1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *bio_entry_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 void register_inmem_page(struct inode *inode, struct page *page) 170 { 171 struct f2fs_inode_info *fi = F2FS_I(inode); 172 struct inmem_pages *new; 173 174 f2fs_trace_pid(page); 175 176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 177 SetPagePrivate(page); 178 179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 180 181 /* add atomic page indices to the list */ 182 new->page = page; 183 INIT_LIST_HEAD(&new->list); 184 185 /* increase reference count with clean state */ 186 mutex_lock(&fi->inmem_lock); 187 get_page(page); 188 list_add_tail(&new->list, &fi->inmem_pages); 189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 190 mutex_unlock(&fi->inmem_lock); 191 192 trace_f2fs_register_inmem_page(page, INMEM); 193 } 194 195 static int __revoke_inmem_pages(struct inode *inode, 196 struct list_head *head, bool drop, bool recover) 197 { 198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 199 struct inmem_pages *cur, *tmp; 200 int err = 0; 201 202 list_for_each_entry_safe(cur, tmp, head, list) { 203 struct page *page = cur->page; 204 205 if (drop) 206 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 207 208 lock_page(page); 209 210 if (recover) { 211 struct dnode_of_data dn; 212 struct node_info ni; 213 214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 215 216 set_new_dnode(&dn, inode, NULL, NULL, 0); 217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 218 err = -EAGAIN; 219 goto next; 220 } 221 get_node_info(sbi, dn.nid, &ni); 222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 223 cur->old_addr, ni.version, true, true); 224 f2fs_put_dnode(&dn); 225 } 226 next: 227 /* we don't need to invalidate this in the sccessful status */ 228 if (drop || recover) 229 ClearPageUptodate(page); 230 set_page_private(page, 0); 231 ClearPagePrivate(page); 232 f2fs_put_page(page, 1); 233 234 list_del(&cur->list); 235 kmem_cache_free(inmem_entry_slab, cur); 236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 237 } 238 return err; 239 } 240 241 void drop_inmem_pages(struct inode *inode) 242 { 243 struct f2fs_inode_info *fi = F2FS_I(inode); 244 245 clear_inode_flag(inode, FI_ATOMIC_FILE); 246 247 mutex_lock(&fi->inmem_lock); 248 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 249 mutex_unlock(&fi->inmem_lock); 250 } 251 252 static int __commit_inmem_pages(struct inode *inode, 253 struct list_head *revoke_list) 254 { 255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 256 struct f2fs_inode_info *fi = F2FS_I(inode); 257 struct inmem_pages *cur, *tmp; 258 struct f2fs_io_info fio = { 259 .sbi = sbi, 260 .type = DATA, 261 .op = REQ_OP_WRITE, 262 .op_flags = WRITE_SYNC | REQ_PRIO, 263 .encrypted_page = NULL, 264 }; 265 bool submit_bio = false; 266 int err = 0; 267 268 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 269 struct page *page = cur->page; 270 271 lock_page(page); 272 if (page->mapping == inode->i_mapping) { 273 trace_f2fs_commit_inmem_page(page, INMEM); 274 275 set_page_dirty(page); 276 f2fs_wait_on_page_writeback(page, DATA, true); 277 if (clear_page_dirty_for_io(page)) 278 inode_dec_dirty_pages(inode); 279 280 fio.page = page; 281 err = do_write_data_page(&fio); 282 if (err) { 283 unlock_page(page); 284 break; 285 } 286 287 /* record old blkaddr for revoking */ 288 cur->old_addr = fio.old_blkaddr; 289 290 clear_cold_data(page); 291 submit_bio = true; 292 } 293 unlock_page(page); 294 list_move_tail(&cur->list, revoke_list); 295 } 296 297 if (submit_bio) 298 f2fs_submit_merged_bio_cond(sbi, inode, NULL, 0, DATA, WRITE); 299 300 if (!err) 301 __revoke_inmem_pages(inode, revoke_list, false, false); 302 303 return err; 304 } 305 306 int commit_inmem_pages(struct inode *inode) 307 { 308 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 309 struct f2fs_inode_info *fi = F2FS_I(inode); 310 struct list_head revoke_list; 311 int err; 312 313 INIT_LIST_HEAD(&revoke_list); 314 f2fs_balance_fs(sbi, true); 315 f2fs_lock_op(sbi); 316 317 mutex_lock(&fi->inmem_lock); 318 err = __commit_inmem_pages(inode, &revoke_list); 319 if (err) { 320 int ret; 321 /* 322 * try to revoke all committed pages, but still we could fail 323 * due to no memory or other reason, if that happened, EAGAIN 324 * will be returned, which means in such case, transaction is 325 * already not integrity, caller should use journal to do the 326 * recovery or rewrite & commit last transaction. For other 327 * error number, revoking was done by filesystem itself. 328 */ 329 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 330 if (ret) 331 err = ret; 332 333 /* drop all uncommitted pages */ 334 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 335 } 336 mutex_unlock(&fi->inmem_lock); 337 338 f2fs_unlock_op(sbi); 339 return err; 340 } 341 342 /* 343 * This function balances dirty node and dentry pages. 344 * In addition, it controls garbage collection. 345 */ 346 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 347 { 348 #ifdef CONFIG_F2FS_FAULT_INJECTION 349 if (time_to_inject(sbi, FAULT_CHECKPOINT)) 350 f2fs_stop_checkpoint(sbi, false); 351 #endif 352 353 if (!need) 354 return; 355 356 /* balance_fs_bg is able to be pending */ 357 if (excess_cached_nats(sbi)) 358 f2fs_balance_fs_bg(sbi); 359 360 /* 361 * We should do GC or end up with checkpoint, if there are so many dirty 362 * dir/node pages without enough free segments. 363 */ 364 if (has_not_enough_free_secs(sbi, 0, 0)) { 365 mutex_lock(&sbi->gc_mutex); 366 f2fs_gc(sbi, false); 367 } 368 } 369 370 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 371 { 372 /* try to shrink extent cache when there is no enough memory */ 373 if (!available_free_memory(sbi, EXTENT_CACHE)) 374 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 375 376 /* check the # of cached NAT entries */ 377 if (!available_free_memory(sbi, NAT_ENTRIES)) 378 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 379 380 if (!available_free_memory(sbi, FREE_NIDS)) 381 try_to_free_nids(sbi, MAX_FREE_NIDS); 382 else 383 build_free_nids(sbi); 384 385 /* checkpoint is the only way to shrink partial cached entries */ 386 if (!available_free_memory(sbi, NAT_ENTRIES) || 387 !available_free_memory(sbi, INO_ENTRIES) || 388 excess_prefree_segs(sbi) || 389 excess_dirty_nats(sbi) || 390 (is_idle(sbi) && f2fs_time_over(sbi, CP_TIME))) { 391 if (test_opt(sbi, DATA_FLUSH)) { 392 struct blk_plug plug; 393 394 blk_start_plug(&plug); 395 sync_dirty_inodes(sbi, FILE_INODE); 396 blk_finish_plug(&plug); 397 } 398 f2fs_sync_fs(sbi->sb, true); 399 stat_inc_bg_cp_count(sbi->stat_info); 400 } 401 } 402 403 static int issue_flush_thread(void *data) 404 { 405 struct f2fs_sb_info *sbi = data; 406 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 407 wait_queue_head_t *q = &fcc->flush_wait_queue; 408 repeat: 409 if (kthread_should_stop()) 410 return 0; 411 412 if (!llist_empty(&fcc->issue_list)) { 413 struct bio *bio; 414 struct flush_cmd *cmd, *next; 415 int ret; 416 417 bio = f2fs_bio_alloc(0); 418 419 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 420 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 421 422 bio->bi_bdev = sbi->sb->s_bdev; 423 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 424 ret = submit_bio_wait(bio); 425 426 llist_for_each_entry_safe(cmd, next, 427 fcc->dispatch_list, llnode) { 428 cmd->ret = ret; 429 complete(&cmd->wait); 430 } 431 bio_put(bio); 432 fcc->dispatch_list = NULL; 433 } 434 435 wait_event_interruptible(*q, 436 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 437 goto repeat; 438 } 439 440 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 441 { 442 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 443 struct flush_cmd cmd; 444 445 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 446 test_opt(sbi, FLUSH_MERGE)); 447 448 if (test_opt(sbi, NOBARRIER)) 449 return 0; 450 451 if (!test_opt(sbi, FLUSH_MERGE) || !atomic_read(&fcc->submit_flush)) { 452 struct bio *bio = f2fs_bio_alloc(0); 453 int ret; 454 455 atomic_inc(&fcc->submit_flush); 456 bio->bi_bdev = sbi->sb->s_bdev; 457 bio_set_op_attrs(bio, REQ_OP_WRITE, WRITE_FLUSH); 458 ret = submit_bio_wait(bio); 459 atomic_dec(&fcc->submit_flush); 460 bio_put(bio); 461 return ret; 462 } 463 464 init_completion(&cmd.wait); 465 466 atomic_inc(&fcc->submit_flush); 467 llist_add(&cmd.llnode, &fcc->issue_list); 468 469 if (!fcc->dispatch_list) 470 wake_up(&fcc->flush_wait_queue); 471 472 wait_for_completion(&cmd.wait); 473 atomic_dec(&fcc->submit_flush); 474 475 return cmd.ret; 476 } 477 478 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 479 { 480 dev_t dev = sbi->sb->s_bdev->bd_dev; 481 struct flush_cmd_control *fcc; 482 int err = 0; 483 484 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 485 if (!fcc) 486 return -ENOMEM; 487 atomic_set(&fcc->submit_flush, 0); 488 init_waitqueue_head(&fcc->flush_wait_queue); 489 init_llist_head(&fcc->issue_list); 490 SM_I(sbi)->cmd_control_info = fcc; 491 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 492 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 493 if (IS_ERR(fcc->f2fs_issue_flush)) { 494 err = PTR_ERR(fcc->f2fs_issue_flush); 495 kfree(fcc); 496 SM_I(sbi)->cmd_control_info = NULL; 497 return err; 498 } 499 500 return err; 501 } 502 503 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 504 { 505 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 506 507 if (fcc && fcc->f2fs_issue_flush) 508 kthread_stop(fcc->f2fs_issue_flush); 509 kfree(fcc); 510 SM_I(sbi)->cmd_control_info = NULL; 511 } 512 513 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 514 enum dirty_type dirty_type) 515 { 516 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 517 518 /* need not be added */ 519 if (IS_CURSEG(sbi, segno)) 520 return; 521 522 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 523 dirty_i->nr_dirty[dirty_type]++; 524 525 if (dirty_type == DIRTY) { 526 struct seg_entry *sentry = get_seg_entry(sbi, segno); 527 enum dirty_type t = sentry->type; 528 529 if (unlikely(t >= DIRTY)) { 530 f2fs_bug_on(sbi, 1); 531 return; 532 } 533 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 534 dirty_i->nr_dirty[t]++; 535 } 536 } 537 538 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 539 enum dirty_type dirty_type) 540 { 541 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 542 543 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 544 dirty_i->nr_dirty[dirty_type]--; 545 546 if (dirty_type == DIRTY) { 547 struct seg_entry *sentry = get_seg_entry(sbi, segno); 548 enum dirty_type t = sentry->type; 549 550 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 551 dirty_i->nr_dirty[t]--; 552 553 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 554 clear_bit(GET_SECNO(sbi, segno), 555 dirty_i->victim_secmap); 556 } 557 } 558 559 /* 560 * Should not occur error such as -ENOMEM. 561 * Adding dirty entry into seglist is not critical operation. 562 * If a given segment is one of current working segments, it won't be added. 563 */ 564 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 565 { 566 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 567 unsigned short valid_blocks; 568 569 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 570 return; 571 572 mutex_lock(&dirty_i->seglist_lock); 573 574 valid_blocks = get_valid_blocks(sbi, segno, 0); 575 576 if (valid_blocks == 0) { 577 __locate_dirty_segment(sbi, segno, PRE); 578 __remove_dirty_segment(sbi, segno, DIRTY); 579 } else if (valid_blocks < sbi->blocks_per_seg) { 580 __locate_dirty_segment(sbi, segno, DIRTY); 581 } else { 582 /* Recovery routine with SSR needs this */ 583 __remove_dirty_segment(sbi, segno, DIRTY); 584 } 585 586 mutex_unlock(&dirty_i->seglist_lock); 587 } 588 589 static struct bio_entry *__add_bio_entry(struct f2fs_sb_info *sbi, 590 struct bio *bio) 591 { 592 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 593 struct bio_entry *be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS); 594 595 INIT_LIST_HEAD(&be->list); 596 be->bio = bio; 597 init_completion(&be->event); 598 list_add_tail(&be->list, wait_list); 599 600 return be; 601 } 602 603 void f2fs_wait_all_discard_bio(struct f2fs_sb_info *sbi) 604 { 605 struct list_head *wait_list = &(SM_I(sbi)->wait_list); 606 struct bio_entry *be, *tmp; 607 608 list_for_each_entry_safe(be, tmp, wait_list, list) { 609 struct bio *bio = be->bio; 610 int err; 611 612 wait_for_completion_io(&be->event); 613 err = be->error; 614 if (err == -EOPNOTSUPP) 615 err = 0; 616 617 if (err) 618 f2fs_msg(sbi->sb, KERN_INFO, 619 "Issue discard failed, ret: %d", err); 620 621 bio_put(bio); 622 list_del(&be->list); 623 kmem_cache_free(bio_entry_slab, be); 624 } 625 } 626 627 static void f2fs_submit_bio_wait_endio(struct bio *bio) 628 { 629 struct bio_entry *be = (struct bio_entry *)bio->bi_private; 630 631 be->error = bio->bi_error; 632 complete(&be->event); 633 } 634 635 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 636 int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, sector_t sector, 637 sector_t nr_sects, gfp_t gfp_mask, unsigned long flags) 638 { 639 struct block_device *bdev = sbi->sb->s_bdev; 640 struct bio *bio = NULL; 641 int err; 642 643 err = __blkdev_issue_discard(bdev, sector, nr_sects, gfp_mask, flags, 644 &bio); 645 if (!err && bio) { 646 struct bio_entry *be = __add_bio_entry(sbi, bio); 647 648 bio->bi_private = be; 649 bio->bi_end_io = f2fs_submit_bio_wait_endio; 650 bio->bi_opf |= REQ_SYNC; 651 submit_bio(bio); 652 } 653 654 return err; 655 } 656 657 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 658 block_t blkstart, block_t blklen) 659 { 660 sector_t start = SECTOR_FROM_BLOCK(blkstart); 661 sector_t len = SECTOR_FROM_BLOCK(blklen); 662 struct seg_entry *se; 663 unsigned int offset; 664 block_t i; 665 666 for (i = blkstart; i < blkstart + blklen; i++) { 667 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 668 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 669 670 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 671 sbi->discard_blks--; 672 } 673 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 674 return __f2fs_issue_discard_async(sbi, start, len, GFP_NOFS, 0); 675 } 676 677 static void __add_discard_entry(struct f2fs_sb_info *sbi, 678 struct cp_control *cpc, struct seg_entry *se, 679 unsigned int start, unsigned int end) 680 { 681 struct list_head *head = &SM_I(sbi)->discard_list; 682 struct discard_entry *new, *last; 683 684 if (!list_empty(head)) { 685 last = list_last_entry(head, struct discard_entry, list); 686 if (START_BLOCK(sbi, cpc->trim_start) + start == 687 last->blkaddr + last->len) { 688 last->len += end - start; 689 goto done; 690 } 691 } 692 693 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 694 INIT_LIST_HEAD(&new->list); 695 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 696 new->len = end - start; 697 list_add_tail(&new->list, head); 698 done: 699 SM_I(sbi)->nr_discards += end - start; 700 } 701 702 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 703 { 704 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 705 int max_blocks = sbi->blocks_per_seg; 706 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 707 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 708 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 709 unsigned long *discard_map = (unsigned long *)se->discard_map; 710 unsigned long *dmap = SIT_I(sbi)->tmp_map; 711 unsigned int start = 0, end = -1; 712 bool force = (cpc->reason == CP_DISCARD); 713 int i; 714 715 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 716 return; 717 718 if (!force) { 719 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 720 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards) 721 return; 722 } 723 724 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 725 for (i = 0; i < entries; i++) 726 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 727 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 728 729 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 730 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 731 if (start >= max_blocks) 732 break; 733 734 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 735 if (force && start && end != max_blocks 736 && (end - start) < cpc->trim_minlen) 737 continue; 738 739 __add_discard_entry(sbi, cpc, se, start, end); 740 } 741 } 742 743 void release_discard_addrs(struct f2fs_sb_info *sbi) 744 { 745 struct list_head *head = &(SM_I(sbi)->discard_list); 746 struct discard_entry *entry, *this; 747 748 /* drop caches */ 749 list_for_each_entry_safe(entry, this, head, list) { 750 list_del(&entry->list); 751 kmem_cache_free(discard_entry_slab, entry); 752 } 753 } 754 755 /* 756 * Should call clear_prefree_segments after checkpoint is done. 757 */ 758 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 759 { 760 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 761 unsigned int segno; 762 763 mutex_lock(&dirty_i->seglist_lock); 764 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 765 __set_test_and_free(sbi, segno); 766 mutex_unlock(&dirty_i->seglist_lock); 767 } 768 769 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 770 { 771 struct list_head *head = &(SM_I(sbi)->discard_list); 772 struct discard_entry *entry, *this; 773 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 774 struct blk_plug plug; 775 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 776 unsigned int start = 0, end = -1; 777 unsigned int secno, start_segno; 778 bool force = (cpc->reason == CP_DISCARD); 779 780 blk_start_plug(&plug); 781 782 mutex_lock(&dirty_i->seglist_lock); 783 784 while (1) { 785 int i; 786 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 787 if (start >= MAIN_SEGS(sbi)) 788 break; 789 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 790 start + 1); 791 792 for (i = start; i < end; i++) 793 clear_bit(i, prefree_map); 794 795 dirty_i->nr_dirty[PRE] -= end - start; 796 797 if (force || !test_opt(sbi, DISCARD)) 798 continue; 799 800 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 801 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 802 (end - start) << sbi->log_blocks_per_seg); 803 continue; 804 } 805 next: 806 secno = GET_SECNO(sbi, start); 807 start_segno = secno * sbi->segs_per_sec; 808 if (!IS_CURSEC(sbi, secno) && 809 !get_valid_blocks(sbi, start, sbi->segs_per_sec)) 810 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 811 sbi->segs_per_sec << sbi->log_blocks_per_seg); 812 813 start = start_segno + sbi->segs_per_sec; 814 if (start < end) 815 goto next; 816 } 817 mutex_unlock(&dirty_i->seglist_lock); 818 819 /* send small discards */ 820 list_for_each_entry_safe(entry, this, head, list) { 821 if (force && entry->len < cpc->trim_minlen) 822 goto skip; 823 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 824 cpc->trimmed += entry->len; 825 skip: 826 list_del(&entry->list); 827 SM_I(sbi)->nr_discards -= entry->len; 828 kmem_cache_free(discard_entry_slab, entry); 829 } 830 831 blk_finish_plug(&plug); 832 } 833 834 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 835 { 836 struct sit_info *sit_i = SIT_I(sbi); 837 838 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 839 sit_i->dirty_sentries++; 840 return false; 841 } 842 843 return true; 844 } 845 846 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 847 unsigned int segno, int modified) 848 { 849 struct seg_entry *se = get_seg_entry(sbi, segno); 850 se->type = type; 851 if (modified) 852 __mark_sit_entry_dirty(sbi, segno); 853 } 854 855 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 856 { 857 struct seg_entry *se; 858 unsigned int segno, offset; 859 long int new_vblocks; 860 861 segno = GET_SEGNO(sbi, blkaddr); 862 863 se = get_seg_entry(sbi, segno); 864 new_vblocks = se->valid_blocks + del; 865 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 866 867 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 868 (new_vblocks > sbi->blocks_per_seg))); 869 870 se->valid_blocks = new_vblocks; 871 se->mtime = get_mtime(sbi); 872 SIT_I(sbi)->max_mtime = se->mtime; 873 874 /* Update valid block bitmap */ 875 if (del > 0) { 876 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 877 f2fs_bug_on(sbi, 1); 878 if (f2fs_discard_en(sbi) && 879 !f2fs_test_and_set_bit(offset, se->discard_map)) 880 sbi->discard_blks--; 881 } else { 882 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 883 f2fs_bug_on(sbi, 1); 884 if (f2fs_discard_en(sbi) && 885 f2fs_test_and_clear_bit(offset, se->discard_map)) 886 sbi->discard_blks++; 887 } 888 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 889 se->ckpt_valid_blocks += del; 890 891 __mark_sit_entry_dirty(sbi, segno); 892 893 /* update total number of valid blocks to be written in ckpt area */ 894 SIT_I(sbi)->written_valid_blocks += del; 895 896 if (sbi->segs_per_sec > 1) 897 get_sec_entry(sbi, segno)->valid_blocks += del; 898 } 899 900 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 901 { 902 update_sit_entry(sbi, new, 1); 903 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 904 update_sit_entry(sbi, old, -1); 905 906 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 907 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 908 } 909 910 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 911 { 912 unsigned int segno = GET_SEGNO(sbi, addr); 913 struct sit_info *sit_i = SIT_I(sbi); 914 915 f2fs_bug_on(sbi, addr == NULL_ADDR); 916 if (addr == NEW_ADDR) 917 return; 918 919 /* add it into sit main buffer */ 920 mutex_lock(&sit_i->sentry_lock); 921 922 update_sit_entry(sbi, addr, -1); 923 924 /* add it into dirty seglist */ 925 locate_dirty_segment(sbi, segno); 926 927 mutex_unlock(&sit_i->sentry_lock); 928 } 929 930 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 931 { 932 struct sit_info *sit_i = SIT_I(sbi); 933 unsigned int segno, offset; 934 struct seg_entry *se; 935 bool is_cp = false; 936 937 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 938 return true; 939 940 mutex_lock(&sit_i->sentry_lock); 941 942 segno = GET_SEGNO(sbi, blkaddr); 943 se = get_seg_entry(sbi, segno); 944 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 945 946 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 947 is_cp = true; 948 949 mutex_unlock(&sit_i->sentry_lock); 950 951 return is_cp; 952 } 953 954 /* 955 * This function should be resided under the curseg_mutex lock 956 */ 957 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 958 struct f2fs_summary *sum) 959 { 960 struct curseg_info *curseg = CURSEG_I(sbi, type); 961 void *addr = curseg->sum_blk; 962 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 963 memcpy(addr, sum, sizeof(struct f2fs_summary)); 964 } 965 966 /* 967 * Calculate the number of current summary pages for writing 968 */ 969 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 970 { 971 int valid_sum_count = 0; 972 int i, sum_in_page; 973 974 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 975 if (sbi->ckpt->alloc_type[i] == SSR) 976 valid_sum_count += sbi->blocks_per_seg; 977 else { 978 if (for_ra) 979 valid_sum_count += le16_to_cpu( 980 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 981 else 982 valid_sum_count += curseg_blkoff(sbi, i); 983 } 984 } 985 986 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 987 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 988 if (valid_sum_count <= sum_in_page) 989 return 1; 990 else if ((valid_sum_count - sum_in_page) <= 991 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 992 return 2; 993 return 3; 994 } 995 996 /* 997 * Caller should put this summary page 998 */ 999 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1000 { 1001 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1002 } 1003 1004 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 1005 { 1006 struct page *page = grab_meta_page(sbi, blk_addr); 1007 void *dst = page_address(page); 1008 1009 if (src) 1010 memcpy(dst, src, PAGE_SIZE); 1011 else 1012 memset(dst, 0, PAGE_SIZE); 1013 set_page_dirty(page); 1014 f2fs_put_page(page, 1); 1015 } 1016 1017 static void write_sum_page(struct f2fs_sb_info *sbi, 1018 struct f2fs_summary_block *sum_blk, block_t blk_addr) 1019 { 1020 update_meta_page(sbi, (void *)sum_blk, blk_addr); 1021 } 1022 1023 static void write_current_sum_page(struct f2fs_sb_info *sbi, 1024 int type, block_t blk_addr) 1025 { 1026 struct curseg_info *curseg = CURSEG_I(sbi, type); 1027 struct page *page = grab_meta_page(sbi, blk_addr); 1028 struct f2fs_summary_block *src = curseg->sum_blk; 1029 struct f2fs_summary_block *dst; 1030 1031 dst = (struct f2fs_summary_block *)page_address(page); 1032 1033 mutex_lock(&curseg->curseg_mutex); 1034 1035 down_read(&curseg->journal_rwsem); 1036 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 1037 up_read(&curseg->journal_rwsem); 1038 1039 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 1040 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 1041 1042 mutex_unlock(&curseg->curseg_mutex); 1043 1044 set_page_dirty(page); 1045 f2fs_put_page(page, 1); 1046 } 1047 1048 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 1049 { 1050 struct curseg_info *curseg = CURSEG_I(sbi, type); 1051 unsigned int segno = curseg->segno + 1; 1052 struct free_segmap_info *free_i = FREE_I(sbi); 1053 1054 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 1055 return !test_bit(segno, free_i->free_segmap); 1056 return 0; 1057 } 1058 1059 /* 1060 * Find a new segment from the free segments bitmap to right order 1061 * This function should be returned with success, otherwise BUG 1062 */ 1063 static void get_new_segment(struct f2fs_sb_info *sbi, 1064 unsigned int *newseg, bool new_sec, int dir) 1065 { 1066 struct free_segmap_info *free_i = FREE_I(sbi); 1067 unsigned int segno, secno, zoneno; 1068 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1069 unsigned int hint = *newseg / sbi->segs_per_sec; 1070 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 1071 unsigned int left_start = hint; 1072 bool init = true; 1073 int go_left = 0; 1074 int i; 1075 1076 spin_lock(&free_i->segmap_lock); 1077 1078 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1079 segno = find_next_zero_bit(free_i->free_segmap, 1080 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 1081 if (segno < (hint + 1) * sbi->segs_per_sec) 1082 goto got_it; 1083 } 1084 find_other_zone: 1085 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1086 if (secno >= MAIN_SECS(sbi)) { 1087 if (dir == ALLOC_RIGHT) { 1088 secno = find_next_zero_bit(free_i->free_secmap, 1089 MAIN_SECS(sbi), 0); 1090 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1091 } else { 1092 go_left = 1; 1093 left_start = hint - 1; 1094 } 1095 } 1096 if (go_left == 0) 1097 goto skip_left; 1098 1099 while (test_bit(left_start, free_i->free_secmap)) { 1100 if (left_start > 0) { 1101 left_start--; 1102 continue; 1103 } 1104 left_start = find_next_zero_bit(free_i->free_secmap, 1105 MAIN_SECS(sbi), 0); 1106 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1107 break; 1108 } 1109 secno = left_start; 1110 skip_left: 1111 hint = secno; 1112 segno = secno * sbi->segs_per_sec; 1113 zoneno = secno / sbi->secs_per_zone; 1114 1115 /* give up on finding another zone */ 1116 if (!init) 1117 goto got_it; 1118 if (sbi->secs_per_zone == 1) 1119 goto got_it; 1120 if (zoneno == old_zoneno) 1121 goto got_it; 1122 if (dir == ALLOC_LEFT) { 1123 if (!go_left && zoneno + 1 >= total_zones) 1124 goto got_it; 1125 if (go_left && zoneno == 0) 1126 goto got_it; 1127 } 1128 for (i = 0; i < NR_CURSEG_TYPE; i++) 1129 if (CURSEG_I(sbi, i)->zone == zoneno) 1130 break; 1131 1132 if (i < NR_CURSEG_TYPE) { 1133 /* zone is in user, try another */ 1134 if (go_left) 1135 hint = zoneno * sbi->secs_per_zone - 1; 1136 else if (zoneno + 1 >= total_zones) 1137 hint = 0; 1138 else 1139 hint = (zoneno + 1) * sbi->secs_per_zone; 1140 init = false; 1141 goto find_other_zone; 1142 } 1143 got_it: 1144 /* set it as dirty segment in free segmap */ 1145 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1146 __set_inuse(sbi, segno); 1147 *newseg = segno; 1148 spin_unlock(&free_i->segmap_lock); 1149 } 1150 1151 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1152 { 1153 struct curseg_info *curseg = CURSEG_I(sbi, type); 1154 struct summary_footer *sum_footer; 1155 1156 curseg->segno = curseg->next_segno; 1157 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1158 curseg->next_blkoff = 0; 1159 curseg->next_segno = NULL_SEGNO; 1160 1161 sum_footer = &(curseg->sum_blk->footer); 1162 memset(sum_footer, 0, sizeof(struct summary_footer)); 1163 if (IS_DATASEG(type)) 1164 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1165 if (IS_NODESEG(type)) 1166 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1167 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1168 } 1169 1170 /* 1171 * Allocate a current working segment. 1172 * This function always allocates a free segment in LFS manner. 1173 */ 1174 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1175 { 1176 struct curseg_info *curseg = CURSEG_I(sbi, type); 1177 unsigned int segno = curseg->segno; 1178 int dir = ALLOC_LEFT; 1179 1180 write_sum_page(sbi, curseg->sum_blk, 1181 GET_SUM_BLOCK(sbi, segno)); 1182 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1183 dir = ALLOC_RIGHT; 1184 1185 if (test_opt(sbi, NOHEAP)) 1186 dir = ALLOC_RIGHT; 1187 1188 get_new_segment(sbi, &segno, new_sec, dir); 1189 curseg->next_segno = segno; 1190 reset_curseg(sbi, type, 1); 1191 curseg->alloc_type = LFS; 1192 } 1193 1194 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1195 struct curseg_info *seg, block_t start) 1196 { 1197 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1198 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1199 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1200 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1201 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1202 int i, pos; 1203 1204 for (i = 0; i < entries; i++) 1205 target_map[i] = ckpt_map[i] | cur_map[i]; 1206 1207 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1208 1209 seg->next_blkoff = pos; 1210 } 1211 1212 /* 1213 * If a segment is written by LFS manner, next block offset is just obtained 1214 * by increasing the current block offset. However, if a segment is written by 1215 * SSR manner, next block offset obtained by calling __next_free_blkoff 1216 */ 1217 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1218 struct curseg_info *seg) 1219 { 1220 if (seg->alloc_type == SSR) 1221 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1222 else 1223 seg->next_blkoff++; 1224 } 1225 1226 /* 1227 * This function always allocates a used segment(from dirty seglist) by SSR 1228 * manner, so it should recover the existing segment information of valid blocks 1229 */ 1230 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1231 { 1232 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1233 struct curseg_info *curseg = CURSEG_I(sbi, type); 1234 unsigned int new_segno = curseg->next_segno; 1235 struct f2fs_summary_block *sum_node; 1236 struct page *sum_page; 1237 1238 write_sum_page(sbi, curseg->sum_blk, 1239 GET_SUM_BLOCK(sbi, curseg->segno)); 1240 __set_test_and_inuse(sbi, new_segno); 1241 1242 mutex_lock(&dirty_i->seglist_lock); 1243 __remove_dirty_segment(sbi, new_segno, PRE); 1244 __remove_dirty_segment(sbi, new_segno, DIRTY); 1245 mutex_unlock(&dirty_i->seglist_lock); 1246 1247 reset_curseg(sbi, type, 1); 1248 curseg->alloc_type = SSR; 1249 __next_free_blkoff(sbi, curseg, 0); 1250 1251 if (reuse) { 1252 sum_page = get_sum_page(sbi, new_segno); 1253 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1254 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1255 f2fs_put_page(sum_page, 1); 1256 } 1257 } 1258 1259 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1260 { 1261 struct curseg_info *curseg = CURSEG_I(sbi, type); 1262 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1263 1264 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0, 0)) 1265 return v_ops->get_victim(sbi, 1266 &(curseg)->next_segno, BG_GC, type, SSR); 1267 1268 /* For data segments, let's do SSR more intensively */ 1269 for (; type >= CURSEG_HOT_DATA; type--) 1270 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1271 BG_GC, type, SSR)) 1272 return 1; 1273 return 0; 1274 } 1275 1276 /* 1277 * flush out current segment and replace it with new segment 1278 * This function should be returned with success, otherwise BUG 1279 */ 1280 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1281 int type, bool force) 1282 { 1283 struct curseg_info *curseg = CURSEG_I(sbi, type); 1284 1285 if (force) 1286 new_curseg(sbi, type, true); 1287 else if (type == CURSEG_WARM_NODE) 1288 new_curseg(sbi, type, false); 1289 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1290 new_curseg(sbi, type, false); 1291 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1292 change_curseg(sbi, type, true); 1293 else 1294 new_curseg(sbi, type, false); 1295 1296 stat_inc_seg_type(sbi, curseg); 1297 } 1298 1299 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) 1300 { 1301 struct curseg_info *curseg = CURSEG_I(sbi, type); 1302 unsigned int old_segno; 1303 1304 old_segno = curseg->segno; 1305 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 1306 locate_dirty_segment(sbi, old_segno); 1307 } 1308 1309 void allocate_new_segments(struct f2fs_sb_info *sbi) 1310 { 1311 int i; 1312 1313 if (test_opt(sbi, LFS)) 1314 return; 1315 1316 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 1317 __allocate_new_segments(sbi, i); 1318 } 1319 1320 static const struct segment_allocation default_salloc_ops = { 1321 .allocate_segment = allocate_segment_by_default, 1322 }; 1323 1324 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1325 { 1326 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1327 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1328 unsigned int start_segno, end_segno; 1329 struct cp_control cpc; 1330 int err = 0; 1331 1332 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1333 return -EINVAL; 1334 1335 cpc.trimmed = 0; 1336 if (end <= MAIN_BLKADDR(sbi)) 1337 goto out; 1338 1339 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1340 f2fs_msg(sbi->sb, KERN_WARNING, 1341 "Found FS corruption, run fsck to fix."); 1342 goto out; 1343 } 1344 1345 /* start/end segment number in main_area */ 1346 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1347 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1348 GET_SEGNO(sbi, end); 1349 cpc.reason = CP_DISCARD; 1350 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1351 1352 /* do checkpoint to issue discard commands safely */ 1353 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1354 cpc.trim_start = start_segno; 1355 1356 if (sbi->discard_blks == 0) 1357 break; 1358 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1359 cpc.trim_end = end_segno; 1360 else 1361 cpc.trim_end = min_t(unsigned int, 1362 rounddown(start_segno + 1363 BATCHED_TRIM_SEGMENTS(sbi), 1364 sbi->segs_per_sec) - 1, end_segno); 1365 1366 mutex_lock(&sbi->gc_mutex); 1367 err = write_checkpoint(sbi, &cpc); 1368 mutex_unlock(&sbi->gc_mutex); 1369 if (err) 1370 break; 1371 1372 schedule(); 1373 } 1374 out: 1375 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1376 return err; 1377 } 1378 1379 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1380 { 1381 struct curseg_info *curseg = CURSEG_I(sbi, type); 1382 if (curseg->next_blkoff < sbi->blocks_per_seg) 1383 return true; 1384 return false; 1385 } 1386 1387 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1388 { 1389 if (p_type == DATA) 1390 return CURSEG_HOT_DATA; 1391 else 1392 return CURSEG_HOT_NODE; 1393 } 1394 1395 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1396 { 1397 if (p_type == DATA) { 1398 struct inode *inode = page->mapping->host; 1399 1400 if (S_ISDIR(inode->i_mode)) 1401 return CURSEG_HOT_DATA; 1402 else 1403 return CURSEG_COLD_DATA; 1404 } else { 1405 if (IS_DNODE(page) && is_cold_node(page)) 1406 return CURSEG_WARM_NODE; 1407 else 1408 return CURSEG_COLD_NODE; 1409 } 1410 } 1411 1412 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1413 { 1414 if (p_type == DATA) { 1415 struct inode *inode = page->mapping->host; 1416 1417 if (S_ISDIR(inode->i_mode)) 1418 return CURSEG_HOT_DATA; 1419 else if (is_cold_data(page) || file_is_cold(inode)) 1420 return CURSEG_COLD_DATA; 1421 else 1422 return CURSEG_WARM_DATA; 1423 } else { 1424 if (IS_DNODE(page)) 1425 return is_cold_node(page) ? CURSEG_WARM_NODE : 1426 CURSEG_HOT_NODE; 1427 else 1428 return CURSEG_COLD_NODE; 1429 } 1430 } 1431 1432 static int __get_segment_type(struct page *page, enum page_type p_type) 1433 { 1434 switch (F2FS_P_SB(page)->active_logs) { 1435 case 2: 1436 return __get_segment_type_2(page, p_type); 1437 case 4: 1438 return __get_segment_type_4(page, p_type); 1439 } 1440 /* NR_CURSEG_TYPE(6) logs by default */ 1441 f2fs_bug_on(F2FS_P_SB(page), 1442 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1443 return __get_segment_type_6(page, p_type); 1444 } 1445 1446 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1447 block_t old_blkaddr, block_t *new_blkaddr, 1448 struct f2fs_summary *sum, int type) 1449 { 1450 struct sit_info *sit_i = SIT_I(sbi); 1451 struct curseg_info *curseg; 1452 bool direct_io = (type == CURSEG_DIRECT_IO); 1453 1454 type = direct_io ? CURSEG_WARM_DATA : type; 1455 1456 curseg = CURSEG_I(sbi, type); 1457 1458 mutex_lock(&curseg->curseg_mutex); 1459 mutex_lock(&sit_i->sentry_lock); 1460 1461 /* direct_io'ed data is aligned to the segment for better performance */ 1462 if (direct_io && curseg->next_blkoff && 1463 !has_not_enough_free_secs(sbi, 0, 0)) 1464 __allocate_new_segments(sbi, type); 1465 1466 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1467 1468 /* 1469 * __add_sum_entry should be resided under the curseg_mutex 1470 * because, this function updates a summary entry in the 1471 * current summary block. 1472 */ 1473 __add_sum_entry(sbi, type, sum); 1474 1475 __refresh_next_blkoff(sbi, curseg); 1476 1477 stat_inc_block_count(sbi, curseg); 1478 1479 if (!__has_curseg_space(sbi, type)) 1480 sit_i->s_ops->allocate_segment(sbi, type, false); 1481 /* 1482 * SIT information should be updated before segment allocation, 1483 * since SSR needs latest valid block information. 1484 */ 1485 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1486 1487 mutex_unlock(&sit_i->sentry_lock); 1488 1489 if (page && IS_NODESEG(type)) 1490 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1491 1492 mutex_unlock(&curseg->curseg_mutex); 1493 } 1494 1495 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1496 { 1497 int type = __get_segment_type(fio->page, fio->type); 1498 1499 if (fio->type == NODE || fio->type == DATA) 1500 mutex_lock(&fio->sbi->wio_mutex[fio->type]); 1501 1502 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1503 &fio->new_blkaddr, sum, type); 1504 1505 /* writeout dirty page into bdev */ 1506 f2fs_submit_page_mbio(fio); 1507 1508 if (fio->type == NODE || fio->type == DATA) 1509 mutex_unlock(&fio->sbi->wio_mutex[fio->type]); 1510 } 1511 1512 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1513 { 1514 struct f2fs_io_info fio = { 1515 .sbi = sbi, 1516 .type = META, 1517 .op = REQ_OP_WRITE, 1518 .op_flags = WRITE_SYNC | REQ_META | REQ_PRIO, 1519 .old_blkaddr = page->index, 1520 .new_blkaddr = page->index, 1521 .page = page, 1522 .encrypted_page = NULL, 1523 }; 1524 1525 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1526 fio.op_flags &= ~REQ_META; 1527 1528 set_page_writeback(page); 1529 f2fs_submit_page_mbio(&fio); 1530 } 1531 1532 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1533 { 1534 struct f2fs_summary sum; 1535 1536 set_summary(&sum, nid, 0, 0); 1537 do_write_page(&sum, fio); 1538 } 1539 1540 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1541 { 1542 struct f2fs_sb_info *sbi = fio->sbi; 1543 struct f2fs_summary sum; 1544 struct node_info ni; 1545 1546 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1547 get_node_info(sbi, dn->nid, &ni); 1548 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1549 do_write_page(&sum, fio); 1550 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1551 } 1552 1553 void rewrite_data_page(struct f2fs_io_info *fio) 1554 { 1555 fio->new_blkaddr = fio->old_blkaddr; 1556 stat_inc_inplace_blocks(fio->sbi); 1557 f2fs_submit_page_mbio(fio); 1558 } 1559 1560 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1561 block_t old_blkaddr, block_t new_blkaddr, 1562 bool recover_curseg, bool recover_newaddr) 1563 { 1564 struct sit_info *sit_i = SIT_I(sbi); 1565 struct curseg_info *curseg; 1566 unsigned int segno, old_cursegno; 1567 struct seg_entry *se; 1568 int type; 1569 unsigned short old_blkoff; 1570 1571 segno = GET_SEGNO(sbi, new_blkaddr); 1572 se = get_seg_entry(sbi, segno); 1573 type = se->type; 1574 1575 if (!recover_curseg) { 1576 /* for recovery flow */ 1577 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1578 if (old_blkaddr == NULL_ADDR) 1579 type = CURSEG_COLD_DATA; 1580 else 1581 type = CURSEG_WARM_DATA; 1582 } 1583 } else { 1584 if (!IS_CURSEG(sbi, segno)) 1585 type = CURSEG_WARM_DATA; 1586 } 1587 1588 curseg = CURSEG_I(sbi, type); 1589 1590 mutex_lock(&curseg->curseg_mutex); 1591 mutex_lock(&sit_i->sentry_lock); 1592 1593 old_cursegno = curseg->segno; 1594 old_blkoff = curseg->next_blkoff; 1595 1596 /* change the current segment */ 1597 if (segno != curseg->segno) { 1598 curseg->next_segno = segno; 1599 change_curseg(sbi, type, true); 1600 } 1601 1602 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1603 __add_sum_entry(sbi, type, sum); 1604 1605 if (!recover_curseg || recover_newaddr) 1606 update_sit_entry(sbi, new_blkaddr, 1); 1607 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1608 update_sit_entry(sbi, old_blkaddr, -1); 1609 1610 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1611 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1612 1613 locate_dirty_segment(sbi, old_cursegno); 1614 1615 if (recover_curseg) { 1616 if (old_cursegno != curseg->segno) { 1617 curseg->next_segno = old_cursegno; 1618 change_curseg(sbi, type, true); 1619 } 1620 curseg->next_blkoff = old_blkoff; 1621 } 1622 1623 mutex_unlock(&sit_i->sentry_lock); 1624 mutex_unlock(&curseg->curseg_mutex); 1625 } 1626 1627 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1628 block_t old_addr, block_t new_addr, 1629 unsigned char version, bool recover_curseg, 1630 bool recover_newaddr) 1631 { 1632 struct f2fs_summary sum; 1633 1634 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1635 1636 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1637 recover_curseg, recover_newaddr); 1638 1639 f2fs_update_data_blkaddr(dn, new_addr); 1640 } 1641 1642 void f2fs_wait_on_page_writeback(struct page *page, 1643 enum page_type type, bool ordered) 1644 { 1645 if (PageWriteback(page)) { 1646 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1647 1648 f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, type, WRITE); 1649 if (ordered) 1650 wait_on_page_writeback(page); 1651 else 1652 wait_for_stable_page(page); 1653 } 1654 } 1655 1656 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1657 block_t blkaddr) 1658 { 1659 struct page *cpage; 1660 1661 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1662 return; 1663 1664 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1665 if (cpage) { 1666 f2fs_wait_on_page_writeback(cpage, DATA, true); 1667 f2fs_put_page(cpage, 1); 1668 } 1669 } 1670 1671 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1672 { 1673 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1674 struct curseg_info *seg_i; 1675 unsigned char *kaddr; 1676 struct page *page; 1677 block_t start; 1678 int i, j, offset; 1679 1680 start = start_sum_block(sbi); 1681 1682 page = get_meta_page(sbi, start++); 1683 kaddr = (unsigned char *)page_address(page); 1684 1685 /* Step 1: restore nat cache */ 1686 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1687 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 1688 1689 /* Step 2: restore sit cache */ 1690 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1691 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 1692 offset = 2 * SUM_JOURNAL_SIZE; 1693 1694 /* Step 3: restore summary entries */ 1695 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1696 unsigned short blk_off; 1697 unsigned int segno; 1698 1699 seg_i = CURSEG_I(sbi, i); 1700 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1701 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1702 seg_i->next_segno = segno; 1703 reset_curseg(sbi, i, 0); 1704 seg_i->alloc_type = ckpt->alloc_type[i]; 1705 seg_i->next_blkoff = blk_off; 1706 1707 if (seg_i->alloc_type == SSR) 1708 blk_off = sbi->blocks_per_seg; 1709 1710 for (j = 0; j < blk_off; j++) { 1711 struct f2fs_summary *s; 1712 s = (struct f2fs_summary *)(kaddr + offset); 1713 seg_i->sum_blk->entries[j] = *s; 1714 offset += SUMMARY_SIZE; 1715 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 1716 SUM_FOOTER_SIZE) 1717 continue; 1718 1719 f2fs_put_page(page, 1); 1720 page = NULL; 1721 1722 page = get_meta_page(sbi, start++); 1723 kaddr = (unsigned char *)page_address(page); 1724 offset = 0; 1725 } 1726 } 1727 f2fs_put_page(page, 1); 1728 return 0; 1729 } 1730 1731 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1732 { 1733 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1734 struct f2fs_summary_block *sum; 1735 struct curseg_info *curseg; 1736 struct page *new; 1737 unsigned short blk_off; 1738 unsigned int segno = 0; 1739 block_t blk_addr = 0; 1740 1741 /* get segment number and block addr */ 1742 if (IS_DATASEG(type)) { 1743 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1744 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1745 CURSEG_HOT_DATA]); 1746 if (__exist_node_summaries(sbi)) 1747 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1748 else 1749 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1750 } else { 1751 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1752 CURSEG_HOT_NODE]); 1753 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1754 CURSEG_HOT_NODE]); 1755 if (__exist_node_summaries(sbi)) 1756 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1757 type - CURSEG_HOT_NODE); 1758 else 1759 blk_addr = GET_SUM_BLOCK(sbi, segno); 1760 } 1761 1762 new = get_meta_page(sbi, blk_addr); 1763 sum = (struct f2fs_summary_block *)page_address(new); 1764 1765 if (IS_NODESEG(type)) { 1766 if (__exist_node_summaries(sbi)) { 1767 struct f2fs_summary *ns = &sum->entries[0]; 1768 int i; 1769 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1770 ns->version = 0; 1771 ns->ofs_in_node = 0; 1772 } 1773 } else { 1774 int err; 1775 1776 err = restore_node_summary(sbi, segno, sum); 1777 if (err) { 1778 f2fs_put_page(new, 1); 1779 return err; 1780 } 1781 } 1782 } 1783 1784 /* set uncompleted segment to curseg */ 1785 curseg = CURSEG_I(sbi, type); 1786 mutex_lock(&curseg->curseg_mutex); 1787 1788 /* update journal info */ 1789 down_write(&curseg->journal_rwsem); 1790 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 1791 up_write(&curseg->journal_rwsem); 1792 1793 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 1794 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 1795 curseg->next_segno = segno; 1796 reset_curseg(sbi, type, 0); 1797 curseg->alloc_type = ckpt->alloc_type[type]; 1798 curseg->next_blkoff = blk_off; 1799 mutex_unlock(&curseg->curseg_mutex); 1800 f2fs_put_page(new, 1); 1801 return 0; 1802 } 1803 1804 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1805 { 1806 int type = CURSEG_HOT_DATA; 1807 int err; 1808 1809 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 1810 int npages = npages_for_summary_flush(sbi, true); 1811 1812 if (npages >= 2) 1813 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1814 META_CP, true); 1815 1816 /* restore for compacted data summary */ 1817 if (read_compacted_summaries(sbi)) 1818 return -EINVAL; 1819 type = CURSEG_HOT_NODE; 1820 } 1821 1822 if (__exist_node_summaries(sbi)) 1823 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1824 NR_CURSEG_TYPE - type, META_CP, true); 1825 1826 for (; type <= CURSEG_COLD_NODE; type++) { 1827 err = read_normal_summaries(sbi, type); 1828 if (err) 1829 return err; 1830 } 1831 1832 return 0; 1833 } 1834 1835 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1836 { 1837 struct page *page; 1838 unsigned char *kaddr; 1839 struct f2fs_summary *summary; 1840 struct curseg_info *seg_i; 1841 int written_size = 0; 1842 int i, j; 1843 1844 page = grab_meta_page(sbi, blkaddr++); 1845 kaddr = (unsigned char *)page_address(page); 1846 1847 /* Step 1: write nat cache */ 1848 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1849 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 1850 written_size += SUM_JOURNAL_SIZE; 1851 1852 /* Step 2: write sit cache */ 1853 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1854 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 1855 written_size += SUM_JOURNAL_SIZE; 1856 1857 /* Step 3: write summary entries */ 1858 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1859 unsigned short blkoff; 1860 seg_i = CURSEG_I(sbi, i); 1861 if (sbi->ckpt->alloc_type[i] == SSR) 1862 blkoff = sbi->blocks_per_seg; 1863 else 1864 blkoff = curseg_blkoff(sbi, i); 1865 1866 for (j = 0; j < blkoff; j++) { 1867 if (!page) { 1868 page = grab_meta_page(sbi, blkaddr++); 1869 kaddr = (unsigned char *)page_address(page); 1870 written_size = 0; 1871 } 1872 summary = (struct f2fs_summary *)(kaddr + written_size); 1873 *summary = seg_i->sum_blk->entries[j]; 1874 written_size += SUMMARY_SIZE; 1875 1876 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 1877 SUM_FOOTER_SIZE) 1878 continue; 1879 1880 set_page_dirty(page); 1881 f2fs_put_page(page, 1); 1882 page = NULL; 1883 } 1884 } 1885 if (page) { 1886 set_page_dirty(page); 1887 f2fs_put_page(page, 1); 1888 } 1889 } 1890 1891 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1892 block_t blkaddr, int type) 1893 { 1894 int i, end; 1895 if (IS_DATASEG(type)) 1896 end = type + NR_CURSEG_DATA_TYPE; 1897 else 1898 end = type + NR_CURSEG_NODE_TYPE; 1899 1900 for (i = type; i < end; i++) 1901 write_current_sum_page(sbi, i, blkaddr + (i - type)); 1902 } 1903 1904 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1905 { 1906 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 1907 write_compacted_summaries(sbi, start_blk); 1908 else 1909 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1910 } 1911 1912 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1913 { 1914 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1915 } 1916 1917 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 1918 unsigned int val, int alloc) 1919 { 1920 int i; 1921 1922 if (type == NAT_JOURNAL) { 1923 for (i = 0; i < nats_in_cursum(journal); i++) { 1924 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 1925 return i; 1926 } 1927 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 1928 return update_nats_in_cursum(journal, 1); 1929 } else if (type == SIT_JOURNAL) { 1930 for (i = 0; i < sits_in_cursum(journal); i++) 1931 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 1932 return i; 1933 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 1934 return update_sits_in_cursum(journal, 1); 1935 } 1936 return -1; 1937 } 1938 1939 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1940 unsigned int segno) 1941 { 1942 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1943 } 1944 1945 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1946 unsigned int start) 1947 { 1948 struct sit_info *sit_i = SIT_I(sbi); 1949 struct page *src_page, *dst_page; 1950 pgoff_t src_off, dst_off; 1951 void *src_addr, *dst_addr; 1952 1953 src_off = current_sit_addr(sbi, start); 1954 dst_off = next_sit_addr(sbi, src_off); 1955 1956 /* get current sit block page without lock */ 1957 src_page = get_meta_page(sbi, src_off); 1958 dst_page = grab_meta_page(sbi, dst_off); 1959 f2fs_bug_on(sbi, PageDirty(src_page)); 1960 1961 src_addr = page_address(src_page); 1962 dst_addr = page_address(dst_page); 1963 memcpy(dst_addr, src_addr, PAGE_SIZE); 1964 1965 set_page_dirty(dst_page); 1966 f2fs_put_page(src_page, 1); 1967 1968 set_to_next_sit(sit_i, start); 1969 1970 return dst_page; 1971 } 1972 1973 static struct sit_entry_set *grab_sit_entry_set(void) 1974 { 1975 struct sit_entry_set *ses = 1976 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 1977 1978 ses->entry_cnt = 0; 1979 INIT_LIST_HEAD(&ses->set_list); 1980 return ses; 1981 } 1982 1983 static void release_sit_entry_set(struct sit_entry_set *ses) 1984 { 1985 list_del(&ses->set_list); 1986 kmem_cache_free(sit_entry_set_slab, ses); 1987 } 1988 1989 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1990 struct list_head *head) 1991 { 1992 struct sit_entry_set *next = ses; 1993 1994 if (list_is_last(&ses->set_list, head)) 1995 return; 1996 1997 list_for_each_entry_continue(next, head, set_list) 1998 if (ses->entry_cnt <= next->entry_cnt) 1999 break; 2000 2001 list_move_tail(&ses->set_list, &next->set_list); 2002 } 2003 2004 static void add_sit_entry(unsigned int segno, struct list_head *head) 2005 { 2006 struct sit_entry_set *ses; 2007 unsigned int start_segno = START_SEGNO(segno); 2008 2009 list_for_each_entry(ses, head, set_list) { 2010 if (ses->start_segno == start_segno) { 2011 ses->entry_cnt++; 2012 adjust_sit_entry_set(ses, head); 2013 return; 2014 } 2015 } 2016 2017 ses = grab_sit_entry_set(); 2018 2019 ses->start_segno = start_segno; 2020 ses->entry_cnt++; 2021 list_add(&ses->set_list, head); 2022 } 2023 2024 static void add_sits_in_set(struct f2fs_sb_info *sbi) 2025 { 2026 struct f2fs_sm_info *sm_info = SM_I(sbi); 2027 struct list_head *set_list = &sm_info->sit_entry_set; 2028 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 2029 unsigned int segno; 2030 2031 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 2032 add_sit_entry(segno, set_list); 2033 } 2034 2035 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 2036 { 2037 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2038 struct f2fs_journal *journal = curseg->journal; 2039 int i; 2040 2041 down_write(&curseg->journal_rwsem); 2042 for (i = 0; i < sits_in_cursum(journal); i++) { 2043 unsigned int segno; 2044 bool dirtied; 2045 2046 segno = le32_to_cpu(segno_in_journal(journal, i)); 2047 dirtied = __mark_sit_entry_dirty(sbi, segno); 2048 2049 if (!dirtied) 2050 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 2051 } 2052 update_sits_in_cursum(journal, -i); 2053 up_write(&curseg->journal_rwsem); 2054 } 2055 2056 /* 2057 * CP calls this function, which flushes SIT entries including sit_journal, 2058 * and moves prefree segs to free segs. 2059 */ 2060 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2061 { 2062 struct sit_info *sit_i = SIT_I(sbi); 2063 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 2064 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2065 struct f2fs_journal *journal = curseg->journal; 2066 struct sit_entry_set *ses, *tmp; 2067 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2068 bool to_journal = true; 2069 struct seg_entry *se; 2070 2071 mutex_lock(&sit_i->sentry_lock); 2072 2073 if (!sit_i->dirty_sentries) 2074 goto out; 2075 2076 /* 2077 * add and account sit entries of dirty bitmap in sit entry 2078 * set temporarily 2079 */ 2080 add_sits_in_set(sbi); 2081 2082 /* 2083 * if there are no enough space in journal to store dirty sit 2084 * entries, remove all entries from journal and add and account 2085 * them in sit entry set. 2086 */ 2087 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2088 remove_sits_in_journal(sbi); 2089 2090 /* 2091 * there are two steps to flush sit entries: 2092 * #1, flush sit entries to journal in current cold data summary block. 2093 * #2, flush sit entries to sit page. 2094 */ 2095 list_for_each_entry_safe(ses, tmp, head, set_list) { 2096 struct page *page = NULL; 2097 struct f2fs_sit_block *raw_sit = NULL; 2098 unsigned int start_segno = ses->start_segno; 2099 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2100 (unsigned long)MAIN_SEGS(sbi)); 2101 unsigned int segno = start_segno; 2102 2103 if (to_journal && 2104 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2105 to_journal = false; 2106 2107 if (to_journal) { 2108 down_write(&curseg->journal_rwsem); 2109 } else { 2110 page = get_next_sit_page(sbi, start_segno); 2111 raw_sit = page_address(page); 2112 } 2113 2114 /* flush dirty sit entries in region of current sit set */ 2115 for_each_set_bit_from(segno, bitmap, end) { 2116 int offset, sit_offset; 2117 2118 se = get_seg_entry(sbi, segno); 2119 2120 /* add discard candidates */ 2121 if (cpc->reason != CP_DISCARD) { 2122 cpc->trim_start = segno; 2123 add_discard_addrs(sbi, cpc); 2124 } 2125 2126 if (to_journal) { 2127 offset = lookup_journal_in_cursum(journal, 2128 SIT_JOURNAL, segno, 1); 2129 f2fs_bug_on(sbi, offset < 0); 2130 segno_in_journal(journal, offset) = 2131 cpu_to_le32(segno); 2132 seg_info_to_raw_sit(se, 2133 &sit_in_journal(journal, offset)); 2134 } else { 2135 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2136 seg_info_to_raw_sit(se, 2137 &raw_sit->entries[sit_offset]); 2138 } 2139 2140 __clear_bit(segno, bitmap); 2141 sit_i->dirty_sentries--; 2142 ses->entry_cnt--; 2143 } 2144 2145 if (to_journal) 2146 up_write(&curseg->journal_rwsem); 2147 else 2148 f2fs_put_page(page, 1); 2149 2150 f2fs_bug_on(sbi, ses->entry_cnt); 2151 release_sit_entry_set(ses); 2152 } 2153 2154 f2fs_bug_on(sbi, !list_empty(head)); 2155 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2156 out: 2157 if (cpc->reason == CP_DISCARD) { 2158 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2159 add_discard_addrs(sbi, cpc); 2160 } 2161 mutex_unlock(&sit_i->sentry_lock); 2162 2163 set_prefree_as_free_segments(sbi); 2164 } 2165 2166 static int build_sit_info(struct f2fs_sb_info *sbi) 2167 { 2168 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2169 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2170 struct sit_info *sit_i; 2171 unsigned int sit_segs, start; 2172 char *src_bitmap, *dst_bitmap; 2173 unsigned int bitmap_size; 2174 2175 /* allocate memory for SIT information */ 2176 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2177 if (!sit_i) 2178 return -ENOMEM; 2179 2180 SM_I(sbi)->sit_info = sit_i; 2181 2182 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2183 sizeof(struct seg_entry), GFP_KERNEL); 2184 if (!sit_i->sentries) 2185 return -ENOMEM; 2186 2187 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2188 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2189 if (!sit_i->dirty_sentries_bitmap) 2190 return -ENOMEM; 2191 2192 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2193 sit_i->sentries[start].cur_valid_map 2194 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2195 sit_i->sentries[start].ckpt_valid_map 2196 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2197 if (!sit_i->sentries[start].cur_valid_map || 2198 !sit_i->sentries[start].ckpt_valid_map) 2199 return -ENOMEM; 2200 2201 if (f2fs_discard_en(sbi)) { 2202 sit_i->sentries[start].discard_map 2203 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2204 if (!sit_i->sentries[start].discard_map) 2205 return -ENOMEM; 2206 } 2207 } 2208 2209 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2210 if (!sit_i->tmp_map) 2211 return -ENOMEM; 2212 2213 if (sbi->segs_per_sec > 1) { 2214 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2215 sizeof(struct sec_entry), GFP_KERNEL); 2216 if (!sit_i->sec_entries) 2217 return -ENOMEM; 2218 } 2219 2220 /* get information related with SIT */ 2221 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2222 2223 /* setup SIT bitmap from ckeckpoint pack */ 2224 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2225 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2226 2227 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2228 if (!dst_bitmap) 2229 return -ENOMEM; 2230 2231 /* init SIT information */ 2232 sit_i->s_ops = &default_salloc_ops; 2233 2234 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2235 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2236 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 2237 sit_i->sit_bitmap = dst_bitmap; 2238 sit_i->bitmap_size = bitmap_size; 2239 sit_i->dirty_sentries = 0; 2240 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2241 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2242 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2243 mutex_init(&sit_i->sentry_lock); 2244 return 0; 2245 } 2246 2247 static int build_free_segmap(struct f2fs_sb_info *sbi) 2248 { 2249 struct free_segmap_info *free_i; 2250 unsigned int bitmap_size, sec_bitmap_size; 2251 2252 /* allocate memory for free segmap information */ 2253 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2254 if (!free_i) 2255 return -ENOMEM; 2256 2257 SM_I(sbi)->free_info = free_i; 2258 2259 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2260 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2261 if (!free_i->free_segmap) 2262 return -ENOMEM; 2263 2264 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2265 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2266 if (!free_i->free_secmap) 2267 return -ENOMEM; 2268 2269 /* set all segments as dirty temporarily */ 2270 memset(free_i->free_segmap, 0xff, bitmap_size); 2271 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2272 2273 /* init free segmap information */ 2274 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2275 free_i->free_segments = 0; 2276 free_i->free_sections = 0; 2277 spin_lock_init(&free_i->segmap_lock); 2278 return 0; 2279 } 2280 2281 static int build_curseg(struct f2fs_sb_info *sbi) 2282 { 2283 struct curseg_info *array; 2284 int i; 2285 2286 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2287 if (!array) 2288 return -ENOMEM; 2289 2290 SM_I(sbi)->curseg_array = array; 2291 2292 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2293 mutex_init(&array[i].curseg_mutex); 2294 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2295 if (!array[i].sum_blk) 2296 return -ENOMEM; 2297 init_rwsem(&array[i].journal_rwsem); 2298 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2299 GFP_KERNEL); 2300 if (!array[i].journal) 2301 return -ENOMEM; 2302 array[i].segno = NULL_SEGNO; 2303 array[i].next_blkoff = 0; 2304 } 2305 return restore_curseg_summaries(sbi); 2306 } 2307 2308 static void build_sit_entries(struct f2fs_sb_info *sbi) 2309 { 2310 struct sit_info *sit_i = SIT_I(sbi); 2311 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2312 struct f2fs_journal *journal = curseg->journal; 2313 struct seg_entry *se; 2314 struct f2fs_sit_entry sit; 2315 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2316 unsigned int i, start, end; 2317 unsigned int readed, start_blk = 0; 2318 int nrpages = MAX_BIO_BLOCKS(sbi) * 8; 2319 2320 do { 2321 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT, true); 2322 2323 start = start_blk * sit_i->sents_per_block; 2324 end = (start_blk + readed) * sit_i->sents_per_block; 2325 2326 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2327 struct f2fs_sit_block *sit_blk; 2328 struct page *page; 2329 2330 se = &sit_i->sentries[start]; 2331 page = get_current_sit_page(sbi, start); 2332 sit_blk = (struct f2fs_sit_block *)page_address(page); 2333 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2334 f2fs_put_page(page, 1); 2335 2336 check_block_count(sbi, start, &sit); 2337 seg_info_from_raw_sit(se, &sit); 2338 2339 /* build discard map only one time */ 2340 if (f2fs_discard_en(sbi)) { 2341 memcpy(se->discard_map, se->cur_valid_map, 2342 SIT_VBLOCK_MAP_SIZE); 2343 sbi->discard_blks += sbi->blocks_per_seg - 2344 se->valid_blocks; 2345 } 2346 2347 if (sbi->segs_per_sec > 1) 2348 get_sec_entry(sbi, start)->valid_blocks += 2349 se->valid_blocks; 2350 } 2351 start_blk += readed; 2352 } while (start_blk < sit_blk_cnt); 2353 2354 down_read(&curseg->journal_rwsem); 2355 for (i = 0; i < sits_in_cursum(journal); i++) { 2356 unsigned int old_valid_blocks; 2357 2358 start = le32_to_cpu(segno_in_journal(journal, i)); 2359 se = &sit_i->sentries[start]; 2360 sit = sit_in_journal(journal, i); 2361 2362 old_valid_blocks = se->valid_blocks; 2363 2364 check_block_count(sbi, start, &sit); 2365 seg_info_from_raw_sit(se, &sit); 2366 2367 if (f2fs_discard_en(sbi)) { 2368 memcpy(se->discard_map, se->cur_valid_map, 2369 SIT_VBLOCK_MAP_SIZE); 2370 sbi->discard_blks += old_valid_blocks - 2371 se->valid_blocks; 2372 } 2373 2374 if (sbi->segs_per_sec > 1) 2375 get_sec_entry(sbi, start)->valid_blocks += 2376 se->valid_blocks - old_valid_blocks; 2377 } 2378 up_read(&curseg->journal_rwsem); 2379 } 2380 2381 static void init_free_segmap(struct f2fs_sb_info *sbi) 2382 { 2383 unsigned int start; 2384 int type; 2385 2386 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2387 struct seg_entry *sentry = get_seg_entry(sbi, start); 2388 if (!sentry->valid_blocks) 2389 __set_free(sbi, start); 2390 } 2391 2392 /* set use the current segments */ 2393 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2394 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2395 __set_test_and_inuse(sbi, curseg_t->segno); 2396 } 2397 } 2398 2399 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2400 { 2401 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2402 struct free_segmap_info *free_i = FREE_I(sbi); 2403 unsigned int segno = 0, offset = 0; 2404 unsigned short valid_blocks; 2405 2406 while (1) { 2407 /* find dirty segment based on free segmap */ 2408 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2409 if (segno >= MAIN_SEGS(sbi)) 2410 break; 2411 offset = segno + 1; 2412 valid_blocks = get_valid_blocks(sbi, segno, 0); 2413 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2414 continue; 2415 if (valid_blocks > sbi->blocks_per_seg) { 2416 f2fs_bug_on(sbi, 1); 2417 continue; 2418 } 2419 mutex_lock(&dirty_i->seglist_lock); 2420 __locate_dirty_segment(sbi, segno, DIRTY); 2421 mutex_unlock(&dirty_i->seglist_lock); 2422 } 2423 } 2424 2425 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2426 { 2427 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2428 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2429 2430 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2431 if (!dirty_i->victim_secmap) 2432 return -ENOMEM; 2433 return 0; 2434 } 2435 2436 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2437 { 2438 struct dirty_seglist_info *dirty_i; 2439 unsigned int bitmap_size, i; 2440 2441 /* allocate memory for dirty segments list information */ 2442 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2443 if (!dirty_i) 2444 return -ENOMEM; 2445 2446 SM_I(sbi)->dirty_info = dirty_i; 2447 mutex_init(&dirty_i->seglist_lock); 2448 2449 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2450 2451 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2452 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2453 if (!dirty_i->dirty_segmap[i]) 2454 return -ENOMEM; 2455 } 2456 2457 init_dirty_segmap(sbi); 2458 return init_victim_secmap(sbi); 2459 } 2460 2461 /* 2462 * Update min, max modified time for cost-benefit GC algorithm 2463 */ 2464 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2465 { 2466 struct sit_info *sit_i = SIT_I(sbi); 2467 unsigned int segno; 2468 2469 mutex_lock(&sit_i->sentry_lock); 2470 2471 sit_i->min_mtime = LLONG_MAX; 2472 2473 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2474 unsigned int i; 2475 unsigned long long mtime = 0; 2476 2477 for (i = 0; i < sbi->segs_per_sec; i++) 2478 mtime += get_seg_entry(sbi, segno + i)->mtime; 2479 2480 mtime = div_u64(mtime, sbi->segs_per_sec); 2481 2482 if (sit_i->min_mtime > mtime) 2483 sit_i->min_mtime = mtime; 2484 } 2485 sit_i->max_mtime = get_mtime(sbi); 2486 mutex_unlock(&sit_i->sentry_lock); 2487 } 2488 2489 int build_segment_manager(struct f2fs_sb_info *sbi) 2490 { 2491 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2492 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2493 struct f2fs_sm_info *sm_info; 2494 int err; 2495 2496 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2497 if (!sm_info) 2498 return -ENOMEM; 2499 2500 /* init sm info */ 2501 sbi->sm_info = sm_info; 2502 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2503 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2504 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2505 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2506 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2507 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2508 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2509 sm_info->rec_prefree_segments = sm_info->main_segments * 2510 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2511 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 2512 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 2513 2514 if (!test_opt(sbi, LFS)) 2515 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2516 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2517 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2518 2519 INIT_LIST_HEAD(&sm_info->discard_list); 2520 INIT_LIST_HEAD(&sm_info->wait_list); 2521 sm_info->nr_discards = 0; 2522 sm_info->max_discards = 0; 2523 2524 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2525 2526 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2527 2528 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2529 err = create_flush_cmd_control(sbi); 2530 if (err) 2531 return err; 2532 } 2533 2534 err = build_sit_info(sbi); 2535 if (err) 2536 return err; 2537 err = build_free_segmap(sbi); 2538 if (err) 2539 return err; 2540 err = build_curseg(sbi); 2541 if (err) 2542 return err; 2543 2544 /* reinit free segmap based on SIT */ 2545 build_sit_entries(sbi); 2546 2547 init_free_segmap(sbi); 2548 err = build_dirty_segmap(sbi); 2549 if (err) 2550 return err; 2551 2552 init_min_max_mtime(sbi); 2553 return 0; 2554 } 2555 2556 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2557 enum dirty_type dirty_type) 2558 { 2559 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2560 2561 mutex_lock(&dirty_i->seglist_lock); 2562 kvfree(dirty_i->dirty_segmap[dirty_type]); 2563 dirty_i->nr_dirty[dirty_type] = 0; 2564 mutex_unlock(&dirty_i->seglist_lock); 2565 } 2566 2567 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2568 { 2569 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2570 kvfree(dirty_i->victim_secmap); 2571 } 2572 2573 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2574 { 2575 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2576 int i; 2577 2578 if (!dirty_i) 2579 return; 2580 2581 /* discard pre-free/dirty segments list */ 2582 for (i = 0; i < NR_DIRTY_TYPE; i++) 2583 discard_dirty_segmap(sbi, i); 2584 2585 destroy_victim_secmap(sbi); 2586 SM_I(sbi)->dirty_info = NULL; 2587 kfree(dirty_i); 2588 } 2589 2590 static void destroy_curseg(struct f2fs_sb_info *sbi) 2591 { 2592 struct curseg_info *array = SM_I(sbi)->curseg_array; 2593 int i; 2594 2595 if (!array) 2596 return; 2597 SM_I(sbi)->curseg_array = NULL; 2598 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2599 kfree(array[i].sum_blk); 2600 kfree(array[i].journal); 2601 } 2602 kfree(array); 2603 } 2604 2605 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2606 { 2607 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2608 if (!free_i) 2609 return; 2610 SM_I(sbi)->free_info = NULL; 2611 kvfree(free_i->free_segmap); 2612 kvfree(free_i->free_secmap); 2613 kfree(free_i); 2614 } 2615 2616 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2617 { 2618 struct sit_info *sit_i = SIT_I(sbi); 2619 unsigned int start; 2620 2621 if (!sit_i) 2622 return; 2623 2624 if (sit_i->sentries) { 2625 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2626 kfree(sit_i->sentries[start].cur_valid_map); 2627 kfree(sit_i->sentries[start].ckpt_valid_map); 2628 kfree(sit_i->sentries[start].discard_map); 2629 } 2630 } 2631 kfree(sit_i->tmp_map); 2632 2633 kvfree(sit_i->sentries); 2634 kvfree(sit_i->sec_entries); 2635 kvfree(sit_i->dirty_sentries_bitmap); 2636 2637 SM_I(sbi)->sit_info = NULL; 2638 kfree(sit_i->sit_bitmap); 2639 kfree(sit_i); 2640 } 2641 2642 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2643 { 2644 struct f2fs_sm_info *sm_info = SM_I(sbi); 2645 2646 if (!sm_info) 2647 return; 2648 destroy_flush_cmd_control(sbi); 2649 destroy_dirty_segmap(sbi); 2650 destroy_curseg(sbi); 2651 destroy_free_segmap(sbi); 2652 destroy_sit_info(sbi); 2653 sbi->sm_info = NULL; 2654 kfree(sm_info); 2655 } 2656 2657 int __init create_segment_manager_caches(void) 2658 { 2659 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2660 sizeof(struct discard_entry)); 2661 if (!discard_entry_slab) 2662 goto fail; 2663 2664 bio_entry_slab = f2fs_kmem_cache_create("bio_entry", 2665 sizeof(struct bio_entry)); 2666 if (!bio_entry_slab) 2667 goto destroy_discard_entry; 2668 2669 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2670 sizeof(struct sit_entry_set)); 2671 if (!sit_entry_set_slab) 2672 goto destroy_bio_entry; 2673 2674 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2675 sizeof(struct inmem_pages)); 2676 if (!inmem_entry_slab) 2677 goto destroy_sit_entry_set; 2678 return 0; 2679 2680 destroy_sit_entry_set: 2681 kmem_cache_destroy(sit_entry_set_slab); 2682 destroy_bio_entry: 2683 kmem_cache_destroy(bio_entry_slab); 2684 destroy_discard_entry: 2685 kmem_cache_destroy(discard_entry_slab); 2686 fail: 2687 return -ENOMEM; 2688 } 2689 2690 void destroy_segment_manager_caches(void) 2691 { 2692 kmem_cache_destroy(sit_entry_set_slab); 2693 kmem_cache_destroy(bio_entry_slab); 2694 kmem_cache_destroy(discard_entry_slab); 2695 kmem_cache_destroy(inmem_entry_slab); 2696 } 2697