg_type(sbi, curseg->seg_type);
4643 
4644 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4645 			f2fs_err(sbi,
4646 				 "Current segment has invalid alloc_type:%d",
4647 				 curseg->alloc_type);
4648 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4649 			return -EFSCORRUPTED;
4650 		}
4651 
4652 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4653 			goto out;
4654 
4655 		if (curseg->alloc_type == SSR)
4656 			continue;
4657 
4658 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4659 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4660 				continue;
4661 out:
4662 			f2fs_err(sbi,
4663 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4664 				 i, curseg->segno, curseg->alloc_type,
4665 				 curseg->next_blkoff, blkofs);
4666 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4667 			return -EFSCORRUPTED;
4668 		}
4669 	}
4670 	return 0;
4671 }
4672 
4673 #ifdef CONFIG_BLK_DEV_ZONED
4674 
4675 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4676 				    struct f2fs_dev_info *fdev,
4677 				    struct blk_zone *zone)
4678 {
4679 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4680 	block_t zone_block, wp_block, last_valid_block;
4681 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4682 	int i, s, b, ret;
4683 	struct seg_entry *se;
4684 
4685 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4686 		return 0;
4687 
4688 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4689 	wp_segno = GET_SEGNO(sbi, wp_block);
4690 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4691 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4692 	zone_segno = GET_SEGNO(sbi, zone_block);
4693 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4694 
4695 	if (zone_segno >= MAIN_SEGS(sbi))
4696 		return 0;
4697 
4698 	/*
4699 	 * Skip check of zones cursegs point to, since
4700 	 * fix_curseg_write_pointer() checks them.
4701 	 */
4702 	for (i = 0; i < NO_CHECK_TYPE; i++)
4703 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4704 						   CURSEG_I(sbi, i)->segno))
4705 			return 0;
4706 
4707 	/*
4708 	 * Get last valid block of the zone.
4709 	 */
4710 	last_valid_block = zone_block - 1;
4711 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4712 		segno = zone_segno + s;
4713 		se = get_seg_entry(sbi, segno);
4714 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4715 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4716 				last_valid_block = START_BLOCK(sbi, segno) + b;
4717 				break;
4718 			}
4719 		if (last_valid_block >= zone_block)
4720 			break;
4721 	}
4722 
4723 	/*
4724 	 * If last valid block is beyond the write pointer, report the
4725 	 * inconsistency. This inconsistency does not cause write error
4726 	 * because the zone will not be selected for write operation until
4727 	 * it get discarded. Just report it.
4728 	 */
4729 	if (last_valid_block >= wp_block) {
4730 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4731 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4732 			    GET_SEGNO(sbi, last_valid_block),
4733 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4734 			    wp_segno, wp_blkoff);
4735 		return 0;
4736 	}
4737 
4738 	/*
4739 	 * If there is no valid block in the zone and if write pointer is
4740 	 * not at zone start, reset the write pointer.
4741 	 */
4742 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4743 		f2fs_notice(sbi,
4744 			    "Zone without valid block has non-zero write "
4745 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4746 			    wp_segno, wp_blkoff);
4747 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4748 					zone->len >> log_sectors_per_block);
4749 		if (ret) {
4750 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4751 				 fdev->path, ret);
4752 			return ret;
4753 		}
4754 	}
4755 
4756 	return 0;
4757 }
4758 
4759 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4760 						  block_t zone_blkaddr)
4761 {
4762 	int i;
4763 
4764 	for (i = 0; i < sbi->s_ndevs; i++) {
4765 		if (!bdev_is_zoned(FDEV(i).bdev))
4766 			continue;
4767 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4768 				zone_blkaddr <= FDEV(i).end_blk))
4769 			return &FDEV(i);
4770 	}
4771 
4772 	return NULL;
4773 }
4774 
4775 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4776 			      void *data)
4777 {
4778 	memcpy(data, zone, sizeof(struct blk_zone));
4779 	return 0;
4780 }
4781 
4782 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4783 {
4784 	struct curseg_info *cs = CURSEG_I(sbi, type);
4785 	struct f2fs_dev_info *zbd;
4786 	struct blk_zone zone;
4787 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4788 	block_t cs_zone_block, wp_block;
4789 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4790 	sector_t zone_sector;
4791 	int err;
4792 
4793 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4794 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4795 
4796 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4797 	if (!zbd)
4798 		return 0;
4799 
4800 	/* report zone for the sector the curseg points to */
4801 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4802 		<< log_sectors_per_block;
4803 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4804 				  report_one_zone_cb, &zone);
4805 	if (err != 1) {
4806 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4807 			 zbd->path, err);
4808 		return err;
4809 	}
4810 
4811 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4812 		return 0;
4813 
4814 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4815 	wp_segno = GET_SEGNO(sbi, wp_block);
4816 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4817 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4818 
4819 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4820 		wp_sector_off == 0)
4821 		return 0;
4822 
4823 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4824 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4825 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4826 
4827 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4828 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4829 
4830 	f2fs_allocate_new_section(sbi, type, true);
4831 
4832 	/* check consistency of the zone curseg pointed to */
4833 	if (check_zone_write_pointer(sbi, zbd, &zone))
4834 		return -EIO;
4835 
4836 	/* check newly assigned zone */
4837 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4838 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4839 
4840 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4841 	if (!zbd)
4842 		return 0;
4843 
4844 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4845 		<< log_sectors_per_block;
4846 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4847 				  report_one_zone_cb, &zone);
4848 	if (err != 1) {
4849 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4850 			 zbd->path, err);
4851 		return err;
4852 	}
4853 
4854 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4855 		return 0;
4856 
4857 	if (zone.wp != zone.start) {
4858 		f2fs_notice(sbi,
4859 			    "New zone for curseg[%d] is not yet discarded. "
4860 			    "Reset the zone: curseg[0x%x,0x%x]",
4861 			    type, cs->segno, cs->next_blkoff);
4862 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4863 				zone_sector >> log_sectors_per_block,
4864 				zone.len >> log_sectors_per_block);
4865 		if (err) {
4866 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4867 				 zbd->path, err);
4868 			return err;
4869 		}
4870 	}
4871 
4872 	return 0;
4873 }
4874 
4875 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4876 {
4877 	int i, ret;
4878 
4879 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4880 		ret = fix_curseg_write_pointer(sbi, i);
4881 		if (ret)
4882 			return ret;
4883 	}
4884 
4885 	return 0;
4886 }
4887 
4888 struct check_zone_write_pointer_args {
4889 	struct f2fs_sb_info *sbi;
4890 	struct f2fs_dev_info *fdev;
4891 };
4892 
4893 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4894 				      void *data)
4895 {
4896 	struct check_zone_write_pointer_args *args;
4897 
4898 	args = (struct check_zone_write_pointer_args *)data;
4899 
4900 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4901 }
4902 
4903 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4904 {
4905 	int i, ret;
4906 	struct check_zone_write_pointer_args args;
4907 
4908 	for (i = 0; i < sbi->s_ndevs; i++) {
4909 		if (!bdev_is_zoned(FDEV(i).bdev))
4910 			continue;
4911 
4912 		args.sbi = sbi;
4913 		args.fdev = &FDEV(i);
4914 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4915 					  check_zone_write_pointer_cb, &args);
4916 		if (ret < 0)
4917 			return ret;
4918 	}
4919 
4920 	return 0;
4921 }
4922 
4923 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4924 						unsigned int dev_idx)
4925 {
4926 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4927 		return true;
4928 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4929 }
4930 
4931 /* Return the zone index in the given device */
4932 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4933 					int dev_idx)
4934 {
4935 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4936 
4937 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4938 						sbi->log_blocks_per_blkz;
4939 }
4940 
4941 /*
4942  * Return the usable segments in a section based on the zone's
4943  * corresponding zone capacity. Zone is equal to a section.
4944  */
4945 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4946 		struct f2fs_sb_info *sbi, unsigned int segno)
4947 {
4948 	unsigned int dev_idx, zone_idx;
4949 
4950 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4951 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4952 
4953 	/* Conventional zone's capacity is always equal to zone size */
4954 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4955 		return sbi->segs_per_sec;
4956 
4957 	if (!sbi->unusable_blocks_per_sec)
4958 		return sbi->segs_per_sec;
4959 
4960 	/* Get the segment count beyond zone capacity block */
4961 	return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >>
4962 						sbi->log_blocks_per_seg);
4963 }
4964 
4965 /*
4966  * Return the number of usable blocks in a segment. The number of blocks
4967  * returned is always equal to the number of blocks in a segment for
4968  * segments fully contained within a sequential zone capacity or a
4969  * conventional zone. For segments partially contained in a sequential
4970  * zone capacity, the number of usable blocks up to the zone capacity
4971  * is returned. 0 is returned in all other cases.
4972  */
4973 static inline unsigned int f2fs_usable_zone_blks_in_seg(
4974 			struct f2fs_sb_info *sbi, unsigned int segno)
4975 {
4976 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
4977 	unsigned int zone_idx, dev_idx, secno;
4978 
4979 	secno = GET_SEC_FROM_SEG(sbi, segno);
4980 	seg_start = START_BLOCK(sbi, segno);
4981 	dev_idx = f2fs_target_device_index(sbi, seg_start);
4982 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
4983 
4984 	/*
4985 	 * Conventional zone's capacity is always equal to zone size,
4986 	 * so, blocks per segment is unchanged.
4987 	 */
4988 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4989 		return sbi->blocks_per_seg;
4990 
4991 	if (!sbi->unusable_blocks_per_sec)
4992 		return sbi->blocks_per_seg;
4993 
4994 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4995 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
4996 
4997 	/*
4998 	 * If segment starts before zone capacity and spans beyond
4999 	 * zone capacity, then usable blocks are from seg start to
5000 	 * zone capacity. If the segment starts after the zone capacity,
5001 	 * then there are no usable blocks.
5002 	 */
5003 	if (seg_start >= sec_cap_blkaddr)
5004 		return 0;
5005 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5006 		return sec_cap_blkaddr - seg_start;
5007 
5008 	return sbi->blocks_per_seg;
5009 }
5010 #else
5011 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5012 {
5013 	return 0;
5014 }
5015 
5016 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5017 {
5018 	return 0;
5019 }
5020 
5021 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5022 							unsigned int segno)
5023 {
5024 	return 0;
5025 }
5026 
5027 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5028 							unsigned int segno)
5029 {
5030 	return 0;
5031 }
5032 #endif
5033 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5034 					unsigned int segno)
5035 {
5036 	if (f2fs_sb_has_blkzoned(sbi))
5037 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5038 
5039 	return sbi->blocks_per_seg;
5040 }
5041 
5042 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5043 					unsigned int segno)
5044 {
5045 	if (f2fs_sb_has_blkzoned(sbi))
5046 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5047 
5048 	return sbi->segs_per_sec;
5049 }
5050 
5051 /*
5052  * Update min, max modified time for cost-benefit GC algorithm
5053  */
5054 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5055 {
5056 	struct sit_info *sit_i = SIT_I(sbi);
5057 	unsigned int segno;
5058 
5059 	down_write(&sit_i->sentry_lock);
5060 
5061 	sit_i->min_mtime = ULLONG_MAX;
5062 
5063 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5064 		unsigned int i;
5065 		unsigned long long mtime = 0;
5066 
5067 		for (i = 0; i < sbi->segs_per_sec; i++)
5068 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5069 
5070 		mtime = div_u64(mtime, sbi->segs_per_sec);
5071 
5072 		if (sit_i->min_mtime > mtime)
5073 			sit_i->min_mtime = mtime;
5074 	}
5075 	sit_i->max_mtime = get_mtime(sbi, false);
5076 	sit_i->dirty_max_mtime = 0;
5077 	up_write(&sit_i->sentry_lock);
5078 }
5079 
5080 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5081 {
5082 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5083 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5084 	struct f2fs_sm_info *sm_info;
5085 	int err;
5086 
5087 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5088 	if (!sm_info)
5089 		return -ENOMEM;
5090 
5091 	/* init sm info */
5092 	sbi->sm_info = sm_info;
5093 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5094 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5095 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5096 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5097 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5098 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5099 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5100 	sm_info->rec_prefree_segments = sm_info->main_segments *
5101 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5102 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5103 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5104 
5105 	if (!f2fs_lfs_mode(sbi))
5106 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5107 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5108 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5109 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5110 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5111 	sm_info->min_ssr_sections = reserved_sections(sbi);
5112 
5113 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5114 
5115 	init_f2fs_rwsem(&sm_info->curseg_lock);
5116 
5117 	err = f2fs_create_flush_cmd_control(sbi);
5118 	if (err)
5119 		return err;
5120 
5121 	err = create_discard_cmd_control(sbi);
5122 	if (err)
5123 		return err;
5124 
5125 	err = build_sit_info(sbi);
5126 	if (err)
5127 		return err;
5128 	err = build_free_segmap(sbi);
5129 	if (err)
5130 		return err;
5131 	err = build_curseg(sbi);
5132 	if (err)
5133 		return err;
5134 
5135 	/* reinit free segmap based on SIT */
5136 	err = build_sit_entries(sbi);
5137 	if (err)
5138 		return err;
5139 
5140 	init_free_segmap(sbi);
5141 	err = build_dirty_segmap(sbi);
5142 	if (err)
5143 		return err;
5144 
5145 	err = sanity_check_curseg(sbi);
5146 	if (err)
5147 		return err;
5148 
5149 	init_min_max_mtime(sbi);
5150 	return 0;
5151 }
5152 
5153 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5154 		enum dirty_type dirty_type)
5155 {
5156 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5157 
5158 	mutex_lock(&dirty_i->seglist_lock);
5159 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5160 	dirty_i->nr_dirty[dirty_type] = 0;
5161 	mutex_unlock(&dirty_i->seglist_lock);
5162 }
5163 
5164 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5165 {
5166 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5167 
5168 	kvfree(dirty_i->pinned_secmap);
5169 	kvfree(dirty_i->victim_secmap);
5170 }
5171 
5172 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5173 {
5174 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5175 	int i;
5176 
5177 	if (!dirty_i)
5178 		return;
5179 
5180 	/* discard pre-free/dirty segments list */
5181 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5182 		discard_dirty_segmap(sbi, i);
5183 
5184 	if (__is_large_section(sbi)) {
5185 		mutex_lock(&dirty_i->seglist_lock);
5186 		kvfree(dirty_i->dirty_secmap);
5187 		mutex_unlock(&dirty_i->seglist_lock);
5188 	}
5189 
5190 	destroy_victim_secmap(sbi);
5191 	SM_I(sbi)->dirty_info = NULL;
5192 	kfree(dirty_i);
5193 }
5194 
5195 static void destroy_curseg(struct f2fs_sb_info *sbi)
5196 {
5197 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5198 	int i;
5199 
5200 	if (!array)
5201 		return;
5202 	SM_I(sbi)->curseg_array = NULL;
5203 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5204 		kfree(array[i].sum_blk);
5205 		kfree(array[i].journal);
5206 	}
5207 	kfree(array);
5208 }
5209 
5210 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5211 {
5212 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5213 
5214 	if (!free_i)
5215 		return;
5216 	SM_I(sbi)->free_info = NULL;
5217 	kvfree(free_i->free_segmap);
5218 	kvfree(free_i->free_secmap);
5219 	kfree(free_i);
5220 }
5221 
5222 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5223 {
5224 	struct sit_info *sit_i = SIT_I(sbi);
5225 
5226 	if (!sit_i)
5227 		return;
5228 
5229 	if (sit_i->sentries)
5230 		kvfree(sit_i->bitmap);
5231 	kfree(sit_i->tmp_map);
5232 
5233 	kvfree(sit_i->sentries);
5234 	kvfree(sit_i->sec_entries);
5235 	kvfree(sit_i->dirty_sentries_bitmap);
5236 
5237 	SM_I(sbi)->sit_info = NULL;
5238 	kvfree(sit_i->sit_bitmap);
5239 #ifdef CONFIG_F2FS_CHECK_FS
5240 	kvfree(sit_i->sit_bitmap_mir);
5241 	kvfree(sit_i->invalid_segmap);
5242 #endif
5243 	kfree(sit_i);
5244 }
5245 
5246 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5247 {
5248 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5249 
5250 	if (!sm_info)
5251 		return;
5252 	f2fs_destroy_flush_cmd_control(sbi, true);
5253 	destroy_discard_cmd_control(sbi);
5254 	destroy_dirty_segmap(sbi);
5255 	destroy_curseg(sbi);
5256 	destroy_free_segmap(sbi);
5257 	destroy_sit_info(sbi);
5258 	sbi->sm_info = NULL;
5259 	kfree(sm_info);
5260 }
5261 
5262 int __init f2fs_create_segment_manager_caches(void)
5263 {
5264 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5265 			sizeof(struct discard_entry));
5266 	if (!discard_entry_slab)
5267 		goto fail;
5268 
5269 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5270 			sizeof(struct discard_cmd));
5271 	if (!discard_cmd_slab)
5272 		goto destroy_discard_entry;
5273 
5274 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5275 			sizeof(struct sit_entry_set));
5276 	if (!sit_entry_set_slab)
5277 		goto destroy_discard_cmd;
5278 
5279 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5280 			sizeof(struct revoke_entry));
5281 	if (!revoke_entry_slab)
5282 		goto destroy_sit_entry_set;
5283 	return 0;
5284 
5285 destroy_sit_entry_set:
5286 	kmem_cache_destroy(sit_entry_set_slab);
5287 destroy_discard_cmd:
5288 	kmem_cache_destroy(discard_cmd_slab);
5289 destroy_discard_entry:
5290 	kmem_cache_destroy(discard_entry_slab);
5291 fail:
5292 	return -ENOMEM;
5293 }
5294 
5295 void f2fs_destroy_segment_manager_caches(void)
5296 {
5297 	kmem_cache_destroy(sit_entry_set_slab);
5298 	kmem_cache_destroy(discard_cmd_slab);
5299 	kmem_cache_destroy(discard_entry_slab);
5300 	kmem_cache_destroy(revoke_entry_slab);
5301 }
5302