1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 191 struct f2fs_inode_info *fi = F2FS_I(inode); 192 193 if (!f2fs_is_atomic_file(inode)) 194 return; 195 196 if (clean) 197 truncate_inode_pages_final(inode->i_mapping); 198 clear_inode_flag(fi->cow_inode, FI_COW_FILE); 199 iput(fi->cow_inode); 200 fi->cow_inode = NULL; 201 release_atomic_write_cnt(inode); 202 clear_inode_flag(inode, FI_ATOMIC_FILE); 203 204 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 205 sbi->atomic_files--; 206 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 207 } 208 209 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 210 block_t new_addr, block_t *old_addr, bool recover) 211 { 212 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 213 struct dnode_of_data dn; 214 struct node_info ni; 215 int err; 216 217 retry: 218 set_new_dnode(&dn, inode, NULL, NULL, 0); 219 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE_RA); 220 if (err) { 221 if (err == -ENOMEM) { 222 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 223 goto retry; 224 } 225 return err; 226 } 227 228 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 229 if (err) { 230 f2fs_put_dnode(&dn); 231 return err; 232 } 233 234 if (recover) { 235 /* dn.data_blkaddr is always valid */ 236 if (!__is_valid_data_blkaddr(new_addr)) { 237 if (new_addr == NULL_ADDR) 238 dec_valid_block_count(sbi, inode, 1); 239 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 240 f2fs_update_data_blkaddr(&dn, new_addr); 241 } else { 242 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 243 new_addr, ni.version, true, true); 244 } 245 } else { 246 blkcnt_t count = 1; 247 248 *old_addr = dn.data_blkaddr; 249 f2fs_truncate_data_blocks_range(&dn, 1); 250 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 251 inc_valid_block_count(sbi, inode, &count); 252 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 253 ni.version, true, false); 254 } 255 256 f2fs_put_dnode(&dn); 257 return 0; 258 } 259 260 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 261 bool revoke) 262 { 263 struct revoke_entry *cur, *tmp; 264 265 list_for_each_entry_safe(cur, tmp, head, list) { 266 if (revoke) 267 __replace_atomic_write_block(inode, cur->index, 268 cur->old_addr, NULL, true); 269 list_del(&cur->list); 270 kmem_cache_free(revoke_entry_slab, cur); 271 } 272 } 273 274 static int __f2fs_commit_atomic_write(struct inode *inode) 275 { 276 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 277 struct f2fs_inode_info *fi = F2FS_I(inode); 278 struct inode *cow_inode = fi->cow_inode; 279 struct revoke_entry *new; 280 struct list_head revoke_list; 281 block_t blkaddr; 282 struct dnode_of_data dn; 283 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 284 pgoff_t off = 0, blen, index; 285 int ret = 0, i; 286 287 INIT_LIST_HEAD(&revoke_list); 288 289 while (len) { 290 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 291 292 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 293 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 294 if (ret && ret != -ENOENT) { 295 goto out; 296 } else if (ret == -ENOENT) { 297 ret = 0; 298 if (dn.max_level == 0) 299 goto out; 300 goto next; 301 } 302 303 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 304 len); 305 index = off; 306 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 307 blkaddr = f2fs_data_blkaddr(&dn); 308 309 if (!__is_valid_data_blkaddr(blkaddr)) { 310 continue; 311 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 312 DATA_GENERIC_ENHANCE)) { 313 f2fs_put_dnode(&dn); 314 ret = -EFSCORRUPTED; 315 goto out; 316 } 317 318 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 319 true, NULL); 320 321 ret = __replace_atomic_write_block(inode, index, blkaddr, 322 &new->old_addr, false); 323 if (ret) { 324 f2fs_put_dnode(&dn); 325 kmem_cache_free(revoke_entry_slab, new); 326 goto out; 327 } 328 329 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 330 new->index = index; 331 list_add_tail(&new->list, &revoke_list); 332 } 333 f2fs_put_dnode(&dn); 334 next: 335 off += blen; 336 len -= blen; 337 } 338 339 out: 340 if (ret) 341 sbi->revoked_atomic_block += fi->atomic_write_cnt; 342 else 343 sbi->committed_atomic_block += fi->atomic_write_cnt; 344 345 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 346 347 return ret; 348 } 349 350 int f2fs_commit_atomic_write(struct inode *inode) 351 { 352 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 353 struct f2fs_inode_info *fi = F2FS_I(inode); 354 int err; 355 356 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 357 if (err) 358 return err; 359 360 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 361 f2fs_lock_op(sbi); 362 363 err = __f2fs_commit_atomic_write(inode); 364 365 f2fs_unlock_op(sbi); 366 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 367 368 return err; 369 } 370 371 /* 372 * This function balances dirty node and dentry pages. 373 * In addition, it controls garbage collection. 374 */ 375 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 376 { 377 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 378 f2fs_show_injection_info(sbi, FAULT_CHECKPOINT); 379 f2fs_stop_checkpoint(sbi, false); 380 } 381 382 /* balance_fs_bg is able to be pending */ 383 if (need && excess_cached_nats(sbi)) 384 f2fs_balance_fs_bg(sbi, false); 385 386 if (!f2fs_is_checkpoint_ready(sbi)) 387 return; 388 389 /* 390 * We should do GC or end up with checkpoint, if there are so many dirty 391 * dir/node pages without enough free segments. 392 */ 393 if (has_not_enough_free_secs(sbi, 0, 0)) { 394 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 395 sbi->gc_thread->f2fs_gc_task) { 396 DEFINE_WAIT(wait); 397 398 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 399 TASK_UNINTERRUPTIBLE); 400 wake_up(&sbi->gc_thread->gc_wait_queue_head); 401 io_schedule(); 402 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 403 } else { 404 struct f2fs_gc_control gc_control = { 405 .victim_segno = NULL_SEGNO, 406 .init_gc_type = BG_GC, 407 .no_bg_gc = true, 408 .should_migrate_blocks = false, 409 .err_gc_skipped = false, 410 .nr_free_secs = 1 }; 411 f2fs_down_write(&sbi->gc_lock); 412 f2fs_gc(sbi, &gc_control); 413 } 414 } 415 } 416 417 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 418 { 419 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 420 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 421 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 422 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 423 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 424 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 425 unsigned int threshold = sbi->blocks_per_seg * factor * 426 DEFAULT_DIRTY_THRESHOLD; 427 unsigned int global_threshold = threshold * 3 / 2; 428 429 if (dents >= threshold || qdata >= threshold || 430 nodes >= threshold || meta >= threshold || 431 imeta >= threshold) 432 return true; 433 return dents + qdata + nodes + meta + imeta > global_threshold; 434 } 435 436 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 437 { 438 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 439 return; 440 441 /* try to shrink extent cache when there is no enough memory */ 442 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 443 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 444 445 /* check the # of cached NAT entries */ 446 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 447 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 448 449 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 450 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 451 else 452 f2fs_build_free_nids(sbi, false, false); 453 454 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 455 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 456 goto do_sync; 457 458 /* there is background inflight IO or foreground operation recently */ 459 if (is_inflight_io(sbi, REQ_TIME) || 460 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 461 return; 462 463 /* exceed periodical checkpoint timeout threshold */ 464 if (f2fs_time_over(sbi, CP_TIME)) 465 goto do_sync; 466 467 /* checkpoint is the only way to shrink partial cached entries */ 468 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 469 f2fs_available_free_memory(sbi, INO_ENTRIES)) 470 return; 471 472 do_sync: 473 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 474 struct blk_plug plug; 475 476 mutex_lock(&sbi->flush_lock); 477 478 blk_start_plug(&plug); 479 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 480 blk_finish_plug(&plug); 481 482 mutex_unlock(&sbi->flush_lock); 483 } 484 f2fs_sync_fs(sbi->sb, true); 485 stat_inc_bg_cp_count(sbi->stat_info); 486 } 487 488 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 489 struct block_device *bdev) 490 { 491 int ret = blkdev_issue_flush(bdev); 492 493 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 494 test_opt(sbi, FLUSH_MERGE), ret); 495 return ret; 496 } 497 498 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 499 { 500 int ret = 0; 501 int i; 502 503 if (!f2fs_is_multi_device(sbi)) 504 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 505 506 for (i = 0; i < sbi->s_ndevs; i++) { 507 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 508 continue; 509 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 510 if (ret) 511 break; 512 } 513 return ret; 514 } 515 516 static int issue_flush_thread(void *data) 517 { 518 struct f2fs_sb_info *sbi = data; 519 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 520 wait_queue_head_t *q = &fcc->flush_wait_queue; 521 repeat: 522 if (kthread_should_stop()) 523 return 0; 524 525 if (!llist_empty(&fcc->issue_list)) { 526 struct flush_cmd *cmd, *next; 527 int ret; 528 529 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 530 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 531 532 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 533 534 ret = submit_flush_wait(sbi, cmd->ino); 535 atomic_inc(&fcc->issued_flush); 536 537 llist_for_each_entry_safe(cmd, next, 538 fcc->dispatch_list, llnode) { 539 cmd->ret = ret; 540 complete(&cmd->wait); 541 } 542 fcc->dispatch_list = NULL; 543 } 544 545 wait_event_interruptible(*q, 546 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 547 goto repeat; 548 } 549 550 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 551 { 552 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 553 struct flush_cmd cmd; 554 int ret; 555 556 if (test_opt(sbi, NOBARRIER)) 557 return 0; 558 559 if (!test_opt(sbi, FLUSH_MERGE)) { 560 atomic_inc(&fcc->queued_flush); 561 ret = submit_flush_wait(sbi, ino); 562 atomic_dec(&fcc->queued_flush); 563 atomic_inc(&fcc->issued_flush); 564 return ret; 565 } 566 567 if (atomic_inc_return(&fcc->queued_flush) == 1 || 568 f2fs_is_multi_device(sbi)) { 569 ret = submit_flush_wait(sbi, ino); 570 atomic_dec(&fcc->queued_flush); 571 572 atomic_inc(&fcc->issued_flush); 573 return ret; 574 } 575 576 cmd.ino = ino; 577 init_completion(&cmd.wait); 578 579 llist_add(&cmd.llnode, &fcc->issue_list); 580 581 /* 582 * update issue_list before we wake up issue_flush thread, this 583 * smp_mb() pairs with another barrier in ___wait_event(), see 584 * more details in comments of waitqueue_active(). 585 */ 586 smp_mb(); 587 588 if (waitqueue_active(&fcc->flush_wait_queue)) 589 wake_up(&fcc->flush_wait_queue); 590 591 if (fcc->f2fs_issue_flush) { 592 wait_for_completion(&cmd.wait); 593 atomic_dec(&fcc->queued_flush); 594 } else { 595 struct llist_node *list; 596 597 list = llist_del_all(&fcc->issue_list); 598 if (!list) { 599 wait_for_completion(&cmd.wait); 600 atomic_dec(&fcc->queued_flush); 601 } else { 602 struct flush_cmd *tmp, *next; 603 604 ret = submit_flush_wait(sbi, ino); 605 606 llist_for_each_entry_safe(tmp, next, list, llnode) { 607 if (tmp == &cmd) { 608 cmd.ret = ret; 609 atomic_dec(&fcc->queued_flush); 610 continue; 611 } 612 tmp->ret = ret; 613 complete(&tmp->wait); 614 } 615 } 616 } 617 618 return cmd.ret; 619 } 620 621 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 622 { 623 dev_t dev = sbi->sb->s_bdev->bd_dev; 624 struct flush_cmd_control *fcc; 625 int err = 0; 626 627 if (SM_I(sbi)->fcc_info) { 628 fcc = SM_I(sbi)->fcc_info; 629 if (fcc->f2fs_issue_flush) 630 return err; 631 goto init_thread; 632 } 633 634 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 635 if (!fcc) 636 return -ENOMEM; 637 atomic_set(&fcc->issued_flush, 0); 638 atomic_set(&fcc->queued_flush, 0); 639 init_waitqueue_head(&fcc->flush_wait_queue); 640 init_llist_head(&fcc->issue_list); 641 SM_I(sbi)->fcc_info = fcc; 642 if (!test_opt(sbi, FLUSH_MERGE)) 643 return err; 644 645 init_thread: 646 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 647 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 648 if (IS_ERR(fcc->f2fs_issue_flush)) { 649 err = PTR_ERR(fcc->f2fs_issue_flush); 650 kfree(fcc); 651 SM_I(sbi)->fcc_info = NULL; 652 return err; 653 } 654 655 return err; 656 } 657 658 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 659 { 660 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 661 662 if (fcc && fcc->f2fs_issue_flush) { 663 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 664 665 fcc->f2fs_issue_flush = NULL; 666 kthread_stop(flush_thread); 667 } 668 if (free) { 669 kfree(fcc); 670 SM_I(sbi)->fcc_info = NULL; 671 } 672 } 673 674 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 675 { 676 int ret = 0, i; 677 678 if (!f2fs_is_multi_device(sbi)) 679 return 0; 680 681 if (test_opt(sbi, NOBARRIER)) 682 return 0; 683 684 for (i = 1; i < sbi->s_ndevs; i++) { 685 int count = DEFAULT_RETRY_IO_COUNT; 686 687 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 688 continue; 689 690 do { 691 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 692 if (ret) 693 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 694 } while (ret && --count); 695 696 if (ret) { 697 f2fs_stop_checkpoint(sbi, false); 698 break; 699 } 700 701 spin_lock(&sbi->dev_lock); 702 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 703 spin_unlock(&sbi->dev_lock); 704 } 705 706 return ret; 707 } 708 709 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 710 enum dirty_type dirty_type) 711 { 712 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 713 714 /* need not be added */ 715 if (IS_CURSEG(sbi, segno)) 716 return; 717 718 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 719 dirty_i->nr_dirty[dirty_type]++; 720 721 if (dirty_type == DIRTY) { 722 struct seg_entry *sentry = get_seg_entry(sbi, segno); 723 enum dirty_type t = sentry->type; 724 725 if (unlikely(t >= DIRTY)) { 726 f2fs_bug_on(sbi, 1); 727 return; 728 } 729 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 730 dirty_i->nr_dirty[t]++; 731 732 if (__is_large_section(sbi)) { 733 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 734 block_t valid_blocks = 735 get_valid_blocks(sbi, segno, true); 736 737 f2fs_bug_on(sbi, unlikely(!valid_blocks || 738 valid_blocks == CAP_BLKS_PER_SEC(sbi))); 739 740 if (!IS_CURSEC(sbi, secno)) 741 set_bit(secno, dirty_i->dirty_secmap); 742 } 743 } 744 } 745 746 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 747 enum dirty_type dirty_type) 748 { 749 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 750 block_t valid_blocks; 751 752 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 753 dirty_i->nr_dirty[dirty_type]--; 754 755 if (dirty_type == DIRTY) { 756 struct seg_entry *sentry = get_seg_entry(sbi, segno); 757 enum dirty_type t = sentry->type; 758 759 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 760 dirty_i->nr_dirty[t]--; 761 762 valid_blocks = get_valid_blocks(sbi, segno, true); 763 if (valid_blocks == 0) { 764 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 765 dirty_i->victim_secmap); 766 #ifdef CONFIG_F2FS_CHECK_FS 767 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 768 #endif 769 } 770 if (__is_large_section(sbi)) { 771 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 772 773 if (!valid_blocks || 774 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 775 clear_bit(secno, dirty_i->dirty_secmap); 776 return; 777 } 778 779 if (!IS_CURSEC(sbi, secno)) 780 set_bit(secno, dirty_i->dirty_secmap); 781 } 782 } 783 } 784 785 /* 786 * Should not occur error such as -ENOMEM. 787 * Adding dirty entry into seglist is not critical operation. 788 * If a given segment is one of current working segments, it won't be added. 789 */ 790 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 791 { 792 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 793 unsigned short valid_blocks, ckpt_valid_blocks; 794 unsigned int usable_blocks; 795 796 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 797 return; 798 799 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 800 mutex_lock(&dirty_i->seglist_lock); 801 802 valid_blocks = get_valid_blocks(sbi, segno, false); 803 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 804 805 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 806 ckpt_valid_blocks == usable_blocks)) { 807 __locate_dirty_segment(sbi, segno, PRE); 808 __remove_dirty_segment(sbi, segno, DIRTY); 809 } else if (valid_blocks < usable_blocks) { 810 __locate_dirty_segment(sbi, segno, DIRTY); 811 } else { 812 /* Recovery routine with SSR needs this */ 813 __remove_dirty_segment(sbi, segno, DIRTY); 814 } 815 816 mutex_unlock(&dirty_i->seglist_lock); 817 } 818 819 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 820 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 821 { 822 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 823 unsigned int segno; 824 825 mutex_lock(&dirty_i->seglist_lock); 826 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 827 if (get_valid_blocks(sbi, segno, false)) 828 continue; 829 if (IS_CURSEG(sbi, segno)) 830 continue; 831 __locate_dirty_segment(sbi, segno, PRE); 832 __remove_dirty_segment(sbi, segno, DIRTY); 833 } 834 mutex_unlock(&dirty_i->seglist_lock); 835 } 836 837 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 838 { 839 int ovp_hole_segs = 840 (overprovision_segments(sbi) - reserved_segments(sbi)); 841 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 842 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 843 block_t holes[2] = {0, 0}; /* DATA and NODE */ 844 block_t unusable; 845 struct seg_entry *se; 846 unsigned int segno; 847 848 mutex_lock(&dirty_i->seglist_lock); 849 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 850 se = get_seg_entry(sbi, segno); 851 if (IS_NODESEG(se->type)) 852 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 853 se->valid_blocks; 854 else 855 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 856 se->valid_blocks; 857 } 858 mutex_unlock(&dirty_i->seglist_lock); 859 860 unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE]; 861 if (unusable > ovp_holes) 862 return unusable - ovp_holes; 863 return 0; 864 } 865 866 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 867 { 868 int ovp_hole_segs = 869 (overprovision_segments(sbi) - reserved_segments(sbi)); 870 if (unusable > F2FS_OPTION(sbi).unusable_cap) 871 return -EAGAIN; 872 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 873 dirty_segments(sbi) > ovp_hole_segs) 874 return -EAGAIN; 875 return 0; 876 } 877 878 /* This is only used by SBI_CP_DISABLED */ 879 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 880 { 881 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 882 unsigned int segno = 0; 883 884 mutex_lock(&dirty_i->seglist_lock); 885 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 886 if (get_valid_blocks(sbi, segno, false)) 887 continue; 888 if (get_ckpt_valid_blocks(sbi, segno, false)) 889 continue; 890 mutex_unlock(&dirty_i->seglist_lock); 891 return segno; 892 } 893 mutex_unlock(&dirty_i->seglist_lock); 894 return NULL_SEGNO; 895 } 896 897 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 898 struct block_device *bdev, block_t lstart, 899 block_t start, block_t len) 900 { 901 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 902 struct list_head *pend_list; 903 struct discard_cmd *dc; 904 905 f2fs_bug_on(sbi, !len); 906 907 pend_list = &dcc->pend_list[plist_idx(len)]; 908 909 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 910 INIT_LIST_HEAD(&dc->list); 911 dc->bdev = bdev; 912 dc->lstart = lstart; 913 dc->start = start; 914 dc->len = len; 915 dc->ref = 0; 916 dc->state = D_PREP; 917 dc->queued = 0; 918 dc->error = 0; 919 init_completion(&dc->wait); 920 list_add_tail(&dc->list, pend_list); 921 spin_lock_init(&dc->lock); 922 dc->bio_ref = 0; 923 atomic_inc(&dcc->discard_cmd_cnt); 924 dcc->undiscard_blks += len; 925 926 return dc; 927 } 928 929 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 930 struct block_device *bdev, block_t lstart, 931 block_t start, block_t len, 932 struct rb_node *parent, struct rb_node **p, 933 bool leftmost) 934 { 935 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 936 struct discard_cmd *dc; 937 938 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 939 940 rb_link_node(&dc->rb_node, parent, p); 941 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 942 943 return dc; 944 } 945 946 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 947 struct discard_cmd *dc) 948 { 949 if (dc->state == D_DONE) 950 atomic_sub(dc->queued, &dcc->queued_discard); 951 952 list_del(&dc->list); 953 rb_erase_cached(&dc->rb_node, &dcc->root); 954 dcc->undiscard_blks -= dc->len; 955 956 kmem_cache_free(discard_cmd_slab, dc); 957 958 atomic_dec(&dcc->discard_cmd_cnt); 959 } 960 961 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 962 struct discard_cmd *dc) 963 { 964 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 965 unsigned long flags; 966 967 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 968 969 spin_lock_irqsave(&dc->lock, flags); 970 if (dc->bio_ref) { 971 spin_unlock_irqrestore(&dc->lock, flags); 972 return; 973 } 974 spin_unlock_irqrestore(&dc->lock, flags); 975 976 f2fs_bug_on(sbi, dc->ref); 977 978 if (dc->error == -EOPNOTSUPP) 979 dc->error = 0; 980 981 if (dc->error) 982 printk_ratelimited( 983 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 984 KERN_INFO, sbi->sb->s_id, 985 dc->lstart, dc->start, dc->len, dc->error); 986 __detach_discard_cmd(dcc, dc); 987 } 988 989 static void f2fs_submit_discard_endio(struct bio *bio) 990 { 991 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 992 unsigned long flags; 993 994 spin_lock_irqsave(&dc->lock, flags); 995 if (!dc->error) 996 dc->error = blk_status_to_errno(bio->bi_status); 997 dc->bio_ref--; 998 if (!dc->bio_ref && dc->state == D_SUBMIT) { 999 dc->state = D_DONE; 1000 complete_all(&dc->wait); 1001 } 1002 spin_unlock_irqrestore(&dc->lock, flags); 1003 bio_put(bio); 1004 } 1005 1006 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1007 block_t start, block_t end) 1008 { 1009 #ifdef CONFIG_F2FS_CHECK_FS 1010 struct seg_entry *sentry; 1011 unsigned int segno; 1012 block_t blk = start; 1013 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1014 unsigned long *map; 1015 1016 while (blk < end) { 1017 segno = GET_SEGNO(sbi, blk); 1018 sentry = get_seg_entry(sbi, segno); 1019 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1020 1021 if (end < START_BLOCK(sbi, segno + 1)) 1022 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1023 else 1024 size = max_blocks; 1025 map = (unsigned long *)(sentry->cur_valid_map); 1026 offset = __find_rev_next_bit(map, size, offset); 1027 f2fs_bug_on(sbi, offset != size); 1028 blk = START_BLOCK(sbi, segno + 1); 1029 } 1030 #endif 1031 } 1032 1033 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1034 struct discard_policy *dpolicy, 1035 int discard_type, unsigned int granularity) 1036 { 1037 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1038 1039 /* common policy */ 1040 dpolicy->type = discard_type; 1041 dpolicy->sync = true; 1042 dpolicy->ordered = false; 1043 dpolicy->granularity = granularity; 1044 1045 dpolicy->max_requests = dcc->max_discard_request; 1046 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1047 dpolicy->timeout = false; 1048 1049 if (discard_type == DPOLICY_BG) { 1050 dpolicy->min_interval = dcc->min_discard_issue_time; 1051 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1052 dpolicy->max_interval = dcc->max_discard_issue_time; 1053 dpolicy->io_aware = true; 1054 dpolicy->sync = false; 1055 dpolicy->ordered = true; 1056 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1057 dpolicy->granularity = 1; 1058 if (atomic_read(&dcc->discard_cmd_cnt)) 1059 dpolicy->max_interval = 1060 dcc->min_discard_issue_time; 1061 } 1062 } else if (discard_type == DPOLICY_FORCE) { 1063 dpolicy->min_interval = dcc->min_discard_issue_time; 1064 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1065 dpolicy->max_interval = dcc->max_discard_issue_time; 1066 dpolicy->io_aware = false; 1067 } else if (discard_type == DPOLICY_FSTRIM) { 1068 dpolicy->io_aware = false; 1069 } else if (discard_type == DPOLICY_UMOUNT) { 1070 dpolicy->io_aware = false; 1071 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1072 dpolicy->granularity = 1; 1073 dpolicy->timeout = true; 1074 } 1075 } 1076 1077 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1078 struct block_device *bdev, block_t lstart, 1079 block_t start, block_t len); 1080 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1081 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1082 struct discard_policy *dpolicy, 1083 struct discard_cmd *dc, 1084 unsigned int *issued) 1085 { 1086 struct block_device *bdev = dc->bdev; 1087 unsigned int max_discard_blocks = 1088 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1089 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1090 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1091 &(dcc->fstrim_list) : &(dcc->wait_list); 1092 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1093 block_t lstart, start, len, total_len; 1094 int err = 0; 1095 1096 if (dc->state != D_PREP) 1097 return 0; 1098 1099 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1100 return 0; 1101 1102 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1103 1104 lstart = dc->lstart; 1105 start = dc->start; 1106 len = dc->len; 1107 total_len = len; 1108 1109 dc->len = 0; 1110 1111 while (total_len && *issued < dpolicy->max_requests && !err) { 1112 struct bio *bio = NULL; 1113 unsigned long flags; 1114 bool last = true; 1115 1116 if (len > max_discard_blocks) { 1117 len = max_discard_blocks; 1118 last = false; 1119 } 1120 1121 (*issued)++; 1122 if (*issued == dpolicy->max_requests) 1123 last = true; 1124 1125 dc->len += len; 1126 1127 if (time_to_inject(sbi, FAULT_DISCARD)) { 1128 f2fs_show_injection_info(sbi, FAULT_DISCARD); 1129 err = -EIO; 1130 goto submit; 1131 } 1132 err = __blkdev_issue_discard(bdev, 1133 SECTOR_FROM_BLOCK(start), 1134 SECTOR_FROM_BLOCK(len), 1135 GFP_NOFS, &bio); 1136 submit: 1137 if (err) { 1138 spin_lock_irqsave(&dc->lock, flags); 1139 if (dc->state == D_PARTIAL) 1140 dc->state = D_SUBMIT; 1141 spin_unlock_irqrestore(&dc->lock, flags); 1142 1143 break; 1144 } 1145 1146 f2fs_bug_on(sbi, !bio); 1147 1148 /* 1149 * should keep before submission to avoid D_DONE 1150 * right away 1151 */ 1152 spin_lock_irqsave(&dc->lock, flags); 1153 if (last) 1154 dc->state = D_SUBMIT; 1155 else 1156 dc->state = D_PARTIAL; 1157 dc->bio_ref++; 1158 spin_unlock_irqrestore(&dc->lock, flags); 1159 1160 atomic_inc(&dcc->queued_discard); 1161 dc->queued++; 1162 list_move_tail(&dc->list, wait_list); 1163 1164 /* sanity check on discard range */ 1165 __check_sit_bitmap(sbi, lstart, lstart + len); 1166 1167 bio->bi_private = dc; 1168 bio->bi_end_io = f2fs_submit_discard_endio; 1169 bio->bi_opf |= flag; 1170 submit_bio(bio); 1171 1172 atomic_inc(&dcc->issued_discard); 1173 1174 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1175 1176 lstart += len; 1177 start += len; 1178 total_len -= len; 1179 len = total_len; 1180 } 1181 1182 if (!err && len) { 1183 dcc->undiscard_blks -= len; 1184 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1185 } 1186 return err; 1187 } 1188 1189 static void __insert_discard_tree(struct f2fs_sb_info *sbi, 1190 struct block_device *bdev, block_t lstart, 1191 block_t start, block_t len, 1192 struct rb_node **insert_p, 1193 struct rb_node *insert_parent) 1194 { 1195 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1196 struct rb_node **p; 1197 struct rb_node *parent = NULL; 1198 bool leftmost = true; 1199 1200 if (insert_p && insert_parent) { 1201 parent = insert_parent; 1202 p = insert_p; 1203 goto do_insert; 1204 } 1205 1206 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1207 lstart, &leftmost); 1208 do_insert: 1209 __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1210 p, leftmost); 1211 } 1212 1213 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1214 struct discard_cmd *dc) 1215 { 1216 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1217 } 1218 1219 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1220 struct discard_cmd *dc, block_t blkaddr) 1221 { 1222 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1223 struct discard_info di = dc->di; 1224 bool modified = false; 1225 1226 if (dc->state == D_DONE || dc->len == 1) { 1227 __remove_discard_cmd(sbi, dc); 1228 return; 1229 } 1230 1231 dcc->undiscard_blks -= di.len; 1232 1233 if (blkaddr > di.lstart) { 1234 dc->len = blkaddr - dc->lstart; 1235 dcc->undiscard_blks += dc->len; 1236 __relocate_discard_cmd(dcc, dc); 1237 modified = true; 1238 } 1239 1240 if (blkaddr < di.lstart + di.len - 1) { 1241 if (modified) { 1242 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1243 di.start + blkaddr + 1 - di.lstart, 1244 di.lstart + di.len - 1 - blkaddr, 1245 NULL, NULL); 1246 } else { 1247 dc->lstart++; 1248 dc->len--; 1249 dc->start++; 1250 dcc->undiscard_blks += dc->len; 1251 __relocate_discard_cmd(dcc, dc); 1252 } 1253 } 1254 } 1255 1256 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1257 struct block_device *bdev, block_t lstart, 1258 block_t start, block_t len) 1259 { 1260 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1261 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1262 struct discard_cmd *dc; 1263 struct discard_info di = {0}; 1264 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1265 unsigned int max_discard_blocks = 1266 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1267 block_t end = lstart + len; 1268 1269 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1270 NULL, lstart, 1271 (struct rb_entry **)&prev_dc, 1272 (struct rb_entry **)&next_dc, 1273 &insert_p, &insert_parent, true, NULL); 1274 if (dc) 1275 prev_dc = dc; 1276 1277 if (!prev_dc) { 1278 di.lstart = lstart; 1279 di.len = next_dc ? next_dc->lstart - lstart : len; 1280 di.len = min(di.len, len); 1281 di.start = start; 1282 } 1283 1284 while (1) { 1285 struct rb_node *node; 1286 bool merged = false; 1287 struct discard_cmd *tdc = NULL; 1288 1289 if (prev_dc) { 1290 di.lstart = prev_dc->lstart + prev_dc->len; 1291 if (di.lstart < lstart) 1292 di.lstart = lstart; 1293 if (di.lstart >= end) 1294 break; 1295 1296 if (!next_dc || next_dc->lstart > end) 1297 di.len = end - di.lstart; 1298 else 1299 di.len = next_dc->lstart - di.lstart; 1300 di.start = start + di.lstart - lstart; 1301 } 1302 1303 if (!di.len) 1304 goto next; 1305 1306 if (prev_dc && prev_dc->state == D_PREP && 1307 prev_dc->bdev == bdev && 1308 __is_discard_back_mergeable(&di, &prev_dc->di, 1309 max_discard_blocks)) { 1310 prev_dc->di.len += di.len; 1311 dcc->undiscard_blks += di.len; 1312 __relocate_discard_cmd(dcc, prev_dc); 1313 di = prev_dc->di; 1314 tdc = prev_dc; 1315 merged = true; 1316 } 1317 1318 if (next_dc && next_dc->state == D_PREP && 1319 next_dc->bdev == bdev && 1320 __is_discard_front_mergeable(&di, &next_dc->di, 1321 max_discard_blocks)) { 1322 next_dc->di.lstart = di.lstart; 1323 next_dc->di.len += di.len; 1324 next_dc->di.start = di.start; 1325 dcc->undiscard_blks += di.len; 1326 __relocate_discard_cmd(dcc, next_dc); 1327 if (tdc) 1328 __remove_discard_cmd(sbi, tdc); 1329 merged = true; 1330 } 1331 1332 if (!merged) { 1333 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1334 di.len, NULL, NULL); 1335 } 1336 next: 1337 prev_dc = next_dc; 1338 if (!prev_dc) 1339 break; 1340 1341 node = rb_next(&prev_dc->rb_node); 1342 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1343 } 1344 } 1345 1346 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1347 struct block_device *bdev, block_t blkstart, block_t blklen) 1348 { 1349 block_t lblkstart = blkstart; 1350 1351 if (!f2fs_bdev_support_discard(bdev)) 1352 return 0; 1353 1354 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1355 1356 if (f2fs_is_multi_device(sbi)) { 1357 int devi = f2fs_target_device_index(sbi, blkstart); 1358 1359 blkstart -= FDEV(devi).start_blk; 1360 } 1361 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1362 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1363 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1364 return 0; 1365 } 1366 1367 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1368 struct discard_policy *dpolicy) 1369 { 1370 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1371 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1372 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1373 struct discard_cmd *dc; 1374 struct blk_plug plug; 1375 unsigned int pos = dcc->next_pos; 1376 unsigned int issued = 0; 1377 bool io_interrupted = false; 1378 1379 mutex_lock(&dcc->cmd_lock); 1380 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1381 NULL, pos, 1382 (struct rb_entry **)&prev_dc, 1383 (struct rb_entry **)&next_dc, 1384 &insert_p, &insert_parent, true, NULL); 1385 if (!dc) 1386 dc = next_dc; 1387 1388 blk_start_plug(&plug); 1389 1390 while (dc) { 1391 struct rb_node *node; 1392 int err = 0; 1393 1394 if (dc->state != D_PREP) 1395 goto next; 1396 1397 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1398 io_interrupted = true; 1399 break; 1400 } 1401 1402 dcc->next_pos = dc->lstart + dc->len; 1403 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1404 1405 if (issued >= dpolicy->max_requests) 1406 break; 1407 next: 1408 node = rb_next(&dc->rb_node); 1409 if (err) 1410 __remove_discard_cmd(sbi, dc); 1411 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1412 } 1413 1414 blk_finish_plug(&plug); 1415 1416 if (!dc) 1417 dcc->next_pos = 0; 1418 1419 mutex_unlock(&dcc->cmd_lock); 1420 1421 if (!issued && io_interrupted) 1422 issued = -1; 1423 1424 return issued; 1425 } 1426 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1427 struct discard_policy *dpolicy); 1428 1429 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1430 struct discard_policy *dpolicy) 1431 { 1432 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1433 struct list_head *pend_list; 1434 struct discard_cmd *dc, *tmp; 1435 struct blk_plug plug; 1436 int i, issued; 1437 bool io_interrupted = false; 1438 1439 if (dpolicy->timeout) 1440 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1441 1442 retry: 1443 issued = 0; 1444 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1445 if (dpolicy->timeout && 1446 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1447 break; 1448 1449 if (i + 1 < dpolicy->granularity) 1450 break; 1451 1452 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1453 return __issue_discard_cmd_orderly(sbi, dpolicy); 1454 1455 pend_list = &dcc->pend_list[i]; 1456 1457 mutex_lock(&dcc->cmd_lock); 1458 if (list_empty(pend_list)) 1459 goto next; 1460 if (unlikely(dcc->rbtree_check)) 1461 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1462 &dcc->root, false)); 1463 blk_start_plug(&plug); 1464 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1465 f2fs_bug_on(sbi, dc->state != D_PREP); 1466 1467 if (dpolicy->timeout && 1468 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1469 break; 1470 1471 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1472 !is_idle(sbi, DISCARD_TIME)) { 1473 io_interrupted = true; 1474 break; 1475 } 1476 1477 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1478 1479 if (issued >= dpolicy->max_requests) 1480 break; 1481 } 1482 blk_finish_plug(&plug); 1483 next: 1484 mutex_unlock(&dcc->cmd_lock); 1485 1486 if (issued >= dpolicy->max_requests || io_interrupted) 1487 break; 1488 } 1489 1490 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1491 __wait_all_discard_cmd(sbi, dpolicy); 1492 goto retry; 1493 } 1494 1495 if (!issued && io_interrupted) 1496 issued = -1; 1497 1498 return issued; 1499 } 1500 1501 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1502 { 1503 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1504 struct list_head *pend_list; 1505 struct discard_cmd *dc, *tmp; 1506 int i; 1507 bool dropped = false; 1508 1509 mutex_lock(&dcc->cmd_lock); 1510 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1511 pend_list = &dcc->pend_list[i]; 1512 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1513 f2fs_bug_on(sbi, dc->state != D_PREP); 1514 __remove_discard_cmd(sbi, dc); 1515 dropped = true; 1516 } 1517 } 1518 mutex_unlock(&dcc->cmd_lock); 1519 1520 return dropped; 1521 } 1522 1523 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1524 { 1525 __drop_discard_cmd(sbi); 1526 } 1527 1528 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1529 struct discard_cmd *dc) 1530 { 1531 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1532 unsigned int len = 0; 1533 1534 wait_for_completion_io(&dc->wait); 1535 mutex_lock(&dcc->cmd_lock); 1536 f2fs_bug_on(sbi, dc->state != D_DONE); 1537 dc->ref--; 1538 if (!dc->ref) { 1539 if (!dc->error) 1540 len = dc->len; 1541 __remove_discard_cmd(sbi, dc); 1542 } 1543 mutex_unlock(&dcc->cmd_lock); 1544 1545 return len; 1546 } 1547 1548 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1549 struct discard_policy *dpolicy, 1550 block_t start, block_t end) 1551 { 1552 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1553 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1554 &(dcc->fstrim_list) : &(dcc->wait_list); 1555 struct discard_cmd *dc = NULL, *iter, *tmp; 1556 unsigned int trimmed = 0; 1557 1558 next: 1559 dc = NULL; 1560 1561 mutex_lock(&dcc->cmd_lock); 1562 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1563 if (iter->lstart + iter->len <= start || end <= iter->lstart) 1564 continue; 1565 if (iter->len < dpolicy->granularity) 1566 continue; 1567 if (iter->state == D_DONE && !iter->ref) { 1568 wait_for_completion_io(&iter->wait); 1569 if (!iter->error) 1570 trimmed += iter->len; 1571 __remove_discard_cmd(sbi, iter); 1572 } else { 1573 iter->ref++; 1574 dc = iter; 1575 break; 1576 } 1577 } 1578 mutex_unlock(&dcc->cmd_lock); 1579 1580 if (dc) { 1581 trimmed += __wait_one_discard_bio(sbi, dc); 1582 goto next; 1583 } 1584 1585 return trimmed; 1586 } 1587 1588 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1589 struct discard_policy *dpolicy) 1590 { 1591 struct discard_policy dp; 1592 unsigned int discard_blks; 1593 1594 if (dpolicy) 1595 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1596 1597 /* wait all */ 1598 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1599 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1600 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1601 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1602 1603 return discard_blks; 1604 } 1605 1606 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1607 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1608 { 1609 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1610 struct discard_cmd *dc; 1611 bool need_wait = false; 1612 1613 mutex_lock(&dcc->cmd_lock); 1614 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1615 NULL, blkaddr); 1616 if (dc) { 1617 if (dc->state == D_PREP) { 1618 __punch_discard_cmd(sbi, dc, blkaddr); 1619 } else { 1620 dc->ref++; 1621 need_wait = true; 1622 } 1623 } 1624 mutex_unlock(&dcc->cmd_lock); 1625 1626 if (need_wait) 1627 __wait_one_discard_bio(sbi, dc); 1628 } 1629 1630 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1631 { 1632 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1633 1634 if (dcc && dcc->f2fs_issue_discard) { 1635 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1636 1637 dcc->f2fs_issue_discard = NULL; 1638 kthread_stop(discard_thread); 1639 } 1640 } 1641 1642 /* This comes from f2fs_put_super */ 1643 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1644 { 1645 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1646 struct discard_policy dpolicy; 1647 bool dropped; 1648 1649 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1650 dcc->discard_granularity); 1651 __issue_discard_cmd(sbi, &dpolicy); 1652 dropped = __drop_discard_cmd(sbi); 1653 1654 /* just to make sure there is no pending discard commands */ 1655 __wait_all_discard_cmd(sbi, NULL); 1656 1657 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1658 return dropped; 1659 } 1660 1661 static int issue_discard_thread(void *data) 1662 { 1663 struct f2fs_sb_info *sbi = data; 1664 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1665 wait_queue_head_t *q = &dcc->discard_wait_queue; 1666 struct discard_policy dpolicy; 1667 unsigned int wait_ms = dcc->min_discard_issue_time; 1668 int issued; 1669 1670 set_freezable(); 1671 1672 do { 1673 if (sbi->gc_mode == GC_URGENT_HIGH || 1674 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1675 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1676 else 1677 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1678 dcc->discard_granularity); 1679 1680 if (!atomic_read(&dcc->discard_cmd_cnt)) 1681 wait_ms = dpolicy.max_interval; 1682 1683 wait_event_interruptible_timeout(*q, 1684 kthread_should_stop() || freezing(current) || 1685 dcc->discard_wake, 1686 msecs_to_jiffies(wait_ms)); 1687 1688 if (dcc->discard_wake) 1689 dcc->discard_wake = 0; 1690 1691 /* clean up pending candidates before going to sleep */ 1692 if (atomic_read(&dcc->queued_discard)) 1693 __wait_all_discard_cmd(sbi, NULL); 1694 1695 if (try_to_freeze()) 1696 continue; 1697 if (f2fs_readonly(sbi->sb)) 1698 continue; 1699 if (kthread_should_stop()) 1700 return 0; 1701 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1702 wait_ms = dpolicy.max_interval; 1703 continue; 1704 } 1705 if (!atomic_read(&dcc->discard_cmd_cnt)) 1706 continue; 1707 1708 sb_start_intwrite(sbi->sb); 1709 1710 issued = __issue_discard_cmd(sbi, &dpolicy); 1711 if (issued > 0) { 1712 __wait_all_discard_cmd(sbi, &dpolicy); 1713 wait_ms = dpolicy.min_interval; 1714 } else if (issued == -1) { 1715 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1716 if (!wait_ms) 1717 wait_ms = dpolicy.mid_interval; 1718 } else { 1719 wait_ms = dpolicy.max_interval; 1720 } 1721 1722 sb_end_intwrite(sbi->sb); 1723 1724 } while (!kthread_should_stop()); 1725 return 0; 1726 } 1727 1728 #ifdef CONFIG_BLK_DEV_ZONED 1729 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1730 struct block_device *bdev, block_t blkstart, block_t blklen) 1731 { 1732 sector_t sector, nr_sects; 1733 block_t lblkstart = blkstart; 1734 int devi = 0; 1735 1736 if (f2fs_is_multi_device(sbi)) { 1737 devi = f2fs_target_device_index(sbi, blkstart); 1738 if (blkstart < FDEV(devi).start_blk || 1739 blkstart > FDEV(devi).end_blk) { 1740 f2fs_err(sbi, "Invalid block %x", blkstart); 1741 return -EIO; 1742 } 1743 blkstart -= FDEV(devi).start_blk; 1744 } 1745 1746 /* For sequential zones, reset the zone write pointer */ 1747 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1748 sector = SECTOR_FROM_BLOCK(blkstart); 1749 nr_sects = SECTOR_FROM_BLOCK(blklen); 1750 1751 if (sector & (bdev_zone_sectors(bdev) - 1) || 1752 nr_sects != bdev_zone_sectors(bdev)) { 1753 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1754 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1755 blkstart, blklen); 1756 return -EIO; 1757 } 1758 trace_f2fs_issue_reset_zone(bdev, blkstart); 1759 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1760 sector, nr_sects, GFP_NOFS); 1761 } 1762 1763 /* For conventional zones, use regular discard if supported */ 1764 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1765 } 1766 #endif 1767 1768 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1769 struct block_device *bdev, block_t blkstart, block_t blklen) 1770 { 1771 #ifdef CONFIG_BLK_DEV_ZONED 1772 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1773 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1774 #endif 1775 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1776 } 1777 1778 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1779 block_t blkstart, block_t blklen) 1780 { 1781 sector_t start = blkstart, len = 0; 1782 struct block_device *bdev; 1783 struct seg_entry *se; 1784 unsigned int offset; 1785 block_t i; 1786 int err = 0; 1787 1788 bdev = f2fs_target_device(sbi, blkstart, NULL); 1789 1790 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1791 if (i != start) { 1792 struct block_device *bdev2 = 1793 f2fs_target_device(sbi, i, NULL); 1794 1795 if (bdev2 != bdev) { 1796 err = __issue_discard_async(sbi, bdev, 1797 start, len); 1798 if (err) 1799 return err; 1800 bdev = bdev2; 1801 start = i; 1802 len = 0; 1803 } 1804 } 1805 1806 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1807 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1808 1809 if (f2fs_block_unit_discard(sbi) && 1810 !f2fs_test_and_set_bit(offset, se->discard_map)) 1811 sbi->discard_blks--; 1812 } 1813 1814 if (len) 1815 err = __issue_discard_async(sbi, bdev, start, len); 1816 return err; 1817 } 1818 1819 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1820 bool check_only) 1821 { 1822 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1823 int max_blocks = sbi->blocks_per_seg; 1824 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1825 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1826 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1827 unsigned long *discard_map = (unsigned long *)se->discard_map; 1828 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1829 unsigned int start = 0, end = -1; 1830 bool force = (cpc->reason & CP_DISCARD); 1831 struct discard_entry *de = NULL; 1832 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1833 int i; 1834 1835 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) || 1836 !f2fs_block_unit_discard(sbi)) 1837 return false; 1838 1839 if (!force) { 1840 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1841 SM_I(sbi)->dcc_info->nr_discards >= 1842 SM_I(sbi)->dcc_info->max_discards) 1843 return false; 1844 } 1845 1846 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1847 for (i = 0; i < entries; i++) 1848 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1849 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1850 1851 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1852 SM_I(sbi)->dcc_info->max_discards) { 1853 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1854 if (start >= max_blocks) 1855 break; 1856 1857 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1858 if (force && start && end != max_blocks 1859 && (end - start) < cpc->trim_minlen) 1860 continue; 1861 1862 if (check_only) 1863 return true; 1864 1865 if (!de) { 1866 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1867 GFP_F2FS_ZERO, true, NULL); 1868 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1869 list_add_tail(&de->list, head); 1870 } 1871 1872 for (i = start; i < end; i++) 1873 __set_bit_le(i, (void *)de->discard_map); 1874 1875 SM_I(sbi)->dcc_info->nr_discards += end - start; 1876 } 1877 return false; 1878 } 1879 1880 static void release_discard_addr(struct discard_entry *entry) 1881 { 1882 list_del(&entry->list); 1883 kmem_cache_free(discard_entry_slab, entry); 1884 } 1885 1886 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1887 { 1888 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1889 struct discard_entry *entry, *this; 1890 1891 /* drop caches */ 1892 list_for_each_entry_safe(entry, this, head, list) 1893 release_discard_addr(entry); 1894 } 1895 1896 /* 1897 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1898 */ 1899 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1900 { 1901 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1902 unsigned int segno; 1903 1904 mutex_lock(&dirty_i->seglist_lock); 1905 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1906 __set_test_and_free(sbi, segno, false); 1907 mutex_unlock(&dirty_i->seglist_lock); 1908 } 1909 1910 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1911 struct cp_control *cpc) 1912 { 1913 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1914 struct list_head *head = &dcc->entry_list; 1915 struct discard_entry *entry, *this; 1916 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1917 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1918 unsigned int start = 0, end = -1; 1919 unsigned int secno, start_segno; 1920 bool force = (cpc->reason & CP_DISCARD); 1921 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 1922 DISCARD_UNIT_SECTION; 1923 1924 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 1925 section_alignment = true; 1926 1927 mutex_lock(&dirty_i->seglist_lock); 1928 1929 while (1) { 1930 int i; 1931 1932 if (section_alignment && end != -1) 1933 end--; 1934 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1935 if (start >= MAIN_SEGS(sbi)) 1936 break; 1937 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1938 start + 1); 1939 1940 if (section_alignment) { 1941 start = rounddown(start, sbi->segs_per_sec); 1942 end = roundup(end, sbi->segs_per_sec); 1943 } 1944 1945 for (i = start; i < end; i++) { 1946 if (test_and_clear_bit(i, prefree_map)) 1947 dirty_i->nr_dirty[PRE]--; 1948 } 1949 1950 if (!f2fs_realtime_discard_enable(sbi)) 1951 continue; 1952 1953 if (force && start >= cpc->trim_start && 1954 (end - 1) <= cpc->trim_end) 1955 continue; 1956 1957 if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) { 1958 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1959 (end - start) << sbi->log_blocks_per_seg); 1960 continue; 1961 } 1962 next: 1963 secno = GET_SEC_FROM_SEG(sbi, start); 1964 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1965 if (!IS_CURSEC(sbi, secno) && 1966 !get_valid_blocks(sbi, start, true)) 1967 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1968 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1969 1970 start = start_segno + sbi->segs_per_sec; 1971 if (start < end) 1972 goto next; 1973 else 1974 end = start - 1; 1975 } 1976 mutex_unlock(&dirty_i->seglist_lock); 1977 1978 if (!f2fs_block_unit_discard(sbi)) 1979 goto wakeup; 1980 1981 /* send small discards */ 1982 list_for_each_entry_safe(entry, this, head, list) { 1983 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1984 bool is_valid = test_bit_le(0, entry->discard_map); 1985 1986 find_next: 1987 if (is_valid) { 1988 next_pos = find_next_zero_bit_le(entry->discard_map, 1989 sbi->blocks_per_seg, cur_pos); 1990 len = next_pos - cur_pos; 1991 1992 if (f2fs_sb_has_blkzoned(sbi) || 1993 (force && len < cpc->trim_minlen)) 1994 goto skip; 1995 1996 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 1997 len); 1998 total_len += len; 1999 } else { 2000 next_pos = find_next_bit_le(entry->discard_map, 2001 sbi->blocks_per_seg, cur_pos); 2002 } 2003 skip: 2004 cur_pos = next_pos; 2005 is_valid = !is_valid; 2006 2007 if (cur_pos < sbi->blocks_per_seg) 2008 goto find_next; 2009 2010 release_discard_addr(entry); 2011 dcc->nr_discards -= total_len; 2012 } 2013 2014 wakeup: 2015 wake_up_discard_thread(sbi, false); 2016 } 2017 2018 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2019 { 2020 dev_t dev = sbi->sb->s_bdev->bd_dev; 2021 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2022 int err = 0; 2023 2024 if (!f2fs_realtime_discard_enable(sbi)) 2025 return 0; 2026 2027 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2028 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2029 if (IS_ERR(dcc->f2fs_issue_discard)) 2030 err = PTR_ERR(dcc->f2fs_issue_discard); 2031 2032 return err; 2033 } 2034 2035 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2036 { 2037 struct discard_cmd_control *dcc; 2038 int err = 0, i; 2039 2040 if (SM_I(sbi)->dcc_info) { 2041 dcc = SM_I(sbi)->dcc_info; 2042 goto init_thread; 2043 } 2044 2045 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2046 if (!dcc) 2047 return -ENOMEM; 2048 2049 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2050 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2051 dcc->discard_granularity = sbi->blocks_per_seg; 2052 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2053 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2054 2055 INIT_LIST_HEAD(&dcc->entry_list); 2056 for (i = 0; i < MAX_PLIST_NUM; i++) 2057 INIT_LIST_HEAD(&dcc->pend_list[i]); 2058 INIT_LIST_HEAD(&dcc->wait_list); 2059 INIT_LIST_HEAD(&dcc->fstrim_list); 2060 mutex_init(&dcc->cmd_lock); 2061 atomic_set(&dcc->issued_discard, 0); 2062 atomic_set(&dcc->queued_discard, 0); 2063 atomic_set(&dcc->discard_cmd_cnt, 0); 2064 dcc->nr_discards = 0; 2065 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2066 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2067 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2068 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2069 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2070 dcc->undiscard_blks = 0; 2071 dcc->next_pos = 0; 2072 dcc->root = RB_ROOT_CACHED; 2073 dcc->rbtree_check = false; 2074 2075 init_waitqueue_head(&dcc->discard_wait_queue); 2076 SM_I(sbi)->dcc_info = dcc; 2077 init_thread: 2078 err = f2fs_start_discard_thread(sbi); 2079 if (err) { 2080 kfree(dcc); 2081 SM_I(sbi)->dcc_info = NULL; 2082 } 2083 2084 return err; 2085 } 2086 2087 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2088 { 2089 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2090 2091 if (!dcc) 2092 return; 2093 2094 f2fs_stop_discard_thread(sbi); 2095 2096 /* 2097 * Recovery can cache discard commands, so in error path of 2098 * fill_super(), it needs to give a chance to handle them. 2099 */ 2100 if (unlikely(atomic_read(&dcc->discard_cmd_cnt))) 2101 f2fs_issue_discard_timeout(sbi); 2102 2103 kfree(dcc); 2104 SM_I(sbi)->dcc_info = NULL; 2105 } 2106 2107 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2108 { 2109 struct sit_info *sit_i = SIT_I(sbi); 2110 2111 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2112 sit_i->dirty_sentries++; 2113 return false; 2114 } 2115 2116 return true; 2117 } 2118 2119 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2120 unsigned int segno, int modified) 2121 { 2122 struct seg_entry *se = get_seg_entry(sbi, segno); 2123 2124 se->type = type; 2125 if (modified) 2126 __mark_sit_entry_dirty(sbi, segno); 2127 } 2128 2129 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2130 block_t blkaddr) 2131 { 2132 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2133 2134 if (segno == NULL_SEGNO) 2135 return 0; 2136 return get_seg_entry(sbi, segno)->mtime; 2137 } 2138 2139 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2140 unsigned long long old_mtime) 2141 { 2142 struct seg_entry *se; 2143 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2144 unsigned long long ctime = get_mtime(sbi, false); 2145 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2146 2147 if (segno == NULL_SEGNO) 2148 return; 2149 2150 se = get_seg_entry(sbi, segno); 2151 2152 if (!se->mtime) 2153 se->mtime = mtime; 2154 else 2155 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2156 se->valid_blocks + 1); 2157 2158 if (ctime > SIT_I(sbi)->max_mtime) 2159 SIT_I(sbi)->max_mtime = ctime; 2160 } 2161 2162 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2163 { 2164 struct seg_entry *se; 2165 unsigned int segno, offset; 2166 long int new_vblocks; 2167 bool exist; 2168 #ifdef CONFIG_F2FS_CHECK_FS 2169 bool mir_exist; 2170 #endif 2171 2172 segno = GET_SEGNO(sbi, blkaddr); 2173 2174 se = get_seg_entry(sbi, segno); 2175 new_vblocks = se->valid_blocks + del; 2176 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2177 2178 f2fs_bug_on(sbi, (new_vblocks < 0 || 2179 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2180 2181 se->valid_blocks = new_vblocks; 2182 2183 /* Update valid block bitmap */ 2184 if (del > 0) { 2185 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2186 #ifdef CONFIG_F2FS_CHECK_FS 2187 mir_exist = f2fs_test_and_set_bit(offset, 2188 se->cur_valid_map_mir); 2189 if (unlikely(exist != mir_exist)) { 2190 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2191 blkaddr, exist); 2192 f2fs_bug_on(sbi, 1); 2193 } 2194 #endif 2195 if (unlikely(exist)) { 2196 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2197 blkaddr); 2198 f2fs_bug_on(sbi, 1); 2199 se->valid_blocks--; 2200 del = 0; 2201 } 2202 2203 if (f2fs_block_unit_discard(sbi) && 2204 !f2fs_test_and_set_bit(offset, se->discard_map)) 2205 sbi->discard_blks--; 2206 2207 /* 2208 * SSR should never reuse block which is checkpointed 2209 * or newly invalidated. 2210 */ 2211 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2212 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2213 se->ckpt_valid_blocks++; 2214 } 2215 } else { 2216 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2217 #ifdef CONFIG_F2FS_CHECK_FS 2218 mir_exist = f2fs_test_and_clear_bit(offset, 2219 se->cur_valid_map_mir); 2220 if (unlikely(exist != mir_exist)) { 2221 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2222 blkaddr, exist); 2223 f2fs_bug_on(sbi, 1); 2224 } 2225 #endif 2226 if (unlikely(!exist)) { 2227 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2228 blkaddr); 2229 f2fs_bug_on(sbi, 1); 2230 se->valid_blocks++; 2231 del = 0; 2232 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2233 /* 2234 * If checkpoints are off, we must not reuse data that 2235 * was used in the previous checkpoint. If it was used 2236 * before, we must track that to know how much space we 2237 * really have. 2238 */ 2239 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2240 spin_lock(&sbi->stat_lock); 2241 sbi->unusable_block_count++; 2242 spin_unlock(&sbi->stat_lock); 2243 } 2244 } 2245 2246 if (f2fs_block_unit_discard(sbi) && 2247 f2fs_test_and_clear_bit(offset, se->discard_map)) 2248 sbi->discard_blks++; 2249 } 2250 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2251 se->ckpt_valid_blocks += del; 2252 2253 __mark_sit_entry_dirty(sbi, segno); 2254 2255 /* update total number of valid blocks to be written in ckpt area */ 2256 SIT_I(sbi)->written_valid_blocks += del; 2257 2258 if (__is_large_section(sbi)) 2259 get_sec_entry(sbi, segno)->valid_blocks += del; 2260 } 2261 2262 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2263 { 2264 unsigned int segno = GET_SEGNO(sbi, addr); 2265 struct sit_info *sit_i = SIT_I(sbi); 2266 2267 f2fs_bug_on(sbi, addr == NULL_ADDR); 2268 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2269 return; 2270 2271 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2272 f2fs_invalidate_compress_page(sbi, addr); 2273 2274 /* add it into sit main buffer */ 2275 down_write(&sit_i->sentry_lock); 2276 2277 update_segment_mtime(sbi, addr, 0); 2278 update_sit_entry(sbi, addr, -1); 2279 2280 /* add it into dirty seglist */ 2281 locate_dirty_segment(sbi, segno); 2282 2283 up_write(&sit_i->sentry_lock); 2284 } 2285 2286 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2287 { 2288 struct sit_info *sit_i = SIT_I(sbi); 2289 unsigned int segno, offset; 2290 struct seg_entry *se; 2291 bool is_cp = false; 2292 2293 if (!__is_valid_data_blkaddr(blkaddr)) 2294 return true; 2295 2296 down_read(&sit_i->sentry_lock); 2297 2298 segno = GET_SEGNO(sbi, blkaddr); 2299 se = get_seg_entry(sbi, segno); 2300 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2301 2302 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2303 is_cp = true; 2304 2305 up_read(&sit_i->sentry_lock); 2306 2307 return is_cp; 2308 } 2309 2310 /* 2311 * This function should be resided under the curseg_mutex lock 2312 */ 2313 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2314 struct f2fs_summary *sum) 2315 { 2316 struct curseg_info *curseg = CURSEG_I(sbi, type); 2317 void *addr = curseg->sum_blk; 2318 2319 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2320 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2321 } 2322 2323 /* 2324 * Calculate the number of current summary pages for writing 2325 */ 2326 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2327 { 2328 int valid_sum_count = 0; 2329 int i, sum_in_page; 2330 2331 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2332 if (sbi->ckpt->alloc_type[i] == SSR) 2333 valid_sum_count += sbi->blocks_per_seg; 2334 else { 2335 if (for_ra) 2336 valid_sum_count += le16_to_cpu( 2337 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2338 else 2339 valid_sum_count += curseg_blkoff(sbi, i); 2340 } 2341 } 2342 2343 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2344 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2345 if (valid_sum_count <= sum_in_page) 2346 return 1; 2347 else if ((valid_sum_count - sum_in_page) <= 2348 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2349 return 2; 2350 return 3; 2351 } 2352 2353 /* 2354 * Caller should put this summary page 2355 */ 2356 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2357 { 2358 if (unlikely(f2fs_cp_error(sbi))) 2359 return ERR_PTR(-EIO); 2360 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2361 } 2362 2363 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2364 void *src, block_t blk_addr) 2365 { 2366 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2367 2368 memcpy(page_address(page), src, PAGE_SIZE); 2369 set_page_dirty(page); 2370 f2fs_put_page(page, 1); 2371 } 2372 2373 static void write_sum_page(struct f2fs_sb_info *sbi, 2374 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2375 { 2376 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2377 } 2378 2379 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2380 int type, block_t blk_addr) 2381 { 2382 struct curseg_info *curseg = CURSEG_I(sbi, type); 2383 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2384 struct f2fs_summary_block *src = curseg->sum_blk; 2385 struct f2fs_summary_block *dst; 2386 2387 dst = (struct f2fs_summary_block *)page_address(page); 2388 memset(dst, 0, PAGE_SIZE); 2389 2390 mutex_lock(&curseg->curseg_mutex); 2391 2392 down_read(&curseg->journal_rwsem); 2393 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2394 up_read(&curseg->journal_rwsem); 2395 2396 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2397 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2398 2399 mutex_unlock(&curseg->curseg_mutex); 2400 2401 set_page_dirty(page); 2402 f2fs_put_page(page, 1); 2403 } 2404 2405 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2406 struct curseg_info *curseg, int type) 2407 { 2408 unsigned int segno = curseg->segno + 1; 2409 struct free_segmap_info *free_i = FREE_I(sbi); 2410 2411 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2412 return !test_bit(segno, free_i->free_segmap); 2413 return 0; 2414 } 2415 2416 /* 2417 * Find a new segment from the free segments bitmap to right order 2418 * This function should be returned with success, otherwise BUG 2419 */ 2420 static void get_new_segment(struct f2fs_sb_info *sbi, 2421 unsigned int *newseg, bool new_sec, int dir) 2422 { 2423 struct free_segmap_info *free_i = FREE_I(sbi); 2424 unsigned int segno, secno, zoneno; 2425 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2426 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2427 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2428 unsigned int left_start = hint; 2429 bool init = true; 2430 int go_left = 0; 2431 int i; 2432 2433 spin_lock(&free_i->segmap_lock); 2434 2435 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2436 segno = find_next_zero_bit(free_i->free_segmap, 2437 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2438 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2439 goto got_it; 2440 } 2441 find_other_zone: 2442 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2443 if (secno >= MAIN_SECS(sbi)) { 2444 if (dir == ALLOC_RIGHT) { 2445 secno = find_first_zero_bit(free_i->free_secmap, 2446 MAIN_SECS(sbi)); 2447 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2448 } else { 2449 go_left = 1; 2450 left_start = hint - 1; 2451 } 2452 } 2453 if (go_left == 0) 2454 goto skip_left; 2455 2456 while (test_bit(left_start, free_i->free_secmap)) { 2457 if (left_start > 0) { 2458 left_start--; 2459 continue; 2460 } 2461 left_start = find_first_zero_bit(free_i->free_secmap, 2462 MAIN_SECS(sbi)); 2463 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2464 break; 2465 } 2466 secno = left_start; 2467 skip_left: 2468 segno = GET_SEG_FROM_SEC(sbi, secno); 2469 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2470 2471 /* give up on finding another zone */ 2472 if (!init) 2473 goto got_it; 2474 if (sbi->secs_per_zone == 1) 2475 goto got_it; 2476 if (zoneno == old_zoneno) 2477 goto got_it; 2478 if (dir == ALLOC_LEFT) { 2479 if (!go_left && zoneno + 1 >= total_zones) 2480 goto got_it; 2481 if (go_left && zoneno == 0) 2482 goto got_it; 2483 } 2484 for (i = 0; i < NR_CURSEG_TYPE; i++) 2485 if (CURSEG_I(sbi, i)->zone == zoneno) 2486 break; 2487 2488 if (i < NR_CURSEG_TYPE) { 2489 /* zone is in user, try another */ 2490 if (go_left) 2491 hint = zoneno * sbi->secs_per_zone - 1; 2492 else if (zoneno + 1 >= total_zones) 2493 hint = 0; 2494 else 2495 hint = (zoneno + 1) * sbi->secs_per_zone; 2496 init = false; 2497 goto find_other_zone; 2498 } 2499 got_it: 2500 /* set it as dirty segment in free segmap */ 2501 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2502 __set_inuse(sbi, segno); 2503 *newseg = segno; 2504 spin_unlock(&free_i->segmap_lock); 2505 } 2506 2507 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2508 { 2509 struct curseg_info *curseg = CURSEG_I(sbi, type); 2510 struct summary_footer *sum_footer; 2511 unsigned short seg_type = curseg->seg_type; 2512 2513 curseg->inited = true; 2514 curseg->segno = curseg->next_segno; 2515 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2516 curseg->next_blkoff = 0; 2517 curseg->next_segno = NULL_SEGNO; 2518 2519 sum_footer = &(curseg->sum_blk->footer); 2520 memset(sum_footer, 0, sizeof(struct summary_footer)); 2521 2522 sanity_check_seg_type(sbi, seg_type); 2523 2524 if (IS_DATASEG(seg_type)) 2525 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2526 if (IS_NODESEG(seg_type)) 2527 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2528 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2529 } 2530 2531 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2532 { 2533 struct curseg_info *curseg = CURSEG_I(sbi, type); 2534 unsigned short seg_type = curseg->seg_type; 2535 2536 sanity_check_seg_type(sbi, seg_type); 2537 if (f2fs_need_rand_seg(sbi)) 2538 return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec); 2539 2540 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2541 if (__is_large_section(sbi)) 2542 return curseg->segno; 2543 2544 /* inmem log may not locate on any segment after mount */ 2545 if (!curseg->inited) 2546 return 0; 2547 2548 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2549 return 0; 2550 2551 if (test_opt(sbi, NOHEAP) && 2552 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2553 return 0; 2554 2555 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2556 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2557 2558 /* find segments from 0 to reuse freed segments */ 2559 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2560 return 0; 2561 2562 return curseg->segno; 2563 } 2564 2565 /* 2566 * Allocate a current working segment. 2567 * This function always allocates a free segment in LFS manner. 2568 */ 2569 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2570 { 2571 struct curseg_info *curseg = CURSEG_I(sbi, type); 2572 unsigned short seg_type = curseg->seg_type; 2573 unsigned int segno = curseg->segno; 2574 int dir = ALLOC_LEFT; 2575 2576 if (curseg->inited) 2577 write_sum_page(sbi, curseg->sum_blk, 2578 GET_SUM_BLOCK(sbi, segno)); 2579 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2580 dir = ALLOC_RIGHT; 2581 2582 if (test_opt(sbi, NOHEAP)) 2583 dir = ALLOC_RIGHT; 2584 2585 segno = __get_next_segno(sbi, type); 2586 get_new_segment(sbi, &segno, new_sec, dir); 2587 curseg->next_segno = segno; 2588 reset_curseg(sbi, type, 1); 2589 curseg->alloc_type = LFS; 2590 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2591 curseg->fragment_remained_chunk = 2592 prandom_u32() % sbi->max_fragment_chunk + 1; 2593 } 2594 2595 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2596 int segno, block_t start) 2597 { 2598 struct seg_entry *se = get_seg_entry(sbi, segno); 2599 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2600 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2601 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2602 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2603 int i; 2604 2605 for (i = 0; i < entries; i++) 2606 target_map[i] = ckpt_map[i] | cur_map[i]; 2607 2608 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2609 } 2610 2611 /* 2612 * If a segment is written by LFS manner, next block offset is just obtained 2613 * by increasing the current block offset. However, if a segment is written by 2614 * SSR manner, next block offset obtained by calling __next_free_blkoff 2615 */ 2616 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2617 struct curseg_info *seg) 2618 { 2619 if (seg->alloc_type == SSR) { 2620 seg->next_blkoff = 2621 __next_free_blkoff(sbi, seg->segno, 2622 seg->next_blkoff + 1); 2623 } else { 2624 seg->next_blkoff++; 2625 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) { 2626 /* To allocate block chunks in different sizes, use random number */ 2627 if (--seg->fragment_remained_chunk <= 0) { 2628 seg->fragment_remained_chunk = 2629 prandom_u32() % sbi->max_fragment_chunk + 1; 2630 seg->next_blkoff += 2631 prandom_u32() % sbi->max_fragment_hole + 1; 2632 } 2633 } 2634 } 2635 } 2636 2637 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2638 { 2639 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2640 } 2641 2642 /* 2643 * This function always allocates a used segment(from dirty seglist) by SSR 2644 * manner, so it should recover the existing segment information of valid blocks 2645 */ 2646 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush) 2647 { 2648 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2649 struct curseg_info *curseg = CURSEG_I(sbi, type); 2650 unsigned int new_segno = curseg->next_segno; 2651 struct f2fs_summary_block *sum_node; 2652 struct page *sum_page; 2653 2654 if (flush) 2655 write_sum_page(sbi, curseg->sum_blk, 2656 GET_SUM_BLOCK(sbi, curseg->segno)); 2657 2658 __set_test_and_inuse(sbi, new_segno); 2659 2660 mutex_lock(&dirty_i->seglist_lock); 2661 __remove_dirty_segment(sbi, new_segno, PRE); 2662 __remove_dirty_segment(sbi, new_segno, DIRTY); 2663 mutex_unlock(&dirty_i->seglist_lock); 2664 2665 reset_curseg(sbi, type, 1); 2666 curseg->alloc_type = SSR; 2667 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2668 2669 sum_page = f2fs_get_sum_page(sbi, new_segno); 2670 if (IS_ERR(sum_page)) { 2671 /* GC won't be able to use stale summary pages by cp_error */ 2672 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2673 return; 2674 } 2675 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2676 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2677 f2fs_put_page(sum_page, 1); 2678 } 2679 2680 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2681 int alloc_mode, unsigned long long age); 2682 2683 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2684 int target_type, int alloc_mode, 2685 unsigned long long age) 2686 { 2687 struct curseg_info *curseg = CURSEG_I(sbi, type); 2688 2689 curseg->seg_type = target_type; 2690 2691 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2692 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2693 2694 curseg->seg_type = se->type; 2695 change_curseg(sbi, type, true); 2696 } else { 2697 /* allocate cold segment by default */ 2698 curseg->seg_type = CURSEG_COLD_DATA; 2699 new_curseg(sbi, type, true); 2700 } 2701 stat_inc_seg_type(sbi, curseg); 2702 } 2703 2704 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2705 { 2706 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2707 2708 if (!sbi->am.atgc_enabled) 2709 return; 2710 2711 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2712 2713 mutex_lock(&curseg->curseg_mutex); 2714 down_write(&SIT_I(sbi)->sentry_lock); 2715 2716 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2717 2718 up_write(&SIT_I(sbi)->sentry_lock); 2719 mutex_unlock(&curseg->curseg_mutex); 2720 2721 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2722 2723 } 2724 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2725 { 2726 __f2fs_init_atgc_curseg(sbi); 2727 } 2728 2729 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2730 { 2731 struct curseg_info *curseg = CURSEG_I(sbi, type); 2732 2733 mutex_lock(&curseg->curseg_mutex); 2734 if (!curseg->inited) 2735 goto out; 2736 2737 if (get_valid_blocks(sbi, curseg->segno, false)) { 2738 write_sum_page(sbi, curseg->sum_blk, 2739 GET_SUM_BLOCK(sbi, curseg->segno)); 2740 } else { 2741 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2742 __set_test_and_free(sbi, curseg->segno, true); 2743 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2744 } 2745 out: 2746 mutex_unlock(&curseg->curseg_mutex); 2747 } 2748 2749 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2750 { 2751 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2752 2753 if (sbi->am.atgc_enabled) 2754 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2755 } 2756 2757 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2758 { 2759 struct curseg_info *curseg = CURSEG_I(sbi, type); 2760 2761 mutex_lock(&curseg->curseg_mutex); 2762 if (!curseg->inited) 2763 goto out; 2764 if (get_valid_blocks(sbi, curseg->segno, false)) 2765 goto out; 2766 2767 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2768 __set_test_and_inuse(sbi, curseg->segno); 2769 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2770 out: 2771 mutex_unlock(&curseg->curseg_mutex); 2772 } 2773 2774 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2775 { 2776 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2777 2778 if (sbi->am.atgc_enabled) 2779 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2780 } 2781 2782 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2783 int alloc_mode, unsigned long long age) 2784 { 2785 struct curseg_info *curseg = CURSEG_I(sbi, type); 2786 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2787 unsigned segno = NULL_SEGNO; 2788 unsigned short seg_type = curseg->seg_type; 2789 int i, cnt; 2790 bool reversed = false; 2791 2792 sanity_check_seg_type(sbi, seg_type); 2793 2794 /* f2fs_need_SSR() already forces to do this */ 2795 if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2796 curseg->next_segno = segno; 2797 return 1; 2798 } 2799 2800 /* For node segments, let's do SSR more intensively */ 2801 if (IS_NODESEG(seg_type)) { 2802 if (seg_type >= CURSEG_WARM_NODE) { 2803 reversed = true; 2804 i = CURSEG_COLD_NODE; 2805 } else { 2806 i = CURSEG_HOT_NODE; 2807 } 2808 cnt = NR_CURSEG_NODE_TYPE; 2809 } else { 2810 if (seg_type >= CURSEG_WARM_DATA) { 2811 reversed = true; 2812 i = CURSEG_COLD_DATA; 2813 } else { 2814 i = CURSEG_HOT_DATA; 2815 } 2816 cnt = NR_CURSEG_DATA_TYPE; 2817 } 2818 2819 for (; cnt-- > 0; reversed ? i-- : i++) { 2820 if (i == seg_type) 2821 continue; 2822 if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 2823 curseg->next_segno = segno; 2824 return 1; 2825 } 2826 } 2827 2828 /* find valid_blocks=0 in dirty list */ 2829 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2830 segno = get_free_segment(sbi); 2831 if (segno != NULL_SEGNO) { 2832 curseg->next_segno = segno; 2833 return 1; 2834 } 2835 } 2836 return 0; 2837 } 2838 2839 /* 2840 * flush out current segment and replace it with new segment 2841 * This function should be returned with success, otherwise BUG 2842 */ 2843 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2844 int type, bool force) 2845 { 2846 struct curseg_info *curseg = CURSEG_I(sbi, type); 2847 2848 if (force) 2849 new_curseg(sbi, type, true); 2850 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2851 curseg->seg_type == CURSEG_WARM_NODE) 2852 new_curseg(sbi, type, false); 2853 else if (curseg->alloc_type == LFS && 2854 is_next_segment_free(sbi, curseg, type) && 2855 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2856 new_curseg(sbi, type, false); 2857 else if (f2fs_need_SSR(sbi) && 2858 get_ssr_segment(sbi, type, SSR, 0)) 2859 change_curseg(sbi, type, true); 2860 else 2861 new_curseg(sbi, type, false); 2862 2863 stat_inc_seg_type(sbi, curseg); 2864 } 2865 2866 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 2867 unsigned int start, unsigned int end) 2868 { 2869 struct curseg_info *curseg = CURSEG_I(sbi, type); 2870 unsigned int segno; 2871 2872 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2873 mutex_lock(&curseg->curseg_mutex); 2874 down_write(&SIT_I(sbi)->sentry_lock); 2875 2876 segno = CURSEG_I(sbi, type)->segno; 2877 if (segno < start || segno > end) 2878 goto unlock; 2879 2880 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 2881 change_curseg(sbi, type, true); 2882 else 2883 new_curseg(sbi, type, true); 2884 2885 stat_inc_seg_type(sbi, curseg); 2886 2887 locate_dirty_segment(sbi, segno); 2888 unlock: 2889 up_write(&SIT_I(sbi)->sentry_lock); 2890 2891 if (segno != curseg->segno) 2892 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 2893 type, segno, curseg->segno); 2894 2895 mutex_unlock(&curseg->curseg_mutex); 2896 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2897 } 2898 2899 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 2900 bool new_sec, bool force) 2901 { 2902 struct curseg_info *curseg = CURSEG_I(sbi, type); 2903 unsigned int old_segno; 2904 2905 if (!curseg->inited) 2906 goto alloc; 2907 2908 if (force || curseg->next_blkoff || 2909 get_valid_blocks(sbi, curseg->segno, new_sec)) 2910 goto alloc; 2911 2912 if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 2913 return; 2914 alloc: 2915 old_segno = curseg->segno; 2916 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 2917 locate_dirty_segment(sbi, old_segno); 2918 } 2919 2920 static void __allocate_new_section(struct f2fs_sb_info *sbi, 2921 int type, bool force) 2922 { 2923 __allocate_new_segment(sbi, type, true, force); 2924 } 2925 2926 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 2927 { 2928 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2929 down_write(&SIT_I(sbi)->sentry_lock); 2930 __allocate_new_section(sbi, type, force); 2931 up_write(&SIT_I(sbi)->sentry_lock); 2932 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2933 } 2934 2935 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2936 { 2937 int i; 2938 2939 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2940 down_write(&SIT_I(sbi)->sentry_lock); 2941 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 2942 __allocate_new_segment(sbi, i, false, false); 2943 up_write(&SIT_I(sbi)->sentry_lock); 2944 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2945 } 2946 2947 static const struct segment_allocation default_salloc_ops = { 2948 .allocate_segment = allocate_segment_by_default, 2949 }; 2950 2951 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2952 struct cp_control *cpc) 2953 { 2954 __u64 trim_start = cpc->trim_start; 2955 bool has_candidate = false; 2956 2957 down_write(&SIT_I(sbi)->sentry_lock); 2958 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2959 if (add_discard_addrs(sbi, cpc, true)) { 2960 has_candidate = true; 2961 break; 2962 } 2963 } 2964 up_write(&SIT_I(sbi)->sentry_lock); 2965 2966 cpc->trim_start = trim_start; 2967 return has_candidate; 2968 } 2969 2970 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2971 struct discard_policy *dpolicy, 2972 unsigned int start, unsigned int end) 2973 { 2974 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2975 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2976 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2977 struct discard_cmd *dc; 2978 struct blk_plug plug; 2979 int issued; 2980 unsigned int trimmed = 0; 2981 2982 next: 2983 issued = 0; 2984 2985 mutex_lock(&dcc->cmd_lock); 2986 if (unlikely(dcc->rbtree_check)) 2987 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2988 &dcc->root, false)); 2989 2990 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2991 NULL, start, 2992 (struct rb_entry **)&prev_dc, 2993 (struct rb_entry **)&next_dc, 2994 &insert_p, &insert_parent, true, NULL); 2995 if (!dc) 2996 dc = next_dc; 2997 2998 blk_start_plug(&plug); 2999 3000 while (dc && dc->lstart <= end) { 3001 struct rb_node *node; 3002 int err = 0; 3003 3004 if (dc->len < dpolicy->granularity) 3005 goto skip; 3006 3007 if (dc->state != D_PREP) { 3008 list_move_tail(&dc->list, &dcc->fstrim_list); 3009 goto skip; 3010 } 3011 3012 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3013 3014 if (issued >= dpolicy->max_requests) { 3015 start = dc->lstart + dc->len; 3016 3017 if (err) 3018 __remove_discard_cmd(sbi, dc); 3019 3020 blk_finish_plug(&plug); 3021 mutex_unlock(&dcc->cmd_lock); 3022 trimmed += __wait_all_discard_cmd(sbi, NULL); 3023 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3024 goto next; 3025 } 3026 skip: 3027 node = rb_next(&dc->rb_node); 3028 if (err) 3029 __remove_discard_cmd(sbi, dc); 3030 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3031 3032 if (fatal_signal_pending(current)) 3033 break; 3034 } 3035 3036 blk_finish_plug(&plug); 3037 mutex_unlock(&dcc->cmd_lock); 3038 3039 return trimmed; 3040 } 3041 3042 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3043 { 3044 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3045 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3046 unsigned int start_segno, end_segno; 3047 block_t start_block, end_block; 3048 struct cp_control cpc; 3049 struct discard_policy dpolicy; 3050 unsigned long long trimmed = 0; 3051 int err = 0; 3052 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3053 3054 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3055 return -EINVAL; 3056 3057 if (end < MAIN_BLKADDR(sbi)) 3058 goto out; 3059 3060 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3061 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3062 return -EFSCORRUPTED; 3063 } 3064 3065 /* start/end segment number in main_area */ 3066 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3067 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3068 GET_SEGNO(sbi, end); 3069 if (need_align) { 3070 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3071 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3072 } 3073 3074 cpc.reason = CP_DISCARD; 3075 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3076 cpc.trim_start = start_segno; 3077 cpc.trim_end = end_segno; 3078 3079 if (sbi->discard_blks == 0) 3080 goto out; 3081 3082 f2fs_down_write(&sbi->gc_lock); 3083 err = f2fs_write_checkpoint(sbi, &cpc); 3084 f2fs_up_write(&sbi->gc_lock); 3085 if (err) 3086 goto out; 3087 3088 /* 3089 * We filed discard candidates, but actually we don't need to wait for 3090 * all of them, since they'll be issued in idle time along with runtime 3091 * discard option. User configuration looks like using runtime discard 3092 * or periodic fstrim instead of it. 3093 */ 3094 if (f2fs_realtime_discard_enable(sbi)) 3095 goto out; 3096 3097 start_block = START_BLOCK(sbi, start_segno); 3098 end_block = START_BLOCK(sbi, end_segno + 1); 3099 3100 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3101 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3102 start_block, end_block); 3103 3104 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3105 start_block, end_block); 3106 out: 3107 if (!err) 3108 range->len = F2FS_BLK_TO_BYTES(trimmed); 3109 return err; 3110 } 3111 3112 static bool __has_curseg_space(struct f2fs_sb_info *sbi, 3113 struct curseg_info *curseg) 3114 { 3115 return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi, 3116 curseg->segno); 3117 } 3118 3119 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3120 { 3121 switch (hint) { 3122 case WRITE_LIFE_SHORT: 3123 return CURSEG_HOT_DATA; 3124 case WRITE_LIFE_EXTREME: 3125 return CURSEG_COLD_DATA; 3126 default: 3127 return CURSEG_WARM_DATA; 3128 } 3129 } 3130 3131 static int __get_segment_type_2(struct f2fs_io_info *fio) 3132 { 3133 if (fio->type == DATA) 3134 return CURSEG_HOT_DATA; 3135 else 3136 return CURSEG_HOT_NODE; 3137 } 3138 3139 static int __get_segment_type_4(struct f2fs_io_info *fio) 3140 { 3141 if (fio->type == DATA) { 3142 struct inode *inode = fio->page->mapping->host; 3143 3144 if (S_ISDIR(inode->i_mode)) 3145 return CURSEG_HOT_DATA; 3146 else 3147 return CURSEG_COLD_DATA; 3148 } else { 3149 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3150 return CURSEG_WARM_NODE; 3151 else 3152 return CURSEG_COLD_NODE; 3153 } 3154 } 3155 3156 static int __get_segment_type_6(struct f2fs_io_info *fio) 3157 { 3158 if (fio->type == DATA) { 3159 struct inode *inode = fio->page->mapping->host; 3160 3161 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3162 return CURSEG_COLD_DATA_PINNED; 3163 3164 if (page_private_gcing(fio->page)) { 3165 if (fio->sbi->am.atgc_enabled && 3166 (fio->io_type == FS_DATA_IO) && 3167 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3168 return CURSEG_ALL_DATA_ATGC; 3169 else 3170 return CURSEG_COLD_DATA; 3171 } 3172 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3173 return CURSEG_COLD_DATA; 3174 if (file_is_hot(inode) || 3175 is_inode_flag_set(inode, FI_HOT_DATA) || 3176 f2fs_is_cow_file(inode)) 3177 return CURSEG_HOT_DATA; 3178 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3179 } else { 3180 if (IS_DNODE(fio->page)) 3181 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3182 CURSEG_HOT_NODE; 3183 return CURSEG_COLD_NODE; 3184 } 3185 } 3186 3187 static int __get_segment_type(struct f2fs_io_info *fio) 3188 { 3189 int type = 0; 3190 3191 switch (F2FS_OPTION(fio->sbi).active_logs) { 3192 case 2: 3193 type = __get_segment_type_2(fio); 3194 break; 3195 case 4: 3196 type = __get_segment_type_4(fio); 3197 break; 3198 case 6: 3199 type = __get_segment_type_6(fio); 3200 break; 3201 default: 3202 f2fs_bug_on(fio->sbi, true); 3203 } 3204 3205 if (IS_HOT(type)) 3206 fio->temp = HOT; 3207 else if (IS_WARM(type)) 3208 fio->temp = WARM; 3209 else 3210 fio->temp = COLD; 3211 return type; 3212 } 3213 3214 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3215 block_t old_blkaddr, block_t *new_blkaddr, 3216 struct f2fs_summary *sum, int type, 3217 struct f2fs_io_info *fio) 3218 { 3219 struct sit_info *sit_i = SIT_I(sbi); 3220 struct curseg_info *curseg = CURSEG_I(sbi, type); 3221 unsigned long long old_mtime; 3222 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3223 struct seg_entry *se = NULL; 3224 3225 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3226 3227 mutex_lock(&curseg->curseg_mutex); 3228 down_write(&sit_i->sentry_lock); 3229 3230 if (from_gc) { 3231 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3232 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3233 sanity_check_seg_type(sbi, se->type); 3234 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3235 } 3236 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3237 3238 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3239 3240 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3241 3242 /* 3243 * __add_sum_entry should be resided under the curseg_mutex 3244 * because, this function updates a summary entry in the 3245 * current summary block. 3246 */ 3247 __add_sum_entry(sbi, type, sum); 3248 3249 __refresh_next_blkoff(sbi, curseg); 3250 3251 stat_inc_block_count(sbi, curseg); 3252 3253 if (from_gc) { 3254 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3255 } else { 3256 update_segment_mtime(sbi, old_blkaddr, 0); 3257 old_mtime = 0; 3258 } 3259 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3260 3261 /* 3262 * SIT information should be updated before segment allocation, 3263 * since SSR needs latest valid block information. 3264 */ 3265 update_sit_entry(sbi, *new_blkaddr, 1); 3266 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3267 update_sit_entry(sbi, old_blkaddr, -1); 3268 3269 if (!__has_curseg_space(sbi, curseg)) { 3270 if (from_gc) 3271 get_atssr_segment(sbi, type, se->type, 3272 AT_SSR, se->mtime); 3273 else 3274 sit_i->s_ops->allocate_segment(sbi, type, false); 3275 } 3276 /* 3277 * segment dirty status should be updated after segment allocation, 3278 * so we just need to update status only one time after previous 3279 * segment being closed. 3280 */ 3281 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3282 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3283 3284 up_write(&sit_i->sentry_lock); 3285 3286 if (page && IS_NODESEG(type)) { 3287 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3288 3289 f2fs_inode_chksum_set(sbi, page); 3290 } 3291 3292 if (fio) { 3293 struct f2fs_bio_info *io; 3294 3295 if (F2FS_IO_ALIGNED(sbi)) 3296 fio->retry = false; 3297 3298 INIT_LIST_HEAD(&fio->list); 3299 fio->in_list = true; 3300 io = sbi->write_io[fio->type] + fio->temp; 3301 spin_lock(&io->io_lock); 3302 list_add_tail(&fio->list, &io->io_list); 3303 spin_unlock(&io->io_lock); 3304 } 3305 3306 mutex_unlock(&curseg->curseg_mutex); 3307 3308 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3309 } 3310 3311 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3312 block_t blkaddr, unsigned int blkcnt) 3313 { 3314 if (!f2fs_is_multi_device(sbi)) 3315 return; 3316 3317 while (1) { 3318 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3319 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3320 3321 /* update device state for fsync */ 3322 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3323 3324 /* update device state for checkpoint */ 3325 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3326 spin_lock(&sbi->dev_lock); 3327 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3328 spin_unlock(&sbi->dev_lock); 3329 } 3330 3331 if (blkcnt <= blks) 3332 break; 3333 blkcnt -= blks; 3334 blkaddr += blks; 3335 } 3336 } 3337 3338 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3339 { 3340 int type = __get_segment_type(fio); 3341 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3342 3343 if (keep_order) 3344 f2fs_down_read(&fio->sbi->io_order_lock); 3345 reallocate: 3346 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3347 &fio->new_blkaddr, sum, type, fio); 3348 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) { 3349 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3350 fio->old_blkaddr, fio->old_blkaddr); 3351 f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr); 3352 } 3353 3354 /* writeout dirty page into bdev */ 3355 f2fs_submit_page_write(fio); 3356 if (fio->retry) { 3357 fio->old_blkaddr = fio->new_blkaddr; 3358 goto reallocate; 3359 } 3360 3361 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3362 3363 if (keep_order) 3364 f2fs_up_read(&fio->sbi->io_order_lock); 3365 } 3366 3367 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3368 enum iostat_type io_type) 3369 { 3370 struct f2fs_io_info fio = { 3371 .sbi = sbi, 3372 .type = META, 3373 .temp = HOT, 3374 .op = REQ_OP_WRITE, 3375 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3376 .old_blkaddr = page->index, 3377 .new_blkaddr = page->index, 3378 .page = page, 3379 .encrypted_page = NULL, 3380 .in_list = false, 3381 }; 3382 3383 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3384 fio.op_flags &= ~REQ_META; 3385 3386 set_page_writeback(page); 3387 ClearPageError(page); 3388 f2fs_submit_page_write(&fio); 3389 3390 stat_inc_meta_count(sbi, page->index); 3391 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3392 } 3393 3394 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3395 { 3396 struct f2fs_summary sum; 3397 3398 set_summary(&sum, nid, 0, 0); 3399 do_write_page(&sum, fio); 3400 3401 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3402 } 3403 3404 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3405 struct f2fs_io_info *fio) 3406 { 3407 struct f2fs_sb_info *sbi = fio->sbi; 3408 struct f2fs_summary sum; 3409 3410 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3411 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3412 do_write_page(&sum, fio); 3413 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3414 3415 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3416 } 3417 3418 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3419 { 3420 int err; 3421 struct f2fs_sb_info *sbi = fio->sbi; 3422 unsigned int segno; 3423 3424 fio->new_blkaddr = fio->old_blkaddr; 3425 /* i/o temperature is needed for passing down write hints */ 3426 __get_segment_type(fio); 3427 3428 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3429 3430 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3431 set_sbi_flag(sbi, SBI_NEED_FSCK); 3432 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3433 __func__, segno); 3434 err = -EFSCORRUPTED; 3435 goto drop_bio; 3436 } 3437 3438 if (f2fs_cp_error(sbi)) { 3439 err = -EIO; 3440 goto drop_bio; 3441 } 3442 3443 if (fio->post_read) 3444 invalidate_mapping_pages(META_MAPPING(sbi), 3445 fio->new_blkaddr, fio->new_blkaddr); 3446 3447 stat_inc_inplace_blocks(fio->sbi); 3448 3449 if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE))) 3450 err = f2fs_merge_page_bio(fio); 3451 else 3452 err = f2fs_submit_page_bio(fio); 3453 if (!err) { 3454 f2fs_update_device_state(fio->sbi, fio->ino, 3455 fio->new_blkaddr, 1); 3456 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3457 } 3458 3459 return err; 3460 drop_bio: 3461 if (fio->bio && *(fio->bio)) { 3462 struct bio *bio = *(fio->bio); 3463 3464 bio->bi_status = BLK_STS_IOERR; 3465 bio_endio(bio); 3466 *(fio->bio) = NULL; 3467 } 3468 return err; 3469 } 3470 3471 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3472 unsigned int segno) 3473 { 3474 int i; 3475 3476 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3477 if (CURSEG_I(sbi, i)->segno == segno) 3478 break; 3479 } 3480 return i; 3481 } 3482 3483 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3484 block_t old_blkaddr, block_t new_blkaddr, 3485 bool recover_curseg, bool recover_newaddr, 3486 bool from_gc) 3487 { 3488 struct sit_info *sit_i = SIT_I(sbi); 3489 struct curseg_info *curseg; 3490 unsigned int segno, old_cursegno; 3491 struct seg_entry *se; 3492 int type; 3493 unsigned short old_blkoff; 3494 unsigned char old_alloc_type; 3495 3496 segno = GET_SEGNO(sbi, new_blkaddr); 3497 se = get_seg_entry(sbi, segno); 3498 type = se->type; 3499 3500 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3501 3502 if (!recover_curseg) { 3503 /* for recovery flow */ 3504 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3505 if (old_blkaddr == NULL_ADDR) 3506 type = CURSEG_COLD_DATA; 3507 else 3508 type = CURSEG_WARM_DATA; 3509 } 3510 } else { 3511 if (IS_CURSEG(sbi, segno)) { 3512 /* se->type is volatile as SSR allocation */ 3513 type = __f2fs_get_curseg(sbi, segno); 3514 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3515 } else { 3516 type = CURSEG_WARM_DATA; 3517 } 3518 } 3519 3520 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3521 curseg = CURSEG_I(sbi, type); 3522 3523 mutex_lock(&curseg->curseg_mutex); 3524 down_write(&sit_i->sentry_lock); 3525 3526 old_cursegno = curseg->segno; 3527 old_blkoff = curseg->next_blkoff; 3528 old_alloc_type = curseg->alloc_type; 3529 3530 /* change the current segment */ 3531 if (segno != curseg->segno) { 3532 curseg->next_segno = segno; 3533 change_curseg(sbi, type, true); 3534 } 3535 3536 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3537 __add_sum_entry(sbi, type, sum); 3538 3539 if (!recover_curseg || recover_newaddr) { 3540 if (!from_gc) 3541 update_segment_mtime(sbi, new_blkaddr, 0); 3542 update_sit_entry(sbi, new_blkaddr, 1); 3543 } 3544 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3545 invalidate_mapping_pages(META_MAPPING(sbi), 3546 old_blkaddr, old_blkaddr); 3547 f2fs_invalidate_compress_page(sbi, old_blkaddr); 3548 if (!from_gc) 3549 update_segment_mtime(sbi, old_blkaddr, 0); 3550 update_sit_entry(sbi, old_blkaddr, -1); 3551 } 3552 3553 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3554 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3555 3556 locate_dirty_segment(sbi, old_cursegno); 3557 3558 if (recover_curseg) { 3559 if (old_cursegno != curseg->segno) { 3560 curseg->next_segno = old_cursegno; 3561 change_curseg(sbi, type, true); 3562 } 3563 curseg->next_blkoff = old_blkoff; 3564 curseg->alloc_type = old_alloc_type; 3565 } 3566 3567 up_write(&sit_i->sentry_lock); 3568 mutex_unlock(&curseg->curseg_mutex); 3569 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3570 } 3571 3572 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3573 block_t old_addr, block_t new_addr, 3574 unsigned char version, bool recover_curseg, 3575 bool recover_newaddr) 3576 { 3577 struct f2fs_summary sum; 3578 3579 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3580 3581 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3582 recover_curseg, recover_newaddr, false); 3583 3584 f2fs_update_data_blkaddr(dn, new_addr); 3585 } 3586 3587 void f2fs_wait_on_page_writeback(struct page *page, 3588 enum page_type type, bool ordered, bool locked) 3589 { 3590 if (PageWriteback(page)) { 3591 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3592 3593 /* submit cached LFS IO */ 3594 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3595 /* sbumit cached IPU IO */ 3596 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3597 if (ordered) { 3598 wait_on_page_writeback(page); 3599 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3600 } else { 3601 wait_for_stable_page(page); 3602 } 3603 } 3604 } 3605 3606 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3607 { 3608 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3609 struct page *cpage; 3610 3611 if (!f2fs_post_read_required(inode)) 3612 return; 3613 3614 if (!__is_valid_data_blkaddr(blkaddr)) 3615 return; 3616 3617 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3618 if (cpage) { 3619 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3620 f2fs_put_page(cpage, 1); 3621 } 3622 } 3623 3624 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3625 block_t len) 3626 { 3627 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3628 block_t i; 3629 3630 if (!f2fs_post_read_required(inode)) 3631 return; 3632 3633 for (i = 0; i < len; i++) 3634 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3635 3636 invalidate_mapping_pages(META_MAPPING(sbi), blkaddr, blkaddr + len - 1); 3637 } 3638 3639 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3640 { 3641 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3642 struct curseg_info *seg_i; 3643 unsigned char *kaddr; 3644 struct page *page; 3645 block_t start; 3646 int i, j, offset; 3647 3648 start = start_sum_block(sbi); 3649 3650 page = f2fs_get_meta_page(sbi, start++); 3651 if (IS_ERR(page)) 3652 return PTR_ERR(page); 3653 kaddr = (unsigned char *)page_address(page); 3654 3655 /* Step 1: restore nat cache */ 3656 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3657 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3658 3659 /* Step 2: restore sit cache */ 3660 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3661 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3662 offset = 2 * SUM_JOURNAL_SIZE; 3663 3664 /* Step 3: restore summary entries */ 3665 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3666 unsigned short blk_off; 3667 unsigned int segno; 3668 3669 seg_i = CURSEG_I(sbi, i); 3670 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3671 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3672 seg_i->next_segno = segno; 3673 reset_curseg(sbi, i, 0); 3674 seg_i->alloc_type = ckpt->alloc_type[i]; 3675 seg_i->next_blkoff = blk_off; 3676 3677 if (seg_i->alloc_type == SSR) 3678 blk_off = sbi->blocks_per_seg; 3679 3680 for (j = 0; j < blk_off; j++) { 3681 struct f2fs_summary *s; 3682 3683 s = (struct f2fs_summary *)(kaddr + offset); 3684 seg_i->sum_blk->entries[j] = *s; 3685 offset += SUMMARY_SIZE; 3686 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3687 SUM_FOOTER_SIZE) 3688 continue; 3689 3690 f2fs_put_page(page, 1); 3691 page = NULL; 3692 3693 page = f2fs_get_meta_page(sbi, start++); 3694 if (IS_ERR(page)) 3695 return PTR_ERR(page); 3696 kaddr = (unsigned char *)page_address(page); 3697 offset = 0; 3698 } 3699 } 3700 f2fs_put_page(page, 1); 3701 return 0; 3702 } 3703 3704 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3705 { 3706 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3707 struct f2fs_summary_block *sum; 3708 struct curseg_info *curseg; 3709 struct page *new; 3710 unsigned short blk_off; 3711 unsigned int segno = 0; 3712 block_t blk_addr = 0; 3713 int err = 0; 3714 3715 /* get segment number and block addr */ 3716 if (IS_DATASEG(type)) { 3717 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3718 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3719 CURSEG_HOT_DATA]); 3720 if (__exist_node_summaries(sbi)) 3721 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3722 else 3723 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3724 } else { 3725 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3726 CURSEG_HOT_NODE]); 3727 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3728 CURSEG_HOT_NODE]); 3729 if (__exist_node_summaries(sbi)) 3730 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3731 type - CURSEG_HOT_NODE); 3732 else 3733 blk_addr = GET_SUM_BLOCK(sbi, segno); 3734 } 3735 3736 new = f2fs_get_meta_page(sbi, blk_addr); 3737 if (IS_ERR(new)) 3738 return PTR_ERR(new); 3739 sum = (struct f2fs_summary_block *)page_address(new); 3740 3741 if (IS_NODESEG(type)) { 3742 if (__exist_node_summaries(sbi)) { 3743 struct f2fs_summary *ns = &sum->entries[0]; 3744 int i; 3745 3746 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3747 ns->version = 0; 3748 ns->ofs_in_node = 0; 3749 } 3750 } else { 3751 err = f2fs_restore_node_summary(sbi, segno, sum); 3752 if (err) 3753 goto out; 3754 } 3755 } 3756 3757 /* set uncompleted segment to curseg */ 3758 curseg = CURSEG_I(sbi, type); 3759 mutex_lock(&curseg->curseg_mutex); 3760 3761 /* update journal info */ 3762 down_write(&curseg->journal_rwsem); 3763 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3764 up_write(&curseg->journal_rwsem); 3765 3766 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3767 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3768 curseg->next_segno = segno; 3769 reset_curseg(sbi, type, 0); 3770 curseg->alloc_type = ckpt->alloc_type[type]; 3771 curseg->next_blkoff = blk_off; 3772 mutex_unlock(&curseg->curseg_mutex); 3773 out: 3774 f2fs_put_page(new, 1); 3775 return err; 3776 } 3777 3778 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3779 { 3780 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3781 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3782 int type = CURSEG_HOT_DATA; 3783 int err; 3784 3785 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3786 int npages = f2fs_npages_for_summary_flush(sbi, true); 3787 3788 if (npages >= 2) 3789 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3790 META_CP, true); 3791 3792 /* restore for compacted data summary */ 3793 err = read_compacted_summaries(sbi); 3794 if (err) 3795 return err; 3796 type = CURSEG_HOT_NODE; 3797 } 3798 3799 if (__exist_node_summaries(sbi)) 3800 f2fs_ra_meta_pages(sbi, 3801 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 3802 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 3803 3804 for (; type <= CURSEG_COLD_NODE; type++) { 3805 err = read_normal_summaries(sbi, type); 3806 if (err) 3807 return err; 3808 } 3809 3810 /* sanity check for summary blocks */ 3811 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3812 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 3813 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 3814 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 3815 return -EINVAL; 3816 } 3817 3818 return 0; 3819 } 3820 3821 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3822 { 3823 struct page *page; 3824 unsigned char *kaddr; 3825 struct f2fs_summary *summary; 3826 struct curseg_info *seg_i; 3827 int written_size = 0; 3828 int i, j; 3829 3830 page = f2fs_grab_meta_page(sbi, blkaddr++); 3831 kaddr = (unsigned char *)page_address(page); 3832 memset(kaddr, 0, PAGE_SIZE); 3833 3834 /* Step 1: write nat cache */ 3835 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3836 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3837 written_size += SUM_JOURNAL_SIZE; 3838 3839 /* Step 2: write sit cache */ 3840 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3841 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3842 written_size += SUM_JOURNAL_SIZE; 3843 3844 /* Step 3: write summary entries */ 3845 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3846 unsigned short blkoff; 3847 3848 seg_i = CURSEG_I(sbi, i); 3849 if (sbi->ckpt->alloc_type[i] == SSR) 3850 blkoff = sbi->blocks_per_seg; 3851 else 3852 blkoff = curseg_blkoff(sbi, i); 3853 3854 for (j = 0; j < blkoff; j++) { 3855 if (!page) { 3856 page = f2fs_grab_meta_page(sbi, blkaddr++); 3857 kaddr = (unsigned char *)page_address(page); 3858 memset(kaddr, 0, PAGE_SIZE); 3859 written_size = 0; 3860 } 3861 summary = (struct f2fs_summary *)(kaddr + written_size); 3862 *summary = seg_i->sum_blk->entries[j]; 3863 written_size += SUMMARY_SIZE; 3864 3865 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3866 SUM_FOOTER_SIZE) 3867 continue; 3868 3869 set_page_dirty(page); 3870 f2fs_put_page(page, 1); 3871 page = NULL; 3872 } 3873 } 3874 if (page) { 3875 set_page_dirty(page); 3876 f2fs_put_page(page, 1); 3877 } 3878 } 3879 3880 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3881 block_t blkaddr, int type) 3882 { 3883 int i, end; 3884 3885 if (IS_DATASEG(type)) 3886 end = type + NR_CURSEG_DATA_TYPE; 3887 else 3888 end = type + NR_CURSEG_NODE_TYPE; 3889 3890 for (i = type; i < end; i++) 3891 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3892 } 3893 3894 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3895 { 3896 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3897 write_compacted_summaries(sbi, start_blk); 3898 else 3899 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3900 } 3901 3902 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3903 { 3904 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3905 } 3906 3907 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3908 unsigned int val, int alloc) 3909 { 3910 int i; 3911 3912 if (type == NAT_JOURNAL) { 3913 for (i = 0; i < nats_in_cursum(journal); i++) { 3914 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3915 return i; 3916 } 3917 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3918 return update_nats_in_cursum(journal, 1); 3919 } else if (type == SIT_JOURNAL) { 3920 for (i = 0; i < sits_in_cursum(journal); i++) 3921 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3922 return i; 3923 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3924 return update_sits_in_cursum(journal, 1); 3925 } 3926 return -1; 3927 } 3928 3929 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3930 unsigned int segno) 3931 { 3932 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 3933 } 3934 3935 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3936 unsigned int start) 3937 { 3938 struct sit_info *sit_i = SIT_I(sbi); 3939 struct page *page; 3940 pgoff_t src_off, dst_off; 3941 3942 src_off = current_sit_addr(sbi, start); 3943 dst_off = next_sit_addr(sbi, src_off); 3944 3945 page = f2fs_grab_meta_page(sbi, dst_off); 3946 seg_info_to_sit_page(sbi, page, start); 3947 3948 set_page_dirty(page); 3949 set_to_next_sit(sit_i, start); 3950 3951 return page; 3952 } 3953 3954 static struct sit_entry_set *grab_sit_entry_set(void) 3955 { 3956 struct sit_entry_set *ses = 3957 f2fs_kmem_cache_alloc(sit_entry_set_slab, 3958 GFP_NOFS, true, NULL); 3959 3960 ses->entry_cnt = 0; 3961 INIT_LIST_HEAD(&ses->set_list); 3962 return ses; 3963 } 3964 3965 static void release_sit_entry_set(struct sit_entry_set *ses) 3966 { 3967 list_del(&ses->set_list); 3968 kmem_cache_free(sit_entry_set_slab, ses); 3969 } 3970 3971 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3972 struct list_head *head) 3973 { 3974 struct sit_entry_set *next = ses; 3975 3976 if (list_is_last(&ses->set_list, head)) 3977 return; 3978 3979 list_for_each_entry_continue(next, head, set_list) 3980 if (ses->entry_cnt <= next->entry_cnt) { 3981 list_move_tail(&ses->set_list, &next->set_list); 3982 return; 3983 } 3984 3985 list_move_tail(&ses->set_list, head); 3986 } 3987 3988 static void add_sit_entry(unsigned int segno, struct list_head *head) 3989 { 3990 struct sit_entry_set *ses; 3991 unsigned int start_segno = START_SEGNO(segno); 3992 3993 list_for_each_entry(ses, head, set_list) { 3994 if (ses->start_segno == start_segno) { 3995 ses->entry_cnt++; 3996 adjust_sit_entry_set(ses, head); 3997 return; 3998 } 3999 } 4000 4001 ses = grab_sit_entry_set(); 4002 4003 ses->start_segno = start_segno; 4004 ses->entry_cnt++; 4005 list_add(&ses->set_list, head); 4006 } 4007 4008 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4009 { 4010 struct f2fs_sm_info *sm_info = SM_I(sbi); 4011 struct list_head *set_list = &sm_info->sit_entry_set; 4012 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4013 unsigned int segno; 4014 4015 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4016 add_sit_entry(segno, set_list); 4017 } 4018 4019 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4020 { 4021 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4022 struct f2fs_journal *journal = curseg->journal; 4023 int i; 4024 4025 down_write(&curseg->journal_rwsem); 4026 for (i = 0; i < sits_in_cursum(journal); i++) { 4027 unsigned int segno; 4028 bool dirtied; 4029 4030 segno = le32_to_cpu(segno_in_journal(journal, i)); 4031 dirtied = __mark_sit_entry_dirty(sbi, segno); 4032 4033 if (!dirtied) 4034 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4035 } 4036 update_sits_in_cursum(journal, -i); 4037 up_write(&curseg->journal_rwsem); 4038 } 4039 4040 /* 4041 * CP calls this function, which flushes SIT entries including sit_journal, 4042 * and moves prefree segs to free segs. 4043 */ 4044 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4045 { 4046 struct sit_info *sit_i = SIT_I(sbi); 4047 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4048 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4049 struct f2fs_journal *journal = curseg->journal; 4050 struct sit_entry_set *ses, *tmp; 4051 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4052 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4053 struct seg_entry *se; 4054 4055 down_write(&sit_i->sentry_lock); 4056 4057 if (!sit_i->dirty_sentries) 4058 goto out; 4059 4060 /* 4061 * add and account sit entries of dirty bitmap in sit entry 4062 * set temporarily 4063 */ 4064 add_sits_in_set(sbi); 4065 4066 /* 4067 * if there are no enough space in journal to store dirty sit 4068 * entries, remove all entries from journal and add and account 4069 * them in sit entry set. 4070 */ 4071 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4072 !to_journal) 4073 remove_sits_in_journal(sbi); 4074 4075 /* 4076 * there are two steps to flush sit entries: 4077 * #1, flush sit entries to journal in current cold data summary block. 4078 * #2, flush sit entries to sit page. 4079 */ 4080 list_for_each_entry_safe(ses, tmp, head, set_list) { 4081 struct page *page = NULL; 4082 struct f2fs_sit_block *raw_sit = NULL; 4083 unsigned int start_segno = ses->start_segno; 4084 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4085 (unsigned long)MAIN_SEGS(sbi)); 4086 unsigned int segno = start_segno; 4087 4088 if (to_journal && 4089 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4090 to_journal = false; 4091 4092 if (to_journal) { 4093 down_write(&curseg->journal_rwsem); 4094 } else { 4095 page = get_next_sit_page(sbi, start_segno); 4096 raw_sit = page_address(page); 4097 } 4098 4099 /* flush dirty sit entries in region of current sit set */ 4100 for_each_set_bit_from(segno, bitmap, end) { 4101 int offset, sit_offset; 4102 4103 se = get_seg_entry(sbi, segno); 4104 #ifdef CONFIG_F2FS_CHECK_FS 4105 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4106 SIT_VBLOCK_MAP_SIZE)) 4107 f2fs_bug_on(sbi, 1); 4108 #endif 4109 4110 /* add discard candidates */ 4111 if (!(cpc->reason & CP_DISCARD)) { 4112 cpc->trim_start = segno; 4113 add_discard_addrs(sbi, cpc, false); 4114 } 4115 4116 if (to_journal) { 4117 offset = f2fs_lookup_journal_in_cursum(journal, 4118 SIT_JOURNAL, segno, 1); 4119 f2fs_bug_on(sbi, offset < 0); 4120 segno_in_journal(journal, offset) = 4121 cpu_to_le32(segno); 4122 seg_info_to_raw_sit(se, 4123 &sit_in_journal(journal, offset)); 4124 check_block_count(sbi, segno, 4125 &sit_in_journal(journal, offset)); 4126 } else { 4127 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4128 seg_info_to_raw_sit(se, 4129 &raw_sit->entries[sit_offset]); 4130 check_block_count(sbi, segno, 4131 &raw_sit->entries[sit_offset]); 4132 } 4133 4134 __clear_bit(segno, bitmap); 4135 sit_i->dirty_sentries--; 4136 ses->entry_cnt--; 4137 } 4138 4139 if (to_journal) 4140 up_write(&curseg->journal_rwsem); 4141 else 4142 f2fs_put_page(page, 1); 4143 4144 f2fs_bug_on(sbi, ses->entry_cnt); 4145 release_sit_entry_set(ses); 4146 } 4147 4148 f2fs_bug_on(sbi, !list_empty(head)); 4149 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4150 out: 4151 if (cpc->reason & CP_DISCARD) { 4152 __u64 trim_start = cpc->trim_start; 4153 4154 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4155 add_discard_addrs(sbi, cpc, false); 4156 4157 cpc->trim_start = trim_start; 4158 } 4159 up_write(&sit_i->sentry_lock); 4160 4161 set_prefree_as_free_segments(sbi); 4162 } 4163 4164 static int build_sit_info(struct f2fs_sb_info *sbi) 4165 { 4166 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4167 struct sit_info *sit_i; 4168 unsigned int sit_segs, start; 4169 char *src_bitmap, *bitmap; 4170 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4171 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4172 4173 /* allocate memory for SIT information */ 4174 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4175 if (!sit_i) 4176 return -ENOMEM; 4177 4178 SM_I(sbi)->sit_info = sit_i; 4179 4180 sit_i->sentries = 4181 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4182 MAIN_SEGS(sbi)), 4183 GFP_KERNEL); 4184 if (!sit_i->sentries) 4185 return -ENOMEM; 4186 4187 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4188 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4189 GFP_KERNEL); 4190 if (!sit_i->dirty_sentries_bitmap) 4191 return -ENOMEM; 4192 4193 #ifdef CONFIG_F2FS_CHECK_FS 4194 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4195 #else 4196 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4197 #endif 4198 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4199 if (!sit_i->bitmap) 4200 return -ENOMEM; 4201 4202 bitmap = sit_i->bitmap; 4203 4204 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4205 sit_i->sentries[start].cur_valid_map = bitmap; 4206 bitmap += SIT_VBLOCK_MAP_SIZE; 4207 4208 sit_i->sentries[start].ckpt_valid_map = bitmap; 4209 bitmap += SIT_VBLOCK_MAP_SIZE; 4210 4211 #ifdef CONFIG_F2FS_CHECK_FS 4212 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4213 bitmap += SIT_VBLOCK_MAP_SIZE; 4214 #endif 4215 4216 if (discard_map) { 4217 sit_i->sentries[start].discard_map = bitmap; 4218 bitmap += SIT_VBLOCK_MAP_SIZE; 4219 } 4220 } 4221 4222 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4223 if (!sit_i->tmp_map) 4224 return -ENOMEM; 4225 4226 if (__is_large_section(sbi)) { 4227 sit_i->sec_entries = 4228 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4229 MAIN_SECS(sbi)), 4230 GFP_KERNEL); 4231 if (!sit_i->sec_entries) 4232 return -ENOMEM; 4233 } 4234 4235 /* get information related with SIT */ 4236 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4237 4238 /* setup SIT bitmap from ckeckpoint pack */ 4239 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4240 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4241 4242 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4243 if (!sit_i->sit_bitmap) 4244 return -ENOMEM; 4245 4246 #ifdef CONFIG_F2FS_CHECK_FS 4247 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4248 sit_bitmap_size, GFP_KERNEL); 4249 if (!sit_i->sit_bitmap_mir) 4250 return -ENOMEM; 4251 4252 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4253 main_bitmap_size, GFP_KERNEL); 4254 if (!sit_i->invalid_segmap) 4255 return -ENOMEM; 4256 #endif 4257 4258 /* init SIT information */ 4259 sit_i->s_ops = &default_salloc_ops; 4260 4261 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4262 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4263 sit_i->written_valid_blocks = 0; 4264 sit_i->bitmap_size = sit_bitmap_size; 4265 sit_i->dirty_sentries = 0; 4266 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4267 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4268 sit_i->mounted_time = ktime_get_boottime_seconds(); 4269 init_rwsem(&sit_i->sentry_lock); 4270 return 0; 4271 } 4272 4273 static int build_free_segmap(struct f2fs_sb_info *sbi) 4274 { 4275 struct free_segmap_info *free_i; 4276 unsigned int bitmap_size, sec_bitmap_size; 4277 4278 /* allocate memory for free segmap information */ 4279 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4280 if (!free_i) 4281 return -ENOMEM; 4282 4283 SM_I(sbi)->free_info = free_i; 4284 4285 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4286 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4287 if (!free_i->free_segmap) 4288 return -ENOMEM; 4289 4290 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4291 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4292 if (!free_i->free_secmap) 4293 return -ENOMEM; 4294 4295 /* set all segments as dirty temporarily */ 4296 memset(free_i->free_segmap, 0xff, bitmap_size); 4297 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4298 4299 /* init free segmap information */ 4300 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4301 free_i->free_segments = 0; 4302 free_i->free_sections = 0; 4303 spin_lock_init(&free_i->segmap_lock); 4304 return 0; 4305 } 4306 4307 static int build_curseg(struct f2fs_sb_info *sbi) 4308 { 4309 struct curseg_info *array; 4310 int i; 4311 4312 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4313 sizeof(*array)), GFP_KERNEL); 4314 if (!array) 4315 return -ENOMEM; 4316 4317 SM_I(sbi)->curseg_array = array; 4318 4319 for (i = 0; i < NO_CHECK_TYPE; i++) { 4320 mutex_init(&array[i].curseg_mutex); 4321 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4322 if (!array[i].sum_blk) 4323 return -ENOMEM; 4324 init_rwsem(&array[i].journal_rwsem); 4325 array[i].journal = f2fs_kzalloc(sbi, 4326 sizeof(struct f2fs_journal), GFP_KERNEL); 4327 if (!array[i].journal) 4328 return -ENOMEM; 4329 if (i < NR_PERSISTENT_LOG) 4330 array[i].seg_type = CURSEG_HOT_DATA + i; 4331 else if (i == CURSEG_COLD_DATA_PINNED) 4332 array[i].seg_type = CURSEG_COLD_DATA; 4333 else if (i == CURSEG_ALL_DATA_ATGC) 4334 array[i].seg_type = CURSEG_COLD_DATA; 4335 array[i].segno = NULL_SEGNO; 4336 array[i].next_blkoff = 0; 4337 array[i].inited = false; 4338 } 4339 return restore_curseg_summaries(sbi); 4340 } 4341 4342 static int build_sit_entries(struct f2fs_sb_info *sbi) 4343 { 4344 struct sit_info *sit_i = SIT_I(sbi); 4345 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4346 struct f2fs_journal *journal = curseg->journal; 4347 struct seg_entry *se; 4348 struct f2fs_sit_entry sit; 4349 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4350 unsigned int i, start, end; 4351 unsigned int readed, start_blk = 0; 4352 int err = 0; 4353 block_t sit_valid_blocks[2] = {0, 0}; 4354 4355 do { 4356 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4357 META_SIT, true); 4358 4359 start = start_blk * sit_i->sents_per_block; 4360 end = (start_blk + readed) * sit_i->sents_per_block; 4361 4362 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4363 struct f2fs_sit_block *sit_blk; 4364 struct page *page; 4365 4366 se = &sit_i->sentries[start]; 4367 page = get_current_sit_page(sbi, start); 4368 if (IS_ERR(page)) 4369 return PTR_ERR(page); 4370 sit_blk = (struct f2fs_sit_block *)page_address(page); 4371 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4372 f2fs_put_page(page, 1); 4373 4374 err = check_block_count(sbi, start, &sit); 4375 if (err) 4376 return err; 4377 seg_info_from_raw_sit(se, &sit); 4378 4379 if (se->type >= NR_PERSISTENT_LOG) { 4380 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4381 se->type, start); 4382 return -EFSCORRUPTED; 4383 } 4384 4385 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4386 4387 if (f2fs_block_unit_discard(sbi)) { 4388 /* build discard map only one time */ 4389 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4390 memset(se->discard_map, 0xff, 4391 SIT_VBLOCK_MAP_SIZE); 4392 } else { 4393 memcpy(se->discard_map, 4394 se->cur_valid_map, 4395 SIT_VBLOCK_MAP_SIZE); 4396 sbi->discard_blks += 4397 sbi->blocks_per_seg - 4398 se->valid_blocks; 4399 } 4400 } 4401 4402 if (__is_large_section(sbi)) 4403 get_sec_entry(sbi, start)->valid_blocks += 4404 se->valid_blocks; 4405 } 4406 start_blk += readed; 4407 } while (start_blk < sit_blk_cnt); 4408 4409 down_read(&curseg->journal_rwsem); 4410 for (i = 0; i < sits_in_cursum(journal); i++) { 4411 unsigned int old_valid_blocks; 4412 4413 start = le32_to_cpu(segno_in_journal(journal, i)); 4414 if (start >= MAIN_SEGS(sbi)) { 4415 f2fs_err(sbi, "Wrong journal entry on segno %u", 4416 start); 4417 err = -EFSCORRUPTED; 4418 break; 4419 } 4420 4421 se = &sit_i->sentries[start]; 4422 sit = sit_in_journal(journal, i); 4423 4424 old_valid_blocks = se->valid_blocks; 4425 4426 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4427 4428 err = check_block_count(sbi, start, &sit); 4429 if (err) 4430 break; 4431 seg_info_from_raw_sit(se, &sit); 4432 4433 if (se->type >= NR_PERSISTENT_LOG) { 4434 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4435 se->type, start); 4436 err = -EFSCORRUPTED; 4437 break; 4438 } 4439 4440 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4441 4442 if (f2fs_block_unit_discard(sbi)) { 4443 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4444 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4445 } else { 4446 memcpy(se->discard_map, se->cur_valid_map, 4447 SIT_VBLOCK_MAP_SIZE); 4448 sbi->discard_blks += old_valid_blocks; 4449 sbi->discard_blks -= se->valid_blocks; 4450 } 4451 } 4452 4453 if (__is_large_section(sbi)) { 4454 get_sec_entry(sbi, start)->valid_blocks += 4455 se->valid_blocks; 4456 get_sec_entry(sbi, start)->valid_blocks -= 4457 old_valid_blocks; 4458 } 4459 } 4460 up_read(&curseg->journal_rwsem); 4461 4462 if (err) 4463 return err; 4464 4465 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4466 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4467 sit_valid_blocks[NODE], valid_node_count(sbi)); 4468 return -EFSCORRUPTED; 4469 } 4470 4471 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4472 valid_user_blocks(sbi)) { 4473 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4474 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4475 valid_user_blocks(sbi)); 4476 return -EFSCORRUPTED; 4477 } 4478 4479 return 0; 4480 } 4481 4482 static void init_free_segmap(struct f2fs_sb_info *sbi) 4483 { 4484 unsigned int start; 4485 int type; 4486 struct seg_entry *sentry; 4487 4488 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4489 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4490 continue; 4491 sentry = get_seg_entry(sbi, start); 4492 if (!sentry->valid_blocks) 4493 __set_free(sbi, start); 4494 else 4495 SIT_I(sbi)->written_valid_blocks += 4496 sentry->valid_blocks; 4497 } 4498 4499 /* set use the current segments */ 4500 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4501 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4502 4503 __set_test_and_inuse(sbi, curseg_t->segno); 4504 } 4505 } 4506 4507 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4508 { 4509 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4510 struct free_segmap_info *free_i = FREE_I(sbi); 4511 unsigned int segno = 0, offset = 0, secno; 4512 block_t valid_blocks, usable_blks_in_seg; 4513 4514 while (1) { 4515 /* find dirty segment based on free segmap */ 4516 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4517 if (segno >= MAIN_SEGS(sbi)) 4518 break; 4519 offset = segno + 1; 4520 valid_blocks = get_valid_blocks(sbi, segno, false); 4521 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4522 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4523 continue; 4524 if (valid_blocks > usable_blks_in_seg) { 4525 f2fs_bug_on(sbi, 1); 4526 continue; 4527 } 4528 mutex_lock(&dirty_i->seglist_lock); 4529 __locate_dirty_segment(sbi, segno, DIRTY); 4530 mutex_unlock(&dirty_i->seglist_lock); 4531 } 4532 4533 if (!__is_large_section(sbi)) 4534 return; 4535 4536 mutex_lock(&dirty_i->seglist_lock); 4537 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4538 valid_blocks = get_valid_blocks(sbi, segno, true); 4539 secno = GET_SEC_FROM_SEG(sbi, segno); 4540 4541 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 4542 continue; 4543 if (IS_CURSEC(sbi, secno)) 4544 continue; 4545 set_bit(secno, dirty_i->dirty_secmap); 4546 } 4547 mutex_unlock(&dirty_i->seglist_lock); 4548 } 4549 4550 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4551 { 4552 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4553 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4554 4555 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4556 if (!dirty_i->victim_secmap) 4557 return -ENOMEM; 4558 4559 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4560 if (!dirty_i->pinned_secmap) 4561 return -ENOMEM; 4562 4563 dirty_i->pinned_secmap_cnt = 0; 4564 dirty_i->enable_pin_section = true; 4565 return 0; 4566 } 4567 4568 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4569 { 4570 struct dirty_seglist_info *dirty_i; 4571 unsigned int bitmap_size, i; 4572 4573 /* allocate memory for dirty segments list information */ 4574 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4575 GFP_KERNEL); 4576 if (!dirty_i) 4577 return -ENOMEM; 4578 4579 SM_I(sbi)->dirty_info = dirty_i; 4580 mutex_init(&dirty_i->seglist_lock); 4581 4582 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4583 4584 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4585 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4586 GFP_KERNEL); 4587 if (!dirty_i->dirty_segmap[i]) 4588 return -ENOMEM; 4589 } 4590 4591 if (__is_large_section(sbi)) { 4592 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4593 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4594 bitmap_size, GFP_KERNEL); 4595 if (!dirty_i->dirty_secmap) 4596 return -ENOMEM; 4597 } 4598 4599 init_dirty_segmap(sbi); 4600 return init_victim_secmap(sbi); 4601 } 4602 4603 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4604 { 4605 int i; 4606 4607 /* 4608 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4609 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4610 */ 4611 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4612 struct curseg_info *curseg = CURSEG_I(sbi, i); 4613 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4614 unsigned int blkofs = curseg->next_blkoff; 4615 4616 if (f2fs_sb_has_readonly(sbi) && 4617 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4618 continue; 4619 4620 sanity_check_seg_type(sbi, curseg->seg_type); 4621 4622 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 4623 f2fs_err(sbi, 4624 "Current segment has invalid alloc_type:%d", 4625 curseg->alloc_type); 4626 return -EFSCORRUPTED; 4627 } 4628 4629 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4630 goto out; 4631 4632 if (curseg->alloc_type == SSR) 4633 continue; 4634 4635 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4636 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4637 continue; 4638 out: 4639 f2fs_err(sbi, 4640 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4641 i, curseg->segno, curseg->alloc_type, 4642 curseg->next_blkoff, blkofs); 4643 return -EFSCORRUPTED; 4644 } 4645 } 4646 return 0; 4647 } 4648 4649 #ifdef CONFIG_BLK_DEV_ZONED 4650 4651 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4652 struct f2fs_dev_info *fdev, 4653 struct blk_zone *zone) 4654 { 4655 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4656 block_t zone_block, wp_block, last_valid_block; 4657 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4658 int i, s, b, ret; 4659 struct seg_entry *se; 4660 4661 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4662 return 0; 4663 4664 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4665 wp_segno = GET_SEGNO(sbi, wp_block); 4666 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4667 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4668 zone_segno = GET_SEGNO(sbi, zone_block); 4669 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4670 4671 if (zone_segno >= MAIN_SEGS(sbi)) 4672 return 0; 4673 4674 /* 4675 * Skip check of zones cursegs point to, since 4676 * fix_curseg_write_pointer() checks them. 4677 */ 4678 for (i = 0; i < NO_CHECK_TYPE; i++) 4679 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4680 CURSEG_I(sbi, i)->segno)) 4681 return 0; 4682 4683 /* 4684 * Get last valid block of the zone. 4685 */ 4686 last_valid_block = zone_block - 1; 4687 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4688 segno = zone_segno + s; 4689 se = get_seg_entry(sbi, segno); 4690 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4691 if (f2fs_test_bit(b, se->cur_valid_map)) { 4692 last_valid_block = START_BLOCK(sbi, segno) + b; 4693 break; 4694 } 4695 if (last_valid_block >= zone_block) 4696 break; 4697 } 4698 4699 /* 4700 * If last valid block is beyond the write pointer, report the 4701 * inconsistency. This inconsistency does not cause write error 4702 * because the zone will not be selected for write operation until 4703 * it get discarded. Just report it. 4704 */ 4705 if (last_valid_block >= wp_block) { 4706 f2fs_notice(sbi, "Valid block beyond write pointer: " 4707 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4708 GET_SEGNO(sbi, last_valid_block), 4709 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4710 wp_segno, wp_blkoff); 4711 return 0; 4712 } 4713 4714 /* 4715 * If there is no valid block in the zone and if write pointer is 4716 * not at zone start, reset the write pointer. 4717 */ 4718 if (last_valid_block + 1 == zone_block && zone->wp != zone->start) { 4719 f2fs_notice(sbi, 4720 "Zone without valid block has non-zero write " 4721 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4722 wp_segno, wp_blkoff); 4723 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4724 zone->len >> log_sectors_per_block); 4725 if (ret) { 4726 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4727 fdev->path, ret); 4728 return ret; 4729 } 4730 } 4731 4732 return 0; 4733 } 4734 4735 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4736 block_t zone_blkaddr) 4737 { 4738 int i; 4739 4740 for (i = 0; i < sbi->s_ndevs; i++) { 4741 if (!bdev_is_zoned(FDEV(i).bdev)) 4742 continue; 4743 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4744 zone_blkaddr <= FDEV(i).end_blk)) 4745 return &FDEV(i); 4746 } 4747 4748 return NULL; 4749 } 4750 4751 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4752 void *data) 4753 { 4754 memcpy(data, zone, sizeof(struct blk_zone)); 4755 return 0; 4756 } 4757 4758 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4759 { 4760 struct curseg_info *cs = CURSEG_I(sbi, type); 4761 struct f2fs_dev_info *zbd; 4762 struct blk_zone zone; 4763 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4764 block_t cs_zone_block, wp_block; 4765 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4766 sector_t zone_sector; 4767 int err; 4768 4769 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4770 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4771 4772 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4773 if (!zbd) 4774 return 0; 4775 4776 /* report zone for the sector the curseg points to */ 4777 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4778 << log_sectors_per_block; 4779 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4780 report_one_zone_cb, &zone); 4781 if (err != 1) { 4782 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4783 zbd->path, err); 4784 return err; 4785 } 4786 4787 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4788 return 0; 4789 4790 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 4791 wp_segno = GET_SEGNO(sbi, wp_block); 4792 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4793 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 4794 4795 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 4796 wp_sector_off == 0) 4797 return 0; 4798 4799 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 4800 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 4801 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 4802 4803 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 4804 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 4805 4806 f2fs_allocate_new_section(sbi, type, true); 4807 4808 /* check consistency of the zone curseg pointed to */ 4809 if (check_zone_write_pointer(sbi, zbd, &zone)) 4810 return -EIO; 4811 4812 /* check newly assigned zone */ 4813 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4814 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4815 4816 zbd = get_target_zoned_dev(sbi, cs_zone_block); 4817 if (!zbd) 4818 return 0; 4819 4820 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 4821 << log_sectors_per_block; 4822 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 4823 report_one_zone_cb, &zone); 4824 if (err != 1) { 4825 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 4826 zbd->path, err); 4827 return err; 4828 } 4829 4830 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4831 return 0; 4832 4833 if (zone.wp != zone.start) { 4834 f2fs_notice(sbi, 4835 "New zone for curseg[%d] is not yet discarded. " 4836 "Reset the zone: curseg[0x%x,0x%x]", 4837 type, cs->segno, cs->next_blkoff); 4838 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, 4839 zone_sector >> log_sectors_per_block, 4840 zone.len >> log_sectors_per_block); 4841 if (err) { 4842 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4843 zbd->path, err); 4844 return err; 4845 } 4846 } 4847 4848 return 0; 4849 } 4850 4851 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4852 { 4853 int i, ret; 4854 4855 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4856 ret = fix_curseg_write_pointer(sbi, i); 4857 if (ret) 4858 return ret; 4859 } 4860 4861 return 0; 4862 } 4863 4864 struct check_zone_write_pointer_args { 4865 struct f2fs_sb_info *sbi; 4866 struct f2fs_dev_info *fdev; 4867 }; 4868 4869 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 4870 void *data) 4871 { 4872 struct check_zone_write_pointer_args *args; 4873 4874 args = (struct check_zone_write_pointer_args *)data; 4875 4876 return check_zone_write_pointer(args->sbi, args->fdev, zone); 4877 } 4878 4879 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4880 { 4881 int i, ret; 4882 struct check_zone_write_pointer_args args; 4883 4884 for (i = 0; i < sbi->s_ndevs; i++) { 4885 if (!bdev_is_zoned(FDEV(i).bdev)) 4886 continue; 4887 4888 args.sbi = sbi; 4889 args.fdev = &FDEV(i); 4890 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 4891 check_zone_write_pointer_cb, &args); 4892 if (ret < 0) 4893 return ret; 4894 } 4895 4896 return 0; 4897 } 4898 4899 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx, 4900 unsigned int dev_idx) 4901 { 4902 if (!bdev_is_zoned(FDEV(dev_idx).bdev)) 4903 return true; 4904 return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq); 4905 } 4906 4907 /* Return the zone index in the given device */ 4908 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno, 4909 int dev_idx) 4910 { 4911 block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4912 4913 return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >> 4914 sbi->log_blocks_per_blkz; 4915 } 4916 4917 /* 4918 * Return the usable segments in a section based on the zone's 4919 * corresponding zone capacity. Zone is equal to a section. 4920 */ 4921 static inline unsigned int f2fs_usable_zone_segs_in_sec( 4922 struct f2fs_sb_info *sbi, unsigned int segno) 4923 { 4924 unsigned int dev_idx, zone_idx; 4925 4926 dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno)); 4927 zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx); 4928 4929 /* Conventional zone's capacity is always equal to zone size */ 4930 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4931 return sbi->segs_per_sec; 4932 4933 if (!sbi->unusable_blocks_per_sec) 4934 return sbi->segs_per_sec; 4935 4936 /* Get the segment count beyond zone capacity block */ 4937 return sbi->segs_per_sec - (sbi->unusable_blocks_per_sec >> 4938 sbi->log_blocks_per_seg); 4939 } 4940 4941 /* 4942 * Return the number of usable blocks in a segment. The number of blocks 4943 * returned is always equal to the number of blocks in a segment for 4944 * segments fully contained within a sequential zone capacity or a 4945 * conventional zone. For segments partially contained in a sequential 4946 * zone capacity, the number of usable blocks up to the zone capacity 4947 * is returned. 0 is returned in all other cases. 4948 */ 4949 static inline unsigned int f2fs_usable_zone_blks_in_seg( 4950 struct f2fs_sb_info *sbi, unsigned int segno) 4951 { 4952 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 4953 unsigned int zone_idx, dev_idx, secno; 4954 4955 secno = GET_SEC_FROM_SEG(sbi, segno); 4956 seg_start = START_BLOCK(sbi, segno); 4957 dev_idx = f2fs_target_device_index(sbi, seg_start); 4958 zone_idx = get_zone_idx(sbi, secno, dev_idx); 4959 4960 /* 4961 * Conventional zone's capacity is always equal to zone size, 4962 * so, blocks per segment is unchanged. 4963 */ 4964 if (is_conv_zone(sbi, zone_idx, dev_idx)) 4965 return sbi->blocks_per_seg; 4966 4967 if (!sbi->unusable_blocks_per_sec) 4968 return sbi->blocks_per_seg; 4969 4970 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 4971 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 4972 4973 /* 4974 * If segment starts before zone capacity and spans beyond 4975 * zone capacity, then usable blocks are from seg start to 4976 * zone capacity. If the segment starts after the zone capacity, 4977 * then there are no usable blocks. 4978 */ 4979 if (seg_start >= sec_cap_blkaddr) 4980 return 0; 4981 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 4982 return sec_cap_blkaddr - seg_start; 4983 4984 return sbi->blocks_per_seg; 4985 } 4986 #else 4987 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 4988 { 4989 return 0; 4990 } 4991 4992 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 4993 { 4994 return 0; 4995 } 4996 4997 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 4998 unsigned int segno) 4999 { 5000 return 0; 5001 } 5002 5003 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi, 5004 unsigned int segno) 5005 { 5006 return 0; 5007 } 5008 #endif 5009 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5010 unsigned int segno) 5011 { 5012 if (f2fs_sb_has_blkzoned(sbi)) 5013 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5014 5015 return sbi->blocks_per_seg; 5016 } 5017 5018 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5019 unsigned int segno) 5020 { 5021 if (f2fs_sb_has_blkzoned(sbi)) 5022 return f2fs_usable_zone_segs_in_sec(sbi, segno); 5023 5024 return sbi->segs_per_sec; 5025 } 5026 5027 /* 5028 * Update min, max modified time for cost-benefit GC algorithm 5029 */ 5030 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5031 { 5032 struct sit_info *sit_i = SIT_I(sbi); 5033 unsigned int segno; 5034 5035 down_write(&sit_i->sentry_lock); 5036 5037 sit_i->min_mtime = ULLONG_MAX; 5038 5039 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5040 unsigned int i; 5041 unsigned long long mtime = 0; 5042 5043 for (i = 0; i < sbi->segs_per_sec; i++) 5044 mtime += get_seg_entry(sbi, segno + i)->mtime; 5045 5046 mtime = div_u64(mtime, sbi->segs_per_sec); 5047 5048 if (sit_i->min_mtime > mtime) 5049 sit_i->min_mtime = mtime; 5050 } 5051 sit_i->max_mtime = get_mtime(sbi, false); 5052 sit_i->dirty_max_mtime = 0; 5053 up_write(&sit_i->sentry_lock); 5054 } 5055 5056 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5057 { 5058 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5059 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5060 struct f2fs_sm_info *sm_info; 5061 int err; 5062 5063 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5064 if (!sm_info) 5065 return -ENOMEM; 5066 5067 /* init sm info */ 5068 sbi->sm_info = sm_info; 5069 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5070 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5071 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5072 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5073 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5074 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5075 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5076 sm_info->rec_prefree_segments = sm_info->main_segments * 5077 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5078 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5079 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5080 5081 if (!f2fs_lfs_mode(sbi)) 5082 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 5083 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5084 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5085 sm_info->min_seq_blocks = sbi->blocks_per_seg; 5086 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5087 sm_info->min_ssr_sections = reserved_sections(sbi); 5088 5089 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5090 5091 init_f2fs_rwsem(&sm_info->curseg_lock); 5092 5093 if (!f2fs_readonly(sbi->sb)) { 5094 err = f2fs_create_flush_cmd_control(sbi); 5095 if (err) 5096 return err; 5097 } 5098 5099 err = create_discard_cmd_control(sbi); 5100 if (err) 5101 return err; 5102 5103 err = build_sit_info(sbi); 5104 if (err) 5105 return err; 5106 err = build_free_segmap(sbi); 5107 if (err) 5108 return err; 5109 err = build_curseg(sbi); 5110 if (err) 5111 return err; 5112 5113 /* reinit free segmap based on SIT */ 5114 err = build_sit_entries(sbi); 5115 if (err) 5116 return err; 5117 5118 init_free_segmap(sbi); 5119 err = build_dirty_segmap(sbi); 5120 if (err) 5121 return err; 5122 5123 err = sanity_check_curseg(sbi); 5124 if (err) 5125 return err; 5126 5127 init_min_max_mtime(sbi); 5128 return 0; 5129 } 5130 5131 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5132 enum dirty_type dirty_type) 5133 { 5134 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5135 5136 mutex_lock(&dirty_i->seglist_lock); 5137 kvfree(dirty_i->dirty_segmap[dirty_type]); 5138 dirty_i->nr_dirty[dirty_type] = 0; 5139 mutex_unlock(&dirty_i->seglist_lock); 5140 } 5141 5142 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5143 { 5144 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5145 5146 kvfree(dirty_i->pinned_secmap); 5147 kvfree(dirty_i->victim_secmap); 5148 } 5149 5150 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5151 { 5152 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5153 int i; 5154 5155 if (!dirty_i) 5156 return; 5157 5158 /* discard pre-free/dirty segments list */ 5159 for (i = 0; i < NR_DIRTY_TYPE; i++) 5160 discard_dirty_segmap(sbi, i); 5161 5162 if (__is_large_section(sbi)) { 5163 mutex_lock(&dirty_i->seglist_lock); 5164 kvfree(dirty_i->dirty_secmap); 5165 mutex_unlock(&dirty_i->seglist_lock); 5166 } 5167 5168 destroy_victim_secmap(sbi); 5169 SM_I(sbi)->dirty_info = NULL; 5170 kfree(dirty_i); 5171 } 5172 5173 static void destroy_curseg(struct f2fs_sb_info *sbi) 5174 { 5175 struct curseg_info *array = SM_I(sbi)->curseg_array; 5176 int i; 5177 5178 if (!array) 5179 return; 5180 SM_I(sbi)->curseg_array = NULL; 5181 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5182 kfree(array[i].sum_blk); 5183 kfree(array[i].journal); 5184 } 5185 kfree(array); 5186 } 5187 5188 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5189 { 5190 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5191 5192 if (!free_i) 5193 return; 5194 SM_I(sbi)->free_info = NULL; 5195 kvfree(free_i->free_segmap); 5196 kvfree(free_i->free_secmap); 5197 kfree(free_i); 5198 } 5199 5200 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5201 { 5202 struct sit_info *sit_i = SIT_I(sbi); 5203 5204 if (!sit_i) 5205 return; 5206 5207 if (sit_i->sentries) 5208 kvfree(sit_i->bitmap); 5209 kfree(sit_i->tmp_map); 5210 5211 kvfree(sit_i->sentries); 5212 kvfree(sit_i->sec_entries); 5213 kvfree(sit_i->dirty_sentries_bitmap); 5214 5215 SM_I(sbi)->sit_info = NULL; 5216 kvfree(sit_i->sit_bitmap); 5217 #ifdef CONFIG_F2FS_CHECK_FS 5218 kvfree(sit_i->sit_bitmap_mir); 5219 kvfree(sit_i->invalid_segmap); 5220 #endif 5221 kfree(sit_i); 5222 } 5223 5224 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5225 { 5226 struct f2fs_sm_info *sm_info = SM_I(sbi); 5227 5228 if (!sm_info) 5229 return; 5230 f2fs_destroy_flush_cmd_control(sbi, true); 5231 destroy_discard_cmd_control(sbi); 5232 destroy_dirty_segmap(sbi); 5233 destroy_curseg(sbi); 5234 destroy_free_segmap(sbi); 5235 destroy_sit_info(sbi); 5236 sbi->sm_info = NULL; 5237 kfree(sm_info); 5238 } 5239 5240 int __init f2fs_create_segment_manager_caches(void) 5241 { 5242 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5243 sizeof(struct discard_entry)); 5244 if (!discard_entry_slab) 5245 goto fail; 5246 5247 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5248 sizeof(struct discard_cmd)); 5249 if (!discard_cmd_slab) 5250 goto destroy_discard_entry; 5251 5252 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5253 sizeof(struct sit_entry_set)); 5254 if (!sit_entry_set_slab) 5255 goto destroy_discard_cmd; 5256 5257 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5258 sizeof(struct revoke_entry)); 5259 if (!revoke_entry_slab) 5260 goto destroy_sit_entry_set; 5261 return 0; 5262 5263 destroy_sit_entry_set: 5264 kmem_cache_destroy(sit_entry_set_slab); 5265 destroy_discard_cmd: 5266 kmem_cache_destroy(discard_cmd_slab); 5267 destroy_discard_entry: 5268 kmem_cache_destroy(discard_entry_slab); 5269 fail: 5270 return -ENOMEM; 5271 } 5272 5273 void f2fs_destroy_segment_manager_caches(void) 5274 { 5275 kmem_cache_destroy(sit_entry_set_slab); 5276 kmem_cache_destroy(discard_cmd_slab); 5277 kmem_cache_destroy(discard_entry_slab); 5278 kmem_cache_destroy(revoke_entry_slab); 5279 } 5280