1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 #include <linux/freezer.h> 20 #include <linux/sched/signal.h> 21 22 #include "f2fs.h" 23 #include "segment.h" 24 #include "node.h" 25 #include "gc.h" 26 #include "trace.h" 27 #include <trace/events/f2fs.h> 28 29 #define __reverse_ffz(x) __reverse_ffs(~(x)) 30 31 static struct kmem_cache *discard_entry_slab; 32 static struct kmem_cache *discard_cmd_slab; 33 static struct kmem_cache *sit_entry_set_slab; 34 static struct kmem_cache *inmem_entry_slab; 35 36 static unsigned long __reverse_ulong(unsigned char *str) 37 { 38 unsigned long tmp = 0; 39 int shift = 24, idx = 0; 40 41 #if BITS_PER_LONG == 64 42 shift = 56; 43 #endif 44 while (shift >= 0) { 45 tmp |= (unsigned long)str[idx++] << shift; 46 shift -= BITS_PER_BYTE; 47 } 48 return tmp; 49 } 50 51 /* 52 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 53 * MSB and LSB are reversed in a byte by f2fs_set_bit. 54 */ 55 static inline unsigned long __reverse_ffs(unsigned long word) 56 { 57 int num = 0; 58 59 #if BITS_PER_LONG == 64 60 if ((word & 0xffffffff00000000UL) == 0) 61 num += 32; 62 else 63 word >>= 32; 64 #endif 65 if ((word & 0xffff0000) == 0) 66 num += 16; 67 else 68 word >>= 16; 69 70 if ((word & 0xff00) == 0) 71 num += 8; 72 else 73 word >>= 8; 74 75 if ((word & 0xf0) == 0) 76 num += 4; 77 else 78 word >>= 4; 79 80 if ((word & 0xc) == 0) 81 num += 2; 82 else 83 word >>= 2; 84 85 if ((word & 0x2) == 0) 86 num += 1; 87 return num; 88 } 89 90 /* 91 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 92 * f2fs_set_bit makes MSB and LSB reversed in a byte. 93 * @size must be integral times of unsigned long. 94 * Example: 95 * MSB <--> LSB 96 * f2fs_set_bit(0, bitmap) => 1000 0000 97 * f2fs_set_bit(7, bitmap) => 0000 0001 98 */ 99 static unsigned long __find_rev_next_bit(const unsigned long *addr, 100 unsigned long size, unsigned long offset) 101 { 102 const unsigned long *p = addr + BIT_WORD(offset); 103 unsigned long result = size; 104 unsigned long tmp; 105 106 if (offset >= size) 107 return size; 108 109 size -= (offset & ~(BITS_PER_LONG - 1)); 110 offset %= BITS_PER_LONG; 111 112 while (1) { 113 if (*p == 0) 114 goto pass; 115 116 tmp = __reverse_ulong((unsigned char *)p); 117 118 tmp &= ~0UL >> offset; 119 if (size < BITS_PER_LONG) 120 tmp &= (~0UL << (BITS_PER_LONG - size)); 121 if (tmp) 122 goto found; 123 pass: 124 if (size <= BITS_PER_LONG) 125 break; 126 size -= BITS_PER_LONG; 127 offset = 0; 128 p++; 129 } 130 return result; 131 found: 132 return result - size + __reverse_ffs(tmp); 133 } 134 135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 136 unsigned long size, unsigned long offset) 137 { 138 const unsigned long *p = addr + BIT_WORD(offset); 139 unsigned long result = size; 140 unsigned long tmp; 141 142 if (offset >= size) 143 return size; 144 145 size -= (offset & ~(BITS_PER_LONG - 1)); 146 offset %= BITS_PER_LONG; 147 148 while (1) { 149 if (*p == ~0UL) 150 goto pass; 151 152 tmp = __reverse_ulong((unsigned char *)p); 153 154 if (offset) 155 tmp |= ~0UL << (BITS_PER_LONG - offset); 156 if (size < BITS_PER_LONG) 157 tmp |= ~0UL >> size; 158 if (tmp != ~0UL) 159 goto found; 160 pass: 161 if (size <= BITS_PER_LONG) 162 break; 163 size -= BITS_PER_LONG; 164 offset = 0; 165 p++; 166 } 167 return result; 168 found: 169 return result - size + __reverse_ffz(tmp); 170 } 171 172 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 173 { 174 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 175 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 176 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 177 178 if (test_opt(sbi, LFS)) 179 return false; 180 if (sbi->gc_mode == GC_URGENT) 181 return true; 182 183 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 184 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 185 } 186 187 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 188 { 189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 190 struct f2fs_inode_info *fi = F2FS_I(inode); 191 struct inmem_pages *new; 192 193 f2fs_trace_pid(page); 194 195 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 196 SetPagePrivate(page); 197 198 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 199 200 /* add atomic page indices to the list */ 201 new->page = page; 202 INIT_LIST_HEAD(&new->list); 203 204 /* increase reference count with clean state */ 205 mutex_lock(&fi->inmem_lock); 206 get_page(page); 207 list_add_tail(&new->list, &fi->inmem_pages); 208 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 209 if (list_empty(&fi->inmem_ilist)) 210 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 211 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 212 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 213 mutex_unlock(&fi->inmem_lock); 214 215 trace_f2fs_register_inmem_page(page, INMEM); 216 } 217 218 static int __revoke_inmem_pages(struct inode *inode, 219 struct list_head *head, bool drop, bool recover) 220 { 221 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 222 struct inmem_pages *cur, *tmp; 223 int err = 0; 224 225 list_for_each_entry_safe(cur, tmp, head, list) { 226 struct page *page = cur->page; 227 228 if (drop) 229 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 230 231 lock_page(page); 232 233 f2fs_wait_on_page_writeback(page, DATA, true); 234 235 if (recover) { 236 struct dnode_of_data dn; 237 struct node_info ni; 238 239 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 240 retry: 241 set_new_dnode(&dn, inode, NULL, NULL, 0); 242 err = f2fs_get_dnode_of_data(&dn, page->index, 243 LOOKUP_NODE); 244 if (err) { 245 if (err == -ENOMEM) { 246 congestion_wait(BLK_RW_ASYNC, HZ/50); 247 cond_resched(); 248 goto retry; 249 } 250 err = -EAGAIN; 251 goto next; 252 } 253 f2fs_get_node_info(sbi, dn.nid, &ni); 254 if (cur->old_addr == NEW_ADDR) { 255 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 256 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 257 } else 258 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 259 cur->old_addr, ni.version, true, true); 260 f2fs_put_dnode(&dn); 261 } 262 next: 263 /* we don't need to invalidate this in the sccessful status */ 264 if (drop || recover) 265 ClearPageUptodate(page); 266 set_page_private(page, 0); 267 ClearPagePrivate(page); 268 f2fs_put_page(page, 1); 269 270 list_del(&cur->list); 271 kmem_cache_free(inmem_entry_slab, cur); 272 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 273 } 274 return err; 275 } 276 277 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 278 { 279 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 280 struct inode *inode; 281 struct f2fs_inode_info *fi; 282 next: 283 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 284 if (list_empty(head)) { 285 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 286 return; 287 } 288 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 289 inode = igrab(&fi->vfs_inode); 290 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 291 292 if (inode) { 293 if (gc_failure) { 294 if (fi->i_gc_failures[GC_FAILURE_ATOMIC]) 295 goto drop; 296 goto skip; 297 } 298 drop: 299 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 300 f2fs_drop_inmem_pages(inode); 301 iput(inode); 302 } 303 skip: 304 congestion_wait(BLK_RW_ASYNC, HZ/50); 305 cond_resched(); 306 goto next; 307 } 308 309 void f2fs_drop_inmem_pages(struct inode *inode) 310 { 311 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 312 struct f2fs_inode_info *fi = F2FS_I(inode); 313 314 mutex_lock(&fi->inmem_lock); 315 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 316 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 317 if (!list_empty(&fi->inmem_ilist)) 318 list_del_init(&fi->inmem_ilist); 319 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 320 mutex_unlock(&fi->inmem_lock); 321 322 clear_inode_flag(inode, FI_ATOMIC_FILE); 323 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 324 stat_dec_atomic_write(inode); 325 } 326 327 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 328 { 329 struct f2fs_inode_info *fi = F2FS_I(inode); 330 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 331 struct list_head *head = &fi->inmem_pages; 332 struct inmem_pages *cur = NULL; 333 334 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 335 336 mutex_lock(&fi->inmem_lock); 337 list_for_each_entry(cur, head, list) { 338 if (cur->page == page) 339 break; 340 } 341 342 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 343 list_del(&cur->list); 344 mutex_unlock(&fi->inmem_lock); 345 346 dec_page_count(sbi, F2FS_INMEM_PAGES); 347 kmem_cache_free(inmem_entry_slab, cur); 348 349 ClearPageUptodate(page); 350 set_page_private(page, 0); 351 ClearPagePrivate(page); 352 f2fs_put_page(page, 0); 353 354 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 355 } 356 357 static int __f2fs_commit_inmem_pages(struct inode *inode) 358 { 359 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 360 struct f2fs_inode_info *fi = F2FS_I(inode); 361 struct inmem_pages *cur, *tmp; 362 struct f2fs_io_info fio = { 363 .sbi = sbi, 364 .ino = inode->i_ino, 365 .type = DATA, 366 .op = REQ_OP_WRITE, 367 .op_flags = REQ_SYNC | REQ_PRIO, 368 .io_type = FS_DATA_IO, 369 }; 370 struct list_head revoke_list; 371 pgoff_t last_idx = ULONG_MAX; 372 int err = 0; 373 374 INIT_LIST_HEAD(&revoke_list); 375 376 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 377 struct page *page = cur->page; 378 379 lock_page(page); 380 if (page->mapping == inode->i_mapping) { 381 trace_f2fs_commit_inmem_page(page, INMEM); 382 383 set_page_dirty(page); 384 f2fs_wait_on_page_writeback(page, DATA, true); 385 if (clear_page_dirty_for_io(page)) { 386 inode_dec_dirty_pages(inode); 387 f2fs_remove_dirty_inode(inode); 388 } 389 retry: 390 fio.page = page; 391 fio.old_blkaddr = NULL_ADDR; 392 fio.encrypted_page = NULL; 393 fio.need_lock = LOCK_DONE; 394 err = f2fs_do_write_data_page(&fio); 395 if (err) { 396 if (err == -ENOMEM) { 397 congestion_wait(BLK_RW_ASYNC, HZ/50); 398 cond_resched(); 399 goto retry; 400 } 401 unlock_page(page); 402 break; 403 } 404 /* record old blkaddr for revoking */ 405 cur->old_addr = fio.old_blkaddr; 406 last_idx = page->index; 407 } 408 unlock_page(page); 409 list_move_tail(&cur->list, &revoke_list); 410 } 411 412 if (last_idx != ULONG_MAX) 413 f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA); 414 415 if (err) { 416 /* 417 * try to revoke all committed pages, but still we could fail 418 * due to no memory or other reason, if that happened, EAGAIN 419 * will be returned, which means in such case, transaction is 420 * already not integrity, caller should use journal to do the 421 * recovery or rewrite & commit last transaction. For other 422 * error number, revoking was done by filesystem itself. 423 */ 424 err = __revoke_inmem_pages(inode, &revoke_list, false, true); 425 426 /* drop all uncommitted pages */ 427 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 428 } else { 429 __revoke_inmem_pages(inode, &revoke_list, false, false); 430 } 431 432 return err; 433 } 434 435 int f2fs_commit_inmem_pages(struct inode *inode) 436 { 437 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 438 struct f2fs_inode_info *fi = F2FS_I(inode); 439 int err; 440 441 f2fs_balance_fs(sbi, true); 442 f2fs_lock_op(sbi); 443 444 set_inode_flag(inode, FI_ATOMIC_COMMIT); 445 446 mutex_lock(&fi->inmem_lock); 447 err = __f2fs_commit_inmem_pages(inode); 448 449 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 450 if (!list_empty(&fi->inmem_ilist)) 451 list_del_init(&fi->inmem_ilist); 452 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 453 mutex_unlock(&fi->inmem_lock); 454 455 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 456 457 f2fs_unlock_op(sbi); 458 return err; 459 } 460 461 /* 462 * This function balances dirty node and dentry pages. 463 * In addition, it controls garbage collection. 464 */ 465 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 466 { 467 #ifdef CONFIG_F2FS_FAULT_INJECTION 468 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 469 f2fs_show_injection_info(FAULT_CHECKPOINT); 470 f2fs_stop_checkpoint(sbi, false); 471 } 472 #endif 473 474 /* balance_fs_bg is able to be pending */ 475 if (need && excess_cached_nats(sbi)) 476 f2fs_balance_fs_bg(sbi); 477 478 /* 479 * We should do GC or end up with checkpoint, if there are so many dirty 480 * dir/node pages without enough free segments. 481 */ 482 if (has_not_enough_free_secs(sbi, 0, 0)) { 483 mutex_lock(&sbi->gc_mutex); 484 f2fs_gc(sbi, false, false, NULL_SEGNO); 485 } 486 } 487 488 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 489 { 490 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 491 return; 492 493 /* try to shrink extent cache when there is no enough memory */ 494 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 495 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 496 497 /* check the # of cached NAT entries */ 498 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 499 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 500 501 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 502 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 503 else 504 f2fs_build_free_nids(sbi, false, false); 505 506 if (!is_idle(sbi) && !excess_dirty_nats(sbi)) 507 return; 508 509 /* checkpoint is the only way to shrink partial cached entries */ 510 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 511 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 512 excess_prefree_segs(sbi) || 513 excess_dirty_nats(sbi) || 514 f2fs_time_over(sbi, CP_TIME)) { 515 if (test_opt(sbi, DATA_FLUSH)) { 516 struct blk_plug plug; 517 518 blk_start_plug(&plug); 519 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 520 blk_finish_plug(&plug); 521 } 522 f2fs_sync_fs(sbi->sb, true); 523 stat_inc_bg_cp_count(sbi->stat_info); 524 } 525 } 526 527 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 528 struct block_device *bdev) 529 { 530 struct bio *bio = f2fs_bio_alloc(sbi, 0, true); 531 int ret; 532 533 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 534 bio_set_dev(bio, bdev); 535 ret = submit_bio_wait(bio); 536 bio_put(bio); 537 538 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 539 test_opt(sbi, FLUSH_MERGE), ret); 540 return ret; 541 } 542 543 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 544 { 545 int ret = 0; 546 int i; 547 548 if (!sbi->s_ndevs) 549 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 550 551 for (i = 0; i < sbi->s_ndevs; i++) { 552 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 553 continue; 554 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 555 if (ret) 556 break; 557 } 558 return ret; 559 } 560 561 static int issue_flush_thread(void *data) 562 { 563 struct f2fs_sb_info *sbi = data; 564 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 565 wait_queue_head_t *q = &fcc->flush_wait_queue; 566 repeat: 567 if (kthread_should_stop()) 568 return 0; 569 570 sb_start_intwrite(sbi->sb); 571 572 if (!llist_empty(&fcc->issue_list)) { 573 struct flush_cmd *cmd, *next; 574 int ret; 575 576 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 577 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 578 579 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 580 581 ret = submit_flush_wait(sbi, cmd->ino); 582 atomic_inc(&fcc->issued_flush); 583 584 llist_for_each_entry_safe(cmd, next, 585 fcc->dispatch_list, llnode) { 586 cmd->ret = ret; 587 complete(&cmd->wait); 588 } 589 fcc->dispatch_list = NULL; 590 } 591 592 sb_end_intwrite(sbi->sb); 593 594 wait_event_interruptible(*q, 595 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 596 goto repeat; 597 } 598 599 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 600 { 601 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 602 struct flush_cmd cmd; 603 int ret; 604 605 if (test_opt(sbi, NOBARRIER)) 606 return 0; 607 608 if (!test_opt(sbi, FLUSH_MERGE)) { 609 ret = submit_flush_wait(sbi, ino); 610 atomic_inc(&fcc->issued_flush); 611 return ret; 612 } 613 614 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) { 615 ret = submit_flush_wait(sbi, ino); 616 atomic_dec(&fcc->issing_flush); 617 618 atomic_inc(&fcc->issued_flush); 619 return ret; 620 } 621 622 cmd.ino = ino; 623 init_completion(&cmd.wait); 624 625 llist_add(&cmd.llnode, &fcc->issue_list); 626 627 /* update issue_list before we wake up issue_flush thread */ 628 smp_mb(); 629 630 if (waitqueue_active(&fcc->flush_wait_queue)) 631 wake_up(&fcc->flush_wait_queue); 632 633 if (fcc->f2fs_issue_flush) { 634 wait_for_completion(&cmd.wait); 635 atomic_dec(&fcc->issing_flush); 636 } else { 637 struct llist_node *list; 638 639 list = llist_del_all(&fcc->issue_list); 640 if (!list) { 641 wait_for_completion(&cmd.wait); 642 atomic_dec(&fcc->issing_flush); 643 } else { 644 struct flush_cmd *tmp, *next; 645 646 ret = submit_flush_wait(sbi, ino); 647 648 llist_for_each_entry_safe(tmp, next, list, llnode) { 649 if (tmp == &cmd) { 650 cmd.ret = ret; 651 atomic_dec(&fcc->issing_flush); 652 continue; 653 } 654 tmp->ret = ret; 655 complete(&tmp->wait); 656 } 657 } 658 } 659 660 return cmd.ret; 661 } 662 663 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 664 { 665 dev_t dev = sbi->sb->s_bdev->bd_dev; 666 struct flush_cmd_control *fcc; 667 int err = 0; 668 669 if (SM_I(sbi)->fcc_info) { 670 fcc = SM_I(sbi)->fcc_info; 671 if (fcc->f2fs_issue_flush) 672 return err; 673 goto init_thread; 674 } 675 676 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 677 if (!fcc) 678 return -ENOMEM; 679 atomic_set(&fcc->issued_flush, 0); 680 atomic_set(&fcc->issing_flush, 0); 681 init_waitqueue_head(&fcc->flush_wait_queue); 682 init_llist_head(&fcc->issue_list); 683 SM_I(sbi)->fcc_info = fcc; 684 if (!test_opt(sbi, FLUSH_MERGE)) 685 return err; 686 687 init_thread: 688 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 689 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 690 if (IS_ERR(fcc->f2fs_issue_flush)) { 691 err = PTR_ERR(fcc->f2fs_issue_flush); 692 kfree(fcc); 693 SM_I(sbi)->fcc_info = NULL; 694 return err; 695 } 696 697 return err; 698 } 699 700 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 701 { 702 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 703 704 if (fcc && fcc->f2fs_issue_flush) { 705 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 706 707 fcc->f2fs_issue_flush = NULL; 708 kthread_stop(flush_thread); 709 } 710 if (free) { 711 kfree(fcc); 712 SM_I(sbi)->fcc_info = NULL; 713 } 714 } 715 716 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 717 { 718 int ret = 0, i; 719 720 if (!sbi->s_ndevs) 721 return 0; 722 723 for (i = 1; i < sbi->s_ndevs; i++) { 724 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 725 continue; 726 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 727 if (ret) 728 break; 729 730 spin_lock(&sbi->dev_lock); 731 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 732 spin_unlock(&sbi->dev_lock); 733 } 734 735 return ret; 736 } 737 738 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 739 enum dirty_type dirty_type) 740 { 741 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 742 743 /* need not be added */ 744 if (IS_CURSEG(sbi, segno)) 745 return; 746 747 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 748 dirty_i->nr_dirty[dirty_type]++; 749 750 if (dirty_type == DIRTY) { 751 struct seg_entry *sentry = get_seg_entry(sbi, segno); 752 enum dirty_type t = sentry->type; 753 754 if (unlikely(t >= DIRTY)) { 755 f2fs_bug_on(sbi, 1); 756 return; 757 } 758 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 759 dirty_i->nr_dirty[t]++; 760 } 761 } 762 763 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 764 enum dirty_type dirty_type) 765 { 766 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 767 768 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 769 dirty_i->nr_dirty[dirty_type]--; 770 771 if (dirty_type == DIRTY) { 772 struct seg_entry *sentry = get_seg_entry(sbi, segno); 773 enum dirty_type t = sentry->type; 774 775 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 776 dirty_i->nr_dirty[t]--; 777 778 if (get_valid_blocks(sbi, segno, true) == 0) 779 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 780 dirty_i->victim_secmap); 781 } 782 } 783 784 /* 785 * Should not occur error such as -ENOMEM. 786 * Adding dirty entry into seglist is not critical operation. 787 * If a given segment is one of current working segments, it won't be added. 788 */ 789 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 790 { 791 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 792 unsigned short valid_blocks; 793 794 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 795 return; 796 797 mutex_lock(&dirty_i->seglist_lock); 798 799 valid_blocks = get_valid_blocks(sbi, segno, false); 800 801 if (valid_blocks == 0) { 802 __locate_dirty_segment(sbi, segno, PRE); 803 __remove_dirty_segment(sbi, segno, DIRTY); 804 } else if (valid_blocks < sbi->blocks_per_seg) { 805 __locate_dirty_segment(sbi, segno, DIRTY); 806 } else { 807 /* Recovery routine with SSR needs this */ 808 __remove_dirty_segment(sbi, segno, DIRTY); 809 } 810 811 mutex_unlock(&dirty_i->seglist_lock); 812 } 813 814 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 815 struct block_device *bdev, block_t lstart, 816 block_t start, block_t len) 817 { 818 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 819 struct list_head *pend_list; 820 struct discard_cmd *dc; 821 822 f2fs_bug_on(sbi, !len); 823 824 pend_list = &dcc->pend_list[plist_idx(len)]; 825 826 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 827 INIT_LIST_HEAD(&dc->list); 828 dc->bdev = bdev; 829 dc->lstart = lstart; 830 dc->start = start; 831 dc->len = len; 832 dc->ref = 0; 833 dc->state = D_PREP; 834 dc->error = 0; 835 init_completion(&dc->wait); 836 list_add_tail(&dc->list, pend_list); 837 atomic_inc(&dcc->discard_cmd_cnt); 838 dcc->undiscard_blks += len; 839 840 return dc; 841 } 842 843 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 844 struct block_device *bdev, block_t lstart, 845 block_t start, block_t len, 846 struct rb_node *parent, struct rb_node **p) 847 { 848 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 849 struct discard_cmd *dc; 850 851 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 852 853 rb_link_node(&dc->rb_node, parent, p); 854 rb_insert_color(&dc->rb_node, &dcc->root); 855 856 return dc; 857 } 858 859 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 860 struct discard_cmd *dc) 861 { 862 if (dc->state == D_DONE) 863 atomic_dec(&dcc->issing_discard); 864 865 list_del(&dc->list); 866 rb_erase(&dc->rb_node, &dcc->root); 867 dcc->undiscard_blks -= dc->len; 868 869 kmem_cache_free(discard_cmd_slab, dc); 870 871 atomic_dec(&dcc->discard_cmd_cnt); 872 } 873 874 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 875 struct discard_cmd *dc) 876 { 877 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 878 879 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 880 881 f2fs_bug_on(sbi, dc->ref); 882 883 if (dc->error == -EOPNOTSUPP) 884 dc->error = 0; 885 886 if (dc->error) 887 f2fs_msg(sbi->sb, KERN_INFO, 888 "Issue discard(%u, %u, %u) failed, ret: %d", 889 dc->lstart, dc->start, dc->len, dc->error); 890 __detach_discard_cmd(dcc, dc); 891 } 892 893 static void f2fs_submit_discard_endio(struct bio *bio) 894 { 895 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 896 897 dc->error = blk_status_to_errno(bio->bi_status); 898 dc->state = D_DONE; 899 complete_all(&dc->wait); 900 bio_put(bio); 901 } 902 903 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 904 block_t start, block_t end) 905 { 906 #ifdef CONFIG_F2FS_CHECK_FS 907 struct seg_entry *sentry; 908 unsigned int segno; 909 block_t blk = start; 910 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 911 unsigned long *map; 912 913 while (blk < end) { 914 segno = GET_SEGNO(sbi, blk); 915 sentry = get_seg_entry(sbi, segno); 916 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 917 918 if (end < START_BLOCK(sbi, segno + 1)) 919 size = GET_BLKOFF_FROM_SEG0(sbi, end); 920 else 921 size = max_blocks; 922 map = (unsigned long *)(sentry->cur_valid_map); 923 offset = __find_rev_next_bit(map, size, offset); 924 f2fs_bug_on(sbi, offset != size); 925 blk = START_BLOCK(sbi, segno + 1); 926 } 927 #endif 928 } 929 930 static void __init_discard_policy(struct f2fs_sb_info *sbi, 931 struct discard_policy *dpolicy, 932 int discard_type, unsigned int granularity) 933 { 934 /* common policy */ 935 dpolicy->type = discard_type; 936 dpolicy->sync = true; 937 dpolicy->granularity = granularity; 938 939 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 940 dpolicy->io_aware_gran = MAX_PLIST_NUM; 941 942 if (discard_type == DPOLICY_BG) { 943 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 944 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 945 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 946 dpolicy->io_aware = true; 947 dpolicy->sync = false; 948 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 949 dpolicy->granularity = 1; 950 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 951 } 952 } else if (discard_type == DPOLICY_FORCE) { 953 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 954 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 955 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 956 dpolicy->io_aware = false; 957 } else if (discard_type == DPOLICY_FSTRIM) { 958 dpolicy->io_aware = false; 959 } else if (discard_type == DPOLICY_UMOUNT) { 960 dpolicy->max_requests = UINT_MAX; 961 dpolicy->io_aware = false; 962 } 963 } 964 965 966 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 967 static void __submit_discard_cmd(struct f2fs_sb_info *sbi, 968 struct discard_policy *dpolicy, 969 struct discard_cmd *dc) 970 { 971 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 972 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 973 &(dcc->fstrim_list) : &(dcc->wait_list); 974 struct bio *bio = NULL; 975 int flag = dpolicy->sync ? REQ_SYNC : 0; 976 977 if (dc->state != D_PREP) 978 return; 979 980 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 981 return; 982 983 trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len); 984 985 dc->error = __blkdev_issue_discard(dc->bdev, 986 SECTOR_FROM_BLOCK(dc->start), 987 SECTOR_FROM_BLOCK(dc->len), 988 GFP_NOFS, 0, &bio); 989 if (!dc->error) { 990 /* should keep before submission to avoid D_DONE right away */ 991 dc->state = D_SUBMIT; 992 atomic_inc(&dcc->issued_discard); 993 atomic_inc(&dcc->issing_discard); 994 if (bio) { 995 bio->bi_private = dc; 996 bio->bi_end_io = f2fs_submit_discard_endio; 997 bio->bi_opf |= flag; 998 submit_bio(bio); 999 list_move_tail(&dc->list, wait_list); 1000 __check_sit_bitmap(sbi, dc->start, dc->start + dc->len); 1001 1002 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1003 } 1004 } else { 1005 __remove_discard_cmd(sbi, dc); 1006 } 1007 } 1008 1009 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 1010 struct block_device *bdev, block_t lstart, 1011 block_t start, block_t len, 1012 struct rb_node **insert_p, 1013 struct rb_node *insert_parent) 1014 { 1015 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1016 struct rb_node **p; 1017 struct rb_node *parent = NULL; 1018 struct discard_cmd *dc = NULL; 1019 1020 if (insert_p && insert_parent) { 1021 parent = insert_parent; 1022 p = insert_p; 1023 goto do_insert; 1024 } 1025 1026 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart); 1027 do_insert: 1028 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p); 1029 if (!dc) 1030 return NULL; 1031 1032 return dc; 1033 } 1034 1035 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1036 struct discard_cmd *dc) 1037 { 1038 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1039 } 1040 1041 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1042 struct discard_cmd *dc, block_t blkaddr) 1043 { 1044 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1045 struct discard_info di = dc->di; 1046 bool modified = false; 1047 1048 if (dc->state == D_DONE || dc->len == 1) { 1049 __remove_discard_cmd(sbi, dc); 1050 return; 1051 } 1052 1053 dcc->undiscard_blks -= di.len; 1054 1055 if (blkaddr > di.lstart) { 1056 dc->len = blkaddr - dc->lstart; 1057 dcc->undiscard_blks += dc->len; 1058 __relocate_discard_cmd(dcc, dc); 1059 modified = true; 1060 } 1061 1062 if (blkaddr < di.lstart + di.len - 1) { 1063 if (modified) { 1064 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1065 di.start + blkaddr + 1 - di.lstart, 1066 di.lstart + di.len - 1 - blkaddr, 1067 NULL, NULL); 1068 } else { 1069 dc->lstart++; 1070 dc->len--; 1071 dc->start++; 1072 dcc->undiscard_blks += dc->len; 1073 __relocate_discard_cmd(dcc, dc); 1074 } 1075 } 1076 } 1077 1078 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1079 struct block_device *bdev, block_t lstart, 1080 block_t start, block_t len) 1081 { 1082 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1083 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1084 struct discard_cmd *dc; 1085 struct discard_info di = {0}; 1086 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1087 block_t end = lstart + len; 1088 1089 mutex_lock(&dcc->cmd_lock); 1090 1091 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1092 NULL, lstart, 1093 (struct rb_entry **)&prev_dc, 1094 (struct rb_entry **)&next_dc, 1095 &insert_p, &insert_parent, true); 1096 if (dc) 1097 prev_dc = dc; 1098 1099 if (!prev_dc) { 1100 di.lstart = lstart; 1101 di.len = next_dc ? next_dc->lstart - lstart : len; 1102 di.len = min(di.len, len); 1103 di.start = start; 1104 } 1105 1106 while (1) { 1107 struct rb_node *node; 1108 bool merged = false; 1109 struct discard_cmd *tdc = NULL; 1110 1111 if (prev_dc) { 1112 di.lstart = prev_dc->lstart + prev_dc->len; 1113 if (di.lstart < lstart) 1114 di.lstart = lstart; 1115 if (di.lstart >= end) 1116 break; 1117 1118 if (!next_dc || next_dc->lstart > end) 1119 di.len = end - di.lstart; 1120 else 1121 di.len = next_dc->lstart - di.lstart; 1122 di.start = start + di.lstart - lstart; 1123 } 1124 1125 if (!di.len) 1126 goto next; 1127 1128 if (prev_dc && prev_dc->state == D_PREP && 1129 prev_dc->bdev == bdev && 1130 __is_discard_back_mergeable(&di, &prev_dc->di)) { 1131 prev_dc->di.len += di.len; 1132 dcc->undiscard_blks += di.len; 1133 __relocate_discard_cmd(dcc, prev_dc); 1134 di = prev_dc->di; 1135 tdc = prev_dc; 1136 merged = true; 1137 } 1138 1139 if (next_dc && next_dc->state == D_PREP && 1140 next_dc->bdev == bdev && 1141 __is_discard_front_mergeable(&di, &next_dc->di)) { 1142 next_dc->di.lstart = di.lstart; 1143 next_dc->di.len += di.len; 1144 next_dc->di.start = di.start; 1145 dcc->undiscard_blks += di.len; 1146 __relocate_discard_cmd(dcc, next_dc); 1147 if (tdc) 1148 __remove_discard_cmd(sbi, tdc); 1149 merged = true; 1150 } 1151 1152 if (!merged) { 1153 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1154 di.len, NULL, NULL); 1155 } 1156 next: 1157 prev_dc = next_dc; 1158 if (!prev_dc) 1159 break; 1160 1161 node = rb_next(&prev_dc->rb_node); 1162 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1163 } 1164 1165 mutex_unlock(&dcc->cmd_lock); 1166 } 1167 1168 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1169 struct block_device *bdev, block_t blkstart, block_t blklen) 1170 { 1171 block_t lblkstart = blkstart; 1172 1173 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1174 1175 if (sbi->s_ndevs) { 1176 int devi = f2fs_target_device_index(sbi, blkstart); 1177 1178 blkstart -= FDEV(devi).start_blk; 1179 } 1180 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1181 return 0; 1182 } 1183 1184 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1185 struct discard_policy *dpolicy) 1186 { 1187 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1188 struct list_head *pend_list; 1189 struct discard_cmd *dc, *tmp; 1190 struct blk_plug plug; 1191 int i, iter = 0, issued = 0; 1192 bool io_interrupted = false; 1193 1194 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1195 if (i + 1 < dpolicy->granularity) 1196 break; 1197 pend_list = &dcc->pend_list[i]; 1198 1199 mutex_lock(&dcc->cmd_lock); 1200 if (list_empty(pend_list)) 1201 goto next; 1202 f2fs_bug_on(sbi, 1203 !f2fs_check_rb_tree_consistence(sbi, &dcc->root)); 1204 blk_start_plug(&plug); 1205 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1206 f2fs_bug_on(sbi, dc->state != D_PREP); 1207 1208 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1209 !is_idle(sbi)) { 1210 io_interrupted = true; 1211 goto skip; 1212 } 1213 1214 __submit_discard_cmd(sbi, dpolicy, dc); 1215 issued++; 1216 skip: 1217 if (++iter >= dpolicy->max_requests) 1218 break; 1219 } 1220 blk_finish_plug(&plug); 1221 next: 1222 mutex_unlock(&dcc->cmd_lock); 1223 1224 if (iter >= dpolicy->max_requests) 1225 break; 1226 } 1227 1228 if (!issued && io_interrupted) 1229 issued = -1; 1230 1231 return issued; 1232 } 1233 1234 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1235 { 1236 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1237 struct list_head *pend_list; 1238 struct discard_cmd *dc, *tmp; 1239 int i; 1240 bool dropped = false; 1241 1242 mutex_lock(&dcc->cmd_lock); 1243 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1244 pend_list = &dcc->pend_list[i]; 1245 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1246 f2fs_bug_on(sbi, dc->state != D_PREP); 1247 __remove_discard_cmd(sbi, dc); 1248 dropped = true; 1249 } 1250 } 1251 mutex_unlock(&dcc->cmd_lock); 1252 1253 return dropped; 1254 } 1255 1256 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1257 { 1258 __drop_discard_cmd(sbi); 1259 } 1260 1261 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1262 struct discard_cmd *dc) 1263 { 1264 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1265 unsigned int len = 0; 1266 1267 wait_for_completion_io(&dc->wait); 1268 mutex_lock(&dcc->cmd_lock); 1269 f2fs_bug_on(sbi, dc->state != D_DONE); 1270 dc->ref--; 1271 if (!dc->ref) { 1272 if (!dc->error) 1273 len = dc->len; 1274 __remove_discard_cmd(sbi, dc); 1275 } 1276 mutex_unlock(&dcc->cmd_lock); 1277 1278 return len; 1279 } 1280 1281 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1282 struct discard_policy *dpolicy, 1283 block_t start, block_t end) 1284 { 1285 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1286 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1287 &(dcc->fstrim_list) : &(dcc->wait_list); 1288 struct discard_cmd *dc, *tmp; 1289 bool need_wait; 1290 unsigned int trimmed = 0; 1291 1292 next: 1293 need_wait = false; 1294 1295 mutex_lock(&dcc->cmd_lock); 1296 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1297 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1298 continue; 1299 if (dc->len < dpolicy->granularity) 1300 continue; 1301 if (dc->state == D_DONE && !dc->ref) { 1302 wait_for_completion_io(&dc->wait); 1303 if (!dc->error) 1304 trimmed += dc->len; 1305 __remove_discard_cmd(sbi, dc); 1306 } else { 1307 dc->ref++; 1308 need_wait = true; 1309 break; 1310 } 1311 } 1312 mutex_unlock(&dcc->cmd_lock); 1313 1314 if (need_wait) { 1315 trimmed += __wait_one_discard_bio(sbi, dc); 1316 goto next; 1317 } 1318 1319 return trimmed; 1320 } 1321 1322 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1323 struct discard_policy *dpolicy) 1324 { 1325 struct discard_policy dp; 1326 1327 if (dpolicy) { 1328 __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1329 return; 1330 } 1331 1332 /* wait all */ 1333 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1334 __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1335 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1336 __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1337 } 1338 1339 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1340 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1341 { 1342 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1343 struct discard_cmd *dc; 1344 bool need_wait = false; 1345 1346 mutex_lock(&dcc->cmd_lock); 1347 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1348 NULL, blkaddr); 1349 if (dc) { 1350 if (dc->state == D_PREP) { 1351 __punch_discard_cmd(sbi, dc, blkaddr); 1352 } else { 1353 dc->ref++; 1354 need_wait = true; 1355 } 1356 } 1357 mutex_unlock(&dcc->cmd_lock); 1358 1359 if (need_wait) 1360 __wait_one_discard_bio(sbi, dc); 1361 } 1362 1363 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1364 { 1365 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1366 1367 if (dcc && dcc->f2fs_issue_discard) { 1368 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1369 1370 dcc->f2fs_issue_discard = NULL; 1371 kthread_stop(discard_thread); 1372 } 1373 } 1374 1375 /* This comes from f2fs_put_super */ 1376 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi) 1377 { 1378 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1379 struct discard_policy dpolicy; 1380 bool dropped; 1381 1382 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1383 dcc->discard_granularity); 1384 __issue_discard_cmd(sbi, &dpolicy); 1385 dropped = __drop_discard_cmd(sbi); 1386 1387 /* just to make sure there is no pending discard commands */ 1388 __wait_all_discard_cmd(sbi, NULL); 1389 return dropped; 1390 } 1391 1392 static int issue_discard_thread(void *data) 1393 { 1394 struct f2fs_sb_info *sbi = data; 1395 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1396 wait_queue_head_t *q = &dcc->discard_wait_queue; 1397 struct discard_policy dpolicy; 1398 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1399 int issued; 1400 1401 set_freezable(); 1402 1403 do { 1404 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1405 dcc->discard_granularity); 1406 1407 wait_event_interruptible_timeout(*q, 1408 kthread_should_stop() || freezing(current) || 1409 dcc->discard_wake, 1410 msecs_to_jiffies(wait_ms)); 1411 1412 if (dcc->discard_wake) 1413 dcc->discard_wake = 0; 1414 1415 if (try_to_freeze()) 1416 continue; 1417 if (f2fs_readonly(sbi->sb)) 1418 continue; 1419 if (kthread_should_stop()) 1420 return 0; 1421 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1422 wait_ms = dpolicy.max_interval; 1423 continue; 1424 } 1425 1426 if (sbi->gc_mode == GC_URGENT) 1427 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1428 1429 sb_start_intwrite(sbi->sb); 1430 1431 issued = __issue_discard_cmd(sbi, &dpolicy); 1432 if (issued > 0) { 1433 __wait_all_discard_cmd(sbi, &dpolicy); 1434 wait_ms = dpolicy.min_interval; 1435 } else if (issued == -1){ 1436 wait_ms = dpolicy.mid_interval; 1437 } else { 1438 wait_ms = dpolicy.max_interval; 1439 } 1440 1441 sb_end_intwrite(sbi->sb); 1442 1443 } while (!kthread_should_stop()); 1444 return 0; 1445 } 1446 1447 #ifdef CONFIG_BLK_DEV_ZONED 1448 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1449 struct block_device *bdev, block_t blkstart, block_t blklen) 1450 { 1451 sector_t sector, nr_sects; 1452 block_t lblkstart = blkstart; 1453 int devi = 0; 1454 1455 if (sbi->s_ndevs) { 1456 devi = f2fs_target_device_index(sbi, blkstart); 1457 blkstart -= FDEV(devi).start_blk; 1458 } 1459 1460 /* 1461 * We need to know the type of the zone: for conventional zones, 1462 * use regular discard if the drive supports it. For sequential 1463 * zones, reset the zone write pointer. 1464 */ 1465 switch (get_blkz_type(sbi, bdev, blkstart)) { 1466 1467 case BLK_ZONE_TYPE_CONVENTIONAL: 1468 if (!blk_queue_discard(bdev_get_queue(bdev))) 1469 return 0; 1470 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1471 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1472 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1473 sector = SECTOR_FROM_BLOCK(blkstart); 1474 nr_sects = SECTOR_FROM_BLOCK(blklen); 1475 1476 if (sector & (bdev_zone_sectors(bdev) - 1) || 1477 nr_sects != bdev_zone_sectors(bdev)) { 1478 f2fs_msg(sbi->sb, KERN_INFO, 1479 "(%d) %s: Unaligned discard attempted (block %x + %x)", 1480 devi, sbi->s_ndevs ? FDEV(devi).path: "", 1481 blkstart, blklen); 1482 return -EIO; 1483 } 1484 trace_f2fs_issue_reset_zone(bdev, blkstart); 1485 return blkdev_reset_zones(bdev, sector, 1486 nr_sects, GFP_NOFS); 1487 default: 1488 /* Unknown zone type: broken device ? */ 1489 return -EIO; 1490 } 1491 } 1492 #endif 1493 1494 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1495 struct block_device *bdev, block_t blkstart, block_t blklen) 1496 { 1497 #ifdef CONFIG_BLK_DEV_ZONED 1498 if (f2fs_sb_has_blkzoned(sbi->sb) && 1499 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 1500 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1501 #endif 1502 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1503 } 1504 1505 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1506 block_t blkstart, block_t blklen) 1507 { 1508 sector_t start = blkstart, len = 0; 1509 struct block_device *bdev; 1510 struct seg_entry *se; 1511 unsigned int offset; 1512 block_t i; 1513 int err = 0; 1514 1515 bdev = f2fs_target_device(sbi, blkstart, NULL); 1516 1517 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1518 if (i != start) { 1519 struct block_device *bdev2 = 1520 f2fs_target_device(sbi, i, NULL); 1521 1522 if (bdev2 != bdev) { 1523 err = __issue_discard_async(sbi, bdev, 1524 start, len); 1525 if (err) 1526 return err; 1527 bdev = bdev2; 1528 start = i; 1529 len = 0; 1530 } 1531 } 1532 1533 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1534 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1535 1536 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1537 sbi->discard_blks--; 1538 } 1539 1540 if (len) 1541 err = __issue_discard_async(sbi, bdev, start, len); 1542 return err; 1543 } 1544 1545 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1546 bool check_only) 1547 { 1548 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1549 int max_blocks = sbi->blocks_per_seg; 1550 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1551 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1552 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1553 unsigned long *discard_map = (unsigned long *)se->discard_map; 1554 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1555 unsigned int start = 0, end = -1; 1556 bool force = (cpc->reason & CP_DISCARD); 1557 struct discard_entry *de = NULL; 1558 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1559 int i; 1560 1561 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 1562 return false; 1563 1564 if (!force) { 1565 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 1566 SM_I(sbi)->dcc_info->nr_discards >= 1567 SM_I(sbi)->dcc_info->max_discards) 1568 return false; 1569 } 1570 1571 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1572 for (i = 0; i < entries; i++) 1573 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1574 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1575 1576 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1577 SM_I(sbi)->dcc_info->max_discards) { 1578 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1579 if (start >= max_blocks) 1580 break; 1581 1582 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1583 if (force && start && end != max_blocks 1584 && (end - start) < cpc->trim_minlen) 1585 continue; 1586 1587 if (check_only) 1588 return true; 1589 1590 if (!de) { 1591 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1592 GFP_F2FS_ZERO); 1593 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1594 list_add_tail(&de->list, head); 1595 } 1596 1597 for (i = start; i < end; i++) 1598 __set_bit_le(i, (void *)de->discard_map); 1599 1600 SM_I(sbi)->dcc_info->nr_discards += end - start; 1601 } 1602 return false; 1603 } 1604 1605 static void release_discard_addr(struct discard_entry *entry) 1606 { 1607 list_del(&entry->list); 1608 kmem_cache_free(discard_entry_slab, entry); 1609 } 1610 1611 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1612 { 1613 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1614 struct discard_entry *entry, *this; 1615 1616 /* drop caches */ 1617 list_for_each_entry_safe(entry, this, head, list) 1618 release_discard_addr(entry); 1619 } 1620 1621 /* 1622 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1623 */ 1624 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1625 { 1626 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1627 unsigned int segno; 1628 1629 mutex_lock(&dirty_i->seglist_lock); 1630 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1631 __set_test_and_free(sbi, segno); 1632 mutex_unlock(&dirty_i->seglist_lock); 1633 } 1634 1635 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1636 struct cp_control *cpc) 1637 { 1638 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1639 struct list_head *head = &dcc->entry_list; 1640 struct discard_entry *entry, *this; 1641 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1642 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1643 unsigned int start = 0, end = -1; 1644 unsigned int secno, start_segno; 1645 bool force = (cpc->reason & CP_DISCARD); 1646 1647 mutex_lock(&dirty_i->seglist_lock); 1648 1649 while (1) { 1650 int i; 1651 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1652 if (start >= MAIN_SEGS(sbi)) 1653 break; 1654 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1655 start + 1); 1656 1657 for (i = start; i < end; i++) 1658 clear_bit(i, prefree_map); 1659 1660 dirty_i->nr_dirty[PRE] -= end - start; 1661 1662 if (!test_opt(sbi, DISCARD)) 1663 continue; 1664 1665 if (force && start >= cpc->trim_start && 1666 (end - 1) <= cpc->trim_end) 1667 continue; 1668 1669 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 1670 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1671 (end - start) << sbi->log_blocks_per_seg); 1672 continue; 1673 } 1674 next: 1675 secno = GET_SEC_FROM_SEG(sbi, start); 1676 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1677 if (!IS_CURSEC(sbi, secno) && 1678 !get_valid_blocks(sbi, start, true)) 1679 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1680 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1681 1682 start = start_segno + sbi->segs_per_sec; 1683 if (start < end) 1684 goto next; 1685 else 1686 end = start - 1; 1687 } 1688 mutex_unlock(&dirty_i->seglist_lock); 1689 1690 /* send small discards */ 1691 list_for_each_entry_safe(entry, this, head, list) { 1692 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1693 bool is_valid = test_bit_le(0, entry->discard_map); 1694 1695 find_next: 1696 if (is_valid) { 1697 next_pos = find_next_zero_bit_le(entry->discard_map, 1698 sbi->blocks_per_seg, cur_pos); 1699 len = next_pos - cur_pos; 1700 1701 if (f2fs_sb_has_blkzoned(sbi->sb) || 1702 (force && len < cpc->trim_minlen)) 1703 goto skip; 1704 1705 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 1706 len); 1707 total_len += len; 1708 } else { 1709 next_pos = find_next_bit_le(entry->discard_map, 1710 sbi->blocks_per_seg, cur_pos); 1711 } 1712 skip: 1713 cur_pos = next_pos; 1714 is_valid = !is_valid; 1715 1716 if (cur_pos < sbi->blocks_per_seg) 1717 goto find_next; 1718 1719 release_discard_addr(entry); 1720 dcc->nr_discards -= total_len; 1721 } 1722 1723 wake_up_discard_thread(sbi, false); 1724 } 1725 1726 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 1727 { 1728 dev_t dev = sbi->sb->s_bdev->bd_dev; 1729 struct discard_cmd_control *dcc; 1730 int err = 0, i; 1731 1732 if (SM_I(sbi)->dcc_info) { 1733 dcc = SM_I(sbi)->dcc_info; 1734 goto init_thread; 1735 } 1736 1737 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 1738 if (!dcc) 1739 return -ENOMEM; 1740 1741 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 1742 INIT_LIST_HEAD(&dcc->entry_list); 1743 for (i = 0; i < MAX_PLIST_NUM; i++) 1744 INIT_LIST_HEAD(&dcc->pend_list[i]); 1745 INIT_LIST_HEAD(&dcc->wait_list); 1746 INIT_LIST_HEAD(&dcc->fstrim_list); 1747 mutex_init(&dcc->cmd_lock); 1748 atomic_set(&dcc->issued_discard, 0); 1749 atomic_set(&dcc->issing_discard, 0); 1750 atomic_set(&dcc->discard_cmd_cnt, 0); 1751 dcc->nr_discards = 0; 1752 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 1753 dcc->undiscard_blks = 0; 1754 dcc->root = RB_ROOT; 1755 1756 init_waitqueue_head(&dcc->discard_wait_queue); 1757 SM_I(sbi)->dcc_info = dcc; 1758 init_thread: 1759 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 1760 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 1761 if (IS_ERR(dcc->f2fs_issue_discard)) { 1762 err = PTR_ERR(dcc->f2fs_issue_discard); 1763 kfree(dcc); 1764 SM_I(sbi)->dcc_info = NULL; 1765 return err; 1766 } 1767 1768 return err; 1769 } 1770 1771 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 1772 { 1773 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1774 1775 if (!dcc) 1776 return; 1777 1778 f2fs_stop_discard_thread(sbi); 1779 1780 kfree(dcc); 1781 SM_I(sbi)->dcc_info = NULL; 1782 } 1783 1784 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 1785 { 1786 struct sit_info *sit_i = SIT_I(sbi); 1787 1788 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 1789 sit_i->dirty_sentries++; 1790 return false; 1791 } 1792 1793 return true; 1794 } 1795 1796 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 1797 unsigned int segno, int modified) 1798 { 1799 struct seg_entry *se = get_seg_entry(sbi, segno); 1800 se->type = type; 1801 if (modified) 1802 __mark_sit_entry_dirty(sbi, segno); 1803 } 1804 1805 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 1806 { 1807 struct seg_entry *se; 1808 unsigned int segno, offset; 1809 long int new_vblocks; 1810 bool exist; 1811 #ifdef CONFIG_F2FS_CHECK_FS 1812 bool mir_exist; 1813 #endif 1814 1815 segno = GET_SEGNO(sbi, blkaddr); 1816 1817 se = get_seg_entry(sbi, segno); 1818 new_vblocks = se->valid_blocks + del; 1819 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1820 1821 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 1822 (new_vblocks > sbi->blocks_per_seg))); 1823 1824 se->valid_blocks = new_vblocks; 1825 se->mtime = get_mtime(sbi, false); 1826 if (se->mtime > SIT_I(sbi)->max_mtime) 1827 SIT_I(sbi)->max_mtime = se->mtime; 1828 1829 /* Update valid block bitmap */ 1830 if (del > 0) { 1831 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 1832 #ifdef CONFIG_F2FS_CHECK_FS 1833 mir_exist = f2fs_test_and_set_bit(offset, 1834 se->cur_valid_map_mir); 1835 if (unlikely(exist != mir_exist)) { 1836 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 1837 "when setting bitmap, blk:%u, old bit:%d", 1838 blkaddr, exist); 1839 f2fs_bug_on(sbi, 1); 1840 } 1841 #endif 1842 if (unlikely(exist)) { 1843 f2fs_msg(sbi->sb, KERN_ERR, 1844 "Bitmap was wrongly set, blk:%u", blkaddr); 1845 f2fs_bug_on(sbi, 1); 1846 se->valid_blocks--; 1847 del = 0; 1848 } 1849 1850 if (f2fs_discard_en(sbi) && 1851 !f2fs_test_and_set_bit(offset, se->discard_map)) 1852 sbi->discard_blks--; 1853 1854 /* don't overwrite by SSR to keep node chain */ 1855 if (IS_NODESEG(se->type)) { 1856 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 1857 se->ckpt_valid_blocks++; 1858 } 1859 } else { 1860 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 1861 #ifdef CONFIG_F2FS_CHECK_FS 1862 mir_exist = f2fs_test_and_clear_bit(offset, 1863 se->cur_valid_map_mir); 1864 if (unlikely(exist != mir_exist)) { 1865 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 1866 "when clearing bitmap, blk:%u, old bit:%d", 1867 blkaddr, exist); 1868 f2fs_bug_on(sbi, 1); 1869 } 1870 #endif 1871 if (unlikely(!exist)) { 1872 f2fs_msg(sbi->sb, KERN_ERR, 1873 "Bitmap was wrongly cleared, blk:%u", blkaddr); 1874 f2fs_bug_on(sbi, 1); 1875 se->valid_blocks++; 1876 del = 0; 1877 } 1878 1879 if (f2fs_discard_en(sbi) && 1880 f2fs_test_and_clear_bit(offset, se->discard_map)) 1881 sbi->discard_blks++; 1882 } 1883 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 1884 se->ckpt_valid_blocks += del; 1885 1886 __mark_sit_entry_dirty(sbi, segno); 1887 1888 /* update total number of valid blocks to be written in ckpt area */ 1889 SIT_I(sbi)->written_valid_blocks += del; 1890 1891 if (sbi->segs_per_sec > 1) 1892 get_sec_entry(sbi, segno)->valid_blocks += del; 1893 } 1894 1895 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 1896 { 1897 unsigned int segno = GET_SEGNO(sbi, addr); 1898 struct sit_info *sit_i = SIT_I(sbi); 1899 1900 f2fs_bug_on(sbi, addr == NULL_ADDR); 1901 if (addr == NEW_ADDR) 1902 return; 1903 1904 /* add it into sit main buffer */ 1905 down_write(&sit_i->sentry_lock); 1906 1907 update_sit_entry(sbi, addr, -1); 1908 1909 /* add it into dirty seglist */ 1910 locate_dirty_segment(sbi, segno); 1911 1912 up_write(&sit_i->sentry_lock); 1913 } 1914 1915 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 1916 { 1917 struct sit_info *sit_i = SIT_I(sbi); 1918 unsigned int segno, offset; 1919 struct seg_entry *se; 1920 bool is_cp = false; 1921 1922 if (!is_valid_blkaddr(blkaddr)) 1923 return true; 1924 1925 down_read(&sit_i->sentry_lock); 1926 1927 segno = GET_SEGNO(sbi, blkaddr); 1928 se = get_seg_entry(sbi, segno); 1929 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1930 1931 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 1932 is_cp = true; 1933 1934 up_read(&sit_i->sentry_lock); 1935 1936 return is_cp; 1937 } 1938 1939 /* 1940 * This function should be resided under the curseg_mutex lock 1941 */ 1942 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1943 struct f2fs_summary *sum) 1944 { 1945 struct curseg_info *curseg = CURSEG_I(sbi, type); 1946 void *addr = curseg->sum_blk; 1947 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1948 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1949 } 1950 1951 /* 1952 * Calculate the number of current summary pages for writing 1953 */ 1954 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1955 { 1956 int valid_sum_count = 0; 1957 int i, sum_in_page; 1958 1959 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1960 if (sbi->ckpt->alloc_type[i] == SSR) 1961 valid_sum_count += sbi->blocks_per_seg; 1962 else { 1963 if (for_ra) 1964 valid_sum_count += le16_to_cpu( 1965 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1966 else 1967 valid_sum_count += curseg_blkoff(sbi, i); 1968 } 1969 } 1970 1971 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1972 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1973 if (valid_sum_count <= sum_in_page) 1974 return 1; 1975 else if ((valid_sum_count - sum_in_page) <= 1976 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1977 return 2; 1978 return 3; 1979 } 1980 1981 /* 1982 * Caller should put this summary page 1983 */ 1984 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1985 { 1986 return f2fs_get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1987 } 1988 1989 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 1990 void *src, block_t blk_addr) 1991 { 1992 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 1993 1994 memcpy(page_address(page), src, PAGE_SIZE); 1995 set_page_dirty(page); 1996 f2fs_put_page(page, 1); 1997 } 1998 1999 static void write_sum_page(struct f2fs_sb_info *sbi, 2000 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2001 { 2002 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2003 } 2004 2005 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2006 int type, block_t blk_addr) 2007 { 2008 struct curseg_info *curseg = CURSEG_I(sbi, type); 2009 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2010 struct f2fs_summary_block *src = curseg->sum_blk; 2011 struct f2fs_summary_block *dst; 2012 2013 dst = (struct f2fs_summary_block *)page_address(page); 2014 memset(dst, 0, PAGE_SIZE); 2015 2016 mutex_lock(&curseg->curseg_mutex); 2017 2018 down_read(&curseg->journal_rwsem); 2019 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2020 up_read(&curseg->journal_rwsem); 2021 2022 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2023 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2024 2025 mutex_unlock(&curseg->curseg_mutex); 2026 2027 set_page_dirty(page); 2028 f2fs_put_page(page, 1); 2029 } 2030 2031 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2032 { 2033 struct curseg_info *curseg = CURSEG_I(sbi, type); 2034 unsigned int segno = curseg->segno + 1; 2035 struct free_segmap_info *free_i = FREE_I(sbi); 2036 2037 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2038 return !test_bit(segno, free_i->free_segmap); 2039 return 0; 2040 } 2041 2042 /* 2043 * Find a new segment from the free segments bitmap to right order 2044 * This function should be returned with success, otherwise BUG 2045 */ 2046 static void get_new_segment(struct f2fs_sb_info *sbi, 2047 unsigned int *newseg, bool new_sec, int dir) 2048 { 2049 struct free_segmap_info *free_i = FREE_I(sbi); 2050 unsigned int segno, secno, zoneno; 2051 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2052 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2053 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2054 unsigned int left_start = hint; 2055 bool init = true; 2056 int go_left = 0; 2057 int i; 2058 2059 spin_lock(&free_i->segmap_lock); 2060 2061 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2062 segno = find_next_zero_bit(free_i->free_segmap, 2063 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2064 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2065 goto got_it; 2066 } 2067 find_other_zone: 2068 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2069 if (secno >= MAIN_SECS(sbi)) { 2070 if (dir == ALLOC_RIGHT) { 2071 secno = find_next_zero_bit(free_i->free_secmap, 2072 MAIN_SECS(sbi), 0); 2073 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2074 } else { 2075 go_left = 1; 2076 left_start = hint - 1; 2077 } 2078 } 2079 if (go_left == 0) 2080 goto skip_left; 2081 2082 while (test_bit(left_start, free_i->free_secmap)) { 2083 if (left_start > 0) { 2084 left_start--; 2085 continue; 2086 } 2087 left_start = find_next_zero_bit(free_i->free_secmap, 2088 MAIN_SECS(sbi), 0); 2089 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2090 break; 2091 } 2092 secno = left_start; 2093 skip_left: 2094 segno = GET_SEG_FROM_SEC(sbi, secno); 2095 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2096 2097 /* give up on finding another zone */ 2098 if (!init) 2099 goto got_it; 2100 if (sbi->secs_per_zone == 1) 2101 goto got_it; 2102 if (zoneno == old_zoneno) 2103 goto got_it; 2104 if (dir == ALLOC_LEFT) { 2105 if (!go_left && zoneno + 1 >= total_zones) 2106 goto got_it; 2107 if (go_left && zoneno == 0) 2108 goto got_it; 2109 } 2110 for (i = 0; i < NR_CURSEG_TYPE; i++) 2111 if (CURSEG_I(sbi, i)->zone == zoneno) 2112 break; 2113 2114 if (i < NR_CURSEG_TYPE) { 2115 /* zone is in user, try another */ 2116 if (go_left) 2117 hint = zoneno * sbi->secs_per_zone - 1; 2118 else if (zoneno + 1 >= total_zones) 2119 hint = 0; 2120 else 2121 hint = (zoneno + 1) * sbi->secs_per_zone; 2122 init = false; 2123 goto find_other_zone; 2124 } 2125 got_it: 2126 /* set it as dirty segment in free segmap */ 2127 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2128 __set_inuse(sbi, segno); 2129 *newseg = segno; 2130 spin_unlock(&free_i->segmap_lock); 2131 } 2132 2133 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2134 { 2135 struct curseg_info *curseg = CURSEG_I(sbi, type); 2136 struct summary_footer *sum_footer; 2137 2138 curseg->segno = curseg->next_segno; 2139 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2140 curseg->next_blkoff = 0; 2141 curseg->next_segno = NULL_SEGNO; 2142 2143 sum_footer = &(curseg->sum_blk->footer); 2144 memset(sum_footer, 0, sizeof(struct summary_footer)); 2145 if (IS_DATASEG(type)) 2146 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2147 if (IS_NODESEG(type)) 2148 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2149 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2150 } 2151 2152 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2153 { 2154 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2155 if (sbi->segs_per_sec != 1) 2156 return CURSEG_I(sbi, type)->segno; 2157 2158 if (test_opt(sbi, NOHEAP) && 2159 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2160 return 0; 2161 2162 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2163 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2164 2165 /* find segments from 0 to reuse freed segments */ 2166 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2167 return 0; 2168 2169 return CURSEG_I(sbi, type)->segno; 2170 } 2171 2172 /* 2173 * Allocate a current working segment. 2174 * This function always allocates a free segment in LFS manner. 2175 */ 2176 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2177 { 2178 struct curseg_info *curseg = CURSEG_I(sbi, type); 2179 unsigned int segno = curseg->segno; 2180 int dir = ALLOC_LEFT; 2181 2182 write_sum_page(sbi, curseg->sum_blk, 2183 GET_SUM_BLOCK(sbi, segno)); 2184 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2185 dir = ALLOC_RIGHT; 2186 2187 if (test_opt(sbi, NOHEAP)) 2188 dir = ALLOC_RIGHT; 2189 2190 segno = __get_next_segno(sbi, type); 2191 get_new_segment(sbi, &segno, new_sec, dir); 2192 curseg->next_segno = segno; 2193 reset_curseg(sbi, type, 1); 2194 curseg->alloc_type = LFS; 2195 } 2196 2197 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2198 struct curseg_info *seg, block_t start) 2199 { 2200 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2201 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2202 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2203 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2204 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2205 int i, pos; 2206 2207 for (i = 0; i < entries; i++) 2208 target_map[i] = ckpt_map[i] | cur_map[i]; 2209 2210 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2211 2212 seg->next_blkoff = pos; 2213 } 2214 2215 /* 2216 * If a segment is written by LFS manner, next block offset is just obtained 2217 * by increasing the current block offset. However, if a segment is written by 2218 * SSR manner, next block offset obtained by calling __next_free_blkoff 2219 */ 2220 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2221 struct curseg_info *seg) 2222 { 2223 if (seg->alloc_type == SSR) 2224 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2225 else 2226 seg->next_blkoff++; 2227 } 2228 2229 /* 2230 * This function always allocates a used segment(from dirty seglist) by SSR 2231 * manner, so it should recover the existing segment information of valid blocks 2232 */ 2233 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2234 { 2235 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2236 struct curseg_info *curseg = CURSEG_I(sbi, type); 2237 unsigned int new_segno = curseg->next_segno; 2238 struct f2fs_summary_block *sum_node; 2239 struct page *sum_page; 2240 2241 write_sum_page(sbi, curseg->sum_blk, 2242 GET_SUM_BLOCK(sbi, curseg->segno)); 2243 __set_test_and_inuse(sbi, new_segno); 2244 2245 mutex_lock(&dirty_i->seglist_lock); 2246 __remove_dirty_segment(sbi, new_segno, PRE); 2247 __remove_dirty_segment(sbi, new_segno, DIRTY); 2248 mutex_unlock(&dirty_i->seglist_lock); 2249 2250 reset_curseg(sbi, type, 1); 2251 curseg->alloc_type = SSR; 2252 __next_free_blkoff(sbi, curseg, 0); 2253 2254 sum_page = f2fs_get_sum_page(sbi, new_segno); 2255 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2256 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2257 f2fs_put_page(sum_page, 1); 2258 } 2259 2260 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2261 { 2262 struct curseg_info *curseg = CURSEG_I(sbi, type); 2263 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2264 unsigned segno = NULL_SEGNO; 2265 int i, cnt; 2266 bool reversed = false; 2267 2268 /* f2fs_need_SSR() already forces to do this */ 2269 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2270 curseg->next_segno = segno; 2271 return 1; 2272 } 2273 2274 /* For node segments, let's do SSR more intensively */ 2275 if (IS_NODESEG(type)) { 2276 if (type >= CURSEG_WARM_NODE) { 2277 reversed = true; 2278 i = CURSEG_COLD_NODE; 2279 } else { 2280 i = CURSEG_HOT_NODE; 2281 } 2282 cnt = NR_CURSEG_NODE_TYPE; 2283 } else { 2284 if (type >= CURSEG_WARM_DATA) { 2285 reversed = true; 2286 i = CURSEG_COLD_DATA; 2287 } else { 2288 i = CURSEG_HOT_DATA; 2289 } 2290 cnt = NR_CURSEG_DATA_TYPE; 2291 } 2292 2293 for (; cnt-- > 0; reversed ? i-- : i++) { 2294 if (i == type) 2295 continue; 2296 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2297 curseg->next_segno = segno; 2298 return 1; 2299 } 2300 } 2301 return 0; 2302 } 2303 2304 /* 2305 * flush out current segment and replace it with new segment 2306 * This function should be returned with success, otherwise BUG 2307 */ 2308 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2309 int type, bool force) 2310 { 2311 struct curseg_info *curseg = CURSEG_I(sbi, type); 2312 2313 if (force) 2314 new_curseg(sbi, type, true); 2315 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2316 type == CURSEG_WARM_NODE) 2317 new_curseg(sbi, type, false); 2318 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type)) 2319 new_curseg(sbi, type, false); 2320 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2321 change_curseg(sbi, type); 2322 else 2323 new_curseg(sbi, type, false); 2324 2325 stat_inc_seg_type(sbi, curseg); 2326 } 2327 2328 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2329 { 2330 struct curseg_info *curseg; 2331 unsigned int old_segno; 2332 int i; 2333 2334 down_write(&SIT_I(sbi)->sentry_lock); 2335 2336 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2337 curseg = CURSEG_I(sbi, i); 2338 old_segno = curseg->segno; 2339 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2340 locate_dirty_segment(sbi, old_segno); 2341 } 2342 2343 up_write(&SIT_I(sbi)->sentry_lock); 2344 } 2345 2346 static const struct segment_allocation default_salloc_ops = { 2347 .allocate_segment = allocate_segment_by_default, 2348 }; 2349 2350 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2351 struct cp_control *cpc) 2352 { 2353 __u64 trim_start = cpc->trim_start; 2354 bool has_candidate = false; 2355 2356 down_write(&SIT_I(sbi)->sentry_lock); 2357 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2358 if (add_discard_addrs(sbi, cpc, true)) { 2359 has_candidate = true; 2360 break; 2361 } 2362 } 2363 up_write(&SIT_I(sbi)->sentry_lock); 2364 2365 cpc->trim_start = trim_start; 2366 return has_candidate; 2367 } 2368 2369 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2370 struct discard_policy *dpolicy, 2371 unsigned int start, unsigned int end) 2372 { 2373 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2374 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2375 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2376 struct discard_cmd *dc; 2377 struct blk_plug plug; 2378 int issued; 2379 2380 next: 2381 issued = 0; 2382 2383 mutex_lock(&dcc->cmd_lock); 2384 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, &dcc->root)); 2385 2386 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2387 NULL, start, 2388 (struct rb_entry **)&prev_dc, 2389 (struct rb_entry **)&next_dc, 2390 &insert_p, &insert_parent, true); 2391 if (!dc) 2392 dc = next_dc; 2393 2394 blk_start_plug(&plug); 2395 2396 while (dc && dc->lstart <= end) { 2397 struct rb_node *node; 2398 2399 if (dc->len < dpolicy->granularity) 2400 goto skip; 2401 2402 if (dc->state != D_PREP) { 2403 list_move_tail(&dc->list, &dcc->fstrim_list); 2404 goto skip; 2405 } 2406 2407 __submit_discard_cmd(sbi, dpolicy, dc); 2408 2409 if (++issued >= dpolicy->max_requests) { 2410 start = dc->lstart + dc->len; 2411 2412 blk_finish_plug(&plug); 2413 mutex_unlock(&dcc->cmd_lock); 2414 __wait_all_discard_cmd(sbi, NULL); 2415 congestion_wait(BLK_RW_ASYNC, HZ/50); 2416 goto next; 2417 } 2418 skip: 2419 node = rb_next(&dc->rb_node); 2420 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2421 2422 if (fatal_signal_pending(current)) 2423 break; 2424 } 2425 2426 blk_finish_plug(&plug); 2427 mutex_unlock(&dcc->cmd_lock); 2428 } 2429 2430 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2431 { 2432 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2433 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2434 unsigned int start_segno, end_segno; 2435 block_t start_block, end_block; 2436 struct cp_control cpc; 2437 struct discard_policy dpolicy; 2438 unsigned long long trimmed = 0; 2439 int err = 0; 2440 2441 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2442 return -EINVAL; 2443 2444 if (end <= MAIN_BLKADDR(sbi)) 2445 return -EINVAL; 2446 2447 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2448 f2fs_msg(sbi->sb, KERN_WARNING, 2449 "Found FS corruption, run fsck to fix."); 2450 return -EIO; 2451 } 2452 2453 /* start/end segment number in main_area */ 2454 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2455 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2456 GET_SEGNO(sbi, end); 2457 2458 cpc.reason = CP_DISCARD; 2459 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2460 cpc.trim_start = start_segno; 2461 cpc.trim_end = end_segno; 2462 2463 if (sbi->discard_blks == 0) 2464 goto out; 2465 2466 mutex_lock(&sbi->gc_mutex); 2467 err = f2fs_write_checkpoint(sbi, &cpc); 2468 mutex_unlock(&sbi->gc_mutex); 2469 if (err) 2470 goto out; 2471 2472 start_block = START_BLOCK(sbi, start_segno); 2473 end_block = START_BLOCK(sbi, end_segno + 1); 2474 2475 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2476 __issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block); 2477 2478 /* 2479 * We filed discard candidates, but actually we don't need to wait for 2480 * all of them, since they'll be issued in idle time along with runtime 2481 * discard option. User configuration looks like using runtime discard 2482 * or periodic fstrim instead of it. 2483 */ 2484 if (!test_opt(sbi, DISCARD)) { 2485 trimmed = __wait_discard_cmd_range(sbi, &dpolicy, 2486 start_block, end_block); 2487 range->len = F2FS_BLK_TO_BYTES(trimmed); 2488 } 2489 out: 2490 return err; 2491 } 2492 2493 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2494 { 2495 struct curseg_info *curseg = CURSEG_I(sbi, type); 2496 if (curseg->next_blkoff < sbi->blocks_per_seg) 2497 return true; 2498 return false; 2499 } 2500 2501 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2502 { 2503 switch (hint) { 2504 case WRITE_LIFE_SHORT: 2505 return CURSEG_HOT_DATA; 2506 case WRITE_LIFE_EXTREME: 2507 return CURSEG_COLD_DATA; 2508 default: 2509 return CURSEG_WARM_DATA; 2510 } 2511 } 2512 2513 /* This returns write hints for each segment type. This hints will be 2514 * passed down to block layer. There are mapping tables which depend on 2515 * the mount option 'whint_mode'. 2516 * 2517 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2518 * 2519 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2520 * 2521 * User F2FS Block 2522 * ---- ---- ----- 2523 * META WRITE_LIFE_NOT_SET 2524 * HOT_NODE " 2525 * WARM_NODE " 2526 * COLD_NODE " 2527 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2528 * extension list " " 2529 * 2530 * -- buffered io 2531 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2532 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2533 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2534 * WRITE_LIFE_NONE " " 2535 * WRITE_LIFE_MEDIUM " " 2536 * WRITE_LIFE_LONG " " 2537 * 2538 * -- direct io 2539 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2540 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2541 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2542 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2543 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2544 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2545 * 2546 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2547 * 2548 * User F2FS Block 2549 * ---- ---- ----- 2550 * META WRITE_LIFE_MEDIUM; 2551 * HOT_NODE WRITE_LIFE_NOT_SET 2552 * WARM_NODE " 2553 * COLD_NODE WRITE_LIFE_NONE 2554 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2555 * extension list " " 2556 * 2557 * -- buffered io 2558 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2559 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2560 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2561 * WRITE_LIFE_NONE " " 2562 * WRITE_LIFE_MEDIUM " " 2563 * WRITE_LIFE_LONG " " 2564 * 2565 * -- direct io 2566 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2567 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2568 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2569 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2570 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2571 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2572 */ 2573 2574 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2575 enum page_type type, enum temp_type temp) 2576 { 2577 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 2578 if (type == DATA) { 2579 if (temp == WARM) 2580 return WRITE_LIFE_NOT_SET; 2581 else if (temp == HOT) 2582 return WRITE_LIFE_SHORT; 2583 else if (temp == COLD) 2584 return WRITE_LIFE_EXTREME; 2585 } else { 2586 return WRITE_LIFE_NOT_SET; 2587 } 2588 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 2589 if (type == DATA) { 2590 if (temp == WARM) 2591 return WRITE_LIFE_LONG; 2592 else if (temp == HOT) 2593 return WRITE_LIFE_SHORT; 2594 else if (temp == COLD) 2595 return WRITE_LIFE_EXTREME; 2596 } else if (type == NODE) { 2597 if (temp == WARM || temp == HOT) 2598 return WRITE_LIFE_NOT_SET; 2599 else if (temp == COLD) 2600 return WRITE_LIFE_NONE; 2601 } else if (type == META) { 2602 return WRITE_LIFE_MEDIUM; 2603 } 2604 } 2605 return WRITE_LIFE_NOT_SET; 2606 } 2607 2608 static int __get_segment_type_2(struct f2fs_io_info *fio) 2609 { 2610 if (fio->type == DATA) 2611 return CURSEG_HOT_DATA; 2612 else 2613 return CURSEG_HOT_NODE; 2614 } 2615 2616 static int __get_segment_type_4(struct f2fs_io_info *fio) 2617 { 2618 if (fio->type == DATA) { 2619 struct inode *inode = fio->page->mapping->host; 2620 2621 if (S_ISDIR(inode->i_mode)) 2622 return CURSEG_HOT_DATA; 2623 else 2624 return CURSEG_COLD_DATA; 2625 } else { 2626 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 2627 return CURSEG_WARM_NODE; 2628 else 2629 return CURSEG_COLD_NODE; 2630 } 2631 } 2632 2633 static int __get_segment_type_6(struct f2fs_io_info *fio) 2634 { 2635 if (fio->type == DATA) { 2636 struct inode *inode = fio->page->mapping->host; 2637 2638 if (is_cold_data(fio->page) || file_is_cold(inode)) 2639 return CURSEG_COLD_DATA; 2640 if (file_is_hot(inode) || 2641 is_inode_flag_set(inode, FI_HOT_DATA) || 2642 is_inode_flag_set(inode, FI_ATOMIC_FILE) || 2643 is_inode_flag_set(inode, FI_VOLATILE_FILE)) 2644 return CURSEG_HOT_DATA; 2645 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 2646 } else { 2647 if (IS_DNODE(fio->page)) 2648 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 2649 CURSEG_HOT_NODE; 2650 return CURSEG_COLD_NODE; 2651 } 2652 } 2653 2654 static int __get_segment_type(struct f2fs_io_info *fio) 2655 { 2656 int type = 0; 2657 2658 switch (F2FS_OPTION(fio->sbi).active_logs) { 2659 case 2: 2660 type = __get_segment_type_2(fio); 2661 break; 2662 case 4: 2663 type = __get_segment_type_4(fio); 2664 break; 2665 case 6: 2666 type = __get_segment_type_6(fio); 2667 break; 2668 default: 2669 f2fs_bug_on(fio->sbi, true); 2670 } 2671 2672 if (IS_HOT(type)) 2673 fio->temp = HOT; 2674 else if (IS_WARM(type)) 2675 fio->temp = WARM; 2676 else 2677 fio->temp = COLD; 2678 return type; 2679 } 2680 2681 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2682 block_t old_blkaddr, block_t *new_blkaddr, 2683 struct f2fs_summary *sum, int type, 2684 struct f2fs_io_info *fio, bool add_list) 2685 { 2686 struct sit_info *sit_i = SIT_I(sbi); 2687 struct curseg_info *curseg = CURSEG_I(sbi, type); 2688 2689 down_read(&SM_I(sbi)->curseg_lock); 2690 2691 mutex_lock(&curseg->curseg_mutex); 2692 down_write(&sit_i->sentry_lock); 2693 2694 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 2695 2696 f2fs_wait_discard_bio(sbi, *new_blkaddr); 2697 2698 /* 2699 * __add_sum_entry should be resided under the curseg_mutex 2700 * because, this function updates a summary entry in the 2701 * current summary block. 2702 */ 2703 __add_sum_entry(sbi, type, sum); 2704 2705 __refresh_next_blkoff(sbi, curseg); 2706 2707 stat_inc_block_count(sbi, curseg); 2708 2709 /* 2710 * SIT information should be updated before segment allocation, 2711 * since SSR needs latest valid block information. 2712 */ 2713 update_sit_entry(sbi, *new_blkaddr, 1); 2714 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 2715 update_sit_entry(sbi, old_blkaddr, -1); 2716 2717 if (!__has_curseg_space(sbi, type)) 2718 sit_i->s_ops->allocate_segment(sbi, type, false); 2719 2720 /* 2721 * segment dirty status should be updated after segment allocation, 2722 * so we just need to update status only one time after previous 2723 * segment being closed. 2724 */ 2725 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 2726 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 2727 2728 up_write(&sit_i->sentry_lock); 2729 2730 if (page && IS_NODESEG(type)) { 2731 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 2732 2733 f2fs_inode_chksum_set(sbi, page); 2734 } 2735 2736 if (add_list) { 2737 struct f2fs_bio_info *io; 2738 2739 INIT_LIST_HEAD(&fio->list); 2740 fio->in_list = true; 2741 fio->retry = false; 2742 io = sbi->write_io[fio->type] + fio->temp; 2743 spin_lock(&io->io_lock); 2744 list_add_tail(&fio->list, &io->io_list); 2745 spin_unlock(&io->io_lock); 2746 } 2747 2748 mutex_unlock(&curseg->curseg_mutex); 2749 2750 up_read(&SM_I(sbi)->curseg_lock); 2751 } 2752 2753 static void update_device_state(struct f2fs_io_info *fio) 2754 { 2755 struct f2fs_sb_info *sbi = fio->sbi; 2756 unsigned int devidx; 2757 2758 if (!sbi->s_ndevs) 2759 return; 2760 2761 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 2762 2763 /* update device state for fsync */ 2764 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 2765 2766 /* update device state for checkpoint */ 2767 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 2768 spin_lock(&sbi->dev_lock); 2769 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 2770 spin_unlock(&sbi->dev_lock); 2771 } 2772 } 2773 2774 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 2775 { 2776 int type = __get_segment_type(fio); 2777 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA); 2778 2779 if (keep_order) 2780 down_read(&fio->sbi->io_order_lock); 2781 reallocate: 2782 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 2783 &fio->new_blkaddr, sum, type, fio, true); 2784 2785 /* writeout dirty page into bdev */ 2786 f2fs_submit_page_write(fio); 2787 if (fio->retry) { 2788 fio->old_blkaddr = fio->new_blkaddr; 2789 goto reallocate; 2790 } 2791 2792 update_device_state(fio); 2793 2794 if (keep_order) 2795 up_read(&fio->sbi->io_order_lock); 2796 } 2797 2798 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 2799 enum iostat_type io_type) 2800 { 2801 struct f2fs_io_info fio = { 2802 .sbi = sbi, 2803 .type = META, 2804 .temp = HOT, 2805 .op = REQ_OP_WRITE, 2806 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 2807 .old_blkaddr = page->index, 2808 .new_blkaddr = page->index, 2809 .page = page, 2810 .encrypted_page = NULL, 2811 .in_list = false, 2812 }; 2813 2814 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 2815 fio.op_flags &= ~REQ_META; 2816 2817 set_page_writeback(page); 2818 ClearPageError(page); 2819 f2fs_submit_page_write(&fio); 2820 2821 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 2822 } 2823 2824 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 2825 { 2826 struct f2fs_summary sum; 2827 2828 set_summary(&sum, nid, 0, 0); 2829 do_write_page(&sum, fio); 2830 2831 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 2832 } 2833 2834 void f2fs_outplace_write_data(struct dnode_of_data *dn, 2835 struct f2fs_io_info *fio) 2836 { 2837 struct f2fs_sb_info *sbi = fio->sbi; 2838 struct f2fs_summary sum; 2839 struct node_info ni; 2840 2841 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 2842 f2fs_get_node_info(sbi, dn->nid, &ni); 2843 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 2844 do_write_page(&sum, fio); 2845 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 2846 2847 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 2848 } 2849 2850 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 2851 { 2852 int err; 2853 struct f2fs_sb_info *sbi = fio->sbi; 2854 2855 fio->new_blkaddr = fio->old_blkaddr; 2856 /* i/o temperature is needed for passing down write hints */ 2857 __get_segment_type(fio); 2858 2859 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi, 2860 GET_SEGNO(sbi, fio->new_blkaddr))->type)); 2861 2862 stat_inc_inplace_blocks(fio->sbi); 2863 2864 err = f2fs_submit_page_bio(fio); 2865 if (!err) 2866 update_device_state(fio); 2867 2868 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 2869 2870 return err; 2871 } 2872 2873 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 2874 unsigned int segno) 2875 { 2876 int i; 2877 2878 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 2879 if (CURSEG_I(sbi, i)->segno == segno) 2880 break; 2881 } 2882 return i; 2883 } 2884 2885 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 2886 block_t old_blkaddr, block_t new_blkaddr, 2887 bool recover_curseg, bool recover_newaddr) 2888 { 2889 struct sit_info *sit_i = SIT_I(sbi); 2890 struct curseg_info *curseg; 2891 unsigned int segno, old_cursegno; 2892 struct seg_entry *se; 2893 int type; 2894 unsigned short old_blkoff; 2895 2896 segno = GET_SEGNO(sbi, new_blkaddr); 2897 se = get_seg_entry(sbi, segno); 2898 type = se->type; 2899 2900 down_write(&SM_I(sbi)->curseg_lock); 2901 2902 if (!recover_curseg) { 2903 /* for recovery flow */ 2904 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 2905 if (old_blkaddr == NULL_ADDR) 2906 type = CURSEG_COLD_DATA; 2907 else 2908 type = CURSEG_WARM_DATA; 2909 } 2910 } else { 2911 if (IS_CURSEG(sbi, segno)) { 2912 /* se->type is volatile as SSR allocation */ 2913 type = __f2fs_get_curseg(sbi, segno); 2914 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 2915 } else { 2916 type = CURSEG_WARM_DATA; 2917 } 2918 } 2919 2920 f2fs_bug_on(sbi, !IS_DATASEG(type)); 2921 curseg = CURSEG_I(sbi, type); 2922 2923 mutex_lock(&curseg->curseg_mutex); 2924 down_write(&sit_i->sentry_lock); 2925 2926 old_cursegno = curseg->segno; 2927 old_blkoff = curseg->next_blkoff; 2928 2929 /* change the current segment */ 2930 if (segno != curseg->segno) { 2931 curseg->next_segno = segno; 2932 change_curseg(sbi, type); 2933 } 2934 2935 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 2936 __add_sum_entry(sbi, type, sum); 2937 2938 if (!recover_curseg || recover_newaddr) 2939 update_sit_entry(sbi, new_blkaddr, 1); 2940 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 2941 update_sit_entry(sbi, old_blkaddr, -1); 2942 2943 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 2944 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 2945 2946 locate_dirty_segment(sbi, old_cursegno); 2947 2948 if (recover_curseg) { 2949 if (old_cursegno != curseg->segno) { 2950 curseg->next_segno = old_cursegno; 2951 change_curseg(sbi, type); 2952 } 2953 curseg->next_blkoff = old_blkoff; 2954 } 2955 2956 up_write(&sit_i->sentry_lock); 2957 mutex_unlock(&curseg->curseg_mutex); 2958 up_write(&SM_I(sbi)->curseg_lock); 2959 } 2960 2961 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 2962 block_t old_addr, block_t new_addr, 2963 unsigned char version, bool recover_curseg, 2964 bool recover_newaddr) 2965 { 2966 struct f2fs_summary sum; 2967 2968 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 2969 2970 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 2971 recover_curseg, recover_newaddr); 2972 2973 f2fs_update_data_blkaddr(dn, new_addr); 2974 } 2975 2976 void f2fs_wait_on_page_writeback(struct page *page, 2977 enum page_type type, bool ordered) 2978 { 2979 if (PageWriteback(page)) { 2980 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 2981 2982 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 2983 0, page->index, type); 2984 if (ordered) 2985 wait_on_page_writeback(page); 2986 else 2987 wait_for_stable_page(page); 2988 } 2989 } 2990 2991 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr) 2992 { 2993 struct page *cpage; 2994 2995 if (!is_valid_blkaddr(blkaddr)) 2996 return; 2997 2998 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 2999 if (cpage) { 3000 f2fs_wait_on_page_writeback(cpage, DATA, true); 3001 f2fs_put_page(cpage, 1); 3002 } 3003 } 3004 3005 static void read_compacted_summaries(struct f2fs_sb_info *sbi) 3006 { 3007 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3008 struct curseg_info *seg_i; 3009 unsigned char *kaddr; 3010 struct page *page; 3011 block_t start; 3012 int i, j, offset; 3013 3014 start = start_sum_block(sbi); 3015 3016 page = f2fs_get_meta_page(sbi, start++); 3017 kaddr = (unsigned char *)page_address(page); 3018 3019 /* Step 1: restore nat cache */ 3020 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3021 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3022 3023 /* Step 2: restore sit cache */ 3024 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3025 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3026 offset = 2 * SUM_JOURNAL_SIZE; 3027 3028 /* Step 3: restore summary entries */ 3029 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3030 unsigned short blk_off; 3031 unsigned int segno; 3032 3033 seg_i = CURSEG_I(sbi, i); 3034 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3035 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3036 seg_i->next_segno = segno; 3037 reset_curseg(sbi, i, 0); 3038 seg_i->alloc_type = ckpt->alloc_type[i]; 3039 seg_i->next_blkoff = blk_off; 3040 3041 if (seg_i->alloc_type == SSR) 3042 blk_off = sbi->blocks_per_seg; 3043 3044 for (j = 0; j < blk_off; j++) { 3045 struct f2fs_summary *s; 3046 s = (struct f2fs_summary *)(kaddr + offset); 3047 seg_i->sum_blk->entries[j] = *s; 3048 offset += SUMMARY_SIZE; 3049 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3050 SUM_FOOTER_SIZE) 3051 continue; 3052 3053 f2fs_put_page(page, 1); 3054 page = NULL; 3055 3056 page = f2fs_get_meta_page(sbi, start++); 3057 kaddr = (unsigned char *)page_address(page); 3058 offset = 0; 3059 } 3060 } 3061 f2fs_put_page(page, 1); 3062 } 3063 3064 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3065 { 3066 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3067 struct f2fs_summary_block *sum; 3068 struct curseg_info *curseg; 3069 struct page *new; 3070 unsigned short blk_off; 3071 unsigned int segno = 0; 3072 block_t blk_addr = 0; 3073 3074 /* get segment number and block addr */ 3075 if (IS_DATASEG(type)) { 3076 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3077 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3078 CURSEG_HOT_DATA]); 3079 if (__exist_node_summaries(sbi)) 3080 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3081 else 3082 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3083 } else { 3084 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3085 CURSEG_HOT_NODE]); 3086 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3087 CURSEG_HOT_NODE]); 3088 if (__exist_node_summaries(sbi)) 3089 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3090 type - CURSEG_HOT_NODE); 3091 else 3092 blk_addr = GET_SUM_BLOCK(sbi, segno); 3093 } 3094 3095 new = f2fs_get_meta_page(sbi, blk_addr); 3096 sum = (struct f2fs_summary_block *)page_address(new); 3097 3098 if (IS_NODESEG(type)) { 3099 if (__exist_node_summaries(sbi)) { 3100 struct f2fs_summary *ns = &sum->entries[0]; 3101 int i; 3102 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3103 ns->version = 0; 3104 ns->ofs_in_node = 0; 3105 } 3106 } else { 3107 f2fs_restore_node_summary(sbi, segno, sum); 3108 } 3109 } 3110 3111 /* set uncompleted segment to curseg */ 3112 curseg = CURSEG_I(sbi, type); 3113 mutex_lock(&curseg->curseg_mutex); 3114 3115 /* update journal info */ 3116 down_write(&curseg->journal_rwsem); 3117 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3118 up_write(&curseg->journal_rwsem); 3119 3120 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3121 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3122 curseg->next_segno = segno; 3123 reset_curseg(sbi, type, 0); 3124 curseg->alloc_type = ckpt->alloc_type[type]; 3125 curseg->next_blkoff = blk_off; 3126 mutex_unlock(&curseg->curseg_mutex); 3127 f2fs_put_page(new, 1); 3128 return 0; 3129 } 3130 3131 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3132 { 3133 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3134 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3135 int type = CURSEG_HOT_DATA; 3136 int err; 3137 3138 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3139 int npages = f2fs_npages_for_summary_flush(sbi, true); 3140 3141 if (npages >= 2) 3142 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3143 META_CP, true); 3144 3145 /* restore for compacted data summary */ 3146 read_compacted_summaries(sbi); 3147 type = CURSEG_HOT_NODE; 3148 } 3149 3150 if (__exist_node_summaries(sbi)) 3151 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3152 NR_CURSEG_TYPE - type, META_CP, true); 3153 3154 for (; type <= CURSEG_COLD_NODE; type++) { 3155 err = read_normal_summaries(sbi, type); 3156 if (err) 3157 return err; 3158 } 3159 3160 /* sanity check for summary blocks */ 3161 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3162 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) 3163 return -EINVAL; 3164 3165 return 0; 3166 } 3167 3168 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3169 { 3170 struct page *page; 3171 unsigned char *kaddr; 3172 struct f2fs_summary *summary; 3173 struct curseg_info *seg_i; 3174 int written_size = 0; 3175 int i, j; 3176 3177 page = f2fs_grab_meta_page(sbi, blkaddr++); 3178 kaddr = (unsigned char *)page_address(page); 3179 memset(kaddr, 0, PAGE_SIZE); 3180 3181 /* Step 1: write nat cache */ 3182 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3183 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3184 written_size += SUM_JOURNAL_SIZE; 3185 3186 /* Step 2: write sit cache */ 3187 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3188 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3189 written_size += SUM_JOURNAL_SIZE; 3190 3191 /* Step 3: write summary entries */ 3192 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3193 unsigned short blkoff; 3194 seg_i = CURSEG_I(sbi, i); 3195 if (sbi->ckpt->alloc_type[i] == SSR) 3196 blkoff = sbi->blocks_per_seg; 3197 else 3198 blkoff = curseg_blkoff(sbi, i); 3199 3200 for (j = 0; j < blkoff; j++) { 3201 if (!page) { 3202 page = f2fs_grab_meta_page(sbi, blkaddr++); 3203 kaddr = (unsigned char *)page_address(page); 3204 memset(kaddr, 0, PAGE_SIZE); 3205 written_size = 0; 3206 } 3207 summary = (struct f2fs_summary *)(kaddr + written_size); 3208 *summary = seg_i->sum_blk->entries[j]; 3209 written_size += SUMMARY_SIZE; 3210 3211 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3212 SUM_FOOTER_SIZE) 3213 continue; 3214 3215 set_page_dirty(page); 3216 f2fs_put_page(page, 1); 3217 page = NULL; 3218 } 3219 } 3220 if (page) { 3221 set_page_dirty(page); 3222 f2fs_put_page(page, 1); 3223 } 3224 } 3225 3226 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3227 block_t blkaddr, int type) 3228 { 3229 int i, end; 3230 if (IS_DATASEG(type)) 3231 end = type + NR_CURSEG_DATA_TYPE; 3232 else 3233 end = type + NR_CURSEG_NODE_TYPE; 3234 3235 for (i = type; i < end; i++) 3236 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3237 } 3238 3239 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3240 { 3241 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3242 write_compacted_summaries(sbi, start_blk); 3243 else 3244 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3245 } 3246 3247 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3248 { 3249 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3250 } 3251 3252 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3253 unsigned int val, int alloc) 3254 { 3255 int i; 3256 3257 if (type == NAT_JOURNAL) { 3258 for (i = 0; i < nats_in_cursum(journal); i++) { 3259 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3260 return i; 3261 } 3262 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3263 return update_nats_in_cursum(journal, 1); 3264 } else if (type == SIT_JOURNAL) { 3265 for (i = 0; i < sits_in_cursum(journal); i++) 3266 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3267 return i; 3268 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3269 return update_sits_in_cursum(journal, 1); 3270 } 3271 return -1; 3272 } 3273 3274 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3275 unsigned int segno) 3276 { 3277 return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno)); 3278 } 3279 3280 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3281 unsigned int start) 3282 { 3283 struct sit_info *sit_i = SIT_I(sbi); 3284 struct page *page; 3285 pgoff_t src_off, dst_off; 3286 3287 src_off = current_sit_addr(sbi, start); 3288 dst_off = next_sit_addr(sbi, src_off); 3289 3290 page = f2fs_grab_meta_page(sbi, dst_off); 3291 seg_info_to_sit_page(sbi, page, start); 3292 3293 set_page_dirty(page); 3294 set_to_next_sit(sit_i, start); 3295 3296 return page; 3297 } 3298 3299 static struct sit_entry_set *grab_sit_entry_set(void) 3300 { 3301 struct sit_entry_set *ses = 3302 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3303 3304 ses->entry_cnt = 0; 3305 INIT_LIST_HEAD(&ses->set_list); 3306 return ses; 3307 } 3308 3309 static void release_sit_entry_set(struct sit_entry_set *ses) 3310 { 3311 list_del(&ses->set_list); 3312 kmem_cache_free(sit_entry_set_slab, ses); 3313 } 3314 3315 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3316 struct list_head *head) 3317 { 3318 struct sit_entry_set *next = ses; 3319 3320 if (list_is_last(&ses->set_list, head)) 3321 return; 3322 3323 list_for_each_entry_continue(next, head, set_list) 3324 if (ses->entry_cnt <= next->entry_cnt) 3325 break; 3326 3327 list_move_tail(&ses->set_list, &next->set_list); 3328 } 3329 3330 static void add_sit_entry(unsigned int segno, struct list_head *head) 3331 { 3332 struct sit_entry_set *ses; 3333 unsigned int start_segno = START_SEGNO(segno); 3334 3335 list_for_each_entry(ses, head, set_list) { 3336 if (ses->start_segno == start_segno) { 3337 ses->entry_cnt++; 3338 adjust_sit_entry_set(ses, head); 3339 return; 3340 } 3341 } 3342 3343 ses = grab_sit_entry_set(); 3344 3345 ses->start_segno = start_segno; 3346 ses->entry_cnt++; 3347 list_add(&ses->set_list, head); 3348 } 3349 3350 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3351 { 3352 struct f2fs_sm_info *sm_info = SM_I(sbi); 3353 struct list_head *set_list = &sm_info->sit_entry_set; 3354 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3355 unsigned int segno; 3356 3357 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3358 add_sit_entry(segno, set_list); 3359 } 3360 3361 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3362 { 3363 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3364 struct f2fs_journal *journal = curseg->journal; 3365 int i; 3366 3367 down_write(&curseg->journal_rwsem); 3368 for (i = 0; i < sits_in_cursum(journal); i++) { 3369 unsigned int segno; 3370 bool dirtied; 3371 3372 segno = le32_to_cpu(segno_in_journal(journal, i)); 3373 dirtied = __mark_sit_entry_dirty(sbi, segno); 3374 3375 if (!dirtied) 3376 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3377 } 3378 update_sits_in_cursum(journal, -i); 3379 up_write(&curseg->journal_rwsem); 3380 } 3381 3382 /* 3383 * CP calls this function, which flushes SIT entries including sit_journal, 3384 * and moves prefree segs to free segs. 3385 */ 3386 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3387 { 3388 struct sit_info *sit_i = SIT_I(sbi); 3389 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3390 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3391 struct f2fs_journal *journal = curseg->journal; 3392 struct sit_entry_set *ses, *tmp; 3393 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3394 bool to_journal = true; 3395 struct seg_entry *se; 3396 3397 down_write(&sit_i->sentry_lock); 3398 3399 if (!sit_i->dirty_sentries) 3400 goto out; 3401 3402 /* 3403 * add and account sit entries of dirty bitmap in sit entry 3404 * set temporarily 3405 */ 3406 add_sits_in_set(sbi); 3407 3408 /* 3409 * if there are no enough space in journal to store dirty sit 3410 * entries, remove all entries from journal and add and account 3411 * them in sit entry set. 3412 */ 3413 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 3414 remove_sits_in_journal(sbi); 3415 3416 /* 3417 * there are two steps to flush sit entries: 3418 * #1, flush sit entries to journal in current cold data summary block. 3419 * #2, flush sit entries to sit page. 3420 */ 3421 list_for_each_entry_safe(ses, tmp, head, set_list) { 3422 struct page *page = NULL; 3423 struct f2fs_sit_block *raw_sit = NULL; 3424 unsigned int start_segno = ses->start_segno; 3425 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3426 (unsigned long)MAIN_SEGS(sbi)); 3427 unsigned int segno = start_segno; 3428 3429 if (to_journal && 3430 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3431 to_journal = false; 3432 3433 if (to_journal) { 3434 down_write(&curseg->journal_rwsem); 3435 } else { 3436 page = get_next_sit_page(sbi, start_segno); 3437 raw_sit = page_address(page); 3438 } 3439 3440 /* flush dirty sit entries in region of current sit set */ 3441 for_each_set_bit_from(segno, bitmap, end) { 3442 int offset, sit_offset; 3443 3444 se = get_seg_entry(sbi, segno); 3445 #ifdef CONFIG_F2FS_CHECK_FS 3446 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3447 SIT_VBLOCK_MAP_SIZE)) 3448 f2fs_bug_on(sbi, 1); 3449 #endif 3450 3451 /* add discard candidates */ 3452 if (!(cpc->reason & CP_DISCARD)) { 3453 cpc->trim_start = segno; 3454 add_discard_addrs(sbi, cpc, false); 3455 } 3456 3457 if (to_journal) { 3458 offset = f2fs_lookup_journal_in_cursum(journal, 3459 SIT_JOURNAL, segno, 1); 3460 f2fs_bug_on(sbi, offset < 0); 3461 segno_in_journal(journal, offset) = 3462 cpu_to_le32(segno); 3463 seg_info_to_raw_sit(se, 3464 &sit_in_journal(journal, offset)); 3465 check_block_count(sbi, segno, 3466 &sit_in_journal(journal, offset)); 3467 } else { 3468 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3469 seg_info_to_raw_sit(se, 3470 &raw_sit->entries[sit_offset]); 3471 check_block_count(sbi, segno, 3472 &raw_sit->entries[sit_offset]); 3473 } 3474 3475 __clear_bit(segno, bitmap); 3476 sit_i->dirty_sentries--; 3477 ses->entry_cnt--; 3478 } 3479 3480 if (to_journal) 3481 up_write(&curseg->journal_rwsem); 3482 else 3483 f2fs_put_page(page, 1); 3484 3485 f2fs_bug_on(sbi, ses->entry_cnt); 3486 release_sit_entry_set(ses); 3487 } 3488 3489 f2fs_bug_on(sbi, !list_empty(head)); 3490 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3491 out: 3492 if (cpc->reason & CP_DISCARD) { 3493 __u64 trim_start = cpc->trim_start; 3494 3495 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3496 add_discard_addrs(sbi, cpc, false); 3497 3498 cpc->trim_start = trim_start; 3499 } 3500 up_write(&sit_i->sentry_lock); 3501 3502 set_prefree_as_free_segments(sbi); 3503 } 3504 3505 static int build_sit_info(struct f2fs_sb_info *sbi) 3506 { 3507 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3508 struct sit_info *sit_i; 3509 unsigned int sit_segs, start; 3510 char *src_bitmap; 3511 unsigned int bitmap_size; 3512 3513 /* allocate memory for SIT information */ 3514 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3515 if (!sit_i) 3516 return -ENOMEM; 3517 3518 SM_I(sbi)->sit_info = sit_i; 3519 3520 sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) * 3521 sizeof(struct seg_entry), GFP_KERNEL); 3522 if (!sit_i->sentries) 3523 return -ENOMEM; 3524 3525 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3526 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size, 3527 GFP_KERNEL); 3528 if (!sit_i->dirty_sentries_bitmap) 3529 return -ENOMEM; 3530 3531 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3532 sit_i->sentries[start].cur_valid_map 3533 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3534 sit_i->sentries[start].ckpt_valid_map 3535 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3536 if (!sit_i->sentries[start].cur_valid_map || 3537 !sit_i->sentries[start].ckpt_valid_map) 3538 return -ENOMEM; 3539 3540 #ifdef CONFIG_F2FS_CHECK_FS 3541 sit_i->sentries[start].cur_valid_map_mir 3542 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3543 if (!sit_i->sentries[start].cur_valid_map_mir) 3544 return -ENOMEM; 3545 #endif 3546 3547 if (f2fs_discard_en(sbi)) { 3548 sit_i->sentries[start].discard_map 3549 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, 3550 GFP_KERNEL); 3551 if (!sit_i->sentries[start].discard_map) 3552 return -ENOMEM; 3553 } 3554 } 3555 3556 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3557 if (!sit_i->tmp_map) 3558 return -ENOMEM; 3559 3560 if (sbi->segs_per_sec > 1) { 3561 sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) * 3562 sizeof(struct sec_entry), GFP_KERNEL); 3563 if (!sit_i->sec_entries) 3564 return -ENOMEM; 3565 } 3566 3567 /* get information related with SIT */ 3568 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 3569 3570 /* setup SIT bitmap from ckeckpoint pack */ 3571 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 3572 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 3573 3574 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3575 if (!sit_i->sit_bitmap) 3576 return -ENOMEM; 3577 3578 #ifdef CONFIG_F2FS_CHECK_FS 3579 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3580 if (!sit_i->sit_bitmap_mir) 3581 return -ENOMEM; 3582 #endif 3583 3584 /* init SIT information */ 3585 sit_i->s_ops = &default_salloc_ops; 3586 3587 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 3588 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 3589 sit_i->written_valid_blocks = 0; 3590 sit_i->bitmap_size = bitmap_size; 3591 sit_i->dirty_sentries = 0; 3592 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 3593 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 3594 sit_i->mounted_time = ktime_get_real_seconds(); 3595 init_rwsem(&sit_i->sentry_lock); 3596 return 0; 3597 } 3598 3599 static int build_free_segmap(struct f2fs_sb_info *sbi) 3600 { 3601 struct free_segmap_info *free_i; 3602 unsigned int bitmap_size, sec_bitmap_size; 3603 3604 /* allocate memory for free segmap information */ 3605 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 3606 if (!free_i) 3607 return -ENOMEM; 3608 3609 SM_I(sbi)->free_info = free_i; 3610 3611 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3612 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 3613 if (!free_i->free_segmap) 3614 return -ENOMEM; 3615 3616 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3617 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 3618 if (!free_i->free_secmap) 3619 return -ENOMEM; 3620 3621 /* set all segments as dirty temporarily */ 3622 memset(free_i->free_segmap, 0xff, bitmap_size); 3623 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 3624 3625 /* init free segmap information */ 3626 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 3627 free_i->free_segments = 0; 3628 free_i->free_sections = 0; 3629 spin_lock_init(&free_i->segmap_lock); 3630 return 0; 3631 } 3632 3633 static int build_curseg(struct f2fs_sb_info *sbi) 3634 { 3635 struct curseg_info *array; 3636 int i; 3637 3638 array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL); 3639 if (!array) 3640 return -ENOMEM; 3641 3642 SM_I(sbi)->curseg_array = array; 3643 3644 for (i = 0; i < NR_CURSEG_TYPE; i++) { 3645 mutex_init(&array[i].curseg_mutex); 3646 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 3647 if (!array[i].sum_blk) 3648 return -ENOMEM; 3649 init_rwsem(&array[i].journal_rwsem); 3650 array[i].journal = f2fs_kzalloc(sbi, 3651 sizeof(struct f2fs_journal), GFP_KERNEL); 3652 if (!array[i].journal) 3653 return -ENOMEM; 3654 array[i].segno = NULL_SEGNO; 3655 array[i].next_blkoff = 0; 3656 } 3657 return restore_curseg_summaries(sbi); 3658 } 3659 3660 static int build_sit_entries(struct f2fs_sb_info *sbi) 3661 { 3662 struct sit_info *sit_i = SIT_I(sbi); 3663 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3664 struct f2fs_journal *journal = curseg->journal; 3665 struct seg_entry *se; 3666 struct f2fs_sit_entry sit; 3667 int sit_blk_cnt = SIT_BLK_CNT(sbi); 3668 unsigned int i, start, end; 3669 unsigned int readed, start_blk = 0; 3670 int err = 0; 3671 block_t total_node_blocks = 0; 3672 3673 do { 3674 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 3675 META_SIT, true); 3676 3677 start = start_blk * sit_i->sents_per_block; 3678 end = (start_blk + readed) * sit_i->sents_per_block; 3679 3680 for (; start < end && start < MAIN_SEGS(sbi); start++) { 3681 struct f2fs_sit_block *sit_blk; 3682 struct page *page; 3683 3684 se = &sit_i->sentries[start]; 3685 page = get_current_sit_page(sbi, start); 3686 sit_blk = (struct f2fs_sit_block *)page_address(page); 3687 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 3688 f2fs_put_page(page, 1); 3689 3690 err = check_block_count(sbi, start, &sit); 3691 if (err) 3692 return err; 3693 seg_info_from_raw_sit(se, &sit); 3694 if (IS_NODESEG(se->type)) 3695 total_node_blocks += se->valid_blocks; 3696 3697 /* build discard map only one time */ 3698 if (f2fs_discard_en(sbi)) { 3699 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 3700 memset(se->discard_map, 0xff, 3701 SIT_VBLOCK_MAP_SIZE); 3702 } else { 3703 memcpy(se->discard_map, 3704 se->cur_valid_map, 3705 SIT_VBLOCK_MAP_SIZE); 3706 sbi->discard_blks += 3707 sbi->blocks_per_seg - 3708 se->valid_blocks; 3709 } 3710 } 3711 3712 if (sbi->segs_per_sec > 1) 3713 get_sec_entry(sbi, start)->valid_blocks += 3714 se->valid_blocks; 3715 } 3716 start_blk += readed; 3717 } while (start_blk < sit_blk_cnt); 3718 3719 down_read(&curseg->journal_rwsem); 3720 for (i = 0; i < sits_in_cursum(journal); i++) { 3721 unsigned int old_valid_blocks; 3722 3723 start = le32_to_cpu(segno_in_journal(journal, i)); 3724 if (start >= MAIN_SEGS(sbi)) { 3725 f2fs_msg(sbi->sb, KERN_ERR, 3726 "Wrong journal entry on segno %u", 3727 start); 3728 set_sbi_flag(sbi, SBI_NEED_FSCK); 3729 err = -EINVAL; 3730 break; 3731 } 3732 3733 se = &sit_i->sentries[start]; 3734 sit = sit_in_journal(journal, i); 3735 3736 old_valid_blocks = se->valid_blocks; 3737 if (IS_NODESEG(se->type)) 3738 total_node_blocks -= old_valid_blocks; 3739 3740 err = check_block_count(sbi, start, &sit); 3741 if (err) 3742 break; 3743 seg_info_from_raw_sit(se, &sit); 3744 if (IS_NODESEG(se->type)) 3745 total_node_blocks += se->valid_blocks; 3746 3747 if (f2fs_discard_en(sbi)) { 3748 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 3749 memset(se->discard_map, 0xff, 3750 SIT_VBLOCK_MAP_SIZE); 3751 } else { 3752 memcpy(se->discard_map, se->cur_valid_map, 3753 SIT_VBLOCK_MAP_SIZE); 3754 sbi->discard_blks += old_valid_blocks; 3755 sbi->discard_blks -= se->valid_blocks; 3756 } 3757 } 3758 3759 if (sbi->segs_per_sec > 1) { 3760 get_sec_entry(sbi, start)->valid_blocks += 3761 se->valid_blocks; 3762 get_sec_entry(sbi, start)->valid_blocks -= 3763 old_valid_blocks; 3764 } 3765 } 3766 up_read(&curseg->journal_rwsem); 3767 3768 if (!err && total_node_blocks != valid_node_count(sbi)) { 3769 f2fs_msg(sbi->sb, KERN_ERR, 3770 "SIT is corrupted node# %u vs %u", 3771 total_node_blocks, valid_node_count(sbi)); 3772 set_sbi_flag(sbi, SBI_NEED_FSCK); 3773 err = -EINVAL; 3774 } 3775 3776 return err; 3777 } 3778 3779 static void init_free_segmap(struct f2fs_sb_info *sbi) 3780 { 3781 unsigned int start; 3782 int type; 3783 3784 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3785 struct seg_entry *sentry = get_seg_entry(sbi, start); 3786 if (!sentry->valid_blocks) 3787 __set_free(sbi, start); 3788 else 3789 SIT_I(sbi)->written_valid_blocks += 3790 sentry->valid_blocks; 3791 } 3792 3793 /* set use the current segments */ 3794 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 3795 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 3796 __set_test_and_inuse(sbi, curseg_t->segno); 3797 } 3798 } 3799 3800 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 3801 { 3802 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3803 struct free_segmap_info *free_i = FREE_I(sbi); 3804 unsigned int segno = 0, offset = 0; 3805 unsigned short valid_blocks; 3806 3807 while (1) { 3808 /* find dirty segment based on free segmap */ 3809 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 3810 if (segno >= MAIN_SEGS(sbi)) 3811 break; 3812 offset = segno + 1; 3813 valid_blocks = get_valid_blocks(sbi, segno, false); 3814 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 3815 continue; 3816 if (valid_blocks > sbi->blocks_per_seg) { 3817 f2fs_bug_on(sbi, 1); 3818 continue; 3819 } 3820 mutex_lock(&dirty_i->seglist_lock); 3821 __locate_dirty_segment(sbi, segno, DIRTY); 3822 mutex_unlock(&dirty_i->seglist_lock); 3823 } 3824 } 3825 3826 static int init_victim_secmap(struct f2fs_sb_info *sbi) 3827 { 3828 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3829 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3830 3831 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 3832 if (!dirty_i->victim_secmap) 3833 return -ENOMEM; 3834 return 0; 3835 } 3836 3837 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 3838 { 3839 struct dirty_seglist_info *dirty_i; 3840 unsigned int bitmap_size, i; 3841 3842 /* allocate memory for dirty segments list information */ 3843 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 3844 GFP_KERNEL); 3845 if (!dirty_i) 3846 return -ENOMEM; 3847 3848 SM_I(sbi)->dirty_info = dirty_i; 3849 mutex_init(&dirty_i->seglist_lock); 3850 3851 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3852 3853 for (i = 0; i < NR_DIRTY_TYPE; i++) { 3854 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 3855 GFP_KERNEL); 3856 if (!dirty_i->dirty_segmap[i]) 3857 return -ENOMEM; 3858 } 3859 3860 init_dirty_segmap(sbi); 3861 return init_victim_secmap(sbi); 3862 } 3863 3864 /* 3865 * Update min, max modified time for cost-benefit GC algorithm 3866 */ 3867 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 3868 { 3869 struct sit_info *sit_i = SIT_I(sbi); 3870 unsigned int segno; 3871 3872 down_write(&sit_i->sentry_lock); 3873 3874 sit_i->min_mtime = ULLONG_MAX; 3875 3876 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 3877 unsigned int i; 3878 unsigned long long mtime = 0; 3879 3880 for (i = 0; i < sbi->segs_per_sec; i++) 3881 mtime += get_seg_entry(sbi, segno + i)->mtime; 3882 3883 mtime = div_u64(mtime, sbi->segs_per_sec); 3884 3885 if (sit_i->min_mtime > mtime) 3886 sit_i->min_mtime = mtime; 3887 } 3888 sit_i->max_mtime = get_mtime(sbi, false); 3889 up_write(&sit_i->sentry_lock); 3890 } 3891 3892 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 3893 { 3894 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3895 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3896 struct f2fs_sm_info *sm_info; 3897 int err; 3898 3899 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 3900 if (!sm_info) 3901 return -ENOMEM; 3902 3903 /* init sm info */ 3904 sbi->sm_info = sm_info; 3905 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3906 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3907 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 3908 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3909 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3910 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 3911 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3912 sm_info->rec_prefree_segments = sm_info->main_segments * 3913 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 3914 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 3915 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 3916 3917 if (!test_opt(sbi, LFS)) 3918 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 3919 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 3920 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 3921 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 3922 sm_info->min_ssr_sections = reserved_sections(sbi); 3923 3924 INIT_LIST_HEAD(&sm_info->sit_entry_set); 3925 3926 init_rwsem(&sm_info->curseg_lock); 3927 3928 if (!f2fs_readonly(sbi->sb)) { 3929 err = f2fs_create_flush_cmd_control(sbi); 3930 if (err) 3931 return err; 3932 } 3933 3934 err = create_discard_cmd_control(sbi); 3935 if (err) 3936 return err; 3937 3938 err = build_sit_info(sbi); 3939 if (err) 3940 return err; 3941 err = build_free_segmap(sbi); 3942 if (err) 3943 return err; 3944 err = build_curseg(sbi); 3945 if (err) 3946 return err; 3947 3948 /* reinit free segmap based on SIT */ 3949 err = build_sit_entries(sbi); 3950 if (err) 3951 return err; 3952 3953 init_free_segmap(sbi); 3954 err = build_dirty_segmap(sbi); 3955 if (err) 3956 return err; 3957 3958 init_min_max_mtime(sbi); 3959 return 0; 3960 } 3961 3962 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 3963 enum dirty_type dirty_type) 3964 { 3965 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3966 3967 mutex_lock(&dirty_i->seglist_lock); 3968 kvfree(dirty_i->dirty_segmap[dirty_type]); 3969 dirty_i->nr_dirty[dirty_type] = 0; 3970 mutex_unlock(&dirty_i->seglist_lock); 3971 } 3972 3973 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 3974 { 3975 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3976 kvfree(dirty_i->victim_secmap); 3977 } 3978 3979 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 3980 { 3981 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 3982 int i; 3983 3984 if (!dirty_i) 3985 return; 3986 3987 /* discard pre-free/dirty segments list */ 3988 for (i = 0; i < NR_DIRTY_TYPE; i++) 3989 discard_dirty_segmap(sbi, i); 3990 3991 destroy_victim_secmap(sbi); 3992 SM_I(sbi)->dirty_info = NULL; 3993 kfree(dirty_i); 3994 } 3995 3996 static void destroy_curseg(struct f2fs_sb_info *sbi) 3997 { 3998 struct curseg_info *array = SM_I(sbi)->curseg_array; 3999 int i; 4000 4001 if (!array) 4002 return; 4003 SM_I(sbi)->curseg_array = NULL; 4004 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4005 kfree(array[i].sum_blk); 4006 kfree(array[i].journal); 4007 } 4008 kfree(array); 4009 } 4010 4011 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4012 { 4013 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4014 if (!free_i) 4015 return; 4016 SM_I(sbi)->free_info = NULL; 4017 kvfree(free_i->free_segmap); 4018 kvfree(free_i->free_secmap); 4019 kfree(free_i); 4020 } 4021 4022 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4023 { 4024 struct sit_info *sit_i = SIT_I(sbi); 4025 unsigned int start; 4026 4027 if (!sit_i) 4028 return; 4029 4030 if (sit_i->sentries) { 4031 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4032 kfree(sit_i->sentries[start].cur_valid_map); 4033 #ifdef CONFIG_F2FS_CHECK_FS 4034 kfree(sit_i->sentries[start].cur_valid_map_mir); 4035 #endif 4036 kfree(sit_i->sentries[start].ckpt_valid_map); 4037 kfree(sit_i->sentries[start].discard_map); 4038 } 4039 } 4040 kfree(sit_i->tmp_map); 4041 4042 kvfree(sit_i->sentries); 4043 kvfree(sit_i->sec_entries); 4044 kvfree(sit_i->dirty_sentries_bitmap); 4045 4046 SM_I(sbi)->sit_info = NULL; 4047 kfree(sit_i->sit_bitmap); 4048 #ifdef CONFIG_F2FS_CHECK_FS 4049 kfree(sit_i->sit_bitmap_mir); 4050 #endif 4051 kfree(sit_i); 4052 } 4053 4054 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4055 { 4056 struct f2fs_sm_info *sm_info = SM_I(sbi); 4057 4058 if (!sm_info) 4059 return; 4060 f2fs_destroy_flush_cmd_control(sbi, true); 4061 destroy_discard_cmd_control(sbi); 4062 destroy_dirty_segmap(sbi); 4063 destroy_curseg(sbi); 4064 destroy_free_segmap(sbi); 4065 destroy_sit_info(sbi); 4066 sbi->sm_info = NULL; 4067 kfree(sm_info); 4068 } 4069 4070 int __init f2fs_create_segment_manager_caches(void) 4071 { 4072 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 4073 sizeof(struct discard_entry)); 4074 if (!discard_entry_slab) 4075 goto fail; 4076 4077 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 4078 sizeof(struct discard_cmd)); 4079 if (!discard_cmd_slab) 4080 goto destroy_discard_entry; 4081 4082 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 4083 sizeof(struct sit_entry_set)); 4084 if (!sit_entry_set_slab) 4085 goto destroy_discard_cmd; 4086 4087 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 4088 sizeof(struct inmem_pages)); 4089 if (!inmem_entry_slab) 4090 goto destroy_sit_entry_set; 4091 return 0; 4092 4093 destroy_sit_entry_set: 4094 kmem_cache_destroy(sit_entry_set_slab); 4095 destroy_discard_cmd: 4096 kmem_cache_destroy(discard_cmd_slab); 4097 destroy_discard_entry: 4098 kmem_cache_destroy(discard_entry_slab); 4099 fail: 4100 return -ENOMEM; 4101 } 4102 4103 void f2fs_destroy_segment_manager_caches(void) 4104 { 4105 kmem_cache_destroy(sit_entry_set_slab); 4106 kmem_cache_destroy(discard_cmd_slab); 4107 kmem_cache_destroy(discard_entry_slab); 4108 kmem_cache_destroy(inmem_entry_slab); 4109 } 4110