xref: /openbmc/linux/fs/f2fs/segment.c (revision 74ce1896)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21 
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28 
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30 
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35 
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38 	unsigned long tmp = 0;
39 	int shift = 24, idx = 0;
40 
41 #if BITS_PER_LONG == 64
42 	shift = 56;
43 #endif
44 	while (shift >= 0) {
45 		tmp |= (unsigned long)str[idx++] << shift;
46 		shift -= BITS_PER_BYTE;
47 	}
48 	return tmp;
49 }
50 
51 /*
52  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53  * MSB and LSB are reversed in a byte by f2fs_set_bit.
54  */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57 	int num = 0;
58 
59 #if BITS_PER_LONG == 64
60 	if ((word & 0xffffffff00000000UL) == 0)
61 		num += 32;
62 	else
63 		word >>= 32;
64 #endif
65 	if ((word & 0xffff0000) == 0)
66 		num += 16;
67 	else
68 		word >>= 16;
69 
70 	if ((word & 0xff00) == 0)
71 		num += 8;
72 	else
73 		word >>= 8;
74 
75 	if ((word & 0xf0) == 0)
76 		num += 4;
77 	else
78 		word >>= 4;
79 
80 	if ((word & 0xc) == 0)
81 		num += 2;
82 	else
83 		word >>= 2;
84 
85 	if ((word & 0x2) == 0)
86 		num += 1;
87 	return num;
88 }
89 
90 /*
91  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92  * f2fs_set_bit makes MSB and LSB reversed in a byte.
93  * @size must be integral times of unsigned long.
94  * Example:
95  *                             MSB <--> LSB
96  *   f2fs_set_bit(0, bitmap) => 1000 0000
97  *   f2fs_set_bit(7, bitmap) => 0000 0001
98  */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 			unsigned long size, unsigned long offset)
101 {
102 	const unsigned long *p = addr + BIT_WORD(offset);
103 	unsigned long result = size;
104 	unsigned long tmp;
105 
106 	if (offset >= size)
107 		return size;
108 
109 	size -= (offset & ~(BITS_PER_LONG - 1));
110 	offset %= BITS_PER_LONG;
111 
112 	while (1) {
113 		if (*p == 0)
114 			goto pass;
115 
116 		tmp = __reverse_ulong((unsigned char *)p);
117 
118 		tmp &= ~0UL >> offset;
119 		if (size < BITS_PER_LONG)
120 			tmp &= (~0UL << (BITS_PER_LONG - size));
121 		if (tmp)
122 			goto found;
123 pass:
124 		if (size <= BITS_PER_LONG)
125 			break;
126 		size -= BITS_PER_LONG;
127 		offset = 0;
128 		p++;
129 	}
130 	return result;
131 found:
132 	return result - size + __reverse_ffs(tmp);
133 }
134 
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 			unsigned long size, unsigned long offset)
137 {
138 	const unsigned long *p = addr + BIT_WORD(offset);
139 	unsigned long result = size;
140 	unsigned long tmp;
141 
142 	if (offset >= size)
143 		return size;
144 
145 	size -= (offset & ~(BITS_PER_LONG - 1));
146 	offset %= BITS_PER_LONG;
147 
148 	while (1) {
149 		if (*p == ~0UL)
150 			goto pass;
151 
152 		tmp = __reverse_ulong((unsigned char *)p);
153 
154 		if (offset)
155 			tmp |= ~0UL << (BITS_PER_LONG - offset);
156 		if (size < BITS_PER_LONG)
157 			tmp |= ~0UL >> size;
158 		if (tmp != ~0UL)
159 			goto found;
160 pass:
161 		if (size <= BITS_PER_LONG)
162 			break;
163 		size -= BITS_PER_LONG;
164 		offset = 0;
165 		p++;
166 	}
167 	return result;
168 found:
169 	return result - size + __reverse_ffz(tmp);
170 }
171 
172 bool need_SSR(struct f2fs_sb_info *sbi)
173 {
174 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177 
178 	if (test_opt(sbi, LFS))
179 		return false;
180 	if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181 		return true;
182 
183 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 						2 * reserved_sections(sbi));
185 }
186 
187 void register_inmem_page(struct inode *inode, struct page *page)
188 {
189 	struct f2fs_inode_info *fi = F2FS_I(inode);
190 	struct inmem_pages *new;
191 
192 	f2fs_trace_pid(page);
193 
194 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
195 	SetPagePrivate(page);
196 
197 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
198 
199 	/* add atomic page indices to the list */
200 	new->page = page;
201 	INIT_LIST_HEAD(&new->list);
202 
203 	/* increase reference count with clean state */
204 	mutex_lock(&fi->inmem_lock);
205 	get_page(page);
206 	list_add_tail(&new->list, &fi->inmem_pages);
207 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
208 	mutex_unlock(&fi->inmem_lock);
209 
210 	trace_f2fs_register_inmem_page(page, INMEM);
211 }
212 
213 static int __revoke_inmem_pages(struct inode *inode,
214 				struct list_head *head, bool drop, bool recover)
215 {
216 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
217 	struct inmem_pages *cur, *tmp;
218 	int err = 0;
219 
220 	list_for_each_entry_safe(cur, tmp, head, list) {
221 		struct page *page = cur->page;
222 
223 		if (drop)
224 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
225 
226 		lock_page(page);
227 
228 		if (recover) {
229 			struct dnode_of_data dn;
230 			struct node_info ni;
231 
232 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
233 retry:
234 			set_new_dnode(&dn, inode, NULL, NULL, 0);
235 			err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
236 			if (err) {
237 				if (err == -ENOMEM) {
238 					congestion_wait(BLK_RW_ASYNC, HZ/50);
239 					cond_resched();
240 					goto retry;
241 				}
242 				err = -EAGAIN;
243 				goto next;
244 			}
245 			get_node_info(sbi, dn.nid, &ni);
246 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
247 					cur->old_addr, ni.version, true, true);
248 			f2fs_put_dnode(&dn);
249 		}
250 next:
251 		/* we don't need to invalidate this in the sccessful status */
252 		if (drop || recover)
253 			ClearPageUptodate(page);
254 		set_page_private(page, 0);
255 		ClearPagePrivate(page);
256 		f2fs_put_page(page, 1);
257 
258 		list_del(&cur->list);
259 		kmem_cache_free(inmem_entry_slab, cur);
260 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
261 	}
262 	return err;
263 }
264 
265 void drop_inmem_pages(struct inode *inode)
266 {
267 	struct f2fs_inode_info *fi = F2FS_I(inode);
268 
269 	mutex_lock(&fi->inmem_lock);
270 	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
271 	mutex_unlock(&fi->inmem_lock);
272 
273 	clear_inode_flag(inode, FI_ATOMIC_FILE);
274 	clear_inode_flag(inode, FI_HOT_DATA);
275 	stat_dec_atomic_write(inode);
276 }
277 
278 void drop_inmem_page(struct inode *inode, struct page *page)
279 {
280 	struct f2fs_inode_info *fi = F2FS_I(inode);
281 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
282 	struct list_head *head = &fi->inmem_pages;
283 	struct inmem_pages *cur = NULL;
284 
285 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
286 
287 	mutex_lock(&fi->inmem_lock);
288 	list_for_each_entry(cur, head, list) {
289 		if (cur->page == page)
290 			break;
291 	}
292 
293 	f2fs_bug_on(sbi, !cur || cur->page != page);
294 	list_del(&cur->list);
295 	mutex_unlock(&fi->inmem_lock);
296 
297 	dec_page_count(sbi, F2FS_INMEM_PAGES);
298 	kmem_cache_free(inmem_entry_slab, cur);
299 
300 	ClearPageUptodate(page);
301 	set_page_private(page, 0);
302 	ClearPagePrivate(page);
303 	f2fs_put_page(page, 0);
304 
305 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
306 }
307 
308 static int __commit_inmem_pages(struct inode *inode,
309 					struct list_head *revoke_list)
310 {
311 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
312 	struct f2fs_inode_info *fi = F2FS_I(inode);
313 	struct inmem_pages *cur, *tmp;
314 	struct f2fs_io_info fio = {
315 		.sbi = sbi,
316 		.type = DATA,
317 		.op = REQ_OP_WRITE,
318 		.op_flags = REQ_SYNC | REQ_PRIO,
319 		.io_type = FS_DATA_IO,
320 	};
321 	pgoff_t last_idx = ULONG_MAX;
322 	int err = 0;
323 
324 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
325 		struct page *page = cur->page;
326 
327 		lock_page(page);
328 		if (page->mapping == inode->i_mapping) {
329 			trace_f2fs_commit_inmem_page(page, INMEM);
330 
331 			set_page_dirty(page);
332 			f2fs_wait_on_page_writeback(page, DATA, true);
333 			if (clear_page_dirty_for_io(page)) {
334 				inode_dec_dirty_pages(inode);
335 				remove_dirty_inode(inode);
336 			}
337 retry:
338 			fio.page = page;
339 			fio.old_blkaddr = NULL_ADDR;
340 			fio.encrypted_page = NULL;
341 			fio.need_lock = LOCK_DONE;
342 			err = do_write_data_page(&fio);
343 			if (err) {
344 				if (err == -ENOMEM) {
345 					congestion_wait(BLK_RW_ASYNC, HZ/50);
346 					cond_resched();
347 					goto retry;
348 				}
349 				unlock_page(page);
350 				break;
351 			}
352 			/* record old blkaddr for revoking */
353 			cur->old_addr = fio.old_blkaddr;
354 			last_idx = page->index;
355 		}
356 		unlock_page(page);
357 		list_move_tail(&cur->list, revoke_list);
358 	}
359 
360 	if (last_idx != ULONG_MAX)
361 		f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
362 
363 	if (!err)
364 		__revoke_inmem_pages(inode, revoke_list, false, false);
365 
366 	return err;
367 }
368 
369 int commit_inmem_pages(struct inode *inode)
370 {
371 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
372 	struct f2fs_inode_info *fi = F2FS_I(inode);
373 	struct list_head revoke_list;
374 	int err;
375 
376 	INIT_LIST_HEAD(&revoke_list);
377 	f2fs_balance_fs(sbi, true);
378 	f2fs_lock_op(sbi);
379 
380 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
381 
382 	mutex_lock(&fi->inmem_lock);
383 	err = __commit_inmem_pages(inode, &revoke_list);
384 	if (err) {
385 		int ret;
386 		/*
387 		 * try to revoke all committed pages, but still we could fail
388 		 * due to no memory or other reason, if that happened, EAGAIN
389 		 * will be returned, which means in such case, transaction is
390 		 * already not integrity, caller should use journal to do the
391 		 * recovery or rewrite & commit last transaction. For other
392 		 * error number, revoking was done by filesystem itself.
393 		 */
394 		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
395 		if (ret)
396 			err = ret;
397 
398 		/* drop all uncommitted pages */
399 		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
400 	}
401 	mutex_unlock(&fi->inmem_lock);
402 
403 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
404 
405 	f2fs_unlock_op(sbi);
406 	return err;
407 }
408 
409 /*
410  * This function balances dirty node and dentry pages.
411  * In addition, it controls garbage collection.
412  */
413 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
414 {
415 #ifdef CONFIG_F2FS_FAULT_INJECTION
416 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
417 		f2fs_show_injection_info(FAULT_CHECKPOINT);
418 		f2fs_stop_checkpoint(sbi, false);
419 	}
420 #endif
421 
422 	/* balance_fs_bg is able to be pending */
423 	if (need && excess_cached_nats(sbi))
424 		f2fs_balance_fs_bg(sbi);
425 
426 	/*
427 	 * We should do GC or end up with checkpoint, if there are so many dirty
428 	 * dir/node pages without enough free segments.
429 	 */
430 	if (has_not_enough_free_secs(sbi, 0, 0)) {
431 		mutex_lock(&sbi->gc_mutex);
432 		f2fs_gc(sbi, false, false, NULL_SEGNO);
433 	}
434 }
435 
436 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
437 {
438 	/* try to shrink extent cache when there is no enough memory */
439 	if (!available_free_memory(sbi, EXTENT_CACHE))
440 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
441 
442 	/* check the # of cached NAT entries */
443 	if (!available_free_memory(sbi, NAT_ENTRIES))
444 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
445 
446 	if (!available_free_memory(sbi, FREE_NIDS))
447 		try_to_free_nids(sbi, MAX_FREE_NIDS);
448 	else
449 		build_free_nids(sbi, false, false);
450 
451 	if (!is_idle(sbi) && !excess_dirty_nats(sbi))
452 		return;
453 
454 	/* checkpoint is the only way to shrink partial cached entries */
455 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
456 			!available_free_memory(sbi, INO_ENTRIES) ||
457 			excess_prefree_segs(sbi) ||
458 			excess_dirty_nats(sbi) ||
459 			f2fs_time_over(sbi, CP_TIME)) {
460 		if (test_opt(sbi, DATA_FLUSH)) {
461 			struct blk_plug plug;
462 
463 			blk_start_plug(&plug);
464 			sync_dirty_inodes(sbi, FILE_INODE);
465 			blk_finish_plug(&plug);
466 		}
467 		f2fs_sync_fs(sbi->sb, true);
468 		stat_inc_bg_cp_count(sbi->stat_info);
469 	}
470 }
471 
472 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
473 				struct block_device *bdev)
474 {
475 	struct bio *bio = f2fs_bio_alloc(0);
476 	int ret;
477 
478 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
479 	bio_set_dev(bio, bdev);
480 	ret = submit_bio_wait(bio);
481 	bio_put(bio);
482 
483 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
484 				test_opt(sbi, FLUSH_MERGE), ret);
485 	return ret;
486 }
487 
488 static int submit_flush_wait(struct f2fs_sb_info *sbi)
489 {
490 	int ret = __submit_flush_wait(sbi, sbi->sb->s_bdev);
491 	int i;
492 
493 	if (!sbi->s_ndevs || ret)
494 		return ret;
495 
496 	for (i = 1; i < sbi->s_ndevs; i++) {
497 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
498 		if (ret)
499 			break;
500 	}
501 	return ret;
502 }
503 
504 static int issue_flush_thread(void *data)
505 {
506 	struct f2fs_sb_info *sbi = data;
507 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
508 	wait_queue_head_t *q = &fcc->flush_wait_queue;
509 repeat:
510 	if (kthread_should_stop())
511 		return 0;
512 
513 	sb_start_intwrite(sbi->sb);
514 
515 	if (!llist_empty(&fcc->issue_list)) {
516 		struct flush_cmd *cmd, *next;
517 		int ret;
518 
519 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
520 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
521 
522 		ret = submit_flush_wait(sbi);
523 		atomic_inc(&fcc->issued_flush);
524 
525 		llist_for_each_entry_safe(cmd, next,
526 					  fcc->dispatch_list, llnode) {
527 			cmd->ret = ret;
528 			complete(&cmd->wait);
529 		}
530 		fcc->dispatch_list = NULL;
531 	}
532 
533 	sb_end_intwrite(sbi->sb);
534 
535 	wait_event_interruptible(*q,
536 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
537 	goto repeat;
538 }
539 
540 int f2fs_issue_flush(struct f2fs_sb_info *sbi)
541 {
542 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
543 	struct flush_cmd cmd;
544 	int ret;
545 
546 	if (test_opt(sbi, NOBARRIER))
547 		return 0;
548 
549 	if (!test_opt(sbi, FLUSH_MERGE)) {
550 		ret = submit_flush_wait(sbi);
551 		atomic_inc(&fcc->issued_flush);
552 		return ret;
553 	}
554 
555 	if (atomic_inc_return(&fcc->issing_flush) == 1) {
556 		ret = submit_flush_wait(sbi);
557 		atomic_dec(&fcc->issing_flush);
558 
559 		atomic_inc(&fcc->issued_flush);
560 		return ret;
561 	}
562 
563 	init_completion(&cmd.wait);
564 
565 	llist_add(&cmd.llnode, &fcc->issue_list);
566 
567 	/* update issue_list before we wake up issue_flush thread */
568 	smp_mb();
569 
570 	if (waitqueue_active(&fcc->flush_wait_queue))
571 		wake_up(&fcc->flush_wait_queue);
572 
573 	if (fcc->f2fs_issue_flush) {
574 		wait_for_completion(&cmd.wait);
575 		atomic_dec(&fcc->issing_flush);
576 	} else {
577 		struct llist_node *list;
578 
579 		list = llist_del_all(&fcc->issue_list);
580 		if (!list) {
581 			wait_for_completion(&cmd.wait);
582 			atomic_dec(&fcc->issing_flush);
583 		} else {
584 			struct flush_cmd *tmp, *next;
585 
586 			ret = submit_flush_wait(sbi);
587 
588 			llist_for_each_entry_safe(tmp, next, list, llnode) {
589 				if (tmp == &cmd) {
590 					cmd.ret = ret;
591 					atomic_dec(&fcc->issing_flush);
592 					continue;
593 				}
594 				tmp->ret = ret;
595 				complete(&tmp->wait);
596 			}
597 		}
598 	}
599 
600 	return cmd.ret;
601 }
602 
603 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
604 {
605 	dev_t dev = sbi->sb->s_bdev->bd_dev;
606 	struct flush_cmd_control *fcc;
607 	int err = 0;
608 
609 	if (SM_I(sbi)->fcc_info) {
610 		fcc = SM_I(sbi)->fcc_info;
611 		if (fcc->f2fs_issue_flush)
612 			return err;
613 		goto init_thread;
614 	}
615 
616 	fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL);
617 	if (!fcc)
618 		return -ENOMEM;
619 	atomic_set(&fcc->issued_flush, 0);
620 	atomic_set(&fcc->issing_flush, 0);
621 	init_waitqueue_head(&fcc->flush_wait_queue);
622 	init_llist_head(&fcc->issue_list);
623 	SM_I(sbi)->fcc_info = fcc;
624 	if (!test_opt(sbi, FLUSH_MERGE))
625 		return err;
626 
627 init_thread:
628 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
629 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
630 	if (IS_ERR(fcc->f2fs_issue_flush)) {
631 		err = PTR_ERR(fcc->f2fs_issue_flush);
632 		kfree(fcc);
633 		SM_I(sbi)->fcc_info = NULL;
634 		return err;
635 	}
636 
637 	return err;
638 }
639 
640 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
641 {
642 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
643 
644 	if (fcc && fcc->f2fs_issue_flush) {
645 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
646 
647 		fcc->f2fs_issue_flush = NULL;
648 		kthread_stop(flush_thread);
649 	}
650 	if (free) {
651 		kfree(fcc);
652 		SM_I(sbi)->fcc_info = NULL;
653 	}
654 }
655 
656 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
657 		enum dirty_type dirty_type)
658 {
659 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
660 
661 	/* need not be added */
662 	if (IS_CURSEG(sbi, segno))
663 		return;
664 
665 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
666 		dirty_i->nr_dirty[dirty_type]++;
667 
668 	if (dirty_type == DIRTY) {
669 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
670 		enum dirty_type t = sentry->type;
671 
672 		if (unlikely(t >= DIRTY)) {
673 			f2fs_bug_on(sbi, 1);
674 			return;
675 		}
676 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
677 			dirty_i->nr_dirty[t]++;
678 	}
679 }
680 
681 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
682 		enum dirty_type dirty_type)
683 {
684 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
685 
686 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
687 		dirty_i->nr_dirty[dirty_type]--;
688 
689 	if (dirty_type == DIRTY) {
690 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
691 		enum dirty_type t = sentry->type;
692 
693 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
694 			dirty_i->nr_dirty[t]--;
695 
696 		if (get_valid_blocks(sbi, segno, true) == 0)
697 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
698 						dirty_i->victim_secmap);
699 	}
700 }
701 
702 /*
703  * Should not occur error such as -ENOMEM.
704  * Adding dirty entry into seglist is not critical operation.
705  * If a given segment is one of current working segments, it won't be added.
706  */
707 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
708 {
709 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
710 	unsigned short valid_blocks;
711 
712 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
713 		return;
714 
715 	mutex_lock(&dirty_i->seglist_lock);
716 
717 	valid_blocks = get_valid_blocks(sbi, segno, false);
718 
719 	if (valid_blocks == 0) {
720 		__locate_dirty_segment(sbi, segno, PRE);
721 		__remove_dirty_segment(sbi, segno, DIRTY);
722 	} else if (valid_blocks < sbi->blocks_per_seg) {
723 		__locate_dirty_segment(sbi, segno, DIRTY);
724 	} else {
725 		/* Recovery routine with SSR needs this */
726 		__remove_dirty_segment(sbi, segno, DIRTY);
727 	}
728 
729 	mutex_unlock(&dirty_i->seglist_lock);
730 }
731 
732 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
733 		struct block_device *bdev, block_t lstart,
734 		block_t start, block_t len)
735 {
736 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
737 	struct list_head *pend_list;
738 	struct discard_cmd *dc;
739 
740 	f2fs_bug_on(sbi, !len);
741 
742 	pend_list = &dcc->pend_list[plist_idx(len)];
743 
744 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
745 	INIT_LIST_HEAD(&dc->list);
746 	dc->bdev = bdev;
747 	dc->lstart = lstart;
748 	dc->start = start;
749 	dc->len = len;
750 	dc->ref = 0;
751 	dc->state = D_PREP;
752 	dc->error = 0;
753 	init_completion(&dc->wait);
754 	list_add_tail(&dc->list, pend_list);
755 	atomic_inc(&dcc->discard_cmd_cnt);
756 	dcc->undiscard_blks += len;
757 
758 	return dc;
759 }
760 
761 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
762 				struct block_device *bdev, block_t lstart,
763 				block_t start, block_t len,
764 				struct rb_node *parent, struct rb_node **p)
765 {
766 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
767 	struct discard_cmd *dc;
768 
769 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
770 
771 	rb_link_node(&dc->rb_node, parent, p);
772 	rb_insert_color(&dc->rb_node, &dcc->root);
773 
774 	return dc;
775 }
776 
777 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
778 							struct discard_cmd *dc)
779 {
780 	if (dc->state == D_DONE)
781 		atomic_dec(&dcc->issing_discard);
782 
783 	list_del(&dc->list);
784 	rb_erase(&dc->rb_node, &dcc->root);
785 	dcc->undiscard_blks -= dc->len;
786 
787 	kmem_cache_free(discard_cmd_slab, dc);
788 
789 	atomic_dec(&dcc->discard_cmd_cnt);
790 }
791 
792 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
793 							struct discard_cmd *dc)
794 {
795 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
796 
797 	f2fs_bug_on(sbi, dc->ref);
798 
799 	if (dc->error == -EOPNOTSUPP)
800 		dc->error = 0;
801 
802 	if (dc->error)
803 		f2fs_msg(sbi->sb, KERN_INFO,
804 			"Issue discard(%u, %u, %u) failed, ret: %d",
805 			dc->lstart, dc->start, dc->len, dc->error);
806 	__detach_discard_cmd(dcc, dc);
807 }
808 
809 static void f2fs_submit_discard_endio(struct bio *bio)
810 {
811 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
812 
813 	dc->error = blk_status_to_errno(bio->bi_status);
814 	dc->state = D_DONE;
815 	complete_all(&dc->wait);
816 	bio_put(bio);
817 }
818 
819 void __check_sit_bitmap(struct f2fs_sb_info *sbi,
820 				block_t start, block_t end)
821 {
822 #ifdef CONFIG_F2FS_CHECK_FS
823 	struct seg_entry *sentry;
824 	unsigned int segno;
825 	block_t blk = start;
826 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
827 	unsigned long *map;
828 
829 	while (blk < end) {
830 		segno = GET_SEGNO(sbi, blk);
831 		sentry = get_seg_entry(sbi, segno);
832 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
833 
834 		if (end < START_BLOCK(sbi, segno + 1))
835 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
836 		else
837 			size = max_blocks;
838 		map = (unsigned long *)(sentry->cur_valid_map);
839 		offset = __find_rev_next_bit(map, size, offset);
840 		f2fs_bug_on(sbi, offset != size);
841 		blk = START_BLOCK(sbi, segno + 1);
842 	}
843 #endif
844 }
845 
846 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
847 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
848 				struct discard_cmd *dc)
849 {
850 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
851 	struct bio *bio = NULL;
852 
853 	if (dc->state != D_PREP)
854 		return;
855 
856 	trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
857 
858 	dc->error = __blkdev_issue_discard(dc->bdev,
859 				SECTOR_FROM_BLOCK(dc->start),
860 				SECTOR_FROM_BLOCK(dc->len),
861 				GFP_NOFS, 0, &bio);
862 	if (!dc->error) {
863 		/* should keep before submission to avoid D_DONE right away */
864 		dc->state = D_SUBMIT;
865 		atomic_inc(&dcc->issued_discard);
866 		atomic_inc(&dcc->issing_discard);
867 		if (bio) {
868 			bio->bi_private = dc;
869 			bio->bi_end_io = f2fs_submit_discard_endio;
870 			bio->bi_opf |= REQ_SYNC;
871 			submit_bio(bio);
872 			list_move_tail(&dc->list, &dcc->wait_list);
873 			__check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
874 
875 			f2fs_update_iostat(sbi, FS_DISCARD, 1);
876 		}
877 	} else {
878 		__remove_discard_cmd(sbi, dc);
879 	}
880 }
881 
882 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
883 				struct block_device *bdev, block_t lstart,
884 				block_t start, block_t len,
885 				struct rb_node **insert_p,
886 				struct rb_node *insert_parent)
887 {
888 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
889 	struct rb_node **p = &dcc->root.rb_node;
890 	struct rb_node *parent = NULL;
891 	struct discard_cmd *dc = NULL;
892 
893 	if (insert_p && insert_parent) {
894 		parent = insert_parent;
895 		p = insert_p;
896 		goto do_insert;
897 	}
898 
899 	p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
900 do_insert:
901 	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
902 	if (!dc)
903 		return NULL;
904 
905 	return dc;
906 }
907 
908 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
909 						struct discard_cmd *dc)
910 {
911 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
912 }
913 
914 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
915 				struct discard_cmd *dc, block_t blkaddr)
916 {
917 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
918 	struct discard_info di = dc->di;
919 	bool modified = false;
920 
921 	if (dc->state == D_DONE || dc->len == 1) {
922 		__remove_discard_cmd(sbi, dc);
923 		return;
924 	}
925 
926 	dcc->undiscard_blks -= di.len;
927 
928 	if (blkaddr > di.lstart) {
929 		dc->len = blkaddr - dc->lstart;
930 		dcc->undiscard_blks += dc->len;
931 		__relocate_discard_cmd(dcc, dc);
932 		modified = true;
933 	}
934 
935 	if (blkaddr < di.lstart + di.len - 1) {
936 		if (modified) {
937 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
938 					di.start + blkaddr + 1 - di.lstart,
939 					di.lstart + di.len - 1 - blkaddr,
940 					NULL, NULL);
941 		} else {
942 			dc->lstart++;
943 			dc->len--;
944 			dc->start++;
945 			dcc->undiscard_blks += dc->len;
946 			__relocate_discard_cmd(dcc, dc);
947 		}
948 	}
949 }
950 
951 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
952 				struct block_device *bdev, block_t lstart,
953 				block_t start, block_t len)
954 {
955 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
956 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
957 	struct discard_cmd *dc;
958 	struct discard_info di = {0};
959 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
960 	block_t end = lstart + len;
961 
962 	mutex_lock(&dcc->cmd_lock);
963 
964 	dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
965 					NULL, lstart,
966 					(struct rb_entry **)&prev_dc,
967 					(struct rb_entry **)&next_dc,
968 					&insert_p, &insert_parent, true);
969 	if (dc)
970 		prev_dc = dc;
971 
972 	if (!prev_dc) {
973 		di.lstart = lstart;
974 		di.len = next_dc ? next_dc->lstart - lstart : len;
975 		di.len = min(di.len, len);
976 		di.start = start;
977 	}
978 
979 	while (1) {
980 		struct rb_node *node;
981 		bool merged = false;
982 		struct discard_cmd *tdc = NULL;
983 
984 		if (prev_dc) {
985 			di.lstart = prev_dc->lstart + prev_dc->len;
986 			if (di.lstart < lstart)
987 				di.lstart = lstart;
988 			if (di.lstart >= end)
989 				break;
990 
991 			if (!next_dc || next_dc->lstart > end)
992 				di.len = end - di.lstart;
993 			else
994 				di.len = next_dc->lstart - di.lstart;
995 			di.start = start + di.lstart - lstart;
996 		}
997 
998 		if (!di.len)
999 			goto next;
1000 
1001 		if (prev_dc && prev_dc->state == D_PREP &&
1002 			prev_dc->bdev == bdev &&
1003 			__is_discard_back_mergeable(&di, &prev_dc->di)) {
1004 			prev_dc->di.len += di.len;
1005 			dcc->undiscard_blks += di.len;
1006 			__relocate_discard_cmd(dcc, prev_dc);
1007 			di = prev_dc->di;
1008 			tdc = prev_dc;
1009 			merged = true;
1010 		}
1011 
1012 		if (next_dc && next_dc->state == D_PREP &&
1013 			next_dc->bdev == bdev &&
1014 			__is_discard_front_mergeable(&di, &next_dc->di)) {
1015 			next_dc->di.lstart = di.lstart;
1016 			next_dc->di.len += di.len;
1017 			next_dc->di.start = di.start;
1018 			dcc->undiscard_blks += di.len;
1019 			__relocate_discard_cmd(dcc, next_dc);
1020 			if (tdc)
1021 				__remove_discard_cmd(sbi, tdc);
1022 			merged = true;
1023 		}
1024 
1025 		if (!merged) {
1026 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1027 							di.len, NULL, NULL);
1028 		}
1029  next:
1030 		prev_dc = next_dc;
1031 		if (!prev_dc)
1032 			break;
1033 
1034 		node = rb_next(&prev_dc->rb_node);
1035 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1036 	}
1037 
1038 	mutex_unlock(&dcc->cmd_lock);
1039 }
1040 
1041 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1042 		struct block_device *bdev, block_t blkstart, block_t blklen)
1043 {
1044 	block_t lblkstart = blkstart;
1045 
1046 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1047 
1048 	if (sbi->s_ndevs) {
1049 		int devi = f2fs_target_device_index(sbi, blkstart);
1050 
1051 		blkstart -= FDEV(devi).start_blk;
1052 	}
1053 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1054 	return 0;
1055 }
1056 
1057 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, bool issue_cond)
1058 {
1059 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1060 	struct list_head *pend_list;
1061 	struct discard_cmd *dc, *tmp;
1062 	struct blk_plug plug;
1063 	int iter = 0, issued = 0;
1064 	int i;
1065 	bool io_interrupted = false;
1066 
1067 	mutex_lock(&dcc->cmd_lock);
1068 	f2fs_bug_on(sbi,
1069 		!__check_rb_tree_consistence(sbi, &dcc->root));
1070 	blk_start_plug(&plug);
1071 	for (i = MAX_PLIST_NUM - 1;
1072 			i >= 0 && plist_issue(dcc->pend_list_tag[i]); i--) {
1073 		pend_list = &dcc->pend_list[i];
1074 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1075 			f2fs_bug_on(sbi, dc->state != D_PREP);
1076 
1077 			/* Hurry up to finish fstrim */
1078 			if (dcc->pend_list_tag[i] & P_TRIM) {
1079 				__submit_discard_cmd(sbi, dc);
1080 				issued++;
1081 
1082 				if (fatal_signal_pending(current))
1083 					break;
1084 				continue;
1085 			}
1086 
1087 			if (!issue_cond) {
1088 				__submit_discard_cmd(sbi, dc);
1089 				issued++;
1090 				continue;
1091 			}
1092 
1093 			if (is_idle(sbi)) {
1094 				__submit_discard_cmd(sbi, dc);
1095 				issued++;
1096 			} else {
1097 				io_interrupted = true;
1098 			}
1099 
1100 			if (++iter >= DISCARD_ISSUE_RATE)
1101 				goto out;
1102 		}
1103 		if (list_empty(pend_list) && dcc->pend_list_tag[i] & P_TRIM)
1104 			dcc->pend_list_tag[i] &= (~P_TRIM);
1105 	}
1106 out:
1107 	blk_finish_plug(&plug);
1108 	mutex_unlock(&dcc->cmd_lock);
1109 
1110 	if (!issued && io_interrupted)
1111 		issued = -1;
1112 
1113 	return issued;
1114 }
1115 
1116 static void __drop_discard_cmd(struct f2fs_sb_info *sbi)
1117 {
1118 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1119 	struct list_head *pend_list;
1120 	struct discard_cmd *dc, *tmp;
1121 	int i;
1122 
1123 	mutex_lock(&dcc->cmd_lock);
1124 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1125 		pend_list = &dcc->pend_list[i];
1126 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1127 			f2fs_bug_on(sbi, dc->state != D_PREP);
1128 			__remove_discard_cmd(sbi, dc);
1129 		}
1130 	}
1131 	mutex_unlock(&dcc->cmd_lock);
1132 }
1133 
1134 static void __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1135 							struct discard_cmd *dc)
1136 {
1137 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1138 
1139 	wait_for_completion_io(&dc->wait);
1140 	mutex_lock(&dcc->cmd_lock);
1141 	f2fs_bug_on(sbi, dc->state != D_DONE);
1142 	dc->ref--;
1143 	if (!dc->ref)
1144 		__remove_discard_cmd(sbi, dc);
1145 	mutex_unlock(&dcc->cmd_lock);
1146 }
1147 
1148 static void __wait_discard_cmd(struct f2fs_sb_info *sbi, bool wait_cond)
1149 {
1150 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1151 	struct list_head *wait_list = &(dcc->wait_list);
1152 	struct discard_cmd *dc, *tmp;
1153 	bool need_wait;
1154 
1155 next:
1156 	need_wait = false;
1157 
1158 	mutex_lock(&dcc->cmd_lock);
1159 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1160 		if (!wait_cond || (dc->state == D_DONE && !dc->ref)) {
1161 			wait_for_completion_io(&dc->wait);
1162 			__remove_discard_cmd(sbi, dc);
1163 		} else {
1164 			dc->ref++;
1165 			need_wait = true;
1166 			break;
1167 		}
1168 	}
1169 	mutex_unlock(&dcc->cmd_lock);
1170 
1171 	if (need_wait) {
1172 		__wait_one_discard_bio(sbi, dc);
1173 		goto next;
1174 	}
1175 }
1176 
1177 /* This should be covered by global mutex, &sit_i->sentry_lock */
1178 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1179 {
1180 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1181 	struct discard_cmd *dc;
1182 	bool need_wait = false;
1183 
1184 	mutex_lock(&dcc->cmd_lock);
1185 	dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1186 	if (dc) {
1187 		if (dc->state == D_PREP) {
1188 			__punch_discard_cmd(sbi, dc, blkaddr);
1189 		} else {
1190 			dc->ref++;
1191 			need_wait = true;
1192 		}
1193 	}
1194 	mutex_unlock(&dcc->cmd_lock);
1195 
1196 	if (need_wait)
1197 		__wait_one_discard_bio(sbi, dc);
1198 }
1199 
1200 void stop_discard_thread(struct f2fs_sb_info *sbi)
1201 {
1202 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1203 
1204 	if (dcc && dcc->f2fs_issue_discard) {
1205 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1206 
1207 		dcc->f2fs_issue_discard = NULL;
1208 		kthread_stop(discard_thread);
1209 	}
1210 }
1211 
1212 /* This comes from f2fs_put_super and f2fs_trim_fs */
1213 void f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1214 {
1215 	__issue_discard_cmd(sbi, false);
1216 	__drop_discard_cmd(sbi);
1217 	__wait_discard_cmd(sbi, false);
1218 }
1219 
1220 static void mark_discard_range_all(struct f2fs_sb_info *sbi)
1221 {
1222 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1223 	int i;
1224 
1225 	mutex_lock(&dcc->cmd_lock);
1226 	for (i = 0; i < MAX_PLIST_NUM; i++)
1227 		dcc->pend_list_tag[i] |= P_TRIM;
1228 	mutex_unlock(&dcc->cmd_lock);
1229 }
1230 
1231 static int issue_discard_thread(void *data)
1232 {
1233 	struct f2fs_sb_info *sbi = data;
1234 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1235 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1236 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1237 	int issued;
1238 
1239 	set_freezable();
1240 
1241 	do {
1242 		wait_event_interruptible_timeout(*q,
1243 				kthread_should_stop() || freezing(current) ||
1244 				dcc->discard_wake,
1245 				msecs_to_jiffies(wait_ms));
1246 		if (try_to_freeze())
1247 			continue;
1248 		if (kthread_should_stop())
1249 			return 0;
1250 
1251 		if (dcc->discard_wake) {
1252 			dcc->discard_wake = 0;
1253 			if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1254 				mark_discard_range_all(sbi);
1255 		}
1256 
1257 		sb_start_intwrite(sbi->sb);
1258 
1259 		issued = __issue_discard_cmd(sbi, true);
1260 		if (issued) {
1261 			__wait_discard_cmd(sbi, true);
1262 			wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1263 		} else {
1264 			wait_ms = DEF_MAX_DISCARD_ISSUE_TIME;
1265 		}
1266 
1267 		sb_end_intwrite(sbi->sb);
1268 
1269 	} while (!kthread_should_stop());
1270 	return 0;
1271 }
1272 
1273 #ifdef CONFIG_BLK_DEV_ZONED
1274 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1275 		struct block_device *bdev, block_t blkstart, block_t blklen)
1276 {
1277 	sector_t sector, nr_sects;
1278 	block_t lblkstart = blkstart;
1279 	int devi = 0;
1280 
1281 	if (sbi->s_ndevs) {
1282 		devi = f2fs_target_device_index(sbi, blkstart);
1283 		blkstart -= FDEV(devi).start_blk;
1284 	}
1285 
1286 	/*
1287 	 * We need to know the type of the zone: for conventional zones,
1288 	 * use regular discard if the drive supports it. For sequential
1289 	 * zones, reset the zone write pointer.
1290 	 */
1291 	switch (get_blkz_type(sbi, bdev, blkstart)) {
1292 
1293 	case BLK_ZONE_TYPE_CONVENTIONAL:
1294 		if (!blk_queue_discard(bdev_get_queue(bdev)))
1295 			return 0;
1296 		return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1297 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1298 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1299 		sector = SECTOR_FROM_BLOCK(blkstart);
1300 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1301 
1302 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1303 				nr_sects != bdev_zone_sectors(bdev)) {
1304 			f2fs_msg(sbi->sb, KERN_INFO,
1305 				"(%d) %s: Unaligned discard attempted (block %x + %x)",
1306 				devi, sbi->s_ndevs ? FDEV(devi).path: "",
1307 				blkstart, blklen);
1308 			return -EIO;
1309 		}
1310 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1311 		return blkdev_reset_zones(bdev, sector,
1312 					  nr_sects, GFP_NOFS);
1313 	default:
1314 		/* Unknown zone type: broken device ? */
1315 		return -EIO;
1316 	}
1317 }
1318 #endif
1319 
1320 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1321 		struct block_device *bdev, block_t blkstart, block_t blklen)
1322 {
1323 #ifdef CONFIG_BLK_DEV_ZONED
1324 	if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
1325 				bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1326 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1327 #endif
1328 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1329 }
1330 
1331 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1332 				block_t blkstart, block_t blklen)
1333 {
1334 	sector_t start = blkstart, len = 0;
1335 	struct block_device *bdev;
1336 	struct seg_entry *se;
1337 	unsigned int offset;
1338 	block_t i;
1339 	int err = 0;
1340 
1341 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1342 
1343 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1344 		if (i != start) {
1345 			struct block_device *bdev2 =
1346 				f2fs_target_device(sbi, i, NULL);
1347 
1348 			if (bdev2 != bdev) {
1349 				err = __issue_discard_async(sbi, bdev,
1350 						start, len);
1351 				if (err)
1352 					return err;
1353 				bdev = bdev2;
1354 				start = i;
1355 				len = 0;
1356 			}
1357 		}
1358 
1359 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1360 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1361 
1362 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1363 			sbi->discard_blks--;
1364 	}
1365 
1366 	if (len)
1367 		err = __issue_discard_async(sbi, bdev, start, len);
1368 	return err;
1369 }
1370 
1371 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1372 							bool check_only)
1373 {
1374 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1375 	int max_blocks = sbi->blocks_per_seg;
1376 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1377 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1378 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1379 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1380 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1381 	unsigned int start = 0, end = -1;
1382 	bool force = (cpc->reason & CP_DISCARD);
1383 	struct discard_entry *de = NULL;
1384 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1385 	int i;
1386 
1387 	if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1388 		return false;
1389 
1390 	if (!force) {
1391 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1392 			SM_I(sbi)->dcc_info->nr_discards >=
1393 				SM_I(sbi)->dcc_info->max_discards)
1394 			return false;
1395 	}
1396 
1397 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1398 	for (i = 0; i < entries; i++)
1399 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1400 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1401 
1402 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1403 				SM_I(sbi)->dcc_info->max_discards) {
1404 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1405 		if (start >= max_blocks)
1406 			break;
1407 
1408 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1409 		if (force && start && end != max_blocks
1410 					&& (end - start) < cpc->trim_minlen)
1411 			continue;
1412 
1413 		if (check_only)
1414 			return true;
1415 
1416 		if (!de) {
1417 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1418 								GFP_F2FS_ZERO);
1419 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1420 			list_add_tail(&de->list, head);
1421 		}
1422 
1423 		for (i = start; i < end; i++)
1424 			__set_bit_le(i, (void *)de->discard_map);
1425 
1426 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1427 	}
1428 	return false;
1429 }
1430 
1431 void release_discard_addrs(struct f2fs_sb_info *sbi)
1432 {
1433 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1434 	struct discard_entry *entry, *this;
1435 
1436 	/* drop caches */
1437 	list_for_each_entry_safe(entry, this, head, list) {
1438 		list_del(&entry->list);
1439 		kmem_cache_free(discard_entry_slab, entry);
1440 	}
1441 }
1442 
1443 /*
1444  * Should call clear_prefree_segments after checkpoint is done.
1445  */
1446 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1447 {
1448 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1449 	unsigned int segno;
1450 
1451 	mutex_lock(&dirty_i->seglist_lock);
1452 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1453 		__set_test_and_free(sbi, segno);
1454 	mutex_unlock(&dirty_i->seglist_lock);
1455 }
1456 
1457 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1458 {
1459 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1460 	struct list_head *head = &dcc->entry_list;
1461 	struct discard_entry *entry, *this;
1462 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1463 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1464 	unsigned int start = 0, end = -1;
1465 	unsigned int secno, start_segno;
1466 	bool force = (cpc->reason & CP_DISCARD);
1467 
1468 	mutex_lock(&dirty_i->seglist_lock);
1469 
1470 	while (1) {
1471 		int i;
1472 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1473 		if (start >= MAIN_SEGS(sbi))
1474 			break;
1475 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1476 								start + 1);
1477 
1478 		for (i = start; i < end; i++)
1479 			clear_bit(i, prefree_map);
1480 
1481 		dirty_i->nr_dirty[PRE] -= end - start;
1482 
1483 		if (!test_opt(sbi, DISCARD))
1484 			continue;
1485 
1486 		if (force && start >= cpc->trim_start &&
1487 					(end - 1) <= cpc->trim_end)
1488 				continue;
1489 
1490 		if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1491 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1492 				(end - start) << sbi->log_blocks_per_seg);
1493 			continue;
1494 		}
1495 next:
1496 		secno = GET_SEC_FROM_SEG(sbi, start);
1497 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1498 		if (!IS_CURSEC(sbi, secno) &&
1499 			!get_valid_blocks(sbi, start, true))
1500 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1501 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1502 
1503 		start = start_segno + sbi->segs_per_sec;
1504 		if (start < end)
1505 			goto next;
1506 		else
1507 			end = start - 1;
1508 	}
1509 	mutex_unlock(&dirty_i->seglist_lock);
1510 
1511 	/* send small discards */
1512 	list_for_each_entry_safe(entry, this, head, list) {
1513 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1514 		bool is_valid = test_bit_le(0, entry->discard_map);
1515 
1516 find_next:
1517 		if (is_valid) {
1518 			next_pos = find_next_zero_bit_le(entry->discard_map,
1519 					sbi->blocks_per_seg, cur_pos);
1520 			len = next_pos - cur_pos;
1521 
1522 			if (f2fs_sb_mounted_blkzoned(sbi->sb) ||
1523 			    (force && len < cpc->trim_minlen))
1524 				goto skip;
1525 
1526 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1527 									len);
1528 			cpc->trimmed += len;
1529 			total_len += len;
1530 		} else {
1531 			next_pos = find_next_bit_le(entry->discard_map,
1532 					sbi->blocks_per_seg, cur_pos);
1533 		}
1534 skip:
1535 		cur_pos = next_pos;
1536 		is_valid = !is_valid;
1537 
1538 		if (cur_pos < sbi->blocks_per_seg)
1539 			goto find_next;
1540 
1541 		list_del(&entry->list);
1542 		dcc->nr_discards -= total_len;
1543 		kmem_cache_free(discard_entry_slab, entry);
1544 	}
1545 
1546 	wake_up_discard_thread(sbi, false);
1547 }
1548 
1549 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1550 {
1551 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1552 	struct discard_cmd_control *dcc;
1553 	int err = 0, i;
1554 
1555 	if (SM_I(sbi)->dcc_info) {
1556 		dcc = SM_I(sbi)->dcc_info;
1557 		goto init_thread;
1558 	}
1559 
1560 	dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL);
1561 	if (!dcc)
1562 		return -ENOMEM;
1563 
1564 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1565 	INIT_LIST_HEAD(&dcc->entry_list);
1566 	for (i = 0; i < MAX_PLIST_NUM; i++) {
1567 		INIT_LIST_HEAD(&dcc->pend_list[i]);
1568 		if (i >= dcc->discard_granularity - 1)
1569 			dcc->pend_list_tag[i] |= P_ACTIVE;
1570 	}
1571 	INIT_LIST_HEAD(&dcc->wait_list);
1572 	mutex_init(&dcc->cmd_lock);
1573 	atomic_set(&dcc->issued_discard, 0);
1574 	atomic_set(&dcc->issing_discard, 0);
1575 	atomic_set(&dcc->discard_cmd_cnt, 0);
1576 	dcc->nr_discards = 0;
1577 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1578 	dcc->undiscard_blks = 0;
1579 	dcc->root = RB_ROOT;
1580 
1581 	init_waitqueue_head(&dcc->discard_wait_queue);
1582 	SM_I(sbi)->dcc_info = dcc;
1583 init_thread:
1584 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1585 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1586 	if (IS_ERR(dcc->f2fs_issue_discard)) {
1587 		err = PTR_ERR(dcc->f2fs_issue_discard);
1588 		kfree(dcc);
1589 		SM_I(sbi)->dcc_info = NULL;
1590 		return err;
1591 	}
1592 
1593 	return err;
1594 }
1595 
1596 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1597 {
1598 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1599 
1600 	if (!dcc)
1601 		return;
1602 
1603 	stop_discard_thread(sbi);
1604 
1605 	kfree(dcc);
1606 	SM_I(sbi)->dcc_info = NULL;
1607 }
1608 
1609 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1610 {
1611 	struct sit_info *sit_i = SIT_I(sbi);
1612 
1613 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1614 		sit_i->dirty_sentries++;
1615 		return false;
1616 	}
1617 
1618 	return true;
1619 }
1620 
1621 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1622 					unsigned int segno, int modified)
1623 {
1624 	struct seg_entry *se = get_seg_entry(sbi, segno);
1625 	se->type = type;
1626 	if (modified)
1627 		__mark_sit_entry_dirty(sbi, segno);
1628 }
1629 
1630 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1631 {
1632 	struct seg_entry *se;
1633 	unsigned int segno, offset;
1634 	long int new_vblocks;
1635 	bool exist;
1636 #ifdef CONFIG_F2FS_CHECK_FS
1637 	bool mir_exist;
1638 #endif
1639 
1640 	segno = GET_SEGNO(sbi, blkaddr);
1641 
1642 	se = get_seg_entry(sbi, segno);
1643 	new_vblocks = se->valid_blocks + del;
1644 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1645 
1646 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1647 				(new_vblocks > sbi->blocks_per_seg)));
1648 
1649 	se->valid_blocks = new_vblocks;
1650 	se->mtime = get_mtime(sbi);
1651 	SIT_I(sbi)->max_mtime = se->mtime;
1652 
1653 	/* Update valid block bitmap */
1654 	if (del > 0) {
1655 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1656 #ifdef CONFIG_F2FS_CHECK_FS
1657 		mir_exist = f2fs_test_and_set_bit(offset,
1658 						se->cur_valid_map_mir);
1659 		if (unlikely(exist != mir_exist)) {
1660 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1661 				"when setting bitmap, blk:%u, old bit:%d",
1662 				blkaddr, exist);
1663 			f2fs_bug_on(sbi, 1);
1664 		}
1665 #endif
1666 		if (unlikely(exist)) {
1667 			f2fs_msg(sbi->sb, KERN_ERR,
1668 				"Bitmap was wrongly set, blk:%u", blkaddr);
1669 			f2fs_bug_on(sbi, 1);
1670 			se->valid_blocks--;
1671 			del = 0;
1672 		}
1673 
1674 		if (f2fs_discard_en(sbi) &&
1675 			!f2fs_test_and_set_bit(offset, se->discard_map))
1676 			sbi->discard_blks--;
1677 
1678 		/* don't overwrite by SSR to keep node chain */
1679 		if (se->type == CURSEG_WARM_NODE) {
1680 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1681 				se->ckpt_valid_blocks++;
1682 		}
1683 	} else {
1684 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1685 #ifdef CONFIG_F2FS_CHECK_FS
1686 		mir_exist = f2fs_test_and_clear_bit(offset,
1687 						se->cur_valid_map_mir);
1688 		if (unlikely(exist != mir_exist)) {
1689 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1690 				"when clearing bitmap, blk:%u, old bit:%d",
1691 				blkaddr, exist);
1692 			f2fs_bug_on(sbi, 1);
1693 		}
1694 #endif
1695 		if (unlikely(!exist)) {
1696 			f2fs_msg(sbi->sb, KERN_ERR,
1697 				"Bitmap was wrongly cleared, blk:%u", blkaddr);
1698 			f2fs_bug_on(sbi, 1);
1699 			se->valid_blocks++;
1700 			del = 0;
1701 		}
1702 
1703 		if (f2fs_discard_en(sbi) &&
1704 			f2fs_test_and_clear_bit(offset, se->discard_map))
1705 			sbi->discard_blks++;
1706 	}
1707 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1708 		se->ckpt_valid_blocks += del;
1709 
1710 	__mark_sit_entry_dirty(sbi, segno);
1711 
1712 	/* update total number of valid blocks to be written in ckpt area */
1713 	SIT_I(sbi)->written_valid_blocks += del;
1714 
1715 	if (sbi->segs_per_sec > 1)
1716 		get_sec_entry(sbi, segno)->valid_blocks += del;
1717 }
1718 
1719 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new)
1720 {
1721 	update_sit_entry(sbi, new, 1);
1722 	if (GET_SEGNO(sbi, old) != NULL_SEGNO)
1723 		update_sit_entry(sbi, old, -1);
1724 
1725 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old));
1726 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new));
1727 }
1728 
1729 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1730 {
1731 	unsigned int segno = GET_SEGNO(sbi, addr);
1732 	struct sit_info *sit_i = SIT_I(sbi);
1733 
1734 	f2fs_bug_on(sbi, addr == NULL_ADDR);
1735 	if (addr == NEW_ADDR)
1736 		return;
1737 
1738 	/* add it into sit main buffer */
1739 	mutex_lock(&sit_i->sentry_lock);
1740 
1741 	update_sit_entry(sbi, addr, -1);
1742 
1743 	/* add it into dirty seglist */
1744 	locate_dirty_segment(sbi, segno);
1745 
1746 	mutex_unlock(&sit_i->sentry_lock);
1747 }
1748 
1749 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1750 {
1751 	struct sit_info *sit_i = SIT_I(sbi);
1752 	unsigned int segno, offset;
1753 	struct seg_entry *se;
1754 	bool is_cp = false;
1755 
1756 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1757 		return true;
1758 
1759 	mutex_lock(&sit_i->sentry_lock);
1760 
1761 	segno = GET_SEGNO(sbi, blkaddr);
1762 	se = get_seg_entry(sbi, segno);
1763 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1764 
1765 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
1766 		is_cp = true;
1767 
1768 	mutex_unlock(&sit_i->sentry_lock);
1769 
1770 	return is_cp;
1771 }
1772 
1773 /*
1774  * This function should be resided under the curseg_mutex lock
1775  */
1776 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1777 					struct f2fs_summary *sum)
1778 {
1779 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1780 	void *addr = curseg->sum_blk;
1781 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1782 	memcpy(addr, sum, sizeof(struct f2fs_summary));
1783 }
1784 
1785 /*
1786  * Calculate the number of current summary pages for writing
1787  */
1788 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1789 {
1790 	int valid_sum_count = 0;
1791 	int i, sum_in_page;
1792 
1793 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1794 		if (sbi->ckpt->alloc_type[i] == SSR)
1795 			valid_sum_count += sbi->blocks_per_seg;
1796 		else {
1797 			if (for_ra)
1798 				valid_sum_count += le16_to_cpu(
1799 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1800 			else
1801 				valid_sum_count += curseg_blkoff(sbi, i);
1802 		}
1803 	}
1804 
1805 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1806 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1807 	if (valid_sum_count <= sum_in_page)
1808 		return 1;
1809 	else if ((valid_sum_count - sum_in_page) <=
1810 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1811 		return 2;
1812 	return 3;
1813 }
1814 
1815 /*
1816  * Caller should put this summary page
1817  */
1818 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1819 {
1820 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1821 }
1822 
1823 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
1824 {
1825 	struct page *page = grab_meta_page(sbi, blk_addr);
1826 	void *dst = page_address(page);
1827 
1828 	if (src)
1829 		memcpy(dst, src, PAGE_SIZE);
1830 	else
1831 		memset(dst, 0, PAGE_SIZE);
1832 	set_page_dirty(page);
1833 	f2fs_put_page(page, 1);
1834 }
1835 
1836 static void write_sum_page(struct f2fs_sb_info *sbi,
1837 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
1838 {
1839 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
1840 }
1841 
1842 static void write_current_sum_page(struct f2fs_sb_info *sbi,
1843 						int type, block_t blk_addr)
1844 {
1845 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1846 	struct page *page = grab_meta_page(sbi, blk_addr);
1847 	struct f2fs_summary_block *src = curseg->sum_blk;
1848 	struct f2fs_summary_block *dst;
1849 
1850 	dst = (struct f2fs_summary_block *)page_address(page);
1851 
1852 	mutex_lock(&curseg->curseg_mutex);
1853 
1854 	down_read(&curseg->journal_rwsem);
1855 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
1856 	up_read(&curseg->journal_rwsem);
1857 
1858 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
1859 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
1860 
1861 	mutex_unlock(&curseg->curseg_mutex);
1862 
1863 	set_page_dirty(page);
1864 	f2fs_put_page(page, 1);
1865 }
1866 
1867 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
1868 {
1869 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1870 	unsigned int segno = curseg->segno + 1;
1871 	struct free_segmap_info *free_i = FREE_I(sbi);
1872 
1873 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
1874 		return !test_bit(segno, free_i->free_segmap);
1875 	return 0;
1876 }
1877 
1878 /*
1879  * Find a new segment from the free segments bitmap to right order
1880  * This function should be returned with success, otherwise BUG
1881  */
1882 static void get_new_segment(struct f2fs_sb_info *sbi,
1883 			unsigned int *newseg, bool new_sec, int dir)
1884 {
1885 	struct free_segmap_info *free_i = FREE_I(sbi);
1886 	unsigned int segno, secno, zoneno;
1887 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
1888 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
1889 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
1890 	unsigned int left_start = hint;
1891 	bool init = true;
1892 	int go_left = 0;
1893 	int i;
1894 
1895 	spin_lock(&free_i->segmap_lock);
1896 
1897 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
1898 		segno = find_next_zero_bit(free_i->free_segmap,
1899 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
1900 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
1901 			goto got_it;
1902 	}
1903 find_other_zone:
1904 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
1905 	if (secno >= MAIN_SECS(sbi)) {
1906 		if (dir == ALLOC_RIGHT) {
1907 			secno = find_next_zero_bit(free_i->free_secmap,
1908 							MAIN_SECS(sbi), 0);
1909 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
1910 		} else {
1911 			go_left = 1;
1912 			left_start = hint - 1;
1913 		}
1914 	}
1915 	if (go_left == 0)
1916 		goto skip_left;
1917 
1918 	while (test_bit(left_start, free_i->free_secmap)) {
1919 		if (left_start > 0) {
1920 			left_start--;
1921 			continue;
1922 		}
1923 		left_start = find_next_zero_bit(free_i->free_secmap,
1924 							MAIN_SECS(sbi), 0);
1925 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
1926 		break;
1927 	}
1928 	secno = left_start;
1929 skip_left:
1930 	hint = secno;
1931 	segno = GET_SEG_FROM_SEC(sbi, secno);
1932 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
1933 
1934 	/* give up on finding another zone */
1935 	if (!init)
1936 		goto got_it;
1937 	if (sbi->secs_per_zone == 1)
1938 		goto got_it;
1939 	if (zoneno == old_zoneno)
1940 		goto got_it;
1941 	if (dir == ALLOC_LEFT) {
1942 		if (!go_left && zoneno + 1 >= total_zones)
1943 			goto got_it;
1944 		if (go_left && zoneno == 0)
1945 			goto got_it;
1946 	}
1947 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1948 		if (CURSEG_I(sbi, i)->zone == zoneno)
1949 			break;
1950 
1951 	if (i < NR_CURSEG_TYPE) {
1952 		/* zone is in user, try another */
1953 		if (go_left)
1954 			hint = zoneno * sbi->secs_per_zone - 1;
1955 		else if (zoneno + 1 >= total_zones)
1956 			hint = 0;
1957 		else
1958 			hint = (zoneno + 1) * sbi->secs_per_zone;
1959 		init = false;
1960 		goto find_other_zone;
1961 	}
1962 got_it:
1963 	/* set it as dirty segment in free segmap */
1964 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
1965 	__set_inuse(sbi, segno);
1966 	*newseg = segno;
1967 	spin_unlock(&free_i->segmap_lock);
1968 }
1969 
1970 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
1971 {
1972 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1973 	struct summary_footer *sum_footer;
1974 
1975 	curseg->segno = curseg->next_segno;
1976 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
1977 	curseg->next_blkoff = 0;
1978 	curseg->next_segno = NULL_SEGNO;
1979 
1980 	sum_footer = &(curseg->sum_blk->footer);
1981 	memset(sum_footer, 0, sizeof(struct summary_footer));
1982 	if (IS_DATASEG(type))
1983 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
1984 	if (IS_NODESEG(type))
1985 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
1986 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
1987 }
1988 
1989 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
1990 {
1991 	/* if segs_per_sec is large than 1, we need to keep original policy. */
1992 	if (sbi->segs_per_sec != 1)
1993 		return CURSEG_I(sbi, type)->segno;
1994 
1995 	if (type == CURSEG_HOT_DATA || IS_NODESEG(type))
1996 		return 0;
1997 
1998 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
1999 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2000 	return CURSEG_I(sbi, type)->segno;
2001 }
2002 
2003 /*
2004  * Allocate a current working segment.
2005  * This function always allocates a free segment in LFS manner.
2006  */
2007 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2008 {
2009 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2010 	unsigned int segno = curseg->segno;
2011 	int dir = ALLOC_LEFT;
2012 
2013 	write_sum_page(sbi, curseg->sum_blk,
2014 				GET_SUM_BLOCK(sbi, segno));
2015 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2016 		dir = ALLOC_RIGHT;
2017 
2018 	if (test_opt(sbi, NOHEAP))
2019 		dir = ALLOC_RIGHT;
2020 
2021 	segno = __get_next_segno(sbi, type);
2022 	get_new_segment(sbi, &segno, new_sec, dir);
2023 	curseg->next_segno = segno;
2024 	reset_curseg(sbi, type, 1);
2025 	curseg->alloc_type = LFS;
2026 }
2027 
2028 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2029 			struct curseg_info *seg, block_t start)
2030 {
2031 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2032 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2033 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2034 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2035 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2036 	int i, pos;
2037 
2038 	for (i = 0; i < entries; i++)
2039 		target_map[i] = ckpt_map[i] | cur_map[i];
2040 
2041 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2042 
2043 	seg->next_blkoff = pos;
2044 }
2045 
2046 /*
2047  * If a segment is written by LFS manner, next block offset is just obtained
2048  * by increasing the current block offset. However, if a segment is written by
2049  * SSR manner, next block offset obtained by calling __next_free_blkoff
2050  */
2051 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2052 				struct curseg_info *seg)
2053 {
2054 	if (seg->alloc_type == SSR)
2055 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2056 	else
2057 		seg->next_blkoff++;
2058 }
2059 
2060 /*
2061  * This function always allocates a used segment(from dirty seglist) by SSR
2062  * manner, so it should recover the existing segment information of valid blocks
2063  */
2064 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2065 {
2066 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2067 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2068 	unsigned int new_segno = curseg->next_segno;
2069 	struct f2fs_summary_block *sum_node;
2070 	struct page *sum_page;
2071 
2072 	write_sum_page(sbi, curseg->sum_blk,
2073 				GET_SUM_BLOCK(sbi, curseg->segno));
2074 	__set_test_and_inuse(sbi, new_segno);
2075 
2076 	mutex_lock(&dirty_i->seglist_lock);
2077 	__remove_dirty_segment(sbi, new_segno, PRE);
2078 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2079 	mutex_unlock(&dirty_i->seglist_lock);
2080 
2081 	reset_curseg(sbi, type, 1);
2082 	curseg->alloc_type = SSR;
2083 	__next_free_blkoff(sbi, curseg, 0);
2084 
2085 	sum_page = get_sum_page(sbi, new_segno);
2086 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2087 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2088 	f2fs_put_page(sum_page, 1);
2089 }
2090 
2091 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2092 {
2093 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2094 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2095 	unsigned segno = NULL_SEGNO;
2096 	int i, cnt;
2097 	bool reversed = false;
2098 
2099 	/* need_SSR() already forces to do this */
2100 	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2101 		curseg->next_segno = segno;
2102 		return 1;
2103 	}
2104 
2105 	/* For node segments, let's do SSR more intensively */
2106 	if (IS_NODESEG(type)) {
2107 		if (type >= CURSEG_WARM_NODE) {
2108 			reversed = true;
2109 			i = CURSEG_COLD_NODE;
2110 		} else {
2111 			i = CURSEG_HOT_NODE;
2112 		}
2113 		cnt = NR_CURSEG_NODE_TYPE;
2114 	} else {
2115 		if (type >= CURSEG_WARM_DATA) {
2116 			reversed = true;
2117 			i = CURSEG_COLD_DATA;
2118 		} else {
2119 			i = CURSEG_HOT_DATA;
2120 		}
2121 		cnt = NR_CURSEG_DATA_TYPE;
2122 	}
2123 
2124 	for (; cnt-- > 0; reversed ? i-- : i++) {
2125 		if (i == type)
2126 			continue;
2127 		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2128 			curseg->next_segno = segno;
2129 			return 1;
2130 		}
2131 	}
2132 	return 0;
2133 }
2134 
2135 /*
2136  * flush out current segment and replace it with new segment
2137  * This function should be returned with success, otherwise BUG
2138  */
2139 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2140 						int type, bool force)
2141 {
2142 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2143 
2144 	if (force)
2145 		new_curseg(sbi, type, true);
2146 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2147 					type == CURSEG_WARM_NODE)
2148 		new_curseg(sbi, type, false);
2149 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2150 		new_curseg(sbi, type, false);
2151 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2152 		change_curseg(sbi, type);
2153 	else
2154 		new_curseg(sbi, type, false);
2155 
2156 	stat_inc_seg_type(sbi, curseg);
2157 }
2158 
2159 void allocate_new_segments(struct f2fs_sb_info *sbi)
2160 {
2161 	struct curseg_info *curseg;
2162 	unsigned int old_segno;
2163 	int i;
2164 
2165 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2166 		curseg = CURSEG_I(sbi, i);
2167 		old_segno = curseg->segno;
2168 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2169 		locate_dirty_segment(sbi, old_segno);
2170 	}
2171 }
2172 
2173 static const struct segment_allocation default_salloc_ops = {
2174 	.allocate_segment = allocate_segment_by_default,
2175 };
2176 
2177 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2178 {
2179 	__u64 trim_start = cpc->trim_start;
2180 	bool has_candidate = false;
2181 
2182 	mutex_lock(&SIT_I(sbi)->sentry_lock);
2183 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2184 		if (add_discard_addrs(sbi, cpc, true)) {
2185 			has_candidate = true;
2186 			break;
2187 		}
2188 	}
2189 	mutex_unlock(&SIT_I(sbi)->sentry_lock);
2190 
2191 	cpc->trim_start = trim_start;
2192 	return has_candidate;
2193 }
2194 
2195 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2196 {
2197 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2198 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2199 	unsigned int start_segno, end_segno;
2200 	struct cp_control cpc;
2201 	int err = 0;
2202 
2203 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2204 		return -EINVAL;
2205 
2206 	cpc.trimmed = 0;
2207 	if (end <= MAIN_BLKADDR(sbi))
2208 		goto out;
2209 
2210 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2211 		f2fs_msg(sbi->sb, KERN_WARNING,
2212 			"Found FS corruption, run fsck to fix.");
2213 		goto out;
2214 	}
2215 
2216 	/* start/end segment number in main_area */
2217 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2218 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2219 						GET_SEGNO(sbi, end);
2220 	cpc.reason = CP_DISCARD;
2221 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2222 
2223 	/* do checkpoint to issue discard commands safely */
2224 	for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) {
2225 		cpc.trim_start = start_segno;
2226 
2227 		if (sbi->discard_blks == 0)
2228 			break;
2229 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2230 			cpc.trim_end = end_segno;
2231 		else
2232 			cpc.trim_end = min_t(unsigned int,
2233 				rounddown(start_segno +
2234 				BATCHED_TRIM_SEGMENTS(sbi),
2235 				sbi->segs_per_sec) - 1, end_segno);
2236 
2237 		mutex_lock(&sbi->gc_mutex);
2238 		err = write_checkpoint(sbi, &cpc);
2239 		mutex_unlock(&sbi->gc_mutex);
2240 		if (err)
2241 			break;
2242 
2243 		schedule();
2244 	}
2245 	/* It's time to issue all the filed discards */
2246 	mark_discard_range_all(sbi);
2247 	f2fs_wait_discard_bios(sbi);
2248 out:
2249 	range->len = F2FS_BLK_TO_BYTES(cpc.trimmed);
2250 	return err;
2251 }
2252 
2253 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2254 {
2255 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2256 	if (curseg->next_blkoff < sbi->blocks_per_seg)
2257 		return true;
2258 	return false;
2259 }
2260 
2261 static int __get_segment_type_2(struct f2fs_io_info *fio)
2262 {
2263 	if (fio->type == DATA)
2264 		return CURSEG_HOT_DATA;
2265 	else
2266 		return CURSEG_HOT_NODE;
2267 }
2268 
2269 static int __get_segment_type_4(struct f2fs_io_info *fio)
2270 {
2271 	if (fio->type == DATA) {
2272 		struct inode *inode = fio->page->mapping->host;
2273 
2274 		if (S_ISDIR(inode->i_mode))
2275 			return CURSEG_HOT_DATA;
2276 		else
2277 			return CURSEG_COLD_DATA;
2278 	} else {
2279 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2280 			return CURSEG_WARM_NODE;
2281 		else
2282 			return CURSEG_COLD_NODE;
2283 	}
2284 }
2285 
2286 static int __get_segment_type_6(struct f2fs_io_info *fio)
2287 {
2288 	if (fio->type == DATA) {
2289 		struct inode *inode = fio->page->mapping->host;
2290 
2291 		if (is_cold_data(fio->page) || file_is_cold(inode))
2292 			return CURSEG_COLD_DATA;
2293 		if (is_inode_flag_set(inode, FI_HOT_DATA))
2294 			return CURSEG_HOT_DATA;
2295 		return CURSEG_WARM_DATA;
2296 	} else {
2297 		if (IS_DNODE(fio->page))
2298 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2299 						CURSEG_HOT_NODE;
2300 		return CURSEG_COLD_NODE;
2301 	}
2302 }
2303 
2304 static int __get_segment_type(struct f2fs_io_info *fio)
2305 {
2306 	int type = 0;
2307 
2308 	switch (fio->sbi->active_logs) {
2309 	case 2:
2310 		type = __get_segment_type_2(fio);
2311 		break;
2312 	case 4:
2313 		type = __get_segment_type_4(fio);
2314 		break;
2315 	case 6:
2316 		type = __get_segment_type_6(fio);
2317 		break;
2318 	default:
2319 		f2fs_bug_on(fio->sbi, true);
2320 	}
2321 
2322 	if (IS_HOT(type))
2323 		fio->temp = HOT;
2324 	else if (IS_WARM(type))
2325 		fio->temp = WARM;
2326 	else
2327 		fio->temp = COLD;
2328 	return type;
2329 }
2330 
2331 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2332 		block_t old_blkaddr, block_t *new_blkaddr,
2333 		struct f2fs_summary *sum, int type,
2334 		struct f2fs_io_info *fio, bool add_list)
2335 {
2336 	struct sit_info *sit_i = SIT_I(sbi);
2337 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2338 
2339 	mutex_lock(&curseg->curseg_mutex);
2340 	mutex_lock(&sit_i->sentry_lock);
2341 
2342 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2343 
2344 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
2345 
2346 	/*
2347 	 * __add_sum_entry should be resided under the curseg_mutex
2348 	 * because, this function updates a summary entry in the
2349 	 * current summary block.
2350 	 */
2351 	__add_sum_entry(sbi, type, sum);
2352 
2353 	__refresh_next_blkoff(sbi, curseg);
2354 
2355 	stat_inc_block_count(sbi, curseg);
2356 
2357 	if (!__has_curseg_space(sbi, type))
2358 		sit_i->s_ops->allocate_segment(sbi, type, false);
2359 	/*
2360 	 * SIT information should be updated after segment allocation,
2361 	 * since we need to keep dirty segments precisely under SSR.
2362 	 */
2363 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
2364 
2365 	mutex_unlock(&sit_i->sentry_lock);
2366 
2367 	if (page && IS_NODESEG(type)) {
2368 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2369 
2370 		f2fs_inode_chksum_set(sbi, page);
2371 	}
2372 
2373 	if (add_list) {
2374 		struct f2fs_bio_info *io;
2375 
2376 		INIT_LIST_HEAD(&fio->list);
2377 		fio->in_list = true;
2378 		io = sbi->write_io[fio->type] + fio->temp;
2379 		spin_lock(&io->io_lock);
2380 		list_add_tail(&fio->list, &io->io_list);
2381 		spin_unlock(&io->io_lock);
2382 	}
2383 
2384 	mutex_unlock(&curseg->curseg_mutex);
2385 }
2386 
2387 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2388 {
2389 	int type = __get_segment_type(fio);
2390 	int err;
2391 
2392 reallocate:
2393 	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2394 			&fio->new_blkaddr, sum, type, fio, true);
2395 
2396 	/* writeout dirty page into bdev */
2397 	err = f2fs_submit_page_write(fio);
2398 	if (err == -EAGAIN) {
2399 		fio->old_blkaddr = fio->new_blkaddr;
2400 		goto reallocate;
2401 	}
2402 }
2403 
2404 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2405 					enum iostat_type io_type)
2406 {
2407 	struct f2fs_io_info fio = {
2408 		.sbi = sbi,
2409 		.type = META,
2410 		.op = REQ_OP_WRITE,
2411 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2412 		.old_blkaddr = page->index,
2413 		.new_blkaddr = page->index,
2414 		.page = page,
2415 		.encrypted_page = NULL,
2416 		.in_list = false,
2417 	};
2418 
2419 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2420 		fio.op_flags &= ~REQ_META;
2421 
2422 	set_page_writeback(page);
2423 	f2fs_submit_page_write(&fio);
2424 
2425 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2426 }
2427 
2428 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2429 {
2430 	struct f2fs_summary sum;
2431 
2432 	set_summary(&sum, nid, 0, 0);
2433 	do_write_page(&sum, fio);
2434 
2435 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2436 }
2437 
2438 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2439 {
2440 	struct f2fs_sb_info *sbi = fio->sbi;
2441 	struct f2fs_summary sum;
2442 	struct node_info ni;
2443 
2444 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2445 	get_node_info(sbi, dn->nid, &ni);
2446 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2447 	do_write_page(&sum, fio);
2448 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2449 
2450 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2451 }
2452 
2453 int rewrite_data_page(struct f2fs_io_info *fio)
2454 {
2455 	int err;
2456 
2457 	fio->new_blkaddr = fio->old_blkaddr;
2458 	stat_inc_inplace_blocks(fio->sbi);
2459 
2460 	err = f2fs_submit_page_bio(fio);
2461 
2462 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2463 
2464 	return err;
2465 }
2466 
2467 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2468 				block_t old_blkaddr, block_t new_blkaddr,
2469 				bool recover_curseg, bool recover_newaddr)
2470 {
2471 	struct sit_info *sit_i = SIT_I(sbi);
2472 	struct curseg_info *curseg;
2473 	unsigned int segno, old_cursegno;
2474 	struct seg_entry *se;
2475 	int type;
2476 	unsigned short old_blkoff;
2477 
2478 	segno = GET_SEGNO(sbi, new_blkaddr);
2479 	se = get_seg_entry(sbi, segno);
2480 	type = se->type;
2481 
2482 	if (!recover_curseg) {
2483 		/* for recovery flow */
2484 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2485 			if (old_blkaddr == NULL_ADDR)
2486 				type = CURSEG_COLD_DATA;
2487 			else
2488 				type = CURSEG_WARM_DATA;
2489 		}
2490 	} else {
2491 		if (!IS_CURSEG(sbi, segno))
2492 			type = CURSEG_WARM_DATA;
2493 	}
2494 
2495 	curseg = CURSEG_I(sbi, type);
2496 
2497 	mutex_lock(&curseg->curseg_mutex);
2498 	mutex_lock(&sit_i->sentry_lock);
2499 
2500 	old_cursegno = curseg->segno;
2501 	old_blkoff = curseg->next_blkoff;
2502 
2503 	/* change the current segment */
2504 	if (segno != curseg->segno) {
2505 		curseg->next_segno = segno;
2506 		change_curseg(sbi, type);
2507 	}
2508 
2509 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2510 	__add_sum_entry(sbi, type, sum);
2511 
2512 	if (!recover_curseg || recover_newaddr)
2513 		update_sit_entry(sbi, new_blkaddr, 1);
2514 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2515 		update_sit_entry(sbi, old_blkaddr, -1);
2516 
2517 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2518 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2519 
2520 	locate_dirty_segment(sbi, old_cursegno);
2521 
2522 	if (recover_curseg) {
2523 		if (old_cursegno != curseg->segno) {
2524 			curseg->next_segno = old_cursegno;
2525 			change_curseg(sbi, type);
2526 		}
2527 		curseg->next_blkoff = old_blkoff;
2528 	}
2529 
2530 	mutex_unlock(&sit_i->sentry_lock);
2531 	mutex_unlock(&curseg->curseg_mutex);
2532 }
2533 
2534 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2535 				block_t old_addr, block_t new_addr,
2536 				unsigned char version, bool recover_curseg,
2537 				bool recover_newaddr)
2538 {
2539 	struct f2fs_summary sum;
2540 
2541 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2542 
2543 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2544 					recover_curseg, recover_newaddr);
2545 
2546 	f2fs_update_data_blkaddr(dn, new_addr);
2547 }
2548 
2549 void f2fs_wait_on_page_writeback(struct page *page,
2550 				enum page_type type, bool ordered)
2551 {
2552 	if (PageWriteback(page)) {
2553 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2554 
2555 		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2556 						0, page->index, type);
2557 		if (ordered)
2558 			wait_on_page_writeback(page);
2559 		else
2560 			wait_for_stable_page(page);
2561 	}
2562 }
2563 
2564 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2565 {
2566 	struct page *cpage;
2567 
2568 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2569 		return;
2570 
2571 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2572 	if (cpage) {
2573 		f2fs_wait_on_page_writeback(cpage, DATA, true);
2574 		f2fs_put_page(cpage, 1);
2575 	}
2576 }
2577 
2578 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
2579 {
2580 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2581 	struct curseg_info *seg_i;
2582 	unsigned char *kaddr;
2583 	struct page *page;
2584 	block_t start;
2585 	int i, j, offset;
2586 
2587 	start = start_sum_block(sbi);
2588 
2589 	page = get_meta_page(sbi, start++);
2590 	kaddr = (unsigned char *)page_address(page);
2591 
2592 	/* Step 1: restore nat cache */
2593 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2594 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2595 
2596 	/* Step 2: restore sit cache */
2597 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2598 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2599 	offset = 2 * SUM_JOURNAL_SIZE;
2600 
2601 	/* Step 3: restore summary entries */
2602 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2603 		unsigned short blk_off;
2604 		unsigned int segno;
2605 
2606 		seg_i = CURSEG_I(sbi, i);
2607 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2608 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2609 		seg_i->next_segno = segno;
2610 		reset_curseg(sbi, i, 0);
2611 		seg_i->alloc_type = ckpt->alloc_type[i];
2612 		seg_i->next_blkoff = blk_off;
2613 
2614 		if (seg_i->alloc_type == SSR)
2615 			blk_off = sbi->blocks_per_seg;
2616 
2617 		for (j = 0; j < blk_off; j++) {
2618 			struct f2fs_summary *s;
2619 			s = (struct f2fs_summary *)(kaddr + offset);
2620 			seg_i->sum_blk->entries[j] = *s;
2621 			offset += SUMMARY_SIZE;
2622 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2623 						SUM_FOOTER_SIZE)
2624 				continue;
2625 
2626 			f2fs_put_page(page, 1);
2627 			page = NULL;
2628 
2629 			page = get_meta_page(sbi, start++);
2630 			kaddr = (unsigned char *)page_address(page);
2631 			offset = 0;
2632 		}
2633 	}
2634 	f2fs_put_page(page, 1);
2635 	return 0;
2636 }
2637 
2638 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
2639 {
2640 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2641 	struct f2fs_summary_block *sum;
2642 	struct curseg_info *curseg;
2643 	struct page *new;
2644 	unsigned short blk_off;
2645 	unsigned int segno = 0;
2646 	block_t blk_addr = 0;
2647 
2648 	/* get segment number and block addr */
2649 	if (IS_DATASEG(type)) {
2650 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
2651 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
2652 							CURSEG_HOT_DATA]);
2653 		if (__exist_node_summaries(sbi))
2654 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
2655 		else
2656 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
2657 	} else {
2658 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
2659 							CURSEG_HOT_NODE]);
2660 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
2661 							CURSEG_HOT_NODE]);
2662 		if (__exist_node_summaries(sbi))
2663 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
2664 							type - CURSEG_HOT_NODE);
2665 		else
2666 			blk_addr = GET_SUM_BLOCK(sbi, segno);
2667 	}
2668 
2669 	new = get_meta_page(sbi, blk_addr);
2670 	sum = (struct f2fs_summary_block *)page_address(new);
2671 
2672 	if (IS_NODESEG(type)) {
2673 		if (__exist_node_summaries(sbi)) {
2674 			struct f2fs_summary *ns = &sum->entries[0];
2675 			int i;
2676 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
2677 				ns->version = 0;
2678 				ns->ofs_in_node = 0;
2679 			}
2680 		} else {
2681 			int err;
2682 
2683 			err = restore_node_summary(sbi, segno, sum);
2684 			if (err) {
2685 				f2fs_put_page(new, 1);
2686 				return err;
2687 			}
2688 		}
2689 	}
2690 
2691 	/* set uncompleted segment to curseg */
2692 	curseg = CURSEG_I(sbi, type);
2693 	mutex_lock(&curseg->curseg_mutex);
2694 
2695 	/* update journal info */
2696 	down_write(&curseg->journal_rwsem);
2697 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
2698 	up_write(&curseg->journal_rwsem);
2699 
2700 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
2701 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
2702 	curseg->next_segno = segno;
2703 	reset_curseg(sbi, type, 0);
2704 	curseg->alloc_type = ckpt->alloc_type[type];
2705 	curseg->next_blkoff = blk_off;
2706 	mutex_unlock(&curseg->curseg_mutex);
2707 	f2fs_put_page(new, 1);
2708 	return 0;
2709 }
2710 
2711 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
2712 {
2713 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
2714 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
2715 	int type = CURSEG_HOT_DATA;
2716 	int err;
2717 
2718 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
2719 		int npages = npages_for_summary_flush(sbi, true);
2720 
2721 		if (npages >= 2)
2722 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
2723 							META_CP, true);
2724 
2725 		/* restore for compacted data summary */
2726 		if (read_compacted_summaries(sbi))
2727 			return -EINVAL;
2728 		type = CURSEG_HOT_NODE;
2729 	}
2730 
2731 	if (__exist_node_summaries(sbi))
2732 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
2733 					NR_CURSEG_TYPE - type, META_CP, true);
2734 
2735 	for (; type <= CURSEG_COLD_NODE; type++) {
2736 		err = read_normal_summaries(sbi, type);
2737 		if (err)
2738 			return err;
2739 	}
2740 
2741 	/* sanity check for summary blocks */
2742 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
2743 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
2744 		return -EINVAL;
2745 
2746 	return 0;
2747 }
2748 
2749 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
2750 {
2751 	struct page *page;
2752 	unsigned char *kaddr;
2753 	struct f2fs_summary *summary;
2754 	struct curseg_info *seg_i;
2755 	int written_size = 0;
2756 	int i, j;
2757 
2758 	page = grab_meta_page(sbi, blkaddr++);
2759 	kaddr = (unsigned char *)page_address(page);
2760 
2761 	/* Step 1: write nat cache */
2762 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2763 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
2764 	written_size += SUM_JOURNAL_SIZE;
2765 
2766 	/* Step 2: write sit cache */
2767 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2768 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
2769 	written_size += SUM_JOURNAL_SIZE;
2770 
2771 	/* Step 3: write summary entries */
2772 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2773 		unsigned short blkoff;
2774 		seg_i = CURSEG_I(sbi, i);
2775 		if (sbi->ckpt->alloc_type[i] == SSR)
2776 			blkoff = sbi->blocks_per_seg;
2777 		else
2778 			blkoff = curseg_blkoff(sbi, i);
2779 
2780 		for (j = 0; j < blkoff; j++) {
2781 			if (!page) {
2782 				page = grab_meta_page(sbi, blkaddr++);
2783 				kaddr = (unsigned char *)page_address(page);
2784 				written_size = 0;
2785 			}
2786 			summary = (struct f2fs_summary *)(kaddr + written_size);
2787 			*summary = seg_i->sum_blk->entries[j];
2788 			written_size += SUMMARY_SIZE;
2789 
2790 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
2791 							SUM_FOOTER_SIZE)
2792 				continue;
2793 
2794 			set_page_dirty(page);
2795 			f2fs_put_page(page, 1);
2796 			page = NULL;
2797 		}
2798 	}
2799 	if (page) {
2800 		set_page_dirty(page);
2801 		f2fs_put_page(page, 1);
2802 	}
2803 }
2804 
2805 static void write_normal_summaries(struct f2fs_sb_info *sbi,
2806 					block_t blkaddr, int type)
2807 {
2808 	int i, end;
2809 	if (IS_DATASEG(type))
2810 		end = type + NR_CURSEG_DATA_TYPE;
2811 	else
2812 		end = type + NR_CURSEG_NODE_TYPE;
2813 
2814 	for (i = type; i < end; i++)
2815 		write_current_sum_page(sbi, i, blkaddr + (i - type));
2816 }
2817 
2818 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2819 {
2820 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
2821 		write_compacted_summaries(sbi, start_blk);
2822 	else
2823 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
2824 }
2825 
2826 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
2827 {
2828 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
2829 }
2830 
2831 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
2832 					unsigned int val, int alloc)
2833 {
2834 	int i;
2835 
2836 	if (type == NAT_JOURNAL) {
2837 		for (i = 0; i < nats_in_cursum(journal); i++) {
2838 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
2839 				return i;
2840 		}
2841 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
2842 			return update_nats_in_cursum(journal, 1);
2843 	} else if (type == SIT_JOURNAL) {
2844 		for (i = 0; i < sits_in_cursum(journal); i++)
2845 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
2846 				return i;
2847 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
2848 			return update_sits_in_cursum(journal, 1);
2849 	}
2850 	return -1;
2851 }
2852 
2853 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
2854 					unsigned int segno)
2855 {
2856 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
2857 }
2858 
2859 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
2860 					unsigned int start)
2861 {
2862 	struct sit_info *sit_i = SIT_I(sbi);
2863 	struct page *src_page, *dst_page;
2864 	pgoff_t src_off, dst_off;
2865 	void *src_addr, *dst_addr;
2866 
2867 	src_off = current_sit_addr(sbi, start);
2868 	dst_off = next_sit_addr(sbi, src_off);
2869 
2870 	/* get current sit block page without lock */
2871 	src_page = get_meta_page(sbi, src_off);
2872 	dst_page = grab_meta_page(sbi, dst_off);
2873 	f2fs_bug_on(sbi, PageDirty(src_page));
2874 
2875 	src_addr = page_address(src_page);
2876 	dst_addr = page_address(dst_page);
2877 	memcpy(dst_addr, src_addr, PAGE_SIZE);
2878 
2879 	set_page_dirty(dst_page);
2880 	f2fs_put_page(src_page, 1);
2881 
2882 	set_to_next_sit(sit_i, start);
2883 
2884 	return dst_page;
2885 }
2886 
2887 static struct sit_entry_set *grab_sit_entry_set(void)
2888 {
2889 	struct sit_entry_set *ses =
2890 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
2891 
2892 	ses->entry_cnt = 0;
2893 	INIT_LIST_HEAD(&ses->set_list);
2894 	return ses;
2895 }
2896 
2897 static void release_sit_entry_set(struct sit_entry_set *ses)
2898 {
2899 	list_del(&ses->set_list);
2900 	kmem_cache_free(sit_entry_set_slab, ses);
2901 }
2902 
2903 static void adjust_sit_entry_set(struct sit_entry_set *ses,
2904 						struct list_head *head)
2905 {
2906 	struct sit_entry_set *next = ses;
2907 
2908 	if (list_is_last(&ses->set_list, head))
2909 		return;
2910 
2911 	list_for_each_entry_continue(next, head, set_list)
2912 		if (ses->entry_cnt <= next->entry_cnt)
2913 			break;
2914 
2915 	list_move_tail(&ses->set_list, &next->set_list);
2916 }
2917 
2918 static void add_sit_entry(unsigned int segno, struct list_head *head)
2919 {
2920 	struct sit_entry_set *ses;
2921 	unsigned int start_segno = START_SEGNO(segno);
2922 
2923 	list_for_each_entry(ses, head, set_list) {
2924 		if (ses->start_segno == start_segno) {
2925 			ses->entry_cnt++;
2926 			adjust_sit_entry_set(ses, head);
2927 			return;
2928 		}
2929 	}
2930 
2931 	ses = grab_sit_entry_set();
2932 
2933 	ses->start_segno = start_segno;
2934 	ses->entry_cnt++;
2935 	list_add(&ses->set_list, head);
2936 }
2937 
2938 static void add_sits_in_set(struct f2fs_sb_info *sbi)
2939 {
2940 	struct f2fs_sm_info *sm_info = SM_I(sbi);
2941 	struct list_head *set_list = &sm_info->sit_entry_set;
2942 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
2943 	unsigned int segno;
2944 
2945 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
2946 		add_sit_entry(segno, set_list);
2947 }
2948 
2949 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
2950 {
2951 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2952 	struct f2fs_journal *journal = curseg->journal;
2953 	int i;
2954 
2955 	down_write(&curseg->journal_rwsem);
2956 	for (i = 0; i < sits_in_cursum(journal); i++) {
2957 		unsigned int segno;
2958 		bool dirtied;
2959 
2960 		segno = le32_to_cpu(segno_in_journal(journal, i));
2961 		dirtied = __mark_sit_entry_dirty(sbi, segno);
2962 
2963 		if (!dirtied)
2964 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
2965 	}
2966 	update_sits_in_cursum(journal, -i);
2967 	up_write(&curseg->journal_rwsem);
2968 }
2969 
2970 /*
2971  * CP calls this function, which flushes SIT entries including sit_journal,
2972  * and moves prefree segs to free segs.
2973  */
2974 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2975 {
2976 	struct sit_info *sit_i = SIT_I(sbi);
2977 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
2978 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
2979 	struct f2fs_journal *journal = curseg->journal;
2980 	struct sit_entry_set *ses, *tmp;
2981 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
2982 	bool to_journal = true;
2983 	struct seg_entry *se;
2984 
2985 	mutex_lock(&sit_i->sentry_lock);
2986 
2987 	if (!sit_i->dirty_sentries)
2988 		goto out;
2989 
2990 	/*
2991 	 * add and account sit entries of dirty bitmap in sit entry
2992 	 * set temporarily
2993 	 */
2994 	add_sits_in_set(sbi);
2995 
2996 	/*
2997 	 * if there are no enough space in journal to store dirty sit
2998 	 * entries, remove all entries from journal and add and account
2999 	 * them in sit entry set.
3000 	 */
3001 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3002 		remove_sits_in_journal(sbi);
3003 
3004 	/*
3005 	 * there are two steps to flush sit entries:
3006 	 * #1, flush sit entries to journal in current cold data summary block.
3007 	 * #2, flush sit entries to sit page.
3008 	 */
3009 	list_for_each_entry_safe(ses, tmp, head, set_list) {
3010 		struct page *page = NULL;
3011 		struct f2fs_sit_block *raw_sit = NULL;
3012 		unsigned int start_segno = ses->start_segno;
3013 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3014 						(unsigned long)MAIN_SEGS(sbi));
3015 		unsigned int segno = start_segno;
3016 
3017 		if (to_journal &&
3018 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3019 			to_journal = false;
3020 
3021 		if (to_journal) {
3022 			down_write(&curseg->journal_rwsem);
3023 		} else {
3024 			page = get_next_sit_page(sbi, start_segno);
3025 			raw_sit = page_address(page);
3026 		}
3027 
3028 		/* flush dirty sit entries in region of current sit set */
3029 		for_each_set_bit_from(segno, bitmap, end) {
3030 			int offset, sit_offset;
3031 
3032 			se = get_seg_entry(sbi, segno);
3033 
3034 			/* add discard candidates */
3035 			if (!(cpc->reason & CP_DISCARD)) {
3036 				cpc->trim_start = segno;
3037 				add_discard_addrs(sbi, cpc, false);
3038 			}
3039 
3040 			if (to_journal) {
3041 				offset = lookup_journal_in_cursum(journal,
3042 							SIT_JOURNAL, segno, 1);
3043 				f2fs_bug_on(sbi, offset < 0);
3044 				segno_in_journal(journal, offset) =
3045 							cpu_to_le32(segno);
3046 				seg_info_to_raw_sit(se,
3047 					&sit_in_journal(journal, offset));
3048 			} else {
3049 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3050 				seg_info_to_raw_sit(se,
3051 						&raw_sit->entries[sit_offset]);
3052 			}
3053 
3054 			__clear_bit(segno, bitmap);
3055 			sit_i->dirty_sentries--;
3056 			ses->entry_cnt--;
3057 		}
3058 
3059 		if (to_journal)
3060 			up_write(&curseg->journal_rwsem);
3061 		else
3062 			f2fs_put_page(page, 1);
3063 
3064 		f2fs_bug_on(sbi, ses->entry_cnt);
3065 		release_sit_entry_set(ses);
3066 	}
3067 
3068 	f2fs_bug_on(sbi, !list_empty(head));
3069 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3070 out:
3071 	if (cpc->reason & CP_DISCARD) {
3072 		__u64 trim_start = cpc->trim_start;
3073 
3074 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3075 			add_discard_addrs(sbi, cpc, false);
3076 
3077 		cpc->trim_start = trim_start;
3078 	}
3079 	mutex_unlock(&sit_i->sentry_lock);
3080 
3081 	set_prefree_as_free_segments(sbi);
3082 }
3083 
3084 static int build_sit_info(struct f2fs_sb_info *sbi)
3085 {
3086 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3087 	struct sit_info *sit_i;
3088 	unsigned int sit_segs, start;
3089 	char *src_bitmap;
3090 	unsigned int bitmap_size;
3091 
3092 	/* allocate memory for SIT information */
3093 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
3094 	if (!sit_i)
3095 		return -ENOMEM;
3096 
3097 	SM_I(sbi)->sit_info = sit_i;
3098 
3099 	sit_i->sentries = kvzalloc(MAIN_SEGS(sbi) *
3100 					sizeof(struct seg_entry), GFP_KERNEL);
3101 	if (!sit_i->sentries)
3102 		return -ENOMEM;
3103 
3104 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3105 	sit_i->dirty_sentries_bitmap = kvzalloc(bitmap_size, GFP_KERNEL);
3106 	if (!sit_i->dirty_sentries_bitmap)
3107 		return -ENOMEM;
3108 
3109 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3110 		sit_i->sentries[start].cur_valid_map
3111 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3112 		sit_i->sentries[start].ckpt_valid_map
3113 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3114 		if (!sit_i->sentries[start].cur_valid_map ||
3115 				!sit_i->sentries[start].ckpt_valid_map)
3116 			return -ENOMEM;
3117 
3118 #ifdef CONFIG_F2FS_CHECK_FS
3119 		sit_i->sentries[start].cur_valid_map_mir
3120 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3121 		if (!sit_i->sentries[start].cur_valid_map_mir)
3122 			return -ENOMEM;
3123 #endif
3124 
3125 		if (f2fs_discard_en(sbi)) {
3126 			sit_i->sentries[start].discard_map
3127 				= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3128 			if (!sit_i->sentries[start].discard_map)
3129 				return -ENOMEM;
3130 		}
3131 	}
3132 
3133 	sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3134 	if (!sit_i->tmp_map)
3135 		return -ENOMEM;
3136 
3137 	if (sbi->segs_per_sec > 1) {
3138 		sit_i->sec_entries = kvzalloc(MAIN_SECS(sbi) *
3139 					sizeof(struct sec_entry), GFP_KERNEL);
3140 		if (!sit_i->sec_entries)
3141 			return -ENOMEM;
3142 	}
3143 
3144 	/* get information related with SIT */
3145 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3146 
3147 	/* setup SIT bitmap from ckeckpoint pack */
3148 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3149 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3150 
3151 	sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3152 	if (!sit_i->sit_bitmap)
3153 		return -ENOMEM;
3154 
3155 #ifdef CONFIG_F2FS_CHECK_FS
3156 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3157 	if (!sit_i->sit_bitmap_mir)
3158 		return -ENOMEM;
3159 #endif
3160 
3161 	/* init SIT information */
3162 	sit_i->s_ops = &default_salloc_ops;
3163 
3164 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3165 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3166 	sit_i->written_valid_blocks = 0;
3167 	sit_i->bitmap_size = bitmap_size;
3168 	sit_i->dirty_sentries = 0;
3169 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3170 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3171 	sit_i->mounted_time = ktime_get_real_seconds();
3172 	mutex_init(&sit_i->sentry_lock);
3173 	return 0;
3174 }
3175 
3176 static int build_free_segmap(struct f2fs_sb_info *sbi)
3177 {
3178 	struct free_segmap_info *free_i;
3179 	unsigned int bitmap_size, sec_bitmap_size;
3180 
3181 	/* allocate memory for free segmap information */
3182 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
3183 	if (!free_i)
3184 		return -ENOMEM;
3185 
3186 	SM_I(sbi)->free_info = free_i;
3187 
3188 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3189 	free_i->free_segmap = kvmalloc(bitmap_size, GFP_KERNEL);
3190 	if (!free_i->free_segmap)
3191 		return -ENOMEM;
3192 
3193 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3194 	free_i->free_secmap = kvmalloc(sec_bitmap_size, GFP_KERNEL);
3195 	if (!free_i->free_secmap)
3196 		return -ENOMEM;
3197 
3198 	/* set all segments as dirty temporarily */
3199 	memset(free_i->free_segmap, 0xff, bitmap_size);
3200 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3201 
3202 	/* init free segmap information */
3203 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3204 	free_i->free_segments = 0;
3205 	free_i->free_sections = 0;
3206 	spin_lock_init(&free_i->segmap_lock);
3207 	return 0;
3208 }
3209 
3210 static int build_curseg(struct f2fs_sb_info *sbi)
3211 {
3212 	struct curseg_info *array;
3213 	int i;
3214 
3215 	array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL);
3216 	if (!array)
3217 		return -ENOMEM;
3218 
3219 	SM_I(sbi)->curseg_array = array;
3220 
3221 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
3222 		mutex_init(&array[i].curseg_mutex);
3223 		array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL);
3224 		if (!array[i].sum_blk)
3225 			return -ENOMEM;
3226 		init_rwsem(&array[i].journal_rwsem);
3227 		array[i].journal = kzalloc(sizeof(struct f2fs_journal),
3228 							GFP_KERNEL);
3229 		if (!array[i].journal)
3230 			return -ENOMEM;
3231 		array[i].segno = NULL_SEGNO;
3232 		array[i].next_blkoff = 0;
3233 	}
3234 	return restore_curseg_summaries(sbi);
3235 }
3236 
3237 static void build_sit_entries(struct f2fs_sb_info *sbi)
3238 {
3239 	struct sit_info *sit_i = SIT_I(sbi);
3240 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3241 	struct f2fs_journal *journal = curseg->journal;
3242 	struct seg_entry *se;
3243 	struct f2fs_sit_entry sit;
3244 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
3245 	unsigned int i, start, end;
3246 	unsigned int readed, start_blk = 0;
3247 
3248 	do {
3249 		readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3250 							META_SIT, true);
3251 
3252 		start = start_blk * sit_i->sents_per_block;
3253 		end = (start_blk + readed) * sit_i->sents_per_block;
3254 
3255 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
3256 			struct f2fs_sit_block *sit_blk;
3257 			struct page *page;
3258 
3259 			se = &sit_i->sentries[start];
3260 			page = get_current_sit_page(sbi, start);
3261 			sit_blk = (struct f2fs_sit_block *)page_address(page);
3262 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3263 			f2fs_put_page(page, 1);
3264 
3265 			check_block_count(sbi, start, &sit);
3266 			seg_info_from_raw_sit(se, &sit);
3267 
3268 			/* build discard map only one time */
3269 			if (f2fs_discard_en(sbi)) {
3270 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3271 					memset(se->discard_map, 0xff,
3272 						SIT_VBLOCK_MAP_SIZE);
3273 				} else {
3274 					memcpy(se->discard_map,
3275 						se->cur_valid_map,
3276 						SIT_VBLOCK_MAP_SIZE);
3277 					sbi->discard_blks +=
3278 						sbi->blocks_per_seg -
3279 						se->valid_blocks;
3280 				}
3281 			}
3282 
3283 			if (sbi->segs_per_sec > 1)
3284 				get_sec_entry(sbi, start)->valid_blocks +=
3285 							se->valid_blocks;
3286 		}
3287 		start_blk += readed;
3288 	} while (start_blk < sit_blk_cnt);
3289 
3290 	down_read(&curseg->journal_rwsem);
3291 	for (i = 0; i < sits_in_cursum(journal); i++) {
3292 		unsigned int old_valid_blocks;
3293 
3294 		start = le32_to_cpu(segno_in_journal(journal, i));
3295 		se = &sit_i->sentries[start];
3296 		sit = sit_in_journal(journal, i);
3297 
3298 		old_valid_blocks = se->valid_blocks;
3299 
3300 		check_block_count(sbi, start, &sit);
3301 		seg_info_from_raw_sit(se, &sit);
3302 
3303 		if (f2fs_discard_en(sbi)) {
3304 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3305 				memset(se->discard_map, 0xff,
3306 							SIT_VBLOCK_MAP_SIZE);
3307 			} else {
3308 				memcpy(se->discard_map, se->cur_valid_map,
3309 							SIT_VBLOCK_MAP_SIZE);
3310 				sbi->discard_blks += old_valid_blocks -
3311 							se->valid_blocks;
3312 			}
3313 		}
3314 
3315 		if (sbi->segs_per_sec > 1)
3316 			get_sec_entry(sbi, start)->valid_blocks +=
3317 				se->valid_blocks - old_valid_blocks;
3318 	}
3319 	up_read(&curseg->journal_rwsem);
3320 }
3321 
3322 static void init_free_segmap(struct f2fs_sb_info *sbi)
3323 {
3324 	unsigned int start;
3325 	int type;
3326 
3327 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3328 		struct seg_entry *sentry = get_seg_entry(sbi, start);
3329 		if (!sentry->valid_blocks)
3330 			__set_free(sbi, start);
3331 		else
3332 			SIT_I(sbi)->written_valid_blocks +=
3333 						sentry->valid_blocks;
3334 	}
3335 
3336 	/* set use the current segments */
3337 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3338 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3339 		__set_test_and_inuse(sbi, curseg_t->segno);
3340 	}
3341 }
3342 
3343 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3344 {
3345 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3346 	struct free_segmap_info *free_i = FREE_I(sbi);
3347 	unsigned int segno = 0, offset = 0;
3348 	unsigned short valid_blocks;
3349 
3350 	while (1) {
3351 		/* find dirty segment based on free segmap */
3352 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3353 		if (segno >= MAIN_SEGS(sbi))
3354 			break;
3355 		offset = segno + 1;
3356 		valid_blocks = get_valid_blocks(sbi, segno, false);
3357 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3358 			continue;
3359 		if (valid_blocks > sbi->blocks_per_seg) {
3360 			f2fs_bug_on(sbi, 1);
3361 			continue;
3362 		}
3363 		mutex_lock(&dirty_i->seglist_lock);
3364 		__locate_dirty_segment(sbi, segno, DIRTY);
3365 		mutex_unlock(&dirty_i->seglist_lock);
3366 	}
3367 }
3368 
3369 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3370 {
3371 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3372 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3373 
3374 	dirty_i->victim_secmap = kvzalloc(bitmap_size, GFP_KERNEL);
3375 	if (!dirty_i->victim_secmap)
3376 		return -ENOMEM;
3377 	return 0;
3378 }
3379 
3380 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3381 {
3382 	struct dirty_seglist_info *dirty_i;
3383 	unsigned int bitmap_size, i;
3384 
3385 	/* allocate memory for dirty segments list information */
3386 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
3387 	if (!dirty_i)
3388 		return -ENOMEM;
3389 
3390 	SM_I(sbi)->dirty_info = dirty_i;
3391 	mutex_init(&dirty_i->seglist_lock);
3392 
3393 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3394 
3395 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
3396 		dirty_i->dirty_segmap[i] = kvzalloc(bitmap_size, GFP_KERNEL);
3397 		if (!dirty_i->dirty_segmap[i])
3398 			return -ENOMEM;
3399 	}
3400 
3401 	init_dirty_segmap(sbi);
3402 	return init_victim_secmap(sbi);
3403 }
3404 
3405 /*
3406  * Update min, max modified time for cost-benefit GC algorithm
3407  */
3408 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3409 {
3410 	struct sit_info *sit_i = SIT_I(sbi);
3411 	unsigned int segno;
3412 
3413 	mutex_lock(&sit_i->sentry_lock);
3414 
3415 	sit_i->min_mtime = LLONG_MAX;
3416 
3417 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3418 		unsigned int i;
3419 		unsigned long long mtime = 0;
3420 
3421 		for (i = 0; i < sbi->segs_per_sec; i++)
3422 			mtime += get_seg_entry(sbi, segno + i)->mtime;
3423 
3424 		mtime = div_u64(mtime, sbi->segs_per_sec);
3425 
3426 		if (sit_i->min_mtime > mtime)
3427 			sit_i->min_mtime = mtime;
3428 	}
3429 	sit_i->max_mtime = get_mtime(sbi);
3430 	mutex_unlock(&sit_i->sentry_lock);
3431 }
3432 
3433 int build_segment_manager(struct f2fs_sb_info *sbi)
3434 {
3435 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3436 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3437 	struct f2fs_sm_info *sm_info;
3438 	int err;
3439 
3440 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
3441 	if (!sm_info)
3442 		return -ENOMEM;
3443 
3444 	/* init sm info */
3445 	sbi->sm_info = sm_info;
3446 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3447 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3448 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3449 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3450 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3451 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3452 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3453 	sm_info->rec_prefree_segments = sm_info->main_segments *
3454 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3455 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3456 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3457 
3458 	if (!test_opt(sbi, LFS))
3459 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3460 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3461 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3462 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3463 
3464 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3465 
3466 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
3467 
3468 	if (!f2fs_readonly(sbi->sb)) {
3469 		err = create_flush_cmd_control(sbi);
3470 		if (err)
3471 			return err;
3472 	}
3473 
3474 	err = create_discard_cmd_control(sbi);
3475 	if (err)
3476 		return err;
3477 
3478 	err = build_sit_info(sbi);
3479 	if (err)
3480 		return err;
3481 	err = build_free_segmap(sbi);
3482 	if (err)
3483 		return err;
3484 	err = build_curseg(sbi);
3485 	if (err)
3486 		return err;
3487 
3488 	/* reinit free segmap based on SIT */
3489 	build_sit_entries(sbi);
3490 
3491 	init_free_segmap(sbi);
3492 	err = build_dirty_segmap(sbi);
3493 	if (err)
3494 		return err;
3495 
3496 	init_min_max_mtime(sbi);
3497 	return 0;
3498 }
3499 
3500 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3501 		enum dirty_type dirty_type)
3502 {
3503 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3504 
3505 	mutex_lock(&dirty_i->seglist_lock);
3506 	kvfree(dirty_i->dirty_segmap[dirty_type]);
3507 	dirty_i->nr_dirty[dirty_type] = 0;
3508 	mutex_unlock(&dirty_i->seglist_lock);
3509 }
3510 
3511 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3512 {
3513 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3514 	kvfree(dirty_i->victim_secmap);
3515 }
3516 
3517 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3518 {
3519 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3520 	int i;
3521 
3522 	if (!dirty_i)
3523 		return;
3524 
3525 	/* discard pre-free/dirty segments list */
3526 	for (i = 0; i < NR_DIRTY_TYPE; i++)
3527 		discard_dirty_segmap(sbi, i);
3528 
3529 	destroy_victim_secmap(sbi);
3530 	SM_I(sbi)->dirty_info = NULL;
3531 	kfree(dirty_i);
3532 }
3533 
3534 static void destroy_curseg(struct f2fs_sb_info *sbi)
3535 {
3536 	struct curseg_info *array = SM_I(sbi)->curseg_array;
3537 	int i;
3538 
3539 	if (!array)
3540 		return;
3541 	SM_I(sbi)->curseg_array = NULL;
3542 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
3543 		kfree(array[i].sum_blk);
3544 		kfree(array[i].journal);
3545 	}
3546 	kfree(array);
3547 }
3548 
3549 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3550 {
3551 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3552 	if (!free_i)
3553 		return;
3554 	SM_I(sbi)->free_info = NULL;
3555 	kvfree(free_i->free_segmap);
3556 	kvfree(free_i->free_secmap);
3557 	kfree(free_i);
3558 }
3559 
3560 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3561 {
3562 	struct sit_info *sit_i = SIT_I(sbi);
3563 	unsigned int start;
3564 
3565 	if (!sit_i)
3566 		return;
3567 
3568 	if (sit_i->sentries) {
3569 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
3570 			kfree(sit_i->sentries[start].cur_valid_map);
3571 #ifdef CONFIG_F2FS_CHECK_FS
3572 			kfree(sit_i->sentries[start].cur_valid_map_mir);
3573 #endif
3574 			kfree(sit_i->sentries[start].ckpt_valid_map);
3575 			kfree(sit_i->sentries[start].discard_map);
3576 		}
3577 	}
3578 	kfree(sit_i->tmp_map);
3579 
3580 	kvfree(sit_i->sentries);
3581 	kvfree(sit_i->sec_entries);
3582 	kvfree(sit_i->dirty_sentries_bitmap);
3583 
3584 	SM_I(sbi)->sit_info = NULL;
3585 	kfree(sit_i->sit_bitmap);
3586 #ifdef CONFIG_F2FS_CHECK_FS
3587 	kfree(sit_i->sit_bitmap_mir);
3588 #endif
3589 	kfree(sit_i);
3590 }
3591 
3592 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3593 {
3594 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3595 
3596 	if (!sm_info)
3597 		return;
3598 	destroy_flush_cmd_control(sbi, true);
3599 	destroy_discard_cmd_control(sbi);
3600 	destroy_dirty_segmap(sbi);
3601 	destroy_curseg(sbi);
3602 	destroy_free_segmap(sbi);
3603 	destroy_sit_info(sbi);
3604 	sbi->sm_info = NULL;
3605 	kfree(sm_info);
3606 }
3607 
3608 int __init create_segment_manager_caches(void)
3609 {
3610 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3611 			sizeof(struct discard_entry));
3612 	if (!discard_entry_slab)
3613 		goto fail;
3614 
3615 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3616 			sizeof(struct discard_cmd));
3617 	if (!discard_cmd_slab)
3618 		goto destroy_discard_entry;
3619 
3620 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3621 			sizeof(struct sit_entry_set));
3622 	if (!sit_entry_set_slab)
3623 		goto destroy_discard_cmd;
3624 
3625 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3626 			sizeof(struct inmem_pages));
3627 	if (!inmem_entry_slab)
3628 		goto destroy_sit_entry_set;
3629 	return 0;
3630 
3631 destroy_sit_entry_set:
3632 	kmem_cache_destroy(sit_entry_set_slab);
3633 destroy_discard_cmd:
3634 	kmem_cache_destroy(discard_cmd_slab);
3635 destroy_discard_entry:
3636 	kmem_cache_destroy(discard_entry_slab);
3637 fail:
3638 	return -ENOMEM;
3639 }
3640 
3641 void destroy_segment_manager_caches(void)
3642 {
3643 	kmem_cache_destroy(sit_entry_set_slab);
3644 	kmem_cache_destroy(discard_cmd_slab);
3645 	kmem_cache_destroy(discard_entry_slab);
3646 	kmem_cache_destroy(inmem_entry_slab);
3647 }
3648