1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/vmalloc.h> 18 #include <linux/swap.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *sit_entry_set_slab; 30 static struct kmem_cache *inmem_entry_slab; 31 32 /* 33 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 34 * MSB and LSB are reversed in a byte by f2fs_set_bit. 35 */ 36 static inline unsigned long __reverse_ffs(unsigned long word) 37 { 38 int num = 0; 39 40 #if BITS_PER_LONG == 64 41 if ((word & 0xffffffff) == 0) { 42 num += 32; 43 word >>= 32; 44 } 45 #endif 46 if ((word & 0xffff) == 0) { 47 num += 16; 48 word >>= 16; 49 } 50 if ((word & 0xff) == 0) { 51 num += 8; 52 word >>= 8; 53 } 54 if ((word & 0xf0) == 0) 55 num += 4; 56 else 57 word >>= 4; 58 if ((word & 0xc) == 0) 59 num += 2; 60 else 61 word >>= 2; 62 if ((word & 0x2) == 0) 63 num += 1; 64 return num; 65 } 66 67 /* 68 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 69 * f2fs_set_bit makes MSB and LSB reversed in a byte. 70 * Example: 71 * LSB <--> MSB 72 * f2fs_set_bit(0, bitmap) => 0000 0001 73 * f2fs_set_bit(7, bitmap) => 1000 0000 74 */ 75 static unsigned long __find_rev_next_bit(const unsigned long *addr, 76 unsigned long size, unsigned long offset) 77 { 78 const unsigned long *p = addr + BIT_WORD(offset); 79 unsigned long result = offset & ~(BITS_PER_LONG - 1); 80 unsigned long tmp; 81 unsigned long mask, submask; 82 unsigned long quot, rest; 83 84 if (offset >= size) 85 return size; 86 87 size -= result; 88 offset %= BITS_PER_LONG; 89 if (!offset) 90 goto aligned; 91 92 tmp = *(p++); 93 quot = (offset >> 3) << 3; 94 rest = offset & 0x7; 95 mask = ~0UL << quot; 96 submask = (unsigned char)(0xff << rest) >> rest; 97 submask <<= quot; 98 mask &= submask; 99 tmp &= mask; 100 if (size < BITS_PER_LONG) 101 goto found_first; 102 if (tmp) 103 goto found_middle; 104 105 size -= BITS_PER_LONG; 106 result += BITS_PER_LONG; 107 aligned: 108 while (size & ~(BITS_PER_LONG-1)) { 109 tmp = *(p++); 110 if (tmp) 111 goto found_middle; 112 result += BITS_PER_LONG; 113 size -= BITS_PER_LONG; 114 } 115 if (!size) 116 return result; 117 tmp = *p; 118 found_first: 119 tmp &= (~0UL >> (BITS_PER_LONG - size)); 120 if (tmp == 0UL) /* Are any bits set? */ 121 return result + size; /* Nope. */ 122 found_middle: 123 return result + __reverse_ffs(tmp); 124 } 125 126 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 127 unsigned long size, unsigned long offset) 128 { 129 const unsigned long *p = addr + BIT_WORD(offset); 130 unsigned long result = offset & ~(BITS_PER_LONG - 1); 131 unsigned long tmp; 132 unsigned long mask, submask; 133 unsigned long quot, rest; 134 135 if (offset >= size) 136 return size; 137 138 size -= result; 139 offset %= BITS_PER_LONG; 140 if (!offset) 141 goto aligned; 142 143 tmp = *(p++); 144 quot = (offset >> 3) << 3; 145 rest = offset & 0x7; 146 mask = ~(~0UL << quot); 147 submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest); 148 submask <<= quot; 149 mask += submask; 150 tmp |= mask; 151 if (size < BITS_PER_LONG) 152 goto found_first; 153 if (~tmp) 154 goto found_middle; 155 156 size -= BITS_PER_LONG; 157 result += BITS_PER_LONG; 158 aligned: 159 while (size & ~(BITS_PER_LONG - 1)) { 160 tmp = *(p++); 161 if (~tmp) 162 goto found_middle; 163 result += BITS_PER_LONG; 164 size -= BITS_PER_LONG; 165 } 166 if (!size) 167 return result; 168 tmp = *p; 169 170 found_first: 171 tmp |= ~0UL << size; 172 if (tmp == ~0UL) /* Are any bits zero? */ 173 return result + size; /* Nope. */ 174 found_middle: 175 return result + __reverse_ffz(tmp); 176 } 177 178 void register_inmem_page(struct inode *inode, struct page *page) 179 { 180 struct f2fs_inode_info *fi = F2FS_I(inode); 181 struct inmem_pages *new; 182 int err; 183 184 SetPagePrivate(page); 185 f2fs_trace_pid(page); 186 187 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 188 189 /* add atomic page indices to the list */ 190 new->page = page; 191 INIT_LIST_HEAD(&new->list); 192 retry: 193 /* increase reference count with clean state */ 194 mutex_lock(&fi->inmem_lock); 195 err = radix_tree_insert(&fi->inmem_root, page->index, new); 196 if (err == -EEXIST) { 197 mutex_unlock(&fi->inmem_lock); 198 kmem_cache_free(inmem_entry_slab, new); 199 return; 200 } else if (err) { 201 mutex_unlock(&fi->inmem_lock); 202 goto retry; 203 } 204 get_page(page); 205 list_add_tail(&new->list, &fi->inmem_pages); 206 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 207 mutex_unlock(&fi->inmem_lock); 208 209 trace_f2fs_register_inmem_page(page, INMEM); 210 } 211 212 void commit_inmem_pages(struct inode *inode, bool abort) 213 { 214 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 215 struct f2fs_inode_info *fi = F2FS_I(inode); 216 struct inmem_pages *cur, *tmp; 217 bool submit_bio = false; 218 struct f2fs_io_info fio = { 219 .type = DATA, 220 .rw = WRITE_SYNC | REQ_PRIO, 221 }; 222 223 /* 224 * The abort is true only when f2fs_evict_inode is called. 225 * Basically, the f2fs_evict_inode doesn't produce any data writes, so 226 * that we don't need to call f2fs_balance_fs. 227 * Otherwise, f2fs_gc in f2fs_balance_fs can wait forever until this 228 * inode becomes free by iget_locked in f2fs_iget. 229 */ 230 if (!abort) { 231 f2fs_balance_fs(sbi); 232 f2fs_lock_op(sbi); 233 } 234 235 mutex_lock(&fi->inmem_lock); 236 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 237 if (!abort) { 238 lock_page(cur->page); 239 if (cur->page->mapping == inode->i_mapping) { 240 f2fs_wait_on_page_writeback(cur->page, DATA); 241 if (clear_page_dirty_for_io(cur->page)) 242 inode_dec_dirty_pages(inode); 243 trace_f2fs_commit_inmem_page(cur->page, INMEM); 244 do_write_data_page(cur->page, &fio); 245 submit_bio = true; 246 } 247 f2fs_put_page(cur->page, 1); 248 } else { 249 trace_f2fs_commit_inmem_page(cur->page, INMEM_DROP); 250 put_page(cur->page); 251 } 252 radix_tree_delete(&fi->inmem_root, cur->page->index); 253 list_del(&cur->list); 254 kmem_cache_free(inmem_entry_slab, cur); 255 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 256 } 257 mutex_unlock(&fi->inmem_lock); 258 259 if (!abort) { 260 f2fs_unlock_op(sbi); 261 if (submit_bio) 262 f2fs_submit_merged_bio(sbi, DATA, WRITE); 263 } 264 } 265 266 /* 267 * This function balances dirty node and dentry pages. 268 * In addition, it controls garbage collection. 269 */ 270 void f2fs_balance_fs(struct f2fs_sb_info *sbi) 271 { 272 /* 273 * We should do GC or end up with checkpoint, if there are so many dirty 274 * dir/node pages without enough free segments. 275 */ 276 if (has_not_enough_free_secs(sbi, 0)) { 277 mutex_lock(&sbi->gc_mutex); 278 f2fs_gc(sbi); 279 } 280 } 281 282 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 283 { 284 /* try to shrink extent cache when there is no enough memory */ 285 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 286 287 /* check the # of cached NAT entries and prefree segments */ 288 if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) || 289 excess_prefree_segs(sbi) || 290 !available_free_memory(sbi, INO_ENTRIES)) 291 f2fs_sync_fs(sbi->sb, true); 292 } 293 294 static int issue_flush_thread(void *data) 295 { 296 struct f2fs_sb_info *sbi = data; 297 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 298 wait_queue_head_t *q = &fcc->flush_wait_queue; 299 repeat: 300 if (kthread_should_stop()) 301 return 0; 302 303 if (!llist_empty(&fcc->issue_list)) { 304 struct bio *bio = bio_alloc(GFP_NOIO, 0); 305 struct flush_cmd *cmd, *next; 306 int ret; 307 308 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 309 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 310 311 bio->bi_bdev = sbi->sb->s_bdev; 312 ret = submit_bio_wait(WRITE_FLUSH, bio); 313 314 llist_for_each_entry_safe(cmd, next, 315 fcc->dispatch_list, llnode) { 316 cmd->ret = ret; 317 complete(&cmd->wait); 318 } 319 bio_put(bio); 320 fcc->dispatch_list = NULL; 321 } 322 323 wait_event_interruptible(*q, 324 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 325 goto repeat; 326 } 327 328 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 329 { 330 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 331 struct flush_cmd cmd; 332 333 trace_f2fs_issue_flush(sbi->sb, test_opt(sbi, NOBARRIER), 334 test_opt(sbi, FLUSH_MERGE)); 335 336 if (test_opt(sbi, NOBARRIER)) 337 return 0; 338 339 if (!test_opt(sbi, FLUSH_MERGE)) 340 return blkdev_issue_flush(sbi->sb->s_bdev, GFP_KERNEL, NULL); 341 342 init_completion(&cmd.wait); 343 344 llist_add(&cmd.llnode, &fcc->issue_list); 345 346 if (!fcc->dispatch_list) 347 wake_up(&fcc->flush_wait_queue); 348 349 wait_for_completion(&cmd.wait); 350 351 return cmd.ret; 352 } 353 354 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 355 { 356 dev_t dev = sbi->sb->s_bdev->bd_dev; 357 struct flush_cmd_control *fcc; 358 int err = 0; 359 360 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 361 if (!fcc) 362 return -ENOMEM; 363 init_waitqueue_head(&fcc->flush_wait_queue); 364 init_llist_head(&fcc->issue_list); 365 SM_I(sbi)->cmd_control_info = fcc; 366 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 367 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 368 if (IS_ERR(fcc->f2fs_issue_flush)) { 369 err = PTR_ERR(fcc->f2fs_issue_flush); 370 kfree(fcc); 371 SM_I(sbi)->cmd_control_info = NULL; 372 return err; 373 } 374 375 return err; 376 } 377 378 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi) 379 { 380 struct flush_cmd_control *fcc = SM_I(sbi)->cmd_control_info; 381 382 if (fcc && fcc->f2fs_issue_flush) 383 kthread_stop(fcc->f2fs_issue_flush); 384 kfree(fcc); 385 SM_I(sbi)->cmd_control_info = NULL; 386 } 387 388 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 389 enum dirty_type dirty_type) 390 { 391 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 392 393 /* need not be added */ 394 if (IS_CURSEG(sbi, segno)) 395 return; 396 397 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 398 dirty_i->nr_dirty[dirty_type]++; 399 400 if (dirty_type == DIRTY) { 401 struct seg_entry *sentry = get_seg_entry(sbi, segno); 402 enum dirty_type t = sentry->type; 403 404 if (unlikely(t >= DIRTY)) { 405 f2fs_bug_on(sbi, 1); 406 return; 407 } 408 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 409 dirty_i->nr_dirty[t]++; 410 } 411 } 412 413 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 414 enum dirty_type dirty_type) 415 { 416 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 417 418 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 419 dirty_i->nr_dirty[dirty_type]--; 420 421 if (dirty_type == DIRTY) { 422 struct seg_entry *sentry = get_seg_entry(sbi, segno); 423 enum dirty_type t = sentry->type; 424 425 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 426 dirty_i->nr_dirty[t]--; 427 428 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 429 clear_bit(GET_SECNO(sbi, segno), 430 dirty_i->victim_secmap); 431 } 432 } 433 434 /* 435 * Should not occur error such as -ENOMEM. 436 * Adding dirty entry into seglist is not critical operation. 437 * If a given segment is one of current working segments, it won't be added. 438 */ 439 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 440 { 441 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 442 unsigned short valid_blocks; 443 444 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 445 return; 446 447 mutex_lock(&dirty_i->seglist_lock); 448 449 valid_blocks = get_valid_blocks(sbi, segno, 0); 450 451 if (valid_blocks == 0) { 452 __locate_dirty_segment(sbi, segno, PRE); 453 __remove_dirty_segment(sbi, segno, DIRTY); 454 } else if (valid_blocks < sbi->blocks_per_seg) { 455 __locate_dirty_segment(sbi, segno, DIRTY); 456 } else { 457 /* Recovery routine with SSR needs this */ 458 __remove_dirty_segment(sbi, segno, DIRTY); 459 } 460 461 mutex_unlock(&dirty_i->seglist_lock); 462 } 463 464 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 465 block_t blkstart, block_t blklen) 466 { 467 sector_t start = SECTOR_FROM_BLOCK(blkstart); 468 sector_t len = SECTOR_FROM_BLOCK(blklen); 469 trace_f2fs_issue_discard(sbi->sb, blkstart, blklen); 470 return blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0); 471 } 472 473 void discard_next_dnode(struct f2fs_sb_info *sbi, block_t blkaddr) 474 { 475 if (f2fs_issue_discard(sbi, blkaddr, 1)) { 476 struct page *page = grab_meta_page(sbi, blkaddr); 477 /* zero-filled page */ 478 set_page_dirty(page); 479 f2fs_put_page(page, 1); 480 } 481 } 482 483 static void __add_discard_entry(struct f2fs_sb_info *sbi, 484 struct cp_control *cpc, unsigned int start, unsigned int end) 485 { 486 struct list_head *head = &SM_I(sbi)->discard_list; 487 struct discard_entry *new, *last; 488 489 if (!list_empty(head)) { 490 last = list_last_entry(head, struct discard_entry, list); 491 if (START_BLOCK(sbi, cpc->trim_start) + start == 492 last->blkaddr + last->len) { 493 last->len += end - start; 494 goto done; 495 } 496 } 497 498 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 499 INIT_LIST_HEAD(&new->list); 500 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 501 new->len = end - start; 502 list_add_tail(&new->list, head); 503 done: 504 SM_I(sbi)->nr_discards += end - start; 505 cpc->trimmed += end - start; 506 } 507 508 static void add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc) 509 { 510 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 511 int max_blocks = sbi->blocks_per_seg; 512 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 513 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 514 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 515 unsigned long *dmap = SIT_I(sbi)->tmp_map; 516 unsigned int start = 0, end = -1; 517 bool force = (cpc->reason == CP_DISCARD); 518 int i; 519 520 if (!force && (!test_opt(sbi, DISCARD) || 521 SM_I(sbi)->nr_discards >= SM_I(sbi)->max_discards)) 522 return; 523 524 if (force && !se->valid_blocks) { 525 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 526 /* 527 * if this segment is registered in the prefree list, then 528 * we should skip adding a discard candidate, and let the 529 * checkpoint do that later. 530 */ 531 mutex_lock(&dirty_i->seglist_lock); 532 if (test_bit(cpc->trim_start, dirty_i->dirty_segmap[PRE])) { 533 mutex_unlock(&dirty_i->seglist_lock); 534 cpc->trimmed += sbi->blocks_per_seg; 535 return; 536 } 537 mutex_unlock(&dirty_i->seglist_lock); 538 539 __add_discard_entry(sbi, cpc, 0, sbi->blocks_per_seg); 540 return; 541 } 542 543 /* zero block will be discarded through the prefree list */ 544 if (!se->valid_blocks || se->valid_blocks == max_blocks) 545 return; 546 547 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 548 for (i = 0; i < entries; i++) 549 dmap[i] = force ? ~ckpt_map[i] : 550 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 551 552 while (force || SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) { 553 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 554 if (start >= max_blocks) 555 break; 556 557 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 558 559 if (force && end - start < cpc->trim_minlen) 560 continue; 561 562 __add_discard_entry(sbi, cpc, start, end); 563 } 564 } 565 566 void release_discard_addrs(struct f2fs_sb_info *sbi) 567 { 568 struct list_head *head = &(SM_I(sbi)->discard_list); 569 struct discard_entry *entry, *this; 570 571 /* drop caches */ 572 list_for_each_entry_safe(entry, this, head, list) { 573 list_del(&entry->list); 574 kmem_cache_free(discard_entry_slab, entry); 575 } 576 } 577 578 /* 579 * Should call clear_prefree_segments after checkpoint is done. 580 */ 581 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 582 { 583 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 584 unsigned int segno; 585 586 mutex_lock(&dirty_i->seglist_lock); 587 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 588 __set_test_and_free(sbi, segno); 589 mutex_unlock(&dirty_i->seglist_lock); 590 } 591 592 void clear_prefree_segments(struct f2fs_sb_info *sbi) 593 { 594 struct list_head *head = &(SM_I(sbi)->discard_list); 595 struct discard_entry *entry, *this; 596 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 597 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 598 unsigned int start = 0, end = -1; 599 600 mutex_lock(&dirty_i->seglist_lock); 601 602 while (1) { 603 int i; 604 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 605 if (start >= MAIN_SEGS(sbi)) 606 break; 607 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 608 start + 1); 609 610 for (i = start; i < end; i++) 611 clear_bit(i, prefree_map); 612 613 dirty_i->nr_dirty[PRE] -= end - start; 614 615 if (!test_opt(sbi, DISCARD)) 616 continue; 617 618 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 619 (end - start) << sbi->log_blocks_per_seg); 620 } 621 mutex_unlock(&dirty_i->seglist_lock); 622 623 /* send small discards */ 624 list_for_each_entry_safe(entry, this, head, list) { 625 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 626 list_del(&entry->list); 627 SM_I(sbi)->nr_discards -= entry->len; 628 kmem_cache_free(discard_entry_slab, entry); 629 } 630 } 631 632 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 633 { 634 struct sit_info *sit_i = SIT_I(sbi); 635 636 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 637 sit_i->dirty_sentries++; 638 return false; 639 } 640 641 return true; 642 } 643 644 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 645 unsigned int segno, int modified) 646 { 647 struct seg_entry *se = get_seg_entry(sbi, segno); 648 se->type = type; 649 if (modified) 650 __mark_sit_entry_dirty(sbi, segno); 651 } 652 653 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 654 { 655 struct seg_entry *se; 656 unsigned int segno, offset; 657 long int new_vblocks; 658 659 segno = GET_SEGNO(sbi, blkaddr); 660 661 se = get_seg_entry(sbi, segno); 662 new_vblocks = se->valid_blocks + del; 663 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 664 665 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 666 (new_vblocks > sbi->blocks_per_seg))); 667 668 se->valid_blocks = new_vblocks; 669 se->mtime = get_mtime(sbi); 670 SIT_I(sbi)->max_mtime = se->mtime; 671 672 /* Update valid block bitmap */ 673 if (del > 0) { 674 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) 675 f2fs_bug_on(sbi, 1); 676 } else { 677 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) 678 f2fs_bug_on(sbi, 1); 679 } 680 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 681 se->ckpt_valid_blocks += del; 682 683 __mark_sit_entry_dirty(sbi, segno); 684 685 /* update total number of valid blocks to be written in ckpt area */ 686 SIT_I(sbi)->written_valid_blocks += del; 687 688 if (sbi->segs_per_sec > 1) 689 get_sec_entry(sbi, segno)->valid_blocks += del; 690 } 691 692 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 693 { 694 update_sit_entry(sbi, new, 1); 695 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 696 update_sit_entry(sbi, old, -1); 697 698 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 699 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 700 } 701 702 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 703 { 704 unsigned int segno = GET_SEGNO(sbi, addr); 705 struct sit_info *sit_i = SIT_I(sbi); 706 707 f2fs_bug_on(sbi, addr == NULL_ADDR); 708 if (addr == NEW_ADDR) 709 return; 710 711 /* add it into sit main buffer */ 712 mutex_lock(&sit_i->sentry_lock); 713 714 update_sit_entry(sbi, addr, -1); 715 716 /* add it into dirty seglist */ 717 locate_dirty_segment(sbi, segno); 718 719 mutex_unlock(&sit_i->sentry_lock); 720 } 721 722 /* 723 * This function should be resided under the curseg_mutex lock 724 */ 725 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 726 struct f2fs_summary *sum) 727 { 728 struct curseg_info *curseg = CURSEG_I(sbi, type); 729 void *addr = curseg->sum_blk; 730 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 731 memcpy(addr, sum, sizeof(struct f2fs_summary)); 732 } 733 734 /* 735 * Calculate the number of current summary pages for writing 736 */ 737 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 738 { 739 int valid_sum_count = 0; 740 int i, sum_in_page; 741 742 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 743 if (sbi->ckpt->alloc_type[i] == SSR) 744 valid_sum_count += sbi->blocks_per_seg; 745 else { 746 if (for_ra) 747 valid_sum_count += le16_to_cpu( 748 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 749 else 750 valid_sum_count += curseg_blkoff(sbi, i); 751 } 752 } 753 754 sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE - 755 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 756 if (valid_sum_count <= sum_in_page) 757 return 1; 758 else if ((valid_sum_count - sum_in_page) <= 759 (PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 760 return 2; 761 return 3; 762 } 763 764 /* 765 * Caller should put this summary page 766 */ 767 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 768 { 769 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 770 } 771 772 static void write_sum_page(struct f2fs_sb_info *sbi, 773 struct f2fs_summary_block *sum_blk, block_t blk_addr) 774 { 775 struct page *page = grab_meta_page(sbi, blk_addr); 776 void *kaddr = page_address(page); 777 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); 778 set_page_dirty(page); 779 f2fs_put_page(page, 1); 780 } 781 782 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 783 { 784 struct curseg_info *curseg = CURSEG_I(sbi, type); 785 unsigned int segno = curseg->segno + 1; 786 struct free_segmap_info *free_i = FREE_I(sbi); 787 788 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 789 return !test_bit(segno, free_i->free_segmap); 790 return 0; 791 } 792 793 /* 794 * Find a new segment from the free segments bitmap to right order 795 * This function should be returned with success, otherwise BUG 796 */ 797 static void get_new_segment(struct f2fs_sb_info *sbi, 798 unsigned int *newseg, bool new_sec, int dir) 799 { 800 struct free_segmap_info *free_i = FREE_I(sbi); 801 unsigned int segno, secno, zoneno; 802 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 803 unsigned int hint = *newseg / sbi->segs_per_sec; 804 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 805 unsigned int left_start = hint; 806 bool init = true; 807 int go_left = 0; 808 int i; 809 810 spin_lock(&free_i->segmap_lock); 811 812 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 813 segno = find_next_zero_bit(free_i->free_segmap, 814 MAIN_SEGS(sbi), *newseg + 1); 815 if (segno - *newseg < sbi->segs_per_sec - 816 (*newseg % sbi->segs_per_sec)) 817 goto got_it; 818 } 819 find_other_zone: 820 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 821 if (secno >= MAIN_SECS(sbi)) { 822 if (dir == ALLOC_RIGHT) { 823 secno = find_next_zero_bit(free_i->free_secmap, 824 MAIN_SECS(sbi), 0); 825 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 826 } else { 827 go_left = 1; 828 left_start = hint - 1; 829 } 830 } 831 if (go_left == 0) 832 goto skip_left; 833 834 while (test_bit(left_start, free_i->free_secmap)) { 835 if (left_start > 0) { 836 left_start--; 837 continue; 838 } 839 left_start = find_next_zero_bit(free_i->free_secmap, 840 MAIN_SECS(sbi), 0); 841 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 842 break; 843 } 844 secno = left_start; 845 skip_left: 846 hint = secno; 847 segno = secno * sbi->segs_per_sec; 848 zoneno = secno / sbi->secs_per_zone; 849 850 /* give up on finding another zone */ 851 if (!init) 852 goto got_it; 853 if (sbi->secs_per_zone == 1) 854 goto got_it; 855 if (zoneno == old_zoneno) 856 goto got_it; 857 if (dir == ALLOC_LEFT) { 858 if (!go_left && zoneno + 1 >= total_zones) 859 goto got_it; 860 if (go_left && zoneno == 0) 861 goto got_it; 862 } 863 for (i = 0; i < NR_CURSEG_TYPE; i++) 864 if (CURSEG_I(sbi, i)->zone == zoneno) 865 break; 866 867 if (i < NR_CURSEG_TYPE) { 868 /* zone is in user, try another */ 869 if (go_left) 870 hint = zoneno * sbi->secs_per_zone - 1; 871 else if (zoneno + 1 >= total_zones) 872 hint = 0; 873 else 874 hint = (zoneno + 1) * sbi->secs_per_zone; 875 init = false; 876 goto find_other_zone; 877 } 878 got_it: 879 /* set it as dirty segment in free segmap */ 880 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 881 __set_inuse(sbi, segno); 882 *newseg = segno; 883 spin_unlock(&free_i->segmap_lock); 884 } 885 886 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 887 { 888 struct curseg_info *curseg = CURSEG_I(sbi, type); 889 struct summary_footer *sum_footer; 890 891 curseg->segno = curseg->next_segno; 892 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 893 curseg->next_blkoff = 0; 894 curseg->next_segno = NULL_SEGNO; 895 896 sum_footer = &(curseg->sum_blk->footer); 897 memset(sum_footer, 0, sizeof(struct summary_footer)); 898 if (IS_DATASEG(type)) 899 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 900 if (IS_NODESEG(type)) 901 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 902 __set_sit_entry_type(sbi, type, curseg->segno, modified); 903 } 904 905 /* 906 * Allocate a current working segment. 907 * This function always allocates a free segment in LFS manner. 908 */ 909 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 910 { 911 struct curseg_info *curseg = CURSEG_I(sbi, type); 912 unsigned int segno = curseg->segno; 913 int dir = ALLOC_LEFT; 914 915 write_sum_page(sbi, curseg->sum_blk, 916 GET_SUM_BLOCK(sbi, segno)); 917 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 918 dir = ALLOC_RIGHT; 919 920 if (test_opt(sbi, NOHEAP)) 921 dir = ALLOC_RIGHT; 922 923 get_new_segment(sbi, &segno, new_sec, dir); 924 curseg->next_segno = segno; 925 reset_curseg(sbi, type, 1); 926 curseg->alloc_type = LFS; 927 } 928 929 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 930 struct curseg_info *seg, block_t start) 931 { 932 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 933 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 934 unsigned long *target_map = SIT_I(sbi)->tmp_map; 935 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 936 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 937 int i, pos; 938 939 for (i = 0; i < entries; i++) 940 target_map[i] = ckpt_map[i] | cur_map[i]; 941 942 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 943 944 seg->next_blkoff = pos; 945 } 946 947 /* 948 * If a segment is written by LFS manner, next block offset is just obtained 949 * by increasing the current block offset. However, if a segment is written by 950 * SSR manner, next block offset obtained by calling __next_free_blkoff 951 */ 952 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 953 struct curseg_info *seg) 954 { 955 if (seg->alloc_type == SSR) 956 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 957 else 958 seg->next_blkoff++; 959 } 960 961 /* 962 * This function always allocates a used segment(from dirty seglist) by SSR 963 * manner, so it should recover the existing segment information of valid blocks 964 */ 965 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 966 { 967 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 968 struct curseg_info *curseg = CURSEG_I(sbi, type); 969 unsigned int new_segno = curseg->next_segno; 970 struct f2fs_summary_block *sum_node; 971 struct page *sum_page; 972 973 write_sum_page(sbi, curseg->sum_blk, 974 GET_SUM_BLOCK(sbi, curseg->segno)); 975 __set_test_and_inuse(sbi, new_segno); 976 977 mutex_lock(&dirty_i->seglist_lock); 978 __remove_dirty_segment(sbi, new_segno, PRE); 979 __remove_dirty_segment(sbi, new_segno, DIRTY); 980 mutex_unlock(&dirty_i->seglist_lock); 981 982 reset_curseg(sbi, type, 1); 983 curseg->alloc_type = SSR; 984 __next_free_blkoff(sbi, curseg, 0); 985 986 if (reuse) { 987 sum_page = get_sum_page(sbi, new_segno); 988 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 989 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 990 f2fs_put_page(sum_page, 1); 991 } 992 } 993 994 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 995 { 996 struct curseg_info *curseg = CURSEG_I(sbi, type); 997 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 998 999 if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0)) 1000 return v_ops->get_victim(sbi, 1001 &(curseg)->next_segno, BG_GC, type, SSR); 1002 1003 /* For data segments, let's do SSR more intensively */ 1004 for (; type >= CURSEG_HOT_DATA; type--) 1005 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1006 BG_GC, type, SSR)) 1007 return 1; 1008 return 0; 1009 } 1010 1011 /* 1012 * flush out current segment and replace it with new segment 1013 * This function should be returned with success, otherwise BUG 1014 */ 1015 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1016 int type, bool force) 1017 { 1018 struct curseg_info *curseg = CURSEG_I(sbi, type); 1019 1020 if (force) 1021 new_curseg(sbi, type, true); 1022 else if (type == CURSEG_WARM_NODE) 1023 new_curseg(sbi, type, false); 1024 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 1025 new_curseg(sbi, type, false); 1026 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1027 change_curseg(sbi, type, true); 1028 else 1029 new_curseg(sbi, type, false); 1030 1031 stat_inc_seg_type(sbi, curseg); 1032 } 1033 1034 static void __allocate_new_segments(struct f2fs_sb_info *sbi, int type) 1035 { 1036 struct curseg_info *curseg = CURSEG_I(sbi, type); 1037 unsigned int old_segno; 1038 1039 old_segno = curseg->segno; 1040 SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true); 1041 locate_dirty_segment(sbi, old_segno); 1042 } 1043 1044 void allocate_new_segments(struct f2fs_sb_info *sbi) 1045 { 1046 int i; 1047 1048 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) 1049 __allocate_new_segments(sbi, i); 1050 } 1051 1052 static const struct segment_allocation default_salloc_ops = { 1053 .allocate_segment = allocate_segment_by_default, 1054 }; 1055 1056 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1057 { 1058 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1059 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1060 unsigned int start_segno, end_segno; 1061 struct cp_control cpc; 1062 1063 if (range->minlen > SEGMENT_SIZE(sbi) || start >= MAX_BLKADDR(sbi) || 1064 range->len < sbi->blocksize) 1065 return -EINVAL; 1066 1067 cpc.trimmed = 0; 1068 if (end <= MAIN_BLKADDR(sbi)) 1069 goto out; 1070 1071 /* start/end segment number in main_area */ 1072 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1073 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1074 GET_SEGNO(sbi, end); 1075 cpc.reason = CP_DISCARD; 1076 cpc.trim_minlen = F2FS_BYTES_TO_BLK(range->minlen); 1077 1078 /* do checkpoint to issue discard commands safely */ 1079 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1080 cpc.trim_start = start_segno; 1081 cpc.trim_end = min_t(unsigned int, rounddown(start_segno + 1082 BATCHED_TRIM_SEGMENTS(sbi), 1083 sbi->segs_per_sec) - 1, end_segno); 1084 1085 mutex_lock(&sbi->gc_mutex); 1086 write_checkpoint(sbi, &cpc); 1087 mutex_unlock(&sbi->gc_mutex); 1088 } 1089 out: 1090 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1091 return 0; 1092 } 1093 1094 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1095 { 1096 struct curseg_info *curseg = CURSEG_I(sbi, type); 1097 if (curseg->next_blkoff < sbi->blocks_per_seg) 1098 return true; 1099 return false; 1100 } 1101 1102 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1103 { 1104 if (p_type == DATA) 1105 return CURSEG_HOT_DATA; 1106 else 1107 return CURSEG_HOT_NODE; 1108 } 1109 1110 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1111 { 1112 if (p_type == DATA) { 1113 struct inode *inode = page->mapping->host; 1114 1115 if (S_ISDIR(inode->i_mode)) 1116 return CURSEG_HOT_DATA; 1117 else 1118 return CURSEG_COLD_DATA; 1119 } else { 1120 if (IS_DNODE(page) && is_cold_node(page)) 1121 return CURSEG_WARM_NODE; 1122 else 1123 return CURSEG_COLD_NODE; 1124 } 1125 } 1126 1127 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1128 { 1129 if (p_type == DATA) { 1130 struct inode *inode = page->mapping->host; 1131 1132 if (S_ISDIR(inode->i_mode)) 1133 return CURSEG_HOT_DATA; 1134 else if (is_cold_data(page) || file_is_cold(inode)) 1135 return CURSEG_COLD_DATA; 1136 else 1137 return CURSEG_WARM_DATA; 1138 } else { 1139 if (IS_DNODE(page)) 1140 return is_cold_node(page) ? CURSEG_WARM_NODE : 1141 CURSEG_HOT_NODE; 1142 else 1143 return CURSEG_COLD_NODE; 1144 } 1145 } 1146 1147 static int __get_segment_type(struct page *page, enum page_type p_type) 1148 { 1149 switch (F2FS_P_SB(page)->active_logs) { 1150 case 2: 1151 return __get_segment_type_2(page, p_type); 1152 case 4: 1153 return __get_segment_type_4(page, p_type); 1154 } 1155 /* NR_CURSEG_TYPE(6) logs by default */ 1156 f2fs_bug_on(F2FS_P_SB(page), 1157 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1158 return __get_segment_type_6(page, p_type); 1159 } 1160 1161 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1162 block_t old_blkaddr, block_t *new_blkaddr, 1163 struct f2fs_summary *sum, int type) 1164 { 1165 struct sit_info *sit_i = SIT_I(sbi); 1166 struct curseg_info *curseg; 1167 bool direct_io = (type == CURSEG_DIRECT_IO); 1168 1169 type = direct_io ? CURSEG_WARM_DATA : type; 1170 1171 curseg = CURSEG_I(sbi, type); 1172 1173 mutex_lock(&curseg->curseg_mutex); 1174 mutex_lock(&sit_i->sentry_lock); 1175 1176 /* direct_io'ed data is aligned to the segment for better performance */ 1177 if (direct_io && curseg->next_blkoff) 1178 __allocate_new_segments(sbi, type); 1179 1180 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1181 1182 /* 1183 * __add_sum_entry should be resided under the curseg_mutex 1184 * because, this function updates a summary entry in the 1185 * current summary block. 1186 */ 1187 __add_sum_entry(sbi, type, sum); 1188 1189 __refresh_next_blkoff(sbi, curseg); 1190 1191 stat_inc_block_count(sbi, curseg); 1192 1193 if (!__has_curseg_space(sbi, type)) 1194 sit_i->s_ops->allocate_segment(sbi, type, false); 1195 /* 1196 * SIT information should be updated before segment allocation, 1197 * since SSR needs latest valid block information. 1198 */ 1199 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1200 1201 mutex_unlock(&sit_i->sentry_lock); 1202 1203 if (page && IS_NODESEG(type)) 1204 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1205 1206 mutex_unlock(&curseg->curseg_mutex); 1207 } 1208 1209 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, 1210 struct f2fs_summary *sum, 1211 struct f2fs_io_info *fio) 1212 { 1213 int type = __get_segment_type(page, fio->type); 1214 1215 allocate_data_block(sbi, page, fio->blk_addr, &fio->blk_addr, sum, type); 1216 1217 /* writeout dirty page into bdev */ 1218 f2fs_submit_page_mbio(sbi, page, fio); 1219 } 1220 1221 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1222 { 1223 struct f2fs_io_info fio = { 1224 .type = META, 1225 .rw = WRITE_SYNC | REQ_META | REQ_PRIO, 1226 .blk_addr = page->index, 1227 }; 1228 1229 set_page_writeback(page); 1230 f2fs_submit_page_mbio(sbi, page, &fio); 1231 } 1232 1233 void write_node_page(struct f2fs_sb_info *sbi, struct page *page, 1234 unsigned int nid, struct f2fs_io_info *fio) 1235 { 1236 struct f2fs_summary sum; 1237 set_summary(&sum, nid, 0, 0); 1238 do_write_page(sbi, page, &sum, fio); 1239 } 1240 1241 void write_data_page(struct page *page, struct dnode_of_data *dn, 1242 struct f2fs_io_info *fio) 1243 { 1244 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode); 1245 struct f2fs_summary sum; 1246 struct node_info ni; 1247 1248 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1249 get_node_info(sbi, dn->nid, &ni); 1250 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1251 do_write_page(sbi, page, &sum, fio); 1252 dn->data_blkaddr = fio->blk_addr; 1253 } 1254 1255 void rewrite_data_page(struct page *page, struct f2fs_io_info *fio) 1256 { 1257 stat_inc_inplace_blocks(F2FS_P_SB(page)); 1258 f2fs_submit_page_mbio(F2FS_P_SB(page), page, fio); 1259 } 1260 1261 void recover_data_page(struct f2fs_sb_info *sbi, 1262 struct page *page, struct f2fs_summary *sum, 1263 block_t old_blkaddr, block_t new_blkaddr) 1264 { 1265 struct sit_info *sit_i = SIT_I(sbi); 1266 struct curseg_info *curseg; 1267 unsigned int segno, old_cursegno; 1268 struct seg_entry *se; 1269 int type; 1270 1271 segno = GET_SEGNO(sbi, new_blkaddr); 1272 se = get_seg_entry(sbi, segno); 1273 type = se->type; 1274 1275 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1276 if (old_blkaddr == NULL_ADDR) 1277 type = CURSEG_COLD_DATA; 1278 else 1279 type = CURSEG_WARM_DATA; 1280 } 1281 curseg = CURSEG_I(sbi, type); 1282 1283 mutex_lock(&curseg->curseg_mutex); 1284 mutex_lock(&sit_i->sentry_lock); 1285 1286 old_cursegno = curseg->segno; 1287 1288 /* change the current segment */ 1289 if (segno != curseg->segno) { 1290 curseg->next_segno = segno; 1291 change_curseg(sbi, type, true); 1292 } 1293 1294 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1295 __add_sum_entry(sbi, type, sum); 1296 1297 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 1298 locate_dirty_segment(sbi, old_cursegno); 1299 1300 mutex_unlock(&sit_i->sentry_lock); 1301 mutex_unlock(&curseg->curseg_mutex); 1302 } 1303 1304 static inline bool is_merged_page(struct f2fs_sb_info *sbi, 1305 struct page *page, enum page_type type) 1306 { 1307 enum page_type btype = PAGE_TYPE_OF_BIO(type); 1308 struct f2fs_bio_info *io = &sbi->write_io[btype]; 1309 struct bio_vec *bvec; 1310 int i; 1311 1312 down_read(&io->io_rwsem); 1313 if (!io->bio) 1314 goto out; 1315 1316 bio_for_each_segment_all(bvec, io->bio, i) { 1317 if (page == bvec->bv_page) { 1318 up_read(&io->io_rwsem); 1319 return true; 1320 } 1321 } 1322 1323 out: 1324 up_read(&io->io_rwsem); 1325 return false; 1326 } 1327 1328 void f2fs_wait_on_page_writeback(struct page *page, 1329 enum page_type type) 1330 { 1331 if (PageWriteback(page)) { 1332 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1333 1334 if (is_merged_page(sbi, page, type)) 1335 f2fs_submit_merged_bio(sbi, type, WRITE); 1336 wait_on_page_writeback(page); 1337 } 1338 } 1339 1340 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1341 { 1342 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1343 struct curseg_info *seg_i; 1344 unsigned char *kaddr; 1345 struct page *page; 1346 block_t start; 1347 int i, j, offset; 1348 1349 start = start_sum_block(sbi); 1350 1351 page = get_meta_page(sbi, start++); 1352 kaddr = (unsigned char *)page_address(page); 1353 1354 /* Step 1: restore nat cache */ 1355 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1356 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); 1357 1358 /* Step 2: restore sit cache */ 1359 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1360 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, 1361 SUM_JOURNAL_SIZE); 1362 offset = 2 * SUM_JOURNAL_SIZE; 1363 1364 /* Step 3: restore summary entries */ 1365 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1366 unsigned short blk_off; 1367 unsigned int segno; 1368 1369 seg_i = CURSEG_I(sbi, i); 1370 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 1371 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 1372 seg_i->next_segno = segno; 1373 reset_curseg(sbi, i, 0); 1374 seg_i->alloc_type = ckpt->alloc_type[i]; 1375 seg_i->next_blkoff = blk_off; 1376 1377 if (seg_i->alloc_type == SSR) 1378 blk_off = sbi->blocks_per_seg; 1379 1380 for (j = 0; j < blk_off; j++) { 1381 struct f2fs_summary *s; 1382 s = (struct f2fs_summary *)(kaddr + offset); 1383 seg_i->sum_blk->entries[j] = *s; 1384 offset += SUMMARY_SIZE; 1385 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1386 SUM_FOOTER_SIZE) 1387 continue; 1388 1389 f2fs_put_page(page, 1); 1390 page = NULL; 1391 1392 page = get_meta_page(sbi, start++); 1393 kaddr = (unsigned char *)page_address(page); 1394 offset = 0; 1395 } 1396 } 1397 f2fs_put_page(page, 1); 1398 return 0; 1399 } 1400 1401 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1402 { 1403 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1404 struct f2fs_summary_block *sum; 1405 struct curseg_info *curseg; 1406 struct page *new; 1407 unsigned short blk_off; 1408 unsigned int segno = 0; 1409 block_t blk_addr = 0; 1410 1411 /* get segment number and block addr */ 1412 if (IS_DATASEG(type)) { 1413 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1414 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1415 CURSEG_HOT_DATA]); 1416 if (__exist_node_summaries(sbi)) 1417 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1418 else 1419 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1420 } else { 1421 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1422 CURSEG_HOT_NODE]); 1423 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1424 CURSEG_HOT_NODE]); 1425 if (__exist_node_summaries(sbi)) 1426 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1427 type - CURSEG_HOT_NODE); 1428 else 1429 blk_addr = GET_SUM_BLOCK(sbi, segno); 1430 } 1431 1432 new = get_meta_page(sbi, blk_addr); 1433 sum = (struct f2fs_summary_block *)page_address(new); 1434 1435 if (IS_NODESEG(type)) { 1436 if (__exist_node_summaries(sbi)) { 1437 struct f2fs_summary *ns = &sum->entries[0]; 1438 int i; 1439 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1440 ns->version = 0; 1441 ns->ofs_in_node = 0; 1442 } 1443 } else { 1444 int err; 1445 1446 err = restore_node_summary(sbi, segno, sum); 1447 if (err) { 1448 f2fs_put_page(new, 1); 1449 return err; 1450 } 1451 } 1452 } 1453 1454 /* set uncompleted segment to curseg */ 1455 curseg = CURSEG_I(sbi, type); 1456 mutex_lock(&curseg->curseg_mutex); 1457 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); 1458 curseg->next_segno = segno; 1459 reset_curseg(sbi, type, 0); 1460 curseg->alloc_type = ckpt->alloc_type[type]; 1461 curseg->next_blkoff = blk_off; 1462 mutex_unlock(&curseg->curseg_mutex); 1463 f2fs_put_page(new, 1); 1464 return 0; 1465 } 1466 1467 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1468 { 1469 int type = CURSEG_HOT_DATA; 1470 int err; 1471 1472 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1473 int npages = npages_for_summary_flush(sbi, true); 1474 1475 if (npages >= 2) 1476 ra_meta_pages(sbi, start_sum_block(sbi), npages, 1477 META_CP); 1478 1479 /* restore for compacted data summary */ 1480 if (read_compacted_summaries(sbi)) 1481 return -EINVAL; 1482 type = CURSEG_HOT_NODE; 1483 } 1484 1485 if (__exist_node_summaries(sbi)) 1486 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 1487 NR_CURSEG_TYPE - type, META_CP); 1488 1489 for (; type <= CURSEG_COLD_NODE; type++) { 1490 err = read_normal_summaries(sbi, type); 1491 if (err) 1492 return err; 1493 } 1494 1495 return 0; 1496 } 1497 1498 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1499 { 1500 struct page *page; 1501 unsigned char *kaddr; 1502 struct f2fs_summary *summary; 1503 struct curseg_info *seg_i; 1504 int written_size = 0; 1505 int i, j; 1506 1507 page = grab_meta_page(sbi, blkaddr++); 1508 kaddr = (unsigned char *)page_address(page); 1509 1510 /* Step 1: write nat cache */ 1511 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1512 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); 1513 written_size += SUM_JOURNAL_SIZE; 1514 1515 /* Step 2: write sit cache */ 1516 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1517 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, 1518 SUM_JOURNAL_SIZE); 1519 written_size += SUM_JOURNAL_SIZE; 1520 1521 /* Step 3: write summary entries */ 1522 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1523 unsigned short blkoff; 1524 seg_i = CURSEG_I(sbi, i); 1525 if (sbi->ckpt->alloc_type[i] == SSR) 1526 blkoff = sbi->blocks_per_seg; 1527 else 1528 blkoff = curseg_blkoff(sbi, i); 1529 1530 for (j = 0; j < blkoff; j++) { 1531 if (!page) { 1532 page = grab_meta_page(sbi, blkaddr++); 1533 kaddr = (unsigned char *)page_address(page); 1534 written_size = 0; 1535 } 1536 summary = (struct f2fs_summary *)(kaddr + written_size); 1537 *summary = seg_i->sum_blk->entries[j]; 1538 written_size += SUMMARY_SIZE; 1539 1540 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1541 SUM_FOOTER_SIZE) 1542 continue; 1543 1544 set_page_dirty(page); 1545 f2fs_put_page(page, 1); 1546 page = NULL; 1547 } 1548 } 1549 if (page) { 1550 set_page_dirty(page); 1551 f2fs_put_page(page, 1); 1552 } 1553 } 1554 1555 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1556 block_t blkaddr, int type) 1557 { 1558 int i, end; 1559 if (IS_DATASEG(type)) 1560 end = type + NR_CURSEG_DATA_TYPE; 1561 else 1562 end = type + NR_CURSEG_NODE_TYPE; 1563 1564 for (i = type; i < end; i++) { 1565 struct curseg_info *sum = CURSEG_I(sbi, i); 1566 mutex_lock(&sum->curseg_mutex); 1567 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); 1568 mutex_unlock(&sum->curseg_mutex); 1569 } 1570 } 1571 1572 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1573 { 1574 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1575 write_compacted_summaries(sbi, start_blk); 1576 else 1577 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1578 } 1579 1580 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1581 { 1582 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1583 } 1584 1585 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, 1586 unsigned int val, int alloc) 1587 { 1588 int i; 1589 1590 if (type == NAT_JOURNAL) { 1591 for (i = 0; i < nats_in_cursum(sum); i++) { 1592 if (le32_to_cpu(nid_in_journal(sum, i)) == val) 1593 return i; 1594 } 1595 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) 1596 return update_nats_in_cursum(sum, 1); 1597 } else if (type == SIT_JOURNAL) { 1598 for (i = 0; i < sits_in_cursum(sum); i++) 1599 if (le32_to_cpu(segno_in_journal(sum, i)) == val) 1600 return i; 1601 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) 1602 return update_sits_in_cursum(sum, 1); 1603 } 1604 return -1; 1605 } 1606 1607 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1608 unsigned int segno) 1609 { 1610 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 1611 } 1612 1613 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1614 unsigned int start) 1615 { 1616 struct sit_info *sit_i = SIT_I(sbi); 1617 struct page *src_page, *dst_page; 1618 pgoff_t src_off, dst_off; 1619 void *src_addr, *dst_addr; 1620 1621 src_off = current_sit_addr(sbi, start); 1622 dst_off = next_sit_addr(sbi, src_off); 1623 1624 /* get current sit block page without lock */ 1625 src_page = get_meta_page(sbi, src_off); 1626 dst_page = grab_meta_page(sbi, dst_off); 1627 f2fs_bug_on(sbi, PageDirty(src_page)); 1628 1629 src_addr = page_address(src_page); 1630 dst_addr = page_address(dst_page); 1631 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1632 1633 set_page_dirty(dst_page); 1634 f2fs_put_page(src_page, 1); 1635 1636 set_to_next_sit(sit_i, start); 1637 1638 return dst_page; 1639 } 1640 1641 static struct sit_entry_set *grab_sit_entry_set(void) 1642 { 1643 struct sit_entry_set *ses = 1644 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_ATOMIC); 1645 1646 ses->entry_cnt = 0; 1647 INIT_LIST_HEAD(&ses->set_list); 1648 return ses; 1649 } 1650 1651 static void release_sit_entry_set(struct sit_entry_set *ses) 1652 { 1653 list_del(&ses->set_list); 1654 kmem_cache_free(sit_entry_set_slab, ses); 1655 } 1656 1657 static void adjust_sit_entry_set(struct sit_entry_set *ses, 1658 struct list_head *head) 1659 { 1660 struct sit_entry_set *next = ses; 1661 1662 if (list_is_last(&ses->set_list, head)) 1663 return; 1664 1665 list_for_each_entry_continue(next, head, set_list) 1666 if (ses->entry_cnt <= next->entry_cnt) 1667 break; 1668 1669 list_move_tail(&ses->set_list, &next->set_list); 1670 } 1671 1672 static void add_sit_entry(unsigned int segno, struct list_head *head) 1673 { 1674 struct sit_entry_set *ses; 1675 unsigned int start_segno = START_SEGNO(segno); 1676 1677 list_for_each_entry(ses, head, set_list) { 1678 if (ses->start_segno == start_segno) { 1679 ses->entry_cnt++; 1680 adjust_sit_entry_set(ses, head); 1681 return; 1682 } 1683 } 1684 1685 ses = grab_sit_entry_set(); 1686 1687 ses->start_segno = start_segno; 1688 ses->entry_cnt++; 1689 list_add(&ses->set_list, head); 1690 } 1691 1692 static void add_sits_in_set(struct f2fs_sb_info *sbi) 1693 { 1694 struct f2fs_sm_info *sm_info = SM_I(sbi); 1695 struct list_head *set_list = &sm_info->sit_entry_set; 1696 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 1697 unsigned int segno; 1698 1699 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 1700 add_sit_entry(segno, set_list); 1701 } 1702 1703 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 1704 { 1705 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1706 struct f2fs_summary_block *sum = curseg->sum_blk; 1707 int i; 1708 1709 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { 1710 unsigned int segno; 1711 bool dirtied; 1712 1713 segno = le32_to_cpu(segno_in_journal(sum, i)); 1714 dirtied = __mark_sit_entry_dirty(sbi, segno); 1715 1716 if (!dirtied) 1717 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 1718 } 1719 update_sits_in_cursum(sum, -sits_in_cursum(sum)); 1720 } 1721 1722 /* 1723 * CP calls this function, which flushes SIT entries including sit_journal, 1724 * and moves prefree segs to free segs. 1725 */ 1726 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1727 { 1728 struct sit_info *sit_i = SIT_I(sbi); 1729 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1730 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1731 struct f2fs_summary_block *sum = curseg->sum_blk; 1732 struct sit_entry_set *ses, *tmp; 1733 struct list_head *head = &SM_I(sbi)->sit_entry_set; 1734 bool to_journal = true; 1735 struct seg_entry *se; 1736 1737 mutex_lock(&curseg->curseg_mutex); 1738 mutex_lock(&sit_i->sentry_lock); 1739 1740 if (!sit_i->dirty_sentries) 1741 goto out; 1742 1743 /* 1744 * add and account sit entries of dirty bitmap in sit entry 1745 * set temporarily 1746 */ 1747 add_sits_in_set(sbi); 1748 1749 /* 1750 * if there are no enough space in journal to store dirty sit 1751 * entries, remove all entries from journal and add and account 1752 * them in sit entry set. 1753 */ 1754 if (!__has_cursum_space(sum, sit_i->dirty_sentries, SIT_JOURNAL)) 1755 remove_sits_in_journal(sbi); 1756 1757 /* 1758 * there are two steps to flush sit entries: 1759 * #1, flush sit entries to journal in current cold data summary block. 1760 * #2, flush sit entries to sit page. 1761 */ 1762 list_for_each_entry_safe(ses, tmp, head, set_list) { 1763 struct page *page = NULL; 1764 struct f2fs_sit_block *raw_sit = NULL; 1765 unsigned int start_segno = ses->start_segno; 1766 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 1767 (unsigned long)MAIN_SEGS(sbi)); 1768 unsigned int segno = start_segno; 1769 1770 if (to_journal && 1771 !__has_cursum_space(sum, ses->entry_cnt, SIT_JOURNAL)) 1772 to_journal = false; 1773 1774 if (!to_journal) { 1775 page = get_next_sit_page(sbi, start_segno); 1776 raw_sit = page_address(page); 1777 } 1778 1779 /* flush dirty sit entries in region of current sit set */ 1780 for_each_set_bit_from(segno, bitmap, end) { 1781 int offset, sit_offset; 1782 1783 se = get_seg_entry(sbi, segno); 1784 1785 /* add discard candidates */ 1786 if (cpc->reason != CP_DISCARD) { 1787 cpc->trim_start = segno; 1788 add_discard_addrs(sbi, cpc); 1789 } 1790 1791 if (to_journal) { 1792 offset = lookup_journal_in_cursum(sum, 1793 SIT_JOURNAL, segno, 1); 1794 f2fs_bug_on(sbi, offset < 0); 1795 segno_in_journal(sum, offset) = 1796 cpu_to_le32(segno); 1797 seg_info_to_raw_sit(se, 1798 &sit_in_journal(sum, offset)); 1799 } else { 1800 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1801 seg_info_to_raw_sit(se, 1802 &raw_sit->entries[sit_offset]); 1803 } 1804 1805 __clear_bit(segno, bitmap); 1806 sit_i->dirty_sentries--; 1807 ses->entry_cnt--; 1808 } 1809 1810 if (!to_journal) 1811 f2fs_put_page(page, 1); 1812 1813 f2fs_bug_on(sbi, ses->entry_cnt); 1814 release_sit_entry_set(ses); 1815 } 1816 1817 f2fs_bug_on(sbi, !list_empty(head)); 1818 f2fs_bug_on(sbi, sit_i->dirty_sentries); 1819 out: 1820 if (cpc->reason == CP_DISCARD) { 1821 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 1822 add_discard_addrs(sbi, cpc); 1823 } 1824 mutex_unlock(&sit_i->sentry_lock); 1825 mutex_unlock(&curseg->curseg_mutex); 1826 1827 set_prefree_as_free_segments(sbi); 1828 } 1829 1830 static int build_sit_info(struct f2fs_sb_info *sbi) 1831 { 1832 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1833 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1834 struct sit_info *sit_i; 1835 unsigned int sit_segs, start; 1836 char *src_bitmap, *dst_bitmap; 1837 unsigned int bitmap_size; 1838 1839 /* allocate memory for SIT information */ 1840 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 1841 if (!sit_i) 1842 return -ENOMEM; 1843 1844 SM_I(sbi)->sit_info = sit_i; 1845 1846 sit_i->sentries = vzalloc(MAIN_SEGS(sbi) * sizeof(struct seg_entry)); 1847 if (!sit_i->sentries) 1848 return -ENOMEM; 1849 1850 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1851 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1852 if (!sit_i->dirty_sentries_bitmap) 1853 return -ENOMEM; 1854 1855 for (start = 0; start < MAIN_SEGS(sbi); start++) { 1856 sit_i->sentries[start].cur_valid_map 1857 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1858 sit_i->sentries[start].ckpt_valid_map 1859 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1860 if (!sit_i->sentries[start].cur_valid_map 1861 || !sit_i->sentries[start].ckpt_valid_map) 1862 return -ENOMEM; 1863 } 1864 1865 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1866 if (!sit_i->tmp_map) 1867 return -ENOMEM; 1868 1869 if (sbi->segs_per_sec > 1) { 1870 sit_i->sec_entries = vzalloc(MAIN_SECS(sbi) * 1871 sizeof(struct sec_entry)); 1872 if (!sit_i->sec_entries) 1873 return -ENOMEM; 1874 } 1875 1876 /* get information related with SIT */ 1877 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 1878 1879 /* setup SIT bitmap from ckeckpoint pack */ 1880 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 1881 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 1882 1883 dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 1884 if (!dst_bitmap) 1885 return -ENOMEM; 1886 1887 /* init SIT information */ 1888 sit_i->s_ops = &default_salloc_ops; 1889 1890 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 1891 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 1892 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 1893 sit_i->sit_bitmap = dst_bitmap; 1894 sit_i->bitmap_size = bitmap_size; 1895 sit_i->dirty_sentries = 0; 1896 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 1897 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 1898 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 1899 mutex_init(&sit_i->sentry_lock); 1900 return 0; 1901 } 1902 1903 static int build_free_segmap(struct f2fs_sb_info *sbi) 1904 { 1905 struct free_segmap_info *free_i; 1906 unsigned int bitmap_size, sec_bitmap_size; 1907 1908 /* allocate memory for free segmap information */ 1909 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 1910 if (!free_i) 1911 return -ENOMEM; 1912 1913 SM_I(sbi)->free_info = free_i; 1914 1915 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 1916 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); 1917 if (!free_i->free_segmap) 1918 return -ENOMEM; 1919 1920 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 1921 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); 1922 if (!free_i->free_secmap) 1923 return -ENOMEM; 1924 1925 /* set all segments as dirty temporarily */ 1926 memset(free_i->free_segmap, 0xff, bitmap_size); 1927 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 1928 1929 /* init free segmap information */ 1930 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 1931 free_i->free_segments = 0; 1932 free_i->free_sections = 0; 1933 spin_lock_init(&free_i->segmap_lock); 1934 return 0; 1935 } 1936 1937 static int build_curseg(struct f2fs_sb_info *sbi) 1938 { 1939 struct curseg_info *array; 1940 int i; 1941 1942 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 1943 if (!array) 1944 return -ENOMEM; 1945 1946 SM_I(sbi)->curseg_array = array; 1947 1948 for (i = 0; i < NR_CURSEG_TYPE; i++) { 1949 mutex_init(&array[i].curseg_mutex); 1950 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 1951 if (!array[i].sum_blk) 1952 return -ENOMEM; 1953 array[i].segno = NULL_SEGNO; 1954 array[i].next_blkoff = 0; 1955 } 1956 return restore_curseg_summaries(sbi); 1957 } 1958 1959 static void build_sit_entries(struct f2fs_sb_info *sbi) 1960 { 1961 struct sit_info *sit_i = SIT_I(sbi); 1962 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1963 struct f2fs_summary_block *sum = curseg->sum_blk; 1964 int sit_blk_cnt = SIT_BLK_CNT(sbi); 1965 unsigned int i, start, end; 1966 unsigned int readed, start_blk = 0; 1967 int nrpages = MAX_BIO_BLOCKS(sbi); 1968 1969 do { 1970 readed = ra_meta_pages(sbi, start_blk, nrpages, META_SIT); 1971 1972 start = start_blk * sit_i->sents_per_block; 1973 end = (start_blk + readed) * sit_i->sents_per_block; 1974 1975 for (; start < end && start < MAIN_SEGS(sbi); start++) { 1976 struct seg_entry *se = &sit_i->sentries[start]; 1977 struct f2fs_sit_block *sit_blk; 1978 struct f2fs_sit_entry sit; 1979 struct page *page; 1980 1981 mutex_lock(&curseg->curseg_mutex); 1982 for (i = 0; i < sits_in_cursum(sum); i++) { 1983 if (le32_to_cpu(segno_in_journal(sum, i)) 1984 == start) { 1985 sit = sit_in_journal(sum, i); 1986 mutex_unlock(&curseg->curseg_mutex); 1987 goto got_it; 1988 } 1989 } 1990 mutex_unlock(&curseg->curseg_mutex); 1991 1992 page = get_current_sit_page(sbi, start); 1993 sit_blk = (struct f2fs_sit_block *)page_address(page); 1994 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 1995 f2fs_put_page(page, 1); 1996 got_it: 1997 check_block_count(sbi, start, &sit); 1998 seg_info_from_raw_sit(se, &sit); 1999 if (sbi->segs_per_sec > 1) { 2000 struct sec_entry *e = get_sec_entry(sbi, start); 2001 e->valid_blocks += se->valid_blocks; 2002 } 2003 } 2004 start_blk += readed; 2005 } while (start_blk < sit_blk_cnt); 2006 } 2007 2008 static void init_free_segmap(struct f2fs_sb_info *sbi) 2009 { 2010 unsigned int start; 2011 int type; 2012 2013 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2014 struct seg_entry *sentry = get_seg_entry(sbi, start); 2015 if (!sentry->valid_blocks) 2016 __set_free(sbi, start); 2017 } 2018 2019 /* set use the current segments */ 2020 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2021 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2022 __set_test_and_inuse(sbi, curseg_t->segno); 2023 } 2024 } 2025 2026 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2027 { 2028 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2029 struct free_segmap_info *free_i = FREE_I(sbi); 2030 unsigned int segno = 0, offset = 0; 2031 unsigned short valid_blocks; 2032 2033 while (1) { 2034 /* find dirty segment based on free segmap */ 2035 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2036 if (segno >= MAIN_SEGS(sbi)) 2037 break; 2038 offset = segno + 1; 2039 valid_blocks = get_valid_blocks(sbi, segno, 0); 2040 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2041 continue; 2042 if (valid_blocks > sbi->blocks_per_seg) { 2043 f2fs_bug_on(sbi, 1); 2044 continue; 2045 } 2046 mutex_lock(&dirty_i->seglist_lock); 2047 __locate_dirty_segment(sbi, segno, DIRTY); 2048 mutex_unlock(&dirty_i->seglist_lock); 2049 } 2050 } 2051 2052 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2053 { 2054 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2055 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2056 2057 dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL); 2058 if (!dirty_i->victim_secmap) 2059 return -ENOMEM; 2060 return 0; 2061 } 2062 2063 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2064 { 2065 struct dirty_seglist_info *dirty_i; 2066 unsigned int bitmap_size, i; 2067 2068 /* allocate memory for dirty segments list information */ 2069 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2070 if (!dirty_i) 2071 return -ENOMEM; 2072 2073 SM_I(sbi)->dirty_info = dirty_i; 2074 mutex_init(&dirty_i->seglist_lock); 2075 2076 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2077 2078 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2079 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); 2080 if (!dirty_i->dirty_segmap[i]) 2081 return -ENOMEM; 2082 } 2083 2084 init_dirty_segmap(sbi); 2085 return init_victim_secmap(sbi); 2086 } 2087 2088 /* 2089 * Update min, max modified time for cost-benefit GC algorithm 2090 */ 2091 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2092 { 2093 struct sit_info *sit_i = SIT_I(sbi); 2094 unsigned int segno; 2095 2096 mutex_lock(&sit_i->sentry_lock); 2097 2098 sit_i->min_mtime = LLONG_MAX; 2099 2100 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2101 unsigned int i; 2102 unsigned long long mtime = 0; 2103 2104 for (i = 0; i < sbi->segs_per_sec; i++) 2105 mtime += get_seg_entry(sbi, segno + i)->mtime; 2106 2107 mtime = div_u64(mtime, sbi->segs_per_sec); 2108 2109 if (sit_i->min_mtime > mtime) 2110 sit_i->min_mtime = mtime; 2111 } 2112 sit_i->max_mtime = get_mtime(sbi); 2113 mutex_unlock(&sit_i->sentry_lock); 2114 } 2115 2116 int build_segment_manager(struct f2fs_sb_info *sbi) 2117 { 2118 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2119 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2120 struct f2fs_sm_info *sm_info; 2121 int err; 2122 2123 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2124 if (!sm_info) 2125 return -ENOMEM; 2126 2127 /* init sm info */ 2128 sbi->sm_info = sm_info; 2129 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2130 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2131 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2132 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2133 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2134 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2135 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2136 sm_info->rec_prefree_segments = sm_info->main_segments * 2137 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2138 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2139 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2140 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2141 2142 INIT_LIST_HEAD(&sm_info->discard_list); 2143 sm_info->nr_discards = 0; 2144 sm_info->max_discards = 0; 2145 2146 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2147 2148 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2149 2150 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2151 err = create_flush_cmd_control(sbi); 2152 if (err) 2153 return err; 2154 } 2155 2156 err = build_sit_info(sbi); 2157 if (err) 2158 return err; 2159 err = build_free_segmap(sbi); 2160 if (err) 2161 return err; 2162 err = build_curseg(sbi); 2163 if (err) 2164 return err; 2165 2166 /* reinit free segmap based on SIT */ 2167 build_sit_entries(sbi); 2168 2169 init_free_segmap(sbi); 2170 err = build_dirty_segmap(sbi); 2171 if (err) 2172 return err; 2173 2174 init_min_max_mtime(sbi); 2175 return 0; 2176 } 2177 2178 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2179 enum dirty_type dirty_type) 2180 { 2181 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2182 2183 mutex_lock(&dirty_i->seglist_lock); 2184 kfree(dirty_i->dirty_segmap[dirty_type]); 2185 dirty_i->nr_dirty[dirty_type] = 0; 2186 mutex_unlock(&dirty_i->seglist_lock); 2187 } 2188 2189 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2190 { 2191 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2192 kfree(dirty_i->victim_secmap); 2193 } 2194 2195 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2196 { 2197 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2198 int i; 2199 2200 if (!dirty_i) 2201 return; 2202 2203 /* discard pre-free/dirty segments list */ 2204 for (i = 0; i < NR_DIRTY_TYPE; i++) 2205 discard_dirty_segmap(sbi, i); 2206 2207 destroy_victim_secmap(sbi); 2208 SM_I(sbi)->dirty_info = NULL; 2209 kfree(dirty_i); 2210 } 2211 2212 static void destroy_curseg(struct f2fs_sb_info *sbi) 2213 { 2214 struct curseg_info *array = SM_I(sbi)->curseg_array; 2215 int i; 2216 2217 if (!array) 2218 return; 2219 SM_I(sbi)->curseg_array = NULL; 2220 for (i = 0; i < NR_CURSEG_TYPE; i++) 2221 kfree(array[i].sum_blk); 2222 kfree(array); 2223 } 2224 2225 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2226 { 2227 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2228 if (!free_i) 2229 return; 2230 SM_I(sbi)->free_info = NULL; 2231 kfree(free_i->free_segmap); 2232 kfree(free_i->free_secmap); 2233 kfree(free_i); 2234 } 2235 2236 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2237 { 2238 struct sit_info *sit_i = SIT_I(sbi); 2239 unsigned int start; 2240 2241 if (!sit_i) 2242 return; 2243 2244 if (sit_i->sentries) { 2245 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2246 kfree(sit_i->sentries[start].cur_valid_map); 2247 kfree(sit_i->sentries[start].ckpt_valid_map); 2248 } 2249 } 2250 kfree(sit_i->tmp_map); 2251 2252 vfree(sit_i->sentries); 2253 vfree(sit_i->sec_entries); 2254 kfree(sit_i->dirty_sentries_bitmap); 2255 2256 SM_I(sbi)->sit_info = NULL; 2257 kfree(sit_i->sit_bitmap); 2258 kfree(sit_i); 2259 } 2260 2261 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2262 { 2263 struct f2fs_sm_info *sm_info = SM_I(sbi); 2264 2265 if (!sm_info) 2266 return; 2267 destroy_flush_cmd_control(sbi); 2268 destroy_dirty_segmap(sbi); 2269 destroy_curseg(sbi); 2270 destroy_free_segmap(sbi); 2271 destroy_sit_info(sbi); 2272 sbi->sm_info = NULL; 2273 kfree(sm_info); 2274 } 2275 2276 int __init create_segment_manager_caches(void) 2277 { 2278 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2279 sizeof(struct discard_entry)); 2280 if (!discard_entry_slab) 2281 goto fail; 2282 2283 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 2284 sizeof(struct sit_entry_set)); 2285 if (!sit_entry_set_slab) 2286 goto destory_discard_entry; 2287 2288 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 2289 sizeof(struct inmem_pages)); 2290 if (!inmem_entry_slab) 2291 goto destroy_sit_entry_set; 2292 return 0; 2293 2294 destroy_sit_entry_set: 2295 kmem_cache_destroy(sit_entry_set_slab); 2296 destory_discard_entry: 2297 kmem_cache_destroy(discard_entry_slab); 2298 fail: 2299 return -ENOMEM; 2300 } 2301 2302 void destroy_segment_manager_caches(void) 2303 { 2304 kmem_cache_destroy(sit_entry_set_slab); 2305 kmem_cache_destroy(discard_entry_slab); 2306 kmem_cache_destroy(inmem_entry_slab); 2307 } 2308