xref: /openbmc/linux/fs/f2fs/segment.c (revision 5ef12cb4a3a78ffb331c03a795a15eea4ae35155)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/kthread.h>
17 #include <linux/swap.h>
18 #include <linux/timer.h>
19 #include <linux/freezer.h>
20 #include <linux/sched/signal.h>
21 
22 #include "f2fs.h"
23 #include "segment.h"
24 #include "node.h"
25 #include "gc.h"
26 #include "trace.h"
27 #include <trace/events/f2fs.h>
28 
29 #define __reverse_ffz(x) __reverse_ffs(~(x))
30 
31 static struct kmem_cache *discard_entry_slab;
32 static struct kmem_cache *discard_cmd_slab;
33 static struct kmem_cache *sit_entry_set_slab;
34 static struct kmem_cache *inmem_entry_slab;
35 
36 static unsigned long __reverse_ulong(unsigned char *str)
37 {
38 	unsigned long tmp = 0;
39 	int shift = 24, idx = 0;
40 
41 #if BITS_PER_LONG == 64
42 	shift = 56;
43 #endif
44 	while (shift >= 0) {
45 		tmp |= (unsigned long)str[idx++] << shift;
46 		shift -= BITS_PER_BYTE;
47 	}
48 	return tmp;
49 }
50 
51 /*
52  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
53  * MSB and LSB are reversed in a byte by f2fs_set_bit.
54  */
55 static inline unsigned long __reverse_ffs(unsigned long word)
56 {
57 	int num = 0;
58 
59 #if BITS_PER_LONG == 64
60 	if ((word & 0xffffffff00000000UL) == 0)
61 		num += 32;
62 	else
63 		word >>= 32;
64 #endif
65 	if ((word & 0xffff0000) == 0)
66 		num += 16;
67 	else
68 		word >>= 16;
69 
70 	if ((word & 0xff00) == 0)
71 		num += 8;
72 	else
73 		word >>= 8;
74 
75 	if ((word & 0xf0) == 0)
76 		num += 4;
77 	else
78 		word >>= 4;
79 
80 	if ((word & 0xc) == 0)
81 		num += 2;
82 	else
83 		word >>= 2;
84 
85 	if ((word & 0x2) == 0)
86 		num += 1;
87 	return num;
88 }
89 
90 /*
91  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
92  * f2fs_set_bit makes MSB and LSB reversed in a byte.
93  * @size must be integral times of unsigned long.
94  * Example:
95  *                             MSB <--> LSB
96  *   f2fs_set_bit(0, bitmap) => 1000 0000
97  *   f2fs_set_bit(7, bitmap) => 0000 0001
98  */
99 static unsigned long __find_rev_next_bit(const unsigned long *addr,
100 			unsigned long size, unsigned long offset)
101 {
102 	const unsigned long *p = addr + BIT_WORD(offset);
103 	unsigned long result = size;
104 	unsigned long tmp;
105 
106 	if (offset >= size)
107 		return size;
108 
109 	size -= (offset & ~(BITS_PER_LONG - 1));
110 	offset %= BITS_PER_LONG;
111 
112 	while (1) {
113 		if (*p == 0)
114 			goto pass;
115 
116 		tmp = __reverse_ulong((unsigned char *)p);
117 
118 		tmp &= ~0UL >> offset;
119 		if (size < BITS_PER_LONG)
120 			tmp &= (~0UL << (BITS_PER_LONG - size));
121 		if (tmp)
122 			goto found;
123 pass:
124 		if (size <= BITS_PER_LONG)
125 			break;
126 		size -= BITS_PER_LONG;
127 		offset = 0;
128 		p++;
129 	}
130 	return result;
131 found:
132 	return result - size + __reverse_ffs(tmp);
133 }
134 
135 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
136 			unsigned long size, unsigned long offset)
137 {
138 	const unsigned long *p = addr + BIT_WORD(offset);
139 	unsigned long result = size;
140 	unsigned long tmp;
141 
142 	if (offset >= size)
143 		return size;
144 
145 	size -= (offset & ~(BITS_PER_LONG - 1));
146 	offset %= BITS_PER_LONG;
147 
148 	while (1) {
149 		if (*p == ~0UL)
150 			goto pass;
151 
152 		tmp = __reverse_ulong((unsigned char *)p);
153 
154 		if (offset)
155 			tmp |= ~0UL << (BITS_PER_LONG - offset);
156 		if (size < BITS_PER_LONG)
157 			tmp |= ~0UL >> size;
158 		if (tmp != ~0UL)
159 			goto found;
160 pass:
161 		if (size <= BITS_PER_LONG)
162 			break;
163 		size -= BITS_PER_LONG;
164 		offset = 0;
165 		p++;
166 	}
167 	return result;
168 found:
169 	return result - size + __reverse_ffz(tmp);
170 }
171 
172 bool need_SSR(struct f2fs_sb_info *sbi)
173 {
174 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
175 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
176 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
177 
178 	if (test_opt(sbi, LFS))
179 		return false;
180 	if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
181 		return true;
182 
183 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
184 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
185 }
186 
187 void register_inmem_page(struct inode *inode, struct page *page)
188 {
189 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 	struct inmem_pages *new;
192 
193 	f2fs_trace_pid(page);
194 
195 	set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
196 	SetPagePrivate(page);
197 
198 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
199 
200 	/* add atomic page indices to the list */
201 	new->page = page;
202 	INIT_LIST_HEAD(&new->list);
203 
204 	/* increase reference count with clean state */
205 	mutex_lock(&fi->inmem_lock);
206 	get_page(page);
207 	list_add_tail(&new->list, &fi->inmem_pages);
208 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
209 	if (list_empty(&fi->inmem_ilist))
210 		list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]);
211 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
212 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
213 	mutex_unlock(&fi->inmem_lock);
214 
215 	trace_f2fs_register_inmem_page(page, INMEM);
216 }
217 
218 static int __revoke_inmem_pages(struct inode *inode,
219 				struct list_head *head, bool drop, bool recover)
220 {
221 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
222 	struct inmem_pages *cur, *tmp;
223 	int err = 0;
224 
225 	list_for_each_entry_safe(cur, tmp, head, list) {
226 		struct page *page = cur->page;
227 
228 		if (drop)
229 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
230 
231 		lock_page(page);
232 
233 		if (recover) {
234 			struct dnode_of_data dn;
235 			struct node_info ni;
236 
237 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
238 retry:
239 			set_new_dnode(&dn, inode, NULL, NULL, 0);
240 			err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
241 			if (err) {
242 				if (err == -ENOMEM) {
243 					congestion_wait(BLK_RW_ASYNC, HZ/50);
244 					cond_resched();
245 					goto retry;
246 				}
247 				err = -EAGAIN;
248 				goto next;
249 			}
250 			get_node_info(sbi, dn.nid, &ni);
251 			if (cur->old_addr == NEW_ADDR) {
252 				invalidate_blocks(sbi, dn.data_blkaddr);
253 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
254 			} else
255 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
256 					cur->old_addr, ni.version, true, true);
257 			f2fs_put_dnode(&dn);
258 		}
259 next:
260 		/* we don't need to invalidate this in the sccessful status */
261 		if (drop || recover)
262 			ClearPageUptodate(page);
263 		set_page_private(page, 0);
264 		ClearPagePrivate(page);
265 		f2fs_put_page(page, 1);
266 
267 		list_del(&cur->list);
268 		kmem_cache_free(inmem_entry_slab, cur);
269 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
270 	}
271 	return err;
272 }
273 
274 void drop_inmem_pages_all(struct f2fs_sb_info *sbi)
275 {
276 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
277 	struct inode *inode;
278 	struct f2fs_inode_info *fi;
279 next:
280 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
281 	if (list_empty(head)) {
282 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
283 		return;
284 	}
285 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
286 	inode = igrab(&fi->vfs_inode);
287 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
288 
289 	if (inode) {
290 		drop_inmem_pages(inode);
291 		iput(inode);
292 	}
293 	congestion_wait(BLK_RW_ASYNC, HZ/50);
294 	cond_resched();
295 	goto next;
296 }
297 
298 void drop_inmem_pages(struct inode *inode)
299 {
300 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 	struct f2fs_inode_info *fi = F2FS_I(inode);
302 
303 	mutex_lock(&fi->inmem_lock);
304 	__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
305 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
306 	if (!list_empty(&fi->inmem_ilist))
307 		list_del_init(&fi->inmem_ilist);
308 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
309 	mutex_unlock(&fi->inmem_lock);
310 
311 	clear_inode_flag(inode, FI_ATOMIC_FILE);
312 	clear_inode_flag(inode, FI_HOT_DATA);
313 	stat_dec_atomic_write(inode);
314 }
315 
316 void drop_inmem_page(struct inode *inode, struct page *page)
317 {
318 	struct f2fs_inode_info *fi = F2FS_I(inode);
319 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
320 	struct list_head *head = &fi->inmem_pages;
321 	struct inmem_pages *cur = NULL;
322 
323 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
324 
325 	mutex_lock(&fi->inmem_lock);
326 	list_for_each_entry(cur, head, list) {
327 		if (cur->page == page)
328 			break;
329 	}
330 
331 	f2fs_bug_on(sbi, !cur || cur->page != page);
332 	list_del(&cur->list);
333 	mutex_unlock(&fi->inmem_lock);
334 
335 	dec_page_count(sbi, F2FS_INMEM_PAGES);
336 	kmem_cache_free(inmem_entry_slab, cur);
337 
338 	ClearPageUptodate(page);
339 	set_page_private(page, 0);
340 	ClearPagePrivate(page);
341 	f2fs_put_page(page, 0);
342 
343 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
344 }
345 
346 static int __commit_inmem_pages(struct inode *inode,
347 					struct list_head *revoke_list)
348 {
349 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
350 	struct f2fs_inode_info *fi = F2FS_I(inode);
351 	struct inmem_pages *cur, *tmp;
352 	struct f2fs_io_info fio = {
353 		.sbi = sbi,
354 		.ino = inode->i_ino,
355 		.type = DATA,
356 		.op = REQ_OP_WRITE,
357 		.op_flags = REQ_SYNC | REQ_PRIO,
358 		.io_type = FS_DATA_IO,
359 	};
360 	pgoff_t last_idx = ULONG_MAX;
361 	int err = 0;
362 
363 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
364 		struct page *page = cur->page;
365 
366 		lock_page(page);
367 		if (page->mapping == inode->i_mapping) {
368 			trace_f2fs_commit_inmem_page(page, INMEM);
369 
370 			set_page_dirty(page);
371 			f2fs_wait_on_page_writeback(page, DATA, true);
372 			if (clear_page_dirty_for_io(page)) {
373 				inode_dec_dirty_pages(inode);
374 				remove_dirty_inode(inode);
375 			}
376 retry:
377 			fio.page = page;
378 			fio.old_blkaddr = NULL_ADDR;
379 			fio.encrypted_page = NULL;
380 			fio.need_lock = LOCK_DONE;
381 			err = do_write_data_page(&fio);
382 			if (err) {
383 				if (err == -ENOMEM) {
384 					congestion_wait(BLK_RW_ASYNC, HZ/50);
385 					cond_resched();
386 					goto retry;
387 				}
388 				unlock_page(page);
389 				break;
390 			}
391 			/* record old blkaddr for revoking */
392 			cur->old_addr = fio.old_blkaddr;
393 			last_idx = page->index;
394 		}
395 		unlock_page(page);
396 		list_move_tail(&cur->list, revoke_list);
397 	}
398 
399 	if (last_idx != ULONG_MAX)
400 		f2fs_submit_merged_write_cond(sbi, inode, 0, last_idx, DATA);
401 
402 	if (!err)
403 		__revoke_inmem_pages(inode, revoke_list, false, false);
404 
405 	return err;
406 }
407 
408 int commit_inmem_pages(struct inode *inode)
409 {
410 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
411 	struct f2fs_inode_info *fi = F2FS_I(inode);
412 	struct list_head revoke_list;
413 	int err;
414 
415 	INIT_LIST_HEAD(&revoke_list);
416 	f2fs_balance_fs(sbi, true);
417 	f2fs_lock_op(sbi);
418 
419 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
420 
421 	mutex_lock(&fi->inmem_lock);
422 	err = __commit_inmem_pages(inode, &revoke_list);
423 	if (err) {
424 		int ret;
425 		/*
426 		 * try to revoke all committed pages, but still we could fail
427 		 * due to no memory or other reason, if that happened, EAGAIN
428 		 * will be returned, which means in such case, transaction is
429 		 * already not integrity, caller should use journal to do the
430 		 * recovery or rewrite & commit last transaction. For other
431 		 * error number, revoking was done by filesystem itself.
432 		 */
433 		ret = __revoke_inmem_pages(inode, &revoke_list, false, true);
434 		if (ret)
435 			err = ret;
436 
437 		/* drop all uncommitted pages */
438 		__revoke_inmem_pages(inode, &fi->inmem_pages, true, false);
439 	}
440 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
441 	if (!list_empty(&fi->inmem_ilist))
442 		list_del_init(&fi->inmem_ilist);
443 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
444 	mutex_unlock(&fi->inmem_lock);
445 
446 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
447 
448 	f2fs_unlock_op(sbi);
449 	return err;
450 }
451 
452 /*
453  * This function balances dirty node and dentry pages.
454  * In addition, it controls garbage collection.
455  */
456 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
457 {
458 #ifdef CONFIG_F2FS_FAULT_INJECTION
459 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
460 		f2fs_show_injection_info(FAULT_CHECKPOINT);
461 		f2fs_stop_checkpoint(sbi, false);
462 	}
463 #endif
464 
465 	/* balance_fs_bg is able to be pending */
466 	if (need && excess_cached_nats(sbi))
467 		f2fs_balance_fs_bg(sbi);
468 
469 	/*
470 	 * We should do GC or end up with checkpoint, if there are so many dirty
471 	 * dir/node pages without enough free segments.
472 	 */
473 	if (has_not_enough_free_secs(sbi, 0, 0)) {
474 		mutex_lock(&sbi->gc_mutex);
475 		f2fs_gc(sbi, false, false, NULL_SEGNO);
476 	}
477 }
478 
479 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
480 {
481 	/* try to shrink extent cache when there is no enough memory */
482 	if (!available_free_memory(sbi, EXTENT_CACHE))
483 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
484 
485 	/* check the # of cached NAT entries */
486 	if (!available_free_memory(sbi, NAT_ENTRIES))
487 		try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
488 
489 	if (!available_free_memory(sbi, FREE_NIDS))
490 		try_to_free_nids(sbi, MAX_FREE_NIDS);
491 	else
492 		build_free_nids(sbi, false, false);
493 
494 	if (!is_idle(sbi) && !excess_dirty_nats(sbi))
495 		return;
496 
497 	/* checkpoint is the only way to shrink partial cached entries */
498 	if (!available_free_memory(sbi, NAT_ENTRIES) ||
499 			!available_free_memory(sbi, INO_ENTRIES) ||
500 			excess_prefree_segs(sbi) ||
501 			excess_dirty_nats(sbi) ||
502 			f2fs_time_over(sbi, CP_TIME)) {
503 		if (test_opt(sbi, DATA_FLUSH)) {
504 			struct blk_plug plug;
505 
506 			blk_start_plug(&plug);
507 			sync_dirty_inodes(sbi, FILE_INODE);
508 			blk_finish_plug(&plug);
509 		}
510 		f2fs_sync_fs(sbi->sb, true);
511 		stat_inc_bg_cp_count(sbi->stat_info);
512 	}
513 }
514 
515 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
516 				struct block_device *bdev)
517 {
518 	struct bio *bio = f2fs_bio_alloc(sbi, 0, true);
519 	int ret;
520 
521 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH;
522 	bio_set_dev(bio, bdev);
523 	ret = submit_bio_wait(bio);
524 	bio_put(bio);
525 
526 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
527 				test_opt(sbi, FLUSH_MERGE), ret);
528 	return ret;
529 }
530 
531 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
532 {
533 	int ret = 0;
534 	int i;
535 
536 	if (!sbi->s_ndevs)
537 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
538 
539 	for (i = 0; i < sbi->s_ndevs; i++) {
540 		if (!is_dirty_device(sbi, ino, i, FLUSH_INO))
541 			continue;
542 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
543 		if (ret)
544 			break;
545 	}
546 	return ret;
547 }
548 
549 static int issue_flush_thread(void *data)
550 {
551 	struct f2fs_sb_info *sbi = data;
552 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
553 	wait_queue_head_t *q = &fcc->flush_wait_queue;
554 repeat:
555 	if (kthread_should_stop())
556 		return 0;
557 
558 	sb_start_intwrite(sbi->sb);
559 
560 	if (!llist_empty(&fcc->issue_list)) {
561 		struct flush_cmd *cmd, *next;
562 		int ret;
563 
564 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
565 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
566 
567 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
568 
569 		ret = submit_flush_wait(sbi, cmd->ino);
570 		atomic_inc(&fcc->issued_flush);
571 
572 		llist_for_each_entry_safe(cmd, next,
573 					  fcc->dispatch_list, llnode) {
574 			cmd->ret = ret;
575 			complete(&cmd->wait);
576 		}
577 		fcc->dispatch_list = NULL;
578 	}
579 
580 	sb_end_intwrite(sbi->sb);
581 
582 	wait_event_interruptible(*q,
583 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
584 	goto repeat;
585 }
586 
587 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
588 {
589 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
590 	struct flush_cmd cmd;
591 	int ret;
592 
593 	if (test_opt(sbi, NOBARRIER))
594 		return 0;
595 
596 	if (!test_opt(sbi, FLUSH_MERGE)) {
597 		ret = submit_flush_wait(sbi, ino);
598 		atomic_inc(&fcc->issued_flush);
599 		return ret;
600 	}
601 
602 	if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) {
603 		ret = submit_flush_wait(sbi, ino);
604 		atomic_dec(&fcc->issing_flush);
605 
606 		atomic_inc(&fcc->issued_flush);
607 		return ret;
608 	}
609 
610 	cmd.ino = ino;
611 	init_completion(&cmd.wait);
612 
613 	llist_add(&cmd.llnode, &fcc->issue_list);
614 
615 	/* update issue_list before we wake up issue_flush thread */
616 	smp_mb();
617 
618 	if (waitqueue_active(&fcc->flush_wait_queue))
619 		wake_up(&fcc->flush_wait_queue);
620 
621 	if (fcc->f2fs_issue_flush) {
622 		wait_for_completion(&cmd.wait);
623 		atomic_dec(&fcc->issing_flush);
624 	} else {
625 		struct llist_node *list;
626 
627 		list = llist_del_all(&fcc->issue_list);
628 		if (!list) {
629 			wait_for_completion(&cmd.wait);
630 			atomic_dec(&fcc->issing_flush);
631 		} else {
632 			struct flush_cmd *tmp, *next;
633 
634 			ret = submit_flush_wait(sbi, ino);
635 
636 			llist_for_each_entry_safe(tmp, next, list, llnode) {
637 				if (tmp == &cmd) {
638 					cmd.ret = ret;
639 					atomic_dec(&fcc->issing_flush);
640 					continue;
641 				}
642 				tmp->ret = ret;
643 				complete(&tmp->wait);
644 			}
645 		}
646 	}
647 
648 	return cmd.ret;
649 }
650 
651 int create_flush_cmd_control(struct f2fs_sb_info *sbi)
652 {
653 	dev_t dev = sbi->sb->s_bdev->bd_dev;
654 	struct flush_cmd_control *fcc;
655 	int err = 0;
656 
657 	if (SM_I(sbi)->fcc_info) {
658 		fcc = SM_I(sbi)->fcc_info;
659 		if (fcc->f2fs_issue_flush)
660 			return err;
661 		goto init_thread;
662 	}
663 
664 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
665 	if (!fcc)
666 		return -ENOMEM;
667 	atomic_set(&fcc->issued_flush, 0);
668 	atomic_set(&fcc->issing_flush, 0);
669 	init_waitqueue_head(&fcc->flush_wait_queue);
670 	init_llist_head(&fcc->issue_list);
671 	SM_I(sbi)->fcc_info = fcc;
672 	if (!test_opt(sbi, FLUSH_MERGE))
673 		return err;
674 
675 init_thread:
676 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
677 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
678 	if (IS_ERR(fcc->f2fs_issue_flush)) {
679 		err = PTR_ERR(fcc->f2fs_issue_flush);
680 		kfree(fcc);
681 		SM_I(sbi)->fcc_info = NULL;
682 		return err;
683 	}
684 
685 	return err;
686 }
687 
688 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
689 {
690 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
691 
692 	if (fcc && fcc->f2fs_issue_flush) {
693 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
694 
695 		fcc->f2fs_issue_flush = NULL;
696 		kthread_stop(flush_thread);
697 	}
698 	if (free) {
699 		kfree(fcc);
700 		SM_I(sbi)->fcc_info = NULL;
701 	}
702 }
703 
704 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
705 {
706 	int ret = 0, i;
707 
708 	if (!sbi->s_ndevs)
709 		return 0;
710 
711 	for (i = 1; i < sbi->s_ndevs; i++) {
712 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
713 			continue;
714 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
715 		if (ret)
716 			break;
717 
718 		spin_lock(&sbi->dev_lock);
719 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
720 		spin_unlock(&sbi->dev_lock);
721 	}
722 
723 	return ret;
724 }
725 
726 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
727 		enum dirty_type dirty_type)
728 {
729 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
730 
731 	/* need not be added */
732 	if (IS_CURSEG(sbi, segno))
733 		return;
734 
735 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
736 		dirty_i->nr_dirty[dirty_type]++;
737 
738 	if (dirty_type == DIRTY) {
739 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
740 		enum dirty_type t = sentry->type;
741 
742 		if (unlikely(t >= DIRTY)) {
743 			f2fs_bug_on(sbi, 1);
744 			return;
745 		}
746 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
747 			dirty_i->nr_dirty[t]++;
748 	}
749 }
750 
751 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
752 		enum dirty_type dirty_type)
753 {
754 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
755 
756 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
757 		dirty_i->nr_dirty[dirty_type]--;
758 
759 	if (dirty_type == DIRTY) {
760 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
761 		enum dirty_type t = sentry->type;
762 
763 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
764 			dirty_i->nr_dirty[t]--;
765 
766 		if (get_valid_blocks(sbi, segno, true) == 0)
767 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
768 						dirty_i->victim_secmap);
769 	}
770 }
771 
772 /*
773  * Should not occur error such as -ENOMEM.
774  * Adding dirty entry into seglist is not critical operation.
775  * If a given segment is one of current working segments, it won't be added.
776  */
777 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
778 {
779 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
780 	unsigned short valid_blocks;
781 
782 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
783 		return;
784 
785 	mutex_lock(&dirty_i->seglist_lock);
786 
787 	valid_blocks = get_valid_blocks(sbi, segno, false);
788 
789 	if (valid_blocks == 0) {
790 		__locate_dirty_segment(sbi, segno, PRE);
791 		__remove_dirty_segment(sbi, segno, DIRTY);
792 	} else if (valid_blocks < sbi->blocks_per_seg) {
793 		__locate_dirty_segment(sbi, segno, DIRTY);
794 	} else {
795 		/* Recovery routine with SSR needs this */
796 		__remove_dirty_segment(sbi, segno, DIRTY);
797 	}
798 
799 	mutex_unlock(&dirty_i->seglist_lock);
800 }
801 
802 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
803 		struct block_device *bdev, block_t lstart,
804 		block_t start, block_t len)
805 {
806 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
807 	struct list_head *pend_list;
808 	struct discard_cmd *dc;
809 
810 	f2fs_bug_on(sbi, !len);
811 
812 	pend_list = &dcc->pend_list[plist_idx(len)];
813 
814 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
815 	INIT_LIST_HEAD(&dc->list);
816 	dc->bdev = bdev;
817 	dc->lstart = lstart;
818 	dc->start = start;
819 	dc->len = len;
820 	dc->ref = 0;
821 	dc->state = D_PREP;
822 	dc->error = 0;
823 	init_completion(&dc->wait);
824 	list_add_tail(&dc->list, pend_list);
825 	atomic_inc(&dcc->discard_cmd_cnt);
826 	dcc->undiscard_blks += len;
827 
828 	return dc;
829 }
830 
831 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
832 				struct block_device *bdev, block_t lstart,
833 				block_t start, block_t len,
834 				struct rb_node *parent, struct rb_node **p)
835 {
836 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
837 	struct discard_cmd *dc;
838 
839 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
840 
841 	rb_link_node(&dc->rb_node, parent, p);
842 	rb_insert_color(&dc->rb_node, &dcc->root);
843 
844 	return dc;
845 }
846 
847 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
848 							struct discard_cmd *dc)
849 {
850 	if (dc->state == D_DONE)
851 		atomic_dec(&dcc->issing_discard);
852 
853 	list_del(&dc->list);
854 	rb_erase(&dc->rb_node, &dcc->root);
855 	dcc->undiscard_blks -= dc->len;
856 
857 	kmem_cache_free(discard_cmd_slab, dc);
858 
859 	atomic_dec(&dcc->discard_cmd_cnt);
860 }
861 
862 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
863 							struct discard_cmd *dc)
864 {
865 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
866 
867 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
868 
869 	f2fs_bug_on(sbi, dc->ref);
870 
871 	if (dc->error == -EOPNOTSUPP)
872 		dc->error = 0;
873 
874 	if (dc->error)
875 		f2fs_msg(sbi->sb, KERN_INFO,
876 			"Issue discard(%u, %u, %u) failed, ret: %d",
877 			dc->lstart, dc->start, dc->len, dc->error);
878 	__detach_discard_cmd(dcc, dc);
879 }
880 
881 static void f2fs_submit_discard_endio(struct bio *bio)
882 {
883 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
884 
885 	dc->error = blk_status_to_errno(bio->bi_status);
886 	dc->state = D_DONE;
887 	complete_all(&dc->wait);
888 	bio_put(bio);
889 }
890 
891 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
892 				block_t start, block_t end)
893 {
894 #ifdef CONFIG_F2FS_CHECK_FS
895 	struct seg_entry *sentry;
896 	unsigned int segno;
897 	block_t blk = start;
898 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
899 	unsigned long *map;
900 
901 	while (blk < end) {
902 		segno = GET_SEGNO(sbi, blk);
903 		sentry = get_seg_entry(sbi, segno);
904 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
905 
906 		if (end < START_BLOCK(sbi, segno + 1))
907 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
908 		else
909 			size = max_blocks;
910 		map = (unsigned long *)(sentry->cur_valid_map);
911 		offset = __find_rev_next_bit(map, size, offset);
912 		f2fs_bug_on(sbi, offset != size);
913 		blk = START_BLOCK(sbi, segno + 1);
914 	}
915 #endif
916 }
917 
918 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
919 static void __submit_discard_cmd(struct f2fs_sb_info *sbi,
920 						struct discard_policy *dpolicy,
921 						struct discard_cmd *dc)
922 {
923 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
924 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
925 					&(dcc->fstrim_list) : &(dcc->wait_list);
926 	struct bio *bio = NULL;
927 	int flag = dpolicy->sync ? REQ_SYNC : 0;
928 
929 	if (dc->state != D_PREP)
930 		return;
931 
932 	trace_f2fs_issue_discard(dc->bdev, dc->start, dc->len);
933 
934 	dc->error = __blkdev_issue_discard(dc->bdev,
935 				SECTOR_FROM_BLOCK(dc->start),
936 				SECTOR_FROM_BLOCK(dc->len),
937 				GFP_NOFS, 0, &bio);
938 	if (!dc->error) {
939 		/* should keep before submission to avoid D_DONE right away */
940 		dc->state = D_SUBMIT;
941 		atomic_inc(&dcc->issued_discard);
942 		atomic_inc(&dcc->issing_discard);
943 		if (bio) {
944 			bio->bi_private = dc;
945 			bio->bi_end_io = f2fs_submit_discard_endio;
946 			bio->bi_opf |= flag;
947 			submit_bio(bio);
948 			list_move_tail(&dc->list, wait_list);
949 			__check_sit_bitmap(sbi, dc->start, dc->start + dc->len);
950 
951 			f2fs_update_iostat(sbi, FS_DISCARD, 1);
952 		}
953 	} else {
954 		__remove_discard_cmd(sbi, dc);
955 	}
956 }
957 
958 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi,
959 				struct block_device *bdev, block_t lstart,
960 				block_t start, block_t len,
961 				struct rb_node **insert_p,
962 				struct rb_node *insert_parent)
963 {
964 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
965 	struct rb_node **p;
966 	struct rb_node *parent = NULL;
967 	struct discard_cmd *dc = NULL;
968 
969 	if (insert_p && insert_parent) {
970 		parent = insert_parent;
971 		p = insert_p;
972 		goto do_insert;
973 	}
974 
975 	p = __lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, lstart);
976 do_insert:
977 	dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, p);
978 	if (!dc)
979 		return NULL;
980 
981 	return dc;
982 }
983 
984 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
985 						struct discard_cmd *dc)
986 {
987 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
988 }
989 
990 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
991 				struct discard_cmd *dc, block_t blkaddr)
992 {
993 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
994 	struct discard_info di = dc->di;
995 	bool modified = false;
996 
997 	if (dc->state == D_DONE || dc->len == 1) {
998 		__remove_discard_cmd(sbi, dc);
999 		return;
1000 	}
1001 
1002 	dcc->undiscard_blks -= di.len;
1003 
1004 	if (blkaddr > di.lstart) {
1005 		dc->len = blkaddr - dc->lstart;
1006 		dcc->undiscard_blks += dc->len;
1007 		__relocate_discard_cmd(dcc, dc);
1008 		modified = true;
1009 	}
1010 
1011 	if (blkaddr < di.lstart + di.len - 1) {
1012 		if (modified) {
1013 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1014 					di.start + blkaddr + 1 - di.lstart,
1015 					di.lstart + di.len - 1 - blkaddr,
1016 					NULL, NULL);
1017 		} else {
1018 			dc->lstart++;
1019 			dc->len--;
1020 			dc->start++;
1021 			dcc->undiscard_blks += dc->len;
1022 			__relocate_discard_cmd(dcc, dc);
1023 		}
1024 	}
1025 }
1026 
1027 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1028 				struct block_device *bdev, block_t lstart,
1029 				block_t start, block_t len)
1030 {
1031 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1032 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1033 	struct discard_cmd *dc;
1034 	struct discard_info di = {0};
1035 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1036 	block_t end = lstart + len;
1037 
1038 	mutex_lock(&dcc->cmd_lock);
1039 
1040 	dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1041 					NULL, lstart,
1042 					(struct rb_entry **)&prev_dc,
1043 					(struct rb_entry **)&next_dc,
1044 					&insert_p, &insert_parent, true);
1045 	if (dc)
1046 		prev_dc = dc;
1047 
1048 	if (!prev_dc) {
1049 		di.lstart = lstart;
1050 		di.len = next_dc ? next_dc->lstart - lstart : len;
1051 		di.len = min(di.len, len);
1052 		di.start = start;
1053 	}
1054 
1055 	while (1) {
1056 		struct rb_node *node;
1057 		bool merged = false;
1058 		struct discard_cmd *tdc = NULL;
1059 
1060 		if (prev_dc) {
1061 			di.lstart = prev_dc->lstart + prev_dc->len;
1062 			if (di.lstart < lstart)
1063 				di.lstart = lstart;
1064 			if (di.lstart >= end)
1065 				break;
1066 
1067 			if (!next_dc || next_dc->lstart > end)
1068 				di.len = end - di.lstart;
1069 			else
1070 				di.len = next_dc->lstart - di.lstart;
1071 			di.start = start + di.lstart - lstart;
1072 		}
1073 
1074 		if (!di.len)
1075 			goto next;
1076 
1077 		if (prev_dc && prev_dc->state == D_PREP &&
1078 			prev_dc->bdev == bdev &&
1079 			__is_discard_back_mergeable(&di, &prev_dc->di)) {
1080 			prev_dc->di.len += di.len;
1081 			dcc->undiscard_blks += di.len;
1082 			__relocate_discard_cmd(dcc, prev_dc);
1083 			di = prev_dc->di;
1084 			tdc = prev_dc;
1085 			merged = true;
1086 		}
1087 
1088 		if (next_dc && next_dc->state == D_PREP &&
1089 			next_dc->bdev == bdev &&
1090 			__is_discard_front_mergeable(&di, &next_dc->di)) {
1091 			next_dc->di.lstart = di.lstart;
1092 			next_dc->di.len += di.len;
1093 			next_dc->di.start = di.start;
1094 			dcc->undiscard_blks += di.len;
1095 			__relocate_discard_cmd(dcc, next_dc);
1096 			if (tdc)
1097 				__remove_discard_cmd(sbi, tdc);
1098 			merged = true;
1099 		}
1100 
1101 		if (!merged) {
1102 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1103 							di.len, NULL, NULL);
1104 		}
1105  next:
1106 		prev_dc = next_dc;
1107 		if (!prev_dc)
1108 			break;
1109 
1110 		node = rb_next(&prev_dc->rb_node);
1111 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1112 	}
1113 
1114 	mutex_unlock(&dcc->cmd_lock);
1115 }
1116 
1117 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1118 		struct block_device *bdev, block_t blkstart, block_t blklen)
1119 {
1120 	block_t lblkstart = blkstart;
1121 
1122 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1123 
1124 	if (sbi->s_ndevs) {
1125 		int devi = f2fs_target_device_index(sbi, blkstart);
1126 
1127 		blkstart -= FDEV(devi).start_blk;
1128 	}
1129 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1130 	return 0;
1131 }
1132 
1133 static void __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
1134 					struct discard_policy *dpolicy,
1135 					unsigned int start, unsigned int end)
1136 {
1137 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1138 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1139 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1140 	struct discard_cmd *dc;
1141 	struct blk_plug plug;
1142 	int issued;
1143 
1144 next:
1145 	issued = 0;
1146 
1147 	mutex_lock(&dcc->cmd_lock);
1148 	f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1149 
1150 	dc = (struct discard_cmd *)__lookup_rb_tree_ret(&dcc->root,
1151 					NULL, start,
1152 					(struct rb_entry **)&prev_dc,
1153 					(struct rb_entry **)&next_dc,
1154 					&insert_p, &insert_parent, true);
1155 	if (!dc)
1156 		dc = next_dc;
1157 
1158 	blk_start_plug(&plug);
1159 
1160 	while (dc && dc->lstart <= end) {
1161 		struct rb_node *node;
1162 
1163 		if (dc->len < dpolicy->granularity)
1164 			goto skip;
1165 
1166 		if (dc->state != D_PREP) {
1167 			list_move_tail(&dc->list, &dcc->fstrim_list);
1168 			goto skip;
1169 		}
1170 
1171 		__submit_discard_cmd(sbi, dpolicy, dc);
1172 
1173 		if (++issued >= dpolicy->max_requests) {
1174 			start = dc->lstart + dc->len;
1175 
1176 			blk_finish_plug(&plug);
1177 			mutex_unlock(&dcc->cmd_lock);
1178 
1179 			schedule();
1180 
1181 			goto next;
1182 		}
1183 skip:
1184 		node = rb_next(&dc->rb_node);
1185 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1186 
1187 		if (fatal_signal_pending(current))
1188 			break;
1189 	}
1190 
1191 	blk_finish_plug(&plug);
1192 	mutex_unlock(&dcc->cmd_lock);
1193 }
1194 
1195 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1196 					struct discard_policy *dpolicy)
1197 {
1198 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1199 	struct list_head *pend_list;
1200 	struct discard_cmd *dc, *tmp;
1201 	struct blk_plug plug;
1202 	int i, iter = 0, issued = 0;
1203 	bool io_interrupted = false;
1204 
1205 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1206 		if (i + 1 < dpolicy->granularity)
1207 			break;
1208 		pend_list = &dcc->pend_list[i];
1209 
1210 		mutex_lock(&dcc->cmd_lock);
1211 		if (list_empty(pend_list))
1212 			goto next;
1213 		f2fs_bug_on(sbi, !__check_rb_tree_consistence(sbi, &dcc->root));
1214 		blk_start_plug(&plug);
1215 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1216 			f2fs_bug_on(sbi, dc->state != D_PREP);
1217 
1218 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1219 								!is_idle(sbi)) {
1220 				io_interrupted = true;
1221 				goto skip;
1222 			}
1223 
1224 			__submit_discard_cmd(sbi, dpolicy, dc);
1225 			issued++;
1226 skip:
1227 			if (++iter >= dpolicy->max_requests)
1228 				break;
1229 		}
1230 		blk_finish_plug(&plug);
1231 next:
1232 		mutex_unlock(&dcc->cmd_lock);
1233 
1234 		if (iter >= dpolicy->max_requests)
1235 			break;
1236 	}
1237 
1238 	if (!issued && io_interrupted)
1239 		issued = -1;
1240 
1241 	return issued;
1242 }
1243 
1244 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1245 {
1246 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1247 	struct list_head *pend_list;
1248 	struct discard_cmd *dc, *tmp;
1249 	int i;
1250 	bool dropped = false;
1251 
1252 	mutex_lock(&dcc->cmd_lock);
1253 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1254 		pend_list = &dcc->pend_list[i];
1255 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1256 			f2fs_bug_on(sbi, dc->state != D_PREP);
1257 			__remove_discard_cmd(sbi, dc);
1258 			dropped = true;
1259 		}
1260 	}
1261 	mutex_unlock(&dcc->cmd_lock);
1262 
1263 	return dropped;
1264 }
1265 
1266 void drop_discard_cmd(struct f2fs_sb_info *sbi)
1267 {
1268 	__drop_discard_cmd(sbi);
1269 }
1270 
1271 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1272 							struct discard_cmd *dc)
1273 {
1274 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1275 	unsigned int len = 0;
1276 
1277 	wait_for_completion_io(&dc->wait);
1278 	mutex_lock(&dcc->cmd_lock);
1279 	f2fs_bug_on(sbi, dc->state != D_DONE);
1280 	dc->ref--;
1281 	if (!dc->ref) {
1282 		if (!dc->error)
1283 			len = dc->len;
1284 		__remove_discard_cmd(sbi, dc);
1285 	}
1286 	mutex_unlock(&dcc->cmd_lock);
1287 
1288 	return len;
1289 }
1290 
1291 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1292 						struct discard_policy *dpolicy,
1293 						block_t start, block_t end)
1294 {
1295 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1296 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1297 					&(dcc->fstrim_list) : &(dcc->wait_list);
1298 	struct discard_cmd *dc, *tmp;
1299 	bool need_wait;
1300 	unsigned int trimmed = 0;
1301 
1302 next:
1303 	need_wait = false;
1304 
1305 	mutex_lock(&dcc->cmd_lock);
1306 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1307 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1308 			continue;
1309 		if (dc->len < dpolicy->granularity)
1310 			continue;
1311 		if (dc->state == D_DONE && !dc->ref) {
1312 			wait_for_completion_io(&dc->wait);
1313 			if (!dc->error)
1314 				trimmed += dc->len;
1315 			__remove_discard_cmd(sbi, dc);
1316 		} else {
1317 			dc->ref++;
1318 			need_wait = true;
1319 			break;
1320 		}
1321 	}
1322 	mutex_unlock(&dcc->cmd_lock);
1323 
1324 	if (need_wait) {
1325 		trimmed += __wait_one_discard_bio(sbi, dc);
1326 		goto next;
1327 	}
1328 
1329 	return trimmed;
1330 }
1331 
1332 static void __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1333 						struct discard_policy *dpolicy)
1334 {
1335 	__wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1336 }
1337 
1338 /* This should be covered by global mutex, &sit_i->sentry_lock */
1339 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1340 {
1341 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1342 	struct discard_cmd *dc;
1343 	bool need_wait = false;
1344 
1345 	mutex_lock(&dcc->cmd_lock);
1346 	dc = (struct discard_cmd *)__lookup_rb_tree(&dcc->root, NULL, blkaddr);
1347 	if (dc) {
1348 		if (dc->state == D_PREP) {
1349 			__punch_discard_cmd(sbi, dc, blkaddr);
1350 		} else {
1351 			dc->ref++;
1352 			need_wait = true;
1353 		}
1354 	}
1355 	mutex_unlock(&dcc->cmd_lock);
1356 
1357 	if (need_wait)
1358 		__wait_one_discard_bio(sbi, dc);
1359 }
1360 
1361 void stop_discard_thread(struct f2fs_sb_info *sbi)
1362 {
1363 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1364 
1365 	if (dcc && dcc->f2fs_issue_discard) {
1366 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1367 
1368 		dcc->f2fs_issue_discard = NULL;
1369 		kthread_stop(discard_thread);
1370 	}
1371 }
1372 
1373 /* This comes from f2fs_put_super */
1374 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi)
1375 {
1376 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1377 	struct discard_policy dpolicy;
1378 	bool dropped;
1379 
1380 	init_discard_policy(&dpolicy, DPOLICY_UMOUNT, dcc->discard_granularity);
1381 	__issue_discard_cmd(sbi, &dpolicy);
1382 	dropped = __drop_discard_cmd(sbi);
1383 	__wait_all_discard_cmd(sbi, &dpolicy);
1384 
1385 	return dropped;
1386 }
1387 
1388 static int issue_discard_thread(void *data)
1389 {
1390 	struct f2fs_sb_info *sbi = data;
1391 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1392 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1393 	struct discard_policy dpolicy;
1394 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1395 	int issued;
1396 
1397 	set_freezable();
1398 
1399 	do {
1400 		init_discard_policy(&dpolicy, DPOLICY_BG,
1401 					dcc->discard_granularity);
1402 
1403 		wait_event_interruptible_timeout(*q,
1404 				kthread_should_stop() || freezing(current) ||
1405 				dcc->discard_wake,
1406 				msecs_to_jiffies(wait_ms));
1407 		if (try_to_freeze())
1408 			continue;
1409 		if (f2fs_readonly(sbi->sb))
1410 			continue;
1411 		if (kthread_should_stop())
1412 			return 0;
1413 
1414 		if (dcc->discard_wake)
1415 			dcc->discard_wake = 0;
1416 
1417 		if (sbi->gc_thread && sbi->gc_thread->gc_urgent)
1418 			init_discard_policy(&dpolicy, DPOLICY_FORCE, 1);
1419 
1420 		sb_start_intwrite(sbi->sb);
1421 
1422 		issued = __issue_discard_cmd(sbi, &dpolicy);
1423 		if (issued) {
1424 			__wait_all_discard_cmd(sbi, &dpolicy);
1425 			wait_ms = dpolicy.min_interval;
1426 		} else {
1427 			wait_ms = dpolicy.max_interval;
1428 		}
1429 
1430 		sb_end_intwrite(sbi->sb);
1431 
1432 	} while (!kthread_should_stop());
1433 	return 0;
1434 }
1435 
1436 #ifdef CONFIG_BLK_DEV_ZONED
1437 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1438 		struct block_device *bdev, block_t blkstart, block_t blklen)
1439 {
1440 	sector_t sector, nr_sects;
1441 	block_t lblkstart = blkstart;
1442 	int devi = 0;
1443 
1444 	if (sbi->s_ndevs) {
1445 		devi = f2fs_target_device_index(sbi, blkstart);
1446 		blkstart -= FDEV(devi).start_blk;
1447 	}
1448 
1449 	/*
1450 	 * We need to know the type of the zone: for conventional zones,
1451 	 * use regular discard if the drive supports it. For sequential
1452 	 * zones, reset the zone write pointer.
1453 	 */
1454 	switch (get_blkz_type(sbi, bdev, blkstart)) {
1455 
1456 	case BLK_ZONE_TYPE_CONVENTIONAL:
1457 		if (!blk_queue_discard(bdev_get_queue(bdev)))
1458 			return 0;
1459 		return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1460 	case BLK_ZONE_TYPE_SEQWRITE_REQ:
1461 	case BLK_ZONE_TYPE_SEQWRITE_PREF:
1462 		sector = SECTOR_FROM_BLOCK(blkstart);
1463 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1464 
1465 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1466 				nr_sects != bdev_zone_sectors(bdev)) {
1467 			f2fs_msg(sbi->sb, KERN_INFO,
1468 				"(%d) %s: Unaligned discard attempted (block %x + %x)",
1469 				devi, sbi->s_ndevs ? FDEV(devi).path: "",
1470 				blkstart, blklen);
1471 			return -EIO;
1472 		}
1473 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1474 		return blkdev_reset_zones(bdev, sector,
1475 					  nr_sects, GFP_NOFS);
1476 	default:
1477 		/* Unknown zone type: broken device ? */
1478 		return -EIO;
1479 	}
1480 }
1481 #endif
1482 
1483 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1484 		struct block_device *bdev, block_t blkstart, block_t blklen)
1485 {
1486 #ifdef CONFIG_BLK_DEV_ZONED
1487 	if (f2fs_sb_has_blkzoned(sbi->sb) &&
1488 				bdev_zoned_model(bdev) != BLK_ZONED_NONE)
1489 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1490 #endif
1491 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1492 }
1493 
1494 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1495 				block_t blkstart, block_t blklen)
1496 {
1497 	sector_t start = blkstart, len = 0;
1498 	struct block_device *bdev;
1499 	struct seg_entry *se;
1500 	unsigned int offset;
1501 	block_t i;
1502 	int err = 0;
1503 
1504 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1505 
1506 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1507 		if (i != start) {
1508 			struct block_device *bdev2 =
1509 				f2fs_target_device(sbi, i, NULL);
1510 
1511 			if (bdev2 != bdev) {
1512 				err = __issue_discard_async(sbi, bdev,
1513 						start, len);
1514 				if (err)
1515 					return err;
1516 				bdev = bdev2;
1517 				start = i;
1518 				len = 0;
1519 			}
1520 		}
1521 
1522 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1523 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1524 
1525 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1526 			sbi->discard_blks--;
1527 	}
1528 
1529 	if (len)
1530 		err = __issue_discard_async(sbi, bdev, start, len);
1531 	return err;
1532 }
1533 
1534 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1535 							bool check_only)
1536 {
1537 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1538 	int max_blocks = sbi->blocks_per_seg;
1539 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1540 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1541 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1542 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1543 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1544 	unsigned int start = 0, end = -1;
1545 	bool force = (cpc->reason & CP_DISCARD);
1546 	struct discard_entry *de = NULL;
1547 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1548 	int i;
1549 
1550 	if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi))
1551 		return false;
1552 
1553 	if (!force) {
1554 		if (!test_opt(sbi, DISCARD) || !se->valid_blocks ||
1555 			SM_I(sbi)->dcc_info->nr_discards >=
1556 				SM_I(sbi)->dcc_info->max_discards)
1557 			return false;
1558 	}
1559 
1560 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1561 	for (i = 0; i < entries; i++)
1562 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1563 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1564 
1565 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1566 				SM_I(sbi)->dcc_info->max_discards) {
1567 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1568 		if (start >= max_blocks)
1569 			break;
1570 
1571 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1572 		if (force && start && end != max_blocks
1573 					&& (end - start) < cpc->trim_minlen)
1574 			continue;
1575 
1576 		if (check_only)
1577 			return true;
1578 
1579 		if (!de) {
1580 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1581 								GFP_F2FS_ZERO);
1582 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1583 			list_add_tail(&de->list, head);
1584 		}
1585 
1586 		for (i = start; i < end; i++)
1587 			__set_bit_le(i, (void *)de->discard_map);
1588 
1589 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1590 	}
1591 	return false;
1592 }
1593 
1594 void release_discard_addrs(struct f2fs_sb_info *sbi)
1595 {
1596 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1597 	struct discard_entry *entry, *this;
1598 
1599 	/* drop caches */
1600 	list_for_each_entry_safe(entry, this, head, list) {
1601 		list_del(&entry->list);
1602 		kmem_cache_free(discard_entry_slab, entry);
1603 	}
1604 }
1605 
1606 /*
1607  * Should call clear_prefree_segments after checkpoint is done.
1608  */
1609 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1610 {
1611 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1612 	unsigned int segno;
1613 
1614 	mutex_lock(&dirty_i->seglist_lock);
1615 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1616 		__set_test_and_free(sbi, segno);
1617 	mutex_unlock(&dirty_i->seglist_lock);
1618 }
1619 
1620 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1621 {
1622 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1623 	struct list_head *head = &dcc->entry_list;
1624 	struct discard_entry *entry, *this;
1625 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1626 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
1627 	unsigned int start = 0, end = -1;
1628 	unsigned int secno, start_segno;
1629 	bool force = (cpc->reason & CP_DISCARD);
1630 
1631 	mutex_lock(&dirty_i->seglist_lock);
1632 
1633 	while (1) {
1634 		int i;
1635 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
1636 		if (start >= MAIN_SEGS(sbi))
1637 			break;
1638 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
1639 								start + 1);
1640 
1641 		for (i = start; i < end; i++)
1642 			clear_bit(i, prefree_map);
1643 
1644 		dirty_i->nr_dirty[PRE] -= end - start;
1645 
1646 		if (!test_opt(sbi, DISCARD))
1647 			continue;
1648 
1649 		if (force && start >= cpc->trim_start &&
1650 					(end - 1) <= cpc->trim_end)
1651 				continue;
1652 
1653 		if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) {
1654 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
1655 				(end - start) << sbi->log_blocks_per_seg);
1656 			continue;
1657 		}
1658 next:
1659 		secno = GET_SEC_FROM_SEG(sbi, start);
1660 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
1661 		if (!IS_CURSEC(sbi, secno) &&
1662 			!get_valid_blocks(sbi, start, true))
1663 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
1664 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
1665 
1666 		start = start_segno + sbi->segs_per_sec;
1667 		if (start < end)
1668 			goto next;
1669 		else
1670 			end = start - 1;
1671 	}
1672 	mutex_unlock(&dirty_i->seglist_lock);
1673 
1674 	/* send small discards */
1675 	list_for_each_entry_safe(entry, this, head, list) {
1676 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
1677 		bool is_valid = test_bit_le(0, entry->discard_map);
1678 
1679 find_next:
1680 		if (is_valid) {
1681 			next_pos = find_next_zero_bit_le(entry->discard_map,
1682 					sbi->blocks_per_seg, cur_pos);
1683 			len = next_pos - cur_pos;
1684 
1685 			if (f2fs_sb_has_blkzoned(sbi->sb) ||
1686 			    (force && len < cpc->trim_minlen))
1687 				goto skip;
1688 
1689 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
1690 									len);
1691 			total_len += len;
1692 		} else {
1693 			next_pos = find_next_bit_le(entry->discard_map,
1694 					sbi->blocks_per_seg, cur_pos);
1695 		}
1696 skip:
1697 		cur_pos = next_pos;
1698 		is_valid = !is_valid;
1699 
1700 		if (cur_pos < sbi->blocks_per_seg)
1701 			goto find_next;
1702 
1703 		list_del(&entry->list);
1704 		dcc->nr_discards -= total_len;
1705 		kmem_cache_free(discard_entry_slab, entry);
1706 	}
1707 
1708 	wake_up_discard_thread(sbi, false);
1709 }
1710 
1711 void init_discard_policy(struct discard_policy *dpolicy,
1712 				int discard_type, unsigned int granularity)
1713 {
1714 	/* common policy */
1715 	dpolicy->type = discard_type;
1716 	dpolicy->sync = true;
1717 	dpolicy->granularity = granularity;
1718 
1719 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1720 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1721 
1722 	if (discard_type == DPOLICY_BG) {
1723 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1724 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1725 		dpolicy->io_aware = true;
1726 	} else if (discard_type == DPOLICY_FORCE) {
1727 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1728 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1729 		dpolicy->io_aware = false;
1730 	} else if (discard_type == DPOLICY_FSTRIM) {
1731 		dpolicy->io_aware = false;
1732 	} else if (discard_type == DPOLICY_UMOUNT) {
1733 		dpolicy->io_aware = false;
1734 	}
1735 }
1736 
1737 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
1738 {
1739 	dev_t dev = sbi->sb->s_bdev->bd_dev;
1740 	struct discard_cmd_control *dcc;
1741 	int err = 0, i;
1742 
1743 	if (SM_I(sbi)->dcc_info) {
1744 		dcc = SM_I(sbi)->dcc_info;
1745 		goto init_thread;
1746 	}
1747 
1748 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
1749 	if (!dcc)
1750 		return -ENOMEM;
1751 
1752 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
1753 	INIT_LIST_HEAD(&dcc->entry_list);
1754 	for (i = 0; i < MAX_PLIST_NUM; i++)
1755 		INIT_LIST_HEAD(&dcc->pend_list[i]);
1756 	INIT_LIST_HEAD(&dcc->wait_list);
1757 	INIT_LIST_HEAD(&dcc->fstrim_list);
1758 	mutex_init(&dcc->cmd_lock);
1759 	atomic_set(&dcc->issued_discard, 0);
1760 	atomic_set(&dcc->issing_discard, 0);
1761 	atomic_set(&dcc->discard_cmd_cnt, 0);
1762 	dcc->nr_discards = 0;
1763 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
1764 	dcc->undiscard_blks = 0;
1765 	dcc->root = RB_ROOT;
1766 
1767 	init_waitqueue_head(&dcc->discard_wait_queue);
1768 	SM_I(sbi)->dcc_info = dcc;
1769 init_thread:
1770 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
1771 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
1772 	if (IS_ERR(dcc->f2fs_issue_discard)) {
1773 		err = PTR_ERR(dcc->f2fs_issue_discard);
1774 		kfree(dcc);
1775 		SM_I(sbi)->dcc_info = NULL;
1776 		return err;
1777 	}
1778 
1779 	return err;
1780 }
1781 
1782 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
1783 {
1784 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1785 
1786 	if (!dcc)
1787 		return;
1788 
1789 	stop_discard_thread(sbi);
1790 
1791 	kfree(dcc);
1792 	SM_I(sbi)->dcc_info = NULL;
1793 }
1794 
1795 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
1796 {
1797 	struct sit_info *sit_i = SIT_I(sbi);
1798 
1799 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
1800 		sit_i->dirty_sentries++;
1801 		return false;
1802 	}
1803 
1804 	return true;
1805 }
1806 
1807 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
1808 					unsigned int segno, int modified)
1809 {
1810 	struct seg_entry *se = get_seg_entry(sbi, segno);
1811 	se->type = type;
1812 	if (modified)
1813 		__mark_sit_entry_dirty(sbi, segno);
1814 }
1815 
1816 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
1817 {
1818 	struct seg_entry *se;
1819 	unsigned int segno, offset;
1820 	long int new_vblocks;
1821 	bool exist;
1822 #ifdef CONFIG_F2FS_CHECK_FS
1823 	bool mir_exist;
1824 #endif
1825 
1826 	segno = GET_SEGNO(sbi, blkaddr);
1827 
1828 	se = get_seg_entry(sbi, segno);
1829 	new_vblocks = se->valid_blocks + del;
1830 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1831 
1832 	f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) ||
1833 				(new_vblocks > sbi->blocks_per_seg)));
1834 
1835 	se->valid_blocks = new_vblocks;
1836 	se->mtime = get_mtime(sbi);
1837 	SIT_I(sbi)->max_mtime = se->mtime;
1838 
1839 	/* Update valid block bitmap */
1840 	if (del > 0) {
1841 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
1842 #ifdef CONFIG_F2FS_CHECK_FS
1843 		mir_exist = f2fs_test_and_set_bit(offset,
1844 						se->cur_valid_map_mir);
1845 		if (unlikely(exist != mir_exist)) {
1846 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1847 				"when setting bitmap, blk:%u, old bit:%d",
1848 				blkaddr, exist);
1849 			f2fs_bug_on(sbi, 1);
1850 		}
1851 #endif
1852 		if (unlikely(exist)) {
1853 			f2fs_msg(sbi->sb, KERN_ERR,
1854 				"Bitmap was wrongly set, blk:%u", blkaddr);
1855 			f2fs_bug_on(sbi, 1);
1856 			se->valid_blocks--;
1857 			del = 0;
1858 		}
1859 
1860 		if (f2fs_discard_en(sbi) &&
1861 			!f2fs_test_and_set_bit(offset, se->discard_map))
1862 			sbi->discard_blks--;
1863 
1864 		/* don't overwrite by SSR to keep node chain */
1865 		if (IS_NODESEG(se->type)) {
1866 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
1867 				se->ckpt_valid_blocks++;
1868 		}
1869 	} else {
1870 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
1871 #ifdef CONFIG_F2FS_CHECK_FS
1872 		mir_exist = f2fs_test_and_clear_bit(offset,
1873 						se->cur_valid_map_mir);
1874 		if (unlikely(exist != mir_exist)) {
1875 			f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error "
1876 				"when clearing bitmap, blk:%u, old bit:%d",
1877 				blkaddr, exist);
1878 			f2fs_bug_on(sbi, 1);
1879 		}
1880 #endif
1881 		if (unlikely(!exist)) {
1882 			f2fs_msg(sbi->sb, KERN_ERR,
1883 				"Bitmap was wrongly cleared, blk:%u", blkaddr);
1884 			f2fs_bug_on(sbi, 1);
1885 			se->valid_blocks++;
1886 			del = 0;
1887 		}
1888 
1889 		if (f2fs_discard_en(sbi) &&
1890 			f2fs_test_and_clear_bit(offset, se->discard_map))
1891 			sbi->discard_blks++;
1892 	}
1893 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
1894 		se->ckpt_valid_blocks += del;
1895 
1896 	__mark_sit_entry_dirty(sbi, segno);
1897 
1898 	/* update total number of valid blocks to be written in ckpt area */
1899 	SIT_I(sbi)->written_valid_blocks += del;
1900 
1901 	if (sbi->segs_per_sec > 1)
1902 		get_sec_entry(sbi, segno)->valid_blocks += del;
1903 }
1904 
1905 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
1906 {
1907 	unsigned int segno = GET_SEGNO(sbi, addr);
1908 	struct sit_info *sit_i = SIT_I(sbi);
1909 
1910 	f2fs_bug_on(sbi, addr == NULL_ADDR);
1911 	if (addr == NEW_ADDR)
1912 		return;
1913 
1914 	/* add it into sit main buffer */
1915 	down_write(&sit_i->sentry_lock);
1916 
1917 	update_sit_entry(sbi, addr, -1);
1918 
1919 	/* add it into dirty seglist */
1920 	locate_dirty_segment(sbi, segno);
1921 
1922 	up_write(&sit_i->sentry_lock);
1923 }
1924 
1925 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
1926 {
1927 	struct sit_info *sit_i = SIT_I(sbi);
1928 	unsigned int segno, offset;
1929 	struct seg_entry *se;
1930 	bool is_cp = false;
1931 
1932 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
1933 		return true;
1934 
1935 	down_read(&sit_i->sentry_lock);
1936 
1937 	segno = GET_SEGNO(sbi, blkaddr);
1938 	se = get_seg_entry(sbi, segno);
1939 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
1940 
1941 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
1942 		is_cp = true;
1943 
1944 	up_read(&sit_i->sentry_lock);
1945 
1946 	return is_cp;
1947 }
1948 
1949 /*
1950  * This function should be resided under the curseg_mutex lock
1951  */
1952 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
1953 					struct f2fs_summary *sum)
1954 {
1955 	struct curseg_info *curseg = CURSEG_I(sbi, type);
1956 	void *addr = curseg->sum_blk;
1957 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
1958 	memcpy(addr, sum, sizeof(struct f2fs_summary));
1959 }
1960 
1961 /*
1962  * Calculate the number of current summary pages for writing
1963  */
1964 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
1965 {
1966 	int valid_sum_count = 0;
1967 	int i, sum_in_page;
1968 
1969 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1970 		if (sbi->ckpt->alloc_type[i] == SSR)
1971 			valid_sum_count += sbi->blocks_per_seg;
1972 		else {
1973 			if (for_ra)
1974 				valid_sum_count += le16_to_cpu(
1975 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
1976 			else
1977 				valid_sum_count += curseg_blkoff(sbi, i);
1978 		}
1979 	}
1980 
1981 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
1982 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
1983 	if (valid_sum_count <= sum_in_page)
1984 		return 1;
1985 	else if ((valid_sum_count - sum_in_page) <=
1986 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
1987 		return 2;
1988 	return 3;
1989 }
1990 
1991 /*
1992  * Caller should put this summary page
1993  */
1994 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
1995 {
1996 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
1997 }
1998 
1999 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr)
2000 {
2001 	struct page *page = grab_meta_page(sbi, blk_addr);
2002 
2003 	memcpy(page_address(page), src, PAGE_SIZE);
2004 	set_page_dirty(page);
2005 	f2fs_put_page(page, 1);
2006 }
2007 
2008 static void write_sum_page(struct f2fs_sb_info *sbi,
2009 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2010 {
2011 	update_meta_page(sbi, (void *)sum_blk, blk_addr);
2012 }
2013 
2014 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2015 						int type, block_t blk_addr)
2016 {
2017 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2018 	struct page *page = grab_meta_page(sbi, blk_addr);
2019 	struct f2fs_summary_block *src = curseg->sum_blk;
2020 	struct f2fs_summary_block *dst;
2021 
2022 	dst = (struct f2fs_summary_block *)page_address(page);
2023 
2024 	mutex_lock(&curseg->curseg_mutex);
2025 
2026 	down_read(&curseg->journal_rwsem);
2027 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2028 	up_read(&curseg->journal_rwsem);
2029 
2030 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2031 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2032 
2033 	mutex_unlock(&curseg->curseg_mutex);
2034 
2035 	set_page_dirty(page);
2036 	f2fs_put_page(page, 1);
2037 }
2038 
2039 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
2040 {
2041 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2042 	unsigned int segno = curseg->segno + 1;
2043 	struct free_segmap_info *free_i = FREE_I(sbi);
2044 
2045 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2046 		return !test_bit(segno, free_i->free_segmap);
2047 	return 0;
2048 }
2049 
2050 /*
2051  * Find a new segment from the free segments bitmap to right order
2052  * This function should be returned with success, otherwise BUG
2053  */
2054 static void get_new_segment(struct f2fs_sb_info *sbi,
2055 			unsigned int *newseg, bool new_sec, int dir)
2056 {
2057 	struct free_segmap_info *free_i = FREE_I(sbi);
2058 	unsigned int segno, secno, zoneno;
2059 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2060 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2061 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2062 	unsigned int left_start = hint;
2063 	bool init = true;
2064 	int go_left = 0;
2065 	int i;
2066 
2067 	spin_lock(&free_i->segmap_lock);
2068 
2069 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2070 		segno = find_next_zero_bit(free_i->free_segmap,
2071 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2072 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2073 			goto got_it;
2074 	}
2075 find_other_zone:
2076 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2077 	if (secno >= MAIN_SECS(sbi)) {
2078 		if (dir == ALLOC_RIGHT) {
2079 			secno = find_next_zero_bit(free_i->free_secmap,
2080 							MAIN_SECS(sbi), 0);
2081 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2082 		} else {
2083 			go_left = 1;
2084 			left_start = hint - 1;
2085 		}
2086 	}
2087 	if (go_left == 0)
2088 		goto skip_left;
2089 
2090 	while (test_bit(left_start, free_i->free_secmap)) {
2091 		if (left_start > 0) {
2092 			left_start--;
2093 			continue;
2094 		}
2095 		left_start = find_next_zero_bit(free_i->free_secmap,
2096 							MAIN_SECS(sbi), 0);
2097 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2098 		break;
2099 	}
2100 	secno = left_start;
2101 skip_left:
2102 	segno = GET_SEG_FROM_SEC(sbi, secno);
2103 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2104 
2105 	/* give up on finding another zone */
2106 	if (!init)
2107 		goto got_it;
2108 	if (sbi->secs_per_zone == 1)
2109 		goto got_it;
2110 	if (zoneno == old_zoneno)
2111 		goto got_it;
2112 	if (dir == ALLOC_LEFT) {
2113 		if (!go_left && zoneno + 1 >= total_zones)
2114 			goto got_it;
2115 		if (go_left && zoneno == 0)
2116 			goto got_it;
2117 	}
2118 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2119 		if (CURSEG_I(sbi, i)->zone == zoneno)
2120 			break;
2121 
2122 	if (i < NR_CURSEG_TYPE) {
2123 		/* zone is in user, try another */
2124 		if (go_left)
2125 			hint = zoneno * sbi->secs_per_zone - 1;
2126 		else if (zoneno + 1 >= total_zones)
2127 			hint = 0;
2128 		else
2129 			hint = (zoneno + 1) * sbi->secs_per_zone;
2130 		init = false;
2131 		goto find_other_zone;
2132 	}
2133 got_it:
2134 	/* set it as dirty segment in free segmap */
2135 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2136 	__set_inuse(sbi, segno);
2137 	*newseg = segno;
2138 	spin_unlock(&free_i->segmap_lock);
2139 }
2140 
2141 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2142 {
2143 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2144 	struct summary_footer *sum_footer;
2145 
2146 	curseg->segno = curseg->next_segno;
2147 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2148 	curseg->next_blkoff = 0;
2149 	curseg->next_segno = NULL_SEGNO;
2150 
2151 	sum_footer = &(curseg->sum_blk->footer);
2152 	memset(sum_footer, 0, sizeof(struct summary_footer));
2153 	if (IS_DATASEG(type))
2154 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2155 	if (IS_NODESEG(type))
2156 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2157 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
2158 }
2159 
2160 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2161 {
2162 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2163 	if (sbi->segs_per_sec != 1)
2164 		return CURSEG_I(sbi, type)->segno;
2165 
2166 	if (test_opt(sbi, NOHEAP) &&
2167 		(type == CURSEG_HOT_DATA || IS_NODESEG(type)))
2168 		return 0;
2169 
2170 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2171 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2172 
2173 	/* find segments from 0 to reuse freed segments */
2174 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2175 		return 0;
2176 
2177 	return CURSEG_I(sbi, type)->segno;
2178 }
2179 
2180 /*
2181  * Allocate a current working segment.
2182  * This function always allocates a free segment in LFS manner.
2183  */
2184 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2185 {
2186 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2187 	unsigned int segno = curseg->segno;
2188 	int dir = ALLOC_LEFT;
2189 
2190 	write_sum_page(sbi, curseg->sum_blk,
2191 				GET_SUM_BLOCK(sbi, segno));
2192 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
2193 		dir = ALLOC_RIGHT;
2194 
2195 	if (test_opt(sbi, NOHEAP))
2196 		dir = ALLOC_RIGHT;
2197 
2198 	segno = __get_next_segno(sbi, type);
2199 	get_new_segment(sbi, &segno, new_sec, dir);
2200 	curseg->next_segno = segno;
2201 	reset_curseg(sbi, type, 1);
2202 	curseg->alloc_type = LFS;
2203 }
2204 
2205 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
2206 			struct curseg_info *seg, block_t start)
2207 {
2208 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
2209 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2210 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2211 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2212 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2213 	int i, pos;
2214 
2215 	for (i = 0; i < entries; i++)
2216 		target_map[i] = ckpt_map[i] | cur_map[i];
2217 
2218 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2219 
2220 	seg->next_blkoff = pos;
2221 }
2222 
2223 /*
2224  * If a segment is written by LFS manner, next block offset is just obtained
2225  * by increasing the current block offset. However, if a segment is written by
2226  * SSR manner, next block offset obtained by calling __next_free_blkoff
2227  */
2228 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2229 				struct curseg_info *seg)
2230 {
2231 	if (seg->alloc_type == SSR)
2232 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
2233 	else
2234 		seg->next_blkoff++;
2235 }
2236 
2237 /*
2238  * This function always allocates a used segment(from dirty seglist) by SSR
2239  * manner, so it should recover the existing segment information of valid blocks
2240  */
2241 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2242 {
2243 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2244 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2245 	unsigned int new_segno = curseg->next_segno;
2246 	struct f2fs_summary_block *sum_node;
2247 	struct page *sum_page;
2248 
2249 	write_sum_page(sbi, curseg->sum_blk,
2250 				GET_SUM_BLOCK(sbi, curseg->segno));
2251 	__set_test_and_inuse(sbi, new_segno);
2252 
2253 	mutex_lock(&dirty_i->seglist_lock);
2254 	__remove_dirty_segment(sbi, new_segno, PRE);
2255 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2256 	mutex_unlock(&dirty_i->seglist_lock);
2257 
2258 	reset_curseg(sbi, type, 1);
2259 	curseg->alloc_type = SSR;
2260 	__next_free_blkoff(sbi, curseg, 0);
2261 
2262 	sum_page = get_sum_page(sbi, new_segno);
2263 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2264 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2265 	f2fs_put_page(sum_page, 1);
2266 }
2267 
2268 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
2269 {
2270 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2271 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2272 	unsigned segno = NULL_SEGNO;
2273 	int i, cnt;
2274 	bool reversed = false;
2275 
2276 	/* need_SSR() already forces to do this */
2277 	if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) {
2278 		curseg->next_segno = segno;
2279 		return 1;
2280 	}
2281 
2282 	/* For node segments, let's do SSR more intensively */
2283 	if (IS_NODESEG(type)) {
2284 		if (type >= CURSEG_WARM_NODE) {
2285 			reversed = true;
2286 			i = CURSEG_COLD_NODE;
2287 		} else {
2288 			i = CURSEG_HOT_NODE;
2289 		}
2290 		cnt = NR_CURSEG_NODE_TYPE;
2291 	} else {
2292 		if (type >= CURSEG_WARM_DATA) {
2293 			reversed = true;
2294 			i = CURSEG_COLD_DATA;
2295 		} else {
2296 			i = CURSEG_HOT_DATA;
2297 		}
2298 		cnt = NR_CURSEG_DATA_TYPE;
2299 	}
2300 
2301 	for (; cnt-- > 0; reversed ? i-- : i++) {
2302 		if (i == type)
2303 			continue;
2304 		if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) {
2305 			curseg->next_segno = segno;
2306 			return 1;
2307 		}
2308 	}
2309 	return 0;
2310 }
2311 
2312 /*
2313  * flush out current segment and replace it with new segment
2314  * This function should be returned with success, otherwise BUG
2315  */
2316 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2317 						int type, bool force)
2318 {
2319 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2320 
2321 	if (force)
2322 		new_curseg(sbi, type, true);
2323 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2324 					type == CURSEG_WARM_NODE)
2325 		new_curseg(sbi, type, false);
2326 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
2327 		new_curseg(sbi, type, false);
2328 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
2329 		change_curseg(sbi, type);
2330 	else
2331 		new_curseg(sbi, type, false);
2332 
2333 	stat_inc_seg_type(sbi, curseg);
2334 }
2335 
2336 void allocate_new_segments(struct f2fs_sb_info *sbi)
2337 {
2338 	struct curseg_info *curseg;
2339 	unsigned int old_segno;
2340 	int i;
2341 
2342 	down_write(&SIT_I(sbi)->sentry_lock);
2343 
2344 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2345 		curseg = CURSEG_I(sbi, i);
2346 		old_segno = curseg->segno;
2347 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
2348 		locate_dirty_segment(sbi, old_segno);
2349 	}
2350 
2351 	up_write(&SIT_I(sbi)->sentry_lock);
2352 }
2353 
2354 static const struct segment_allocation default_salloc_ops = {
2355 	.allocate_segment = allocate_segment_by_default,
2356 };
2357 
2358 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2359 {
2360 	__u64 trim_start = cpc->trim_start;
2361 	bool has_candidate = false;
2362 
2363 	down_write(&SIT_I(sbi)->sentry_lock);
2364 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2365 		if (add_discard_addrs(sbi, cpc, true)) {
2366 			has_candidate = true;
2367 			break;
2368 		}
2369 	}
2370 	up_write(&SIT_I(sbi)->sentry_lock);
2371 
2372 	cpc->trim_start = trim_start;
2373 	return has_candidate;
2374 }
2375 
2376 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
2377 {
2378 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
2379 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
2380 	unsigned int start_segno, end_segno, cur_segno;
2381 	block_t start_block, end_block;
2382 	struct cp_control cpc;
2383 	struct discard_policy dpolicy;
2384 	unsigned long long trimmed = 0;
2385 	int err = 0;
2386 
2387 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
2388 		return -EINVAL;
2389 
2390 	if (end <= MAIN_BLKADDR(sbi))
2391 		goto out;
2392 
2393 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
2394 		f2fs_msg(sbi->sb, KERN_WARNING,
2395 			"Found FS corruption, run fsck to fix.");
2396 		goto out;
2397 	}
2398 
2399 	/* start/end segment number in main_area */
2400 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
2401 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
2402 						GET_SEGNO(sbi, end);
2403 
2404 	cpc.reason = CP_DISCARD;
2405 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
2406 
2407 	/* do checkpoint to issue discard commands safely */
2408 	for (cur_segno = start_segno; cur_segno <= end_segno;
2409 					cur_segno = cpc.trim_end + 1) {
2410 		cpc.trim_start = cur_segno;
2411 
2412 		if (sbi->discard_blks == 0)
2413 			break;
2414 		else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi))
2415 			cpc.trim_end = end_segno;
2416 		else
2417 			cpc.trim_end = min_t(unsigned int,
2418 				rounddown(cur_segno +
2419 				BATCHED_TRIM_SEGMENTS(sbi),
2420 				sbi->segs_per_sec) - 1, end_segno);
2421 
2422 		mutex_lock(&sbi->gc_mutex);
2423 		err = write_checkpoint(sbi, &cpc);
2424 		mutex_unlock(&sbi->gc_mutex);
2425 		if (err)
2426 			break;
2427 
2428 		schedule();
2429 	}
2430 
2431 	start_block = START_BLOCK(sbi, start_segno);
2432 	end_block = START_BLOCK(sbi, min(cur_segno, end_segno) + 1);
2433 
2434 	init_discard_policy(&dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
2435 	__issue_discard_cmd_range(sbi, &dpolicy, start_block, end_block);
2436 	trimmed = __wait_discard_cmd_range(sbi, &dpolicy,
2437 					start_block, end_block);
2438 out:
2439 	range->len = F2FS_BLK_TO_BYTES(trimmed);
2440 	return err;
2441 }
2442 
2443 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
2444 {
2445 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2446 	if (curseg->next_blkoff < sbi->blocks_per_seg)
2447 		return true;
2448 	return false;
2449 }
2450 
2451 int rw_hint_to_seg_type(enum rw_hint hint)
2452 {
2453 	switch (hint) {
2454 	case WRITE_LIFE_SHORT:
2455 		return CURSEG_HOT_DATA;
2456 	case WRITE_LIFE_EXTREME:
2457 		return CURSEG_COLD_DATA;
2458 	default:
2459 		return CURSEG_WARM_DATA;
2460 	}
2461 }
2462 
2463 /* This returns write hints for each segment type. This hints will be
2464  * passed down to block layer. There are mapping tables which depend on
2465  * the mount option 'whint_mode'.
2466  *
2467  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
2468  *
2469  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
2470  *
2471  * User                  F2FS                     Block
2472  * ----                  ----                     -----
2473  *                       META                     WRITE_LIFE_NOT_SET
2474  *                       HOT_NODE                 "
2475  *                       WARM_NODE                "
2476  *                       COLD_NODE                "
2477  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2478  * extension list        "                        "
2479  *
2480  * -- buffered io
2481  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2482  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2483  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2484  * WRITE_LIFE_NONE       "                        "
2485  * WRITE_LIFE_MEDIUM     "                        "
2486  * WRITE_LIFE_LONG       "                        "
2487  *
2488  * -- direct io
2489  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2490  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2491  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2492  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2493  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2494  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2495  *
2496  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
2497  *
2498  * User                  F2FS                     Block
2499  * ----                  ----                     -----
2500  *                       META                     WRITE_LIFE_MEDIUM;
2501  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
2502  *                       WARM_NODE                "
2503  *                       COLD_NODE                WRITE_LIFE_NONE
2504  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
2505  * extension list        "                        "
2506  *
2507  * -- buffered io
2508  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2509  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2510  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
2511  * WRITE_LIFE_NONE       "                        "
2512  * WRITE_LIFE_MEDIUM     "                        "
2513  * WRITE_LIFE_LONG       "                        "
2514  *
2515  * -- direct io
2516  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
2517  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
2518  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
2519  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
2520  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
2521  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
2522  */
2523 
2524 enum rw_hint io_type_to_rw_hint(struct f2fs_sb_info *sbi,
2525 				enum page_type type, enum temp_type temp)
2526 {
2527 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
2528 		if (type == DATA) {
2529 			if (temp == WARM)
2530 				return WRITE_LIFE_NOT_SET;
2531 			else if (temp == HOT)
2532 				return WRITE_LIFE_SHORT;
2533 			else if (temp == COLD)
2534 				return WRITE_LIFE_EXTREME;
2535 		} else {
2536 			return WRITE_LIFE_NOT_SET;
2537 		}
2538 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
2539 		if (type == DATA) {
2540 			if (temp == WARM)
2541 				return WRITE_LIFE_LONG;
2542 			else if (temp == HOT)
2543 				return WRITE_LIFE_SHORT;
2544 			else if (temp == COLD)
2545 				return WRITE_LIFE_EXTREME;
2546 		} else if (type == NODE) {
2547 			if (temp == WARM || temp == HOT)
2548 				return WRITE_LIFE_NOT_SET;
2549 			else if (temp == COLD)
2550 				return WRITE_LIFE_NONE;
2551 		} else if (type == META) {
2552 			return WRITE_LIFE_MEDIUM;
2553 		}
2554 	}
2555 	return WRITE_LIFE_NOT_SET;
2556 }
2557 
2558 static int __get_segment_type_2(struct f2fs_io_info *fio)
2559 {
2560 	if (fio->type == DATA)
2561 		return CURSEG_HOT_DATA;
2562 	else
2563 		return CURSEG_HOT_NODE;
2564 }
2565 
2566 static int __get_segment_type_4(struct f2fs_io_info *fio)
2567 {
2568 	if (fio->type == DATA) {
2569 		struct inode *inode = fio->page->mapping->host;
2570 
2571 		if (S_ISDIR(inode->i_mode))
2572 			return CURSEG_HOT_DATA;
2573 		else
2574 			return CURSEG_COLD_DATA;
2575 	} else {
2576 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
2577 			return CURSEG_WARM_NODE;
2578 		else
2579 			return CURSEG_COLD_NODE;
2580 	}
2581 }
2582 
2583 static int __get_segment_type_6(struct f2fs_io_info *fio)
2584 {
2585 	if (fio->type == DATA) {
2586 		struct inode *inode = fio->page->mapping->host;
2587 
2588 		if (is_cold_data(fio->page) || file_is_cold(inode))
2589 			return CURSEG_COLD_DATA;
2590 		if (file_is_hot(inode) ||
2591 				is_inode_flag_set(inode, FI_HOT_DATA))
2592 			return CURSEG_HOT_DATA;
2593 		return rw_hint_to_seg_type(inode->i_write_hint);
2594 	} else {
2595 		if (IS_DNODE(fio->page))
2596 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
2597 						CURSEG_HOT_NODE;
2598 		return CURSEG_COLD_NODE;
2599 	}
2600 }
2601 
2602 static int __get_segment_type(struct f2fs_io_info *fio)
2603 {
2604 	int type = 0;
2605 
2606 	switch (F2FS_OPTION(fio->sbi).active_logs) {
2607 	case 2:
2608 		type = __get_segment_type_2(fio);
2609 		break;
2610 	case 4:
2611 		type = __get_segment_type_4(fio);
2612 		break;
2613 	case 6:
2614 		type = __get_segment_type_6(fio);
2615 		break;
2616 	default:
2617 		f2fs_bug_on(fio->sbi, true);
2618 	}
2619 
2620 	if (IS_HOT(type))
2621 		fio->temp = HOT;
2622 	else if (IS_WARM(type))
2623 		fio->temp = WARM;
2624 	else
2625 		fio->temp = COLD;
2626 	return type;
2627 }
2628 
2629 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
2630 		block_t old_blkaddr, block_t *new_blkaddr,
2631 		struct f2fs_summary *sum, int type,
2632 		struct f2fs_io_info *fio, bool add_list)
2633 {
2634 	struct sit_info *sit_i = SIT_I(sbi);
2635 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2636 
2637 	down_read(&SM_I(sbi)->curseg_lock);
2638 
2639 	mutex_lock(&curseg->curseg_mutex);
2640 	down_write(&sit_i->sentry_lock);
2641 
2642 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
2643 
2644 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
2645 
2646 	/*
2647 	 * __add_sum_entry should be resided under the curseg_mutex
2648 	 * because, this function updates a summary entry in the
2649 	 * current summary block.
2650 	 */
2651 	__add_sum_entry(sbi, type, sum);
2652 
2653 	__refresh_next_blkoff(sbi, curseg);
2654 
2655 	stat_inc_block_count(sbi, curseg);
2656 
2657 	/*
2658 	 * SIT information should be updated before segment allocation,
2659 	 * since SSR needs latest valid block information.
2660 	 */
2661 	update_sit_entry(sbi, *new_blkaddr, 1);
2662 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2663 		update_sit_entry(sbi, old_blkaddr, -1);
2664 
2665 	if (!__has_curseg_space(sbi, type))
2666 		sit_i->s_ops->allocate_segment(sbi, type, false);
2667 
2668 	/*
2669 	 * segment dirty status should be updated after segment allocation,
2670 	 * so we just need to update status only one time after previous
2671 	 * segment being closed.
2672 	 */
2673 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2674 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
2675 
2676 	up_write(&sit_i->sentry_lock);
2677 
2678 	if (page && IS_NODESEG(type)) {
2679 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
2680 
2681 		f2fs_inode_chksum_set(sbi, page);
2682 	}
2683 
2684 	if (add_list) {
2685 		struct f2fs_bio_info *io;
2686 
2687 		INIT_LIST_HEAD(&fio->list);
2688 		fio->in_list = true;
2689 		io = sbi->write_io[fio->type] + fio->temp;
2690 		spin_lock(&io->io_lock);
2691 		list_add_tail(&fio->list, &io->io_list);
2692 		spin_unlock(&io->io_lock);
2693 	}
2694 
2695 	mutex_unlock(&curseg->curseg_mutex);
2696 
2697 	up_read(&SM_I(sbi)->curseg_lock);
2698 }
2699 
2700 static void update_device_state(struct f2fs_io_info *fio)
2701 {
2702 	struct f2fs_sb_info *sbi = fio->sbi;
2703 	unsigned int devidx;
2704 
2705 	if (!sbi->s_ndevs)
2706 		return;
2707 
2708 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
2709 
2710 	/* update device state for fsync */
2711 	set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
2712 
2713 	/* update device state for checkpoint */
2714 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
2715 		spin_lock(&sbi->dev_lock);
2716 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
2717 		spin_unlock(&sbi->dev_lock);
2718 	}
2719 }
2720 
2721 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
2722 {
2723 	int type = __get_segment_type(fio);
2724 	int err;
2725 
2726 reallocate:
2727 	allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
2728 			&fio->new_blkaddr, sum, type, fio, true);
2729 
2730 	/* writeout dirty page into bdev */
2731 	err = f2fs_submit_page_write(fio);
2732 	if (err == -EAGAIN) {
2733 		fio->old_blkaddr = fio->new_blkaddr;
2734 		goto reallocate;
2735 	} else if (!err) {
2736 		update_device_state(fio);
2737 	}
2738 }
2739 
2740 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
2741 					enum iostat_type io_type)
2742 {
2743 	struct f2fs_io_info fio = {
2744 		.sbi = sbi,
2745 		.type = META,
2746 		.temp = HOT,
2747 		.op = REQ_OP_WRITE,
2748 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
2749 		.old_blkaddr = page->index,
2750 		.new_blkaddr = page->index,
2751 		.page = page,
2752 		.encrypted_page = NULL,
2753 		.in_list = false,
2754 	};
2755 
2756 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
2757 		fio.op_flags &= ~REQ_META;
2758 
2759 	set_page_writeback(page);
2760 	f2fs_submit_page_write(&fio);
2761 
2762 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
2763 }
2764 
2765 void write_node_page(unsigned int nid, struct f2fs_io_info *fio)
2766 {
2767 	struct f2fs_summary sum;
2768 
2769 	set_summary(&sum, nid, 0, 0);
2770 	do_write_page(&sum, fio);
2771 
2772 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2773 }
2774 
2775 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio)
2776 {
2777 	struct f2fs_sb_info *sbi = fio->sbi;
2778 	struct f2fs_summary sum;
2779 	struct node_info ni;
2780 
2781 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
2782 	get_node_info(sbi, dn->nid, &ni);
2783 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
2784 	do_write_page(&sum, fio);
2785 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
2786 
2787 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
2788 }
2789 
2790 int rewrite_data_page(struct f2fs_io_info *fio)
2791 {
2792 	int err;
2793 	struct f2fs_sb_info *sbi = fio->sbi;
2794 
2795 	fio->new_blkaddr = fio->old_blkaddr;
2796 	/* i/o temperature is needed for passing down write hints */
2797 	__get_segment_type(fio);
2798 
2799 	f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi,
2800 			GET_SEGNO(sbi, fio->new_blkaddr))->type));
2801 
2802 	stat_inc_inplace_blocks(fio->sbi);
2803 
2804 	err = f2fs_submit_page_bio(fio);
2805 	if (!err)
2806 		update_device_state(fio);
2807 
2808 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
2809 
2810 	return err;
2811 }
2812 
2813 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
2814 						unsigned int segno)
2815 {
2816 	int i;
2817 
2818 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
2819 		if (CURSEG_I(sbi, i)->segno == segno)
2820 			break;
2821 	}
2822 	return i;
2823 }
2824 
2825 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
2826 				block_t old_blkaddr, block_t new_blkaddr,
2827 				bool recover_curseg, bool recover_newaddr)
2828 {
2829 	struct sit_info *sit_i = SIT_I(sbi);
2830 	struct curseg_info *curseg;
2831 	unsigned int segno, old_cursegno;
2832 	struct seg_entry *se;
2833 	int type;
2834 	unsigned short old_blkoff;
2835 
2836 	segno = GET_SEGNO(sbi, new_blkaddr);
2837 	se = get_seg_entry(sbi, segno);
2838 	type = se->type;
2839 
2840 	down_write(&SM_I(sbi)->curseg_lock);
2841 
2842 	if (!recover_curseg) {
2843 		/* for recovery flow */
2844 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
2845 			if (old_blkaddr == NULL_ADDR)
2846 				type = CURSEG_COLD_DATA;
2847 			else
2848 				type = CURSEG_WARM_DATA;
2849 		}
2850 	} else {
2851 		if (IS_CURSEG(sbi, segno)) {
2852 			/* se->type is volatile as SSR allocation */
2853 			type = __f2fs_get_curseg(sbi, segno);
2854 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
2855 		} else {
2856 			type = CURSEG_WARM_DATA;
2857 		}
2858 	}
2859 
2860 	f2fs_bug_on(sbi, !IS_DATASEG(type));
2861 	curseg = CURSEG_I(sbi, type);
2862 
2863 	mutex_lock(&curseg->curseg_mutex);
2864 	down_write(&sit_i->sentry_lock);
2865 
2866 	old_cursegno = curseg->segno;
2867 	old_blkoff = curseg->next_blkoff;
2868 
2869 	/* change the current segment */
2870 	if (segno != curseg->segno) {
2871 		curseg->next_segno = segno;
2872 		change_curseg(sbi, type);
2873 	}
2874 
2875 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
2876 	__add_sum_entry(sbi, type, sum);
2877 
2878 	if (!recover_curseg || recover_newaddr)
2879 		update_sit_entry(sbi, new_blkaddr, 1);
2880 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
2881 		update_sit_entry(sbi, old_blkaddr, -1);
2882 
2883 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
2884 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
2885 
2886 	locate_dirty_segment(sbi, old_cursegno);
2887 
2888 	if (recover_curseg) {
2889 		if (old_cursegno != curseg->segno) {
2890 			curseg->next_segno = old_cursegno;
2891 			change_curseg(sbi, type);
2892 		}
2893 		curseg->next_blkoff = old_blkoff;
2894 	}
2895 
2896 	up_write(&sit_i->sentry_lock);
2897 	mutex_unlock(&curseg->curseg_mutex);
2898 	up_write(&SM_I(sbi)->curseg_lock);
2899 }
2900 
2901 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
2902 				block_t old_addr, block_t new_addr,
2903 				unsigned char version, bool recover_curseg,
2904 				bool recover_newaddr)
2905 {
2906 	struct f2fs_summary sum;
2907 
2908 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
2909 
2910 	__f2fs_replace_block(sbi, &sum, old_addr, new_addr,
2911 					recover_curseg, recover_newaddr);
2912 
2913 	f2fs_update_data_blkaddr(dn, new_addr);
2914 }
2915 
2916 void f2fs_wait_on_page_writeback(struct page *page,
2917 				enum page_type type, bool ordered)
2918 {
2919 	if (PageWriteback(page)) {
2920 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
2921 
2922 		f2fs_submit_merged_write_cond(sbi, page->mapping->host,
2923 						0, page->index, type);
2924 		if (ordered)
2925 			wait_on_page_writeback(page);
2926 		else
2927 			wait_for_stable_page(page);
2928 	}
2929 }
2930 
2931 void f2fs_wait_on_block_writeback(struct f2fs_sb_info *sbi, block_t blkaddr)
2932 {
2933 	struct page *cpage;
2934 
2935 	if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR)
2936 		return;
2937 
2938 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
2939 	if (cpage) {
2940 		f2fs_wait_on_page_writeback(cpage, DATA, true);
2941 		f2fs_put_page(cpage, 1);
2942 	}
2943 }
2944 
2945 static void read_compacted_summaries(struct f2fs_sb_info *sbi)
2946 {
2947 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2948 	struct curseg_info *seg_i;
2949 	unsigned char *kaddr;
2950 	struct page *page;
2951 	block_t start;
2952 	int i, j, offset;
2953 
2954 	start = start_sum_block(sbi);
2955 
2956 	page = get_meta_page(sbi, start++);
2957 	kaddr = (unsigned char *)page_address(page);
2958 
2959 	/* Step 1: restore nat cache */
2960 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
2961 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
2962 
2963 	/* Step 2: restore sit cache */
2964 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
2965 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
2966 	offset = 2 * SUM_JOURNAL_SIZE;
2967 
2968 	/* Step 3: restore summary entries */
2969 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2970 		unsigned short blk_off;
2971 		unsigned int segno;
2972 
2973 		seg_i = CURSEG_I(sbi, i);
2974 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
2975 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
2976 		seg_i->next_segno = segno;
2977 		reset_curseg(sbi, i, 0);
2978 		seg_i->alloc_type = ckpt->alloc_type[i];
2979 		seg_i->next_blkoff = blk_off;
2980 
2981 		if (seg_i->alloc_type == SSR)
2982 			blk_off = sbi->blocks_per_seg;
2983 
2984 		for (j = 0; j < blk_off; j++) {
2985 			struct f2fs_summary *s;
2986 			s = (struct f2fs_summary *)(kaddr + offset);
2987 			seg_i->sum_blk->entries[j] = *s;
2988 			offset += SUMMARY_SIZE;
2989 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
2990 						SUM_FOOTER_SIZE)
2991 				continue;
2992 
2993 			f2fs_put_page(page, 1);
2994 			page = NULL;
2995 
2996 			page = get_meta_page(sbi, start++);
2997 			kaddr = (unsigned char *)page_address(page);
2998 			offset = 0;
2999 		}
3000 	}
3001 	f2fs_put_page(page, 1);
3002 }
3003 
3004 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3005 {
3006 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3007 	struct f2fs_summary_block *sum;
3008 	struct curseg_info *curseg;
3009 	struct page *new;
3010 	unsigned short blk_off;
3011 	unsigned int segno = 0;
3012 	block_t blk_addr = 0;
3013 
3014 	/* get segment number and block addr */
3015 	if (IS_DATASEG(type)) {
3016 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3017 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3018 							CURSEG_HOT_DATA]);
3019 		if (__exist_node_summaries(sbi))
3020 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
3021 		else
3022 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3023 	} else {
3024 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3025 							CURSEG_HOT_NODE]);
3026 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3027 							CURSEG_HOT_NODE]);
3028 		if (__exist_node_summaries(sbi))
3029 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3030 							type - CURSEG_HOT_NODE);
3031 		else
3032 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3033 	}
3034 
3035 	new = get_meta_page(sbi, blk_addr);
3036 	sum = (struct f2fs_summary_block *)page_address(new);
3037 
3038 	if (IS_NODESEG(type)) {
3039 		if (__exist_node_summaries(sbi)) {
3040 			struct f2fs_summary *ns = &sum->entries[0];
3041 			int i;
3042 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3043 				ns->version = 0;
3044 				ns->ofs_in_node = 0;
3045 			}
3046 		} else {
3047 			restore_node_summary(sbi, segno, sum);
3048 		}
3049 	}
3050 
3051 	/* set uncompleted segment to curseg */
3052 	curseg = CURSEG_I(sbi, type);
3053 	mutex_lock(&curseg->curseg_mutex);
3054 
3055 	/* update journal info */
3056 	down_write(&curseg->journal_rwsem);
3057 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3058 	up_write(&curseg->journal_rwsem);
3059 
3060 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3061 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3062 	curseg->next_segno = segno;
3063 	reset_curseg(sbi, type, 0);
3064 	curseg->alloc_type = ckpt->alloc_type[type];
3065 	curseg->next_blkoff = blk_off;
3066 	mutex_unlock(&curseg->curseg_mutex);
3067 	f2fs_put_page(new, 1);
3068 	return 0;
3069 }
3070 
3071 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3072 {
3073 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3074 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3075 	int type = CURSEG_HOT_DATA;
3076 	int err;
3077 
3078 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3079 		int npages = npages_for_summary_flush(sbi, true);
3080 
3081 		if (npages >= 2)
3082 			ra_meta_pages(sbi, start_sum_block(sbi), npages,
3083 							META_CP, true);
3084 
3085 		/* restore for compacted data summary */
3086 		read_compacted_summaries(sbi);
3087 		type = CURSEG_HOT_NODE;
3088 	}
3089 
3090 	if (__exist_node_summaries(sbi))
3091 		ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type),
3092 					NR_CURSEG_TYPE - type, META_CP, true);
3093 
3094 	for (; type <= CURSEG_COLD_NODE; type++) {
3095 		err = read_normal_summaries(sbi, type);
3096 		if (err)
3097 			return err;
3098 	}
3099 
3100 	/* sanity check for summary blocks */
3101 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3102 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES)
3103 		return -EINVAL;
3104 
3105 	return 0;
3106 }
3107 
3108 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3109 {
3110 	struct page *page;
3111 	unsigned char *kaddr;
3112 	struct f2fs_summary *summary;
3113 	struct curseg_info *seg_i;
3114 	int written_size = 0;
3115 	int i, j;
3116 
3117 	page = grab_meta_page(sbi, blkaddr++);
3118 	kaddr = (unsigned char *)page_address(page);
3119 
3120 	/* Step 1: write nat cache */
3121 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3122 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3123 	written_size += SUM_JOURNAL_SIZE;
3124 
3125 	/* Step 2: write sit cache */
3126 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3127 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3128 	written_size += SUM_JOURNAL_SIZE;
3129 
3130 	/* Step 3: write summary entries */
3131 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3132 		unsigned short blkoff;
3133 		seg_i = CURSEG_I(sbi, i);
3134 		if (sbi->ckpt->alloc_type[i] == SSR)
3135 			blkoff = sbi->blocks_per_seg;
3136 		else
3137 			blkoff = curseg_blkoff(sbi, i);
3138 
3139 		for (j = 0; j < blkoff; j++) {
3140 			if (!page) {
3141 				page = grab_meta_page(sbi, blkaddr++);
3142 				kaddr = (unsigned char *)page_address(page);
3143 				written_size = 0;
3144 			}
3145 			summary = (struct f2fs_summary *)(kaddr + written_size);
3146 			*summary = seg_i->sum_blk->entries[j];
3147 			written_size += SUMMARY_SIZE;
3148 
3149 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3150 							SUM_FOOTER_SIZE)
3151 				continue;
3152 
3153 			set_page_dirty(page);
3154 			f2fs_put_page(page, 1);
3155 			page = NULL;
3156 		}
3157 	}
3158 	if (page) {
3159 		set_page_dirty(page);
3160 		f2fs_put_page(page, 1);
3161 	}
3162 }
3163 
3164 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3165 					block_t blkaddr, int type)
3166 {
3167 	int i, end;
3168 	if (IS_DATASEG(type))
3169 		end = type + NR_CURSEG_DATA_TYPE;
3170 	else
3171 		end = type + NR_CURSEG_NODE_TYPE;
3172 
3173 	for (i = type; i < end; i++)
3174 		write_current_sum_page(sbi, i, blkaddr + (i - type));
3175 }
3176 
3177 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3178 {
3179 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
3180 		write_compacted_summaries(sbi, start_blk);
3181 	else
3182 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
3183 }
3184 
3185 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
3186 {
3187 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
3188 }
3189 
3190 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
3191 					unsigned int val, int alloc)
3192 {
3193 	int i;
3194 
3195 	if (type == NAT_JOURNAL) {
3196 		for (i = 0; i < nats_in_cursum(journal); i++) {
3197 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
3198 				return i;
3199 		}
3200 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
3201 			return update_nats_in_cursum(journal, 1);
3202 	} else if (type == SIT_JOURNAL) {
3203 		for (i = 0; i < sits_in_cursum(journal); i++)
3204 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
3205 				return i;
3206 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
3207 			return update_sits_in_cursum(journal, 1);
3208 	}
3209 	return -1;
3210 }
3211 
3212 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
3213 					unsigned int segno)
3214 {
3215 	return get_meta_page(sbi, current_sit_addr(sbi, segno));
3216 }
3217 
3218 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
3219 					unsigned int start)
3220 {
3221 	struct sit_info *sit_i = SIT_I(sbi);
3222 	struct page *page;
3223 	pgoff_t src_off, dst_off;
3224 
3225 	src_off = current_sit_addr(sbi, start);
3226 	dst_off = next_sit_addr(sbi, src_off);
3227 
3228 	page = grab_meta_page(sbi, dst_off);
3229 	seg_info_to_sit_page(sbi, page, start);
3230 
3231 	set_page_dirty(page);
3232 	set_to_next_sit(sit_i, start);
3233 
3234 	return page;
3235 }
3236 
3237 static struct sit_entry_set *grab_sit_entry_set(void)
3238 {
3239 	struct sit_entry_set *ses =
3240 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
3241 
3242 	ses->entry_cnt = 0;
3243 	INIT_LIST_HEAD(&ses->set_list);
3244 	return ses;
3245 }
3246 
3247 static void release_sit_entry_set(struct sit_entry_set *ses)
3248 {
3249 	list_del(&ses->set_list);
3250 	kmem_cache_free(sit_entry_set_slab, ses);
3251 }
3252 
3253 static void adjust_sit_entry_set(struct sit_entry_set *ses,
3254 						struct list_head *head)
3255 {
3256 	struct sit_entry_set *next = ses;
3257 
3258 	if (list_is_last(&ses->set_list, head))
3259 		return;
3260 
3261 	list_for_each_entry_continue(next, head, set_list)
3262 		if (ses->entry_cnt <= next->entry_cnt)
3263 			break;
3264 
3265 	list_move_tail(&ses->set_list, &next->set_list);
3266 }
3267 
3268 static void add_sit_entry(unsigned int segno, struct list_head *head)
3269 {
3270 	struct sit_entry_set *ses;
3271 	unsigned int start_segno = START_SEGNO(segno);
3272 
3273 	list_for_each_entry(ses, head, set_list) {
3274 		if (ses->start_segno == start_segno) {
3275 			ses->entry_cnt++;
3276 			adjust_sit_entry_set(ses, head);
3277 			return;
3278 		}
3279 	}
3280 
3281 	ses = grab_sit_entry_set();
3282 
3283 	ses->start_segno = start_segno;
3284 	ses->entry_cnt++;
3285 	list_add(&ses->set_list, head);
3286 }
3287 
3288 static void add_sits_in_set(struct f2fs_sb_info *sbi)
3289 {
3290 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3291 	struct list_head *set_list = &sm_info->sit_entry_set;
3292 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
3293 	unsigned int segno;
3294 
3295 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
3296 		add_sit_entry(segno, set_list);
3297 }
3298 
3299 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
3300 {
3301 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3302 	struct f2fs_journal *journal = curseg->journal;
3303 	int i;
3304 
3305 	down_write(&curseg->journal_rwsem);
3306 	for (i = 0; i < sits_in_cursum(journal); i++) {
3307 		unsigned int segno;
3308 		bool dirtied;
3309 
3310 		segno = le32_to_cpu(segno_in_journal(journal, i));
3311 		dirtied = __mark_sit_entry_dirty(sbi, segno);
3312 
3313 		if (!dirtied)
3314 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
3315 	}
3316 	update_sits_in_cursum(journal, -i);
3317 	up_write(&curseg->journal_rwsem);
3318 }
3319 
3320 /*
3321  * CP calls this function, which flushes SIT entries including sit_journal,
3322  * and moves prefree segs to free segs.
3323  */
3324 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3325 {
3326 	struct sit_info *sit_i = SIT_I(sbi);
3327 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
3328 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3329 	struct f2fs_journal *journal = curseg->journal;
3330 	struct sit_entry_set *ses, *tmp;
3331 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
3332 	bool to_journal = true;
3333 	struct seg_entry *se;
3334 
3335 	down_write(&sit_i->sentry_lock);
3336 
3337 	if (!sit_i->dirty_sentries)
3338 		goto out;
3339 
3340 	/*
3341 	 * add and account sit entries of dirty bitmap in sit entry
3342 	 * set temporarily
3343 	 */
3344 	add_sits_in_set(sbi);
3345 
3346 	/*
3347 	 * if there are no enough space in journal to store dirty sit
3348 	 * entries, remove all entries from journal and add and account
3349 	 * them in sit entry set.
3350 	 */
3351 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL))
3352 		remove_sits_in_journal(sbi);
3353 
3354 	/*
3355 	 * there are two steps to flush sit entries:
3356 	 * #1, flush sit entries to journal in current cold data summary block.
3357 	 * #2, flush sit entries to sit page.
3358 	 */
3359 	list_for_each_entry_safe(ses, tmp, head, set_list) {
3360 		struct page *page = NULL;
3361 		struct f2fs_sit_block *raw_sit = NULL;
3362 		unsigned int start_segno = ses->start_segno;
3363 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
3364 						(unsigned long)MAIN_SEGS(sbi));
3365 		unsigned int segno = start_segno;
3366 
3367 		if (to_journal &&
3368 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
3369 			to_journal = false;
3370 
3371 		if (to_journal) {
3372 			down_write(&curseg->journal_rwsem);
3373 		} else {
3374 			page = get_next_sit_page(sbi, start_segno);
3375 			raw_sit = page_address(page);
3376 		}
3377 
3378 		/* flush dirty sit entries in region of current sit set */
3379 		for_each_set_bit_from(segno, bitmap, end) {
3380 			int offset, sit_offset;
3381 
3382 			se = get_seg_entry(sbi, segno);
3383 
3384 			/* add discard candidates */
3385 			if (!(cpc->reason & CP_DISCARD)) {
3386 				cpc->trim_start = segno;
3387 				add_discard_addrs(sbi, cpc, false);
3388 			}
3389 
3390 			if (to_journal) {
3391 				offset = lookup_journal_in_cursum(journal,
3392 							SIT_JOURNAL, segno, 1);
3393 				f2fs_bug_on(sbi, offset < 0);
3394 				segno_in_journal(journal, offset) =
3395 							cpu_to_le32(segno);
3396 				seg_info_to_raw_sit(se,
3397 					&sit_in_journal(journal, offset));
3398 			} else {
3399 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
3400 				seg_info_to_raw_sit(se,
3401 						&raw_sit->entries[sit_offset]);
3402 			}
3403 
3404 			__clear_bit(segno, bitmap);
3405 			sit_i->dirty_sentries--;
3406 			ses->entry_cnt--;
3407 		}
3408 
3409 		if (to_journal)
3410 			up_write(&curseg->journal_rwsem);
3411 		else
3412 			f2fs_put_page(page, 1);
3413 
3414 		f2fs_bug_on(sbi, ses->entry_cnt);
3415 		release_sit_entry_set(ses);
3416 	}
3417 
3418 	f2fs_bug_on(sbi, !list_empty(head));
3419 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
3420 out:
3421 	if (cpc->reason & CP_DISCARD) {
3422 		__u64 trim_start = cpc->trim_start;
3423 
3424 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
3425 			add_discard_addrs(sbi, cpc, false);
3426 
3427 		cpc->trim_start = trim_start;
3428 	}
3429 	up_write(&sit_i->sentry_lock);
3430 
3431 	set_prefree_as_free_segments(sbi);
3432 }
3433 
3434 static int build_sit_info(struct f2fs_sb_info *sbi)
3435 {
3436 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3437 	struct sit_info *sit_i;
3438 	unsigned int sit_segs, start;
3439 	char *src_bitmap;
3440 	unsigned int bitmap_size;
3441 
3442 	/* allocate memory for SIT information */
3443 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
3444 	if (!sit_i)
3445 		return -ENOMEM;
3446 
3447 	SM_I(sbi)->sit_info = sit_i;
3448 
3449 	sit_i->sentries = f2fs_kvzalloc(sbi, MAIN_SEGS(sbi) *
3450 					sizeof(struct seg_entry), GFP_KERNEL);
3451 	if (!sit_i->sentries)
3452 		return -ENOMEM;
3453 
3454 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3455 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size,
3456 								GFP_KERNEL);
3457 	if (!sit_i->dirty_sentries_bitmap)
3458 		return -ENOMEM;
3459 
3460 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3461 		sit_i->sentries[start].cur_valid_map
3462 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3463 		sit_i->sentries[start].ckpt_valid_map
3464 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3465 		if (!sit_i->sentries[start].cur_valid_map ||
3466 				!sit_i->sentries[start].ckpt_valid_map)
3467 			return -ENOMEM;
3468 
3469 #ifdef CONFIG_F2FS_CHECK_FS
3470 		sit_i->sentries[start].cur_valid_map_mir
3471 			= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3472 		if (!sit_i->sentries[start].cur_valid_map_mir)
3473 			return -ENOMEM;
3474 #endif
3475 
3476 		if (f2fs_discard_en(sbi)) {
3477 			sit_i->sentries[start].discard_map
3478 				= f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE,
3479 								GFP_KERNEL);
3480 			if (!sit_i->sentries[start].discard_map)
3481 				return -ENOMEM;
3482 		}
3483 	}
3484 
3485 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
3486 	if (!sit_i->tmp_map)
3487 		return -ENOMEM;
3488 
3489 	if (sbi->segs_per_sec > 1) {
3490 		sit_i->sec_entries = f2fs_kvzalloc(sbi, MAIN_SECS(sbi) *
3491 					sizeof(struct sec_entry), GFP_KERNEL);
3492 		if (!sit_i->sec_entries)
3493 			return -ENOMEM;
3494 	}
3495 
3496 	/* get information related with SIT */
3497 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
3498 
3499 	/* setup SIT bitmap from ckeckpoint pack */
3500 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
3501 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
3502 
3503 	sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3504 	if (!sit_i->sit_bitmap)
3505 		return -ENOMEM;
3506 
3507 #ifdef CONFIG_F2FS_CHECK_FS
3508 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
3509 	if (!sit_i->sit_bitmap_mir)
3510 		return -ENOMEM;
3511 #endif
3512 
3513 	/* init SIT information */
3514 	sit_i->s_ops = &default_salloc_ops;
3515 
3516 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
3517 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
3518 	sit_i->written_valid_blocks = 0;
3519 	sit_i->bitmap_size = bitmap_size;
3520 	sit_i->dirty_sentries = 0;
3521 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
3522 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
3523 	sit_i->mounted_time = ktime_get_real_seconds();
3524 	init_rwsem(&sit_i->sentry_lock);
3525 	return 0;
3526 }
3527 
3528 static int build_free_segmap(struct f2fs_sb_info *sbi)
3529 {
3530 	struct free_segmap_info *free_i;
3531 	unsigned int bitmap_size, sec_bitmap_size;
3532 
3533 	/* allocate memory for free segmap information */
3534 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
3535 	if (!free_i)
3536 		return -ENOMEM;
3537 
3538 	SM_I(sbi)->free_info = free_i;
3539 
3540 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3541 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
3542 	if (!free_i->free_segmap)
3543 		return -ENOMEM;
3544 
3545 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3546 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
3547 	if (!free_i->free_secmap)
3548 		return -ENOMEM;
3549 
3550 	/* set all segments as dirty temporarily */
3551 	memset(free_i->free_segmap, 0xff, bitmap_size);
3552 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
3553 
3554 	/* init free segmap information */
3555 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
3556 	free_i->free_segments = 0;
3557 	free_i->free_sections = 0;
3558 	spin_lock_init(&free_i->segmap_lock);
3559 	return 0;
3560 }
3561 
3562 static int build_curseg(struct f2fs_sb_info *sbi)
3563 {
3564 	struct curseg_info *array;
3565 	int i;
3566 
3567 	array = f2fs_kzalloc(sbi, sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
3568 	if (!array)
3569 		return -ENOMEM;
3570 
3571 	SM_I(sbi)->curseg_array = array;
3572 
3573 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
3574 		mutex_init(&array[i].curseg_mutex);
3575 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
3576 		if (!array[i].sum_blk)
3577 			return -ENOMEM;
3578 		init_rwsem(&array[i].journal_rwsem);
3579 		array[i].journal = f2fs_kzalloc(sbi,
3580 				sizeof(struct f2fs_journal), GFP_KERNEL);
3581 		if (!array[i].journal)
3582 			return -ENOMEM;
3583 		array[i].segno = NULL_SEGNO;
3584 		array[i].next_blkoff = 0;
3585 	}
3586 	return restore_curseg_summaries(sbi);
3587 }
3588 
3589 static int build_sit_entries(struct f2fs_sb_info *sbi)
3590 {
3591 	struct sit_info *sit_i = SIT_I(sbi);
3592 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
3593 	struct f2fs_journal *journal = curseg->journal;
3594 	struct seg_entry *se;
3595 	struct f2fs_sit_entry sit;
3596 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
3597 	unsigned int i, start, end;
3598 	unsigned int readed, start_blk = 0;
3599 	int err = 0;
3600 
3601 	do {
3602 		readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES,
3603 							META_SIT, true);
3604 
3605 		start = start_blk * sit_i->sents_per_block;
3606 		end = (start_blk + readed) * sit_i->sents_per_block;
3607 
3608 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
3609 			struct f2fs_sit_block *sit_blk;
3610 			struct page *page;
3611 
3612 			se = &sit_i->sentries[start];
3613 			page = get_current_sit_page(sbi, start);
3614 			sit_blk = (struct f2fs_sit_block *)page_address(page);
3615 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
3616 			f2fs_put_page(page, 1);
3617 
3618 			err = check_block_count(sbi, start, &sit);
3619 			if (err)
3620 				return err;
3621 			seg_info_from_raw_sit(se, &sit);
3622 
3623 			/* build discard map only one time */
3624 			if (f2fs_discard_en(sbi)) {
3625 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3626 					memset(se->discard_map, 0xff,
3627 						SIT_VBLOCK_MAP_SIZE);
3628 				} else {
3629 					memcpy(se->discard_map,
3630 						se->cur_valid_map,
3631 						SIT_VBLOCK_MAP_SIZE);
3632 					sbi->discard_blks +=
3633 						sbi->blocks_per_seg -
3634 						se->valid_blocks;
3635 				}
3636 			}
3637 
3638 			if (sbi->segs_per_sec > 1)
3639 				get_sec_entry(sbi, start)->valid_blocks +=
3640 							se->valid_blocks;
3641 		}
3642 		start_blk += readed;
3643 	} while (start_blk < sit_blk_cnt);
3644 
3645 	down_read(&curseg->journal_rwsem);
3646 	for (i = 0; i < sits_in_cursum(journal); i++) {
3647 		unsigned int old_valid_blocks;
3648 
3649 		start = le32_to_cpu(segno_in_journal(journal, i));
3650 		se = &sit_i->sentries[start];
3651 		sit = sit_in_journal(journal, i);
3652 
3653 		old_valid_blocks = se->valid_blocks;
3654 
3655 		err = check_block_count(sbi, start, &sit);
3656 		if (err)
3657 			break;
3658 		seg_info_from_raw_sit(se, &sit);
3659 
3660 		if (f2fs_discard_en(sbi)) {
3661 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
3662 				memset(se->discard_map, 0xff,
3663 							SIT_VBLOCK_MAP_SIZE);
3664 			} else {
3665 				memcpy(se->discard_map, se->cur_valid_map,
3666 							SIT_VBLOCK_MAP_SIZE);
3667 				sbi->discard_blks += old_valid_blocks -
3668 							se->valid_blocks;
3669 			}
3670 		}
3671 
3672 		if (sbi->segs_per_sec > 1)
3673 			get_sec_entry(sbi, start)->valid_blocks +=
3674 				se->valid_blocks - old_valid_blocks;
3675 	}
3676 	up_read(&curseg->journal_rwsem);
3677 	return err;
3678 }
3679 
3680 static void init_free_segmap(struct f2fs_sb_info *sbi)
3681 {
3682 	unsigned int start;
3683 	int type;
3684 
3685 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
3686 		struct seg_entry *sentry = get_seg_entry(sbi, start);
3687 		if (!sentry->valid_blocks)
3688 			__set_free(sbi, start);
3689 		else
3690 			SIT_I(sbi)->written_valid_blocks +=
3691 						sentry->valid_blocks;
3692 	}
3693 
3694 	/* set use the current segments */
3695 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
3696 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
3697 		__set_test_and_inuse(sbi, curseg_t->segno);
3698 	}
3699 }
3700 
3701 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
3702 {
3703 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3704 	struct free_segmap_info *free_i = FREE_I(sbi);
3705 	unsigned int segno = 0, offset = 0;
3706 	unsigned short valid_blocks;
3707 
3708 	while (1) {
3709 		/* find dirty segment based on free segmap */
3710 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
3711 		if (segno >= MAIN_SEGS(sbi))
3712 			break;
3713 		offset = segno + 1;
3714 		valid_blocks = get_valid_blocks(sbi, segno, false);
3715 		if (valid_blocks == sbi->blocks_per_seg || !valid_blocks)
3716 			continue;
3717 		if (valid_blocks > sbi->blocks_per_seg) {
3718 			f2fs_bug_on(sbi, 1);
3719 			continue;
3720 		}
3721 		mutex_lock(&dirty_i->seglist_lock);
3722 		__locate_dirty_segment(sbi, segno, DIRTY);
3723 		mutex_unlock(&dirty_i->seglist_lock);
3724 	}
3725 }
3726 
3727 static int init_victim_secmap(struct f2fs_sb_info *sbi)
3728 {
3729 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3730 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
3731 
3732 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
3733 	if (!dirty_i->victim_secmap)
3734 		return -ENOMEM;
3735 	return 0;
3736 }
3737 
3738 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
3739 {
3740 	struct dirty_seglist_info *dirty_i;
3741 	unsigned int bitmap_size, i;
3742 
3743 	/* allocate memory for dirty segments list information */
3744 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
3745 								GFP_KERNEL);
3746 	if (!dirty_i)
3747 		return -ENOMEM;
3748 
3749 	SM_I(sbi)->dirty_info = dirty_i;
3750 	mutex_init(&dirty_i->seglist_lock);
3751 
3752 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
3753 
3754 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
3755 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
3756 								GFP_KERNEL);
3757 		if (!dirty_i->dirty_segmap[i])
3758 			return -ENOMEM;
3759 	}
3760 
3761 	init_dirty_segmap(sbi);
3762 	return init_victim_secmap(sbi);
3763 }
3764 
3765 /*
3766  * Update min, max modified time for cost-benefit GC algorithm
3767  */
3768 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
3769 {
3770 	struct sit_info *sit_i = SIT_I(sbi);
3771 	unsigned int segno;
3772 
3773 	down_write(&sit_i->sentry_lock);
3774 
3775 	sit_i->min_mtime = LLONG_MAX;
3776 
3777 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
3778 		unsigned int i;
3779 		unsigned long long mtime = 0;
3780 
3781 		for (i = 0; i < sbi->segs_per_sec; i++)
3782 			mtime += get_seg_entry(sbi, segno + i)->mtime;
3783 
3784 		mtime = div_u64(mtime, sbi->segs_per_sec);
3785 
3786 		if (sit_i->min_mtime > mtime)
3787 			sit_i->min_mtime = mtime;
3788 	}
3789 	sit_i->max_mtime = get_mtime(sbi);
3790 	up_write(&sit_i->sentry_lock);
3791 }
3792 
3793 int build_segment_manager(struct f2fs_sb_info *sbi)
3794 {
3795 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3796 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3797 	struct f2fs_sm_info *sm_info;
3798 	int err;
3799 
3800 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
3801 	if (!sm_info)
3802 		return -ENOMEM;
3803 
3804 	/* init sm info */
3805 	sbi->sm_info = sm_info;
3806 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3807 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3808 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
3809 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3810 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3811 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
3812 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3813 	sm_info->rec_prefree_segments = sm_info->main_segments *
3814 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
3815 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
3816 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
3817 
3818 	if (!test_opt(sbi, LFS))
3819 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
3820 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
3821 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
3822 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
3823 	sm_info->min_ssr_sections = reserved_sections(sbi);
3824 
3825 	sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS;
3826 
3827 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
3828 
3829 	init_rwsem(&sm_info->curseg_lock);
3830 
3831 	if (!f2fs_readonly(sbi->sb)) {
3832 		err = create_flush_cmd_control(sbi);
3833 		if (err)
3834 			return err;
3835 	}
3836 
3837 	err = create_discard_cmd_control(sbi);
3838 	if (err)
3839 		return err;
3840 
3841 	err = build_sit_info(sbi);
3842 	if (err)
3843 		return err;
3844 	err = build_free_segmap(sbi);
3845 	if (err)
3846 		return err;
3847 	err = build_curseg(sbi);
3848 	if (err)
3849 		return err;
3850 
3851 	/* reinit free segmap based on SIT */
3852 	err = build_sit_entries(sbi);
3853 	if (err)
3854 		return err;
3855 
3856 	init_free_segmap(sbi);
3857 	err = build_dirty_segmap(sbi);
3858 	if (err)
3859 		return err;
3860 
3861 	init_min_max_mtime(sbi);
3862 	return 0;
3863 }
3864 
3865 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
3866 		enum dirty_type dirty_type)
3867 {
3868 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3869 
3870 	mutex_lock(&dirty_i->seglist_lock);
3871 	kvfree(dirty_i->dirty_segmap[dirty_type]);
3872 	dirty_i->nr_dirty[dirty_type] = 0;
3873 	mutex_unlock(&dirty_i->seglist_lock);
3874 }
3875 
3876 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
3877 {
3878 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3879 	kvfree(dirty_i->victim_secmap);
3880 }
3881 
3882 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
3883 {
3884 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
3885 	int i;
3886 
3887 	if (!dirty_i)
3888 		return;
3889 
3890 	/* discard pre-free/dirty segments list */
3891 	for (i = 0; i < NR_DIRTY_TYPE; i++)
3892 		discard_dirty_segmap(sbi, i);
3893 
3894 	destroy_victim_secmap(sbi);
3895 	SM_I(sbi)->dirty_info = NULL;
3896 	kfree(dirty_i);
3897 }
3898 
3899 static void destroy_curseg(struct f2fs_sb_info *sbi)
3900 {
3901 	struct curseg_info *array = SM_I(sbi)->curseg_array;
3902 	int i;
3903 
3904 	if (!array)
3905 		return;
3906 	SM_I(sbi)->curseg_array = NULL;
3907 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
3908 		kfree(array[i].sum_blk);
3909 		kfree(array[i].journal);
3910 	}
3911 	kfree(array);
3912 }
3913 
3914 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
3915 {
3916 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
3917 	if (!free_i)
3918 		return;
3919 	SM_I(sbi)->free_info = NULL;
3920 	kvfree(free_i->free_segmap);
3921 	kvfree(free_i->free_secmap);
3922 	kfree(free_i);
3923 }
3924 
3925 static void destroy_sit_info(struct f2fs_sb_info *sbi)
3926 {
3927 	struct sit_info *sit_i = SIT_I(sbi);
3928 	unsigned int start;
3929 
3930 	if (!sit_i)
3931 		return;
3932 
3933 	if (sit_i->sentries) {
3934 		for (start = 0; start < MAIN_SEGS(sbi); start++) {
3935 			kfree(sit_i->sentries[start].cur_valid_map);
3936 #ifdef CONFIG_F2FS_CHECK_FS
3937 			kfree(sit_i->sentries[start].cur_valid_map_mir);
3938 #endif
3939 			kfree(sit_i->sentries[start].ckpt_valid_map);
3940 			kfree(sit_i->sentries[start].discard_map);
3941 		}
3942 	}
3943 	kfree(sit_i->tmp_map);
3944 
3945 	kvfree(sit_i->sentries);
3946 	kvfree(sit_i->sec_entries);
3947 	kvfree(sit_i->dirty_sentries_bitmap);
3948 
3949 	SM_I(sbi)->sit_info = NULL;
3950 	kfree(sit_i->sit_bitmap);
3951 #ifdef CONFIG_F2FS_CHECK_FS
3952 	kfree(sit_i->sit_bitmap_mir);
3953 #endif
3954 	kfree(sit_i);
3955 }
3956 
3957 void destroy_segment_manager(struct f2fs_sb_info *sbi)
3958 {
3959 	struct f2fs_sm_info *sm_info = SM_I(sbi);
3960 
3961 	if (!sm_info)
3962 		return;
3963 	destroy_flush_cmd_control(sbi, true);
3964 	destroy_discard_cmd_control(sbi);
3965 	destroy_dirty_segmap(sbi);
3966 	destroy_curseg(sbi);
3967 	destroy_free_segmap(sbi);
3968 	destroy_sit_info(sbi);
3969 	sbi->sm_info = NULL;
3970 	kfree(sm_info);
3971 }
3972 
3973 int __init create_segment_manager_caches(void)
3974 {
3975 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
3976 			sizeof(struct discard_entry));
3977 	if (!discard_entry_slab)
3978 		goto fail;
3979 
3980 	discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd",
3981 			sizeof(struct discard_cmd));
3982 	if (!discard_cmd_slab)
3983 		goto destroy_discard_entry;
3984 
3985 	sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set",
3986 			sizeof(struct sit_entry_set));
3987 	if (!sit_entry_set_slab)
3988 		goto destroy_discard_cmd;
3989 
3990 	inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry",
3991 			sizeof(struct inmem_pages));
3992 	if (!inmem_entry_slab)
3993 		goto destroy_sit_entry_set;
3994 	return 0;
3995 
3996 destroy_sit_entry_set:
3997 	kmem_cache_destroy(sit_entry_set_slab);
3998 destroy_discard_cmd:
3999 	kmem_cache_destroy(discard_cmd_slab);
4000 destroy_discard_entry:
4001 	kmem_cache_destroy(discard_entry_slab);
4002 fail:
4003 	return -ENOMEM;
4004 }
4005 
4006 void destroy_segment_manager_caches(void)
4007 {
4008 	kmem_cache_destroy(sit_entry_set_slab);
4009 	kmem_cache_destroy(discard_cmd_slab);
4010 	kmem_cache_destroy(discard_entry_slab);
4011 	kmem_cache_destroy(inmem_entry_slab);
4012 }
4013