1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 release_atomic_write_cnt(inode); 196 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 197 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 198 clear_inode_flag(inode, FI_ATOMIC_FILE); 199 stat_dec_atomic_inode(inode); 200 201 F2FS_I(inode)->atomic_write_task = NULL; 202 203 if (clean) { 204 truncate_inode_pages_final(inode->i_mapping); 205 f2fs_i_size_write(inode, fi->original_i_size); 206 fi->original_i_size = 0; 207 } 208 } 209 210 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 211 block_t new_addr, block_t *old_addr, bool recover) 212 { 213 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 214 struct dnode_of_data dn; 215 struct node_info ni; 216 int err; 217 218 retry: 219 set_new_dnode(&dn, inode, NULL, NULL, 0); 220 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 221 if (err) { 222 if (err == -ENOMEM) { 223 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 224 goto retry; 225 } 226 return err; 227 } 228 229 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 230 if (err) { 231 f2fs_put_dnode(&dn); 232 return err; 233 } 234 235 if (recover) { 236 /* dn.data_blkaddr is always valid */ 237 if (!__is_valid_data_blkaddr(new_addr)) { 238 if (new_addr == NULL_ADDR) 239 dec_valid_block_count(sbi, inode, 1); 240 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 241 f2fs_update_data_blkaddr(&dn, new_addr); 242 } else { 243 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 244 new_addr, ni.version, true, true); 245 } 246 } else { 247 blkcnt_t count = 1; 248 249 err = inc_valid_block_count(sbi, inode, &count); 250 if (err) { 251 f2fs_put_dnode(&dn); 252 return err; 253 } 254 255 *old_addr = dn.data_blkaddr; 256 f2fs_truncate_data_blocks_range(&dn, 1); 257 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 258 259 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 260 ni.version, true, false); 261 } 262 263 f2fs_put_dnode(&dn); 264 265 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode, 266 index, old_addr ? *old_addr : 0, new_addr, recover); 267 return 0; 268 } 269 270 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 271 bool revoke) 272 { 273 struct revoke_entry *cur, *tmp; 274 pgoff_t start_index = 0; 275 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 276 277 list_for_each_entry_safe(cur, tmp, head, list) { 278 if (revoke) { 279 __replace_atomic_write_block(inode, cur->index, 280 cur->old_addr, NULL, true); 281 } else if (truncate) { 282 f2fs_truncate_hole(inode, start_index, cur->index); 283 start_index = cur->index + 1; 284 } 285 286 list_del(&cur->list); 287 kmem_cache_free(revoke_entry_slab, cur); 288 } 289 290 if (!revoke && truncate) 291 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false); 292 } 293 294 static int __f2fs_commit_atomic_write(struct inode *inode) 295 { 296 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 297 struct f2fs_inode_info *fi = F2FS_I(inode); 298 struct inode *cow_inode = fi->cow_inode; 299 struct revoke_entry *new; 300 struct list_head revoke_list; 301 block_t blkaddr; 302 struct dnode_of_data dn; 303 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 304 pgoff_t off = 0, blen, index; 305 int ret = 0, i; 306 307 INIT_LIST_HEAD(&revoke_list); 308 309 while (len) { 310 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 311 312 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 313 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 314 if (ret && ret != -ENOENT) { 315 goto out; 316 } else if (ret == -ENOENT) { 317 ret = 0; 318 if (dn.max_level == 0) 319 goto out; 320 goto next; 321 } 322 323 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 324 len); 325 index = off; 326 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 327 blkaddr = f2fs_data_blkaddr(&dn); 328 329 if (!__is_valid_data_blkaddr(blkaddr)) { 330 continue; 331 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 332 DATA_GENERIC_ENHANCE)) { 333 f2fs_put_dnode(&dn); 334 ret = -EFSCORRUPTED; 335 f2fs_handle_error(sbi, 336 ERROR_INVALID_BLKADDR); 337 goto out; 338 } 339 340 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 341 true, NULL); 342 343 ret = __replace_atomic_write_block(inode, index, blkaddr, 344 &new->old_addr, false); 345 if (ret) { 346 f2fs_put_dnode(&dn); 347 kmem_cache_free(revoke_entry_slab, new); 348 goto out; 349 } 350 351 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 352 new->index = index; 353 list_add_tail(&new->list, &revoke_list); 354 } 355 f2fs_put_dnode(&dn); 356 next: 357 off += blen; 358 len -= blen; 359 } 360 361 out: 362 if (ret) { 363 sbi->revoked_atomic_block += fi->atomic_write_cnt; 364 } else { 365 sbi->committed_atomic_block += fi->atomic_write_cnt; 366 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 367 } 368 369 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 370 371 return ret; 372 } 373 374 int f2fs_commit_atomic_write(struct inode *inode) 375 { 376 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 377 struct f2fs_inode_info *fi = F2FS_I(inode); 378 int err; 379 380 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 381 if (err) 382 return err; 383 384 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 385 f2fs_lock_op(sbi); 386 387 err = __f2fs_commit_atomic_write(inode); 388 389 f2fs_unlock_op(sbi); 390 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 391 392 return err; 393 } 394 395 /* 396 * This function balances dirty node and dentry pages. 397 * In addition, it controls garbage collection. 398 */ 399 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 400 { 401 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 402 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 403 404 /* balance_fs_bg is able to be pending */ 405 if (need && excess_cached_nats(sbi)) 406 f2fs_balance_fs_bg(sbi, false); 407 408 if (!f2fs_is_checkpoint_ready(sbi)) 409 return; 410 411 /* 412 * We should do GC or end up with checkpoint, if there are so many dirty 413 * dir/node pages without enough free segments. 414 */ 415 if (has_enough_free_secs(sbi, 0, 0)) 416 return; 417 418 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 419 sbi->gc_thread->f2fs_gc_task) { 420 DEFINE_WAIT(wait); 421 422 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 423 TASK_UNINTERRUPTIBLE); 424 wake_up(&sbi->gc_thread->gc_wait_queue_head); 425 io_schedule(); 426 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 427 } else { 428 struct f2fs_gc_control gc_control = { 429 .victim_segno = NULL_SEGNO, 430 .init_gc_type = BG_GC, 431 .no_bg_gc = true, 432 .should_migrate_blocks = false, 433 .err_gc_skipped = false, 434 .nr_free_secs = 1 }; 435 f2fs_down_write(&sbi->gc_lock); 436 f2fs_gc(sbi, &gc_control); 437 } 438 } 439 440 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 441 { 442 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 443 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 444 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 445 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 446 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 447 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 448 unsigned int threshold = sbi->blocks_per_seg * factor * 449 DEFAULT_DIRTY_THRESHOLD; 450 unsigned int global_threshold = threshold * 3 / 2; 451 452 if (dents >= threshold || qdata >= threshold || 453 nodes >= threshold || meta >= threshold || 454 imeta >= threshold) 455 return true; 456 return dents + qdata + nodes + meta + imeta > global_threshold; 457 } 458 459 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 460 { 461 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 462 return; 463 464 /* try to shrink extent cache when there is no enough memory */ 465 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 466 f2fs_shrink_read_extent_tree(sbi, 467 READ_EXTENT_CACHE_SHRINK_NUMBER); 468 469 /* try to shrink age extent cache when there is no enough memory */ 470 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 471 f2fs_shrink_age_extent_tree(sbi, 472 AGE_EXTENT_CACHE_SHRINK_NUMBER); 473 474 /* check the # of cached NAT entries */ 475 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 476 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 477 478 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 479 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 480 else 481 f2fs_build_free_nids(sbi, false, false); 482 483 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 484 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 485 goto do_sync; 486 487 /* there is background inflight IO or foreground operation recently */ 488 if (is_inflight_io(sbi, REQ_TIME) || 489 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 490 return; 491 492 /* exceed periodical checkpoint timeout threshold */ 493 if (f2fs_time_over(sbi, CP_TIME)) 494 goto do_sync; 495 496 /* checkpoint is the only way to shrink partial cached entries */ 497 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 498 f2fs_available_free_memory(sbi, INO_ENTRIES)) 499 return; 500 501 do_sync: 502 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 503 struct blk_plug plug; 504 505 mutex_lock(&sbi->flush_lock); 506 507 blk_start_plug(&plug); 508 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 509 blk_finish_plug(&plug); 510 511 mutex_unlock(&sbi->flush_lock); 512 } 513 f2fs_sync_fs(sbi->sb, 1); 514 stat_inc_bg_cp_count(sbi->stat_info); 515 } 516 517 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 518 struct block_device *bdev) 519 { 520 int ret = blkdev_issue_flush(bdev); 521 522 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 523 test_opt(sbi, FLUSH_MERGE), ret); 524 if (!ret) 525 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0); 526 return ret; 527 } 528 529 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 530 { 531 int ret = 0; 532 int i; 533 534 if (!f2fs_is_multi_device(sbi)) 535 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 536 537 for (i = 0; i < sbi->s_ndevs; i++) { 538 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 539 continue; 540 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 541 if (ret) 542 break; 543 } 544 return ret; 545 } 546 547 static int issue_flush_thread(void *data) 548 { 549 struct f2fs_sb_info *sbi = data; 550 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 551 wait_queue_head_t *q = &fcc->flush_wait_queue; 552 repeat: 553 if (kthread_should_stop()) 554 return 0; 555 556 if (!llist_empty(&fcc->issue_list)) { 557 struct flush_cmd *cmd, *next; 558 int ret; 559 560 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 561 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 562 563 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 564 565 ret = submit_flush_wait(sbi, cmd->ino); 566 atomic_inc(&fcc->issued_flush); 567 568 llist_for_each_entry_safe(cmd, next, 569 fcc->dispatch_list, llnode) { 570 cmd->ret = ret; 571 complete(&cmd->wait); 572 } 573 fcc->dispatch_list = NULL; 574 } 575 576 wait_event_interruptible(*q, 577 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 578 goto repeat; 579 } 580 581 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 582 { 583 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 584 struct flush_cmd cmd; 585 int ret; 586 587 if (test_opt(sbi, NOBARRIER)) 588 return 0; 589 590 if (!test_opt(sbi, FLUSH_MERGE)) { 591 atomic_inc(&fcc->queued_flush); 592 ret = submit_flush_wait(sbi, ino); 593 atomic_dec(&fcc->queued_flush); 594 atomic_inc(&fcc->issued_flush); 595 return ret; 596 } 597 598 if (atomic_inc_return(&fcc->queued_flush) == 1 || 599 f2fs_is_multi_device(sbi)) { 600 ret = submit_flush_wait(sbi, ino); 601 atomic_dec(&fcc->queued_flush); 602 603 atomic_inc(&fcc->issued_flush); 604 return ret; 605 } 606 607 cmd.ino = ino; 608 init_completion(&cmd.wait); 609 610 llist_add(&cmd.llnode, &fcc->issue_list); 611 612 /* 613 * update issue_list before we wake up issue_flush thread, this 614 * smp_mb() pairs with another barrier in ___wait_event(), see 615 * more details in comments of waitqueue_active(). 616 */ 617 smp_mb(); 618 619 if (waitqueue_active(&fcc->flush_wait_queue)) 620 wake_up(&fcc->flush_wait_queue); 621 622 if (fcc->f2fs_issue_flush) { 623 wait_for_completion(&cmd.wait); 624 atomic_dec(&fcc->queued_flush); 625 } else { 626 struct llist_node *list; 627 628 list = llist_del_all(&fcc->issue_list); 629 if (!list) { 630 wait_for_completion(&cmd.wait); 631 atomic_dec(&fcc->queued_flush); 632 } else { 633 struct flush_cmd *tmp, *next; 634 635 ret = submit_flush_wait(sbi, ino); 636 637 llist_for_each_entry_safe(tmp, next, list, llnode) { 638 if (tmp == &cmd) { 639 cmd.ret = ret; 640 atomic_dec(&fcc->queued_flush); 641 continue; 642 } 643 tmp->ret = ret; 644 complete(&tmp->wait); 645 } 646 } 647 } 648 649 return cmd.ret; 650 } 651 652 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 653 { 654 dev_t dev = sbi->sb->s_bdev->bd_dev; 655 struct flush_cmd_control *fcc; 656 657 if (SM_I(sbi)->fcc_info) { 658 fcc = SM_I(sbi)->fcc_info; 659 if (fcc->f2fs_issue_flush) 660 return 0; 661 goto init_thread; 662 } 663 664 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 665 if (!fcc) 666 return -ENOMEM; 667 atomic_set(&fcc->issued_flush, 0); 668 atomic_set(&fcc->queued_flush, 0); 669 init_waitqueue_head(&fcc->flush_wait_queue); 670 init_llist_head(&fcc->issue_list); 671 SM_I(sbi)->fcc_info = fcc; 672 if (!test_opt(sbi, FLUSH_MERGE)) 673 return 0; 674 675 init_thread: 676 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 677 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 678 if (IS_ERR(fcc->f2fs_issue_flush)) { 679 int err = PTR_ERR(fcc->f2fs_issue_flush); 680 681 fcc->f2fs_issue_flush = NULL; 682 return err; 683 } 684 685 return 0; 686 } 687 688 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 689 { 690 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 691 692 if (fcc && fcc->f2fs_issue_flush) { 693 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 694 695 fcc->f2fs_issue_flush = NULL; 696 kthread_stop(flush_thread); 697 } 698 if (free) { 699 kfree(fcc); 700 SM_I(sbi)->fcc_info = NULL; 701 } 702 } 703 704 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 705 { 706 int ret = 0, i; 707 708 if (!f2fs_is_multi_device(sbi)) 709 return 0; 710 711 if (test_opt(sbi, NOBARRIER)) 712 return 0; 713 714 for (i = 1; i < sbi->s_ndevs; i++) { 715 int count = DEFAULT_RETRY_IO_COUNT; 716 717 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 718 continue; 719 720 do { 721 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 722 if (ret) 723 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 724 } while (ret && --count); 725 726 if (ret) { 727 f2fs_stop_checkpoint(sbi, false, 728 STOP_CP_REASON_FLUSH_FAIL); 729 break; 730 } 731 732 spin_lock(&sbi->dev_lock); 733 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 734 spin_unlock(&sbi->dev_lock); 735 } 736 737 return ret; 738 } 739 740 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 741 enum dirty_type dirty_type) 742 { 743 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 744 745 /* need not be added */ 746 if (IS_CURSEG(sbi, segno)) 747 return; 748 749 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 750 dirty_i->nr_dirty[dirty_type]++; 751 752 if (dirty_type == DIRTY) { 753 struct seg_entry *sentry = get_seg_entry(sbi, segno); 754 enum dirty_type t = sentry->type; 755 756 if (unlikely(t >= DIRTY)) { 757 f2fs_bug_on(sbi, 1); 758 return; 759 } 760 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 761 dirty_i->nr_dirty[t]++; 762 763 if (__is_large_section(sbi)) { 764 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 765 block_t valid_blocks = 766 get_valid_blocks(sbi, segno, true); 767 768 f2fs_bug_on(sbi, unlikely(!valid_blocks || 769 valid_blocks == CAP_BLKS_PER_SEC(sbi))); 770 771 if (!IS_CURSEC(sbi, secno)) 772 set_bit(secno, dirty_i->dirty_secmap); 773 } 774 } 775 } 776 777 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 778 enum dirty_type dirty_type) 779 { 780 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 781 block_t valid_blocks; 782 783 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 784 dirty_i->nr_dirty[dirty_type]--; 785 786 if (dirty_type == DIRTY) { 787 struct seg_entry *sentry = get_seg_entry(sbi, segno); 788 enum dirty_type t = sentry->type; 789 790 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 791 dirty_i->nr_dirty[t]--; 792 793 valid_blocks = get_valid_blocks(sbi, segno, true); 794 if (valid_blocks == 0) { 795 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 796 dirty_i->victim_secmap); 797 #ifdef CONFIG_F2FS_CHECK_FS 798 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 799 #endif 800 } 801 if (__is_large_section(sbi)) { 802 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 803 804 if (!valid_blocks || 805 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 806 clear_bit(secno, dirty_i->dirty_secmap); 807 return; 808 } 809 810 if (!IS_CURSEC(sbi, secno)) 811 set_bit(secno, dirty_i->dirty_secmap); 812 } 813 } 814 } 815 816 /* 817 * Should not occur error such as -ENOMEM. 818 * Adding dirty entry into seglist is not critical operation. 819 * If a given segment is one of current working segments, it won't be added. 820 */ 821 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 822 { 823 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 824 unsigned short valid_blocks, ckpt_valid_blocks; 825 unsigned int usable_blocks; 826 827 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 828 return; 829 830 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 831 mutex_lock(&dirty_i->seglist_lock); 832 833 valid_blocks = get_valid_blocks(sbi, segno, false); 834 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 835 836 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 837 ckpt_valid_blocks == usable_blocks)) { 838 __locate_dirty_segment(sbi, segno, PRE); 839 __remove_dirty_segment(sbi, segno, DIRTY); 840 } else if (valid_blocks < usable_blocks) { 841 __locate_dirty_segment(sbi, segno, DIRTY); 842 } else { 843 /* Recovery routine with SSR needs this */ 844 __remove_dirty_segment(sbi, segno, DIRTY); 845 } 846 847 mutex_unlock(&dirty_i->seglist_lock); 848 } 849 850 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 851 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 852 { 853 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 854 unsigned int segno; 855 856 mutex_lock(&dirty_i->seglist_lock); 857 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 858 if (get_valid_blocks(sbi, segno, false)) 859 continue; 860 if (IS_CURSEG(sbi, segno)) 861 continue; 862 __locate_dirty_segment(sbi, segno, PRE); 863 __remove_dirty_segment(sbi, segno, DIRTY); 864 } 865 mutex_unlock(&dirty_i->seglist_lock); 866 } 867 868 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 869 { 870 int ovp_hole_segs = 871 (overprovision_segments(sbi) - reserved_segments(sbi)); 872 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 873 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 874 block_t holes[2] = {0, 0}; /* DATA and NODE */ 875 block_t unusable; 876 struct seg_entry *se; 877 unsigned int segno; 878 879 mutex_lock(&dirty_i->seglist_lock); 880 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 881 se = get_seg_entry(sbi, segno); 882 if (IS_NODESEG(se->type)) 883 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 884 se->valid_blocks; 885 else 886 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 887 se->valid_blocks; 888 } 889 mutex_unlock(&dirty_i->seglist_lock); 890 891 unusable = max(holes[DATA], holes[NODE]); 892 if (unusable > ovp_holes) 893 return unusable - ovp_holes; 894 return 0; 895 } 896 897 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 898 { 899 int ovp_hole_segs = 900 (overprovision_segments(sbi) - reserved_segments(sbi)); 901 if (unusable > F2FS_OPTION(sbi).unusable_cap) 902 return -EAGAIN; 903 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 904 dirty_segments(sbi) > ovp_hole_segs) 905 return -EAGAIN; 906 return 0; 907 } 908 909 /* This is only used by SBI_CP_DISABLED */ 910 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 911 { 912 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 913 unsigned int segno = 0; 914 915 mutex_lock(&dirty_i->seglist_lock); 916 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 917 if (get_valid_blocks(sbi, segno, false)) 918 continue; 919 if (get_ckpt_valid_blocks(sbi, segno, false)) 920 continue; 921 mutex_unlock(&dirty_i->seglist_lock); 922 return segno; 923 } 924 mutex_unlock(&dirty_i->seglist_lock); 925 return NULL_SEGNO; 926 } 927 928 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 929 struct block_device *bdev, block_t lstart, 930 block_t start, block_t len) 931 { 932 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 933 struct list_head *pend_list; 934 struct discard_cmd *dc; 935 936 f2fs_bug_on(sbi, !len); 937 938 pend_list = &dcc->pend_list[plist_idx(len)]; 939 940 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 941 INIT_LIST_HEAD(&dc->list); 942 dc->bdev = bdev; 943 dc->di.lstart = lstart; 944 dc->di.start = start; 945 dc->di.len = len; 946 dc->ref = 0; 947 dc->state = D_PREP; 948 dc->queued = 0; 949 dc->error = 0; 950 init_completion(&dc->wait); 951 list_add_tail(&dc->list, pend_list); 952 spin_lock_init(&dc->lock); 953 dc->bio_ref = 0; 954 atomic_inc(&dcc->discard_cmd_cnt); 955 dcc->undiscard_blks += len; 956 957 return dc; 958 } 959 960 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi) 961 { 962 #ifdef CONFIG_F2FS_CHECK_FS 963 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 964 struct rb_node *cur = rb_first_cached(&dcc->root), *next; 965 struct discard_cmd *cur_dc, *next_dc; 966 967 while (cur) { 968 next = rb_next(cur); 969 if (!next) 970 return true; 971 972 cur_dc = rb_entry(cur, struct discard_cmd, rb_node); 973 next_dc = rb_entry(next, struct discard_cmd, rb_node); 974 975 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) { 976 f2fs_info(sbi, "broken discard_rbtree, " 977 "cur(%u, %u) next(%u, %u)", 978 cur_dc->di.lstart, cur_dc->di.len, 979 next_dc->di.lstart, next_dc->di.len); 980 return false; 981 } 982 cur = next; 983 } 984 #endif 985 return true; 986 } 987 988 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi, 989 block_t blkaddr) 990 { 991 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 992 struct rb_node *node = dcc->root.rb_root.rb_node; 993 struct discard_cmd *dc; 994 995 while (node) { 996 dc = rb_entry(node, struct discard_cmd, rb_node); 997 998 if (blkaddr < dc->di.lstart) 999 node = node->rb_left; 1000 else if (blkaddr >= dc->di.lstart + dc->di.len) 1001 node = node->rb_right; 1002 else 1003 return dc; 1004 } 1005 return NULL; 1006 } 1007 1008 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root, 1009 block_t blkaddr, 1010 struct discard_cmd **prev_entry, 1011 struct discard_cmd **next_entry, 1012 struct rb_node ***insert_p, 1013 struct rb_node **insert_parent) 1014 { 1015 struct rb_node **pnode = &root->rb_root.rb_node; 1016 struct rb_node *parent = NULL, *tmp_node; 1017 struct discard_cmd *dc; 1018 1019 *insert_p = NULL; 1020 *insert_parent = NULL; 1021 *prev_entry = NULL; 1022 *next_entry = NULL; 1023 1024 if (RB_EMPTY_ROOT(&root->rb_root)) 1025 return NULL; 1026 1027 while (*pnode) { 1028 parent = *pnode; 1029 dc = rb_entry(*pnode, struct discard_cmd, rb_node); 1030 1031 if (blkaddr < dc->di.lstart) 1032 pnode = &(*pnode)->rb_left; 1033 else if (blkaddr >= dc->di.lstart + dc->di.len) 1034 pnode = &(*pnode)->rb_right; 1035 else 1036 goto lookup_neighbors; 1037 } 1038 1039 *insert_p = pnode; 1040 *insert_parent = parent; 1041 1042 dc = rb_entry(parent, struct discard_cmd, rb_node); 1043 tmp_node = parent; 1044 if (parent && blkaddr > dc->di.lstart) 1045 tmp_node = rb_next(parent); 1046 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1047 1048 tmp_node = parent; 1049 if (parent && blkaddr < dc->di.lstart) 1050 tmp_node = rb_prev(parent); 1051 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1052 return NULL; 1053 1054 lookup_neighbors: 1055 /* lookup prev node for merging backward later */ 1056 tmp_node = rb_prev(&dc->rb_node); 1057 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1058 1059 /* lookup next node for merging frontward later */ 1060 tmp_node = rb_next(&dc->rb_node); 1061 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1062 return dc; 1063 } 1064 1065 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1066 struct discard_cmd *dc) 1067 { 1068 if (dc->state == D_DONE) 1069 atomic_sub(dc->queued, &dcc->queued_discard); 1070 1071 list_del(&dc->list); 1072 rb_erase_cached(&dc->rb_node, &dcc->root); 1073 dcc->undiscard_blks -= dc->di.len; 1074 1075 kmem_cache_free(discard_cmd_slab, dc); 1076 1077 atomic_dec(&dcc->discard_cmd_cnt); 1078 } 1079 1080 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1081 struct discard_cmd *dc) 1082 { 1083 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1084 unsigned long flags; 1085 1086 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len); 1087 1088 spin_lock_irqsave(&dc->lock, flags); 1089 if (dc->bio_ref) { 1090 spin_unlock_irqrestore(&dc->lock, flags); 1091 return; 1092 } 1093 spin_unlock_irqrestore(&dc->lock, flags); 1094 1095 f2fs_bug_on(sbi, dc->ref); 1096 1097 if (dc->error == -EOPNOTSUPP) 1098 dc->error = 0; 1099 1100 if (dc->error) 1101 printk_ratelimited( 1102 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1103 KERN_INFO, sbi->sb->s_id, 1104 dc->di.lstart, dc->di.start, dc->di.len, dc->error); 1105 __detach_discard_cmd(dcc, dc); 1106 } 1107 1108 static void f2fs_submit_discard_endio(struct bio *bio) 1109 { 1110 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1111 unsigned long flags; 1112 1113 spin_lock_irqsave(&dc->lock, flags); 1114 if (!dc->error) 1115 dc->error = blk_status_to_errno(bio->bi_status); 1116 dc->bio_ref--; 1117 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1118 dc->state = D_DONE; 1119 complete_all(&dc->wait); 1120 } 1121 spin_unlock_irqrestore(&dc->lock, flags); 1122 bio_put(bio); 1123 } 1124 1125 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1126 block_t start, block_t end) 1127 { 1128 #ifdef CONFIG_F2FS_CHECK_FS 1129 struct seg_entry *sentry; 1130 unsigned int segno; 1131 block_t blk = start; 1132 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1133 unsigned long *map; 1134 1135 while (blk < end) { 1136 segno = GET_SEGNO(sbi, blk); 1137 sentry = get_seg_entry(sbi, segno); 1138 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1139 1140 if (end < START_BLOCK(sbi, segno + 1)) 1141 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1142 else 1143 size = max_blocks; 1144 map = (unsigned long *)(sentry->cur_valid_map); 1145 offset = __find_rev_next_bit(map, size, offset); 1146 f2fs_bug_on(sbi, offset != size); 1147 blk = START_BLOCK(sbi, segno + 1); 1148 } 1149 #endif 1150 } 1151 1152 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1153 struct discard_policy *dpolicy, 1154 int discard_type, unsigned int granularity) 1155 { 1156 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1157 1158 /* common policy */ 1159 dpolicy->type = discard_type; 1160 dpolicy->sync = true; 1161 dpolicy->ordered = false; 1162 dpolicy->granularity = granularity; 1163 1164 dpolicy->max_requests = dcc->max_discard_request; 1165 dpolicy->io_aware_gran = dcc->discard_io_aware_gran; 1166 dpolicy->timeout = false; 1167 1168 if (discard_type == DPOLICY_BG) { 1169 dpolicy->min_interval = dcc->min_discard_issue_time; 1170 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1171 dpolicy->max_interval = dcc->max_discard_issue_time; 1172 dpolicy->io_aware = true; 1173 dpolicy->sync = false; 1174 dpolicy->ordered = true; 1175 if (utilization(sbi) > dcc->discard_urgent_util) { 1176 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1177 if (atomic_read(&dcc->discard_cmd_cnt)) 1178 dpolicy->max_interval = 1179 dcc->min_discard_issue_time; 1180 } 1181 } else if (discard_type == DPOLICY_FORCE) { 1182 dpolicy->min_interval = dcc->min_discard_issue_time; 1183 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1184 dpolicy->max_interval = dcc->max_discard_issue_time; 1185 dpolicy->io_aware = false; 1186 } else if (discard_type == DPOLICY_FSTRIM) { 1187 dpolicy->io_aware = false; 1188 } else if (discard_type == DPOLICY_UMOUNT) { 1189 dpolicy->io_aware = false; 1190 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1191 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1192 dpolicy->timeout = true; 1193 } 1194 } 1195 1196 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1197 struct block_device *bdev, block_t lstart, 1198 block_t start, block_t len); 1199 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1200 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1201 struct discard_policy *dpolicy, 1202 struct discard_cmd *dc, int *issued) 1203 { 1204 struct block_device *bdev = dc->bdev; 1205 unsigned int max_discard_blocks = 1206 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1207 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1208 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1209 &(dcc->fstrim_list) : &(dcc->wait_list); 1210 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1211 block_t lstart, start, len, total_len; 1212 int err = 0; 1213 1214 if (dc->state != D_PREP) 1215 return 0; 1216 1217 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1218 return 0; 1219 1220 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len); 1221 1222 lstart = dc->di.lstart; 1223 start = dc->di.start; 1224 len = dc->di.len; 1225 total_len = len; 1226 1227 dc->di.len = 0; 1228 1229 while (total_len && *issued < dpolicy->max_requests && !err) { 1230 struct bio *bio = NULL; 1231 unsigned long flags; 1232 bool last = true; 1233 1234 if (len > max_discard_blocks) { 1235 len = max_discard_blocks; 1236 last = false; 1237 } 1238 1239 (*issued)++; 1240 if (*issued == dpolicy->max_requests) 1241 last = true; 1242 1243 dc->di.len += len; 1244 1245 if (time_to_inject(sbi, FAULT_DISCARD)) { 1246 err = -EIO; 1247 } else { 1248 err = __blkdev_issue_discard(bdev, 1249 SECTOR_FROM_BLOCK(start), 1250 SECTOR_FROM_BLOCK(len), 1251 GFP_NOFS, &bio); 1252 } 1253 if (err) { 1254 spin_lock_irqsave(&dc->lock, flags); 1255 if (dc->state == D_PARTIAL) 1256 dc->state = D_SUBMIT; 1257 spin_unlock_irqrestore(&dc->lock, flags); 1258 1259 break; 1260 } 1261 1262 f2fs_bug_on(sbi, !bio); 1263 1264 /* 1265 * should keep before submission to avoid D_DONE 1266 * right away 1267 */ 1268 spin_lock_irqsave(&dc->lock, flags); 1269 if (last) 1270 dc->state = D_SUBMIT; 1271 else 1272 dc->state = D_PARTIAL; 1273 dc->bio_ref++; 1274 spin_unlock_irqrestore(&dc->lock, flags); 1275 1276 atomic_inc(&dcc->queued_discard); 1277 dc->queued++; 1278 list_move_tail(&dc->list, wait_list); 1279 1280 /* sanity check on discard range */ 1281 __check_sit_bitmap(sbi, lstart, lstart + len); 1282 1283 bio->bi_private = dc; 1284 bio->bi_end_io = f2fs_submit_discard_endio; 1285 bio->bi_opf |= flag; 1286 submit_bio(bio); 1287 1288 atomic_inc(&dcc->issued_discard); 1289 1290 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE); 1291 1292 lstart += len; 1293 start += len; 1294 total_len -= len; 1295 len = total_len; 1296 } 1297 1298 if (!err && len) { 1299 dcc->undiscard_blks -= len; 1300 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1301 } 1302 return err; 1303 } 1304 1305 static void __insert_discard_cmd(struct f2fs_sb_info *sbi, 1306 struct block_device *bdev, block_t lstart, 1307 block_t start, block_t len) 1308 { 1309 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1310 struct rb_node **p = &dcc->root.rb_root.rb_node; 1311 struct rb_node *parent = NULL; 1312 struct discard_cmd *dc; 1313 bool leftmost = true; 1314 1315 /* look up rb tree to find parent node */ 1316 while (*p) { 1317 parent = *p; 1318 dc = rb_entry(parent, struct discard_cmd, rb_node); 1319 1320 if (lstart < dc->di.lstart) { 1321 p = &(*p)->rb_left; 1322 } else if (lstart >= dc->di.lstart + dc->di.len) { 1323 p = &(*p)->rb_right; 1324 leftmost = false; 1325 } else { 1326 f2fs_bug_on(sbi, 1); 1327 } 1328 } 1329 1330 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1331 1332 rb_link_node(&dc->rb_node, parent, p); 1333 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1334 } 1335 1336 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1337 struct discard_cmd *dc) 1338 { 1339 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]); 1340 } 1341 1342 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1343 struct discard_cmd *dc, block_t blkaddr) 1344 { 1345 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1346 struct discard_info di = dc->di; 1347 bool modified = false; 1348 1349 if (dc->state == D_DONE || dc->di.len == 1) { 1350 __remove_discard_cmd(sbi, dc); 1351 return; 1352 } 1353 1354 dcc->undiscard_blks -= di.len; 1355 1356 if (blkaddr > di.lstart) { 1357 dc->di.len = blkaddr - dc->di.lstart; 1358 dcc->undiscard_blks += dc->di.len; 1359 __relocate_discard_cmd(dcc, dc); 1360 modified = true; 1361 } 1362 1363 if (blkaddr < di.lstart + di.len - 1) { 1364 if (modified) { 1365 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1, 1366 di.start + blkaddr + 1 - di.lstart, 1367 di.lstart + di.len - 1 - blkaddr); 1368 } else { 1369 dc->di.lstart++; 1370 dc->di.len--; 1371 dc->di.start++; 1372 dcc->undiscard_blks += dc->di.len; 1373 __relocate_discard_cmd(dcc, dc); 1374 } 1375 } 1376 } 1377 1378 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1379 struct block_device *bdev, block_t lstart, 1380 block_t start, block_t len) 1381 { 1382 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1383 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1384 struct discard_cmd *dc; 1385 struct discard_info di = {0}; 1386 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1387 unsigned int max_discard_blocks = 1388 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1389 block_t end = lstart + len; 1390 1391 dc = __lookup_discard_cmd_ret(&dcc->root, lstart, 1392 &prev_dc, &next_dc, &insert_p, &insert_parent); 1393 if (dc) 1394 prev_dc = dc; 1395 1396 if (!prev_dc) { 1397 di.lstart = lstart; 1398 di.len = next_dc ? next_dc->di.lstart - lstart : len; 1399 di.len = min(di.len, len); 1400 di.start = start; 1401 } 1402 1403 while (1) { 1404 struct rb_node *node; 1405 bool merged = false; 1406 struct discard_cmd *tdc = NULL; 1407 1408 if (prev_dc) { 1409 di.lstart = prev_dc->di.lstart + prev_dc->di.len; 1410 if (di.lstart < lstart) 1411 di.lstart = lstart; 1412 if (di.lstart >= end) 1413 break; 1414 1415 if (!next_dc || next_dc->di.lstart > end) 1416 di.len = end - di.lstart; 1417 else 1418 di.len = next_dc->di.lstart - di.lstart; 1419 di.start = start + di.lstart - lstart; 1420 } 1421 1422 if (!di.len) 1423 goto next; 1424 1425 if (prev_dc && prev_dc->state == D_PREP && 1426 prev_dc->bdev == bdev && 1427 __is_discard_back_mergeable(&di, &prev_dc->di, 1428 max_discard_blocks)) { 1429 prev_dc->di.len += di.len; 1430 dcc->undiscard_blks += di.len; 1431 __relocate_discard_cmd(dcc, prev_dc); 1432 di = prev_dc->di; 1433 tdc = prev_dc; 1434 merged = true; 1435 } 1436 1437 if (next_dc && next_dc->state == D_PREP && 1438 next_dc->bdev == bdev && 1439 __is_discard_front_mergeable(&di, &next_dc->di, 1440 max_discard_blocks)) { 1441 next_dc->di.lstart = di.lstart; 1442 next_dc->di.len += di.len; 1443 next_dc->di.start = di.start; 1444 dcc->undiscard_blks += di.len; 1445 __relocate_discard_cmd(dcc, next_dc); 1446 if (tdc) 1447 __remove_discard_cmd(sbi, tdc); 1448 merged = true; 1449 } 1450 1451 if (!merged) 1452 __insert_discard_cmd(sbi, bdev, 1453 di.lstart, di.start, di.len); 1454 next: 1455 prev_dc = next_dc; 1456 if (!prev_dc) 1457 break; 1458 1459 node = rb_next(&prev_dc->rb_node); 1460 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1461 } 1462 } 1463 1464 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1465 struct block_device *bdev, block_t blkstart, block_t blklen) 1466 { 1467 block_t lblkstart = blkstart; 1468 1469 if (!f2fs_bdev_support_discard(bdev)) 1470 return; 1471 1472 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1473 1474 if (f2fs_is_multi_device(sbi)) { 1475 int devi = f2fs_target_device_index(sbi, blkstart); 1476 1477 blkstart -= FDEV(devi).start_blk; 1478 } 1479 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1480 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1481 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1482 } 1483 1484 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1485 struct discard_policy *dpolicy, int *issued) 1486 { 1487 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1488 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1489 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1490 struct discard_cmd *dc; 1491 struct blk_plug plug; 1492 bool io_interrupted = false; 1493 1494 mutex_lock(&dcc->cmd_lock); 1495 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos, 1496 &prev_dc, &next_dc, &insert_p, &insert_parent); 1497 if (!dc) 1498 dc = next_dc; 1499 1500 blk_start_plug(&plug); 1501 1502 while (dc) { 1503 struct rb_node *node; 1504 int err = 0; 1505 1506 if (dc->state != D_PREP) 1507 goto next; 1508 1509 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1510 io_interrupted = true; 1511 break; 1512 } 1513 1514 dcc->next_pos = dc->di.lstart + dc->di.len; 1515 err = __submit_discard_cmd(sbi, dpolicy, dc, issued); 1516 1517 if (*issued >= dpolicy->max_requests) 1518 break; 1519 next: 1520 node = rb_next(&dc->rb_node); 1521 if (err) 1522 __remove_discard_cmd(sbi, dc); 1523 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1524 } 1525 1526 blk_finish_plug(&plug); 1527 1528 if (!dc) 1529 dcc->next_pos = 0; 1530 1531 mutex_unlock(&dcc->cmd_lock); 1532 1533 if (!(*issued) && io_interrupted) 1534 *issued = -1; 1535 } 1536 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1537 struct discard_policy *dpolicy); 1538 1539 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1540 struct discard_policy *dpolicy) 1541 { 1542 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1543 struct list_head *pend_list; 1544 struct discard_cmd *dc, *tmp; 1545 struct blk_plug plug; 1546 int i, issued; 1547 bool io_interrupted = false; 1548 1549 if (dpolicy->timeout) 1550 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1551 1552 retry: 1553 issued = 0; 1554 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1555 if (dpolicy->timeout && 1556 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1557 break; 1558 1559 if (i + 1 < dpolicy->granularity) 1560 break; 1561 1562 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) { 1563 __issue_discard_cmd_orderly(sbi, dpolicy, &issued); 1564 return issued; 1565 } 1566 1567 pend_list = &dcc->pend_list[i]; 1568 1569 mutex_lock(&dcc->cmd_lock); 1570 if (list_empty(pend_list)) 1571 goto next; 1572 if (unlikely(dcc->rbtree_check)) 1573 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 1574 blk_start_plug(&plug); 1575 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1576 f2fs_bug_on(sbi, dc->state != D_PREP); 1577 1578 if (dpolicy->timeout && 1579 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1580 break; 1581 1582 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1583 !is_idle(sbi, DISCARD_TIME)) { 1584 io_interrupted = true; 1585 break; 1586 } 1587 1588 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1589 1590 if (issued >= dpolicy->max_requests) 1591 break; 1592 } 1593 blk_finish_plug(&plug); 1594 next: 1595 mutex_unlock(&dcc->cmd_lock); 1596 1597 if (issued >= dpolicy->max_requests || io_interrupted) 1598 break; 1599 } 1600 1601 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1602 __wait_all_discard_cmd(sbi, dpolicy); 1603 goto retry; 1604 } 1605 1606 if (!issued && io_interrupted) 1607 issued = -1; 1608 1609 return issued; 1610 } 1611 1612 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1613 { 1614 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1615 struct list_head *pend_list; 1616 struct discard_cmd *dc, *tmp; 1617 int i; 1618 bool dropped = false; 1619 1620 mutex_lock(&dcc->cmd_lock); 1621 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1622 pend_list = &dcc->pend_list[i]; 1623 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1624 f2fs_bug_on(sbi, dc->state != D_PREP); 1625 __remove_discard_cmd(sbi, dc); 1626 dropped = true; 1627 } 1628 } 1629 mutex_unlock(&dcc->cmd_lock); 1630 1631 return dropped; 1632 } 1633 1634 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1635 { 1636 __drop_discard_cmd(sbi); 1637 } 1638 1639 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1640 struct discard_cmd *dc) 1641 { 1642 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1643 unsigned int len = 0; 1644 1645 wait_for_completion_io(&dc->wait); 1646 mutex_lock(&dcc->cmd_lock); 1647 f2fs_bug_on(sbi, dc->state != D_DONE); 1648 dc->ref--; 1649 if (!dc->ref) { 1650 if (!dc->error) 1651 len = dc->di.len; 1652 __remove_discard_cmd(sbi, dc); 1653 } 1654 mutex_unlock(&dcc->cmd_lock); 1655 1656 return len; 1657 } 1658 1659 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1660 struct discard_policy *dpolicy, 1661 block_t start, block_t end) 1662 { 1663 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1664 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1665 &(dcc->fstrim_list) : &(dcc->wait_list); 1666 struct discard_cmd *dc = NULL, *iter, *tmp; 1667 unsigned int trimmed = 0; 1668 1669 next: 1670 dc = NULL; 1671 1672 mutex_lock(&dcc->cmd_lock); 1673 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1674 if (iter->di.lstart + iter->di.len <= start || 1675 end <= iter->di.lstart) 1676 continue; 1677 if (iter->di.len < dpolicy->granularity) 1678 continue; 1679 if (iter->state == D_DONE && !iter->ref) { 1680 wait_for_completion_io(&iter->wait); 1681 if (!iter->error) 1682 trimmed += iter->di.len; 1683 __remove_discard_cmd(sbi, iter); 1684 } else { 1685 iter->ref++; 1686 dc = iter; 1687 break; 1688 } 1689 } 1690 mutex_unlock(&dcc->cmd_lock); 1691 1692 if (dc) { 1693 trimmed += __wait_one_discard_bio(sbi, dc); 1694 goto next; 1695 } 1696 1697 return trimmed; 1698 } 1699 1700 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1701 struct discard_policy *dpolicy) 1702 { 1703 struct discard_policy dp; 1704 unsigned int discard_blks; 1705 1706 if (dpolicy) 1707 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1708 1709 /* wait all */ 1710 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY); 1711 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1712 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY); 1713 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1714 1715 return discard_blks; 1716 } 1717 1718 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1719 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1720 { 1721 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1722 struct discard_cmd *dc; 1723 bool need_wait = false; 1724 1725 mutex_lock(&dcc->cmd_lock); 1726 dc = __lookup_discard_cmd(sbi, blkaddr); 1727 if (dc) { 1728 if (dc->state == D_PREP) { 1729 __punch_discard_cmd(sbi, dc, blkaddr); 1730 } else { 1731 dc->ref++; 1732 need_wait = true; 1733 } 1734 } 1735 mutex_unlock(&dcc->cmd_lock); 1736 1737 if (need_wait) 1738 __wait_one_discard_bio(sbi, dc); 1739 } 1740 1741 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1742 { 1743 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1744 1745 if (dcc && dcc->f2fs_issue_discard) { 1746 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1747 1748 dcc->f2fs_issue_discard = NULL; 1749 kthread_stop(discard_thread); 1750 } 1751 } 1752 1753 /** 1754 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT 1755 * @sbi: the f2fs_sb_info data for discard cmd to issue 1756 * 1757 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped 1758 * 1759 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false. 1760 */ 1761 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1762 { 1763 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1764 struct discard_policy dpolicy; 1765 bool dropped; 1766 1767 if (!atomic_read(&dcc->discard_cmd_cnt)) 1768 return true; 1769 1770 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1771 dcc->discard_granularity); 1772 __issue_discard_cmd(sbi, &dpolicy); 1773 dropped = __drop_discard_cmd(sbi); 1774 1775 /* just to make sure there is no pending discard commands */ 1776 __wait_all_discard_cmd(sbi, NULL); 1777 1778 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1779 return !dropped; 1780 } 1781 1782 static int issue_discard_thread(void *data) 1783 { 1784 struct f2fs_sb_info *sbi = data; 1785 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1786 wait_queue_head_t *q = &dcc->discard_wait_queue; 1787 struct discard_policy dpolicy; 1788 unsigned int wait_ms = dcc->min_discard_issue_time; 1789 int issued; 1790 1791 set_freezable(); 1792 1793 do { 1794 wait_event_interruptible_timeout(*q, 1795 kthread_should_stop() || freezing(current) || 1796 dcc->discard_wake, 1797 msecs_to_jiffies(wait_ms)); 1798 1799 if (sbi->gc_mode == GC_URGENT_HIGH || 1800 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1801 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1802 MIN_DISCARD_GRANULARITY); 1803 else 1804 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1805 dcc->discard_granularity); 1806 1807 if (dcc->discard_wake) 1808 dcc->discard_wake = false; 1809 1810 /* clean up pending candidates before going to sleep */ 1811 if (atomic_read(&dcc->queued_discard)) 1812 __wait_all_discard_cmd(sbi, NULL); 1813 1814 if (try_to_freeze()) 1815 continue; 1816 if (f2fs_readonly(sbi->sb)) 1817 continue; 1818 if (kthread_should_stop()) 1819 return 0; 1820 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1821 !atomic_read(&dcc->discard_cmd_cnt)) { 1822 wait_ms = dpolicy.max_interval; 1823 continue; 1824 } 1825 1826 sb_start_intwrite(sbi->sb); 1827 1828 issued = __issue_discard_cmd(sbi, &dpolicy); 1829 if (issued > 0) { 1830 __wait_all_discard_cmd(sbi, &dpolicy); 1831 wait_ms = dpolicy.min_interval; 1832 } else if (issued == -1) { 1833 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1834 if (!wait_ms) 1835 wait_ms = dpolicy.mid_interval; 1836 } else { 1837 wait_ms = dpolicy.max_interval; 1838 } 1839 if (!atomic_read(&dcc->discard_cmd_cnt)) 1840 wait_ms = dpolicy.max_interval; 1841 1842 sb_end_intwrite(sbi->sb); 1843 1844 } while (!kthread_should_stop()); 1845 return 0; 1846 } 1847 1848 #ifdef CONFIG_BLK_DEV_ZONED 1849 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1850 struct block_device *bdev, block_t blkstart, block_t blklen) 1851 { 1852 sector_t sector, nr_sects; 1853 block_t lblkstart = blkstart; 1854 int devi = 0; 1855 u64 remainder = 0; 1856 1857 if (f2fs_is_multi_device(sbi)) { 1858 devi = f2fs_target_device_index(sbi, blkstart); 1859 if (blkstart < FDEV(devi).start_blk || 1860 blkstart > FDEV(devi).end_blk) { 1861 f2fs_err(sbi, "Invalid block %x", blkstart); 1862 return -EIO; 1863 } 1864 blkstart -= FDEV(devi).start_blk; 1865 } 1866 1867 /* For sequential zones, reset the zone write pointer */ 1868 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1869 sector = SECTOR_FROM_BLOCK(blkstart); 1870 nr_sects = SECTOR_FROM_BLOCK(blklen); 1871 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder); 1872 1873 if (remainder || nr_sects != bdev_zone_sectors(bdev)) { 1874 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1875 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1876 blkstart, blklen); 1877 return -EIO; 1878 } 1879 trace_f2fs_issue_reset_zone(bdev, blkstart); 1880 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1881 sector, nr_sects, GFP_NOFS); 1882 } 1883 1884 /* For conventional zones, use regular discard if supported */ 1885 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1886 return 0; 1887 } 1888 #endif 1889 1890 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1891 struct block_device *bdev, block_t blkstart, block_t blklen) 1892 { 1893 #ifdef CONFIG_BLK_DEV_ZONED 1894 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1895 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1896 #endif 1897 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1898 return 0; 1899 } 1900 1901 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1902 block_t blkstart, block_t blklen) 1903 { 1904 sector_t start = blkstart, len = 0; 1905 struct block_device *bdev; 1906 struct seg_entry *se; 1907 unsigned int offset; 1908 block_t i; 1909 int err = 0; 1910 1911 bdev = f2fs_target_device(sbi, blkstart, NULL); 1912 1913 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1914 if (i != start) { 1915 struct block_device *bdev2 = 1916 f2fs_target_device(sbi, i, NULL); 1917 1918 if (bdev2 != bdev) { 1919 err = __issue_discard_async(sbi, bdev, 1920 start, len); 1921 if (err) 1922 return err; 1923 bdev = bdev2; 1924 start = i; 1925 len = 0; 1926 } 1927 } 1928 1929 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1930 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1931 1932 if (f2fs_block_unit_discard(sbi) && 1933 !f2fs_test_and_set_bit(offset, se->discard_map)) 1934 sbi->discard_blks--; 1935 } 1936 1937 if (len) 1938 err = __issue_discard_async(sbi, bdev, start, len); 1939 return err; 1940 } 1941 1942 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1943 bool check_only) 1944 { 1945 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1946 int max_blocks = sbi->blocks_per_seg; 1947 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1948 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1949 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1950 unsigned long *discard_map = (unsigned long *)se->discard_map; 1951 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1952 unsigned int start = 0, end = -1; 1953 bool force = (cpc->reason & CP_DISCARD); 1954 struct discard_entry *de = NULL; 1955 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1956 int i; 1957 1958 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) || 1959 !f2fs_block_unit_discard(sbi)) 1960 return false; 1961 1962 if (!force) { 1963 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1964 SM_I(sbi)->dcc_info->nr_discards >= 1965 SM_I(sbi)->dcc_info->max_discards) 1966 return false; 1967 } 1968 1969 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1970 for (i = 0; i < entries; i++) 1971 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1972 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1973 1974 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1975 SM_I(sbi)->dcc_info->max_discards) { 1976 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1977 if (start >= max_blocks) 1978 break; 1979 1980 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1981 if (force && start && end != max_blocks 1982 && (end - start) < cpc->trim_minlen) 1983 continue; 1984 1985 if (check_only) 1986 return true; 1987 1988 if (!de) { 1989 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1990 GFP_F2FS_ZERO, true, NULL); 1991 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1992 list_add_tail(&de->list, head); 1993 } 1994 1995 for (i = start; i < end; i++) 1996 __set_bit_le(i, (void *)de->discard_map); 1997 1998 SM_I(sbi)->dcc_info->nr_discards += end - start; 1999 } 2000 return false; 2001 } 2002 2003 static void release_discard_addr(struct discard_entry *entry) 2004 { 2005 list_del(&entry->list); 2006 kmem_cache_free(discard_entry_slab, entry); 2007 } 2008 2009 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2010 { 2011 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2012 struct discard_entry *entry, *this; 2013 2014 /* drop caches */ 2015 list_for_each_entry_safe(entry, this, head, list) 2016 release_discard_addr(entry); 2017 } 2018 2019 /* 2020 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2021 */ 2022 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2023 { 2024 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2025 unsigned int segno; 2026 2027 mutex_lock(&dirty_i->seglist_lock); 2028 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2029 __set_test_and_free(sbi, segno, false); 2030 mutex_unlock(&dirty_i->seglist_lock); 2031 } 2032 2033 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2034 struct cp_control *cpc) 2035 { 2036 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2037 struct list_head *head = &dcc->entry_list; 2038 struct discard_entry *entry, *this; 2039 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2040 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2041 unsigned int start = 0, end = -1; 2042 unsigned int secno, start_segno; 2043 bool force = (cpc->reason & CP_DISCARD); 2044 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2045 DISCARD_UNIT_SECTION; 2046 2047 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2048 section_alignment = true; 2049 2050 mutex_lock(&dirty_i->seglist_lock); 2051 2052 while (1) { 2053 int i; 2054 2055 if (section_alignment && end != -1) 2056 end--; 2057 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2058 if (start >= MAIN_SEGS(sbi)) 2059 break; 2060 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2061 start + 1); 2062 2063 if (section_alignment) { 2064 start = rounddown(start, sbi->segs_per_sec); 2065 end = roundup(end, sbi->segs_per_sec); 2066 } 2067 2068 for (i = start; i < end; i++) { 2069 if (test_and_clear_bit(i, prefree_map)) 2070 dirty_i->nr_dirty[PRE]--; 2071 } 2072 2073 if (!f2fs_realtime_discard_enable(sbi)) 2074 continue; 2075 2076 if (force && start >= cpc->trim_start && 2077 (end - 1) <= cpc->trim_end) 2078 continue; 2079 2080 /* Should cover 2MB zoned device for zone-based reset */ 2081 if (!f2fs_sb_has_blkzoned(sbi) && 2082 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) { 2083 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2084 (end - start) << sbi->log_blocks_per_seg); 2085 continue; 2086 } 2087 next: 2088 secno = GET_SEC_FROM_SEG(sbi, start); 2089 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2090 if (!IS_CURSEC(sbi, secno) && 2091 !get_valid_blocks(sbi, start, true)) 2092 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2093 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2094 2095 start = start_segno + sbi->segs_per_sec; 2096 if (start < end) 2097 goto next; 2098 else 2099 end = start - 1; 2100 } 2101 mutex_unlock(&dirty_i->seglist_lock); 2102 2103 if (!f2fs_block_unit_discard(sbi)) 2104 goto wakeup; 2105 2106 /* send small discards */ 2107 list_for_each_entry_safe(entry, this, head, list) { 2108 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2109 bool is_valid = test_bit_le(0, entry->discard_map); 2110 2111 find_next: 2112 if (is_valid) { 2113 next_pos = find_next_zero_bit_le(entry->discard_map, 2114 sbi->blocks_per_seg, cur_pos); 2115 len = next_pos - cur_pos; 2116 2117 if (f2fs_sb_has_blkzoned(sbi) || 2118 (force && len < cpc->trim_minlen)) 2119 goto skip; 2120 2121 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2122 len); 2123 total_len += len; 2124 } else { 2125 next_pos = find_next_bit_le(entry->discard_map, 2126 sbi->blocks_per_seg, cur_pos); 2127 } 2128 skip: 2129 cur_pos = next_pos; 2130 is_valid = !is_valid; 2131 2132 if (cur_pos < sbi->blocks_per_seg) 2133 goto find_next; 2134 2135 release_discard_addr(entry); 2136 dcc->nr_discards -= total_len; 2137 } 2138 2139 wakeup: 2140 wake_up_discard_thread(sbi, false); 2141 } 2142 2143 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2144 { 2145 dev_t dev = sbi->sb->s_bdev->bd_dev; 2146 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2147 int err = 0; 2148 2149 if (!f2fs_realtime_discard_enable(sbi)) 2150 return 0; 2151 2152 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2153 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2154 if (IS_ERR(dcc->f2fs_issue_discard)) { 2155 err = PTR_ERR(dcc->f2fs_issue_discard); 2156 dcc->f2fs_issue_discard = NULL; 2157 } 2158 2159 return err; 2160 } 2161 2162 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2163 { 2164 struct discard_cmd_control *dcc; 2165 int err = 0, i; 2166 2167 if (SM_I(sbi)->dcc_info) { 2168 dcc = SM_I(sbi)->dcc_info; 2169 goto init_thread; 2170 } 2171 2172 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2173 if (!dcc) 2174 return -ENOMEM; 2175 2176 dcc->discard_io_aware_gran = MAX_PLIST_NUM; 2177 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2178 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2179 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2180 dcc->discard_granularity = sbi->blocks_per_seg; 2181 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2182 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2183 2184 INIT_LIST_HEAD(&dcc->entry_list); 2185 for (i = 0; i < MAX_PLIST_NUM; i++) 2186 INIT_LIST_HEAD(&dcc->pend_list[i]); 2187 INIT_LIST_HEAD(&dcc->wait_list); 2188 INIT_LIST_HEAD(&dcc->fstrim_list); 2189 mutex_init(&dcc->cmd_lock); 2190 atomic_set(&dcc->issued_discard, 0); 2191 atomic_set(&dcc->queued_discard, 0); 2192 atomic_set(&dcc->discard_cmd_cnt, 0); 2193 dcc->nr_discards = 0; 2194 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2195 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2196 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2197 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2198 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2199 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2200 dcc->undiscard_blks = 0; 2201 dcc->next_pos = 0; 2202 dcc->root = RB_ROOT_CACHED; 2203 dcc->rbtree_check = false; 2204 2205 init_waitqueue_head(&dcc->discard_wait_queue); 2206 SM_I(sbi)->dcc_info = dcc; 2207 init_thread: 2208 err = f2fs_start_discard_thread(sbi); 2209 if (err) { 2210 kfree(dcc); 2211 SM_I(sbi)->dcc_info = NULL; 2212 } 2213 2214 return err; 2215 } 2216 2217 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2218 { 2219 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2220 2221 if (!dcc) 2222 return; 2223 2224 f2fs_stop_discard_thread(sbi); 2225 2226 /* 2227 * Recovery can cache discard commands, so in error path of 2228 * fill_super(), it needs to give a chance to handle them. 2229 */ 2230 f2fs_issue_discard_timeout(sbi); 2231 2232 kfree(dcc); 2233 SM_I(sbi)->dcc_info = NULL; 2234 } 2235 2236 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2237 { 2238 struct sit_info *sit_i = SIT_I(sbi); 2239 2240 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2241 sit_i->dirty_sentries++; 2242 return false; 2243 } 2244 2245 return true; 2246 } 2247 2248 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2249 unsigned int segno, int modified) 2250 { 2251 struct seg_entry *se = get_seg_entry(sbi, segno); 2252 2253 se->type = type; 2254 if (modified) 2255 __mark_sit_entry_dirty(sbi, segno); 2256 } 2257 2258 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2259 block_t blkaddr) 2260 { 2261 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2262 2263 if (segno == NULL_SEGNO) 2264 return 0; 2265 return get_seg_entry(sbi, segno)->mtime; 2266 } 2267 2268 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2269 unsigned long long old_mtime) 2270 { 2271 struct seg_entry *se; 2272 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2273 unsigned long long ctime = get_mtime(sbi, false); 2274 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2275 2276 if (segno == NULL_SEGNO) 2277 return; 2278 2279 se = get_seg_entry(sbi, segno); 2280 2281 if (!se->mtime) 2282 se->mtime = mtime; 2283 else 2284 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2285 se->valid_blocks + 1); 2286 2287 if (ctime > SIT_I(sbi)->max_mtime) 2288 SIT_I(sbi)->max_mtime = ctime; 2289 } 2290 2291 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2292 { 2293 struct seg_entry *se; 2294 unsigned int segno, offset; 2295 long int new_vblocks; 2296 bool exist; 2297 #ifdef CONFIG_F2FS_CHECK_FS 2298 bool mir_exist; 2299 #endif 2300 2301 segno = GET_SEGNO(sbi, blkaddr); 2302 2303 se = get_seg_entry(sbi, segno); 2304 new_vblocks = se->valid_blocks + del; 2305 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2306 2307 f2fs_bug_on(sbi, (new_vblocks < 0 || 2308 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2309 2310 se->valid_blocks = new_vblocks; 2311 2312 /* Update valid block bitmap */ 2313 if (del > 0) { 2314 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2315 #ifdef CONFIG_F2FS_CHECK_FS 2316 mir_exist = f2fs_test_and_set_bit(offset, 2317 se->cur_valid_map_mir); 2318 if (unlikely(exist != mir_exist)) { 2319 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2320 blkaddr, exist); 2321 f2fs_bug_on(sbi, 1); 2322 } 2323 #endif 2324 if (unlikely(exist)) { 2325 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2326 blkaddr); 2327 f2fs_bug_on(sbi, 1); 2328 se->valid_blocks--; 2329 del = 0; 2330 } 2331 2332 if (f2fs_block_unit_discard(sbi) && 2333 !f2fs_test_and_set_bit(offset, se->discard_map)) 2334 sbi->discard_blks--; 2335 2336 /* 2337 * SSR should never reuse block which is checkpointed 2338 * or newly invalidated. 2339 */ 2340 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2341 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2342 se->ckpt_valid_blocks++; 2343 } 2344 } else { 2345 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2346 #ifdef CONFIG_F2FS_CHECK_FS 2347 mir_exist = f2fs_test_and_clear_bit(offset, 2348 se->cur_valid_map_mir); 2349 if (unlikely(exist != mir_exist)) { 2350 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2351 blkaddr, exist); 2352 f2fs_bug_on(sbi, 1); 2353 } 2354 #endif 2355 if (unlikely(!exist)) { 2356 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2357 blkaddr); 2358 f2fs_bug_on(sbi, 1); 2359 se->valid_blocks++; 2360 del = 0; 2361 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2362 /* 2363 * If checkpoints are off, we must not reuse data that 2364 * was used in the previous checkpoint. If it was used 2365 * before, we must track that to know how much space we 2366 * really have. 2367 */ 2368 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2369 spin_lock(&sbi->stat_lock); 2370 sbi->unusable_block_count++; 2371 spin_unlock(&sbi->stat_lock); 2372 } 2373 } 2374 2375 if (f2fs_block_unit_discard(sbi) && 2376 f2fs_test_and_clear_bit(offset, se->discard_map)) 2377 sbi->discard_blks++; 2378 } 2379 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2380 se->ckpt_valid_blocks += del; 2381 2382 __mark_sit_entry_dirty(sbi, segno); 2383 2384 /* update total number of valid blocks to be written in ckpt area */ 2385 SIT_I(sbi)->written_valid_blocks += del; 2386 2387 if (__is_large_section(sbi)) 2388 get_sec_entry(sbi, segno)->valid_blocks += del; 2389 } 2390 2391 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2392 { 2393 unsigned int segno = GET_SEGNO(sbi, addr); 2394 struct sit_info *sit_i = SIT_I(sbi); 2395 2396 f2fs_bug_on(sbi, addr == NULL_ADDR); 2397 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2398 return; 2399 2400 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2401 f2fs_invalidate_compress_page(sbi, addr); 2402 2403 /* add it into sit main buffer */ 2404 down_write(&sit_i->sentry_lock); 2405 2406 update_segment_mtime(sbi, addr, 0); 2407 update_sit_entry(sbi, addr, -1); 2408 2409 /* add it into dirty seglist */ 2410 locate_dirty_segment(sbi, segno); 2411 2412 up_write(&sit_i->sentry_lock); 2413 } 2414 2415 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2416 { 2417 struct sit_info *sit_i = SIT_I(sbi); 2418 unsigned int segno, offset; 2419 struct seg_entry *se; 2420 bool is_cp = false; 2421 2422 if (!__is_valid_data_blkaddr(blkaddr)) 2423 return true; 2424 2425 down_read(&sit_i->sentry_lock); 2426 2427 segno = GET_SEGNO(sbi, blkaddr); 2428 se = get_seg_entry(sbi, segno); 2429 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2430 2431 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2432 is_cp = true; 2433 2434 up_read(&sit_i->sentry_lock); 2435 2436 return is_cp; 2437 } 2438 2439 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type) 2440 { 2441 struct curseg_info *curseg = CURSEG_I(sbi, type); 2442 2443 if (sbi->ckpt->alloc_type[type] == SSR) 2444 return sbi->blocks_per_seg; 2445 return curseg->next_blkoff; 2446 } 2447 2448 /* 2449 * Calculate the number of current summary pages for writing 2450 */ 2451 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2452 { 2453 int valid_sum_count = 0; 2454 int i, sum_in_page; 2455 2456 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2457 if (sbi->ckpt->alloc_type[i] != SSR && for_ra) 2458 valid_sum_count += 2459 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2460 else 2461 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i); 2462 } 2463 2464 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2465 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2466 if (valid_sum_count <= sum_in_page) 2467 return 1; 2468 else if ((valid_sum_count - sum_in_page) <= 2469 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2470 return 2; 2471 return 3; 2472 } 2473 2474 /* 2475 * Caller should put this summary page 2476 */ 2477 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2478 { 2479 if (unlikely(f2fs_cp_error(sbi))) 2480 return ERR_PTR(-EIO); 2481 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2482 } 2483 2484 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2485 void *src, block_t blk_addr) 2486 { 2487 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2488 2489 memcpy(page_address(page), src, PAGE_SIZE); 2490 set_page_dirty(page); 2491 f2fs_put_page(page, 1); 2492 } 2493 2494 static void write_sum_page(struct f2fs_sb_info *sbi, 2495 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2496 { 2497 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2498 } 2499 2500 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2501 int type, block_t blk_addr) 2502 { 2503 struct curseg_info *curseg = CURSEG_I(sbi, type); 2504 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2505 struct f2fs_summary_block *src = curseg->sum_blk; 2506 struct f2fs_summary_block *dst; 2507 2508 dst = (struct f2fs_summary_block *)page_address(page); 2509 memset(dst, 0, PAGE_SIZE); 2510 2511 mutex_lock(&curseg->curseg_mutex); 2512 2513 down_read(&curseg->journal_rwsem); 2514 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2515 up_read(&curseg->journal_rwsem); 2516 2517 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2518 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2519 2520 mutex_unlock(&curseg->curseg_mutex); 2521 2522 set_page_dirty(page); 2523 f2fs_put_page(page, 1); 2524 } 2525 2526 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2527 struct curseg_info *curseg, int type) 2528 { 2529 unsigned int segno = curseg->segno + 1; 2530 struct free_segmap_info *free_i = FREE_I(sbi); 2531 2532 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2533 return !test_bit(segno, free_i->free_segmap); 2534 return 0; 2535 } 2536 2537 /* 2538 * Find a new segment from the free segments bitmap to right order 2539 * This function should be returned with success, otherwise BUG 2540 */ 2541 static void get_new_segment(struct f2fs_sb_info *sbi, 2542 unsigned int *newseg, bool new_sec, int dir) 2543 { 2544 struct free_segmap_info *free_i = FREE_I(sbi); 2545 unsigned int segno, secno, zoneno; 2546 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2547 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2548 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2549 unsigned int left_start = hint; 2550 bool init = true; 2551 int go_left = 0; 2552 int i; 2553 2554 spin_lock(&free_i->segmap_lock); 2555 2556 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2557 segno = find_next_zero_bit(free_i->free_segmap, 2558 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2559 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2560 goto got_it; 2561 } 2562 find_other_zone: 2563 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2564 if (secno >= MAIN_SECS(sbi)) { 2565 if (dir == ALLOC_RIGHT) { 2566 secno = find_first_zero_bit(free_i->free_secmap, 2567 MAIN_SECS(sbi)); 2568 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2569 } else { 2570 go_left = 1; 2571 left_start = hint - 1; 2572 } 2573 } 2574 if (go_left == 0) 2575 goto skip_left; 2576 2577 while (test_bit(left_start, free_i->free_secmap)) { 2578 if (left_start > 0) { 2579 left_start--; 2580 continue; 2581 } 2582 left_start = find_first_zero_bit(free_i->free_secmap, 2583 MAIN_SECS(sbi)); 2584 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2585 break; 2586 } 2587 secno = left_start; 2588 skip_left: 2589 segno = GET_SEG_FROM_SEC(sbi, secno); 2590 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2591 2592 /* give up on finding another zone */ 2593 if (!init) 2594 goto got_it; 2595 if (sbi->secs_per_zone == 1) 2596 goto got_it; 2597 if (zoneno == old_zoneno) 2598 goto got_it; 2599 if (dir == ALLOC_LEFT) { 2600 if (!go_left && zoneno + 1 >= total_zones) 2601 goto got_it; 2602 if (go_left && zoneno == 0) 2603 goto got_it; 2604 } 2605 for (i = 0; i < NR_CURSEG_TYPE; i++) 2606 if (CURSEG_I(sbi, i)->zone == zoneno) 2607 break; 2608 2609 if (i < NR_CURSEG_TYPE) { 2610 /* zone is in user, try another */ 2611 if (go_left) 2612 hint = zoneno * sbi->secs_per_zone - 1; 2613 else if (zoneno + 1 >= total_zones) 2614 hint = 0; 2615 else 2616 hint = (zoneno + 1) * sbi->secs_per_zone; 2617 init = false; 2618 goto find_other_zone; 2619 } 2620 got_it: 2621 /* set it as dirty segment in free segmap */ 2622 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2623 __set_inuse(sbi, segno); 2624 *newseg = segno; 2625 spin_unlock(&free_i->segmap_lock); 2626 } 2627 2628 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2629 { 2630 struct curseg_info *curseg = CURSEG_I(sbi, type); 2631 struct summary_footer *sum_footer; 2632 unsigned short seg_type = curseg->seg_type; 2633 2634 curseg->inited = true; 2635 curseg->segno = curseg->next_segno; 2636 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2637 curseg->next_blkoff = 0; 2638 curseg->next_segno = NULL_SEGNO; 2639 2640 sum_footer = &(curseg->sum_blk->footer); 2641 memset(sum_footer, 0, sizeof(struct summary_footer)); 2642 2643 sanity_check_seg_type(sbi, seg_type); 2644 2645 if (IS_DATASEG(seg_type)) 2646 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2647 if (IS_NODESEG(seg_type)) 2648 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2649 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2650 } 2651 2652 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2653 { 2654 struct curseg_info *curseg = CURSEG_I(sbi, type); 2655 unsigned short seg_type = curseg->seg_type; 2656 2657 sanity_check_seg_type(sbi, seg_type); 2658 if (f2fs_need_rand_seg(sbi)) 2659 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec); 2660 2661 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2662 if (__is_large_section(sbi)) 2663 return curseg->segno; 2664 2665 /* inmem log may not locate on any segment after mount */ 2666 if (!curseg->inited) 2667 return 0; 2668 2669 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2670 return 0; 2671 2672 if (test_opt(sbi, NOHEAP) && 2673 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2674 return 0; 2675 2676 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2677 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2678 2679 /* find segments from 0 to reuse freed segments */ 2680 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2681 return 0; 2682 2683 return curseg->segno; 2684 } 2685 2686 /* 2687 * Allocate a current working segment. 2688 * This function always allocates a free segment in LFS manner. 2689 */ 2690 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2691 { 2692 struct curseg_info *curseg = CURSEG_I(sbi, type); 2693 unsigned short seg_type = curseg->seg_type; 2694 unsigned int segno = curseg->segno; 2695 int dir = ALLOC_LEFT; 2696 2697 if (curseg->inited) 2698 write_sum_page(sbi, curseg->sum_blk, 2699 GET_SUM_BLOCK(sbi, segno)); 2700 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2701 dir = ALLOC_RIGHT; 2702 2703 if (test_opt(sbi, NOHEAP)) 2704 dir = ALLOC_RIGHT; 2705 2706 segno = __get_next_segno(sbi, type); 2707 get_new_segment(sbi, &segno, new_sec, dir); 2708 curseg->next_segno = segno; 2709 reset_curseg(sbi, type, 1); 2710 curseg->alloc_type = LFS; 2711 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2712 curseg->fragment_remained_chunk = 2713 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2714 } 2715 2716 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2717 int segno, block_t start) 2718 { 2719 struct seg_entry *se = get_seg_entry(sbi, segno); 2720 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2721 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2722 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2723 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2724 int i; 2725 2726 for (i = 0; i < entries; i++) 2727 target_map[i] = ckpt_map[i] | cur_map[i]; 2728 2729 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2730 } 2731 2732 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi, 2733 struct curseg_info *seg) 2734 { 2735 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); 2736 } 2737 2738 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2739 { 2740 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2741 } 2742 2743 /* 2744 * This function always allocates a used segment(from dirty seglist) by SSR 2745 * manner, so it should recover the existing segment information of valid blocks 2746 */ 2747 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2748 { 2749 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2750 struct curseg_info *curseg = CURSEG_I(sbi, type); 2751 unsigned int new_segno = curseg->next_segno; 2752 struct f2fs_summary_block *sum_node; 2753 struct page *sum_page; 2754 2755 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2756 2757 __set_test_and_inuse(sbi, new_segno); 2758 2759 mutex_lock(&dirty_i->seglist_lock); 2760 __remove_dirty_segment(sbi, new_segno, PRE); 2761 __remove_dirty_segment(sbi, new_segno, DIRTY); 2762 mutex_unlock(&dirty_i->seglist_lock); 2763 2764 reset_curseg(sbi, type, 1); 2765 curseg->alloc_type = SSR; 2766 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2767 2768 sum_page = f2fs_get_sum_page(sbi, new_segno); 2769 if (IS_ERR(sum_page)) { 2770 /* GC won't be able to use stale summary pages by cp_error */ 2771 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2772 return; 2773 } 2774 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2775 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2776 f2fs_put_page(sum_page, 1); 2777 } 2778 2779 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2780 int alloc_mode, unsigned long long age); 2781 2782 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2783 int target_type, int alloc_mode, 2784 unsigned long long age) 2785 { 2786 struct curseg_info *curseg = CURSEG_I(sbi, type); 2787 2788 curseg->seg_type = target_type; 2789 2790 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2791 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2792 2793 curseg->seg_type = se->type; 2794 change_curseg(sbi, type); 2795 } else { 2796 /* allocate cold segment by default */ 2797 curseg->seg_type = CURSEG_COLD_DATA; 2798 new_curseg(sbi, type, true); 2799 } 2800 stat_inc_seg_type(sbi, curseg); 2801 } 2802 2803 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2804 { 2805 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2806 2807 if (!sbi->am.atgc_enabled) 2808 return; 2809 2810 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2811 2812 mutex_lock(&curseg->curseg_mutex); 2813 down_write(&SIT_I(sbi)->sentry_lock); 2814 2815 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2816 2817 up_write(&SIT_I(sbi)->sentry_lock); 2818 mutex_unlock(&curseg->curseg_mutex); 2819 2820 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2821 2822 } 2823 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2824 { 2825 __f2fs_init_atgc_curseg(sbi); 2826 } 2827 2828 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2829 { 2830 struct curseg_info *curseg = CURSEG_I(sbi, type); 2831 2832 mutex_lock(&curseg->curseg_mutex); 2833 if (!curseg->inited) 2834 goto out; 2835 2836 if (get_valid_blocks(sbi, curseg->segno, false)) { 2837 write_sum_page(sbi, curseg->sum_blk, 2838 GET_SUM_BLOCK(sbi, curseg->segno)); 2839 } else { 2840 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2841 __set_test_and_free(sbi, curseg->segno, true); 2842 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2843 } 2844 out: 2845 mutex_unlock(&curseg->curseg_mutex); 2846 } 2847 2848 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2849 { 2850 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2851 2852 if (sbi->am.atgc_enabled) 2853 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2854 } 2855 2856 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2857 { 2858 struct curseg_info *curseg = CURSEG_I(sbi, type); 2859 2860 mutex_lock(&curseg->curseg_mutex); 2861 if (!curseg->inited) 2862 goto out; 2863 if (get_valid_blocks(sbi, curseg->segno, false)) 2864 goto out; 2865 2866 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2867 __set_test_and_inuse(sbi, curseg->segno); 2868 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2869 out: 2870 mutex_unlock(&curseg->curseg_mutex); 2871 } 2872 2873 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2874 { 2875 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2876 2877 if (sbi->am.atgc_enabled) 2878 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2879 } 2880 2881 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2882 int alloc_mode, unsigned long long age) 2883 { 2884 struct curseg_info *curseg = CURSEG_I(sbi, type); 2885 unsigned segno = NULL_SEGNO; 2886 unsigned short seg_type = curseg->seg_type; 2887 int i, cnt; 2888 bool reversed = false; 2889 2890 sanity_check_seg_type(sbi, seg_type); 2891 2892 /* f2fs_need_SSR() already forces to do this */ 2893 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2894 curseg->next_segno = segno; 2895 return 1; 2896 } 2897 2898 /* For node segments, let's do SSR more intensively */ 2899 if (IS_NODESEG(seg_type)) { 2900 if (seg_type >= CURSEG_WARM_NODE) { 2901 reversed = true; 2902 i = CURSEG_COLD_NODE; 2903 } else { 2904 i = CURSEG_HOT_NODE; 2905 } 2906 cnt = NR_CURSEG_NODE_TYPE; 2907 } else { 2908 if (seg_type >= CURSEG_WARM_DATA) { 2909 reversed = true; 2910 i = CURSEG_COLD_DATA; 2911 } else { 2912 i = CURSEG_HOT_DATA; 2913 } 2914 cnt = NR_CURSEG_DATA_TYPE; 2915 } 2916 2917 for (; cnt-- > 0; reversed ? i-- : i++) { 2918 if (i == seg_type) 2919 continue; 2920 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2921 curseg->next_segno = segno; 2922 return 1; 2923 } 2924 } 2925 2926 /* find valid_blocks=0 in dirty list */ 2927 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2928 segno = get_free_segment(sbi); 2929 if (segno != NULL_SEGNO) { 2930 curseg->next_segno = segno; 2931 return 1; 2932 } 2933 } 2934 return 0; 2935 } 2936 2937 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 2938 { 2939 struct curseg_info *curseg = CURSEG_I(sbi, type); 2940 2941 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2942 curseg->seg_type == CURSEG_WARM_NODE) 2943 return true; 2944 if (curseg->alloc_type == LFS && 2945 is_next_segment_free(sbi, curseg, type) && 2946 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2947 return true; 2948 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 2949 return true; 2950 return false; 2951 } 2952 2953 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2954 unsigned int start, unsigned int end) 2955 { 2956 struct curseg_info *curseg = CURSEG_I(sbi, type); 2957 unsigned int segno; 2958 2959 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2960 mutex_lock(&curseg->curseg_mutex); 2961 down_write(&SIT_I(sbi)->sentry_lock); 2962 2963 segno = CURSEG_I(sbi, type)->segno; 2964 if (segno < start || segno > end) 2965 goto unlock; 2966 2967 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2968 change_curseg(sbi, type); 2969 else 2970 new_curseg(sbi, type, true); 2971 2972 stat_inc_seg_type(sbi, curseg); 2973 2974 locate_dirty_segment(sbi, segno); 2975 unlock: 2976 up_write(&SIT_I(sbi)->sentry_lock); 2977 2978 if (segno != curseg->segno) 2979 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2980 type, segno, curseg->segno); 2981 2982 mutex_unlock(&curseg->curseg_mutex); 2983 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2984 } 2985 2986 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 2987 bool new_sec, bool force) 2988 { 2989 struct curseg_info *curseg = CURSEG_I(sbi, type); 2990 unsigned int old_segno; 2991 2992 if (!force && curseg->inited && 2993 !curseg->next_blkoff && 2994 !get_valid_blocks(sbi, curseg->segno, new_sec) && 2995 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 2996 return; 2997 2998 old_segno = curseg->segno; 2999 new_curseg(sbi, type, true); 3000 stat_inc_seg_type(sbi, curseg); 3001 locate_dirty_segment(sbi, old_segno); 3002 } 3003 3004 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3005 { 3006 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3007 down_write(&SIT_I(sbi)->sentry_lock); 3008 __allocate_new_segment(sbi, type, true, force); 3009 up_write(&SIT_I(sbi)->sentry_lock); 3010 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3011 } 3012 3013 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3014 { 3015 int i; 3016 3017 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3018 down_write(&SIT_I(sbi)->sentry_lock); 3019 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3020 __allocate_new_segment(sbi, i, false, false); 3021 up_write(&SIT_I(sbi)->sentry_lock); 3022 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3023 } 3024 3025 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3026 struct cp_control *cpc) 3027 { 3028 __u64 trim_start = cpc->trim_start; 3029 bool has_candidate = false; 3030 3031 down_write(&SIT_I(sbi)->sentry_lock); 3032 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3033 if (add_discard_addrs(sbi, cpc, true)) { 3034 has_candidate = true; 3035 break; 3036 } 3037 } 3038 up_write(&SIT_I(sbi)->sentry_lock); 3039 3040 cpc->trim_start = trim_start; 3041 return has_candidate; 3042 } 3043 3044 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3045 struct discard_policy *dpolicy, 3046 unsigned int start, unsigned int end) 3047 { 3048 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3049 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3050 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3051 struct discard_cmd *dc; 3052 struct blk_plug plug; 3053 int issued; 3054 unsigned int trimmed = 0; 3055 3056 next: 3057 issued = 0; 3058 3059 mutex_lock(&dcc->cmd_lock); 3060 if (unlikely(dcc->rbtree_check)) 3061 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 3062 3063 dc = __lookup_discard_cmd_ret(&dcc->root, start, 3064 &prev_dc, &next_dc, &insert_p, &insert_parent); 3065 if (!dc) 3066 dc = next_dc; 3067 3068 blk_start_plug(&plug); 3069 3070 while (dc && dc->di.lstart <= end) { 3071 struct rb_node *node; 3072 int err = 0; 3073 3074 if (dc->di.len < dpolicy->granularity) 3075 goto skip; 3076 3077 if (dc->state != D_PREP) { 3078 list_move_tail(&dc->list, &dcc->fstrim_list); 3079 goto skip; 3080 } 3081 3082 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3083 3084 if (issued >= dpolicy->max_requests) { 3085 start = dc->di.lstart + dc->di.len; 3086 3087 if (err) 3088 __remove_discard_cmd(sbi, dc); 3089 3090 blk_finish_plug(&plug); 3091 mutex_unlock(&dcc->cmd_lock); 3092 trimmed += __wait_all_discard_cmd(sbi, NULL); 3093 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3094 goto next; 3095 } 3096 skip: 3097 node = rb_next(&dc->rb_node); 3098 if (err) 3099 __remove_discard_cmd(sbi, dc); 3100 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3101 3102 if (fatal_signal_pending(current)) 3103 break; 3104 } 3105 3106 blk_finish_plug(&plug); 3107 mutex_unlock(&dcc->cmd_lock); 3108 3109 return trimmed; 3110 } 3111 3112 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3113 { 3114 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3115 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3116 unsigned int start_segno, end_segno; 3117 block_t start_block, end_block; 3118 struct cp_control cpc; 3119 struct discard_policy dpolicy; 3120 unsigned long long trimmed = 0; 3121 int err = 0; 3122 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3123 3124 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3125 return -EINVAL; 3126 3127 if (end < MAIN_BLKADDR(sbi)) 3128 goto out; 3129 3130 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3131 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3132 return -EFSCORRUPTED; 3133 } 3134 3135 /* start/end segment number in main_area */ 3136 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3137 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3138 GET_SEGNO(sbi, end); 3139 if (need_align) { 3140 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3141 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3142 } 3143 3144 cpc.reason = CP_DISCARD; 3145 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3146 cpc.trim_start = start_segno; 3147 cpc.trim_end = end_segno; 3148 3149 if (sbi->discard_blks == 0) 3150 goto out; 3151 3152 f2fs_down_write(&sbi->gc_lock); 3153 err = f2fs_write_checkpoint(sbi, &cpc); 3154 f2fs_up_write(&sbi->gc_lock); 3155 if (err) 3156 goto out; 3157 3158 /* 3159 * We filed discard candidates, but actually we don't need to wait for 3160 * all of them, since they'll be issued in idle time along with runtime 3161 * discard option. User configuration looks like using runtime discard 3162 * or periodic fstrim instead of it. 3163 */ 3164 if (f2fs_realtime_discard_enable(sbi)) 3165 goto out; 3166 3167 start_block = START_BLOCK(sbi, start_segno); 3168 end_block = START_BLOCK(sbi, end_segno + 1); 3169 3170 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3171 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3172 start_block, end_block); 3173 3174 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3175 start_block, end_block); 3176 out: 3177 if (!err) 3178 range->len = F2FS_BLK_TO_BYTES(trimmed); 3179 return err; 3180 } 3181 3182 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3183 { 3184 switch (hint) { 3185 case WRITE_LIFE_SHORT: 3186 return CURSEG_HOT_DATA; 3187 case WRITE_LIFE_EXTREME: 3188 return CURSEG_COLD_DATA; 3189 default: 3190 return CURSEG_WARM_DATA; 3191 } 3192 } 3193 3194 static int __get_segment_type_2(struct f2fs_io_info *fio) 3195 { 3196 if (fio->type == DATA) 3197 return CURSEG_HOT_DATA; 3198 else 3199 return CURSEG_HOT_NODE; 3200 } 3201 3202 static int __get_segment_type_4(struct f2fs_io_info *fio) 3203 { 3204 if (fio->type == DATA) { 3205 struct inode *inode = fio->page->mapping->host; 3206 3207 if (S_ISDIR(inode->i_mode)) 3208 return CURSEG_HOT_DATA; 3209 else 3210 return CURSEG_COLD_DATA; 3211 } else { 3212 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3213 return CURSEG_WARM_NODE; 3214 else 3215 return CURSEG_COLD_NODE; 3216 } 3217 } 3218 3219 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3220 { 3221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3222 struct extent_info ei = {}; 3223 3224 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3225 if (!ei.age) 3226 return NO_CHECK_TYPE; 3227 if (ei.age <= sbi->hot_data_age_threshold) 3228 return CURSEG_HOT_DATA; 3229 if (ei.age <= sbi->warm_data_age_threshold) 3230 return CURSEG_WARM_DATA; 3231 return CURSEG_COLD_DATA; 3232 } 3233 return NO_CHECK_TYPE; 3234 } 3235 3236 static int __get_segment_type_6(struct f2fs_io_info *fio) 3237 { 3238 if (fio->type == DATA) { 3239 struct inode *inode = fio->page->mapping->host; 3240 int type; 3241 3242 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3243 return CURSEG_COLD_DATA_PINNED; 3244 3245 if (page_private_gcing(fio->page)) { 3246 if (fio->sbi->am.atgc_enabled && 3247 (fio->io_type == FS_DATA_IO) && 3248 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3249 return CURSEG_ALL_DATA_ATGC; 3250 else 3251 return CURSEG_COLD_DATA; 3252 } 3253 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3254 return CURSEG_COLD_DATA; 3255 3256 type = __get_age_segment_type(inode, fio->page->index); 3257 if (type != NO_CHECK_TYPE) 3258 return type; 3259 3260 if (file_is_hot(inode) || 3261 is_inode_flag_set(inode, FI_HOT_DATA) || 3262 f2fs_is_cow_file(inode)) 3263 return CURSEG_HOT_DATA; 3264 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3265 } else { 3266 if (IS_DNODE(fio->page)) 3267 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3268 CURSEG_HOT_NODE; 3269 return CURSEG_COLD_NODE; 3270 } 3271 } 3272 3273 static int __get_segment_type(struct f2fs_io_info *fio) 3274 { 3275 int type = 0; 3276 3277 switch (F2FS_OPTION(fio->sbi).active_logs) { 3278 case 2: 3279 type = __get_segment_type_2(fio); 3280 break; 3281 case 4: 3282 type = __get_segment_type_4(fio); 3283 break; 3284 case 6: 3285 type = __get_segment_type_6(fio); 3286 break; 3287 default: 3288 f2fs_bug_on(fio->sbi, true); 3289 } 3290 3291 if (IS_HOT(type)) 3292 fio->temp = HOT; 3293 else if (IS_WARM(type)) 3294 fio->temp = WARM; 3295 else 3296 fio->temp = COLD; 3297 return type; 3298 } 3299 3300 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi, 3301 struct curseg_info *seg) 3302 { 3303 /* To allocate block chunks in different sizes, use random number */ 3304 if (--seg->fragment_remained_chunk > 0) 3305 return; 3306 3307 seg->fragment_remained_chunk = 3308 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 3309 seg->next_blkoff += 3310 get_random_u32_inclusive(1, sbi->max_fragment_hole); 3311 } 3312 3313 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3314 block_t old_blkaddr, block_t *new_blkaddr, 3315 struct f2fs_summary *sum, int type, 3316 struct f2fs_io_info *fio) 3317 { 3318 struct sit_info *sit_i = SIT_I(sbi); 3319 struct curseg_info *curseg = CURSEG_I(sbi, type); 3320 unsigned long long old_mtime; 3321 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3322 struct seg_entry *se = NULL; 3323 bool segment_full = false; 3324 3325 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3326 3327 mutex_lock(&curseg->curseg_mutex); 3328 down_write(&sit_i->sentry_lock); 3329 3330 if (from_gc) { 3331 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3332 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3333 sanity_check_seg_type(sbi, se->type); 3334 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3335 } 3336 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3337 3338 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3339 3340 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3341 3342 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3343 if (curseg->alloc_type == SSR) { 3344 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg); 3345 } else { 3346 curseg->next_blkoff++; 3347 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 3348 f2fs_randomize_chunk(sbi, curseg); 3349 } 3350 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno)) 3351 segment_full = true; 3352 stat_inc_block_count(sbi, curseg); 3353 3354 if (from_gc) { 3355 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3356 } else { 3357 update_segment_mtime(sbi, old_blkaddr, 0); 3358 old_mtime = 0; 3359 } 3360 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3361 3362 /* 3363 * SIT information should be updated before segment allocation, 3364 * since SSR needs latest valid block information. 3365 */ 3366 update_sit_entry(sbi, *new_blkaddr, 1); 3367 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3368 update_sit_entry(sbi, old_blkaddr, -1); 3369 3370 /* 3371 * If the current segment is full, flush it out and replace it with a 3372 * new segment. 3373 */ 3374 if (segment_full) { 3375 if (from_gc) { 3376 get_atssr_segment(sbi, type, se->type, 3377 AT_SSR, se->mtime); 3378 } else { 3379 if (need_new_seg(sbi, type)) 3380 new_curseg(sbi, type, false); 3381 else 3382 change_curseg(sbi, type); 3383 stat_inc_seg_type(sbi, curseg); 3384 } 3385 } 3386 /* 3387 * segment dirty status should be updated after segment allocation, 3388 * so we just need to update status only one time after previous 3389 * segment being closed. 3390 */ 3391 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3392 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3393 3394 if (IS_DATASEG(type)) 3395 atomic64_inc(&sbi->allocated_data_blocks); 3396 3397 up_write(&sit_i->sentry_lock); 3398 3399 if (page && IS_NODESEG(type)) { 3400 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3401 3402 f2fs_inode_chksum_set(sbi, page); 3403 } 3404 3405 if (fio) { 3406 struct f2fs_bio_info *io; 3407 3408 if (F2FS_IO_ALIGNED(sbi)) 3409 fio->retry = 0; 3410 3411 INIT_LIST_HEAD(&fio->list); 3412 fio->in_list = 1; 3413 io = sbi->write_io[fio->type] + fio->temp; 3414 spin_lock(&io->io_lock); 3415 list_add_tail(&fio->list, &io->io_list); 3416 spin_unlock(&io->io_lock); 3417 } 3418 3419 mutex_unlock(&curseg->curseg_mutex); 3420 3421 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3422 } 3423 3424 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3425 block_t blkaddr, unsigned int blkcnt) 3426 { 3427 if (!f2fs_is_multi_device(sbi)) 3428 return; 3429 3430 while (1) { 3431 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3432 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3433 3434 /* update device state for fsync */ 3435 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3436 3437 /* update device state for checkpoint */ 3438 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3439 spin_lock(&sbi->dev_lock); 3440 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3441 spin_unlock(&sbi->dev_lock); 3442 } 3443 3444 if (blkcnt <= blks) 3445 break; 3446 blkcnt -= blks; 3447 blkaddr += blks; 3448 } 3449 } 3450 3451 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3452 { 3453 int type = __get_segment_type(fio); 3454 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3455 3456 if (keep_order) 3457 f2fs_down_read(&fio->sbi->io_order_lock); 3458 reallocate: 3459 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3460 &fio->new_blkaddr, sum, type, fio); 3461 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) { 3462 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3463 fio->old_blkaddr, fio->old_blkaddr); 3464 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr); 3465 } 3466 3467 /* writeout dirty page into bdev */ 3468 f2fs_submit_page_write(fio); 3469 if (fio->retry) { 3470 fio->old_blkaddr = fio->new_blkaddr; 3471 goto reallocate; 3472 } 3473 3474 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3475 3476 if (keep_order) 3477 f2fs_up_read(&fio->sbi->io_order_lock); 3478 } 3479 3480 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3481 enum iostat_type io_type) 3482 { 3483 struct f2fs_io_info fio = { 3484 .sbi = sbi, 3485 .type = META, 3486 .temp = HOT, 3487 .op = REQ_OP_WRITE, 3488 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3489 .old_blkaddr = page->index, 3490 .new_blkaddr = page->index, 3491 .page = page, 3492 .encrypted_page = NULL, 3493 .in_list = 0, 3494 }; 3495 3496 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3497 fio.op_flags &= ~REQ_META; 3498 3499 set_page_writeback(page); 3500 f2fs_submit_page_write(&fio); 3501 3502 stat_inc_meta_count(sbi, page->index); 3503 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3504 } 3505 3506 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3507 { 3508 struct f2fs_summary sum; 3509 3510 set_summary(&sum, nid, 0, 0); 3511 do_write_page(&sum, fio); 3512 3513 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3514 } 3515 3516 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3517 struct f2fs_io_info *fio) 3518 { 3519 struct f2fs_sb_info *sbi = fio->sbi; 3520 struct f2fs_summary sum; 3521 3522 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3523 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3524 f2fs_update_age_extent_cache(dn); 3525 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3526 do_write_page(&sum, fio); 3527 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3528 3529 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3530 } 3531 3532 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3533 { 3534 int err; 3535 struct f2fs_sb_info *sbi = fio->sbi; 3536 unsigned int segno; 3537 3538 fio->new_blkaddr = fio->old_blkaddr; 3539 /* i/o temperature is needed for passing down write hints */ 3540 __get_segment_type(fio); 3541 3542 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3543 3544 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3545 set_sbi_flag(sbi, SBI_NEED_FSCK); 3546 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3547 __func__, segno); 3548 err = -EFSCORRUPTED; 3549 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 3550 goto drop_bio; 3551 } 3552 3553 if (f2fs_cp_error(sbi)) { 3554 err = -EIO; 3555 goto drop_bio; 3556 } 3557 3558 if (fio->post_read) 3559 invalidate_mapping_pages(META_MAPPING(sbi), 3560 fio->new_blkaddr, fio->new_blkaddr); 3561 3562 stat_inc_inplace_blocks(fio->sbi); 3563 3564 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi)) 3565 err = f2fs_merge_page_bio(fio); 3566 else 3567 err = f2fs_submit_page_bio(fio); 3568 if (!err) { 3569 f2fs_update_device_state(fio->sbi, fio->ino, 3570 fio->new_blkaddr, 1); 3571 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 3572 fio->io_type, F2FS_BLKSIZE); 3573 } 3574 3575 return err; 3576 drop_bio: 3577 if (fio->bio && *(fio->bio)) { 3578 struct bio *bio = *(fio->bio); 3579 3580 bio->bi_status = BLK_STS_IOERR; 3581 bio_endio(bio); 3582 *(fio->bio) = NULL; 3583 } 3584 return err; 3585 } 3586 3587 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3588 unsigned int segno) 3589 { 3590 int i; 3591 3592 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3593 if (CURSEG_I(sbi, i)->segno == segno) 3594 break; 3595 } 3596 return i; 3597 } 3598 3599 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3600 block_t old_blkaddr, block_t new_blkaddr, 3601 bool recover_curseg, bool recover_newaddr, 3602 bool from_gc) 3603 { 3604 struct sit_info *sit_i = SIT_I(sbi); 3605 struct curseg_info *curseg; 3606 unsigned int segno, old_cursegno; 3607 struct seg_entry *se; 3608 int type; 3609 unsigned short old_blkoff; 3610 unsigned char old_alloc_type; 3611 3612 segno = GET_SEGNO(sbi, new_blkaddr); 3613 se = get_seg_entry(sbi, segno); 3614 type = se->type; 3615 3616 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3617 3618 if (!recover_curseg) { 3619 /* for recovery flow */ 3620 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3621 if (old_blkaddr == NULL_ADDR) 3622 type = CURSEG_COLD_DATA; 3623 else 3624 type = CURSEG_WARM_DATA; 3625 } 3626 } else { 3627 if (IS_CURSEG(sbi, segno)) { 3628 /* se->type is volatile as SSR allocation */ 3629 type = __f2fs_get_curseg(sbi, segno); 3630 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3631 } else { 3632 type = CURSEG_WARM_DATA; 3633 } 3634 } 3635 3636 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3637 curseg = CURSEG_I(sbi, type); 3638 3639 mutex_lock(&curseg->curseg_mutex); 3640 down_write(&sit_i->sentry_lock); 3641 3642 old_cursegno = curseg->segno; 3643 old_blkoff = curseg->next_blkoff; 3644 old_alloc_type = curseg->alloc_type; 3645 3646 /* change the current segment */ 3647 if (segno != curseg->segno) { 3648 curseg->next_segno = segno; 3649 change_curseg(sbi, type); 3650 } 3651 3652 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3653 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3654 3655 if (!recover_curseg || recover_newaddr) { 3656 if (!from_gc) 3657 update_segment_mtime(sbi, new_blkaddr, 0); 3658 update_sit_entry(sbi, new_blkaddr, 1); 3659 } 3660 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3661 invalidate_mapping_pages(META_MAPPING(sbi), 3662 old_blkaddr, old_blkaddr); 3663 f2fs_invalidate_compress_page(sbi, old_blkaddr); 3664 if (!from_gc) 3665 update_segment_mtime(sbi, old_blkaddr, 0); 3666 update_sit_entry(sbi, old_blkaddr, -1); 3667 } 3668 3669 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3670 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3671 3672 locate_dirty_segment(sbi, old_cursegno); 3673 3674 if (recover_curseg) { 3675 if (old_cursegno != curseg->segno) { 3676 curseg->next_segno = old_cursegno; 3677 change_curseg(sbi, type); 3678 } 3679 curseg->next_blkoff = old_blkoff; 3680 curseg->alloc_type = old_alloc_type; 3681 } 3682 3683 up_write(&sit_i->sentry_lock); 3684 mutex_unlock(&curseg->curseg_mutex); 3685 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3686 } 3687 3688 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3689 block_t old_addr, block_t new_addr, 3690 unsigned char version, bool recover_curseg, 3691 bool recover_newaddr) 3692 { 3693 struct f2fs_summary sum; 3694 3695 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3696 3697 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3698 recover_curseg, recover_newaddr, false); 3699 3700 f2fs_update_data_blkaddr(dn, new_addr); 3701 } 3702 3703 void f2fs_wait_on_page_writeback(struct page *page, 3704 enum page_type type, bool ordered, bool locked) 3705 { 3706 if (PageWriteback(page)) { 3707 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3708 3709 /* submit cached LFS IO */ 3710 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3711 /* submit cached IPU IO */ 3712 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3713 if (ordered) { 3714 wait_on_page_writeback(page); 3715 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3716 } else { 3717 wait_for_stable_page(page); 3718 } 3719 } 3720 } 3721 3722 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3723 { 3724 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3725 struct page *cpage; 3726 3727 if (!f2fs_post_read_required(inode)) 3728 return; 3729 3730 if (!__is_valid_data_blkaddr(blkaddr)) 3731 return; 3732 3733 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3734 if (cpage) { 3735 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3736 f2fs_put_page(cpage, 1); 3737 } 3738 } 3739 3740 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3741 block_t len) 3742 { 3743 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3744 block_t i; 3745 3746 if (!f2fs_post_read_required(inode)) 3747 return; 3748 3749 for (i = 0; i < len; i++) 3750 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3751 3752 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1); 3753 } 3754 3755 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3756 { 3757 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3758 struct curseg_info *seg_i; 3759 unsigned char *kaddr; 3760 struct page *page; 3761 block_t start; 3762 int i, j, offset; 3763 3764 start = start_sum_block(sbi); 3765 3766 page = f2fs_get_meta_page(sbi, start++); 3767 if (IS_ERR(page)) 3768 return PTR_ERR(page); 3769 kaddr = (unsigned char *)page_address(page); 3770 3771 /* Step 1: restore nat cache */ 3772 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3773 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3774 3775 /* Step 2: restore sit cache */ 3776 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3777 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3778 offset = 2 * SUM_JOURNAL_SIZE; 3779 3780 /* Step 3: restore summary entries */ 3781 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3782 unsigned short blk_off; 3783 unsigned int segno; 3784 3785 seg_i = CURSEG_I(sbi, i); 3786 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3787 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3788 seg_i->next_segno = segno; 3789 reset_curseg(sbi, i, 0); 3790 seg_i->alloc_type = ckpt->alloc_type[i]; 3791 seg_i->next_blkoff = blk_off; 3792 3793 if (seg_i->alloc_type == SSR) 3794 blk_off = sbi->blocks_per_seg; 3795 3796 for (j = 0; j < blk_off; j++) { 3797 struct f2fs_summary *s; 3798 3799 s = (struct f2fs_summary *)(kaddr + offset); 3800 seg_i->sum_blk->entries[j] = *s; 3801 offset += SUMMARY_SIZE; 3802 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3803 SUM_FOOTER_SIZE) 3804 continue; 3805 3806 f2fs_put_page(page, 1); 3807 page = NULL; 3808 3809 page = f2fs_get_meta_page(sbi, start++); 3810 if (IS_ERR(page)) 3811 return PTR_ERR(page); 3812 kaddr = (unsigned char *)page_address(page); 3813 offset = 0; 3814 } 3815 } 3816 f2fs_put_page(page, 1); 3817 return 0; 3818 } 3819 3820 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3821 { 3822 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3823 struct f2fs_summary_block *sum; 3824 struct curseg_info *curseg; 3825 struct page *new; 3826 unsigned short blk_off; 3827 unsigned int segno = 0; 3828 block_t blk_addr = 0; 3829 int err = 0; 3830 3831 /* get segment number and block addr */ 3832 if (IS_DATASEG(type)) { 3833 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3834 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3835 CURSEG_HOT_DATA]); 3836 if (__exist_node_summaries(sbi)) 3837 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3838 else 3839 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3840 } else { 3841 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3842 CURSEG_HOT_NODE]); 3843 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3844 CURSEG_HOT_NODE]); 3845 if (__exist_node_summaries(sbi)) 3846 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3847 type - CURSEG_HOT_NODE); 3848 else 3849 blk_addr = GET_SUM_BLOCK(sbi, segno); 3850 } 3851 3852 new = f2fs_get_meta_page(sbi, blk_addr); 3853 if (IS_ERR(new)) 3854 return PTR_ERR(new); 3855 sum = (struct f2fs_summary_block *)page_address(new); 3856 3857 if (IS_NODESEG(type)) { 3858 if (__exist_node_summaries(sbi)) { 3859 struct f2fs_summary *ns = &sum->entries[0]; 3860 int i; 3861 3862 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3863 ns->version = 0; 3864 ns->ofs_in_node = 0; 3865 } 3866 } else { 3867 err = f2fs_restore_node_summary(sbi, segno, sum); 3868 if (err) 3869 goto out; 3870 } 3871 } 3872 3873 /* set uncompleted segment to curseg */ 3874 curseg = CURSEG_I(sbi, type); 3875 mutex_lock(&curseg->curseg_mutex); 3876 3877 /* update journal info */ 3878 down_write(&curseg->journal_rwsem); 3879 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3880 up_write(&curseg->journal_rwsem); 3881 3882 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3883 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3884 curseg->next_segno = segno; 3885 reset_curseg(sbi, type, 0); 3886 curseg->alloc_type = ckpt->alloc_type[type]; 3887 curseg->next_blkoff = blk_off; 3888 mutex_unlock(&curseg->curseg_mutex); 3889 out: 3890 f2fs_put_page(new, 1); 3891 return err; 3892 } 3893 3894 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3895 { 3896 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3897 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3898 int type = CURSEG_HOT_DATA; 3899 int err; 3900 3901 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3902 int npages = f2fs_npages_for_summary_flush(sbi, true); 3903 3904 if (npages >= 2) 3905 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3906 META_CP, true); 3907 3908 /* restore for compacted data summary */ 3909 err = read_compacted_summaries(sbi); 3910 if (err) 3911 return err; 3912 type = CURSEG_HOT_NODE; 3913 } 3914 3915 if (__exist_node_summaries(sbi)) 3916 f2fs_ra_meta_pages(sbi, 3917 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 3918 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 3919 3920 for (; type <= CURSEG_COLD_NODE; type++) { 3921 err = read_normal_summaries(sbi, type); 3922 if (err) 3923 return err; 3924 } 3925 3926 /* sanity check for summary blocks */ 3927 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3928 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3929 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 3930 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3931 return -EINVAL; 3932 } 3933 3934 return 0; 3935 } 3936 3937 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3938 { 3939 struct page *page; 3940 unsigned char *kaddr; 3941 struct f2fs_summary *summary; 3942 struct curseg_info *seg_i; 3943 int written_size = 0; 3944 int i, j; 3945 3946 page = f2fs_grab_meta_page(sbi, blkaddr++); 3947 kaddr = (unsigned char *)page_address(page); 3948 memset(kaddr, 0, PAGE_SIZE); 3949 3950 /* Step 1: write nat cache */ 3951 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3952 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3953 written_size += SUM_JOURNAL_SIZE; 3954 3955 /* Step 2: write sit cache */ 3956 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3957 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3958 written_size += SUM_JOURNAL_SIZE; 3959 3960 /* Step 3: write summary entries */ 3961 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3962 seg_i = CURSEG_I(sbi, i); 3963 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) { 3964 if (!page) { 3965 page = f2fs_grab_meta_page(sbi, blkaddr++); 3966 kaddr = (unsigned char *)page_address(page); 3967 memset(kaddr, 0, PAGE_SIZE); 3968 written_size = 0; 3969 } 3970 summary = (struct f2fs_summary *)(kaddr + written_size); 3971 *summary = seg_i->sum_blk->entries[j]; 3972 written_size += SUMMARY_SIZE; 3973 3974 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3975 SUM_FOOTER_SIZE) 3976 continue; 3977 3978 set_page_dirty(page); 3979 f2fs_put_page(page, 1); 3980 page = NULL; 3981 } 3982 } 3983 if (page) { 3984 set_page_dirty(page); 3985 f2fs_put_page(page, 1); 3986 } 3987 } 3988 3989 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3990 block_t blkaddr, int type) 3991 { 3992 int i, end; 3993 3994 if (IS_DATASEG(type)) 3995 end = type + NR_CURSEG_DATA_TYPE; 3996 else 3997 end = type + NR_CURSEG_NODE_TYPE; 3998 3999 for (i = type; i < end; i++) 4000 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4001 } 4002 4003 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4004 { 4005 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4006 write_compacted_summaries(sbi, start_blk); 4007 else 4008 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4009 } 4010 4011 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4012 { 4013 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4014 } 4015 4016 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4017 unsigned int val, int alloc) 4018 { 4019 int i; 4020 4021 if (type == NAT_JOURNAL) { 4022 for (i = 0; i < nats_in_cursum(journal); i++) { 4023 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4024 return i; 4025 } 4026 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4027 return update_nats_in_cursum(journal, 1); 4028 } else if (type == SIT_JOURNAL) { 4029 for (i = 0; i < sits_in_cursum(journal); i++) 4030 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4031 return i; 4032 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4033 return update_sits_in_cursum(journal, 1); 4034 } 4035 return -1; 4036 } 4037 4038 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4039 unsigned int segno) 4040 { 4041 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4042 } 4043 4044 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4045 unsigned int start) 4046 { 4047 struct sit_info *sit_i = SIT_I(sbi); 4048 struct page *page; 4049 pgoff_t src_off, dst_off; 4050 4051 src_off = current_sit_addr(sbi, start); 4052 dst_off = next_sit_addr(sbi, src_off); 4053 4054 page = f2fs_grab_meta_page(sbi, dst_off); 4055 seg_info_to_sit_page(sbi, page, start); 4056 4057 set_page_dirty(page); 4058 set_to_next_sit(sit_i, start); 4059 4060 return page; 4061 } 4062 4063 static struct sit_entry_set *grab_sit_entry_set(void) 4064 { 4065 struct sit_entry_set *ses = 4066 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4067 GFP_NOFS, true, NULL); 4068 4069 ses->entry_cnt = 0; 4070 INIT_LIST_HEAD(&ses->set_list); 4071 return ses; 4072 } 4073 4074 static void release_sit_entry_set(struct sit_entry_set *ses) 4075 { 4076 list_del(&ses->set_list); 4077 kmem_cache_free(sit_entry_set_slab, ses); 4078 } 4079 4080 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4081 struct list_head *head) 4082 { 4083 struct sit_entry_set *next = ses; 4084 4085 if (list_is_last(&ses->set_list, head)) 4086 return; 4087 4088 list_for_each_entry_continue(next, head, set_list) 4089 if (ses->entry_cnt <= next->entry_cnt) { 4090 list_move_tail(&ses->set_list, &next->set_list); 4091 return; 4092 } 4093 4094 list_move_tail(&ses->set_list, head); 4095 } 4096 4097 static void add_sit_entry(unsigned int segno, struct list_head *head) 4098 { 4099 struct sit_entry_set *ses; 4100 unsigned int start_segno = START_SEGNO(segno); 4101 4102 list_for_each_entry(ses, head, set_list) { 4103 if (ses->start_segno == start_segno) { 4104 ses->entry_cnt++; 4105 adjust_sit_entry_set(ses, head); 4106 return; 4107 } 4108 } 4109 4110 ses = grab_sit_entry_set(); 4111 4112 ses->start_segno = start_segno; 4113 ses->entry_cnt++; 4114 list_add(&ses->set_list, head); 4115 } 4116 4117 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4118 { 4119 struct f2fs_sm_info *sm_info = SM_I(sbi); 4120 struct list_head *set_list = &sm_info->sit_entry_set; 4121 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4122 unsigned int segno; 4123 4124 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4125 add_sit_entry(segno, set_list); 4126 } 4127 4128 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4129 { 4130 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4131 struct f2fs_journal *journal = curseg->journal; 4132 int i; 4133 4134 down_write(&curseg->journal_rwsem); 4135 for (i = 0; i < sits_in_cursum(journal); i++) { 4136 unsigned int segno; 4137 bool dirtied; 4138 4139 segno = le32_to_cpu(segno_in_journal(journal, i)); 4140 dirtied = __mark_sit_entry_dirty(sbi, segno); 4141 4142 if (!dirtied) 4143 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4144 } 4145 update_sits_in_cursum(journal, -i); 4146 up_write(&curseg->journal_rwsem); 4147 } 4148 4149 /* 4150 * CP calls this function, which flushes SIT entries including sit_journal, 4151 * and moves prefree segs to free segs. 4152 */ 4153 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4154 { 4155 struct sit_info *sit_i = SIT_I(sbi); 4156 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4157 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4158 struct f2fs_journal *journal = curseg->journal; 4159 struct sit_entry_set *ses, *tmp; 4160 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4161 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4162 struct seg_entry *se; 4163 4164 down_write(&sit_i->sentry_lock); 4165 4166 if (!sit_i->dirty_sentries) 4167 goto out; 4168 4169 /* 4170 * add and account sit entries of dirty bitmap in sit entry 4171 * set temporarily 4172 */ 4173 add_sits_in_set(sbi); 4174 4175 /* 4176 * if there are no enough space in journal to store dirty sit 4177 * entries, remove all entries from journal and add and account 4178 * them in sit entry set. 4179 */ 4180 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4181 !to_journal) 4182 remove_sits_in_journal(sbi); 4183 4184 /* 4185 * there are two steps to flush sit entries: 4186 * #1, flush sit entries to journal in current cold data summary block. 4187 * #2, flush sit entries to sit page. 4188 */ 4189 list_for_each_entry_safe(ses, tmp, head, set_list) { 4190 struct page *page = NULL; 4191 struct f2fs_sit_block *raw_sit = NULL; 4192 unsigned int start_segno = ses->start_segno; 4193 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4194 (unsigned long)MAIN_SEGS(sbi)); 4195 unsigned int segno = start_segno; 4196 4197 if (to_journal && 4198 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4199 to_journal = false; 4200 4201 if (to_journal) { 4202 down_write(&curseg->journal_rwsem); 4203 } else { 4204 page = get_next_sit_page(sbi, start_segno); 4205 raw_sit = page_address(page); 4206 } 4207 4208 /* flush dirty sit entries in region of current sit set */ 4209 for_each_set_bit_from(segno, bitmap, end) { 4210 int offset, sit_offset; 4211 4212 se = get_seg_entry(sbi, segno); 4213 #ifdef CONFIG_F2FS_CHECK_FS 4214 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4215 SIT_VBLOCK_MAP_SIZE)) 4216 f2fs_bug_on(sbi, 1); 4217 #endif 4218 4219 /* add discard candidates */ 4220 if (!(cpc->reason & CP_DISCARD)) { 4221 cpc->trim_start = segno; 4222 add_discard_addrs(sbi, cpc, false); 4223 } 4224 4225 if (to_journal) { 4226 offset = f2fs_lookup_journal_in_cursum(journal, 4227 SIT_JOURNAL, segno, 1); 4228 f2fs_bug_on(sbi, offset < 0); 4229 segno_in_journal(journal, offset) = 4230 cpu_to_le32(segno); 4231 seg_info_to_raw_sit(se, 4232 &sit_in_journal(journal, offset)); 4233 check_block_count(sbi, segno, 4234 &sit_in_journal(journal, offset)); 4235 } else { 4236 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4237 seg_info_to_raw_sit(se, 4238 &raw_sit->entries[sit_offset]); 4239 check_block_count(sbi, segno, 4240 &raw_sit->entries[sit_offset]); 4241 } 4242 4243 __clear_bit(segno, bitmap); 4244 sit_i->dirty_sentries--; 4245 ses->entry_cnt--; 4246 } 4247 4248 if (to_journal) 4249 up_write(&curseg->journal_rwsem); 4250 else 4251 f2fs_put_page(page, 1); 4252 4253 f2fs_bug_on(sbi, ses->entry_cnt); 4254 release_sit_entry_set(ses); 4255 } 4256 4257 f2fs_bug_on(sbi, !list_empty(head)); 4258 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4259 out: 4260 if (cpc->reason & CP_DISCARD) { 4261 __u64 trim_start = cpc->trim_start; 4262 4263 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4264 add_discard_addrs(sbi, cpc, false); 4265 4266 cpc->trim_start = trim_start; 4267 } 4268 up_write(&sit_i->sentry_lock); 4269 4270 set_prefree_as_free_segments(sbi); 4271 } 4272 4273 static int build_sit_info(struct f2fs_sb_info *sbi) 4274 { 4275 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4276 struct sit_info *sit_i; 4277 unsigned int sit_segs, start; 4278 char *src_bitmap, *bitmap; 4279 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4280 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4281 4282 /* allocate memory for SIT information */ 4283 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4284 if (!sit_i) 4285 return -ENOMEM; 4286 4287 SM_I(sbi)->sit_info = sit_i; 4288 4289 sit_i->sentries = 4290 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4291 MAIN_SEGS(sbi)), 4292 GFP_KERNEL); 4293 if (!sit_i->sentries) 4294 return -ENOMEM; 4295 4296 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4297 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4298 GFP_KERNEL); 4299 if (!sit_i->dirty_sentries_bitmap) 4300 return -ENOMEM; 4301 4302 #ifdef CONFIG_F2FS_CHECK_FS 4303 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4304 #else 4305 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4306 #endif 4307 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4308 if (!sit_i->bitmap) 4309 return -ENOMEM; 4310 4311 bitmap = sit_i->bitmap; 4312 4313 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4314 sit_i->sentries[start].cur_valid_map = bitmap; 4315 bitmap += SIT_VBLOCK_MAP_SIZE; 4316 4317 sit_i->sentries[start].ckpt_valid_map = bitmap; 4318 bitmap += SIT_VBLOCK_MAP_SIZE; 4319 4320 #ifdef CONFIG_F2FS_CHECK_FS 4321 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4322 bitmap += SIT_VBLOCK_MAP_SIZE; 4323 #endif 4324 4325 if (discard_map) { 4326 sit_i->sentries[start].discard_map = bitmap; 4327 bitmap += SIT_VBLOCK_MAP_SIZE; 4328 } 4329 } 4330 4331 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4332 if (!sit_i->tmp_map) 4333 return -ENOMEM; 4334 4335 if (__is_large_section(sbi)) { 4336 sit_i->sec_entries = 4337 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4338 MAIN_SECS(sbi)), 4339 GFP_KERNEL); 4340 if (!sit_i->sec_entries) 4341 return -ENOMEM; 4342 } 4343 4344 /* get information related with SIT */ 4345 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4346 4347 /* setup SIT bitmap from ckeckpoint pack */ 4348 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4349 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4350 4351 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4352 if (!sit_i->sit_bitmap) 4353 return -ENOMEM; 4354 4355 #ifdef CONFIG_F2FS_CHECK_FS 4356 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4357 sit_bitmap_size, GFP_KERNEL); 4358 if (!sit_i->sit_bitmap_mir) 4359 return -ENOMEM; 4360 4361 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4362 main_bitmap_size, GFP_KERNEL); 4363 if (!sit_i->invalid_segmap) 4364 return -ENOMEM; 4365 #endif 4366 4367 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4368 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4369 sit_i->written_valid_blocks = 0; 4370 sit_i->bitmap_size = sit_bitmap_size; 4371 sit_i->dirty_sentries = 0; 4372 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4373 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4374 sit_i->mounted_time = ktime_get_boottime_seconds(); 4375 init_rwsem(&sit_i->sentry_lock); 4376 return 0; 4377 } 4378 4379 static int build_free_segmap(struct f2fs_sb_info *sbi) 4380 { 4381 struct free_segmap_info *free_i; 4382 unsigned int bitmap_size, sec_bitmap_size; 4383 4384 /* allocate memory for free segmap information */ 4385 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4386 if (!free_i) 4387 return -ENOMEM; 4388 4389 SM_I(sbi)->free_info = free_i; 4390 4391 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4392 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4393 if (!free_i->free_segmap) 4394 return -ENOMEM; 4395 4396 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4397 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4398 if (!free_i->free_secmap) 4399 return -ENOMEM; 4400 4401 /* set all segments as dirty temporarily */ 4402 memset(free_i->free_segmap, 0xff, bitmap_size); 4403 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4404 4405 /* init free segmap information */ 4406 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4407 free_i->free_segments = 0; 4408 free_i->free_sections = 0; 4409 spin_lock_init(&free_i->segmap_lock); 4410 return 0; 4411 } 4412 4413 static int build_curseg(struct f2fs_sb_info *sbi) 4414 { 4415 struct curseg_info *array; 4416 int i; 4417 4418 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4419 sizeof(*array)), GFP_KERNEL); 4420 if (!array) 4421 return -ENOMEM; 4422 4423 SM_I(sbi)->curseg_array = array; 4424 4425 for (i = 0; i < NO_CHECK_TYPE; i++) { 4426 mutex_init(&array[i].curseg_mutex); 4427 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4428 if (!array[i].sum_blk) 4429 return -ENOMEM; 4430 init_rwsem(&array[i].journal_rwsem); 4431 array[i].journal = f2fs_kzalloc(sbi, 4432 sizeof(struct f2fs_journal), GFP_KERNEL); 4433 if (!array[i].journal) 4434 return -ENOMEM; 4435 if (i < NR_PERSISTENT_LOG) 4436 array[i].seg_type = CURSEG_HOT_DATA + i; 4437 else if (i == CURSEG_COLD_DATA_PINNED) 4438 array[i].seg_type = CURSEG_COLD_DATA; 4439 else if (i == CURSEG_ALL_DATA_ATGC) 4440 array[i].seg_type = CURSEG_COLD_DATA; 4441 array[i].segno = NULL_SEGNO; 4442 array[i].next_blkoff = 0; 4443 array[i].inited = false; 4444 } 4445 return restore_curseg_summaries(sbi); 4446 } 4447 4448 static int build_sit_entries(struct f2fs_sb_info *sbi) 4449 { 4450 struct sit_info *sit_i = SIT_I(sbi); 4451 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4452 struct f2fs_journal *journal = curseg->journal; 4453 struct seg_entry *se; 4454 struct f2fs_sit_entry sit; 4455 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4456 unsigned int i, start, end; 4457 unsigned int readed, start_blk = 0; 4458 int err = 0; 4459 block_t sit_valid_blocks[2] = {0, 0}; 4460 4461 do { 4462 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4463 META_SIT, true); 4464 4465 start = start_blk * sit_i->sents_per_block; 4466 end = (start_blk + readed) * sit_i->sents_per_block; 4467 4468 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4469 struct f2fs_sit_block *sit_blk; 4470 struct page *page; 4471 4472 se = &sit_i->sentries[start]; 4473 page = get_current_sit_page(sbi, start); 4474 if (IS_ERR(page)) 4475 return PTR_ERR(page); 4476 sit_blk = (struct f2fs_sit_block *)page_address(page); 4477 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4478 f2fs_put_page(page, 1); 4479 4480 err = check_block_count(sbi, start, &sit); 4481 if (err) 4482 return err; 4483 seg_info_from_raw_sit(se, &sit); 4484 4485 if (se->type >= NR_PERSISTENT_LOG) { 4486 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4487 se->type, start); 4488 f2fs_handle_error(sbi, 4489 ERROR_INCONSISTENT_SUM_TYPE); 4490 return -EFSCORRUPTED; 4491 } 4492 4493 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4494 4495 if (f2fs_block_unit_discard(sbi)) { 4496 /* build discard map only one time */ 4497 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4498 memset(se->discard_map, 0xff, 4499 SIT_VBLOCK_MAP_SIZE); 4500 } else { 4501 memcpy(se->discard_map, 4502 se->cur_valid_map, 4503 SIT_VBLOCK_MAP_SIZE); 4504 sbi->discard_blks += 4505 sbi->blocks_per_seg - 4506 se->valid_blocks; 4507 } 4508 } 4509 4510 if (__is_large_section(sbi)) 4511 get_sec_entry(sbi, start)->valid_blocks += 4512 se->valid_blocks; 4513 } 4514 start_blk += readed; 4515 } while (start_blk < sit_blk_cnt); 4516 4517 down_read(&curseg->journal_rwsem); 4518 for (i = 0; i < sits_in_cursum(journal); i++) { 4519 unsigned int old_valid_blocks; 4520 4521 start = le32_to_cpu(segno_in_journal(journal, i)); 4522 if (start >= MAIN_SEGS(sbi)) { 4523 f2fs_err(sbi, "Wrong journal entry on segno %u", 4524 start); 4525 err = -EFSCORRUPTED; 4526 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4527 break; 4528 } 4529 4530 se = &sit_i->sentries[start]; 4531 sit = sit_in_journal(journal, i); 4532 4533 old_valid_blocks = se->valid_blocks; 4534 4535 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4536 4537 err = check_block_count(sbi, start, &sit); 4538 if (err) 4539 break; 4540 seg_info_from_raw_sit(se, &sit); 4541 4542 if (se->type >= NR_PERSISTENT_LOG) { 4543 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4544 se->type, start); 4545 err = -EFSCORRUPTED; 4546 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4547 break; 4548 } 4549 4550 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4551 4552 if (f2fs_block_unit_discard(sbi)) { 4553 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4554 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4555 } else { 4556 memcpy(se->discard_map, se->cur_valid_map, 4557 SIT_VBLOCK_MAP_SIZE); 4558 sbi->discard_blks += old_valid_blocks; 4559 sbi->discard_blks -= se->valid_blocks; 4560 } 4561 } 4562 4563 if (__is_large_section(sbi)) { 4564 get_sec_entry(sbi, start)->valid_blocks += 4565 se->valid_blocks; 4566 get_sec_entry(sbi, start)->valid_blocks -= 4567 old_valid_blocks; 4568 } 4569 } 4570 up_read(&curseg->journal_rwsem); 4571 4572 if (err) 4573 return err; 4574 4575 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4576 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4577 sit_valid_blocks[NODE], valid_node_count(sbi)); 4578 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 4579 return -EFSCORRUPTED; 4580 } 4581 4582 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4583 valid_user_blocks(sbi)) { 4584 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4585 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4586 valid_user_blocks(sbi)); 4587 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 4588 return -EFSCORRUPTED; 4589 } 4590 4591 return 0; 4592 } 4593 4594 static void init_free_segmap(struct f2fs_sb_info *sbi) 4595 { 4596 unsigned int start; 4597 int type; 4598 struct seg_entry *sentry; 4599 4600 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4601 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4602 continue; 4603 sentry = get_seg_entry(sbi, start); 4604 if (!sentry->valid_blocks) 4605 __set_free(sbi, start); 4606 else 4607 SIT_I(sbi)->written_valid_blocks += 4608 sentry->valid_blocks; 4609 } 4610 4611 /* set use the current segments */ 4612 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4613 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4614 4615 __set_test_and_inuse(sbi, curseg_t->segno); 4616 } 4617 } 4618 4619 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4620 { 4621 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4622 struct free_segmap_info *free_i = FREE_I(sbi); 4623 unsigned int segno = 0, offset = 0, secno; 4624 block_t valid_blocks, usable_blks_in_seg; 4625 4626 while (1) { 4627 /* find dirty segment based on free segmap */ 4628 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4629 if (segno >= MAIN_SEGS(sbi)) 4630 break; 4631 offset = segno + 1; 4632 valid_blocks = get_valid_blocks(sbi, segno, false); 4633 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4634 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4635 continue; 4636 if (valid_blocks > usable_blks_in_seg) { 4637 f2fs_bug_on(sbi, 1); 4638 continue; 4639 } 4640 mutex_lock(&dirty_i->seglist_lock); 4641 __locate_dirty_segment(sbi, segno, DIRTY); 4642 mutex_unlock(&dirty_i->seglist_lock); 4643 } 4644 4645 if (!__is_large_section(sbi)) 4646 return; 4647 4648 mutex_lock(&dirty_i->seglist_lock); 4649 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4650 valid_blocks = get_valid_blocks(sbi, segno, true); 4651 secno = GET_SEC_FROM_SEG(sbi, segno); 4652 4653 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 4654 continue; 4655 if (IS_CURSEC(sbi, secno)) 4656 continue; 4657 set_bit(secno, dirty_i->dirty_secmap); 4658 } 4659 mutex_unlock(&dirty_i->seglist_lock); 4660 } 4661 4662 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4663 { 4664 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4665 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4666 4667 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4668 if (!dirty_i->victim_secmap) 4669 return -ENOMEM; 4670 4671 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4672 if (!dirty_i->pinned_secmap) 4673 return -ENOMEM; 4674 4675 dirty_i->pinned_secmap_cnt = 0; 4676 dirty_i->enable_pin_section = true; 4677 return 0; 4678 } 4679 4680 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4681 { 4682 struct dirty_seglist_info *dirty_i; 4683 unsigned int bitmap_size, i; 4684 4685 /* allocate memory for dirty segments list information */ 4686 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4687 GFP_KERNEL); 4688 if (!dirty_i) 4689 return -ENOMEM; 4690 4691 SM_I(sbi)->dirty_info = dirty_i; 4692 mutex_init(&dirty_i->seglist_lock); 4693 4694 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4695 4696 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4697 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4698 GFP_KERNEL); 4699 if (!dirty_i->dirty_segmap[i]) 4700 return -ENOMEM; 4701 } 4702 4703 if (__is_large_section(sbi)) { 4704 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4705 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4706 bitmap_size, GFP_KERNEL); 4707 if (!dirty_i->dirty_secmap) 4708 return -ENOMEM; 4709 } 4710 4711 init_dirty_segmap(sbi); 4712 return init_victim_secmap(sbi); 4713 } 4714 4715 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4716 { 4717 int i; 4718 4719 /* 4720 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4721 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4722 */ 4723 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4724 struct curseg_info *curseg = CURSEG_I(sbi, i); 4725 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4726 unsigned int blkofs = curseg->next_blkoff; 4727 4728 if (f2fs_sb_has_readonly(sbi) && 4729 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4730 continue; 4731 4732 sanity_check_seg_type(sbi, curseg->seg_type); 4733 4734 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 4735 f2fs_err(sbi, 4736 "Current segment has invalid alloc_type:%d", 4737 curseg->alloc_type); 4738 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4739 return -EFSCORRUPTED; 4740 } 4741 4742 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4743 goto out; 4744 4745 if (curseg->alloc_type == SSR) 4746 continue; 4747 4748 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4749 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4750 continue; 4751 out: 4752 f2fs_err(sbi, 4753 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4754 i, curseg->segno, curseg->alloc_type, 4755 curseg->next_blkoff, blkofs); 4756 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4757 return -EFSCORRUPTED; 4758 } 4759 } 4760 return 0; 4761 } 4762 4763 #ifdef CONFIG_BLK_DEV_ZONED 4764 4765 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4766 struct f2fs_dev_info *fdev, 4767 struct blk_zone *zone) 4768 { 4769 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4770 block_t zone_block, wp_block, last_valid_block; 4771 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4772 int i, s, b, ret; 4773 struct seg_entry *se; 4774 4775 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4776 return 0; 4777 4778 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4779 wp_segno = GET_SEGNO(sbi, wp_block); 4780 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4781 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4782 zone_segno = GET_SEGNO(sbi, zone_block); 4783 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4784 4785 if (zone_segno >= MAIN_SEGS(sbi)) 4786 return 0; 4787 4788 /* 4789 * Skip check of zones cursegs point to, since 4790 * fix_curseg_write_pointer() checks them. 4791 */ 4792 for (i = 0; i < NO_CHECK_TYPE; i++) 4793 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4794 CURSEG_I(sbi, i)->segno)) 4795 return 0; 4796 4797 /* 4798 * Get last valid block of the zone. 4799 */ 4800 last_valid_block = zone_block - 1; 4801 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4802 segno = zone_segno + s; 4803 se = get_seg_entry(sbi, segno); 4804 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4805 if (f2fs_test_bit(b, se->cur_valid_map)) { 4806 last_valid_block = START_BLOCK(sbi, segno) + b; 4807 break; 4808 } 4809 if (last_valid_block >= zone_block) 4810 break; 4811 } 4812 4813 /* 4814 * If last valid block is beyond the write pointer, report the 4815 * inconsistency. This inconsistency does not cause write error 4816 * because the zone will not be selected for write operation until 4817 * it get discarded. Just report it. 4818 */ 4819 if (last_valid_block >= wp_block) { 4820 f2fs_notice(sbi, "Valid block beyond write pointer: " 4821 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4822 GET_SEGNO(sbi, last_valid_block), 4823 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4824 wp_segno, wp_blkoff); 4825 return 0; 4826 } 4827 4828 /* 4829 * If there is no valid block in the zone and if write pointer is 4830 * not at zone start, reset the write pointer. 4831 */ 4832 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4833 f2fs_notice(sbi, 4834 "Zone without valid block has non-zero write " 4835 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4836 wp_segno, wp_blkoff); 4837 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4838 zone->len >> log_sectors_per_block); 4839 if (ret) { 4840 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4841 fdev->path, ret); 4842 return ret; 4843 } 4844 } 4845 4846 return 0; 4847 } 4848 4849 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4850 block_t zone_blkaddr) 4851 { 4852 int i; 4853 4854 for (i = 0; i < sbi->s_ndevs; i++) { 4855 if (!bdev_is_zoned(FDEV(i).bdev)) 4856 continue; 4857 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4858 zone_blkaddr <= FDEV(i).end_blk)) 4859 return &FDEV(i); 4860 } 4861 4862 return NULL; 4863 } 4864 4865 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4866 void *data) 4867 { 4868 memcpy(data, zone, sizeof(struct blk_zone)); 4869 return 0; 4870 } 4871 4872 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4873 { 4874 struct curseg_info *cs = CURSEG_I(sbi, type); 4875 struct f2fs_dev_info *zbd; 4876 struct blk_zone zone; 4877 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4878 block_t cs_zone_block, wp_block; 4879 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4880 sector_t zone_sector; 4881 int err; 4882 4883 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4884 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4885 4886 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4887 if (!zbd) 4888 return 0; 4889 4890 /* report zone for the sector the curseg points to */ 4891 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4892 << log_sectors_per_block; 4893 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4894 report_one_zone_cb, &zone); 4895 if (err != 1) { 4896 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4897 zbd->path, err); 4898 return err; 4899 } 4900 4901 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4902 return 0; 4903 4904 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4905 wp_segno = GET_SEGNO(sbi, wp_block); 4906 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4907 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4908 4909 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4910 wp_sector_off == 0) 4911 return 0; 4912 4913 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4914 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4915 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4916 4917 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4918 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4919 4920 f2fs_allocate_new_section(sbi, type, true); 4921 4922 /* check consistency of the zone curseg pointed to */ 4923 if (check_zone_write_pointer(sbi, zbd, &zone)) 4924 return -EIO; 4925 4926 /* check newly assigned zone */ 4927 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4928 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4929 4930 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4931 if (!zbd) 4932 return 0; 4933 4934 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4935 << log_sectors_per_block; 4936 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4937 report_one_zone_cb, &zone); 4938 if (err != 1) { 4939 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4940 zbd->path, err); 4941 return err; 4942 } 4943 4944 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4945 return 0; 4946 4947 if (zone.wp != zone.start) { 4948 f2fs_notice(sbi, 4949 "New zone for curseg[%d] is not yet discarded. " 4950 "Reset the zone: curseg[0x%x,0x%x]", 4951 type, cs->segno, cs->next_blkoff); 4952 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block, 4953 zone.len >> log_sectors_per_block); 4954 if (err) { 4955 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4956 zbd->path, err); 4957 return err; 4958 } 4959 } 4960 4961 return 0; 4962 } 4963 4964 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4965 { 4966 int i, ret; 4967 4968 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4969 ret = fix_curseg_write_pointer(sbi, i); 4970 if (ret) 4971 return ret; 4972 } 4973 4974 return 0; 4975 } 4976 4977 struct check_zone_write_pointer_args { 4978 struct f2fs_sb_info *sbi; 4979 struct f2fs_dev_info *fdev; 4980 }; 4981 4982 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4983 void *data) 4984 { 4985 struct check_zone_write_pointer_args *args; 4986 4987 args = (struct check_zone_write_pointer_args *)data; 4988 4989 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4990 } 4991 4992 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4993 { 4994 int i, ret; 4995 struct check_zone_write_pointer_args args; 4996 4997 for (i = 0; i < sbi->s_ndevs; i++) { 4998 if (!bdev_is_zoned(FDEV(i).bdev)) 4999 continue; 5000 5001 args.sbi = sbi; 5002 args.fdev = &FDEV(i); 5003 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5004 check_zone_write_pointer_cb, &args); 5005 if (ret < 0) 5006 return ret; 5007 } 5008 5009 return 0; 5010 } 5011 5012 /* 5013 * Return the number of usable blocks in a segment. The number of blocks 5014 * returned is always equal to the number of blocks in a segment for 5015 * segments fully contained within a sequential zone capacity or a 5016 * conventional zone. For segments partially contained in a sequential 5017 * zone capacity, the number of usable blocks up to the zone capacity 5018 * is returned. 0 is returned in all other cases. 5019 */ 5020 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5021 struct f2fs_sb_info *sbi, unsigned int segno) 5022 { 5023 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5024 unsigned int secno; 5025 5026 if (!sbi->unusable_blocks_per_sec) 5027 return sbi->blocks_per_seg; 5028 5029 secno = GET_SEC_FROM_SEG(sbi, segno); 5030 seg_start = START_BLOCK(sbi, segno); 5031 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5032 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5033 5034 /* 5035 * If segment starts before zone capacity and spans beyond 5036 * zone capacity, then usable blocks are from seg start to 5037 * zone capacity. If the segment starts after the zone capacity, 5038 * then there are no usable blocks. 5039 */ 5040 if (seg_start >= sec_cap_blkaddr) 5041 return 0; 5042 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 5043 return sec_cap_blkaddr - seg_start; 5044 5045 return sbi->blocks_per_seg; 5046 } 5047 #else 5048 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5049 { 5050 return 0; 5051 } 5052 5053 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5054 { 5055 return 0; 5056 } 5057 5058 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5059 unsigned int segno) 5060 { 5061 return 0; 5062 } 5063 5064 #endif 5065 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5066 unsigned int segno) 5067 { 5068 if (f2fs_sb_has_blkzoned(sbi)) 5069 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5070 5071 return sbi->blocks_per_seg; 5072 } 5073 5074 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5075 unsigned int segno) 5076 { 5077 if (f2fs_sb_has_blkzoned(sbi)) 5078 return CAP_SEGS_PER_SEC(sbi); 5079 5080 return sbi->segs_per_sec; 5081 } 5082 5083 /* 5084 * Update min, max modified time for cost-benefit GC algorithm 5085 */ 5086 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5087 { 5088 struct sit_info *sit_i = SIT_I(sbi); 5089 unsigned int segno; 5090 5091 down_write(&sit_i->sentry_lock); 5092 5093 sit_i->min_mtime = ULLONG_MAX; 5094 5095 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5096 unsigned int i; 5097 unsigned long long mtime = 0; 5098 5099 for (i = 0; i < sbi->segs_per_sec; i++) 5100 mtime += get_seg_entry(sbi, segno + i)->mtime; 5101 5102 mtime = div_u64(mtime, sbi->segs_per_sec); 5103 5104 if (sit_i->min_mtime > mtime) 5105 sit_i->min_mtime = mtime; 5106 } 5107 sit_i->max_mtime = get_mtime(sbi, false); 5108 sit_i->dirty_max_mtime = 0; 5109 up_write(&sit_i->sentry_lock); 5110 } 5111 5112 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5113 { 5114 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5115 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5116 struct f2fs_sm_info *sm_info; 5117 int err; 5118 5119 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5120 if (!sm_info) 5121 return -ENOMEM; 5122 5123 /* init sm info */ 5124 sbi->sm_info = sm_info; 5125 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5126 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5127 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5128 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5129 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5130 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5131 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5132 sm_info->rec_prefree_segments = sm_info->main_segments * 5133 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5134 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5135 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5136 5137 if (!f2fs_lfs_mode(sbi)) 5138 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC); 5139 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5140 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5141 sm_info->min_seq_blocks = sbi->blocks_per_seg; 5142 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5143 sm_info->min_ssr_sections = reserved_sections(sbi); 5144 5145 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5146 5147 init_f2fs_rwsem(&sm_info->curseg_lock); 5148 5149 err = f2fs_create_flush_cmd_control(sbi); 5150 if (err) 5151 return err; 5152 5153 err = create_discard_cmd_control(sbi); 5154 if (err) 5155 return err; 5156 5157 err = build_sit_info(sbi); 5158 if (err) 5159 return err; 5160 err = build_free_segmap(sbi); 5161 if (err) 5162 return err; 5163 err = build_curseg(sbi); 5164 if (err) 5165 return err; 5166 5167 /* reinit free segmap based on SIT */ 5168 err = build_sit_entries(sbi); 5169 if (err) 5170 return err; 5171 5172 init_free_segmap(sbi); 5173 err = build_dirty_segmap(sbi); 5174 if (err) 5175 return err; 5176 5177 err = sanity_check_curseg(sbi); 5178 if (err) 5179 return err; 5180 5181 init_min_max_mtime(sbi); 5182 return 0; 5183 } 5184 5185 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5186 enum dirty_type dirty_type) 5187 { 5188 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5189 5190 mutex_lock(&dirty_i->seglist_lock); 5191 kvfree(dirty_i->dirty_segmap[dirty_type]); 5192 dirty_i->nr_dirty[dirty_type] = 0; 5193 mutex_unlock(&dirty_i->seglist_lock); 5194 } 5195 5196 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5197 { 5198 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5199 5200 kvfree(dirty_i->pinned_secmap); 5201 kvfree(dirty_i->victim_secmap); 5202 } 5203 5204 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5205 { 5206 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5207 int i; 5208 5209 if (!dirty_i) 5210 return; 5211 5212 /* discard pre-free/dirty segments list */ 5213 for (i = 0; i < NR_DIRTY_TYPE; i++) 5214 discard_dirty_segmap(sbi, i); 5215 5216 if (__is_large_section(sbi)) { 5217 mutex_lock(&dirty_i->seglist_lock); 5218 kvfree(dirty_i->dirty_secmap); 5219 mutex_unlock(&dirty_i->seglist_lock); 5220 } 5221 5222 destroy_victim_secmap(sbi); 5223 SM_I(sbi)->dirty_info = NULL; 5224 kfree(dirty_i); 5225 } 5226 5227 static void destroy_curseg(struct f2fs_sb_info *sbi) 5228 { 5229 struct curseg_info *array = SM_I(sbi)->curseg_array; 5230 int i; 5231 5232 if (!array) 5233 return; 5234 SM_I(sbi)->curseg_array = NULL; 5235 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5236 kfree(array[i].sum_blk); 5237 kfree(array[i].journal); 5238 } 5239 kfree(array); 5240 } 5241 5242 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5243 { 5244 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5245 5246 if (!free_i) 5247 return; 5248 SM_I(sbi)->free_info = NULL; 5249 kvfree(free_i->free_segmap); 5250 kvfree(free_i->free_secmap); 5251 kfree(free_i); 5252 } 5253 5254 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5255 { 5256 struct sit_info *sit_i = SIT_I(sbi); 5257 5258 if (!sit_i) 5259 return; 5260 5261 if (sit_i->sentries) 5262 kvfree(sit_i->bitmap); 5263 kfree(sit_i->tmp_map); 5264 5265 kvfree(sit_i->sentries); 5266 kvfree(sit_i->sec_entries); 5267 kvfree(sit_i->dirty_sentries_bitmap); 5268 5269 SM_I(sbi)->sit_info = NULL; 5270 kvfree(sit_i->sit_bitmap); 5271 #ifdef CONFIG_F2FS_CHECK_FS 5272 kvfree(sit_i->sit_bitmap_mir); 5273 kvfree(sit_i->invalid_segmap); 5274 #endif 5275 kfree(sit_i); 5276 } 5277 5278 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5279 { 5280 struct f2fs_sm_info *sm_info = SM_I(sbi); 5281 5282 if (!sm_info) 5283 return; 5284 f2fs_destroy_flush_cmd_control(sbi, true); 5285 destroy_discard_cmd_control(sbi); 5286 destroy_dirty_segmap(sbi); 5287 destroy_curseg(sbi); 5288 destroy_free_segmap(sbi); 5289 destroy_sit_info(sbi); 5290 sbi->sm_info = NULL; 5291 kfree(sm_info); 5292 } 5293 5294 int __init f2fs_create_segment_manager_caches(void) 5295 { 5296 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5297 sizeof(struct discard_entry)); 5298 if (!discard_entry_slab) 5299 goto fail; 5300 5301 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5302 sizeof(struct discard_cmd)); 5303 if (!discard_cmd_slab) 5304 goto destroy_discard_entry; 5305 5306 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5307 sizeof(struct sit_entry_set)); 5308 if (!sit_entry_set_slab) 5309 goto destroy_discard_cmd; 5310 5311 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5312 sizeof(struct revoke_entry)); 5313 if (!revoke_entry_slab) 5314 goto destroy_sit_entry_set; 5315 return 0; 5316 5317 destroy_sit_entry_set: 5318 kmem_cache_destroy(sit_entry_set_slab); 5319 destroy_discard_cmd: 5320 kmem_cache_destroy(discard_cmd_slab); 5321 destroy_discard_entry: 5322 kmem_cache_destroy(discard_entry_slab); 5323 fail: 5324 return -ENOMEM; 5325 } 5326 5327 void f2fs_destroy_segment_manager_caches(void) 5328 { 5329 kmem_cache_destroy(sit_entry_set_slab); 5330 kmem_cache_destroy(discard_cmd_slab); 5331 kmem_cache_destroy(discard_entry_slab); 5332 kmem_cache_destroy(revoke_entry_slab); 5333 } 5334