1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/sched/mm.h> 13 #include <linux/prefetch.h> 14 #include <linux/kthread.h> 15 #include <linux/swap.h> 16 #include <linux/timer.h> 17 #include <linux/freezer.h> 18 #include <linux/sched/signal.h> 19 #include <linux/random.h> 20 21 #include "f2fs.h" 22 #include "segment.h" 23 #include "node.h" 24 #include "gc.h" 25 #include "iostat.h" 26 #include <trace/events/f2fs.h> 27 28 #define __reverse_ffz(x) __reverse_ffs(~(x)) 29 30 static struct kmem_cache *discard_entry_slab; 31 static struct kmem_cache *discard_cmd_slab; 32 static struct kmem_cache *sit_entry_set_slab; 33 static struct kmem_cache *revoke_entry_slab; 34 35 static unsigned long __reverse_ulong(unsigned char *str) 36 { 37 unsigned long tmp = 0; 38 int shift = 24, idx = 0; 39 40 #if BITS_PER_LONG == 64 41 shift = 56; 42 #endif 43 while (shift >= 0) { 44 tmp |= (unsigned long)str[idx++] << shift; 45 shift -= BITS_PER_BYTE; 46 } 47 return tmp; 48 } 49 50 /* 51 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 52 * MSB and LSB are reversed in a byte by f2fs_set_bit. 53 */ 54 static inline unsigned long __reverse_ffs(unsigned long word) 55 { 56 int num = 0; 57 58 #if BITS_PER_LONG == 64 59 if ((word & 0xffffffff00000000UL) == 0) 60 num += 32; 61 else 62 word >>= 32; 63 #endif 64 if ((word & 0xffff0000) == 0) 65 num += 16; 66 else 67 word >>= 16; 68 69 if ((word & 0xff00) == 0) 70 num += 8; 71 else 72 word >>= 8; 73 74 if ((word & 0xf0) == 0) 75 num += 4; 76 else 77 word >>= 4; 78 79 if ((word & 0xc) == 0) 80 num += 2; 81 else 82 word >>= 2; 83 84 if ((word & 0x2) == 0) 85 num += 1; 86 return num; 87 } 88 89 /* 90 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 91 * f2fs_set_bit makes MSB and LSB reversed in a byte. 92 * @size must be integral times of unsigned long. 93 * Example: 94 * MSB <--> LSB 95 * f2fs_set_bit(0, bitmap) => 1000 0000 96 * f2fs_set_bit(7, bitmap) => 0000 0001 97 */ 98 static unsigned long __find_rev_next_bit(const unsigned long *addr, 99 unsigned long size, unsigned long offset) 100 { 101 const unsigned long *p = addr + BIT_WORD(offset); 102 unsigned long result = size; 103 unsigned long tmp; 104 105 if (offset >= size) 106 return size; 107 108 size -= (offset & ~(BITS_PER_LONG - 1)); 109 offset %= BITS_PER_LONG; 110 111 while (1) { 112 if (*p == 0) 113 goto pass; 114 115 tmp = __reverse_ulong((unsigned char *)p); 116 117 tmp &= ~0UL >> offset; 118 if (size < BITS_PER_LONG) 119 tmp &= (~0UL << (BITS_PER_LONG - size)); 120 if (tmp) 121 goto found; 122 pass: 123 if (size <= BITS_PER_LONG) 124 break; 125 size -= BITS_PER_LONG; 126 offset = 0; 127 p++; 128 } 129 return result; 130 found: 131 return result - size + __reverse_ffs(tmp); 132 } 133 134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 135 unsigned long size, unsigned long offset) 136 { 137 const unsigned long *p = addr + BIT_WORD(offset); 138 unsigned long result = size; 139 unsigned long tmp; 140 141 if (offset >= size) 142 return size; 143 144 size -= (offset & ~(BITS_PER_LONG - 1)); 145 offset %= BITS_PER_LONG; 146 147 while (1) { 148 if (*p == ~0UL) 149 goto pass; 150 151 tmp = __reverse_ulong((unsigned char *)p); 152 153 if (offset) 154 tmp |= ~0UL << (BITS_PER_LONG - offset); 155 if (size < BITS_PER_LONG) 156 tmp |= ~0UL >> size; 157 if (tmp != ~0UL) 158 goto found; 159 pass: 160 if (size <= BITS_PER_LONG) 161 break; 162 size -= BITS_PER_LONG; 163 offset = 0; 164 p++; 165 } 166 return result; 167 found: 168 return result - size + __reverse_ffz(tmp); 169 } 170 171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 172 { 173 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 174 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 175 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 176 177 if (f2fs_lfs_mode(sbi)) 178 return false; 179 if (sbi->gc_mode == GC_URGENT_HIGH) 180 return true; 181 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 182 return true; 183 184 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 185 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 186 } 187 188 void f2fs_abort_atomic_write(struct inode *inode, bool clean) 189 { 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 192 if (!f2fs_is_atomic_file(inode)) 193 return; 194 195 if (clean) 196 truncate_inode_pages_final(inode->i_mapping); 197 198 release_atomic_write_cnt(inode); 199 clear_inode_flag(inode, FI_ATOMIC_COMMITTED); 200 clear_inode_flag(inode, FI_ATOMIC_REPLACE); 201 clear_inode_flag(inode, FI_ATOMIC_FILE); 202 stat_dec_atomic_inode(inode); 203 204 F2FS_I(inode)->atomic_write_task = NULL; 205 206 if (clean) { 207 f2fs_i_size_write(inode, fi->original_i_size); 208 fi->original_i_size = 0; 209 } 210 /* avoid stale dirty inode during eviction */ 211 sync_inode_metadata(inode, 0); 212 } 213 214 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index, 215 block_t new_addr, block_t *old_addr, bool recover) 216 { 217 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 218 struct dnode_of_data dn; 219 struct node_info ni; 220 int err; 221 222 retry: 223 set_new_dnode(&dn, inode, NULL, NULL, 0); 224 err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE); 225 if (err) { 226 if (err == -ENOMEM) { 227 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 228 goto retry; 229 } 230 return err; 231 } 232 233 err = f2fs_get_node_info(sbi, dn.nid, &ni, false); 234 if (err) { 235 f2fs_put_dnode(&dn); 236 return err; 237 } 238 239 if (recover) { 240 /* dn.data_blkaddr is always valid */ 241 if (!__is_valid_data_blkaddr(new_addr)) { 242 if (new_addr == NULL_ADDR) 243 dec_valid_block_count(sbi, inode, 1); 244 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 245 f2fs_update_data_blkaddr(&dn, new_addr); 246 } else { 247 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 248 new_addr, ni.version, true, true); 249 } 250 } else { 251 blkcnt_t count = 1; 252 253 err = inc_valid_block_count(sbi, inode, &count, true); 254 if (err) { 255 f2fs_put_dnode(&dn); 256 return err; 257 } 258 259 *old_addr = dn.data_blkaddr; 260 f2fs_truncate_data_blocks_range(&dn, 1); 261 dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count); 262 263 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr, 264 ni.version, true, false); 265 } 266 267 f2fs_put_dnode(&dn); 268 269 trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode, 270 index, old_addr ? *old_addr : 0, new_addr, recover); 271 return 0; 272 } 273 274 static void __complete_revoke_list(struct inode *inode, struct list_head *head, 275 bool revoke) 276 { 277 struct revoke_entry *cur, *tmp; 278 pgoff_t start_index = 0; 279 bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE); 280 281 list_for_each_entry_safe(cur, tmp, head, list) { 282 if (revoke) { 283 __replace_atomic_write_block(inode, cur->index, 284 cur->old_addr, NULL, true); 285 } else if (truncate) { 286 f2fs_truncate_hole(inode, start_index, cur->index); 287 start_index = cur->index + 1; 288 } 289 290 list_del(&cur->list); 291 kmem_cache_free(revoke_entry_slab, cur); 292 } 293 294 if (!revoke && truncate) 295 f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false); 296 } 297 298 static int __f2fs_commit_atomic_write(struct inode *inode) 299 { 300 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 301 struct f2fs_inode_info *fi = F2FS_I(inode); 302 struct inode *cow_inode = fi->cow_inode; 303 struct revoke_entry *new; 304 struct list_head revoke_list; 305 block_t blkaddr; 306 struct dnode_of_data dn; 307 pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 308 pgoff_t off = 0, blen, index; 309 int ret = 0, i; 310 311 INIT_LIST_HEAD(&revoke_list); 312 313 while (len) { 314 blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len); 315 316 set_new_dnode(&dn, cow_inode, NULL, NULL, 0); 317 ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA); 318 if (ret && ret != -ENOENT) { 319 goto out; 320 } else if (ret == -ENOENT) { 321 ret = 0; 322 if (dn.max_level == 0) 323 goto out; 324 goto next; 325 } 326 327 blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode), 328 len); 329 index = off; 330 for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) { 331 blkaddr = f2fs_data_blkaddr(&dn); 332 333 if (!__is_valid_data_blkaddr(blkaddr)) { 334 continue; 335 } else if (!f2fs_is_valid_blkaddr(sbi, blkaddr, 336 DATA_GENERIC_ENHANCE)) { 337 f2fs_put_dnode(&dn); 338 ret = -EFSCORRUPTED; 339 f2fs_handle_error(sbi, 340 ERROR_INVALID_BLKADDR); 341 goto out; 342 } 343 344 new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS, 345 true, NULL); 346 347 ret = __replace_atomic_write_block(inode, index, blkaddr, 348 &new->old_addr, false); 349 if (ret) { 350 f2fs_put_dnode(&dn); 351 kmem_cache_free(revoke_entry_slab, new); 352 goto out; 353 } 354 355 f2fs_update_data_blkaddr(&dn, NULL_ADDR); 356 new->index = index; 357 list_add_tail(&new->list, &revoke_list); 358 } 359 f2fs_put_dnode(&dn); 360 next: 361 off += blen; 362 len -= blen; 363 } 364 365 out: 366 if (ret) { 367 sbi->revoked_atomic_block += fi->atomic_write_cnt; 368 } else { 369 sbi->committed_atomic_block += fi->atomic_write_cnt; 370 set_inode_flag(inode, FI_ATOMIC_COMMITTED); 371 } 372 373 __complete_revoke_list(inode, &revoke_list, ret ? true : false); 374 375 return ret; 376 } 377 378 int f2fs_commit_atomic_write(struct inode *inode) 379 { 380 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 381 struct f2fs_inode_info *fi = F2FS_I(inode); 382 int err; 383 384 err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX); 385 if (err) 386 return err; 387 388 f2fs_down_write(&fi->i_gc_rwsem[WRITE]); 389 f2fs_lock_op(sbi); 390 391 err = __f2fs_commit_atomic_write(inode); 392 393 f2fs_unlock_op(sbi); 394 f2fs_up_write(&fi->i_gc_rwsem[WRITE]); 395 396 return err; 397 } 398 399 /* 400 * This function balances dirty node and dentry pages. 401 * In addition, it controls garbage collection. 402 */ 403 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 404 { 405 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 406 f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT); 407 408 /* balance_fs_bg is able to be pending */ 409 if (need && excess_cached_nats(sbi)) 410 f2fs_balance_fs_bg(sbi, false); 411 412 if (!f2fs_is_checkpoint_ready(sbi)) 413 return; 414 415 /* 416 * We should do GC or end up with checkpoint, if there are so many dirty 417 * dir/node pages without enough free segments. 418 */ 419 if (has_enough_free_secs(sbi, 0, 0)) 420 return; 421 422 if (test_opt(sbi, GC_MERGE) && sbi->gc_thread && 423 sbi->gc_thread->f2fs_gc_task) { 424 DEFINE_WAIT(wait); 425 426 prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait, 427 TASK_UNINTERRUPTIBLE); 428 wake_up(&sbi->gc_thread->gc_wait_queue_head); 429 io_schedule(); 430 finish_wait(&sbi->gc_thread->fggc_wq, &wait); 431 } else { 432 struct f2fs_gc_control gc_control = { 433 .victim_segno = NULL_SEGNO, 434 .init_gc_type = BG_GC, 435 .no_bg_gc = true, 436 .should_migrate_blocks = false, 437 .err_gc_skipped = false, 438 .nr_free_secs = 1 }; 439 f2fs_down_write(&sbi->gc_lock); 440 stat_inc_gc_call_count(sbi, FOREGROUND); 441 f2fs_gc(sbi, &gc_control); 442 } 443 } 444 445 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi) 446 { 447 int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2; 448 unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS); 449 unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA); 450 unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES); 451 unsigned int meta = get_pages(sbi, F2FS_DIRTY_META); 452 unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA); 453 unsigned int threshold = sbi->blocks_per_seg * factor * 454 DEFAULT_DIRTY_THRESHOLD; 455 unsigned int global_threshold = threshold * 3 / 2; 456 457 if (dents >= threshold || qdata >= threshold || 458 nodes >= threshold || meta >= threshold || 459 imeta >= threshold) 460 return true; 461 return dents + qdata + nodes + meta + imeta > global_threshold; 462 } 463 464 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg) 465 { 466 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 467 return; 468 469 /* try to shrink extent cache when there is no enough memory */ 470 if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE)) 471 f2fs_shrink_read_extent_tree(sbi, 472 READ_EXTENT_CACHE_SHRINK_NUMBER); 473 474 /* try to shrink age extent cache when there is no enough memory */ 475 if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE)) 476 f2fs_shrink_age_extent_tree(sbi, 477 AGE_EXTENT_CACHE_SHRINK_NUMBER); 478 479 /* check the # of cached NAT entries */ 480 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 481 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 482 483 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 484 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 485 else 486 f2fs_build_free_nids(sbi, false, false); 487 488 if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) || 489 excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi)) 490 goto do_sync; 491 492 /* there is background inflight IO or foreground operation recently */ 493 if (is_inflight_io(sbi, REQ_TIME) || 494 (!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem))) 495 return; 496 497 /* exceed periodical checkpoint timeout threshold */ 498 if (f2fs_time_over(sbi, CP_TIME)) 499 goto do_sync; 500 501 /* checkpoint is the only way to shrink partial cached entries */ 502 if (f2fs_available_free_memory(sbi, NAT_ENTRIES) && 503 f2fs_available_free_memory(sbi, INO_ENTRIES)) 504 return; 505 506 do_sync: 507 if (test_opt(sbi, DATA_FLUSH) && from_bg) { 508 struct blk_plug plug; 509 510 mutex_lock(&sbi->flush_lock); 511 512 blk_start_plug(&plug); 513 f2fs_sync_dirty_inodes(sbi, FILE_INODE, false); 514 blk_finish_plug(&plug); 515 516 mutex_unlock(&sbi->flush_lock); 517 } 518 stat_inc_cp_call_count(sbi, BACKGROUND); 519 f2fs_sync_fs(sbi->sb, 1); 520 } 521 522 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 523 struct block_device *bdev) 524 { 525 int ret = blkdev_issue_flush(bdev); 526 527 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 528 test_opt(sbi, FLUSH_MERGE), ret); 529 if (!ret) 530 f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0); 531 return ret; 532 } 533 534 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 535 { 536 int ret = 0; 537 int i; 538 539 if (!f2fs_is_multi_device(sbi)) 540 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 541 542 for (i = 0; i < sbi->s_ndevs; i++) { 543 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 544 continue; 545 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 546 if (ret) 547 break; 548 } 549 return ret; 550 } 551 552 static int issue_flush_thread(void *data) 553 { 554 struct f2fs_sb_info *sbi = data; 555 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 556 wait_queue_head_t *q = &fcc->flush_wait_queue; 557 repeat: 558 if (kthread_should_stop()) 559 return 0; 560 561 if (!llist_empty(&fcc->issue_list)) { 562 struct flush_cmd *cmd, *next; 563 int ret; 564 565 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 566 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 567 568 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 569 570 ret = submit_flush_wait(sbi, cmd->ino); 571 atomic_inc(&fcc->issued_flush); 572 573 llist_for_each_entry_safe(cmd, next, 574 fcc->dispatch_list, llnode) { 575 cmd->ret = ret; 576 complete(&cmd->wait); 577 } 578 fcc->dispatch_list = NULL; 579 } 580 581 wait_event_interruptible(*q, 582 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 583 goto repeat; 584 } 585 586 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 587 { 588 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 589 struct flush_cmd cmd; 590 int ret; 591 592 if (test_opt(sbi, NOBARRIER)) 593 return 0; 594 595 if (!test_opt(sbi, FLUSH_MERGE)) { 596 atomic_inc(&fcc->queued_flush); 597 ret = submit_flush_wait(sbi, ino); 598 atomic_dec(&fcc->queued_flush); 599 atomic_inc(&fcc->issued_flush); 600 return ret; 601 } 602 603 if (atomic_inc_return(&fcc->queued_flush) == 1 || 604 f2fs_is_multi_device(sbi)) { 605 ret = submit_flush_wait(sbi, ino); 606 atomic_dec(&fcc->queued_flush); 607 608 atomic_inc(&fcc->issued_flush); 609 return ret; 610 } 611 612 cmd.ino = ino; 613 init_completion(&cmd.wait); 614 615 llist_add(&cmd.llnode, &fcc->issue_list); 616 617 /* 618 * update issue_list before we wake up issue_flush thread, this 619 * smp_mb() pairs with another barrier in ___wait_event(), see 620 * more details in comments of waitqueue_active(). 621 */ 622 smp_mb(); 623 624 if (waitqueue_active(&fcc->flush_wait_queue)) 625 wake_up(&fcc->flush_wait_queue); 626 627 if (fcc->f2fs_issue_flush) { 628 wait_for_completion(&cmd.wait); 629 atomic_dec(&fcc->queued_flush); 630 } else { 631 struct llist_node *list; 632 633 list = llist_del_all(&fcc->issue_list); 634 if (!list) { 635 wait_for_completion(&cmd.wait); 636 atomic_dec(&fcc->queued_flush); 637 } else { 638 struct flush_cmd *tmp, *next; 639 640 ret = submit_flush_wait(sbi, ino); 641 642 llist_for_each_entry_safe(tmp, next, list, llnode) { 643 if (tmp == &cmd) { 644 cmd.ret = ret; 645 atomic_dec(&fcc->queued_flush); 646 continue; 647 } 648 tmp->ret = ret; 649 complete(&tmp->wait); 650 } 651 } 652 } 653 654 return cmd.ret; 655 } 656 657 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 658 { 659 dev_t dev = sbi->sb->s_bdev->bd_dev; 660 struct flush_cmd_control *fcc; 661 662 if (SM_I(sbi)->fcc_info) { 663 fcc = SM_I(sbi)->fcc_info; 664 if (fcc->f2fs_issue_flush) 665 return 0; 666 goto init_thread; 667 } 668 669 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 670 if (!fcc) 671 return -ENOMEM; 672 atomic_set(&fcc->issued_flush, 0); 673 atomic_set(&fcc->queued_flush, 0); 674 init_waitqueue_head(&fcc->flush_wait_queue); 675 init_llist_head(&fcc->issue_list); 676 SM_I(sbi)->fcc_info = fcc; 677 if (!test_opt(sbi, FLUSH_MERGE)) 678 return 0; 679 680 init_thread: 681 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 682 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 683 if (IS_ERR(fcc->f2fs_issue_flush)) { 684 int err = PTR_ERR(fcc->f2fs_issue_flush); 685 686 fcc->f2fs_issue_flush = NULL; 687 return err; 688 } 689 690 return 0; 691 } 692 693 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 694 { 695 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 696 697 if (fcc && fcc->f2fs_issue_flush) { 698 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 699 700 fcc->f2fs_issue_flush = NULL; 701 kthread_stop(flush_thread); 702 } 703 if (free) { 704 kfree(fcc); 705 SM_I(sbi)->fcc_info = NULL; 706 } 707 } 708 709 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 710 { 711 int ret = 0, i; 712 713 if (!f2fs_is_multi_device(sbi)) 714 return 0; 715 716 if (test_opt(sbi, NOBARRIER)) 717 return 0; 718 719 for (i = 1; i < sbi->s_ndevs; i++) { 720 int count = DEFAULT_RETRY_IO_COUNT; 721 722 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 723 continue; 724 725 do { 726 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 727 if (ret) 728 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 729 } while (ret && --count); 730 731 if (ret) { 732 f2fs_stop_checkpoint(sbi, false, 733 STOP_CP_REASON_FLUSH_FAIL); 734 break; 735 } 736 737 spin_lock(&sbi->dev_lock); 738 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 739 spin_unlock(&sbi->dev_lock); 740 } 741 742 return ret; 743 } 744 745 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 746 enum dirty_type dirty_type) 747 { 748 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 749 750 /* need not be added */ 751 if (IS_CURSEG(sbi, segno)) 752 return; 753 754 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 755 dirty_i->nr_dirty[dirty_type]++; 756 757 if (dirty_type == DIRTY) { 758 struct seg_entry *sentry = get_seg_entry(sbi, segno); 759 enum dirty_type t = sentry->type; 760 761 if (unlikely(t >= DIRTY)) { 762 f2fs_bug_on(sbi, 1); 763 return; 764 } 765 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 766 dirty_i->nr_dirty[t]++; 767 768 if (__is_large_section(sbi)) { 769 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 770 block_t valid_blocks = 771 get_valid_blocks(sbi, segno, true); 772 773 f2fs_bug_on(sbi, unlikely(!valid_blocks || 774 valid_blocks == CAP_BLKS_PER_SEC(sbi))); 775 776 if (!IS_CURSEC(sbi, secno)) 777 set_bit(secno, dirty_i->dirty_secmap); 778 } 779 } 780 } 781 782 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 783 enum dirty_type dirty_type) 784 { 785 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 786 block_t valid_blocks; 787 788 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 789 dirty_i->nr_dirty[dirty_type]--; 790 791 if (dirty_type == DIRTY) { 792 struct seg_entry *sentry = get_seg_entry(sbi, segno); 793 enum dirty_type t = sentry->type; 794 795 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 796 dirty_i->nr_dirty[t]--; 797 798 valid_blocks = get_valid_blocks(sbi, segno, true); 799 if (valid_blocks == 0) { 800 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 801 dirty_i->victim_secmap); 802 #ifdef CONFIG_F2FS_CHECK_FS 803 clear_bit(segno, SIT_I(sbi)->invalid_segmap); 804 #endif 805 } 806 if (__is_large_section(sbi)) { 807 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 808 809 if (!valid_blocks || 810 valid_blocks == CAP_BLKS_PER_SEC(sbi)) { 811 clear_bit(secno, dirty_i->dirty_secmap); 812 return; 813 } 814 815 if (!IS_CURSEC(sbi, secno)) 816 set_bit(secno, dirty_i->dirty_secmap); 817 } 818 } 819 } 820 821 /* 822 * Should not occur error such as -ENOMEM. 823 * Adding dirty entry into seglist is not critical operation. 824 * If a given segment is one of current working segments, it won't be added. 825 */ 826 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 827 { 828 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 829 unsigned short valid_blocks, ckpt_valid_blocks; 830 unsigned int usable_blocks; 831 832 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 833 return; 834 835 usable_blocks = f2fs_usable_blks_in_seg(sbi, segno); 836 mutex_lock(&dirty_i->seglist_lock); 837 838 valid_blocks = get_valid_blocks(sbi, segno, false); 839 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false); 840 841 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 842 ckpt_valid_blocks == usable_blocks)) { 843 __locate_dirty_segment(sbi, segno, PRE); 844 __remove_dirty_segment(sbi, segno, DIRTY); 845 } else if (valid_blocks < usable_blocks) { 846 __locate_dirty_segment(sbi, segno, DIRTY); 847 } else { 848 /* Recovery routine with SSR needs this */ 849 __remove_dirty_segment(sbi, segno, DIRTY); 850 } 851 852 mutex_unlock(&dirty_i->seglist_lock); 853 } 854 855 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 856 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 857 { 858 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 859 unsigned int segno; 860 861 mutex_lock(&dirty_i->seglist_lock); 862 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 863 if (get_valid_blocks(sbi, segno, false)) 864 continue; 865 if (IS_CURSEG(sbi, segno)) 866 continue; 867 __locate_dirty_segment(sbi, segno, PRE); 868 __remove_dirty_segment(sbi, segno, DIRTY); 869 } 870 mutex_unlock(&dirty_i->seglist_lock); 871 } 872 873 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi) 874 { 875 int ovp_hole_segs = 876 (overprovision_segments(sbi) - reserved_segments(sbi)); 877 block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg; 878 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 879 block_t holes[2] = {0, 0}; /* DATA and NODE */ 880 block_t unusable; 881 struct seg_entry *se; 882 unsigned int segno; 883 884 mutex_lock(&dirty_i->seglist_lock); 885 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 886 se = get_seg_entry(sbi, segno); 887 if (IS_NODESEG(se->type)) 888 holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) - 889 se->valid_blocks; 890 else 891 holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) - 892 se->valid_blocks; 893 } 894 mutex_unlock(&dirty_i->seglist_lock); 895 896 unusable = max(holes[DATA], holes[NODE]); 897 if (unusable > ovp_holes) 898 return unusable - ovp_holes; 899 return 0; 900 } 901 902 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable) 903 { 904 int ovp_hole_segs = 905 (overprovision_segments(sbi) - reserved_segments(sbi)); 906 if (unusable > F2FS_OPTION(sbi).unusable_cap) 907 return -EAGAIN; 908 if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) && 909 dirty_segments(sbi) > ovp_hole_segs) 910 return -EAGAIN; 911 return 0; 912 } 913 914 /* This is only used by SBI_CP_DISABLED */ 915 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 916 { 917 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 918 unsigned int segno = 0; 919 920 mutex_lock(&dirty_i->seglist_lock); 921 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 922 if (get_valid_blocks(sbi, segno, false)) 923 continue; 924 if (get_ckpt_valid_blocks(sbi, segno, false)) 925 continue; 926 mutex_unlock(&dirty_i->seglist_lock); 927 return segno; 928 } 929 mutex_unlock(&dirty_i->seglist_lock); 930 return NULL_SEGNO; 931 } 932 933 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 934 struct block_device *bdev, block_t lstart, 935 block_t start, block_t len) 936 { 937 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 938 struct list_head *pend_list; 939 struct discard_cmd *dc; 940 941 f2fs_bug_on(sbi, !len); 942 943 pend_list = &dcc->pend_list[plist_idx(len)]; 944 945 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL); 946 INIT_LIST_HEAD(&dc->list); 947 dc->bdev = bdev; 948 dc->di.lstart = lstart; 949 dc->di.start = start; 950 dc->di.len = len; 951 dc->ref = 0; 952 dc->state = D_PREP; 953 dc->queued = 0; 954 dc->error = 0; 955 init_completion(&dc->wait); 956 list_add_tail(&dc->list, pend_list); 957 spin_lock_init(&dc->lock); 958 dc->bio_ref = 0; 959 atomic_inc(&dcc->discard_cmd_cnt); 960 dcc->undiscard_blks += len; 961 962 return dc; 963 } 964 965 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi) 966 { 967 #ifdef CONFIG_F2FS_CHECK_FS 968 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 969 struct rb_node *cur = rb_first_cached(&dcc->root), *next; 970 struct discard_cmd *cur_dc, *next_dc; 971 972 while (cur) { 973 next = rb_next(cur); 974 if (!next) 975 return true; 976 977 cur_dc = rb_entry(cur, struct discard_cmd, rb_node); 978 next_dc = rb_entry(next, struct discard_cmd, rb_node); 979 980 if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) { 981 f2fs_info(sbi, "broken discard_rbtree, " 982 "cur(%u, %u) next(%u, %u)", 983 cur_dc->di.lstart, cur_dc->di.len, 984 next_dc->di.lstart, next_dc->di.len); 985 return false; 986 } 987 cur = next; 988 } 989 #endif 990 return true; 991 } 992 993 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi, 994 block_t blkaddr) 995 { 996 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 997 struct rb_node *node = dcc->root.rb_root.rb_node; 998 struct discard_cmd *dc; 999 1000 while (node) { 1001 dc = rb_entry(node, struct discard_cmd, rb_node); 1002 1003 if (blkaddr < dc->di.lstart) 1004 node = node->rb_left; 1005 else if (blkaddr >= dc->di.lstart + dc->di.len) 1006 node = node->rb_right; 1007 else 1008 return dc; 1009 } 1010 return NULL; 1011 } 1012 1013 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root, 1014 block_t blkaddr, 1015 struct discard_cmd **prev_entry, 1016 struct discard_cmd **next_entry, 1017 struct rb_node ***insert_p, 1018 struct rb_node **insert_parent) 1019 { 1020 struct rb_node **pnode = &root->rb_root.rb_node; 1021 struct rb_node *parent = NULL, *tmp_node; 1022 struct discard_cmd *dc; 1023 1024 *insert_p = NULL; 1025 *insert_parent = NULL; 1026 *prev_entry = NULL; 1027 *next_entry = NULL; 1028 1029 if (RB_EMPTY_ROOT(&root->rb_root)) 1030 return NULL; 1031 1032 while (*pnode) { 1033 parent = *pnode; 1034 dc = rb_entry(*pnode, struct discard_cmd, rb_node); 1035 1036 if (blkaddr < dc->di.lstart) 1037 pnode = &(*pnode)->rb_left; 1038 else if (blkaddr >= dc->di.lstart + dc->di.len) 1039 pnode = &(*pnode)->rb_right; 1040 else 1041 goto lookup_neighbors; 1042 } 1043 1044 *insert_p = pnode; 1045 *insert_parent = parent; 1046 1047 dc = rb_entry(parent, struct discard_cmd, rb_node); 1048 tmp_node = parent; 1049 if (parent && blkaddr > dc->di.lstart) 1050 tmp_node = rb_next(parent); 1051 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1052 1053 tmp_node = parent; 1054 if (parent && blkaddr < dc->di.lstart) 1055 tmp_node = rb_prev(parent); 1056 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1057 return NULL; 1058 1059 lookup_neighbors: 1060 /* lookup prev node for merging backward later */ 1061 tmp_node = rb_prev(&dc->rb_node); 1062 *prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1063 1064 /* lookup next node for merging frontward later */ 1065 tmp_node = rb_next(&dc->rb_node); 1066 *next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node); 1067 return dc; 1068 } 1069 1070 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 1071 struct discard_cmd *dc) 1072 { 1073 if (dc->state == D_DONE) 1074 atomic_sub(dc->queued, &dcc->queued_discard); 1075 1076 list_del(&dc->list); 1077 rb_erase_cached(&dc->rb_node, &dcc->root); 1078 dcc->undiscard_blks -= dc->di.len; 1079 1080 kmem_cache_free(discard_cmd_slab, dc); 1081 1082 atomic_dec(&dcc->discard_cmd_cnt); 1083 } 1084 1085 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 1086 struct discard_cmd *dc) 1087 { 1088 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1089 unsigned long flags; 1090 1091 trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len); 1092 1093 spin_lock_irqsave(&dc->lock, flags); 1094 if (dc->bio_ref) { 1095 spin_unlock_irqrestore(&dc->lock, flags); 1096 return; 1097 } 1098 spin_unlock_irqrestore(&dc->lock, flags); 1099 1100 f2fs_bug_on(sbi, dc->ref); 1101 1102 if (dc->error == -EOPNOTSUPP) 1103 dc->error = 0; 1104 1105 if (dc->error) 1106 printk_ratelimited( 1107 "%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d", 1108 KERN_INFO, sbi->sb->s_id, 1109 dc->di.lstart, dc->di.start, dc->di.len, dc->error); 1110 __detach_discard_cmd(dcc, dc); 1111 } 1112 1113 static void f2fs_submit_discard_endio(struct bio *bio) 1114 { 1115 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 1116 unsigned long flags; 1117 1118 spin_lock_irqsave(&dc->lock, flags); 1119 if (!dc->error) 1120 dc->error = blk_status_to_errno(bio->bi_status); 1121 dc->bio_ref--; 1122 if (!dc->bio_ref && dc->state == D_SUBMIT) { 1123 dc->state = D_DONE; 1124 complete_all(&dc->wait); 1125 } 1126 spin_unlock_irqrestore(&dc->lock, flags); 1127 bio_put(bio); 1128 } 1129 1130 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 1131 block_t start, block_t end) 1132 { 1133 #ifdef CONFIG_F2FS_CHECK_FS 1134 struct seg_entry *sentry; 1135 unsigned int segno; 1136 block_t blk = start; 1137 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1138 unsigned long *map; 1139 1140 while (blk < end) { 1141 segno = GET_SEGNO(sbi, blk); 1142 sentry = get_seg_entry(sbi, segno); 1143 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1144 1145 if (end < START_BLOCK(sbi, segno + 1)) 1146 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1147 else 1148 size = max_blocks; 1149 map = (unsigned long *)(sentry->cur_valid_map); 1150 offset = __find_rev_next_bit(map, size, offset); 1151 f2fs_bug_on(sbi, offset != size); 1152 blk = START_BLOCK(sbi, segno + 1); 1153 } 1154 #endif 1155 } 1156 1157 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1158 struct discard_policy *dpolicy, 1159 int discard_type, unsigned int granularity) 1160 { 1161 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1162 1163 /* common policy */ 1164 dpolicy->type = discard_type; 1165 dpolicy->sync = true; 1166 dpolicy->ordered = false; 1167 dpolicy->granularity = granularity; 1168 1169 dpolicy->max_requests = dcc->max_discard_request; 1170 dpolicy->io_aware_gran = dcc->discard_io_aware_gran; 1171 dpolicy->timeout = false; 1172 1173 if (discard_type == DPOLICY_BG) { 1174 dpolicy->min_interval = dcc->min_discard_issue_time; 1175 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1176 dpolicy->max_interval = dcc->max_discard_issue_time; 1177 dpolicy->io_aware = true; 1178 dpolicy->sync = false; 1179 dpolicy->ordered = true; 1180 if (utilization(sbi) > dcc->discard_urgent_util) { 1181 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1182 if (atomic_read(&dcc->discard_cmd_cnt)) 1183 dpolicy->max_interval = 1184 dcc->min_discard_issue_time; 1185 } 1186 } else if (discard_type == DPOLICY_FORCE) { 1187 dpolicy->min_interval = dcc->min_discard_issue_time; 1188 dpolicy->mid_interval = dcc->mid_discard_issue_time; 1189 dpolicy->max_interval = dcc->max_discard_issue_time; 1190 dpolicy->io_aware = false; 1191 } else if (discard_type == DPOLICY_FSTRIM) { 1192 dpolicy->io_aware = false; 1193 } else if (discard_type == DPOLICY_UMOUNT) { 1194 dpolicy->io_aware = false; 1195 /* we need to issue all to keep CP_TRIMMED_FLAG */ 1196 dpolicy->granularity = MIN_DISCARD_GRANULARITY; 1197 dpolicy->timeout = true; 1198 } 1199 } 1200 1201 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1202 struct block_device *bdev, block_t lstart, 1203 block_t start, block_t len); 1204 1205 #ifdef CONFIG_BLK_DEV_ZONED 1206 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi, 1207 struct discard_cmd *dc, blk_opf_t flag, 1208 struct list_head *wait_list, 1209 unsigned int *issued) 1210 { 1211 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1212 struct block_device *bdev = dc->bdev; 1213 struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS); 1214 unsigned long flags; 1215 1216 trace_f2fs_issue_reset_zone(bdev, dc->di.start); 1217 1218 spin_lock_irqsave(&dc->lock, flags); 1219 dc->state = D_SUBMIT; 1220 dc->bio_ref++; 1221 spin_unlock_irqrestore(&dc->lock, flags); 1222 1223 if (issued) 1224 (*issued)++; 1225 1226 atomic_inc(&dcc->queued_discard); 1227 dc->queued++; 1228 list_move_tail(&dc->list, wait_list); 1229 1230 /* sanity check on discard range */ 1231 __check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len); 1232 1233 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start); 1234 bio->bi_private = dc; 1235 bio->bi_end_io = f2fs_submit_discard_endio; 1236 submit_bio(bio); 1237 1238 atomic_inc(&dcc->issued_discard); 1239 f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE); 1240 } 1241 #endif 1242 1243 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1244 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1245 struct discard_policy *dpolicy, 1246 struct discard_cmd *dc, int *issued) 1247 { 1248 struct block_device *bdev = dc->bdev; 1249 unsigned int max_discard_blocks = 1250 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1251 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1252 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1253 &(dcc->fstrim_list) : &(dcc->wait_list); 1254 blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0; 1255 block_t lstart, start, len, total_len; 1256 int err = 0; 1257 1258 if (dc->state != D_PREP) 1259 return 0; 1260 1261 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1262 return 0; 1263 1264 #ifdef CONFIG_BLK_DEV_ZONED 1265 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) { 1266 int devi = f2fs_bdev_index(sbi, bdev); 1267 1268 if (devi < 0) 1269 return -EINVAL; 1270 1271 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1272 __submit_zone_reset_cmd(sbi, dc, flag, 1273 wait_list, issued); 1274 return 0; 1275 } 1276 } 1277 #endif 1278 1279 trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len); 1280 1281 lstart = dc->di.lstart; 1282 start = dc->di.start; 1283 len = dc->di.len; 1284 total_len = len; 1285 1286 dc->di.len = 0; 1287 1288 while (total_len && *issued < dpolicy->max_requests && !err) { 1289 struct bio *bio = NULL; 1290 unsigned long flags; 1291 bool last = true; 1292 1293 if (len > max_discard_blocks) { 1294 len = max_discard_blocks; 1295 last = false; 1296 } 1297 1298 (*issued)++; 1299 if (*issued == dpolicy->max_requests) 1300 last = true; 1301 1302 dc->di.len += len; 1303 1304 if (time_to_inject(sbi, FAULT_DISCARD)) { 1305 err = -EIO; 1306 } else { 1307 err = __blkdev_issue_discard(bdev, 1308 SECTOR_FROM_BLOCK(start), 1309 SECTOR_FROM_BLOCK(len), 1310 GFP_NOFS, &bio); 1311 } 1312 if (err) { 1313 spin_lock_irqsave(&dc->lock, flags); 1314 if (dc->state == D_PARTIAL) 1315 dc->state = D_SUBMIT; 1316 spin_unlock_irqrestore(&dc->lock, flags); 1317 1318 break; 1319 } 1320 1321 f2fs_bug_on(sbi, !bio); 1322 1323 /* 1324 * should keep before submission to avoid D_DONE 1325 * right away 1326 */ 1327 spin_lock_irqsave(&dc->lock, flags); 1328 if (last) 1329 dc->state = D_SUBMIT; 1330 else 1331 dc->state = D_PARTIAL; 1332 dc->bio_ref++; 1333 spin_unlock_irqrestore(&dc->lock, flags); 1334 1335 atomic_inc(&dcc->queued_discard); 1336 dc->queued++; 1337 list_move_tail(&dc->list, wait_list); 1338 1339 /* sanity check on discard range */ 1340 __check_sit_bitmap(sbi, lstart, lstart + len); 1341 1342 bio->bi_private = dc; 1343 bio->bi_end_io = f2fs_submit_discard_endio; 1344 bio->bi_opf |= flag; 1345 submit_bio(bio); 1346 1347 atomic_inc(&dcc->issued_discard); 1348 1349 f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE); 1350 1351 lstart += len; 1352 start += len; 1353 total_len -= len; 1354 len = total_len; 1355 } 1356 1357 if (!err && len) { 1358 dcc->undiscard_blks -= len; 1359 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1360 } 1361 return err; 1362 } 1363 1364 static void __insert_discard_cmd(struct f2fs_sb_info *sbi, 1365 struct block_device *bdev, block_t lstart, 1366 block_t start, block_t len) 1367 { 1368 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1369 struct rb_node **p = &dcc->root.rb_root.rb_node; 1370 struct rb_node *parent = NULL; 1371 struct discard_cmd *dc; 1372 bool leftmost = true; 1373 1374 /* look up rb tree to find parent node */ 1375 while (*p) { 1376 parent = *p; 1377 dc = rb_entry(parent, struct discard_cmd, rb_node); 1378 1379 if (lstart < dc->di.lstart) { 1380 p = &(*p)->rb_left; 1381 } else if (lstart >= dc->di.lstart + dc->di.len) { 1382 p = &(*p)->rb_right; 1383 leftmost = false; 1384 } else { 1385 f2fs_bug_on(sbi, 1); 1386 } 1387 } 1388 1389 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 1390 1391 rb_link_node(&dc->rb_node, parent, p); 1392 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 1393 } 1394 1395 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1396 struct discard_cmd *dc) 1397 { 1398 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]); 1399 } 1400 1401 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1402 struct discard_cmd *dc, block_t blkaddr) 1403 { 1404 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1405 struct discard_info di = dc->di; 1406 bool modified = false; 1407 1408 if (dc->state == D_DONE || dc->di.len == 1) { 1409 __remove_discard_cmd(sbi, dc); 1410 return; 1411 } 1412 1413 dcc->undiscard_blks -= di.len; 1414 1415 if (blkaddr > di.lstart) { 1416 dc->di.len = blkaddr - dc->di.lstart; 1417 dcc->undiscard_blks += dc->di.len; 1418 __relocate_discard_cmd(dcc, dc); 1419 modified = true; 1420 } 1421 1422 if (blkaddr < di.lstart + di.len - 1) { 1423 if (modified) { 1424 __insert_discard_cmd(sbi, dc->bdev, blkaddr + 1, 1425 di.start + blkaddr + 1 - di.lstart, 1426 di.lstart + di.len - 1 - blkaddr); 1427 } else { 1428 dc->di.lstart++; 1429 dc->di.len--; 1430 dc->di.start++; 1431 dcc->undiscard_blks += dc->di.len; 1432 __relocate_discard_cmd(dcc, dc); 1433 } 1434 } 1435 } 1436 1437 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1438 struct block_device *bdev, block_t lstart, 1439 block_t start, block_t len) 1440 { 1441 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1442 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1443 struct discard_cmd *dc; 1444 struct discard_info di = {0}; 1445 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1446 unsigned int max_discard_blocks = 1447 SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev)); 1448 block_t end = lstart + len; 1449 1450 dc = __lookup_discard_cmd_ret(&dcc->root, lstart, 1451 &prev_dc, &next_dc, &insert_p, &insert_parent); 1452 if (dc) 1453 prev_dc = dc; 1454 1455 if (!prev_dc) { 1456 di.lstart = lstart; 1457 di.len = next_dc ? next_dc->di.lstart - lstart : len; 1458 di.len = min(di.len, len); 1459 di.start = start; 1460 } 1461 1462 while (1) { 1463 struct rb_node *node; 1464 bool merged = false; 1465 struct discard_cmd *tdc = NULL; 1466 1467 if (prev_dc) { 1468 di.lstart = prev_dc->di.lstart + prev_dc->di.len; 1469 if (di.lstart < lstart) 1470 di.lstart = lstart; 1471 if (di.lstart >= end) 1472 break; 1473 1474 if (!next_dc || next_dc->di.lstart > end) 1475 di.len = end - di.lstart; 1476 else 1477 di.len = next_dc->di.lstart - di.lstart; 1478 di.start = start + di.lstart - lstart; 1479 } 1480 1481 if (!di.len) 1482 goto next; 1483 1484 if (prev_dc && prev_dc->state == D_PREP && 1485 prev_dc->bdev == bdev && 1486 __is_discard_back_mergeable(&di, &prev_dc->di, 1487 max_discard_blocks)) { 1488 prev_dc->di.len += di.len; 1489 dcc->undiscard_blks += di.len; 1490 __relocate_discard_cmd(dcc, prev_dc); 1491 di = prev_dc->di; 1492 tdc = prev_dc; 1493 merged = true; 1494 } 1495 1496 if (next_dc && next_dc->state == D_PREP && 1497 next_dc->bdev == bdev && 1498 __is_discard_front_mergeable(&di, &next_dc->di, 1499 max_discard_blocks)) { 1500 next_dc->di.lstart = di.lstart; 1501 next_dc->di.len += di.len; 1502 next_dc->di.start = di.start; 1503 dcc->undiscard_blks += di.len; 1504 __relocate_discard_cmd(dcc, next_dc); 1505 if (tdc) 1506 __remove_discard_cmd(sbi, tdc); 1507 merged = true; 1508 } 1509 1510 if (!merged) 1511 __insert_discard_cmd(sbi, bdev, 1512 di.lstart, di.start, di.len); 1513 next: 1514 prev_dc = next_dc; 1515 if (!prev_dc) 1516 break; 1517 1518 node = rb_next(&prev_dc->rb_node); 1519 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1520 } 1521 } 1522 1523 #ifdef CONFIG_BLK_DEV_ZONED 1524 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi, 1525 struct block_device *bdev, block_t blkstart, block_t lblkstart, 1526 block_t blklen) 1527 { 1528 trace_f2fs_queue_reset_zone(bdev, blkstart); 1529 1530 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1531 __insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen); 1532 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1533 } 1534 #endif 1535 1536 static void __queue_discard_cmd(struct f2fs_sb_info *sbi, 1537 struct block_device *bdev, block_t blkstart, block_t blklen) 1538 { 1539 block_t lblkstart = blkstart; 1540 1541 if (!f2fs_bdev_support_discard(bdev)) 1542 return; 1543 1544 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1545 1546 if (f2fs_is_multi_device(sbi)) { 1547 int devi = f2fs_target_device_index(sbi, blkstart); 1548 1549 blkstart -= FDEV(devi).start_blk; 1550 } 1551 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1552 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1553 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1554 } 1555 1556 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1557 struct discard_policy *dpolicy, int *issued) 1558 { 1559 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1560 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1561 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1562 struct discard_cmd *dc; 1563 struct blk_plug plug; 1564 bool io_interrupted = false; 1565 1566 mutex_lock(&dcc->cmd_lock); 1567 dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos, 1568 &prev_dc, &next_dc, &insert_p, &insert_parent); 1569 if (!dc) 1570 dc = next_dc; 1571 1572 blk_start_plug(&plug); 1573 1574 while (dc) { 1575 struct rb_node *node; 1576 int err = 0; 1577 1578 if (dc->state != D_PREP) 1579 goto next; 1580 1581 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1582 io_interrupted = true; 1583 break; 1584 } 1585 1586 dcc->next_pos = dc->di.lstart + dc->di.len; 1587 err = __submit_discard_cmd(sbi, dpolicy, dc, issued); 1588 1589 if (*issued >= dpolicy->max_requests) 1590 break; 1591 next: 1592 node = rb_next(&dc->rb_node); 1593 if (err) 1594 __remove_discard_cmd(sbi, dc); 1595 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1596 } 1597 1598 blk_finish_plug(&plug); 1599 1600 if (!dc) 1601 dcc->next_pos = 0; 1602 1603 mutex_unlock(&dcc->cmd_lock); 1604 1605 if (!(*issued) && io_interrupted) 1606 *issued = -1; 1607 } 1608 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1609 struct discard_policy *dpolicy); 1610 1611 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1612 struct discard_policy *dpolicy) 1613 { 1614 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1615 struct list_head *pend_list; 1616 struct discard_cmd *dc, *tmp; 1617 struct blk_plug plug; 1618 int i, issued; 1619 bool io_interrupted = false; 1620 1621 if (dpolicy->timeout) 1622 f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT); 1623 1624 retry: 1625 issued = 0; 1626 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1627 if (dpolicy->timeout && 1628 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1629 break; 1630 1631 if (i + 1 < dpolicy->granularity) 1632 break; 1633 1634 if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) { 1635 __issue_discard_cmd_orderly(sbi, dpolicy, &issued); 1636 return issued; 1637 } 1638 1639 pend_list = &dcc->pend_list[i]; 1640 1641 mutex_lock(&dcc->cmd_lock); 1642 if (list_empty(pend_list)) 1643 goto next; 1644 if (unlikely(dcc->rbtree_check)) 1645 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 1646 blk_start_plug(&plug); 1647 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1648 f2fs_bug_on(sbi, dc->state != D_PREP); 1649 1650 if (dpolicy->timeout && 1651 f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT)) 1652 break; 1653 1654 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1655 !is_idle(sbi, DISCARD_TIME)) { 1656 io_interrupted = true; 1657 break; 1658 } 1659 1660 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1661 1662 if (issued >= dpolicy->max_requests) 1663 break; 1664 } 1665 blk_finish_plug(&plug); 1666 next: 1667 mutex_unlock(&dcc->cmd_lock); 1668 1669 if (issued >= dpolicy->max_requests || io_interrupted) 1670 break; 1671 } 1672 1673 if (dpolicy->type == DPOLICY_UMOUNT && issued) { 1674 __wait_all_discard_cmd(sbi, dpolicy); 1675 goto retry; 1676 } 1677 1678 if (!issued && io_interrupted) 1679 issued = -1; 1680 1681 return issued; 1682 } 1683 1684 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1685 { 1686 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1687 struct list_head *pend_list; 1688 struct discard_cmd *dc, *tmp; 1689 int i; 1690 bool dropped = false; 1691 1692 mutex_lock(&dcc->cmd_lock); 1693 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1694 pend_list = &dcc->pend_list[i]; 1695 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1696 f2fs_bug_on(sbi, dc->state != D_PREP); 1697 __remove_discard_cmd(sbi, dc); 1698 dropped = true; 1699 } 1700 } 1701 mutex_unlock(&dcc->cmd_lock); 1702 1703 return dropped; 1704 } 1705 1706 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1707 { 1708 __drop_discard_cmd(sbi); 1709 } 1710 1711 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1712 struct discard_cmd *dc) 1713 { 1714 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1715 unsigned int len = 0; 1716 1717 wait_for_completion_io(&dc->wait); 1718 mutex_lock(&dcc->cmd_lock); 1719 f2fs_bug_on(sbi, dc->state != D_DONE); 1720 dc->ref--; 1721 if (!dc->ref) { 1722 if (!dc->error) 1723 len = dc->di.len; 1724 __remove_discard_cmd(sbi, dc); 1725 } 1726 mutex_unlock(&dcc->cmd_lock); 1727 1728 return len; 1729 } 1730 1731 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1732 struct discard_policy *dpolicy, 1733 block_t start, block_t end) 1734 { 1735 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1736 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1737 &(dcc->fstrim_list) : &(dcc->wait_list); 1738 struct discard_cmd *dc = NULL, *iter, *tmp; 1739 unsigned int trimmed = 0; 1740 1741 next: 1742 dc = NULL; 1743 1744 mutex_lock(&dcc->cmd_lock); 1745 list_for_each_entry_safe(iter, tmp, wait_list, list) { 1746 if (iter->di.lstart + iter->di.len <= start || 1747 end <= iter->di.lstart) 1748 continue; 1749 if (iter->di.len < dpolicy->granularity) 1750 continue; 1751 if (iter->state == D_DONE && !iter->ref) { 1752 wait_for_completion_io(&iter->wait); 1753 if (!iter->error) 1754 trimmed += iter->di.len; 1755 __remove_discard_cmd(sbi, iter); 1756 } else { 1757 iter->ref++; 1758 dc = iter; 1759 break; 1760 } 1761 } 1762 mutex_unlock(&dcc->cmd_lock); 1763 1764 if (dc) { 1765 trimmed += __wait_one_discard_bio(sbi, dc); 1766 goto next; 1767 } 1768 1769 return trimmed; 1770 } 1771 1772 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1773 struct discard_policy *dpolicy) 1774 { 1775 struct discard_policy dp; 1776 unsigned int discard_blks; 1777 1778 if (dpolicy) 1779 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1780 1781 /* wait all */ 1782 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY); 1783 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1784 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY); 1785 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1786 1787 return discard_blks; 1788 } 1789 1790 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1791 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1792 { 1793 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1794 struct discard_cmd *dc; 1795 bool need_wait = false; 1796 1797 mutex_lock(&dcc->cmd_lock); 1798 dc = __lookup_discard_cmd(sbi, blkaddr); 1799 #ifdef CONFIG_BLK_DEV_ZONED 1800 if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) { 1801 int devi = f2fs_bdev_index(sbi, dc->bdev); 1802 1803 if (devi < 0) { 1804 mutex_unlock(&dcc->cmd_lock); 1805 return; 1806 } 1807 1808 if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) { 1809 /* force submit zone reset */ 1810 if (dc->state == D_PREP) 1811 __submit_zone_reset_cmd(sbi, dc, REQ_SYNC, 1812 &dcc->wait_list, NULL); 1813 dc->ref++; 1814 mutex_unlock(&dcc->cmd_lock); 1815 /* wait zone reset */ 1816 __wait_one_discard_bio(sbi, dc); 1817 return; 1818 } 1819 } 1820 #endif 1821 if (dc) { 1822 if (dc->state == D_PREP) { 1823 __punch_discard_cmd(sbi, dc, blkaddr); 1824 } else { 1825 dc->ref++; 1826 need_wait = true; 1827 } 1828 } 1829 mutex_unlock(&dcc->cmd_lock); 1830 1831 if (need_wait) 1832 __wait_one_discard_bio(sbi, dc); 1833 } 1834 1835 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1836 { 1837 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1838 1839 if (dcc && dcc->f2fs_issue_discard) { 1840 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1841 1842 dcc->f2fs_issue_discard = NULL; 1843 kthread_stop(discard_thread); 1844 } 1845 } 1846 1847 /** 1848 * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT 1849 * @sbi: the f2fs_sb_info data for discard cmd to issue 1850 * 1851 * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped 1852 * 1853 * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false. 1854 */ 1855 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi) 1856 { 1857 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1858 struct discard_policy dpolicy; 1859 bool dropped; 1860 1861 if (!atomic_read(&dcc->discard_cmd_cnt)) 1862 return true; 1863 1864 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1865 dcc->discard_granularity); 1866 __issue_discard_cmd(sbi, &dpolicy); 1867 dropped = __drop_discard_cmd(sbi); 1868 1869 /* just to make sure there is no pending discard commands */ 1870 __wait_all_discard_cmd(sbi, NULL); 1871 1872 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1873 return !dropped; 1874 } 1875 1876 static int issue_discard_thread(void *data) 1877 { 1878 struct f2fs_sb_info *sbi = data; 1879 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1880 wait_queue_head_t *q = &dcc->discard_wait_queue; 1881 struct discard_policy dpolicy; 1882 unsigned int wait_ms = dcc->min_discard_issue_time; 1883 int issued; 1884 1885 set_freezable(); 1886 1887 do { 1888 wait_event_interruptible_timeout(*q, 1889 kthread_should_stop() || freezing(current) || 1890 dcc->discard_wake, 1891 msecs_to_jiffies(wait_ms)); 1892 1893 if (sbi->gc_mode == GC_URGENT_HIGH || 1894 !f2fs_available_free_memory(sbi, DISCARD_CACHE)) 1895 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1896 MIN_DISCARD_GRANULARITY); 1897 else 1898 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1899 dcc->discard_granularity); 1900 1901 if (dcc->discard_wake) 1902 dcc->discard_wake = false; 1903 1904 /* clean up pending candidates before going to sleep */ 1905 if (atomic_read(&dcc->queued_discard)) 1906 __wait_all_discard_cmd(sbi, NULL); 1907 1908 if (try_to_freeze()) 1909 continue; 1910 if (f2fs_readonly(sbi->sb)) 1911 continue; 1912 if (kthread_should_stop()) 1913 return 0; 1914 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || 1915 !atomic_read(&dcc->discard_cmd_cnt)) { 1916 wait_ms = dpolicy.max_interval; 1917 continue; 1918 } 1919 1920 sb_start_intwrite(sbi->sb); 1921 1922 issued = __issue_discard_cmd(sbi, &dpolicy); 1923 if (issued > 0) { 1924 __wait_all_discard_cmd(sbi, &dpolicy); 1925 wait_ms = dpolicy.min_interval; 1926 } else if (issued == -1) { 1927 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1928 if (!wait_ms) 1929 wait_ms = dpolicy.mid_interval; 1930 } else { 1931 wait_ms = dpolicy.max_interval; 1932 } 1933 if (!atomic_read(&dcc->discard_cmd_cnt)) 1934 wait_ms = dpolicy.max_interval; 1935 1936 sb_end_intwrite(sbi->sb); 1937 1938 } while (!kthread_should_stop()); 1939 return 0; 1940 } 1941 1942 #ifdef CONFIG_BLK_DEV_ZONED 1943 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1944 struct block_device *bdev, block_t blkstart, block_t blklen) 1945 { 1946 sector_t sector, nr_sects; 1947 block_t lblkstart = blkstart; 1948 int devi = 0; 1949 u64 remainder = 0; 1950 1951 if (f2fs_is_multi_device(sbi)) { 1952 devi = f2fs_target_device_index(sbi, blkstart); 1953 if (blkstart < FDEV(devi).start_blk || 1954 blkstart > FDEV(devi).end_blk) { 1955 f2fs_err(sbi, "Invalid block %x", blkstart); 1956 return -EIO; 1957 } 1958 blkstart -= FDEV(devi).start_blk; 1959 } 1960 1961 /* For sequential zones, reset the zone write pointer */ 1962 if (f2fs_blkz_is_seq(sbi, devi, blkstart)) { 1963 sector = SECTOR_FROM_BLOCK(blkstart); 1964 nr_sects = SECTOR_FROM_BLOCK(blklen); 1965 div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder); 1966 1967 if (remainder || nr_sects != bdev_zone_sectors(bdev)) { 1968 f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)", 1969 devi, sbi->s_ndevs ? FDEV(devi).path : "", 1970 blkstart, blklen); 1971 return -EIO; 1972 } 1973 1974 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) { 1975 trace_f2fs_issue_reset_zone(bdev, blkstart); 1976 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 1977 sector, nr_sects, GFP_NOFS); 1978 } 1979 1980 __queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen); 1981 return 0; 1982 } 1983 1984 /* For conventional zones, use regular discard if supported */ 1985 __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1986 return 0; 1987 } 1988 #endif 1989 1990 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1991 struct block_device *bdev, block_t blkstart, block_t blklen) 1992 { 1993 #ifdef CONFIG_BLK_DEV_ZONED 1994 if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) 1995 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1996 #endif 1997 __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1998 return 0; 1999 } 2000 2001 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 2002 block_t blkstart, block_t blklen) 2003 { 2004 sector_t start = blkstart, len = 0; 2005 struct block_device *bdev; 2006 struct seg_entry *se; 2007 unsigned int offset; 2008 block_t i; 2009 int err = 0; 2010 2011 bdev = f2fs_target_device(sbi, blkstart, NULL); 2012 2013 for (i = blkstart; i < blkstart + blklen; i++, len++) { 2014 if (i != start) { 2015 struct block_device *bdev2 = 2016 f2fs_target_device(sbi, i, NULL); 2017 2018 if (bdev2 != bdev) { 2019 err = __issue_discard_async(sbi, bdev, 2020 start, len); 2021 if (err) 2022 return err; 2023 bdev = bdev2; 2024 start = i; 2025 len = 0; 2026 } 2027 } 2028 2029 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 2030 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 2031 2032 if (f2fs_block_unit_discard(sbi) && 2033 !f2fs_test_and_set_bit(offset, se->discard_map)) 2034 sbi->discard_blks--; 2035 } 2036 2037 if (len) 2038 err = __issue_discard_async(sbi, bdev, start, len); 2039 return err; 2040 } 2041 2042 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 2043 bool check_only) 2044 { 2045 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2046 int max_blocks = sbi->blocks_per_seg; 2047 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 2048 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2049 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2050 unsigned long *discard_map = (unsigned long *)se->discard_map; 2051 unsigned long *dmap = SIT_I(sbi)->tmp_map; 2052 unsigned int start = 0, end = -1; 2053 bool force = (cpc->reason & CP_DISCARD); 2054 struct discard_entry *de = NULL; 2055 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 2056 int i; 2057 2058 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) || 2059 !f2fs_block_unit_discard(sbi)) 2060 return false; 2061 2062 if (!force) { 2063 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 2064 SM_I(sbi)->dcc_info->nr_discards >= 2065 SM_I(sbi)->dcc_info->max_discards) 2066 return false; 2067 } 2068 2069 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 2070 for (i = 0; i < entries; i++) 2071 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 2072 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 2073 2074 while (force || SM_I(sbi)->dcc_info->nr_discards <= 2075 SM_I(sbi)->dcc_info->max_discards) { 2076 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 2077 if (start >= max_blocks) 2078 break; 2079 2080 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 2081 if (force && start && end != max_blocks 2082 && (end - start) < cpc->trim_minlen) 2083 continue; 2084 2085 if (check_only) 2086 return true; 2087 2088 if (!de) { 2089 de = f2fs_kmem_cache_alloc(discard_entry_slab, 2090 GFP_F2FS_ZERO, true, NULL); 2091 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 2092 list_add_tail(&de->list, head); 2093 } 2094 2095 for (i = start; i < end; i++) 2096 __set_bit_le(i, (void *)de->discard_map); 2097 2098 SM_I(sbi)->dcc_info->nr_discards += end - start; 2099 } 2100 return false; 2101 } 2102 2103 static void release_discard_addr(struct discard_entry *entry) 2104 { 2105 list_del(&entry->list); 2106 kmem_cache_free(discard_entry_slab, entry); 2107 } 2108 2109 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 2110 { 2111 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 2112 struct discard_entry *entry, *this; 2113 2114 /* drop caches */ 2115 list_for_each_entry_safe(entry, this, head, list) 2116 release_discard_addr(entry); 2117 } 2118 2119 /* 2120 * Should call f2fs_clear_prefree_segments after checkpoint is done. 2121 */ 2122 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 2123 { 2124 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2125 unsigned int segno; 2126 2127 mutex_lock(&dirty_i->seglist_lock); 2128 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 2129 __set_test_and_free(sbi, segno, false); 2130 mutex_unlock(&dirty_i->seglist_lock); 2131 } 2132 2133 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 2134 struct cp_control *cpc) 2135 { 2136 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2137 struct list_head *head = &dcc->entry_list; 2138 struct discard_entry *entry, *this; 2139 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2140 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 2141 unsigned int start = 0, end = -1; 2142 unsigned int secno, start_segno; 2143 bool force = (cpc->reason & CP_DISCARD); 2144 bool section_alignment = F2FS_OPTION(sbi).discard_unit == 2145 DISCARD_UNIT_SECTION; 2146 2147 if (f2fs_lfs_mode(sbi) && __is_large_section(sbi)) 2148 section_alignment = true; 2149 2150 mutex_lock(&dirty_i->seglist_lock); 2151 2152 while (1) { 2153 int i; 2154 2155 if (section_alignment && end != -1) 2156 end--; 2157 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 2158 if (start >= MAIN_SEGS(sbi)) 2159 break; 2160 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 2161 start + 1); 2162 2163 if (section_alignment) { 2164 start = rounddown(start, sbi->segs_per_sec); 2165 end = roundup(end, sbi->segs_per_sec); 2166 } 2167 2168 for (i = start; i < end; i++) { 2169 if (test_and_clear_bit(i, prefree_map)) 2170 dirty_i->nr_dirty[PRE]--; 2171 } 2172 2173 if (!f2fs_realtime_discard_enable(sbi)) 2174 continue; 2175 2176 if (force && start >= cpc->trim_start && 2177 (end - 1) <= cpc->trim_end) 2178 continue; 2179 2180 /* Should cover 2MB zoned device for zone-based reset */ 2181 if (!f2fs_sb_has_blkzoned(sbi) && 2182 (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) { 2183 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 2184 (end - start) << sbi->log_blocks_per_seg); 2185 continue; 2186 } 2187 next: 2188 secno = GET_SEC_FROM_SEG(sbi, start); 2189 start_segno = GET_SEG_FROM_SEC(sbi, secno); 2190 if (!IS_CURSEC(sbi, secno) && 2191 !get_valid_blocks(sbi, start, true)) 2192 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 2193 sbi->segs_per_sec << sbi->log_blocks_per_seg); 2194 2195 start = start_segno + sbi->segs_per_sec; 2196 if (start < end) 2197 goto next; 2198 else 2199 end = start - 1; 2200 } 2201 mutex_unlock(&dirty_i->seglist_lock); 2202 2203 if (!f2fs_block_unit_discard(sbi)) 2204 goto wakeup; 2205 2206 /* send small discards */ 2207 list_for_each_entry_safe(entry, this, head, list) { 2208 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 2209 bool is_valid = test_bit_le(0, entry->discard_map); 2210 2211 find_next: 2212 if (is_valid) { 2213 next_pos = find_next_zero_bit_le(entry->discard_map, 2214 sbi->blocks_per_seg, cur_pos); 2215 len = next_pos - cur_pos; 2216 2217 if (f2fs_sb_has_blkzoned(sbi) || 2218 (force && len < cpc->trim_minlen)) 2219 goto skip; 2220 2221 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 2222 len); 2223 total_len += len; 2224 } else { 2225 next_pos = find_next_bit_le(entry->discard_map, 2226 sbi->blocks_per_seg, cur_pos); 2227 } 2228 skip: 2229 cur_pos = next_pos; 2230 is_valid = !is_valid; 2231 2232 if (cur_pos < sbi->blocks_per_seg) 2233 goto find_next; 2234 2235 release_discard_addr(entry); 2236 dcc->nr_discards -= total_len; 2237 } 2238 2239 wakeup: 2240 wake_up_discard_thread(sbi, false); 2241 } 2242 2243 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi) 2244 { 2245 dev_t dev = sbi->sb->s_bdev->bd_dev; 2246 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2247 int err = 0; 2248 2249 if (!f2fs_realtime_discard_enable(sbi)) 2250 return 0; 2251 2252 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2253 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2254 if (IS_ERR(dcc->f2fs_issue_discard)) { 2255 err = PTR_ERR(dcc->f2fs_issue_discard); 2256 dcc->f2fs_issue_discard = NULL; 2257 } 2258 2259 return err; 2260 } 2261 2262 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 2263 { 2264 struct discard_cmd_control *dcc; 2265 int err = 0, i; 2266 2267 if (SM_I(sbi)->dcc_info) { 2268 dcc = SM_I(sbi)->dcc_info; 2269 goto init_thread; 2270 } 2271 2272 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 2273 if (!dcc) 2274 return -ENOMEM; 2275 2276 dcc->discard_io_aware_gran = MAX_PLIST_NUM; 2277 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 2278 dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY; 2279 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2280 dcc->discard_granularity = sbi->blocks_per_seg; 2281 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2282 dcc->discard_granularity = BLKS_PER_SEC(sbi); 2283 2284 INIT_LIST_HEAD(&dcc->entry_list); 2285 for (i = 0; i < MAX_PLIST_NUM; i++) 2286 INIT_LIST_HEAD(&dcc->pend_list[i]); 2287 INIT_LIST_HEAD(&dcc->wait_list); 2288 INIT_LIST_HEAD(&dcc->fstrim_list); 2289 mutex_init(&dcc->cmd_lock); 2290 atomic_set(&dcc->issued_discard, 0); 2291 atomic_set(&dcc->queued_discard, 0); 2292 atomic_set(&dcc->discard_cmd_cnt, 0); 2293 dcc->nr_discards = 0; 2294 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2295 dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST; 2296 dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME; 2297 dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME; 2298 dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME; 2299 dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL; 2300 dcc->undiscard_blks = 0; 2301 dcc->next_pos = 0; 2302 dcc->root = RB_ROOT_CACHED; 2303 dcc->rbtree_check = false; 2304 2305 init_waitqueue_head(&dcc->discard_wait_queue); 2306 SM_I(sbi)->dcc_info = dcc; 2307 init_thread: 2308 err = f2fs_start_discard_thread(sbi); 2309 if (err) { 2310 kfree(dcc); 2311 SM_I(sbi)->dcc_info = NULL; 2312 } 2313 2314 return err; 2315 } 2316 2317 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2318 { 2319 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2320 2321 if (!dcc) 2322 return; 2323 2324 f2fs_stop_discard_thread(sbi); 2325 2326 /* 2327 * Recovery can cache discard commands, so in error path of 2328 * fill_super(), it needs to give a chance to handle them. 2329 */ 2330 f2fs_issue_discard_timeout(sbi); 2331 2332 kfree(dcc); 2333 SM_I(sbi)->dcc_info = NULL; 2334 } 2335 2336 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2337 { 2338 struct sit_info *sit_i = SIT_I(sbi); 2339 2340 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2341 sit_i->dirty_sentries++; 2342 return false; 2343 } 2344 2345 return true; 2346 } 2347 2348 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2349 unsigned int segno, int modified) 2350 { 2351 struct seg_entry *se = get_seg_entry(sbi, segno); 2352 2353 se->type = type; 2354 if (modified) 2355 __mark_sit_entry_dirty(sbi, segno); 2356 } 2357 2358 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi, 2359 block_t blkaddr) 2360 { 2361 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2362 2363 if (segno == NULL_SEGNO) 2364 return 0; 2365 return get_seg_entry(sbi, segno)->mtime; 2366 } 2367 2368 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr, 2369 unsigned long long old_mtime) 2370 { 2371 struct seg_entry *se; 2372 unsigned int segno = GET_SEGNO(sbi, blkaddr); 2373 unsigned long long ctime = get_mtime(sbi, false); 2374 unsigned long long mtime = old_mtime ? old_mtime : ctime; 2375 2376 if (segno == NULL_SEGNO) 2377 return; 2378 2379 se = get_seg_entry(sbi, segno); 2380 2381 if (!se->mtime) 2382 se->mtime = mtime; 2383 else 2384 se->mtime = div_u64(se->mtime * se->valid_blocks + mtime, 2385 se->valid_blocks + 1); 2386 2387 if (ctime > SIT_I(sbi)->max_mtime) 2388 SIT_I(sbi)->max_mtime = ctime; 2389 } 2390 2391 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2392 { 2393 struct seg_entry *se; 2394 unsigned int segno, offset; 2395 long int new_vblocks; 2396 bool exist; 2397 #ifdef CONFIG_F2FS_CHECK_FS 2398 bool mir_exist; 2399 #endif 2400 2401 segno = GET_SEGNO(sbi, blkaddr); 2402 2403 se = get_seg_entry(sbi, segno); 2404 new_vblocks = se->valid_blocks + del; 2405 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2406 2407 f2fs_bug_on(sbi, (new_vblocks < 0 || 2408 (new_vblocks > f2fs_usable_blks_in_seg(sbi, segno)))); 2409 2410 se->valid_blocks = new_vblocks; 2411 2412 /* Update valid block bitmap */ 2413 if (del > 0) { 2414 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2415 #ifdef CONFIG_F2FS_CHECK_FS 2416 mir_exist = f2fs_test_and_set_bit(offset, 2417 se->cur_valid_map_mir); 2418 if (unlikely(exist != mir_exist)) { 2419 f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d", 2420 blkaddr, exist); 2421 f2fs_bug_on(sbi, 1); 2422 } 2423 #endif 2424 if (unlikely(exist)) { 2425 f2fs_err(sbi, "Bitmap was wrongly set, blk:%u", 2426 blkaddr); 2427 f2fs_bug_on(sbi, 1); 2428 se->valid_blocks--; 2429 del = 0; 2430 } 2431 2432 if (f2fs_block_unit_discard(sbi) && 2433 !f2fs_test_and_set_bit(offset, se->discard_map)) 2434 sbi->discard_blks--; 2435 2436 /* 2437 * SSR should never reuse block which is checkpointed 2438 * or newly invalidated. 2439 */ 2440 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2441 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2442 se->ckpt_valid_blocks++; 2443 } 2444 } else { 2445 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2446 #ifdef CONFIG_F2FS_CHECK_FS 2447 mir_exist = f2fs_test_and_clear_bit(offset, 2448 se->cur_valid_map_mir); 2449 if (unlikely(exist != mir_exist)) { 2450 f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d", 2451 blkaddr, exist); 2452 f2fs_bug_on(sbi, 1); 2453 } 2454 #endif 2455 if (unlikely(!exist)) { 2456 f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u", 2457 blkaddr); 2458 f2fs_bug_on(sbi, 1); 2459 se->valid_blocks++; 2460 del = 0; 2461 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2462 /* 2463 * If checkpoints are off, we must not reuse data that 2464 * was used in the previous checkpoint. If it was used 2465 * before, we must track that to know how much space we 2466 * really have. 2467 */ 2468 if (f2fs_test_bit(offset, se->ckpt_valid_map)) { 2469 spin_lock(&sbi->stat_lock); 2470 sbi->unusable_block_count++; 2471 spin_unlock(&sbi->stat_lock); 2472 } 2473 } 2474 2475 if (f2fs_block_unit_discard(sbi) && 2476 f2fs_test_and_clear_bit(offset, se->discard_map)) 2477 sbi->discard_blks++; 2478 } 2479 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2480 se->ckpt_valid_blocks += del; 2481 2482 __mark_sit_entry_dirty(sbi, segno); 2483 2484 /* update total number of valid blocks to be written in ckpt area */ 2485 SIT_I(sbi)->written_valid_blocks += del; 2486 2487 if (__is_large_section(sbi)) 2488 get_sec_entry(sbi, segno)->valid_blocks += del; 2489 } 2490 2491 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2492 { 2493 unsigned int segno = GET_SEGNO(sbi, addr); 2494 struct sit_info *sit_i = SIT_I(sbi); 2495 2496 f2fs_bug_on(sbi, addr == NULL_ADDR); 2497 if (addr == NEW_ADDR || addr == COMPRESS_ADDR) 2498 return; 2499 2500 f2fs_invalidate_internal_cache(sbi, addr); 2501 2502 /* add it into sit main buffer */ 2503 down_write(&sit_i->sentry_lock); 2504 2505 update_segment_mtime(sbi, addr, 0); 2506 update_sit_entry(sbi, addr, -1); 2507 2508 /* add it into dirty seglist */ 2509 locate_dirty_segment(sbi, segno); 2510 2511 up_write(&sit_i->sentry_lock); 2512 } 2513 2514 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2515 { 2516 struct sit_info *sit_i = SIT_I(sbi); 2517 unsigned int segno, offset; 2518 struct seg_entry *se; 2519 bool is_cp = false; 2520 2521 if (!__is_valid_data_blkaddr(blkaddr)) 2522 return true; 2523 2524 down_read(&sit_i->sentry_lock); 2525 2526 segno = GET_SEGNO(sbi, blkaddr); 2527 se = get_seg_entry(sbi, segno); 2528 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2529 2530 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2531 is_cp = true; 2532 2533 up_read(&sit_i->sentry_lock); 2534 2535 return is_cp; 2536 } 2537 2538 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type) 2539 { 2540 struct curseg_info *curseg = CURSEG_I(sbi, type); 2541 2542 if (sbi->ckpt->alloc_type[type] == SSR) 2543 return sbi->blocks_per_seg; 2544 return curseg->next_blkoff; 2545 } 2546 2547 /* 2548 * Calculate the number of current summary pages for writing 2549 */ 2550 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2551 { 2552 int valid_sum_count = 0; 2553 int i, sum_in_page; 2554 2555 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2556 if (sbi->ckpt->alloc_type[i] != SSR && for_ra) 2557 valid_sum_count += 2558 le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2559 else 2560 valid_sum_count += f2fs_curseg_valid_blocks(sbi, i); 2561 } 2562 2563 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2564 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2565 if (valid_sum_count <= sum_in_page) 2566 return 1; 2567 else if ((valid_sum_count - sum_in_page) <= 2568 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2569 return 2; 2570 return 3; 2571 } 2572 2573 /* 2574 * Caller should put this summary page 2575 */ 2576 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2577 { 2578 if (unlikely(f2fs_cp_error(sbi))) 2579 return ERR_PTR(-EIO); 2580 return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno)); 2581 } 2582 2583 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2584 void *src, block_t blk_addr) 2585 { 2586 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2587 2588 memcpy(page_address(page), src, PAGE_SIZE); 2589 set_page_dirty(page); 2590 f2fs_put_page(page, 1); 2591 } 2592 2593 static void write_sum_page(struct f2fs_sb_info *sbi, 2594 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2595 { 2596 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2597 } 2598 2599 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2600 int type, block_t blk_addr) 2601 { 2602 struct curseg_info *curseg = CURSEG_I(sbi, type); 2603 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2604 struct f2fs_summary_block *src = curseg->sum_blk; 2605 struct f2fs_summary_block *dst; 2606 2607 dst = (struct f2fs_summary_block *)page_address(page); 2608 memset(dst, 0, PAGE_SIZE); 2609 2610 mutex_lock(&curseg->curseg_mutex); 2611 2612 down_read(&curseg->journal_rwsem); 2613 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2614 up_read(&curseg->journal_rwsem); 2615 2616 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2617 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2618 2619 mutex_unlock(&curseg->curseg_mutex); 2620 2621 set_page_dirty(page); 2622 f2fs_put_page(page, 1); 2623 } 2624 2625 static int is_next_segment_free(struct f2fs_sb_info *sbi, 2626 struct curseg_info *curseg, int type) 2627 { 2628 unsigned int segno = curseg->segno + 1; 2629 struct free_segmap_info *free_i = FREE_I(sbi); 2630 2631 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2632 return !test_bit(segno, free_i->free_segmap); 2633 return 0; 2634 } 2635 2636 /* 2637 * Find a new segment from the free segments bitmap to right order 2638 * This function should be returned with success, otherwise BUG 2639 */ 2640 static void get_new_segment(struct f2fs_sb_info *sbi, 2641 unsigned int *newseg, bool new_sec, int dir) 2642 { 2643 struct free_segmap_info *free_i = FREE_I(sbi); 2644 unsigned int segno, secno, zoneno; 2645 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2646 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2647 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2648 unsigned int left_start = hint; 2649 bool init = true; 2650 int go_left = 0; 2651 int i; 2652 2653 spin_lock(&free_i->segmap_lock); 2654 2655 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2656 segno = find_next_zero_bit(free_i->free_segmap, 2657 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2658 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2659 goto got_it; 2660 } 2661 find_other_zone: 2662 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2663 if (secno >= MAIN_SECS(sbi)) { 2664 if (dir == ALLOC_RIGHT) { 2665 secno = find_first_zero_bit(free_i->free_secmap, 2666 MAIN_SECS(sbi)); 2667 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2668 } else { 2669 go_left = 1; 2670 left_start = hint - 1; 2671 } 2672 } 2673 if (go_left == 0) 2674 goto skip_left; 2675 2676 while (test_bit(left_start, free_i->free_secmap)) { 2677 if (left_start > 0) { 2678 left_start--; 2679 continue; 2680 } 2681 left_start = find_first_zero_bit(free_i->free_secmap, 2682 MAIN_SECS(sbi)); 2683 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2684 break; 2685 } 2686 secno = left_start; 2687 skip_left: 2688 segno = GET_SEG_FROM_SEC(sbi, secno); 2689 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2690 2691 /* give up on finding another zone */ 2692 if (!init) 2693 goto got_it; 2694 if (sbi->secs_per_zone == 1) 2695 goto got_it; 2696 if (zoneno == old_zoneno) 2697 goto got_it; 2698 if (dir == ALLOC_LEFT) { 2699 if (!go_left && zoneno + 1 >= total_zones) 2700 goto got_it; 2701 if (go_left && zoneno == 0) 2702 goto got_it; 2703 } 2704 for (i = 0; i < NR_CURSEG_TYPE; i++) 2705 if (CURSEG_I(sbi, i)->zone == zoneno) 2706 break; 2707 2708 if (i < NR_CURSEG_TYPE) { 2709 /* zone is in user, try another */ 2710 if (go_left) 2711 hint = zoneno * sbi->secs_per_zone - 1; 2712 else if (zoneno + 1 >= total_zones) 2713 hint = 0; 2714 else 2715 hint = (zoneno + 1) * sbi->secs_per_zone; 2716 init = false; 2717 goto find_other_zone; 2718 } 2719 got_it: 2720 /* set it as dirty segment in free segmap */ 2721 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2722 __set_inuse(sbi, segno); 2723 *newseg = segno; 2724 spin_unlock(&free_i->segmap_lock); 2725 } 2726 2727 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2728 { 2729 struct curseg_info *curseg = CURSEG_I(sbi, type); 2730 struct summary_footer *sum_footer; 2731 unsigned short seg_type = curseg->seg_type; 2732 2733 curseg->inited = true; 2734 curseg->segno = curseg->next_segno; 2735 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2736 curseg->next_blkoff = 0; 2737 curseg->next_segno = NULL_SEGNO; 2738 2739 sum_footer = &(curseg->sum_blk->footer); 2740 memset(sum_footer, 0, sizeof(struct summary_footer)); 2741 2742 sanity_check_seg_type(sbi, seg_type); 2743 2744 if (IS_DATASEG(seg_type)) 2745 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2746 if (IS_NODESEG(seg_type)) 2747 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2748 __set_sit_entry_type(sbi, seg_type, curseg->segno, modified); 2749 } 2750 2751 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2752 { 2753 struct curseg_info *curseg = CURSEG_I(sbi, type); 2754 unsigned short seg_type = curseg->seg_type; 2755 2756 sanity_check_seg_type(sbi, seg_type); 2757 if (f2fs_need_rand_seg(sbi)) 2758 return get_random_u32_below(MAIN_SECS(sbi) * sbi->segs_per_sec); 2759 2760 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2761 if (__is_large_section(sbi)) 2762 return curseg->segno; 2763 2764 /* inmem log may not locate on any segment after mount */ 2765 if (!curseg->inited) 2766 return 0; 2767 2768 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2769 return 0; 2770 2771 if (test_opt(sbi, NOHEAP) && 2772 (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))) 2773 return 0; 2774 2775 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2776 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2777 2778 /* find segments from 0 to reuse freed segments */ 2779 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2780 return 0; 2781 2782 return curseg->segno; 2783 } 2784 2785 /* 2786 * Allocate a current working segment. 2787 * This function always allocates a free segment in LFS manner. 2788 */ 2789 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2790 { 2791 struct curseg_info *curseg = CURSEG_I(sbi, type); 2792 unsigned short seg_type = curseg->seg_type; 2793 unsigned int segno = curseg->segno; 2794 int dir = ALLOC_LEFT; 2795 2796 if (curseg->inited) 2797 write_sum_page(sbi, curseg->sum_blk, 2798 GET_SUM_BLOCK(sbi, segno)); 2799 if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA) 2800 dir = ALLOC_RIGHT; 2801 2802 if (test_opt(sbi, NOHEAP)) 2803 dir = ALLOC_RIGHT; 2804 2805 segno = __get_next_segno(sbi, type); 2806 get_new_segment(sbi, &segno, new_sec, dir); 2807 curseg->next_segno = segno; 2808 reset_curseg(sbi, type, 1); 2809 curseg->alloc_type = LFS; 2810 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2811 curseg->fragment_remained_chunk = 2812 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 2813 } 2814 2815 static int __next_free_blkoff(struct f2fs_sb_info *sbi, 2816 int segno, block_t start) 2817 { 2818 struct seg_entry *se = get_seg_entry(sbi, segno); 2819 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2820 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2821 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2822 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2823 int i; 2824 2825 for (i = 0; i < entries; i++) 2826 target_map[i] = ckpt_map[i] | cur_map[i]; 2827 2828 return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2829 } 2830 2831 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi, 2832 struct curseg_info *seg) 2833 { 2834 return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1); 2835 } 2836 2837 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno) 2838 { 2839 return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg; 2840 } 2841 2842 /* 2843 * This function always allocates a used segment(from dirty seglist) by SSR 2844 * manner, so it should recover the existing segment information of valid blocks 2845 */ 2846 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2847 { 2848 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2849 struct curseg_info *curseg = CURSEG_I(sbi, type); 2850 unsigned int new_segno = curseg->next_segno; 2851 struct f2fs_summary_block *sum_node; 2852 struct page *sum_page; 2853 2854 write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno)); 2855 2856 __set_test_and_inuse(sbi, new_segno); 2857 2858 mutex_lock(&dirty_i->seglist_lock); 2859 __remove_dirty_segment(sbi, new_segno, PRE); 2860 __remove_dirty_segment(sbi, new_segno, DIRTY); 2861 mutex_unlock(&dirty_i->seglist_lock); 2862 2863 reset_curseg(sbi, type, 1); 2864 curseg->alloc_type = SSR; 2865 curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0); 2866 2867 sum_page = f2fs_get_sum_page(sbi, new_segno); 2868 if (IS_ERR(sum_page)) { 2869 /* GC won't be able to use stale summary pages by cp_error */ 2870 memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE); 2871 return; 2872 } 2873 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2874 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2875 f2fs_put_page(sum_page, 1); 2876 } 2877 2878 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2879 int alloc_mode, unsigned long long age); 2880 2881 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type, 2882 int target_type, int alloc_mode, 2883 unsigned long long age) 2884 { 2885 struct curseg_info *curseg = CURSEG_I(sbi, type); 2886 2887 curseg->seg_type = target_type; 2888 2889 if (get_ssr_segment(sbi, type, alloc_mode, age)) { 2890 struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno); 2891 2892 curseg->seg_type = se->type; 2893 change_curseg(sbi, type); 2894 } else { 2895 /* allocate cold segment by default */ 2896 curseg->seg_type = CURSEG_COLD_DATA; 2897 new_curseg(sbi, type, true); 2898 } 2899 stat_inc_seg_type(sbi, curseg); 2900 } 2901 2902 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi) 2903 { 2904 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC); 2905 2906 if (!sbi->am.atgc_enabled) 2907 return; 2908 2909 f2fs_down_read(&SM_I(sbi)->curseg_lock); 2910 2911 mutex_lock(&curseg->curseg_mutex); 2912 down_write(&SIT_I(sbi)->sentry_lock); 2913 2914 get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0); 2915 2916 up_write(&SIT_I(sbi)->sentry_lock); 2917 mutex_unlock(&curseg->curseg_mutex); 2918 2919 f2fs_up_read(&SM_I(sbi)->curseg_lock); 2920 2921 } 2922 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi) 2923 { 2924 __f2fs_init_atgc_curseg(sbi); 2925 } 2926 2927 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2928 { 2929 struct curseg_info *curseg = CURSEG_I(sbi, type); 2930 2931 mutex_lock(&curseg->curseg_mutex); 2932 if (!curseg->inited) 2933 goto out; 2934 2935 if (get_valid_blocks(sbi, curseg->segno, false)) { 2936 write_sum_page(sbi, curseg->sum_blk, 2937 GET_SUM_BLOCK(sbi, curseg->segno)); 2938 } else { 2939 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2940 __set_test_and_free(sbi, curseg->segno, true); 2941 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2942 } 2943 out: 2944 mutex_unlock(&curseg->curseg_mutex); 2945 } 2946 2947 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi) 2948 { 2949 __f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2950 2951 if (sbi->am.atgc_enabled) 2952 __f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2953 } 2954 2955 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type) 2956 { 2957 struct curseg_info *curseg = CURSEG_I(sbi, type); 2958 2959 mutex_lock(&curseg->curseg_mutex); 2960 if (!curseg->inited) 2961 goto out; 2962 if (get_valid_blocks(sbi, curseg->segno, false)) 2963 goto out; 2964 2965 mutex_lock(&DIRTY_I(sbi)->seglist_lock); 2966 __set_test_and_inuse(sbi, curseg->segno); 2967 mutex_unlock(&DIRTY_I(sbi)->seglist_lock); 2968 out: 2969 mutex_unlock(&curseg->curseg_mutex); 2970 } 2971 2972 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi) 2973 { 2974 __f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED); 2975 2976 if (sbi->am.atgc_enabled) 2977 __f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC); 2978 } 2979 2980 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type, 2981 int alloc_mode, unsigned long long age) 2982 { 2983 struct curseg_info *curseg = CURSEG_I(sbi, type); 2984 unsigned segno = NULL_SEGNO; 2985 unsigned short seg_type = curseg->seg_type; 2986 int i, cnt; 2987 bool reversed = false; 2988 2989 sanity_check_seg_type(sbi, seg_type); 2990 2991 /* f2fs_need_SSR() already forces to do this */ 2992 if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) { 2993 curseg->next_segno = segno; 2994 return 1; 2995 } 2996 2997 /* For node segments, let's do SSR more intensively */ 2998 if (IS_NODESEG(seg_type)) { 2999 if (seg_type >= CURSEG_WARM_NODE) { 3000 reversed = true; 3001 i = CURSEG_COLD_NODE; 3002 } else { 3003 i = CURSEG_HOT_NODE; 3004 } 3005 cnt = NR_CURSEG_NODE_TYPE; 3006 } else { 3007 if (seg_type >= CURSEG_WARM_DATA) { 3008 reversed = true; 3009 i = CURSEG_COLD_DATA; 3010 } else { 3011 i = CURSEG_HOT_DATA; 3012 } 3013 cnt = NR_CURSEG_DATA_TYPE; 3014 } 3015 3016 for (; cnt-- > 0; reversed ? i-- : i++) { 3017 if (i == seg_type) 3018 continue; 3019 if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) { 3020 curseg->next_segno = segno; 3021 return 1; 3022 } 3023 } 3024 3025 /* find valid_blocks=0 in dirty list */ 3026 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 3027 segno = get_free_segment(sbi); 3028 if (segno != NULL_SEGNO) { 3029 curseg->next_segno = segno; 3030 return 1; 3031 } 3032 } 3033 return 0; 3034 } 3035 3036 static bool need_new_seg(struct f2fs_sb_info *sbi, int type) 3037 { 3038 struct curseg_info *curseg = CURSEG_I(sbi, type); 3039 3040 if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 3041 curseg->seg_type == CURSEG_WARM_NODE) 3042 return true; 3043 if (curseg->alloc_type == LFS && 3044 is_next_segment_free(sbi, curseg, type) && 3045 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 3046 return true; 3047 if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0)) 3048 return true; 3049 return false; 3050 } 3051 3052 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type, 3053 unsigned int start, unsigned int end) 3054 { 3055 struct curseg_info *curseg = CURSEG_I(sbi, type); 3056 unsigned int segno; 3057 3058 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3059 mutex_lock(&curseg->curseg_mutex); 3060 down_write(&SIT_I(sbi)->sentry_lock); 3061 3062 segno = CURSEG_I(sbi, type)->segno; 3063 if (segno < start || segno > end) 3064 goto unlock; 3065 3066 if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0)) 3067 change_curseg(sbi, type); 3068 else 3069 new_curseg(sbi, type, true); 3070 3071 stat_inc_seg_type(sbi, curseg); 3072 3073 locate_dirty_segment(sbi, segno); 3074 unlock: 3075 up_write(&SIT_I(sbi)->sentry_lock); 3076 3077 if (segno != curseg->segno) 3078 f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u", 3079 type, segno, curseg->segno); 3080 3081 mutex_unlock(&curseg->curseg_mutex); 3082 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3083 } 3084 3085 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type, 3086 bool new_sec, bool force) 3087 { 3088 struct curseg_info *curseg = CURSEG_I(sbi, type); 3089 unsigned int old_segno; 3090 3091 if (!force && curseg->inited && 3092 !curseg->next_blkoff && 3093 !get_valid_blocks(sbi, curseg->segno, new_sec) && 3094 !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec)) 3095 return; 3096 3097 old_segno = curseg->segno; 3098 new_curseg(sbi, type, true); 3099 stat_inc_seg_type(sbi, curseg); 3100 locate_dirty_segment(sbi, old_segno); 3101 } 3102 3103 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force) 3104 { 3105 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3106 down_write(&SIT_I(sbi)->sentry_lock); 3107 __allocate_new_segment(sbi, type, true, force); 3108 up_write(&SIT_I(sbi)->sentry_lock); 3109 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3110 } 3111 3112 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 3113 { 3114 int i; 3115 3116 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3117 down_write(&SIT_I(sbi)->sentry_lock); 3118 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 3119 __allocate_new_segment(sbi, i, false, false); 3120 up_write(&SIT_I(sbi)->sentry_lock); 3121 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3122 } 3123 3124 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 3125 struct cp_control *cpc) 3126 { 3127 __u64 trim_start = cpc->trim_start; 3128 bool has_candidate = false; 3129 3130 down_write(&SIT_I(sbi)->sentry_lock); 3131 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 3132 if (add_discard_addrs(sbi, cpc, true)) { 3133 has_candidate = true; 3134 break; 3135 } 3136 } 3137 up_write(&SIT_I(sbi)->sentry_lock); 3138 3139 cpc->trim_start = trim_start; 3140 return has_candidate; 3141 } 3142 3143 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 3144 struct discard_policy *dpolicy, 3145 unsigned int start, unsigned int end) 3146 { 3147 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 3148 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 3149 struct rb_node **insert_p = NULL, *insert_parent = NULL; 3150 struct discard_cmd *dc; 3151 struct blk_plug plug; 3152 int issued; 3153 unsigned int trimmed = 0; 3154 3155 next: 3156 issued = 0; 3157 3158 mutex_lock(&dcc->cmd_lock); 3159 if (unlikely(dcc->rbtree_check)) 3160 f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi)); 3161 3162 dc = __lookup_discard_cmd_ret(&dcc->root, start, 3163 &prev_dc, &next_dc, &insert_p, &insert_parent); 3164 if (!dc) 3165 dc = next_dc; 3166 3167 blk_start_plug(&plug); 3168 3169 while (dc && dc->di.lstart <= end) { 3170 struct rb_node *node; 3171 int err = 0; 3172 3173 if (dc->di.len < dpolicy->granularity) 3174 goto skip; 3175 3176 if (dc->state != D_PREP) { 3177 list_move_tail(&dc->list, &dcc->fstrim_list); 3178 goto skip; 3179 } 3180 3181 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 3182 3183 if (issued >= dpolicy->max_requests) { 3184 start = dc->di.lstart + dc->di.len; 3185 3186 if (err) 3187 __remove_discard_cmd(sbi, dc); 3188 3189 blk_finish_plug(&plug); 3190 mutex_unlock(&dcc->cmd_lock); 3191 trimmed += __wait_all_discard_cmd(sbi, NULL); 3192 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 3193 goto next; 3194 } 3195 skip: 3196 node = rb_next(&dc->rb_node); 3197 if (err) 3198 __remove_discard_cmd(sbi, dc); 3199 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 3200 3201 if (fatal_signal_pending(current)) 3202 break; 3203 } 3204 3205 blk_finish_plug(&plug); 3206 mutex_unlock(&dcc->cmd_lock); 3207 3208 return trimmed; 3209 } 3210 3211 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 3212 { 3213 __u64 start = F2FS_BYTES_TO_BLK(range->start); 3214 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 3215 unsigned int start_segno, end_segno; 3216 block_t start_block, end_block; 3217 struct cp_control cpc; 3218 struct discard_policy dpolicy; 3219 unsigned long long trimmed = 0; 3220 int err = 0; 3221 bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi); 3222 3223 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 3224 return -EINVAL; 3225 3226 if (end < MAIN_BLKADDR(sbi)) 3227 goto out; 3228 3229 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 3230 f2fs_warn(sbi, "Found FS corruption, run fsck to fix."); 3231 return -EFSCORRUPTED; 3232 } 3233 3234 /* start/end segment number in main_area */ 3235 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 3236 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 3237 GET_SEGNO(sbi, end); 3238 if (need_align) { 3239 start_segno = rounddown(start_segno, sbi->segs_per_sec); 3240 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 3241 } 3242 3243 cpc.reason = CP_DISCARD; 3244 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 3245 cpc.trim_start = start_segno; 3246 cpc.trim_end = end_segno; 3247 3248 if (sbi->discard_blks == 0) 3249 goto out; 3250 3251 f2fs_down_write(&sbi->gc_lock); 3252 stat_inc_cp_call_count(sbi, TOTAL_CALL); 3253 err = f2fs_write_checkpoint(sbi, &cpc); 3254 f2fs_up_write(&sbi->gc_lock); 3255 if (err) 3256 goto out; 3257 3258 /* 3259 * We filed discard candidates, but actually we don't need to wait for 3260 * all of them, since they'll be issued in idle time along with runtime 3261 * discard option. User configuration looks like using runtime discard 3262 * or periodic fstrim instead of it. 3263 */ 3264 if (f2fs_realtime_discard_enable(sbi)) 3265 goto out; 3266 3267 start_block = START_BLOCK(sbi, start_segno); 3268 end_block = START_BLOCK(sbi, end_segno + 1); 3269 3270 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 3271 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 3272 start_block, end_block); 3273 3274 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 3275 start_block, end_block); 3276 out: 3277 if (!err) 3278 range->len = F2FS_BLK_TO_BYTES(trimmed); 3279 return err; 3280 } 3281 3282 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 3283 { 3284 switch (hint) { 3285 case WRITE_LIFE_SHORT: 3286 return CURSEG_HOT_DATA; 3287 case WRITE_LIFE_EXTREME: 3288 return CURSEG_COLD_DATA; 3289 default: 3290 return CURSEG_WARM_DATA; 3291 } 3292 } 3293 3294 static int __get_segment_type_2(struct f2fs_io_info *fio) 3295 { 3296 if (fio->type == DATA) 3297 return CURSEG_HOT_DATA; 3298 else 3299 return CURSEG_HOT_NODE; 3300 } 3301 3302 static int __get_segment_type_4(struct f2fs_io_info *fio) 3303 { 3304 if (fio->type == DATA) { 3305 struct inode *inode = fio->page->mapping->host; 3306 3307 if (S_ISDIR(inode->i_mode)) 3308 return CURSEG_HOT_DATA; 3309 else 3310 return CURSEG_COLD_DATA; 3311 } else { 3312 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 3313 return CURSEG_WARM_NODE; 3314 else 3315 return CURSEG_COLD_NODE; 3316 } 3317 } 3318 3319 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs) 3320 { 3321 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3322 struct extent_info ei = {}; 3323 3324 if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) { 3325 if (!ei.age) 3326 return NO_CHECK_TYPE; 3327 if (ei.age <= sbi->hot_data_age_threshold) 3328 return CURSEG_HOT_DATA; 3329 if (ei.age <= sbi->warm_data_age_threshold) 3330 return CURSEG_WARM_DATA; 3331 return CURSEG_COLD_DATA; 3332 } 3333 return NO_CHECK_TYPE; 3334 } 3335 3336 static int __get_segment_type_6(struct f2fs_io_info *fio) 3337 { 3338 if (fio->type == DATA) { 3339 struct inode *inode = fio->page->mapping->host; 3340 int type; 3341 3342 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE)) 3343 return CURSEG_COLD_DATA_PINNED; 3344 3345 if (page_private_gcing(fio->page)) { 3346 if (fio->sbi->am.atgc_enabled && 3347 (fio->io_type == FS_DATA_IO) && 3348 (fio->sbi->gc_mode != GC_URGENT_HIGH)) 3349 return CURSEG_ALL_DATA_ATGC; 3350 else 3351 return CURSEG_COLD_DATA; 3352 } 3353 if (file_is_cold(inode) || f2fs_need_compress_data(inode)) 3354 return CURSEG_COLD_DATA; 3355 3356 type = __get_age_segment_type(inode, fio->page->index); 3357 if (type != NO_CHECK_TYPE) 3358 return type; 3359 3360 if (file_is_hot(inode) || 3361 is_inode_flag_set(inode, FI_HOT_DATA) || 3362 f2fs_is_cow_file(inode)) 3363 return CURSEG_HOT_DATA; 3364 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 3365 } else { 3366 if (IS_DNODE(fio->page)) 3367 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 3368 CURSEG_HOT_NODE; 3369 return CURSEG_COLD_NODE; 3370 } 3371 } 3372 3373 static int __get_segment_type(struct f2fs_io_info *fio) 3374 { 3375 int type = 0; 3376 3377 switch (F2FS_OPTION(fio->sbi).active_logs) { 3378 case 2: 3379 type = __get_segment_type_2(fio); 3380 break; 3381 case 4: 3382 type = __get_segment_type_4(fio); 3383 break; 3384 case 6: 3385 type = __get_segment_type_6(fio); 3386 break; 3387 default: 3388 f2fs_bug_on(fio->sbi, true); 3389 } 3390 3391 if (IS_HOT(type)) 3392 fio->temp = HOT; 3393 else if (IS_WARM(type)) 3394 fio->temp = WARM; 3395 else 3396 fio->temp = COLD; 3397 return type; 3398 } 3399 3400 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi, 3401 struct curseg_info *seg) 3402 { 3403 /* To allocate block chunks in different sizes, use random number */ 3404 if (--seg->fragment_remained_chunk > 0) 3405 return; 3406 3407 seg->fragment_remained_chunk = 3408 get_random_u32_inclusive(1, sbi->max_fragment_chunk); 3409 seg->next_blkoff += 3410 get_random_u32_inclusive(1, sbi->max_fragment_hole); 3411 } 3412 3413 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 3414 block_t old_blkaddr, block_t *new_blkaddr, 3415 struct f2fs_summary *sum, int type, 3416 struct f2fs_io_info *fio) 3417 { 3418 struct sit_info *sit_i = SIT_I(sbi); 3419 struct curseg_info *curseg = CURSEG_I(sbi, type); 3420 unsigned long long old_mtime; 3421 bool from_gc = (type == CURSEG_ALL_DATA_ATGC); 3422 struct seg_entry *se = NULL; 3423 bool segment_full = false; 3424 3425 f2fs_down_read(&SM_I(sbi)->curseg_lock); 3426 3427 mutex_lock(&curseg->curseg_mutex); 3428 down_write(&sit_i->sentry_lock); 3429 3430 if (from_gc) { 3431 f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO); 3432 se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr)); 3433 sanity_check_seg_type(sbi, se->type); 3434 f2fs_bug_on(sbi, IS_NODESEG(se->type)); 3435 } 3436 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 3437 3438 f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg); 3439 3440 f2fs_wait_discard_bio(sbi, *new_blkaddr); 3441 3442 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3443 if (curseg->alloc_type == SSR) { 3444 curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg); 3445 } else { 3446 curseg->next_blkoff++; 3447 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 3448 f2fs_randomize_chunk(sbi, curseg); 3449 } 3450 if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno)) 3451 segment_full = true; 3452 stat_inc_block_count(sbi, curseg); 3453 3454 if (from_gc) { 3455 old_mtime = get_segment_mtime(sbi, old_blkaddr); 3456 } else { 3457 update_segment_mtime(sbi, old_blkaddr, 0); 3458 old_mtime = 0; 3459 } 3460 update_segment_mtime(sbi, *new_blkaddr, old_mtime); 3461 3462 /* 3463 * SIT information should be updated before segment allocation, 3464 * since SSR needs latest valid block information. 3465 */ 3466 update_sit_entry(sbi, *new_blkaddr, 1); 3467 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3468 update_sit_entry(sbi, old_blkaddr, -1); 3469 3470 /* 3471 * If the current segment is full, flush it out and replace it with a 3472 * new segment. 3473 */ 3474 if (segment_full) { 3475 if (from_gc) { 3476 get_atssr_segment(sbi, type, se->type, 3477 AT_SSR, se->mtime); 3478 } else { 3479 if (need_new_seg(sbi, type)) 3480 new_curseg(sbi, type, false); 3481 else 3482 change_curseg(sbi, type); 3483 stat_inc_seg_type(sbi, curseg); 3484 } 3485 } 3486 /* 3487 * segment dirty status should be updated after segment allocation, 3488 * so we just need to update status only one time after previous 3489 * segment being closed. 3490 */ 3491 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3492 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3493 3494 if (IS_DATASEG(curseg->seg_type)) 3495 atomic64_inc(&sbi->allocated_data_blocks); 3496 3497 up_write(&sit_i->sentry_lock); 3498 3499 if (page && IS_NODESEG(curseg->seg_type)) { 3500 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3501 3502 f2fs_inode_chksum_set(sbi, page); 3503 } 3504 3505 if (fio) { 3506 struct f2fs_bio_info *io; 3507 3508 if (F2FS_IO_ALIGNED(sbi)) 3509 fio->retry = 0; 3510 3511 INIT_LIST_HEAD(&fio->list); 3512 fio->in_list = 1; 3513 io = sbi->write_io[fio->type] + fio->temp; 3514 spin_lock(&io->io_lock); 3515 list_add_tail(&fio->list, &io->io_list); 3516 spin_unlock(&io->io_lock); 3517 } 3518 3519 mutex_unlock(&curseg->curseg_mutex); 3520 3521 f2fs_up_read(&SM_I(sbi)->curseg_lock); 3522 } 3523 3524 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino, 3525 block_t blkaddr, unsigned int blkcnt) 3526 { 3527 if (!f2fs_is_multi_device(sbi)) 3528 return; 3529 3530 while (1) { 3531 unsigned int devidx = f2fs_target_device_index(sbi, blkaddr); 3532 unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1; 3533 3534 /* update device state for fsync */ 3535 f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO); 3536 3537 /* update device state for checkpoint */ 3538 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3539 spin_lock(&sbi->dev_lock); 3540 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3541 spin_unlock(&sbi->dev_lock); 3542 } 3543 3544 if (blkcnt <= blks) 3545 break; 3546 blkcnt -= blks; 3547 blkaddr += blks; 3548 } 3549 } 3550 3551 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3552 { 3553 int type = __get_segment_type(fio); 3554 bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA); 3555 3556 if (keep_order) 3557 f2fs_down_read(&fio->sbi->io_order_lock); 3558 reallocate: 3559 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3560 &fio->new_blkaddr, sum, type, fio); 3561 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3562 f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr); 3563 3564 /* writeout dirty page into bdev */ 3565 f2fs_submit_page_write(fio); 3566 if (fio->retry) { 3567 fio->old_blkaddr = fio->new_blkaddr; 3568 goto reallocate; 3569 } 3570 3571 f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1); 3572 3573 if (keep_order) 3574 f2fs_up_read(&fio->sbi->io_order_lock); 3575 } 3576 3577 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3578 enum iostat_type io_type) 3579 { 3580 struct f2fs_io_info fio = { 3581 .sbi = sbi, 3582 .type = META, 3583 .temp = HOT, 3584 .op = REQ_OP_WRITE, 3585 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3586 .old_blkaddr = page->index, 3587 .new_blkaddr = page->index, 3588 .page = page, 3589 .encrypted_page = NULL, 3590 .in_list = 0, 3591 }; 3592 3593 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3594 fio.op_flags &= ~REQ_META; 3595 3596 set_page_writeback(page); 3597 f2fs_submit_page_write(&fio); 3598 3599 stat_inc_meta_count(sbi, page->index); 3600 f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE); 3601 } 3602 3603 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3604 { 3605 struct f2fs_summary sum; 3606 3607 set_summary(&sum, nid, 0, 0); 3608 do_write_page(&sum, fio); 3609 3610 f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE); 3611 } 3612 3613 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3614 struct f2fs_io_info *fio) 3615 { 3616 struct f2fs_sb_info *sbi = fio->sbi; 3617 struct f2fs_summary sum; 3618 3619 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3620 if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO) 3621 f2fs_update_age_extent_cache(dn); 3622 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3623 do_write_page(&sum, fio); 3624 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3625 3626 f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE); 3627 } 3628 3629 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3630 { 3631 int err; 3632 struct f2fs_sb_info *sbi = fio->sbi; 3633 unsigned int segno; 3634 3635 fio->new_blkaddr = fio->old_blkaddr; 3636 /* i/o temperature is needed for passing down write hints */ 3637 __get_segment_type(fio); 3638 3639 segno = GET_SEGNO(sbi, fio->new_blkaddr); 3640 3641 if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) { 3642 set_sbi_flag(sbi, SBI_NEED_FSCK); 3643 f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.", 3644 __func__, segno); 3645 err = -EFSCORRUPTED; 3646 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 3647 goto drop_bio; 3648 } 3649 3650 if (f2fs_cp_error(sbi)) { 3651 err = -EIO; 3652 goto drop_bio; 3653 } 3654 3655 if (fio->post_read) 3656 f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1); 3657 3658 stat_inc_inplace_blocks(fio->sbi); 3659 3660 if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi)) 3661 err = f2fs_merge_page_bio(fio); 3662 else 3663 err = f2fs_submit_page_bio(fio); 3664 if (!err) { 3665 f2fs_update_device_state(fio->sbi, fio->ino, 3666 fio->new_blkaddr, 1); 3667 f2fs_update_iostat(fio->sbi, fio->page->mapping->host, 3668 fio->io_type, F2FS_BLKSIZE); 3669 } 3670 3671 return err; 3672 drop_bio: 3673 if (fio->bio && *(fio->bio)) { 3674 struct bio *bio = *(fio->bio); 3675 3676 bio->bi_status = BLK_STS_IOERR; 3677 bio_endio(bio); 3678 *(fio->bio) = NULL; 3679 } 3680 return err; 3681 } 3682 3683 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3684 unsigned int segno) 3685 { 3686 int i; 3687 3688 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3689 if (CURSEG_I(sbi, i)->segno == segno) 3690 break; 3691 } 3692 return i; 3693 } 3694 3695 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3696 block_t old_blkaddr, block_t new_blkaddr, 3697 bool recover_curseg, bool recover_newaddr, 3698 bool from_gc) 3699 { 3700 struct sit_info *sit_i = SIT_I(sbi); 3701 struct curseg_info *curseg; 3702 unsigned int segno, old_cursegno; 3703 struct seg_entry *se; 3704 int type; 3705 unsigned short old_blkoff; 3706 unsigned char old_alloc_type; 3707 3708 segno = GET_SEGNO(sbi, new_blkaddr); 3709 se = get_seg_entry(sbi, segno); 3710 type = se->type; 3711 3712 f2fs_down_write(&SM_I(sbi)->curseg_lock); 3713 3714 if (!recover_curseg) { 3715 /* for recovery flow */ 3716 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3717 if (old_blkaddr == NULL_ADDR) 3718 type = CURSEG_COLD_DATA; 3719 else 3720 type = CURSEG_WARM_DATA; 3721 } 3722 } else { 3723 if (IS_CURSEG(sbi, segno)) { 3724 /* se->type is volatile as SSR allocation */ 3725 type = __f2fs_get_curseg(sbi, segno); 3726 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3727 } else { 3728 type = CURSEG_WARM_DATA; 3729 } 3730 } 3731 3732 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3733 curseg = CURSEG_I(sbi, type); 3734 3735 mutex_lock(&curseg->curseg_mutex); 3736 down_write(&sit_i->sentry_lock); 3737 3738 old_cursegno = curseg->segno; 3739 old_blkoff = curseg->next_blkoff; 3740 old_alloc_type = curseg->alloc_type; 3741 3742 /* change the current segment */ 3743 if (segno != curseg->segno) { 3744 curseg->next_segno = segno; 3745 change_curseg(sbi, type); 3746 } 3747 3748 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3749 curseg->sum_blk->entries[curseg->next_blkoff] = *sum; 3750 3751 if (!recover_curseg || recover_newaddr) { 3752 if (!from_gc) 3753 update_segment_mtime(sbi, new_blkaddr, 0); 3754 update_sit_entry(sbi, new_blkaddr, 1); 3755 } 3756 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3757 f2fs_invalidate_internal_cache(sbi, old_blkaddr); 3758 if (!from_gc) 3759 update_segment_mtime(sbi, old_blkaddr, 0); 3760 update_sit_entry(sbi, old_blkaddr, -1); 3761 } 3762 3763 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3764 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3765 3766 locate_dirty_segment(sbi, old_cursegno); 3767 3768 if (recover_curseg) { 3769 if (old_cursegno != curseg->segno) { 3770 curseg->next_segno = old_cursegno; 3771 change_curseg(sbi, type); 3772 } 3773 curseg->next_blkoff = old_blkoff; 3774 curseg->alloc_type = old_alloc_type; 3775 } 3776 3777 up_write(&sit_i->sentry_lock); 3778 mutex_unlock(&curseg->curseg_mutex); 3779 f2fs_up_write(&SM_I(sbi)->curseg_lock); 3780 } 3781 3782 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3783 block_t old_addr, block_t new_addr, 3784 unsigned char version, bool recover_curseg, 3785 bool recover_newaddr) 3786 { 3787 struct f2fs_summary sum; 3788 3789 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3790 3791 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3792 recover_curseg, recover_newaddr, false); 3793 3794 f2fs_update_data_blkaddr(dn, new_addr); 3795 } 3796 3797 void f2fs_wait_on_page_writeback(struct page *page, 3798 enum page_type type, bool ordered, bool locked) 3799 { 3800 if (PageWriteback(page)) { 3801 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3802 3803 /* submit cached LFS IO */ 3804 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3805 /* submit cached IPU IO */ 3806 f2fs_submit_merged_ipu_write(sbi, NULL, page); 3807 if (ordered) { 3808 wait_on_page_writeback(page); 3809 f2fs_bug_on(sbi, locked && PageWriteback(page)); 3810 } else { 3811 wait_for_stable_page(page); 3812 } 3813 } 3814 } 3815 3816 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3817 { 3818 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3819 struct page *cpage; 3820 3821 if (!f2fs_post_read_required(inode)) 3822 return; 3823 3824 if (!__is_valid_data_blkaddr(blkaddr)) 3825 return; 3826 3827 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3828 if (cpage) { 3829 f2fs_wait_on_page_writeback(cpage, DATA, true, true); 3830 f2fs_put_page(cpage, 1); 3831 } 3832 } 3833 3834 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3835 block_t len) 3836 { 3837 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3838 block_t i; 3839 3840 if (!f2fs_post_read_required(inode)) 3841 return; 3842 3843 for (i = 0; i < len; i++) 3844 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3845 3846 f2fs_truncate_meta_inode_pages(sbi, blkaddr, len); 3847 } 3848 3849 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3850 { 3851 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3852 struct curseg_info *seg_i; 3853 unsigned char *kaddr; 3854 struct page *page; 3855 block_t start; 3856 int i, j, offset; 3857 3858 start = start_sum_block(sbi); 3859 3860 page = f2fs_get_meta_page(sbi, start++); 3861 if (IS_ERR(page)) 3862 return PTR_ERR(page); 3863 kaddr = (unsigned char *)page_address(page); 3864 3865 /* Step 1: restore nat cache */ 3866 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3867 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3868 3869 /* Step 2: restore sit cache */ 3870 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3871 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3872 offset = 2 * SUM_JOURNAL_SIZE; 3873 3874 /* Step 3: restore summary entries */ 3875 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3876 unsigned short blk_off; 3877 unsigned int segno; 3878 3879 seg_i = CURSEG_I(sbi, i); 3880 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3881 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3882 seg_i->next_segno = segno; 3883 reset_curseg(sbi, i, 0); 3884 seg_i->alloc_type = ckpt->alloc_type[i]; 3885 seg_i->next_blkoff = blk_off; 3886 3887 if (seg_i->alloc_type == SSR) 3888 blk_off = sbi->blocks_per_seg; 3889 3890 for (j = 0; j < blk_off; j++) { 3891 struct f2fs_summary *s; 3892 3893 s = (struct f2fs_summary *)(kaddr + offset); 3894 seg_i->sum_blk->entries[j] = *s; 3895 offset += SUMMARY_SIZE; 3896 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3897 SUM_FOOTER_SIZE) 3898 continue; 3899 3900 f2fs_put_page(page, 1); 3901 page = NULL; 3902 3903 page = f2fs_get_meta_page(sbi, start++); 3904 if (IS_ERR(page)) 3905 return PTR_ERR(page); 3906 kaddr = (unsigned char *)page_address(page); 3907 offset = 0; 3908 } 3909 } 3910 f2fs_put_page(page, 1); 3911 return 0; 3912 } 3913 3914 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3915 { 3916 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3917 struct f2fs_summary_block *sum; 3918 struct curseg_info *curseg; 3919 struct page *new; 3920 unsigned short blk_off; 3921 unsigned int segno = 0; 3922 block_t blk_addr = 0; 3923 int err = 0; 3924 3925 /* get segment number and block addr */ 3926 if (IS_DATASEG(type)) { 3927 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3928 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3929 CURSEG_HOT_DATA]); 3930 if (__exist_node_summaries(sbi)) 3931 blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type); 3932 else 3933 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3934 } else { 3935 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3936 CURSEG_HOT_NODE]); 3937 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3938 CURSEG_HOT_NODE]); 3939 if (__exist_node_summaries(sbi)) 3940 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3941 type - CURSEG_HOT_NODE); 3942 else 3943 blk_addr = GET_SUM_BLOCK(sbi, segno); 3944 } 3945 3946 new = f2fs_get_meta_page(sbi, blk_addr); 3947 if (IS_ERR(new)) 3948 return PTR_ERR(new); 3949 sum = (struct f2fs_summary_block *)page_address(new); 3950 3951 if (IS_NODESEG(type)) { 3952 if (__exist_node_summaries(sbi)) { 3953 struct f2fs_summary *ns = &sum->entries[0]; 3954 int i; 3955 3956 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3957 ns->version = 0; 3958 ns->ofs_in_node = 0; 3959 } 3960 } else { 3961 err = f2fs_restore_node_summary(sbi, segno, sum); 3962 if (err) 3963 goto out; 3964 } 3965 } 3966 3967 /* set uncompleted segment to curseg */ 3968 curseg = CURSEG_I(sbi, type); 3969 mutex_lock(&curseg->curseg_mutex); 3970 3971 /* update journal info */ 3972 down_write(&curseg->journal_rwsem); 3973 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3974 up_write(&curseg->journal_rwsem); 3975 3976 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3977 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3978 curseg->next_segno = segno; 3979 reset_curseg(sbi, type, 0); 3980 curseg->alloc_type = ckpt->alloc_type[type]; 3981 curseg->next_blkoff = blk_off; 3982 mutex_unlock(&curseg->curseg_mutex); 3983 out: 3984 f2fs_put_page(new, 1); 3985 return err; 3986 } 3987 3988 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3989 { 3990 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3991 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3992 int type = CURSEG_HOT_DATA; 3993 int err; 3994 3995 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3996 int npages = f2fs_npages_for_summary_flush(sbi, true); 3997 3998 if (npages >= 2) 3999 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 4000 META_CP, true); 4001 4002 /* restore for compacted data summary */ 4003 err = read_compacted_summaries(sbi); 4004 if (err) 4005 return err; 4006 type = CURSEG_HOT_NODE; 4007 } 4008 4009 if (__exist_node_summaries(sbi)) 4010 f2fs_ra_meta_pages(sbi, 4011 sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type), 4012 NR_CURSEG_PERSIST_TYPE - type, META_CP, true); 4013 4014 for (; type <= CURSEG_COLD_NODE; type++) { 4015 err = read_normal_summaries(sbi, type); 4016 if (err) 4017 return err; 4018 } 4019 4020 /* sanity check for summary blocks */ 4021 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 4022 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) { 4023 f2fs_err(sbi, "invalid journal entries nats %u sits %u", 4024 nats_in_cursum(nat_j), sits_in_cursum(sit_j)); 4025 return -EINVAL; 4026 } 4027 4028 return 0; 4029 } 4030 4031 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 4032 { 4033 struct page *page; 4034 unsigned char *kaddr; 4035 struct f2fs_summary *summary; 4036 struct curseg_info *seg_i; 4037 int written_size = 0; 4038 int i, j; 4039 4040 page = f2fs_grab_meta_page(sbi, blkaddr++); 4041 kaddr = (unsigned char *)page_address(page); 4042 memset(kaddr, 0, PAGE_SIZE); 4043 4044 /* Step 1: write nat cache */ 4045 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 4046 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 4047 written_size += SUM_JOURNAL_SIZE; 4048 4049 /* Step 2: write sit cache */ 4050 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 4051 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 4052 written_size += SUM_JOURNAL_SIZE; 4053 4054 /* Step 3: write summary entries */ 4055 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 4056 seg_i = CURSEG_I(sbi, i); 4057 for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) { 4058 if (!page) { 4059 page = f2fs_grab_meta_page(sbi, blkaddr++); 4060 kaddr = (unsigned char *)page_address(page); 4061 memset(kaddr, 0, PAGE_SIZE); 4062 written_size = 0; 4063 } 4064 summary = (struct f2fs_summary *)(kaddr + written_size); 4065 *summary = seg_i->sum_blk->entries[j]; 4066 written_size += SUMMARY_SIZE; 4067 4068 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 4069 SUM_FOOTER_SIZE) 4070 continue; 4071 4072 set_page_dirty(page); 4073 f2fs_put_page(page, 1); 4074 page = NULL; 4075 } 4076 } 4077 if (page) { 4078 set_page_dirty(page); 4079 f2fs_put_page(page, 1); 4080 } 4081 } 4082 4083 static void write_normal_summaries(struct f2fs_sb_info *sbi, 4084 block_t blkaddr, int type) 4085 { 4086 int i, end; 4087 4088 if (IS_DATASEG(type)) 4089 end = type + NR_CURSEG_DATA_TYPE; 4090 else 4091 end = type + NR_CURSEG_NODE_TYPE; 4092 4093 for (i = type; i < end; i++) 4094 write_current_sum_page(sbi, i, blkaddr + (i - type)); 4095 } 4096 4097 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4098 { 4099 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 4100 write_compacted_summaries(sbi, start_blk); 4101 else 4102 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 4103 } 4104 4105 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 4106 { 4107 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 4108 } 4109 4110 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 4111 unsigned int val, int alloc) 4112 { 4113 int i; 4114 4115 if (type == NAT_JOURNAL) { 4116 for (i = 0; i < nats_in_cursum(journal); i++) { 4117 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 4118 return i; 4119 } 4120 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 4121 return update_nats_in_cursum(journal, 1); 4122 } else if (type == SIT_JOURNAL) { 4123 for (i = 0; i < sits_in_cursum(journal); i++) 4124 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 4125 return i; 4126 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 4127 return update_sits_in_cursum(journal, 1); 4128 } 4129 return -1; 4130 } 4131 4132 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 4133 unsigned int segno) 4134 { 4135 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 4136 } 4137 4138 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 4139 unsigned int start) 4140 { 4141 struct sit_info *sit_i = SIT_I(sbi); 4142 struct page *page; 4143 pgoff_t src_off, dst_off; 4144 4145 src_off = current_sit_addr(sbi, start); 4146 dst_off = next_sit_addr(sbi, src_off); 4147 4148 page = f2fs_grab_meta_page(sbi, dst_off); 4149 seg_info_to_sit_page(sbi, page, start); 4150 4151 set_page_dirty(page); 4152 set_to_next_sit(sit_i, start); 4153 4154 return page; 4155 } 4156 4157 static struct sit_entry_set *grab_sit_entry_set(void) 4158 { 4159 struct sit_entry_set *ses = 4160 f2fs_kmem_cache_alloc(sit_entry_set_slab, 4161 GFP_NOFS, true, NULL); 4162 4163 ses->entry_cnt = 0; 4164 INIT_LIST_HEAD(&ses->set_list); 4165 return ses; 4166 } 4167 4168 static void release_sit_entry_set(struct sit_entry_set *ses) 4169 { 4170 list_del(&ses->set_list); 4171 kmem_cache_free(sit_entry_set_slab, ses); 4172 } 4173 4174 static void adjust_sit_entry_set(struct sit_entry_set *ses, 4175 struct list_head *head) 4176 { 4177 struct sit_entry_set *next = ses; 4178 4179 if (list_is_last(&ses->set_list, head)) 4180 return; 4181 4182 list_for_each_entry_continue(next, head, set_list) 4183 if (ses->entry_cnt <= next->entry_cnt) { 4184 list_move_tail(&ses->set_list, &next->set_list); 4185 return; 4186 } 4187 4188 list_move_tail(&ses->set_list, head); 4189 } 4190 4191 static void add_sit_entry(unsigned int segno, struct list_head *head) 4192 { 4193 struct sit_entry_set *ses; 4194 unsigned int start_segno = START_SEGNO(segno); 4195 4196 list_for_each_entry(ses, head, set_list) { 4197 if (ses->start_segno == start_segno) { 4198 ses->entry_cnt++; 4199 adjust_sit_entry_set(ses, head); 4200 return; 4201 } 4202 } 4203 4204 ses = grab_sit_entry_set(); 4205 4206 ses->start_segno = start_segno; 4207 ses->entry_cnt++; 4208 list_add(&ses->set_list, head); 4209 } 4210 4211 static void add_sits_in_set(struct f2fs_sb_info *sbi) 4212 { 4213 struct f2fs_sm_info *sm_info = SM_I(sbi); 4214 struct list_head *set_list = &sm_info->sit_entry_set; 4215 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 4216 unsigned int segno; 4217 4218 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 4219 add_sit_entry(segno, set_list); 4220 } 4221 4222 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 4223 { 4224 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4225 struct f2fs_journal *journal = curseg->journal; 4226 int i; 4227 4228 down_write(&curseg->journal_rwsem); 4229 for (i = 0; i < sits_in_cursum(journal); i++) { 4230 unsigned int segno; 4231 bool dirtied; 4232 4233 segno = le32_to_cpu(segno_in_journal(journal, i)); 4234 dirtied = __mark_sit_entry_dirty(sbi, segno); 4235 4236 if (!dirtied) 4237 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 4238 } 4239 update_sits_in_cursum(journal, -i); 4240 up_write(&curseg->journal_rwsem); 4241 } 4242 4243 /* 4244 * CP calls this function, which flushes SIT entries including sit_journal, 4245 * and moves prefree segs to free segs. 4246 */ 4247 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 4248 { 4249 struct sit_info *sit_i = SIT_I(sbi); 4250 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 4251 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4252 struct f2fs_journal *journal = curseg->journal; 4253 struct sit_entry_set *ses, *tmp; 4254 struct list_head *head = &SM_I(sbi)->sit_entry_set; 4255 bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS); 4256 struct seg_entry *se; 4257 4258 down_write(&sit_i->sentry_lock); 4259 4260 if (!sit_i->dirty_sentries) 4261 goto out; 4262 4263 /* 4264 * add and account sit entries of dirty bitmap in sit entry 4265 * set temporarily 4266 */ 4267 add_sits_in_set(sbi); 4268 4269 /* 4270 * if there are no enough space in journal to store dirty sit 4271 * entries, remove all entries from journal and add and account 4272 * them in sit entry set. 4273 */ 4274 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) || 4275 !to_journal) 4276 remove_sits_in_journal(sbi); 4277 4278 /* 4279 * there are two steps to flush sit entries: 4280 * #1, flush sit entries to journal in current cold data summary block. 4281 * #2, flush sit entries to sit page. 4282 */ 4283 list_for_each_entry_safe(ses, tmp, head, set_list) { 4284 struct page *page = NULL; 4285 struct f2fs_sit_block *raw_sit = NULL; 4286 unsigned int start_segno = ses->start_segno; 4287 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 4288 (unsigned long)MAIN_SEGS(sbi)); 4289 unsigned int segno = start_segno; 4290 4291 if (to_journal && 4292 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 4293 to_journal = false; 4294 4295 if (to_journal) { 4296 down_write(&curseg->journal_rwsem); 4297 } else { 4298 page = get_next_sit_page(sbi, start_segno); 4299 raw_sit = page_address(page); 4300 } 4301 4302 /* flush dirty sit entries in region of current sit set */ 4303 for_each_set_bit_from(segno, bitmap, end) { 4304 int offset, sit_offset; 4305 4306 se = get_seg_entry(sbi, segno); 4307 #ifdef CONFIG_F2FS_CHECK_FS 4308 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 4309 SIT_VBLOCK_MAP_SIZE)) 4310 f2fs_bug_on(sbi, 1); 4311 #endif 4312 4313 /* add discard candidates */ 4314 if (!(cpc->reason & CP_DISCARD)) { 4315 cpc->trim_start = segno; 4316 add_discard_addrs(sbi, cpc, false); 4317 } 4318 4319 if (to_journal) { 4320 offset = f2fs_lookup_journal_in_cursum(journal, 4321 SIT_JOURNAL, segno, 1); 4322 f2fs_bug_on(sbi, offset < 0); 4323 segno_in_journal(journal, offset) = 4324 cpu_to_le32(segno); 4325 seg_info_to_raw_sit(se, 4326 &sit_in_journal(journal, offset)); 4327 check_block_count(sbi, segno, 4328 &sit_in_journal(journal, offset)); 4329 } else { 4330 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 4331 seg_info_to_raw_sit(se, 4332 &raw_sit->entries[sit_offset]); 4333 check_block_count(sbi, segno, 4334 &raw_sit->entries[sit_offset]); 4335 } 4336 4337 __clear_bit(segno, bitmap); 4338 sit_i->dirty_sentries--; 4339 ses->entry_cnt--; 4340 } 4341 4342 if (to_journal) 4343 up_write(&curseg->journal_rwsem); 4344 else 4345 f2fs_put_page(page, 1); 4346 4347 f2fs_bug_on(sbi, ses->entry_cnt); 4348 release_sit_entry_set(ses); 4349 } 4350 4351 f2fs_bug_on(sbi, !list_empty(head)); 4352 f2fs_bug_on(sbi, sit_i->dirty_sentries); 4353 out: 4354 if (cpc->reason & CP_DISCARD) { 4355 __u64 trim_start = cpc->trim_start; 4356 4357 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 4358 add_discard_addrs(sbi, cpc, false); 4359 4360 cpc->trim_start = trim_start; 4361 } 4362 up_write(&sit_i->sentry_lock); 4363 4364 set_prefree_as_free_segments(sbi); 4365 } 4366 4367 static int build_sit_info(struct f2fs_sb_info *sbi) 4368 { 4369 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4370 struct sit_info *sit_i; 4371 unsigned int sit_segs, start; 4372 char *src_bitmap, *bitmap; 4373 unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size; 4374 unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0; 4375 4376 /* allocate memory for SIT information */ 4377 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 4378 if (!sit_i) 4379 return -ENOMEM; 4380 4381 SM_I(sbi)->sit_info = sit_i; 4382 4383 sit_i->sentries = 4384 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 4385 MAIN_SEGS(sbi)), 4386 GFP_KERNEL); 4387 if (!sit_i->sentries) 4388 return -ENOMEM; 4389 4390 main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4391 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size, 4392 GFP_KERNEL); 4393 if (!sit_i->dirty_sentries_bitmap) 4394 return -ENOMEM; 4395 4396 #ifdef CONFIG_F2FS_CHECK_FS 4397 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map); 4398 #else 4399 bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map); 4400 #endif 4401 sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4402 if (!sit_i->bitmap) 4403 return -ENOMEM; 4404 4405 bitmap = sit_i->bitmap; 4406 4407 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4408 sit_i->sentries[start].cur_valid_map = bitmap; 4409 bitmap += SIT_VBLOCK_MAP_SIZE; 4410 4411 sit_i->sentries[start].ckpt_valid_map = bitmap; 4412 bitmap += SIT_VBLOCK_MAP_SIZE; 4413 4414 #ifdef CONFIG_F2FS_CHECK_FS 4415 sit_i->sentries[start].cur_valid_map_mir = bitmap; 4416 bitmap += SIT_VBLOCK_MAP_SIZE; 4417 #endif 4418 4419 if (discard_map) { 4420 sit_i->sentries[start].discard_map = bitmap; 4421 bitmap += SIT_VBLOCK_MAP_SIZE; 4422 } 4423 } 4424 4425 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 4426 if (!sit_i->tmp_map) 4427 return -ENOMEM; 4428 4429 if (__is_large_section(sbi)) { 4430 sit_i->sec_entries = 4431 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 4432 MAIN_SECS(sbi)), 4433 GFP_KERNEL); 4434 if (!sit_i->sec_entries) 4435 return -ENOMEM; 4436 } 4437 4438 /* get information related with SIT */ 4439 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 4440 4441 /* setup SIT bitmap from ckeckpoint pack */ 4442 sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 4443 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 4444 4445 sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL); 4446 if (!sit_i->sit_bitmap) 4447 return -ENOMEM; 4448 4449 #ifdef CONFIG_F2FS_CHECK_FS 4450 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, 4451 sit_bitmap_size, GFP_KERNEL); 4452 if (!sit_i->sit_bitmap_mir) 4453 return -ENOMEM; 4454 4455 sit_i->invalid_segmap = f2fs_kvzalloc(sbi, 4456 main_bitmap_size, GFP_KERNEL); 4457 if (!sit_i->invalid_segmap) 4458 return -ENOMEM; 4459 #endif 4460 4461 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 4462 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 4463 sit_i->written_valid_blocks = 0; 4464 sit_i->bitmap_size = sit_bitmap_size; 4465 sit_i->dirty_sentries = 0; 4466 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 4467 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 4468 sit_i->mounted_time = ktime_get_boottime_seconds(); 4469 init_rwsem(&sit_i->sentry_lock); 4470 return 0; 4471 } 4472 4473 static int build_free_segmap(struct f2fs_sb_info *sbi) 4474 { 4475 struct free_segmap_info *free_i; 4476 unsigned int bitmap_size, sec_bitmap_size; 4477 4478 /* allocate memory for free segmap information */ 4479 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 4480 if (!free_i) 4481 return -ENOMEM; 4482 4483 SM_I(sbi)->free_info = free_i; 4484 4485 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4486 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 4487 if (!free_i->free_segmap) 4488 return -ENOMEM; 4489 4490 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4491 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 4492 if (!free_i->free_secmap) 4493 return -ENOMEM; 4494 4495 /* set all segments as dirty temporarily */ 4496 memset(free_i->free_segmap, 0xff, bitmap_size); 4497 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 4498 4499 /* init free segmap information */ 4500 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 4501 free_i->free_segments = 0; 4502 free_i->free_sections = 0; 4503 spin_lock_init(&free_i->segmap_lock); 4504 return 0; 4505 } 4506 4507 static int build_curseg(struct f2fs_sb_info *sbi) 4508 { 4509 struct curseg_info *array; 4510 int i; 4511 4512 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, 4513 sizeof(*array)), GFP_KERNEL); 4514 if (!array) 4515 return -ENOMEM; 4516 4517 SM_I(sbi)->curseg_array = array; 4518 4519 for (i = 0; i < NO_CHECK_TYPE; i++) { 4520 mutex_init(&array[i].curseg_mutex); 4521 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 4522 if (!array[i].sum_blk) 4523 return -ENOMEM; 4524 init_rwsem(&array[i].journal_rwsem); 4525 array[i].journal = f2fs_kzalloc(sbi, 4526 sizeof(struct f2fs_journal), GFP_KERNEL); 4527 if (!array[i].journal) 4528 return -ENOMEM; 4529 if (i < NR_PERSISTENT_LOG) 4530 array[i].seg_type = CURSEG_HOT_DATA + i; 4531 else if (i == CURSEG_COLD_DATA_PINNED) 4532 array[i].seg_type = CURSEG_COLD_DATA; 4533 else if (i == CURSEG_ALL_DATA_ATGC) 4534 array[i].seg_type = CURSEG_COLD_DATA; 4535 array[i].segno = NULL_SEGNO; 4536 array[i].next_blkoff = 0; 4537 array[i].inited = false; 4538 } 4539 return restore_curseg_summaries(sbi); 4540 } 4541 4542 static int build_sit_entries(struct f2fs_sb_info *sbi) 4543 { 4544 struct sit_info *sit_i = SIT_I(sbi); 4545 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 4546 struct f2fs_journal *journal = curseg->journal; 4547 struct seg_entry *se; 4548 struct f2fs_sit_entry sit; 4549 int sit_blk_cnt = SIT_BLK_CNT(sbi); 4550 unsigned int i, start, end; 4551 unsigned int readed, start_blk = 0; 4552 int err = 0; 4553 block_t sit_valid_blocks[2] = {0, 0}; 4554 4555 do { 4556 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS, 4557 META_SIT, true); 4558 4559 start = start_blk * sit_i->sents_per_block; 4560 end = (start_blk + readed) * sit_i->sents_per_block; 4561 4562 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4563 struct f2fs_sit_block *sit_blk; 4564 struct page *page; 4565 4566 se = &sit_i->sentries[start]; 4567 page = get_current_sit_page(sbi, start); 4568 if (IS_ERR(page)) 4569 return PTR_ERR(page); 4570 sit_blk = (struct f2fs_sit_block *)page_address(page); 4571 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4572 f2fs_put_page(page, 1); 4573 4574 err = check_block_count(sbi, start, &sit); 4575 if (err) 4576 return err; 4577 seg_info_from_raw_sit(se, &sit); 4578 4579 if (se->type >= NR_PERSISTENT_LOG) { 4580 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4581 se->type, start); 4582 f2fs_handle_error(sbi, 4583 ERROR_INCONSISTENT_SUM_TYPE); 4584 return -EFSCORRUPTED; 4585 } 4586 4587 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4588 4589 if (f2fs_block_unit_discard(sbi)) { 4590 /* build discard map only one time */ 4591 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4592 memset(se->discard_map, 0xff, 4593 SIT_VBLOCK_MAP_SIZE); 4594 } else { 4595 memcpy(se->discard_map, 4596 se->cur_valid_map, 4597 SIT_VBLOCK_MAP_SIZE); 4598 sbi->discard_blks += 4599 sbi->blocks_per_seg - 4600 se->valid_blocks; 4601 } 4602 } 4603 4604 if (__is_large_section(sbi)) 4605 get_sec_entry(sbi, start)->valid_blocks += 4606 se->valid_blocks; 4607 } 4608 start_blk += readed; 4609 } while (start_blk < sit_blk_cnt); 4610 4611 down_read(&curseg->journal_rwsem); 4612 for (i = 0; i < sits_in_cursum(journal); i++) { 4613 unsigned int old_valid_blocks; 4614 4615 start = le32_to_cpu(segno_in_journal(journal, i)); 4616 if (start >= MAIN_SEGS(sbi)) { 4617 f2fs_err(sbi, "Wrong journal entry on segno %u", 4618 start); 4619 err = -EFSCORRUPTED; 4620 f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL); 4621 break; 4622 } 4623 4624 se = &sit_i->sentries[start]; 4625 sit = sit_in_journal(journal, i); 4626 4627 old_valid_blocks = se->valid_blocks; 4628 4629 sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks; 4630 4631 err = check_block_count(sbi, start, &sit); 4632 if (err) 4633 break; 4634 seg_info_from_raw_sit(se, &sit); 4635 4636 if (se->type >= NR_PERSISTENT_LOG) { 4637 f2fs_err(sbi, "Invalid segment type: %u, segno: %u", 4638 se->type, start); 4639 err = -EFSCORRUPTED; 4640 f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE); 4641 break; 4642 } 4643 4644 sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks; 4645 4646 if (f2fs_block_unit_discard(sbi)) { 4647 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4648 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4649 } else { 4650 memcpy(se->discard_map, se->cur_valid_map, 4651 SIT_VBLOCK_MAP_SIZE); 4652 sbi->discard_blks += old_valid_blocks; 4653 sbi->discard_blks -= se->valid_blocks; 4654 } 4655 } 4656 4657 if (__is_large_section(sbi)) { 4658 get_sec_entry(sbi, start)->valid_blocks += 4659 se->valid_blocks; 4660 get_sec_entry(sbi, start)->valid_blocks -= 4661 old_valid_blocks; 4662 } 4663 } 4664 up_read(&curseg->journal_rwsem); 4665 4666 if (err) 4667 return err; 4668 4669 if (sit_valid_blocks[NODE] != valid_node_count(sbi)) { 4670 f2fs_err(sbi, "SIT is corrupted node# %u vs %u", 4671 sit_valid_blocks[NODE], valid_node_count(sbi)); 4672 f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT); 4673 return -EFSCORRUPTED; 4674 } 4675 4676 if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] > 4677 valid_user_blocks(sbi)) { 4678 f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u", 4679 sit_valid_blocks[DATA], sit_valid_blocks[NODE], 4680 valid_user_blocks(sbi)); 4681 f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT); 4682 return -EFSCORRUPTED; 4683 } 4684 4685 return 0; 4686 } 4687 4688 static void init_free_segmap(struct f2fs_sb_info *sbi) 4689 { 4690 unsigned int start; 4691 int type; 4692 struct seg_entry *sentry; 4693 4694 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4695 if (f2fs_usable_blks_in_seg(sbi, start) == 0) 4696 continue; 4697 sentry = get_seg_entry(sbi, start); 4698 if (!sentry->valid_blocks) 4699 __set_free(sbi, start); 4700 else 4701 SIT_I(sbi)->written_valid_blocks += 4702 sentry->valid_blocks; 4703 } 4704 4705 /* set use the current segments */ 4706 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4707 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4708 4709 __set_test_and_inuse(sbi, curseg_t->segno); 4710 } 4711 } 4712 4713 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4714 { 4715 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4716 struct free_segmap_info *free_i = FREE_I(sbi); 4717 unsigned int segno = 0, offset = 0, secno; 4718 block_t valid_blocks, usable_blks_in_seg; 4719 4720 while (1) { 4721 /* find dirty segment based on free segmap */ 4722 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4723 if (segno >= MAIN_SEGS(sbi)) 4724 break; 4725 offset = segno + 1; 4726 valid_blocks = get_valid_blocks(sbi, segno, false); 4727 usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno); 4728 if (valid_blocks == usable_blks_in_seg || !valid_blocks) 4729 continue; 4730 if (valid_blocks > usable_blks_in_seg) { 4731 f2fs_bug_on(sbi, 1); 4732 continue; 4733 } 4734 mutex_lock(&dirty_i->seglist_lock); 4735 __locate_dirty_segment(sbi, segno, DIRTY); 4736 mutex_unlock(&dirty_i->seglist_lock); 4737 } 4738 4739 if (!__is_large_section(sbi)) 4740 return; 4741 4742 mutex_lock(&dirty_i->seglist_lock); 4743 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4744 valid_blocks = get_valid_blocks(sbi, segno, true); 4745 secno = GET_SEC_FROM_SEG(sbi, segno); 4746 4747 if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi)) 4748 continue; 4749 if (IS_CURSEC(sbi, secno)) 4750 continue; 4751 set_bit(secno, dirty_i->dirty_secmap); 4752 } 4753 mutex_unlock(&dirty_i->seglist_lock); 4754 } 4755 4756 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4757 { 4758 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4759 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4760 4761 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4762 if (!dirty_i->victim_secmap) 4763 return -ENOMEM; 4764 4765 dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4766 if (!dirty_i->pinned_secmap) 4767 return -ENOMEM; 4768 4769 dirty_i->pinned_secmap_cnt = 0; 4770 dirty_i->enable_pin_section = true; 4771 return 0; 4772 } 4773 4774 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4775 { 4776 struct dirty_seglist_info *dirty_i; 4777 unsigned int bitmap_size, i; 4778 4779 /* allocate memory for dirty segments list information */ 4780 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4781 GFP_KERNEL); 4782 if (!dirty_i) 4783 return -ENOMEM; 4784 4785 SM_I(sbi)->dirty_info = dirty_i; 4786 mutex_init(&dirty_i->seglist_lock); 4787 4788 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4789 4790 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4791 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4792 GFP_KERNEL); 4793 if (!dirty_i->dirty_segmap[i]) 4794 return -ENOMEM; 4795 } 4796 4797 if (__is_large_section(sbi)) { 4798 bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4799 dirty_i->dirty_secmap = f2fs_kvzalloc(sbi, 4800 bitmap_size, GFP_KERNEL); 4801 if (!dirty_i->dirty_secmap) 4802 return -ENOMEM; 4803 } 4804 4805 init_dirty_segmap(sbi); 4806 return init_victim_secmap(sbi); 4807 } 4808 4809 static int sanity_check_curseg(struct f2fs_sb_info *sbi) 4810 { 4811 int i; 4812 4813 /* 4814 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr; 4815 * In LFS curseg, all blkaddr after .next_blkoff should be unused. 4816 */ 4817 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 4818 struct curseg_info *curseg = CURSEG_I(sbi, i); 4819 struct seg_entry *se = get_seg_entry(sbi, curseg->segno); 4820 unsigned int blkofs = curseg->next_blkoff; 4821 4822 if (f2fs_sb_has_readonly(sbi) && 4823 i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE) 4824 continue; 4825 4826 sanity_check_seg_type(sbi, curseg->seg_type); 4827 4828 if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) { 4829 f2fs_err(sbi, 4830 "Current segment has invalid alloc_type:%d", 4831 curseg->alloc_type); 4832 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4833 return -EFSCORRUPTED; 4834 } 4835 4836 if (f2fs_test_bit(blkofs, se->cur_valid_map)) 4837 goto out; 4838 4839 if (curseg->alloc_type == SSR) 4840 continue; 4841 4842 for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) { 4843 if (!f2fs_test_bit(blkofs, se->cur_valid_map)) 4844 continue; 4845 out: 4846 f2fs_err(sbi, 4847 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u", 4848 i, curseg->segno, curseg->alloc_type, 4849 curseg->next_blkoff, blkofs); 4850 f2fs_handle_error(sbi, ERROR_INVALID_CURSEG); 4851 return -EFSCORRUPTED; 4852 } 4853 } 4854 return 0; 4855 } 4856 4857 #ifdef CONFIG_BLK_DEV_ZONED 4858 4859 static int check_zone_write_pointer(struct f2fs_sb_info *sbi, 4860 struct f2fs_dev_info *fdev, 4861 struct blk_zone *zone) 4862 { 4863 unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno; 4864 block_t zone_block, wp_block, last_valid_block; 4865 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4866 int i, s, b, ret; 4867 struct seg_entry *se; 4868 4869 if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ) 4870 return 0; 4871 4872 wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block); 4873 wp_segno = GET_SEGNO(sbi, wp_block); 4874 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 4875 zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block); 4876 zone_segno = GET_SEGNO(sbi, zone_block); 4877 zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno); 4878 4879 if (zone_segno >= MAIN_SEGS(sbi)) 4880 return 0; 4881 4882 /* 4883 * Skip check of zones cursegs point to, since 4884 * fix_curseg_write_pointer() checks them. 4885 */ 4886 for (i = 0; i < NO_CHECK_TYPE; i++) 4887 if (zone_secno == GET_SEC_FROM_SEG(sbi, 4888 CURSEG_I(sbi, i)->segno)) 4889 return 0; 4890 4891 /* 4892 * Get last valid block of the zone. 4893 */ 4894 last_valid_block = zone_block - 1; 4895 for (s = sbi->segs_per_sec - 1; s >= 0; s--) { 4896 segno = zone_segno + s; 4897 se = get_seg_entry(sbi, segno); 4898 for (b = sbi->blocks_per_seg - 1; b >= 0; b--) 4899 if (f2fs_test_bit(b, se->cur_valid_map)) { 4900 last_valid_block = START_BLOCK(sbi, segno) + b; 4901 break; 4902 } 4903 if (last_valid_block >= zone_block) 4904 break; 4905 } 4906 4907 /* 4908 * The write pointer matches with the valid blocks or 4909 * already points to the end of the zone. 4910 */ 4911 if ((last_valid_block + 1 == wp_block) || 4912 (zone->wp == zone->start + zone->len)) 4913 return 0; 4914 4915 if (last_valid_block + 1 == zone_block) { 4916 /* 4917 * If there is no valid block in the zone and if write pointer 4918 * is not at zone start, reset the write pointer. 4919 */ 4920 f2fs_notice(sbi, 4921 "Zone without valid block has non-zero write " 4922 "pointer. Reset the write pointer: wp[0x%x,0x%x]", 4923 wp_segno, wp_blkoff); 4924 ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block, 4925 zone->len >> log_sectors_per_block); 4926 if (ret) 4927 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 4928 fdev->path, ret); 4929 4930 return ret; 4931 } 4932 4933 /* 4934 * If there are valid blocks and the write pointer doesn't 4935 * match with them, we need to report the inconsistency and 4936 * fill the zone till the end to close the zone. This inconsistency 4937 * does not cause write error because the zone will not be selected 4938 * for write operation until it get discarded. 4939 */ 4940 f2fs_notice(sbi, "Valid blocks are not aligned with write pointer: " 4941 "valid block[0x%x,0x%x] wp[0x%x,0x%x]", 4942 GET_SEGNO(sbi, last_valid_block), 4943 GET_BLKOFF_FROM_SEG0(sbi, last_valid_block), 4944 wp_segno, wp_blkoff); 4945 4946 ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH, 4947 zone->start, zone->len, GFP_NOFS); 4948 if (ret == -EOPNOTSUPP) { 4949 ret = blkdev_issue_zeroout(fdev->bdev, zone->wp, 4950 zone->len - (zone->wp - zone->start), 4951 GFP_NOFS, 0); 4952 if (ret) 4953 f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)", 4954 fdev->path, ret); 4955 } else if (ret) { 4956 f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)", 4957 fdev->path, ret); 4958 } 4959 4960 return ret; 4961 } 4962 4963 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi, 4964 block_t zone_blkaddr) 4965 { 4966 int i; 4967 4968 for (i = 0; i < sbi->s_ndevs; i++) { 4969 if (!bdev_is_zoned(FDEV(i).bdev)) 4970 continue; 4971 if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr && 4972 zone_blkaddr <= FDEV(i).end_blk)) 4973 return &FDEV(i); 4974 } 4975 4976 return NULL; 4977 } 4978 4979 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx, 4980 void *data) 4981 { 4982 memcpy(data, zone, sizeof(struct blk_zone)); 4983 return 0; 4984 } 4985 4986 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type) 4987 { 4988 struct curseg_info *cs = CURSEG_I(sbi, type); 4989 struct f2fs_dev_info *zbd; 4990 struct blk_zone zone; 4991 unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off; 4992 block_t cs_zone_block, wp_block; 4993 unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT; 4994 sector_t zone_sector; 4995 int err; 4996 4997 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 4998 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 4999 5000 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5001 if (!zbd) 5002 return 0; 5003 5004 /* report zone for the sector the curseg points to */ 5005 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5006 << log_sectors_per_block; 5007 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5008 report_one_zone_cb, &zone); 5009 if (err != 1) { 5010 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5011 zbd->path, err); 5012 return err; 5013 } 5014 5015 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5016 return 0; 5017 5018 wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block); 5019 wp_segno = GET_SEGNO(sbi, wp_block); 5020 wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno); 5021 wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0); 5022 5023 if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff && 5024 wp_sector_off == 0) 5025 return 0; 5026 5027 f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: " 5028 "curseg[0x%x,0x%x] wp[0x%x,0x%x]", 5029 type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff); 5030 5031 f2fs_notice(sbi, "Assign new section to curseg[%d]: " 5032 "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff); 5033 5034 f2fs_allocate_new_section(sbi, type, true); 5035 5036 /* check consistency of the zone curseg pointed to */ 5037 if (check_zone_write_pointer(sbi, zbd, &zone)) 5038 return -EIO; 5039 5040 /* check newly assigned zone */ 5041 cs_section = GET_SEC_FROM_SEG(sbi, cs->segno); 5042 cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section)); 5043 5044 zbd = get_target_zoned_dev(sbi, cs_zone_block); 5045 if (!zbd) 5046 return 0; 5047 5048 zone_sector = (sector_t)(cs_zone_block - zbd->start_blk) 5049 << log_sectors_per_block; 5050 err = blkdev_report_zones(zbd->bdev, zone_sector, 1, 5051 report_one_zone_cb, &zone); 5052 if (err != 1) { 5053 f2fs_err(sbi, "Report zone failed: %s errno=(%d)", 5054 zbd->path, err); 5055 return err; 5056 } 5057 5058 if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ) 5059 return 0; 5060 5061 if (zone.wp != zone.start) { 5062 f2fs_notice(sbi, 5063 "New zone for curseg[%d] is not yet discarded. " 5064 "Reset the zone: curseg[0x%x,0x%x]", 5065 type, cs->segno, cs->next_blkoff); 5066 err = __f2fs_issue_discard_zone(sbi, zbd->bdev, cs_zone_block, 5067 zone.len >> log_sectors_per_block); 5068 if (err) { 5069 f2fs_err(sbi, "Discard zone failed: %s (errno=%d)", 5070 zbd->path, err); 5071 return err; 5072 } 5073 } 5074 5075 return 0; 5076 } 5077 5078 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5079 { 5080 int i, ret; 5081 5082 for (i = 0; i < NR_PERSISTENT_LOG; i++) { 5083 ret = fix_curseg_write_pointer(sbi, i); 5084 if (ret) 5085 return ret; 5086 } 5087 5088 return 0; 5089 } 5090 5091 struct check_zone_write_pointer_args { 5092 struct f2fs_sb_info *sbi; 5093 struct f2fs_dev_info *fdev; 5094 }; 5095 5096 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx, 5097 void *data) 5098 { 5099 struct check_zone_write_pointer_args *args; 5100 5101 args = (struct check_zone_write_pointer_args *)data; 5102 5103 return check_zone_write_pointer(args->sbi, args->fdev, zone); 5104 } 5105 5106 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5107 { 5108 int i, ret; 5109 struct check_zone_write_pointer_args args; 5110 5111 for (i = 0; i < sbi->s_ndevs; i++) { 5112 if (!bdev_is_zoned(FDEV(i).bdev)) 5113 continue; 5114 5115 args.sbi = sbi; 5116 args.fdev = &FDEV(i); 5117 ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES, 5118 check_zone_write_pointer_cb, &args); 5119 if (ret < 0) 5120 return ret; 5121 } 5122 5123 return 0; 5124 } 5125 5126 /* 5127 * Return the number of usable blocks in a segment. The number of blocks 5128 * returned is always equal to the number of blocks in a segment for 5129 * segments fully contained within a sequential zone capacity or a 5130 * conventional zone. For segments partially contained in a sequential 5131 * zone capacity, the number of usable blocks up to the zone capacity 5132 * is returned. 0 is returned in all other cases. 5133 */ 5134 static inline unsigned int f2fs_usable_zone_blks_in_seg( 5135 struct f2fs_sb_info *sbi, unsigned int segno) 5136 { 5137 block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr; 5138 unsigned int secno; 5139 5140 if (!sbi->unusable_blocks_per_sec) 5141 return sbi->blocks_per_seg; 5142 5143 secno = GET_SEC_FROM_SEG(sbi, segno); 5144 seg_start = START_BLOCK(sbi, segno); 5145 sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno)); 5146 sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi); 5147 5148 /* 5149 * If segment starts before zone capacity and spans beyond 5150 * zone capacity, then usable blocks are from seg start to 5151 * zone capacity. If the segment starts after the zone capacity, 5152 * then there are no usable blocks. 5153 */ 5154 if (seg_start >= sec_cap_blkaddr) 5155 return 0; 5156 if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr) 5157 return sec_cap_blkaddr - seg_start; 5158 5159 return sbi->blocks_per_seg; 5160 } 5161 #else 5162 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi) 5163 { 5164 return 0; 5165 } 5166 5167 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi) 5168 { 5169 return 0; 5170 } 5171 5172 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi, 5173 unsigned int segno) 5174 { 5175 return 0; 5176 } 5177 5178 #endif 5179 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi, 5180 unsigned int segno) 5181 { 5182 if (f2fs_sb_has_blkzoned(sbi)) 5183 return f2fs_usable_zone_blks_in_seg(sbi, segno); 5184 5185 return sbi->blocks_per_seg; 5186 } 5187 5188 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi, 5189 unsigned int segno) 5190 { 5191 if (f2fs_sb_has_blkzoned(sbi)) 5192 return CAP_SEGS_PER_SEC(sbi); 5193 5194 return sbi->segs_per_sec; 5195 } 5196 5197 /* 5198 * Update min, max modified time for cost-benefit GC algorithm 5199 */ 5200 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 5201 { 5202 struct sit_info *sit_i = SIT_I(sbi); 5203 unsigned int segno; 5204 5205 down_write(&sit_i->sentry_lock); 5206 5207 sit_i->min_mtime = ULLONG_MAX; 5208 5209 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 5210 unsigned int i; 5211 unsigned long long mtime = 0; 5212 5213 for (i = 0; i < sbi->segs_per_sec; i++) 5214 mtime += get_seg_entry(sbi, segno + i)->mtime; 5215 5216 mtime = div_u64(mtime, sbi->segs_per_sec); 5217 5218 if (sit_i->min_mtime > mtime) 5219 sit_i->min_mtime = mtime; 5220 } 5221 sit_i->max_mtime = get_mtime(sbi, false); 5222 sit_i->dirty_max_mtime = 0; 5223 up_write(&sit_i->sentry_lock); 5224 } 5225 5226 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 5227 { 5228 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 5229 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 5230 struct f2fs_sm_info *sm_info; 5231 int err; 5232 5233 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 5234 if (!sm_info) 5235 return -ENOMEM; 5236 5237 /* init sm info */ 5238 sbi->sm_info = sm_info; 5239 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 5240 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 5241 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 5242 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 5243 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 5244 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 5245 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 5246 sm_info->rec_prefree_segments = sm_info->main_segments * 5247 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 5248 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 5249 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 5250 5251 if (!f2fs_lfs_mode(sbi)) 5252 sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC); 5253 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 5254 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 5255 sm_info->min_seq_blocks = sbi->blocks_per_seg; 5256 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 5257 sm_info->min_ssr_sections = reserved_sections(sbi); 5258 5259 INIT_LIST_HEAD(&sm_info->sit_entry_set); 5260 5261 init_f2fs_rwsem(&sm_info->curseg_lock); 5262 5263 err = f2fs_create_flush_cmd_control(sbi); 5264 if (err) 5265 return err; 5266 5267 err = create_discard_cmd_control(sbi); 5268 if (err) 5269 return err; 5270 5271 err = build_sit_info(sbi); 5272 if (err) 5273 return err; 5274 err = build_free_segmap(sbi); 5275 if (err) 5276 return err; 5277 err = build_curseg(sbi); 5278 if (err) 5279 return err; 5280 5281 /* reinit free segmap based on SIT */ 5282 err = build_sit_entries(sbi); 5283 if (err) 5284 return err; 5285 5286 init_free_segmap(sbi); 5287 err = build_dirty_segmap(sbi); 5288 if (err) 5289 return err; 5290 5291 err = sanity_check_curseg(sbi); 5292 if (err) 5293 return err; 5294 5295 init_min_max_mtime(sbi); 5296 return 0; 5297 } 5298 5299 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 5300 enum dirty_type dirty_type) 5301 { 5302 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5303 5304 mutex_lock(&dirty_i->seglist_lock); 5305 kvfree(dirty_i->dirty_segmap[dirty_type]); 5306 dirty_i->nr_dirty[dirty_type] = 0; 5307 mutex_unlock(&dirty_i->seglist_lock); 5308 } 5309 5310 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 5311 { 5312 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5313 5314 kvfree(dirty_i->pinned_secmap); 5315 kvfree(dirty_i->victim_secmap); 5316 } 5317 5318 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 5319 { 5320 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 5321 int i; 5322 5323 if (!dirty_i) 5324 return; 5325 5326 /* discard pre-free/dirty segments list */ 5327 for (i = 0; i < NR_DIRTY_TYPE; i++) 5328 discard_dirty_segmap(sbi, i); 5329 5330 if (__is_large_section(sbi)) { 5331 mutex_lock(&dirty_i->seglist_lock); 5332 kvfree(dirty_i->dirty_secmap); 5333 mutex_unlock(&dirty_i->seglist_lock); 5334 } 5335 5336 destroy_victim_secmap(sbi); 5337 SM_I(sbi)->dirty_info = NULL; 5338 kfree(dirty_i); 5339 } 5340 5341 static void destroy_curseg(struct f2fs_sb_info *sbi) 5342 { 5343 struct curseg_info *array = SM_I(sbi)->curseg_array; 5344 int i; 5345 5346 if (!array) 5347 return; 5348 SM_I(sbi)->curseg_array = NULL; 5349 for (i = 0; i < NR_CURSEG_TYPE; i++) { 5350 kfree(array[i].sum_blk); 5351 kfree(array[i].journal); 5352 } 5353 kfree(array); 5354 } 5355 5356 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 5357 { 5358 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 5359 5360 if (!free_i) 5361 return; 5362 SM_I(sbi)->free_info = NULL; 5363 kvfree(free_i->free_segmap); 5364 kvfree(free_i->free_secmap); 5365 kfree(free_i); 5366 } 5367 5368 static void destroy_sit_info(struct f2fs_sb_info *sbi) 5369 { 5370 struct sit_info *sit_i = SIT_I(sbi); 5371 5372 if (!sit_i) 5373 return; 5374 5375 if (sit_i->sentries) 5376 kvfree(sit_i->bitmap); 5377 kfree(sit_i->tmp_map); 5378 5379 kvfree(sit_i->sentries); 5380 kvfree(sit_i->sec_entries); 5381 kvfree(sit_i->dirty_sentries_bitmap); 5382 5383 SM_I(sbi)->sit_info = NULL; 5384 kvfree(sit_i->sit_bitmap); 5385 #ifdef CONFIG_F2FS_CHECK_FS 5386 kvfree(sit_i->sit_bitmap_mir); 5387 kvfree(sit_i->invalid_segmap); 5388 #endif 5389 kfree(sit_i); 5390 } 5391 5392 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 5393 { 5394 struct f2fs_sm_info *sm_info = SM_I(sbi); 5395 5396 if (!sm_info) 5397 return; 5398 f2fs_destroy_flush_cmd_control(sbi, true); 5399 destroy_discard_cmd_control(sbi); 5400 destroy_dirty_segmap(sbi); 5401 destroy_curseg(sbi); 5402 destroy_free_segmap(sbi); 5403 destroy_sit_info(sbi); 5404 sbi->sm_info = NULL; 5405 kfree(sm_info); 5406 } 5407 5408 int __init f2fs_create_segment_manager_caches(void) 5409 { 5410 discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry", 5411 sizeof(struct discard_entry)); 5412 if (!discard_entry_slab) 5413 goto fail; 5414 5415 discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd", 5416 sizeof(struct discard_cmd)); 5417 if (!discard_cmd_slab) 5418 goto destroy_discard_entry; 5419 5420 sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set", 5421 sizeof(struct sit_entry_set)); 5422 if (!sit_entry_set_slab) 5423 goto destroy_discard_cmd; 5424 5425 revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry", 5426 sizeof(struct revoke_entry)); 5427 if (!revoke_entry_slab) 5428 goto destroy_sit_entry_set; 5429 return 0; 5430 5431 destroy_sit_entry_set: 5432 kmem_cache_destroy(sit_entry_set_slab); 5433 destroy_discard_cmd: 5434 kmem_cache_destroy(discard_cmd_slab); 5435 destroy_discard_entry: 5436 kmem_cache_destroy(discard_entry_slab); 5437 fail: 5438 return -ENOMEM; 5439 } 5440 5441 void f2fs_destroy_segment_manager_caches(void) 5442 { 5443 kmem_cache_destroy(sit_entry_set_slab); 5444 kmem_cache_destroy(discard_cmd_slab); 5445 kmem_cache_destroy(discard_entry_slab); 5446 kmem_cache_destroy(revoke_entry_slab); 5447 } 5448