xref: /openbmc/linux/fs/f2fs/segment.c (revision 5b448065)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/prefetch.h>
13 #include <linux/kthread.h>
14 #include <linux/swap.h>
15 #include <linux/timer.h>
16 #include <linux/freezer.h>
17 #include <linux/sched/signal.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include "gc.h"
23 #include <trace/events/f2fs.h>
24 
25 #define __reverse_ffz(x) __reverse_ffs(~(x))
26 
27 static struct kmem_cache *discard_entry_slab;
28 static struct kmem_cache *discard_cmd_slab;
29 static struct kmem_cache *sit_entry_set_slab;
30 static struct kmem_cache *inmem_entry_slab;
31 
32 static unsigned long __reverse_ulong(unsigned char *str)
33 {
34 	unsigned long tmp = 0;
35 	int shift = 24, idx = 0;
36 
37 #if BITS_PER_LONG == 64
38 	shift = 56;
39 #endif
40 	while (shift >= 0) {
41 		tmp |= (unsigned long)str[idx++] << shift;
42 		shift -= BITS_PER_BYTE;
43 	}
44 	return tmp;
45 }
46 
47 /*
48  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
49  * MSB and LSB are reversed in a byte by f2fs_set_bit.
50  */
51 static inline unsigned long __reverse_ffs(unsigned long word)
52 {
53 	int num = 0;
54 
55 #if BITS_PER_LONG == 64
56 	if ((word & 0xffffffff00000000UL) == 0)
57 		num += 32;
58 	else
59 		word >>= 32;
60 #endif
61 	if ((word & 0xffff0000) == 0)
62 		num += 16;
63 	else
64 		word >>= 16;
65 
66 	if ((word & 0xff00) == 0)
67 		num += 8;
68 	else
69 		word >>= 8;
70 
71 	if ((word & 0xf0) == 0)
72 		num += 4;
73 	else
74 		word >>= 4;
75 
76 	if ((word & 0xc) == 0)
77 		num += 2;
78 	else
79 		word >>= 2;
80 
81 	if ((word & 0x2) == 0)
82 		num += 1;
83 	return num;
84 }
85 
86 /*
87  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
88  * f2fs_set_bit makes MSB and LSB reversed in a byte.
89  * @size must be integral times of unsigned long.
90  * Example:
91  *                             MSB <--> LSB
92  *   f2fs_set_bit(0, bitmap) => 1000 0000
93  *   f2fs_set_bit(7, bitmap) => 0000 0001
94  */
95 static unsigned long __find_rev_next_bit(const unsigned long *addr,
96 			unsigned long size, unsigned long offset)
97 {
98 	const unsigned long *p = addr + BIT_WORD(offset);
99 	unsigned long result = size;
100 	unsigned long tmp;
101 
102 	if (offset >= size)
103 		return size;
104 
105 	size -= (offset & ~(BITS_PER_LONG - 1));
106 	offset %= BITS_PER_LONG;
107 
108 	while (1) {
109 		if (*p == 0)
110 			goto pass;
111 
112 		tmp = __reverse_ulong((unsigned char *)p);
113 
114 		tmp &= ~0UL >> offset;
115 		if (size < BITS_PER_LONG)
116 			tmp &= (~0UL << (BITS_PER_LONG - size));
117 		if (tmp)
118 			goto found;
119 pass:
120 		if (size <= BITS_PER_LONG)
121 			break;
122 		size -= BITS_PER_LONG;
123 		offset = 0;
124 		p++;
125 	}
126 	return result;
127 found:
128 	return result - size + __reverse_ffs(tmp);
129 }
130 
131 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
132 			unsigned long size, unsigned long offset)
133 {
134 	const unsigned long *p = addr + BIT_WORD(offset);
135 	unsigned long result = size;
136 	unsigned long tmp;
137 
138 	if (offset >= size)
139 		return size;
140 
141 	size -= (offset & ~(BITS_PER_LONG - 1));
142 	offset %= BITS_PER_LONG;
143 
144 	while (1) {
145 		if (*p == ~0UL)
146 			goto pass;
147 
148 		tmp = __reverse_ulong((unsigned char *)p);
149 
150 		if (offset)
151 			tmp |= ~0UL << (BITS_PER_LONG - offset);
152 		if (size < BITS_PER_LONG)
153 			tmp |= ~0UL >> size;
154 		if (tmp != ~0UL)
155 			goto found;
156 pass:
157 		if (size <= BITS_PER_LONG)
158 			break;
159 		size -= BITS_PER_LONG;
160 		offset = 0;
161 		p++;
162 	}
163 	return result;
164 found:
165 	return result - size + __reverse_ffz(tmp);
166 }
167 
168 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
169 {
170 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
171 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
172 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
173 
174 	if (f2fs_lfs_mode(sbi))
175 		return false;
176 	if (sbi->gc_mode == GC_URGENT_HIGH)
177 		return true;
178 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
179 		return true;
180 
181 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
182 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
183 }
184 
185 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
186 {
187 	struct inmem_pages *new;
188 
189 	if (PagePrivate(page))
190 		set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE);
191 	else
192 		f2fs_set_page_private(page, ATOMIC_WRITTEN_PAGE);
193 
194 	new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS);
195 
196 	/* add atomic page indices to the list */
197 	new->page = page;
198 	INIT_LIST_HEAD(&new->list);
199 
200 	/* increase reference count with clean state */
201 	get_page(page);
202 	mutex_lock(&F2FS_I(inode)->inmem_lock);
203 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
204 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
205 	mutex_unlock(&F2FS_I(inode)->inmem_lock);
206 
207 	trace_f2fs_register_inmem_page(page, INMEM);
208 }
209 
210 static int __revoke_inmem_pages(struct inode *inode,
211 				struct list_head *head, bool drop, bool recover,
212 				bool trylock)
213 {
214 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
215 	struct inmem_pages *cur, *tmp;
216 	int err = 0;
217 
218 	list_for_each_entry_safe(cur, tmp, head, list) {
219 		struct page *page = cur->page;
220 
221 		if (drop)
222 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
223 
224 		if (trylock) {
225 			/*
226 			 * to avoid deadlock in between page lock and
227 			 * inmem_lock.
228 			 */
229 			if (!trylock_page(page))
230 				continue;
231 		} else {
232 			lock_page(page);
233 		}
234 
235 		f2fs_wait_on_page_writeback(page, DATA, true, true);
236 
237 		if (recover) {
238 			struct dnode_of_data dn;
239 			struct node_info ni;
240 
241 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
242 retry:
243 			set_new_dnode(&dn, inode, NULL, NULL, 0);
244 			err = f2fs_get_dnode_of_data(&dn, page->index,
245 								LOOKUP_NODE);
246 			if (err) {
247 				if (err == -ENOMEM) {
248 					congestion_wait(BLK_RW_ASYNC,
249 							DEFAULT_IO_TIMEOUT);
250 					cond_resched();
251 					goto retry;
252 				}
253 				err = -EAGAIN;
254 				goto next;
255 			}
256 
257 			err = f2fs_get_node_info(sbi, dn.nid, &ni);
258 			if (err) {
259 				f2fs_put_dnode(&dn);
260 				return err;
261 			}
262 
263 			if (cur->old_addr == NEW_ADDR) {
264 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
265 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
266 			} else
267 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
268 					cur->old_addr, ni.version, true, true);
269 			f2fs_put_dnode(&dn);
270 		}
271 next:
272 		/* we don't need to invalidate this in the sccessful status */
273 		if (drop || recover) {
274 			ClearPageUptodate(page);
275 			clear_cold_data(page);
276 		}
277 		f2fs_clear_page_private(page);
278 		f2fs_put_page(page, 1);
279 
280 		list_del(&cur->list);
281 		kmem_cache_free(inmem_entry_slab, cur);
282 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283 	}
284 	return err;
285 }
286 
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290 	struct inode *inode;
291 	struct f2fs_inode_info *fi;
292 	unsigned int count = sbi->atomic_files;
293 	unsigned int looped = 0;
294 next:
295 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 	if (list_empty(head)) {
297 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 		return;
299 	}
300 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 	inode = igrab(&fi->vfs_inode);
302 	if (inode)
303 		list_move_tail(&fi->inmem_ilist, head);
304 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305 
306 	if (inode) {
307 		if (gc_failure) {
308 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309 				goto skip;
310 		}
311 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 		f2fs_drop_inmem_pages(inode);
313 skip:
314 		iput(inode);
315 	}
316 	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317 	cond_resched();
318 	if (gc_failure) {
319 		if (++looped >= count)
320 			return;
321 	}
322 	goto next;
323 }
324 
325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 	struct f2fs_inode_info *fi = F2FS_I(inode);
329 
330 	do {
331 		mutex_lock(&fi->inmem_lock);
332 		if (list_empty(&fi->inmem_pages)) {
333 			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
334 
335 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336 			if (!list_empty(&fi->inmem_ilist))
337 				list_del_init(&fi->inmem_ilist);
338 			if (f2fs_is_atomic_file(inode)) {
339 				clear_inode_flag(inode, FI_ATOMIC_FILE);
340 				sbi->atomic_files--;
341 			}
342 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
343 
344 			mutex_unlock(&fi->inmem_lock);
345 			break;
346 		}
347 		__revoke_inmem_pages(inode, &fi->inmem_pages,
348 						true, false, true);
349 		mutex_unlock(&fi->inmem_lock);
350 	} while (1);
351 }
352 
353 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
354 {
355 	struct f2fs_inode_info *fi = F2FS_I(inode);
356 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
357 	struct list_head *head = &fi->inmem_pages;
358 	struct inmem_pages *cur = NULL;
359 
360 	f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page));
361 
362 	mutex_lock(&fi->inmem_lock);
363 	list_for_each_entry(cur, head, list) {
364 		if (cur->page == page)
365 			break;
366 	}
367 
368 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
369 	list_del(&cur->list);
370 	mutex_unlock(&fi->inmem_lock);
371 
372 	dec_page_count(sbi, F2FS_INMEM_PAGES);
373 	kmem_cache_free(inmem_entry_slab, cur);
374 
375 	ClearPageUptodate(page);
376 	f2fs_clear_page_private(page);
377 	f2fs_put_page(page, 0);
378 
379 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
380 }
381 
382 static int __f2fs_commit_inmem_pages(struct inode *inode)
383 {
384 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
385 	struct f2fs_inode_info *fi = F2FS_I(inode);
386 	struct inmem_pages *cur, *tmp;
387 	struct f2fs_io_info fio = {
388 		.sbi = sbi,
389 		.ino = inode->i_ino,
390 		.type = DATA,
391 		.op = REQ_OP_WRITE,
392 		.op_flags = REQ_SYNC | REQ_PRIO,
393 		.io_type = FS_DATA_IO,
394 	};
395 	struct list_head revoke_list;
396 	bool submit_bio = false;
397 	int err = 0;
398 
399 	INIT_LIST_HEAD(&revoke_list);
400 
401 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
402 		struct page *page = cur->page;
403 
404 		lock_page(page);
405 		if (page->mapping == inode->i_mapping) {
406 			trace_f2fs_commit_inmem_page(page, INMEM);
407 
408 			f2fs_wait_on_page_writeback(page, DATA, true, true);
409 
410 			set_page_dirty(page);
411 			if (clear_page_dirty_for_io(page)) {
412 				inode_dec_dirty_pages(inode);
413 				f2fs_remove_dirty_inode(inode);
414 			}
415 retry:
416 			fio.page = page;
417 			fio.old_blkaddr = NULL_ADDR;
418 			fio.encrypted_page = NULL;
419 			fio.need_lock = LOCK_DONE;
420 			err = f2fs_do_write_data_page(&fio);
421 			if (err) {
422 				if (err == -ENOMEM) {
423 					congestion_wait(BLK_RW_ASYNC,
424 							DEFAULT_IO_TIMEOUT);
425 					cond_resched();
426 					goto retry;
427 				}
428 				unlock_page(page);
429 				break;
430 			}
431 			/* record old blkaddr for revoking */
432 			cur->old_addr = fio.old_blkaddr;
433 			submit_bio = true;
434 		}
435 		unlock_page(page);
436 		list_move_tail(&cur->list, &revoke_list);
437 	}
438 
439 	if (submit_bio)
440 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
441 
442 	if (err) {
443 		/*
444 		 * try to revoke all committed pages, but still we could fail
445 		 * due to no memory or other reason, if that happened, EAGAIN
446 		 * will be returned, which means in such case, transaction is
447 		 * already not integrity, caller should use journal to do the
448 		 * recovery or rewrite & commit last transaction. For other
449 		 * error number, revoking was done by filesystem itself.
450 		 */
451 		err = __revoke_inmem_pages(inode, &revoke_list,
452 						false, true, false);
453 
454 		/* drop all uncommitted pages */
455 		__revoke_inmem_pages(inode, &fi->inmem_pages,
456 						true, false, false);
457 	} else {
458 		__revoke_inmem_pages(inode, &revoke_list,
459 						false, false, false);
460 	}
461 
462 	return err;
463 }
464 
465 int f2fs_commit_inmem_pages(struct inode *inode)
466 {
467 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
468 	struct f2fs_inode_info *fi = F2FS_I(inode);
469 	int err;
470 
471 	f2fs_balance_fs(sbi, true);
472 
473 	down_write(&fi->i_gc_rwsem[WRITE]);
474 
475 	f2fs_lock_op(sbi);
476 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
477 
478 	mutex_lock(&fi->inmem_lock);
479 	err = __f2fs_commit_inmem_pages(inode);
480 	mutex_unlock(&fi->inmem_lock);
481 
482 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
483 
484 	f2fs_unlock_op(sbi);
485 	up_write(&fi->i_gc_rwsem[WRITE]);
486 
487 	return err;
488 }
489 
490 /*
491  * This function balances dirty node and dentry pages.
492  * In addition, it controls garbage collection.
493  */
494 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
495 {
496 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
497 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
498 		f2fs_stop_checkpoint(sbi, false);
499 	}
500 
501 	/* balance_fs_bg is able to be pending */
502 	if (need && excess_cached_nats(sbi))
503 		f2fs_balance_fs_bg(sbi, false);
504 
505 	if (!f2fs_is_checkpoint_ready(sbi))
506 		return;
507 
508 	/*
509 	 * We should do GC or end up with checkpoint, if there are so many dirty
510 	 * dir/node pages without enough free segments.
511 	 */
512 	if (has_not_enough_free_secs(sbi, 0, 0)) {
513 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
514 					sbi->gc_thread->f2fs_gc_task) {
515 			DEFINE_WAIT(wait);
516 
517 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
518 						TASK_UNINTERRUPTIBLE);
519 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
520 			io_schedule();
521 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
522 		} else {
523 			down_write(&sbi->gc_lock);
524 			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
525 		}
526 	}
527 }
528 
529 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
530 {
531 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
532 		return;
533 
534 	/* try to shrink extent cache when there is no enough memory */
535 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
536 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
537 
538 	/* check the # of cached NAT entries */
539 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
540 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
541 
542 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
543 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
544 	else
545 		f2fs_build_free_nids(sbi, false, false);
546 
547 	if (excess_dirty_nats(sbi) || excess_dirty_nodes(sbi) ||
548 		excess_prefree_segs(sbi))
549 		goto do_sync;
550 
551 	/* there is background inflight IO or foreground operation recently */
552 	if (is_inflight_io(sbi, REQ_TIME) ||
553 		(!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
554 		return;
555 
556 	/* exceed periodical checkpoint timeout threshold */
557 	if (f2fs_time_over(sbi, CP_TIME))
558 		goto do_sync;
559 
560 	/* checkpoint is the only way to shrink partial cached entries */
561 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) ||
562 		f2fs_available_free_memory(sbi, INO_ENTRIES))
563 		return;
564 
565 do_sync:
566 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
567 		struct blk_plug plug;
568 
569 		mutex_lock(&sbi->flush_lock);
570 
571 		blk_start_plug(&plug);
572 		f2fs_sync_dirty_inodes(sbi, FILE_INODE);
573 		blk_finish_plug(&plug);
574 
575 		mutex_unlock(&sbi->flush_lock);
576 	}
577 	f2fs_sync_fs(sbi->sb, true);
578 	stat_inc_bg_cp_count(sbi->stat_info);
579 }
580 
581 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
582 				struct block_device *bdev)
583 {
584 	int ret = blkdev_issue_flush(bdev);
585 
586 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
587 				test_opt(sbi, FLUSH_MERGE), ret);
588 	return ret;
589 }
590 
591 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
592 {
593 	int ret = 0;
594 	int i;
595 
596 	if (!f2fs_is_multi_device(sbi))
597 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
598 
599 	for (i = 0; i < sbi->s_ndevs; i++) {
600 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
601 			continue;
602 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
603 		if (ret)
604 			break;
605 	}
606 	return ret;
607 }
608 
609 static int issue_flush_thread(void *data)
610 {
611 	struct f2fs_sb_info *sbi = data;
612 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
613 	wait_queue_head_t *q = &fcc->flush_wait_queue;
614 repeat:
615 	if (kthread_should_stop())
616 		return 0;
617 
618 	if (!llist_empty(&fcc->issue_list)) {
619 		struct flush_cmd *cmd, *next;
620 		int ret;
621 
622 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
623 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
624 
625 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
626 
627 		ret = submit_flush_wait(sbi, cmd->ino);
628 		atomic_inc(&fcc->issued_flush);
629 
630 		llist_for_each_entry_safe(cmd, next,
631 					  fcc->dispatch_list, llnode) {
632 			cmd->ret = ret;
633 			complete(&cmd->wait);
634 		}
635 		fcc->dispatch_list = NULL;
636 	}
637 
638 	wait_event_interruptible(*q,
639 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
640 	goto repeat;
641 }
642 
643 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
644 {
645 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
646 	struct flush_cmd cmd;
647 	int ret;
648 
649 	if (test_opt(sbi, NOBARRIER))
650 		return 0;
651 
652 	if (!test_opt(sbi, FLUSH_MERGE)) {
653 		atomic_inc(&fcc->queued_flush);
654 		ret = submit_flush_wait(sbi, ino);
655 		atomic_dec(&fcc->queued_flush);
656 		atomic_inc(&fcc->issued_flush);
657 		return ret;
658 	}
659 
660 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
661 	    f2fs_is_multi_device(sbi)) {
662 		ret = submit_flush_wait(sbi, ino);
663 		atomic_dec(&fcc->queued_flush);
664 
665 		atomic_inc(&fcc->issued_flush);
666 		return ret;
667 	}
668 
669 	cmd.ino = ino;
670 	init_completion(&cmd.wait);
671 
672 	llist_add(&cmd.llnode, &fcc->issue_list);
673 
674 	/*
675 	 * update issue_list before we wake up issue_flush thread, this
676 	 * smp_mb() pairs with another barrier in ___wait_event(), see
677 	 * more details in comments of waitqueue_active().
678 	 */
679 	smp_mb();
680 
681 	if (waitqueue_active(&fcc->flush_wait_queue))
682 		wake_up(&fcc->flush_wait_queue);
683 
684 	if (fcc->f2fs_issue_flush) {
685 		wait_for_completion(&cmd.wait);
686 		atomic_dec(&fcc->queued_flush);
687 	} else {
688 		struct llist_node *list;
689 
690 		list = llist_del_all(&fcc->issue_list);
691 		if (!list) {
692 			wait_for_completion(&cmd.wait);
693 			atomic_dec(&fcc->queued_flush);
694 		} else {
695 			struct flush_cmd *tmp, *next;
696 
697 			ret = submit_flush_wait(sbi, ino);
698 
699 			llist_for_each_entry_safe(tmp, next, list, llnode) {
700 				if (tmp == &cmd) {
701 					cmd.ret = ret;
702 					atomic_dec(&fcc->queued_flush);
703 					continue;
704 				}
705 				tmp->ret = ret;
706 				complete(&tmp->wait);
707 			}
708 		}
709 	}
710 
711 	return cmd.ret;
712 }
713 
714 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
715 {
716 	dev_t dev = sbi->sb->s_bdev->bd_dev;
717 	struct flush_cmd_control *fcc;
718 	int err = 0;
719 
720 	if (SM_I(sbi)->fcc_info) {
721 		fcc = SM_I(sbi)->fcc_info;
722 		if (fcc->f2fs_issue_flush)
723 			return err;
724 		goto init_thread;
725 	}
726 
727 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
728 	if (!fcc)
729 		return -ENOMEM;
730 	atomic_set(&fcc->issued_flush, 0);
731 	atomic_set(&fcc->queued_flush, 0);
732 	init_waitqueue_head(&fcc->flush_wait_queue);
733 	init_llist_head(&fcc->issue_list);
734 	SM_I(sbi)->fcc_info = fcc;
735 	if (!test_opt(sbi, FLUSH_MERGE))
736 		return err;
737 
738 init_thread:
739 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
740 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
741 	if (IS_ERR(fcc->f2fs_issue_flush)) {
742 		err = PTR_ERR(fcc->f2fs_issue_flush);
743 		kfree(fcc);
744 		SM_I(sbi)->fcc_info = NULL;
745 		return err;
746 	}
747 
748 	return err;
749 }
750 
751 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
752 {
753 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
754 
755 	if (fcc && fcc->f2fs_issue_flush) {
756 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
757 
758 		fcc->f2fs_issue_flush = NULL;
759 		kthread_stop(flush_thread);
760 	}
761 	if (free) {
762 		kfree(fcc);
763 		SM_I(sbi)->fcc_info = NULL;
764 	}
765 }
766 
767 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
768 {
769 	int ret = 0, i;
770 
771 	if (!f2fs_is_multi_device(sbi))
772 		return 0;
773 
774 	if (test_opt(sbi, NOBARRIER))
775 		return 0;
776 
777 	for (i = 1; i < sbi->s_ndevs; i++) {
778 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
779 			continue;
780 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
781 		if (ret)
782 			break;
783 
784 		spin_lock(&sbi->dev_lock);
785 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
786 		spin_unlock(&sbi->dev_lock);
787 	}
788 
789 	return ret;
790 }
791 
792 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
793 		enum dirty_type dirty_type)
794 {
795 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
796 
797 	/* need not be added */
798 	if (IS_CURSEG(sbi, segno))
799 		return;
800 
801 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
802 		dirty_i->nr_dirty[dirty_type]++;
803 
804 	if (dirty_type == DIRTY) {
805 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
806 		enum dirty_type t = sentry->type;
807 
808 		if (unlikely(t >= DIRTY)) {
809 			f2fs_bug_on(sbi, 1);
810 			return;
811 		}
812 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
813 			dirty_i->nr_dirty[t]++;
814 
815 		if (__is_large_section(sbi)) {
816 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
817 			block_t valid_blocks =
818 				get_valid_blocks(sbi, segno, true);
819 
820 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
821 					valid_blocks == BLKS_PER_SEC(sbi)));
822 
823 			if (!IS_CURSEC(sbi, secno))
824 				set_bit(secno, dirty_i->dirty_secmap);
825 		}
826 	}
827 }
828 
829 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
830 		enum dirty_type dirty_type)
831 {
832 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
833 	block_t valid_blocks;
834 
835 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
836 		dirty_i->nr_dirty[dirty_type]--;
837 
838 	if (dirty_type == DIRTY) {
839 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
840 		enum dirty_type t = sentry->type;
841 
842 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
843 			dirty_i->nr_dirty[t]--;
844 
845 		valid_blocks = get_valid_blocks(sbi, segno, true);
846 		if (valid_blocks == 0) {
847 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
848 						dirty_i->victim_secmap);
849 #ifdef CONFIG_F2FS_CHECK_FS
850 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
851 #endif
852 		}
853 		if (__is_large_section(sbi)) {
854 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
855 
856 			if (!valid_blocks ||
857 					valid_blocks == BLKS_PER_SEC(sbi)) {
858 				clear_bit(secno, dirty_i->dirty_secmap);
859 				return;
860 			}
861 
862 			if (!IS_CURSEC(sbi, secno))
863 				set_bit(secno, dirty_i->dirty_secmap);
864 		}
865 	}
866 }
867 
868 /*
869  * Should not occur error such as -ENOMEM.
870  * Adding dirty entry into seglist is not critical operation.
871  * If a given segment is one of current working segments, it won't be added.
872  */
873 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
874 {
875 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
876 	unsigned short valid_blocks, ckpt_valid_blocks;
877 	unsigned int usable_blocks;
878 
879 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
880 		return;
881 
882 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
883 	mutex_lock(&dirty_i->seglist_lock);
884 
885 	valid_blocks = get_valid_blocks(sbi, segno, false);
886 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
887 
888 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
889 		ckpt_valid_blocks == usable_blocks)) {
890 		__locate_dirty_segment(sbi, segno, PRE);
891 		__remove_dirty_segment(sbi, segno, DIRTY);
892 	} else if (valid_blocks < usable_blocks) {
893 		__locate_dirty_segment(sbi, segno, DIRTY);
894 	} else {
895 		/* Recovery routine with SSR needs this */
896 		__remove_dirty_segment(sbi, segno, DIRTY);
897 	}
898 
899 	mutex_unlock(&dirty_i->seglist_lock);
900 }
901 
902 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
903 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
904 {
905 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
906 	unsigned int segno;
907 
908 	mutex_lock(&dirty_i->seglist_lock);
909 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
910 		if (get_valid_blocks(sbi, segno, false))
911 			continue;
912 		if (IS_CURSEG(sbi, segno))
913 			continue;
914 		__locate_dirty_segment(sbi, segno, PRE);
915 		__remove_dirty_segment(sbi, segno, DIRTY);
916 	}
917 	mutex_unlock(&dirty_i->seglist_lock);
918 }
919 
920 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
921 {
922 	int ovp_hole_segs =
923 		(overprovision_segments(sbi) - reserved_segments(sbi));
924 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
925 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
926 	block_t holes[2] = {0, 0};	/* DATA and NODE */
927 	block_t unusable;
928 	struct seg_entry *se;
929 	unsigned int segno;
930 
931 	mutex_lock(&dirty_i->seglist_lock);
932 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
933 		se = get_seg_entry(sbi, segno);
934 		if (IS_NODESEG(se->type))
935 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
936 							se->valid_blocks;
937 		else
938 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
939 							se->valid_blocks;
940 	}
941 	mutex_unlock(&dirty_i->seglist_lock);
942 
943 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
944 	if (unusable > ovp_holes)
945 		return unusable - ovp_holes;
946 	return 0;
947 }
948 
949 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
950 {
951 	int ovp_hole_segs =
952 		(overprovision_segments(sbi) - reserved_segments(sbi));
953 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
954 		return -EAGAIN;
955 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
956 		dirty_segments(sbi) > ovp_hole_segs)
957 		return -EAGAIN;
958 	return 0;
959 }
960 
961 /* This is only used by SBI_CP_DISABLED */
962 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
963 {
964 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
965 	unsigned int segno = 0;
966 
967 	mutex_lock(&dirty_i->seglist_lock);
968 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
969 		if (get_valid_blocks(sbi, segno, false))
970 			continue;
971 		if (get_ckpt_valid_blocks(sbi, segno, false))
972 			continue;
973 		mutex_unlock(&dirty_i->seglist_lock);
974 		return segno;
975 	}
976 	mutex_unlock(&dirty_i->seglist_lock);
977 	return NULL_SEGNO;
978 }
979 
980 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
981 		struct block_device *bdev, block_t lstart,
982 		block_t start, block_t len)
983 {
984 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
985 	struct list_head *pend_list;
986 	struct discard_cmd *dc;
987 
988 	f2fs_bug_on(sbi, !len);
989 
990 	pend_list = &dcc->pend_list[plist_idx(len)];
991 
992 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS);
993 	INIT_LIST_HEAD(&dc->list);
994 	dc->bdev = bdev;
995 	dc->lstart = lstart;
996 	dc->start = start;
997 	dc->len = len;
998 	dc->ref = 0;
999 	dc->state = D_PREP;
1000 	dc->queued = 0;
1001 	dc->error = 0;
1002 	init_completion(&dc->wait);
1003 	list_add_tail(&dc->list, pend_list);
1004 	spin_lock_init(&dc->lock);
1005 	dc->bio_ref = 0;
1006 	atomic_inc(&dcc->discard_cmd_cnt);
1007 	dcc->undiscard_blks += len;
1008 
1009 	return dc;
1010 }
1011 
1012 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1013 				struct block_device *bdev, block_t lstart,
1014 				block_t start, block_t len,
1015 				struct rb_node *parent, struct rb_node **p,
1016 				bool leftmost)
1017 {
1018 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1019 	struct discard_cmd *dc;
1020 
1021 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1022 
1023 	rb_link_node(&dc->rb_node, parent, p);
1024 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1025 
1026 	return dc;
1027 }
1028 
1029 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1030 							struct discard_cmd *dc)
1031 {
1032 	if (dc->state == D_DONE)
1033 		atomic_sub(dc->queued, &dcc->queued_discard);
1034 
1035 	list_del(&dc->list);
1036 	rb_erase_cached(&dc->rb_node, &dcc->root);
1037 	dcc->undiscard_blks -= dc->len;
1038 
1039 	kmem_cache_free(discard_cmd_slab, dc);
1040 
1041 	atomic_dec(&dcc->discard_cmd_cnt);
1042 }
1043 
1044 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1045 							struct discard_cmd *dc)
1046 {
1047 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1048 	unsigned long flags;
1049 
1050 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1051 
1052 	spin_lock_irqsave(&dc->lock, flags);
1053 	if (dc->bio_ref) {
1054 		spin_unlock_irqrestore(&dc->lock, flags);
1055 		return;
1056 	}
1057 	spin_unlock_irqrestore(&dc->lock, flags);
1058 
1059 	f2fs_bug_on(sbi, dc->ref);
1060 
1061 	if (dc->error == -EOPNOTSUPP)
1062 		dc->error = 0;
1063 
1064 	if (dc->error)
1065 		printk_ratelimited(
1066 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1067 			KERN_INFO, sbi->sb->s_id,
1068 			dc->lstart, dc->start, dc->len, dc->error);
1069 	__detach_discard_cmd(dcc, dc);
1070 }
1071 
1072 static void f2fs_submit_discard_endio(struct bio *bio)
1073 {
1074 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1075 	unsigned long flags;
1076 
1077 	spin_lock_irqsave(&dc->lock, flags);
1078 	if (!dc->error)
1079 		dc->error = blk_status_to_errno(bio->bi_status);
1080 	dc->bio_ref--;
1081 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1082 		dc->state = D_DONE;
1083 		complete_all(&dc->wait);
1084 	}
1085 	spin_unlock_irqrestore(&dc->lock, flags);
1086 	bio_put(bio);
1087 }
1088 
1089 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1090 				block_t start, block_t end)
1091 {
1092 #ifdef CONFIG_F2FS_CHECK_FS
1093 	struct seg_entry *sentry;
1094 	unsigned int segno;
1095 	block_t blk = start;
1096 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1097 	unsigned long *map;
1098 
1099 	while (blk < end) {
1100 		segno = GET_SEGNO(sbi, blk);
1101 		sentry = get_seg_entry(sbi, segno);
1102 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1103 
1104 		if (end < START_BLOCK(sbi, segno + 1))
1105 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1106 		else
1107 			size = max_blocks;
1108 		map = (unsigned long *)(sentry->cur_valid_map);
1109 		offset = __find_rev_next_bit(map, size, offset);
1110 		f2fs_bug_on(sbi, offset != size);
1111 		blk = START_BLOCK(sbi, segno + 1);
1112 	}
1113 #endif
1114 }
1115 
1116 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1117 				struct discard_policy *dpolicy,
1118 				int discard_type, unsigned int granularity)
1119 {
1120 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1121 
1122 	/* common policy */
1123 	dpolicy->type = discard_type;
1124 	dpolicy->sync = true;
1125 	dpolicy->ordered = false;
1126 	dpolicy->granularity = granularity;
1127 
1128 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1129 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1130 	dpolicy->timeout = false;
1131 
1132 	if (discard_type == DPOLICY_BG) {
1133 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1134 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1135 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1136 		dpolicy->io_aware = true;
1137 		dpolicy->sync = false;
1138 		dpolicy->ordered = true;
1139 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1140 			dpolicy->granularity = 1;
1141 			if (atomic_read(&dcc->discard_cmd_cnt))
1142 				dpolicy->max_interval =
1143 					DEF_MIN_DISCARD_ISSUE_TIME;
1144 		}
1145 	} else if (discard_type == DPOLICY_FORCE) {
1146 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1147 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1148 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1149 		dpolicy->io_aware = false;
1150 	} else if (discard_type == DPOLICY_FSTRIM) {
1151 		dpolicy->io_aware = false;
1152 	} else if (discard_type == DPOLICY_UMOUNT) {
1153 		dpolicy->io_aware = false;
1154 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1155 		dpolicy->granularity = 1;
1156 		dpolicy->timeout = true;
1157 	}
1158 }
1159 
1160 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1161 				struct block_device *bdev, block_t lstart,
1162 				block_t start, block_t len);
1163 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1164 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1165 						struct discard_policy *dpolicy,
1166 						struct discard_cmd *dc,
1167 						unsigned int *issued)
1168 {
1169 	struct block_device *bdev = dc->bdev;
1170 	struct request_queue *q = bdev_get_queue(bdev);
1171 	unsigned int max_discard_blocks =
1172 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1173 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1174 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1175 					&(dcc->fstrim_list) : &(dcc->wait_list);
1176 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1177 	block_t lstart, start, len, total_len;
1178 	int err = 0;
1179 
1180 	if (dc->state != D_PREP)
1181 		return 0;
1182 
1183 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1184 		return 0;
1185 
1186 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1187 
1188 	lstart = dc->lstart;
1189 	start = dc->start;
1190 	len = dc->len;
1191 	total_len = len;
1192 
1193 	dc->len = 0;
1194 
1195 	while (total_len && *issued < dpolicy->max_requests && !err) {
1196 		struct bio *bio = NULL;
1197 		unsigned long flags;
1198 		bool last = true;
1199 
1200 		if (len > max_discard_blocks) {
1201 			len = max_discard_blocks;
1202 			last = false;
1203 		}
1204 
1205 		(*issued)++;
1206 		if (*issued == dpolicy->max_requests)
1207 			last = true;
1208 
1209 		dc->len += len;
1210 
1211 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1212 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1213 			err = -EIO;
1214 			goto submit;
1215 		}
1216 		err = __blkdev_issue_discard(bdev,
1217 					SECTOR_FROM_BLOCK(start),
1218 					SECTOR_FROM_BLOCK(len),
1219 					GFP_NOFS, 0, &bio);
1220 submit:
1221 		if (err) {
1222 			spin_lock_irqsave(&dc->lock, flags);
1223 			if (dc->state == D_PARTIAL)
1224 				dc->state = D_SUBMIT;
1225 			spin_unlock_irqrestore(&dc->lock, flags);
1226 
1227 			break;
1228 		}
1229 
1230 		f2fs_bug_on(sbi, !bio);
1231 
1232 		/*
1233 		 * should keep before submission to avoid D_DONE
1234 		 * right away
1235 		 */
1236 		spin_lock_irqsave(&dc->lock, flags);
1237 		if (last)
1238 			dc->state = D_SUBMIT;
1239 		else
1240 			dc->state = D_PARTIAL;
1241 		dc->bio_ref++;
1242 		spin_unlock_irqrestore(&dc->lock, flags);
1243 
1244 		atomic_inc(&dcc->queued_discard);
1245 		dc->queued++;
1246 		list_move_tail(&dc->list, wait_list);
1247 
1248 		/* sanity check on discard range */
1249 		__check_sit_bitmap(sbi, lstart, lstart + len);
1250 
1251 		bio->bi_private = dc;
1252 		bio->bi_end_io = f2fs_submit_discard_endio;
1253 		bio->bi_opf |= flag;
1254 		submit_bio(bio);
1255 
1256 		atomic_inc(&dcc->issued_discard);
1257 
1258 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1259 
1260 		lstart += len;
1261 		start += len;
1262 		total_len -= len;
1263 		len = total_len;
1264 	}
1265 
1266 	if (!err && len) {
1267 		dcc->undiscard_blks -= len;
1268 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1269 	}
1270 	return err;
1271 }
1272 
1273 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1274 				struct block_device *bdev, block_t lstart,
1275 				block_t start, block_t len,
1276 				struct rb_node **insert_p,
1277 				struct rb_node *insert_parent)
1278 {
1279 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1280 	struct rb_node **p;
1281 	struct rb_node *parent = NULL;
1282 	bool leftmost = true;
1283 
1284 	if (insert_p && insert_parent) {
1285 		parent = insert_parent;
1286 		p = insert_p;
1287 		goto do_insert;
1288 	}
1289 
1290 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1291 							lstart, &leftmost);
1292 do_insert:
1293 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1294 								p, leftmost);
1295 }
1296 
1297 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1298 						struct discard_cmd *dc)
1299 {
1300 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1301 }
1302 
1303 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1304 				struct discard_cmd *dc, block_t blkaddr)
1305 {
1306 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1307 	struct discard_info di = dc->di;
1308 	bool modified = false;
1309 
1310 	if (dc->state == D_DONE || dc->len == 1) {
1311 		__remove_discard_cmd(sbi, dc);
1312 		return;
1313 	}
1314 
1315 	dcc->undiscard_blks -= di.len;
1316 
1317 	if (blkaddr > di.lstart) {
1318 		dc->len = blkaddr - dc->lstart;
1319 		dcc->undiscard_blks += dc->len;
1320 		__relocate_discard_cmd(dcc, dc);
1321 		modified = true;
1322 	}
1323 
1324 	if (blkaddr < di.lstart + di.len - 1) {
1325 		if (modified) {
1326 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1327 					di.start + blkaddr + 1 - di.lstart,
1328 					di.lstart + di.len - 1 - blkaddr,
1329 					NULL, NULL);
1330 		} else {
1331 			dc->lstart++;
1332 			dc->len--;
1333 			dc->start++;
1334 			dcc->undiscard_blks += dc->len;
1335 			__relocate_discard_cmd(dcc, dc);
1336 		}
1337 	}
1338 }
1339 
1340 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1341 				struct block_device *bdev, block_t lstart,
1342 				block_t start, block_t len)
1343 {
1344 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1345 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1346 	struct discard_cmd *dc;
1347 	struct discard_info di = {0};
1348 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1349 	struct request_queue *q = bdev_get_queue(bdev);
1350 	unsigned int max_discard_blocks =
1351 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1352 	block_t end = lstart + len;
1353 
1354 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1355 					NULL, lstart,
1356 					(struct rb_entry **)&prev_dc,
1357 					(struct rb_entry **)&next_dc,
1358 					&insert_p, &insert_parent, true, NULL);
1359 	if (dc)
1360 		prev_dc = dc;
1361 
1362 	if (!prev_dc) {
1363 		di.lstart = lstart;
1364 		di.len = next_dc ? next_dc->lstart - lstart : len;
1365 		di.len = min(di.len, len);
1366 		di.start = start;
1367 	}
1368 
1369 	while (1) {
1370 		struct rb_node *node;
1371 		bool merged = false;
1372 		struct discard_cmd *tdc = NULL;
1373 
1374 		if (prev_dc) {
1375 			di.lstart = prev_dc->lstart + prev_dc->len;
1376 			if (di.lstart < lstart)
1377 				di.lstart = lstart;
1378 			if (di.lstart >= end)
1379 				break;
1380 
1381 			if (!next_dc || next_dc->lstart > end)
1382 				di.len = end - di.lstart;
1383 			else
1384 				di.len = next_dc->lstart - di.lstart;
1385 			di.start = start + di.lstart - lstart;
1386 		}
1387 
1388 		if (!di.len)
1389 			goto next;
1390 
1391 		if (prev_dc && prev_dc->state == D_PREP &&
1392 			prev_dc->bdev == bdev &&
1393 			__is_discard_back_mergeable(&di, &prev_dc->di,
1394 							max_discard_blocks)) {
1395 			prev_dc->di.len += di.len;
1396 			dcc->undiscard_blks += di.len;
1397 			__relocate_discard_cmd(dcc, prev_dc);
1398 			di = prev_dc->di;
1399 			tdc = prev_dc;
1400 			merged = true;
1401 		}
1402 
1403 		if (next_dc && next_dc->state == D_PREP &&
1404 			next_dc->bdev == bdev &&
1405 			__is_discard_front_mergeable(&di, &next_dc->di,
1406 							max_discard_blocks)) {
1407 			next_dc->di.lstart = di.lstart;
1408 			next_dc->di.len += di.len;
1409 			next_dc->di.start = di.start;
1410 			dcc->undiscard_blks += di.len;
1411 			__relocate_discard_cmd(dcc, next_dc);
1412 			if (tdc)
1413 				__remove_discard_cmd(sbi, tdc);
1414 			merged = true;
1415 		}
1416 
1417 		if (!merged) {
1418 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1419 							di.len, NULL, NULL);
1420 		}
1421  next:
1422 		prev_dc = next_dc;
1423 		if (!prev_dc)
1424 			break;
1425 
1426 		node = rb_next(&prev_dc->rb_node);
1427 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1428 	}
1429 }
1430 
1431 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1432 		struct block_device *bdev, block_t blkstart, block_t blklen)
1433 {
1434 	block_t lblkstart = blkstart;
1435 
1436 	if (!f2fs_bdev_support_discard(bdev))
1437 		return 0;
1438 
1439 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1440 
1441 	if (f2fs_is_multi_device(sbi)) {
1442 		int devi = f2fs_target_device_index(sbi, blkstart);
1443 
1444 		blkstart -= FDEV(devi).start_blk;
1445 	}
1446 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1447 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1448 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1449 	return 0;
1450 }
1451 
1452 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1453 					struct discard_policy *dpolicy)
1454 {
1455 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1456 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1457 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1458 	struct discard_cmd *dc;
1459 	struct blk_plug plug;
1460 	unsigned int pos = dcc->next_pos;
1461 	unsigned int issued = 0;
1462 	bool io_interrupted = false;
1463 
1464 	mutex_lock(&dcc->cmd_lock);
1465 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1466 					NULL, pos,
1467 					(struct rb_entry **)&prev_dc,
1468 					(struct rb_entry **)&next_dc,
1469 					&insert_p, &insert_parent, true, NULL);
1470 	if (!dc)
1471 		dc = next_dc;
1472 
1473 	blk_start_plug(&plug);
1474 
1475 	while (dc) {
1476 		struct rb_node *node;
1477 		int err = 0;
1478 
1479 		if (dc->state != D_PREP)
1480 			goto next;
1481 
1482 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1483 			io_interrupted = true;
1484 			break;
1485 		}
1486 
1487 		dcc->next_pos = dc->lstart + dc->len;
1488 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1489 
1490 		if (issued >= dpolicy->max_requests)
1491 			break;
1492 next:
1493 		node = rb_next(&dc->rb_node);
1494 		if (err)
1495 			__remove_discard_cmd(sbi, dc);
1496 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1497 	}
1498 
1499 	blk_finish_plug(&plug);
1500 
1501 	if (!dc)
1502 		dcc->next_pos = 0;
1503 
1504 	mutex_unlock(&dcc->cmd_lock);
1505 
1506 	if (!issued && io_interrupted)
1507 		issued = -1;
1508 
1509 	return issued;
1510 }
1511 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1512 					struct discard_policy *dpolicy);
1513 
1514 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1515 					struct discard_policy *dpolicy)
1516 {
1517 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1518 	struct list_head *pend_list;
1519 	struct discard_cmd *dc, *tmp;
1520 	struct blk_plug plug;
1521 	int i, issued;
1522 	bool io_interrupted = false;
1523 
1524 	if (dpolicy->timeout)
1525 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1526 
1527 retry:
1528 	issued = 0;
1529 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1530 		if (dpolicy->timeout &&
1531 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1532 			break;
1533 
1534 		if (i + 1 < dpolicy->granularity)
1535 			break;
1536 
1537 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1538 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1539 
1540 		pend_list = &dcc->pend_list[i];
1541 
1542 		mutex_lock(&dcc->cmd_lock);
1543 		if (list_empty(pend_list))
1544 			goto next;
1545 		if (unlikely(dcc->rbtree_check))
1546 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1547 							&dcc->root, false));
1548 		blk_start_plug(&plug);
1549 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1550 			f2fs_bug_on(sbi, dc->state != D_PREP);
1551 
1552 			if (dpolicy->timeout &&
1553 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1554 				break;
1555 
1556 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1557 						!is_idle(sbi, DISCARD_TIME)) {
1558 				io_interrupted = true;
1559 				break;
1560 			}
1561 
1562 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1563 
1564 			if (issued >= dpolicy->max_requests)
1565 				break;
1566 		}
1567 		blk_finish_plug(&plug);
1568 next:
1569 		mutex_unlock(&dcc->cmd_lock);
1570 
1571 		if (issued >= dpolicy->max_requests || io_interrupted)
1572 			break;
1573 	}
1574 
1575 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1576 		__wait_all_discard_cmd(sbi, dpolicy);
1577 		goto retry;
1578 	}
1579 
1580 	if (!issued && io_interrupted)
1581 		issued = -1;
1582 
1583 	return issued;
1584 }
1585 
1586 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1587 {
1588 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1589 	struct list_head *pend_list;
1590 	struct discard_cmd *dc, *tmp;
1591 	int i;
1592 	bool dropped = false;
1593 
1594 	mutex_lock(&dcc->cmd_lock);
1595 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1596 		pend_list = &dcc->pend_list[i];
1597 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1598 			f2fs_bug_on(sbi, dc->state != D_PREP);
1599 			__remove_discard_cmd(sbi, dc);
1600 			dropped = true;
1601 		}
1602 	}
1603 	mutex_unlock(&dcc->cmd_lock);
1604 
1605 	return dropped;
1606 }
1607 
1608 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1609 {
1610 	__drop_discard_cmd(sbi);
1611 }
1612 
1613 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1614 							struct discard_cmd *dc)
1615 {
1616 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1617 	unsigned int len = 0;
1618 
1619 	wait_for_completion_io(&dc->wait);
1620 	mutex_lock(&dcc->cmd_lock);
1621 	f2fs_bug_on(sbi, dc->state != D_DONE);
1622 	dc->ref--;
1623 	if (!dc->ref) {
1624 		if (!dc->error)
1625 			len = dc->len;
1626 		__remove_discard_cmd(sbi, dc);
1627 	}
1628 	mutex_unlock(&dcc->cmd_lock);
1629 
1630 	return len;
1631 }
1632 
1633 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1634 						struct discard_policy *dpolicy,
1635 						block_t start, block_t end)
1636 {
1637 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1638 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1639 					&(dcc->fstrim_list) : &(dcc->wait_list);
1640 	struct discard_cmd *dc, *tmp;
1641 	bool need_wait;
1642 	unsigned int trimmed = 0;
1643 
1644 next:
1645 	need_wait = false;
1646 
1647 	mutex_lock(&dcc->cmd_lock);
1648 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1649 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1650 			continue;
1651 		if (dc->len < dpolicy->granularity)
1652 			continue;
1653 		if (dc->state == D_DONE && !dc->ref) {
1654 			wait_for_completion_io(&dc->wait);
1655 			if (!dc->error)
1656 				trimmed += dc->len;
1657 			__remove_discard_cmd(sbi, dc);
1658 		} else {
1659 			dc->ref++;
1660 			need_wait = true;
1661 			break;
1662 		}
1663 	}
1664 	mutex_unlock(&dcc->cmd_lock);
1665 
1666 	if (need_wait) {
1667 		trimmed += __wait_one_discard_bio(sbi, dc);
1668 		goto next;
1669 	}
1670 
1671 	return trimmed;
1672 }
1673 
1674 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1675 						struct discard_policy *dpolicy)
1676 {
1677 	struct discard_policy dp;
1678 	unsigned int discard_blks;
1679 
1680 	if (dpolicy)
1681 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1682 
1683 	/* wait all */
1684 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1685 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1686 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1687 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1688 
1689 	return discard_blks;
1690 }
1691 
1692 /* This should be covered by global mutex, &sit_i->sentry_lock */
1693 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1694 {
1695 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1696 	struct discard_cmd *dc;
1697 	bool need_wait = false;
1698 
1699 	mutex_lock(&dcc->cmd_lock);
1700 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1701 							NULL, blkaddr);
1702 	if (dc) {
1703 		if (dc->state == D_PREP) {
1704 			__punch_discard_cmd(sbi, dc, blkaddr);
1705 		} else {
1706 			dc->ref++;
1707 			need_wait = true;
1708 		}
1709 	}
1710 	mutex_unlock(&dcc->cmd_lock);
1711 
1712 	if (need_wait)
1713 		__wait_one_discard_bio(sbi, dc);
1714 }
1715 
1716 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1717 {
1718 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1719 
1720 	if (dcc && dcc->f2fs_issue_discard) {
1721 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1722 
1723 		dcc->f2fs_issue_discard = NULL;
1724 		kthread_stop(discard_thread);
1725 	}
1726 }
1727 
1728 /* This comes from f2fs_put_super */
1729 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1730 {
1731 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1732 	struct discard_policy dpolicy;
1733 	bool dropped;
1734 
1735 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1736 					dcc->discard_granularity);
1737 	__issue_discard_cmd(sbi, &dpolicy);
1738 	dropped = __drop_discard_cmd(sbi);
1739 
1740 	/* just to make sure there is no pending discard commands */
1741 	__wait_all_discard_cmd(sbi, NULL);
1742 
1743 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1744 	return dropped;
1745 }
1746 
1747 static int issue_discard_thread(void *data)
1748 {
1749 	struct f2fs_sb_info *sbi = data;
1750 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1751 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1752 	struct discard_policy dpolicy;
1753 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1754 	int issued;
1755 
1756 	set_freezable();
1757 
1758 	do {
1759 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1760 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1761 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1762 		else
1763 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1764 						dcc->discard_granularity);
1765 
1766 		if (!atomic_read(&dcc->discard_cmd_cnt))
1767 		       wait_ms = dpolicy.max_interval;
1768 
1769 		wait_event_interruptible_timeout(*q,
1770 				kthread_should_stop() || freezing(current) ||
1771 				dcc->discard_wake,
1772 				msecs_to_jiffies(wait_ms));
1773 
1774 		if (dcc->discard_wake)
1775 			dcc->discard_wake = 0;
1776 
1777 		/* clean up pending candidates before going to sleep */
1778 		if (atomic_read(&dcc->queued_discard))
1779 			__wait_all_discard_cmd(sbi, NULL);
1780 
1781 		if (try_to_freeze())
1782 			continue;
1783 		if (f2fs_readonly(sbi->sb))
1784 			continue;
1785 		if (kthread_should_stop())
1786 			return 0;
1787 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1788 			wait_ms = dpolicy.max_interval;
1789 			continue;
1790 		}
1791 		if (!atomic_read(&dcc->discard_cmd_cnt))
1792 			continue;
1793 
1794 		sb_start_intwrite(sbi->sb);
1795 
1796 		issued = __issue_discard_cmd(sbi, &dpolicy);
1797 		if (issued > 0) {
1798 			__wait_all_discard_cmd(sbi, &dpolicy);
1799 			wait_ms = dpolicy.min_interval;
1800 		} else if (issued == -1) {
1801 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1802 			if (!wait_ms)
1803 				wait_ms = dpolicy.mid_interval;
1804 		} else {
1805 			wait_ms = dpolicy.max_interval;
1806 		}
1807 
1808 		sb_end_intwrite(sbi->sb);
1809 
1810 	} while (!kthread_should_stop());
1811 	return 0;
1812 }
1813 
1814 #ifdef CONFIG_BLK_DEV_ZONED
1815 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1816 		struct block_device *bdev, block_t blkstart, block_t blklen)
1817 {
1818 	sector_t sector, nr_sects;
1819 	block_t lblkstart = blkstart;
1820 	int devi = 0;
1821 
1822 	if (f2fs_is_multi_device(sbi)) {
1823 		devi = f2fs_target_device_index(sbi, blkstart);
1824 		if (blkstart < FDEV(devi).start_blk ||
1825 		    blkstart > FDEV(devi).end_blk) {
1826 			f2fs_err(sbi, "Invalid block %x", blkstart);
1827 			return -EIO;
1828 		}
1829 		blkstart -= FDEV(devi).start_blk;
1830 	}
1831 
1832 	/* For sequential zones, reset the zone write pointer */
1833 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1834 		sector = SECTOR_FROM_BLOCK(blkstart);
1835 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1836 
1837 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1838 				nr_sects != bdev_zone_sectors(bdev)) {
1839 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1840 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1841 				 blkstart, blklen);
1842 			return -EIO;
1843 		}
1844 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1845 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1846 					sector, nr_sects, GFP_NOFS);
1847 	}
1848 
1849 	/* For conventional zones, use regular discard if supported */
1850 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1851 }
1852 #endif
1853 
1854 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1855 		struct block_device *bdev, block_t blkstart, block_t blklen)
1856 {
1857 #ifdef CONFIG_BLK_DEV_ZONED
1858 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1859 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1860 #endif
1861 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1862 }
1863 
1864 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1865 				block_t blkstart, block_t blklen)
1866 {
1867 	sector_t start = blkstart, len = 0;
1868 	struct block_device *bdev;
1869 	struct seg_entry *se;
1870 	unsigned int offset;
1871 	block_t i;
1872 	int err = 0;
1873 
1874 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1875 
1876 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1877 		if (i != start) {
1878 			struct block_device *bdev2 =
1879 				f2fs_target_device(sbi, i, NULL);
1880 
1881 			if (bdev2 != bdev) {
1882 				err = __issue_discard_async(sbi, bdev,
1883 						start, len);
1884 				if (err)
1885 					return err;
1886 				bdev = bdev2;
1887 				start = i;
1888 				len = 0;
1889 			}
1890 		}
1891 
1892 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1893 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1894 
1895 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
1896 			sbi->discard_blks--;
1897 	}
1898 
1899 	if (len)
1900 		err = __issue_discard_async(sbi, bdev, start, len);
1901 	return err;
1902 }
1903 
1904 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1905 							bool check_only)
1906 {
1907 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1908 	int max_blocks = sbi->blocks_per_seg;
1909 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1910 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1911 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1912 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1913 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1914 	unsigned int start = 0, end = -1;
1915 	bool force = (cpc->reason & CP_DISCARD);
1916 	struct discard_entry *de = NULL;
1917 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1918 	int i;
1919 
1920 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi))
1921 		return false;
1922 
1923 	if (!force) {
1924 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1925 			SM_I(sbi)->dcc_info->nr_discards >=
1926 				SM_I(sbi)->dcc_info->max_discards)
1927 			return false;
1928 	}
1929 
1930 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1931 	for (i = 0; i < entries; i++)
1932 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1933 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1934 
1935 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1936 				SM_I(sbi)->dcc_info->max_discards) {
1937 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1938 		if (start >= max_blocks)
1939 			break;
1940 
1941 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1942 		if (force && start && end != max_blocks
1943 					&& (end - start) < cpc->trim_minlen)
1944 			continue;
1945 
1946 		if (check_only)
1947 			return true;
1948 
1949 		if (!de) {
1950 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1951 								GFP_F2FS_ZERO);
1952 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1953 			list_add_tail(&de->list, head);
1954 		}
1955 
1956 		for (i = start; i < end; i++)
1957 			__set_bit_le(i, (void *)de->discard_map);
1958 
1959 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1960 	}
1961 	return false;
1962 }
1963 
1964 static void release_discard_addr(struct discard_entry *entry)
1965 {
1966 	list_del(&entry->list);
1967 	kmem_cache_free(discard_entry_slab, entry);
1968 }
1969 
1970 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
1971 {
1972 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
1973 	struct discard_entry *entry, *this;
1974 
1975 	/* drop caches */
1976 	list_for_each_entry_safe(entry, this, head, list)
1977 		release_discard_addr(entry);
1978 }
1979 
1980 /*
1981  * Should call f2fs_clear_prefree_segments after checkpoint is done.
1982  */
1983 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
1984 {
1985 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1986 	unsigned int segno;
1987 
1988 	mutex_lock(&dirty_i->seglist_lock);
1989 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
1990 		__set_test_and_free(sbi, segno, false);
1991 	mutex_unlock(&dirty_i->seglist_lock);
1992 }
1993 
1994 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
1995 						struct cp_control *cpc)
1996 {
1997 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1998 	struct list_head *head = &dcc->entry_list;
1999 	struct discard_entry *entry, *this;
2000 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2001 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2002 	unsigned int start = 0, end = -1;
2003 	unsigned int secno, start_segno;
2004 	bool force = (cpc->reason & CP_DISCARD);
2005 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
2006 
2007 	mutex_lock(&dirty_i->seglist_lock);
2008 
2009 	while (1) {
2010 		int i;
2011 
2012 		if (need_align && end != -1)
2013 			end--;
2014 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2015 		if (start >= MAIN_SEGS(sbi))
2016 			break;
2017 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2018 								start + 1);
2019 
2020 		if (need_align) {
2021 			start = rounddown(start, sbi->segs_per_sec);
2022 			end = roundup(end, sbi->segs_per_sec);
2023 		}
2024 
2025 		for (i = start; i < end; i++) {
2026 			if (test_and_clear_bit(i, prefree_map))
2027 				dirty_i->nr_dirty[PRE]--;
2028 		}
2029 
2030 		if (!f2fs_realtime_discard_enable(sbi))
2031 			continue;
2032 
2033 		if (force && start >= cpc->trim_start &&
2034 					(end - 1) <= cpc->trim_end)
2035 				continue;
2036 
2037 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2038 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2039 				(end - start) << sbi->log_blocks_per_seg);
2040 			continue;
2041 		}
2042 next:
2043 		secno = GET_SEC_FROM_SEG(sbi, start);
2044 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2045 		if (!IS_CURSEC(sbi, secno) &&
2046 			!get_valid_blocks(sbi, start, true))
2047 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2048 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2049 
2050 		start = start_segno + sbi->segs_per_sec;
2051 		if (start < end)
2052 			goto next;
2053 		else
2054 			end = start - 1;
2055 	}
2056 	mutex_unlock(&dirty_i->seglist_lock);
2057 
2058 	/* send small discards */
2059 	list_for_each_entry_safe(entry, this, head, list) {
2060 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2061 		bool is_valid = test_bit_le(0, entry->discard_map);
2062 
2063 find_next:
2064 		if (is_valid) {
2065 			next_pos = find_next_zero_bit_le(entry->discard_map,
2066 					sbi->blocks_per_seg, cur_pos);
2067 			len = next_pos - cur_pos;
2068 
2069 			if (f2fs_sb_has_blkzoned(sbi) ||
2070 			    (force && len < cpc->trim_minlen))
2071 				goto skip;
2072 
2073 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2074 									len);
2075 			total_len += len;
2076 		} else {
2077 			next_pos = find_next_bit_le(entry->discard_map,
2078 					sbi->blocks_per_seg, cur_pos);
2079 		}
2080 skip:
2081 		cur_pos = next_pos;
2082 		is_valid = !is_valid;
2083 
2084 		if (cur_pos < sbi->blocks_per_seg)
2085 			goto find_next;
2086 
2087 		release_discard_addr(entry);
2088 		dcc->nr_discards -= total_len;
2089 	}
2090 
2091 	wake_up_discard_thread(sbi, false);
2092 }
2093 
2094 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2095 {
2096 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2097 	struct discard_cmd_control *dcc;
2098 	int err = 0, i;
2099 
2100 	if (SM_I(sbi)->dcc_info) {
2101 		dcc = SM_I(sbi)->dcc_info;
2102 		goto init_thread;
2103 	}
2104 
2105 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2106 	if (!dcc)
2107 		return -ENOMEM;
2108 
2109 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2110 	INIT_LIST_HEAD(&dcc->entry_list);
2111 	for (i = 0; i < MAX_PLIST_NUM; i++)
2112 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2113 	INIT_LIST_HEAD(&dcc->wait_list);
2114 	INIT_LIST_HEAD(&dcc->fstrim_list);
2115 	mutex_init(&dcc->cmd_lock);
2116 	atomic_set(&dcc->issued_discard, 0);
2117 	atomic_set(&dcc->queued_discard, 0);
2118 	atomic_set(&dcc->discard_cmd_cnt, 0);
2119 	dcc->nr_discards = 0;
2120 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2121 	dcc->undiscard_blks = 0;
2122 	dcc->next_pos = 0;
2123 	dcc->root = RB_ROOT_CACHED;
2124 	dcc->rbtree_check = false;
2125 
2126 	init_waitqueue_head(&dcc->discard_wait_queue);
2127 	SM_I(sbi)->dcc_info = dcc;
2128 init_thread:
2129 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2130 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2131 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2132 		err = PTR_ERR(dcc->f2fs_issue_discard);
2133 		kfree(dcc);
2134 		SM_I(sbi)->dcc_info = NULL;
2135 		return err;
2136 	}
2137 
2138 	return err;
2139 }
2140 
2141 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2142 {
2143 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2144 
2145 	if (!dcc)
2146 		return;
2147 
2148 	f2fs_stop_discard_thread(sbi);
2149 
2150 	/*
2151 	 * Recovery can cache discard commands, so in error path of
2152 	 * fill_super(), it needs to give a chance to handle them.
2153 	 */
2154 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2155 		f2fs_issue_discard_timeout(sbi);
2156 
2157 	kfree(dcc);
2158 	SM_I(sbi)->dcc_info = NULL;
2159 }
2160 
2161 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2162 {
2163 	struct sit_info *sit_i = SIT_I(sbi);
2164 
2165 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2166 		sit_i->dirty_sentries++;
2167 		return false;
2168 	}
2169 
2170 	return true;
2171 }
2172 
2173 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2174 					unsigned int segno, int modified)
2175 {
2176 	struct seg_entry *se = get_seg_entry(sbi, segno);
2177 
2178 	se->type = type;
2179 	if (modified)
2180 		__mark_sit_entry_dirty(sbi, segno);
2181 }
2182 
2183 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2184 								block_t blkaddr)
2185 {
2186 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2187 
2188 	if (segno == NULL_SEGNO)
2189 		return 0;
2190 	return get_seg_entry(sbi, segno)->mtime;
2191 }
2192 
2193 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2194 						unsigned long long old_mtime)
2195 {
2196 	struct seg_entry *se;
2197 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2198 	unsigned long long ctime = get_mtime(sbi, false);
2199 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2200 
2201 	if (segno == NULL_SEGNO)
2202 		return;
2203 
2204 	se = get_seg_entry(sbi, segno);
2205 
2206 	if (!se->mtime)
2207 		se->mtime = mtime;
2208 	else
2209 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2210 						se->valid_blocks + 1);
2211 
2212 	if (ctime > SIT_I(sbi)->max_mtime)
2213 		SIT_I(sbi)->max_mtime = ctime;
2214 }
2215 
2216 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2217 {
2218 	struct seg_entry *se;
2219 	unsigned int segno, offset;
2220 	long int new_vblocks;
2221 	bool exist;
2222 #ifdef CONFIG_F2FS_CHECK_FS
2223 	bool mir_exist;
2224 #endif
2225 
2226 	segno = GET_SEGNO(sbi, blkaddr);
2227 
2228 	se = get_seg_entry(sbi, segno);
2229 	new_vblocks = se->valid_blocks + del;
2230 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2231 
2232 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2233 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2234 
2235 	se->valid_blocks = new_vblocks;
2236 
2237 	/* Update valid block bitmap */
2238 	if (del > 0) {
2239 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2240 #ifdef CONFIG_F2FS_CHECK_FS
2241 		mir_exist = f2fs_test_and_set_bit(offset,
2242 						se->cur_valid_map_mir);
2243 		if (unlikely(exist != mir_exist)) {
2244 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2245 				 blkaddr, exist);
2246 			f2fs_bug_on(sbi, 1);
2247 		}
2248 #endif
2249 		if (unlikely(exist)) {
2250 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2251 				 blkaddr);
2252 			f2fs_bug_on(sbi, 1);
2253 			se->valid_blocks--;
2254 			del = 0;
2255 		}
2256 
2257 		if (!f2fs_test_and_set_bit(offset, se->discard_map))
2258 			sbi->discard_blks--;
2259 
2260 		/*
2261 		 * SSR should never reuse block which is checkpointed
2262 		 * or newly invalidated.
2263 		 */
2264 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2265 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2266 				se->ckpt_valid_blocks++;
2267 		}
2268 	} else {
2269 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2270 #ifdef CONFIG_F2FS_CHECK_FS
2271 		mir_exist = f2fs_test_and_clear_bit(offset,
2272 						se->cur_valid_map_mir);
2273 		if (unlikely(exist != mir_exist)) {
2274 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2275 				 blkaddr, exist);
2276 			f2fs_bug_on(sbi, 1);
2277 		}
2278 #endif
2279 		if (unlikely(!exist)) {
2280 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2281 				 blkaddr);
2282 			f2fs_bug_on(sbi, 1);
2283 			se->valid_blocks++;
2284 			del = 0;
2285 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2286 			/*
2287 			 * If checkpoints are off, we must not reuse data that
2288 			 * was used in the previous checkpoint. If it was used
2289 			 * before, we must track that to know how much space we
2290 			 * really have.
2291 			 */
2292 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2293 				spin_lock(&sbi->stat_lock);
2294 				sbi->unusable_block_count++;
2295 				spin_unlock(&sbi->stat_lock);
2296 			}
2297 		}
2298 
2299 		if (f2fs_test_and_clear_bit(offset, se->discard_map))
2300 			sbi->discard_blks++;
2301 	}
2302 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2303 		se->ckpt_valid_blocks += del;
2304 
2305 	__mark_sit_entry_dirty(sbi, segno);
2306 
2307 	/* update total number of valid blocks to be written in ckpt area */
2308 	SIT_I(sbi)->written_valid_blocks += del;
2309 
2310 	if (__is_large_section(sbi))
2311 		get_sec_entry(sbi, segno)->valid_blocks += del;
2312 }
2313 
2314 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2315 {
2316 	unsigned int segno = GET_SEGNO(sbi, addr);
2317 	struct sit_info *sit_i = SIT_I(sbi);
2318 
2319 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2320 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2321 		return;
2322 
2323 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2324 
2325 	/* add it into sit main buffer */
2326 	down_write(&sit_i->sentry_lock);
2327 
2328 	update_segment_mtime(sbi, addr, 0);
2329 	update_sit_entry(sbi, addr, -1);
2330 
2331 	/* add it into dirty seglist */
2332 	locate_dirty_segment(sbi, segno);
2333 
2334 	up_write(&sit_i->sentry_lock);
2335 }
2336 
2337 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2338 {
2339 	struct sit_info *sit_i = SIT_I(sbi);
2340 	unsigned int segno, offset;
2341 	struct seg_entry *se;
2342 	bool is_cp = false;
2343 
2344 	if (!__is_valid_data_blkaddr(blkaddr))
2345 		return true;
2346 
2347 	down_read(&sit_i->sentry_lock);
2348 
2349 	segno = GET_SEGNO(sbi, blkaddr);
2350 	se = get_seg_entry(sbi, segno);
2351 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2352 
2353 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2354 		is_cp = true;
2355 
2356 	up_read(&sit_i->sentry_lock);
2357 
2358 	return is_cp;
2359 }
2360 
2361 /*
2362  * This function should be resided under the curseg_mutex lock
2363  */
2364 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2365 					struct f2fs_summary *sum)
2366 {
2367 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2368 	void *addr = curseg->sum_blk;
2369 
2370 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2371 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2372 }
2373 
2374 /*
2375  * Calculate the number of current summary pages for writing
2376  */
2377 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2378 {
2379 	int valid_sum_count = 0;
2380 	int i, sum_in_page;
2381 
2382 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2383 		if (sbi->ckpt->alloc_type[i] == SSR)
2384 			valid_sum_count += sbi->blocks_per_seg;
2385 		else {
2386 			if (for_ra)
2387 				valid_sum_count += le16_to_cpu(
2388 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2389 			else
2390 				valid_sum_count += curseg_blkoff(sbi, i);
2391 		}
2392 	}
2393 
2394 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2395 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2396 	if (valid_sum_count <= sum_in_page)
2397 		return 1;
2398 	else if ((valid_sum_count - sum_in_page) <=
2399 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2400 		return 2;
2401 	return 3;
2402 }
2403 
2404 /*
2405  * Caller should put this summary page
2406  */
2407 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2408 {
2409 	if (unlikely(f2fs_cp_error(sbi)))
2410 		return ERR_PTR(-EIO);
2411 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2412 }
2413 
2414 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2415 					void *src, block_t blk_addr)
2416 {
2417 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2418 
2419 	memcpy(page_address(page), src, PAGE_SIZE);
2420 	set_page_dirty(page);
2421 	f2fs_put_page(page, 1);
2422 }
2423 
2424 static void write_sum_page(struct f2fs_sb_info *sbi,
2425 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2426 {
2427 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2428 }
2429 
2430 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2431 						int type, block_t blk_addr)
2432 {
2433 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2434 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2435 	struct f2fs_summary_block *src = curseg->sum_blk;
2436 	struct f2fs_summary_block *dst;
2437 
2438 	dst = (struct f2fs_summary_block *)page_address(page);
2439 	memset(dst, 0, PAGE_SIZE);
2440 
2441 	mutex_lock(&curseg->curseg_mutex);
2442 
2443 	down_read(&curseg->journal_rwsem);
2444 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2445 	up_read(&curseg->journal_rwsem);
2446 
2447 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2448 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2449 
2450 	mutex_unlock(&curseg->curseg_mutex);
2451 
2452 	set_page_dirty(page);
2453 	f2fs_put_page(page, 1);
2454 }
2455 
2456 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2457 				struct curseg_info *curseg, int type)
2458 {
2459 	unsigned int segno = curseg->segno + 1;
2460 	struct free_segmap_info *free_i = FREE_I(sbi);
2461 
2462 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2463 		return !test_bit(segno, free_i->free_segmap);
2464 	return 0;
2465 }
2466 
2467 /*
2468  * Find a new segment from the free segments bitmap to right order
2469  * This function should be returned with success, otherwise BUG
2470  */
2471 static void get_new_segment(struct f2fs_sb_info *sbi,
2472 			unsigned int *newseg, bool new_sec, int dir)
2473 {
2474 	struct free_segmap_info *free_i = FREE_I(sbi);
2475 	unsigned int segno, secno, zoneno;
2476 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2477 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2478 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2479 	unsigned int left_start = hint;
2480 	bool init = true;
2481 	int go_left = 0;
2482 	int i;
2483 
2484 	spin_lock(&free_i->segmap_lock);
2485 
2486 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2487 		segno = find_next_zero_bit(free_i->free_segmap,
2488 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2489 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2490 			goto got_it;
2491 	}
2492 find_other_zone:
2493 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2494 	if (secno >= MAIN_SECS(sbi)) {
2495 		if (dir == ALLOC_RIGHT) {
2496 			secno = find_next_zero_bit(free_i->free_secmap,
2497 							MAIN_SECS(sbi), 0);
2498 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2499 		} else {
2500 			go_left = 1;
2501 			left_start = hint - 1;
2502 		}
2503 	}
2504 	if (go_left == 0)
2505 		goto skip_left;
2506 
2507 	while (test_bit(left_start, free_i->free_secmap)) {
2508 		if (left_start > 0) {
2509 			left_start--;
2510 			continue;
2511 		}
2512 		left_start = find_next_zero_bit(free_i->free_secmap,
2513 							MAIN_SECS(sbi), 0);
2514 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2515 		break;
2516 	}
2517 	secno = left_start;
2518 skip_left:
2519 	segno = GET_SEG_FROM_SEC(sbi, secno);
2520 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2521 
2522 	/* give up on finding another zone */
2523 	if (!init)
2524 		goto got_it;
2525 	if (sbi->secs_per_zone == 1)
2526 		goto got_it;
2527 	if (zoneno == old_zoneno)
2528 		goto got_it;
2529 	if (dir == ALLOC_LEFT) {
2530 		if (!go_left && zoneno + 1 >= total_zones)
2531 			goto got_it;
2532 		if (go_left && zoneno == 0)
2533 			goto got_it;
2534 	}
2535 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2536 		if (CURSEG_I(sbi, i)->zone == zoneno)
2537 			break;
2538 
2539 	if (i < NR_CURSEG_TYPE) {
2540 		/* zone is in user, try another */
2541 		if (go_left)
2542 			hint = zoneno * sbi->secs_per_zone - 1;
2543 		else if (zoneno + 1 >= total_zones)
2544 			hint = 0;
2545 		else
2546 			hint = (zoneno + 1) * sbi->secs_per_zone;
2547 		init = false;
2548 		goto find_other_zone;
2549 	}
2550 got_it:
2551 	/* set it as dirty segment in free segmap */
2552 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2553 	__set_inuse(sbi, segno);
2554 	*newseg = segno;
2555 	spin_unlock(&free_i->segmap_lock);
2556 }
2557 
2558 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2559 {
2560 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2561 	struct summary_footer *sum_footer;
2562 	unsigned short seg_type = curseg->seg_type;
2563 
2564 	curseg->inited = true;
2565 	curseg->segno = curseg->next_segno;
2566 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2567 	curseg->next_blkoff = 0;
2568 	curseg->next_segno = NULL_SEGNO;
2569 
2570 	sum_footer = &(curseg->sum_blk->footer);
2571 	memset(sum_footer, 0, sizeof(struct summary_footer));
2572 
2573 	sanity_check_seg_type(sbi, seg_type);
2574 
2575 	if (IS_DATASEG(seg_type))
2576 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2577 	if (IS_NODESEG(seg_type))
2578 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2579 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2580 }
2581 
2582 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2583 {
2584 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2585 	unsigned short seg_type = curseg->seg_type;
2586 
2587 	sanity_check_seg_type(sbi, seg_type);
2588 
2589 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2590 	if (__is_large_section(sbi))
2591 		return curseg->segno;
2592 
2593 	/* inmem log may not locate on any segment after mount */
2594 	if (!curseg->inited)
2595 		return 0;
2596 
2597 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2598 		return 0;
2599 
2600 	if (test_opt(sbi, NOHEAP) &&
2601 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2602 		return 0;
2603 
2604 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2605 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2606 
2607 	/* find segments from 0 to reuse freed segments */
2608 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2609 		return 0;
2610 
2611 	return curseg->segno;
2612 }
2613 
2614 /*
2615  * Allocate a current working segment.
2616  * This function always allocates a free segment in LFS manner.
2617  */
2618 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2619 {
2620 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2621 	unsigned short seg_type = curseg->seg_type;
2622 	unsigned int segno = curseg->segno;
2623 	int dir = ALLOC_LEFT;
2624 
2625 	if (curseg->inited)
2626 		write_sum_page(sbi, curseg->sum_blk,
2627 				GET_SUM_BLOCK(sbi, segno));
2628 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2629 		dir = ALLOC_RIGHT;
2630 
2631 	if (test_opt(sbi, NOHEAP))
2632 		dir = ALLOC_RIGHT;
2633 
2634 	segno = __get_next_segno(sbi, type);
2635 	get_new_segment(sbi, &segno, new_sec, dir);
2636 	curseg->next_segno = segno;
2637 	reset_curseg(sbi, type, 1);
2638 	curseg->alloc_type = LFS;
2639 }
2640 
2641 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2642 					int segno, block_t start)
2643 {
2644 	struct seg_entry *se = get_seg_entry(sbi, segno);
2645 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2646 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2647 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2648 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2649 	int i;
2650 
2651 	for (i = 0; i < entries; i++)
2652 		target_map[i] = ckpt_map[i] | cur_map[i];
2653 
2654 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2655 }
2656 
2657 /*
2658  * If a segment is written by LFS manner, next block offset is just obtained
2659  * by increasing the current block offset. However, if a segment is written by
2660  * SSR manner, next block offset obtained by calling __next_free_blkoff
2661  */
2662 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2663 				struct curseg_info *seg)
2664 {
2665 	if (seg->alloc_type == SSR)
2666 		seg->next_blkoff =
2667 			__next_free_blkoff(sbi, seg->segno,
2668 						seg->next_blkoff + 1);
2669 	else
2670 		seg->next_blkoff++;
2671 }
2672 
2673 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2674 {
2675 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2676 }
2677 
2678 /*
2679  * This function always allocates a used segment(from dirty seglist) by SSR
2680  * manner, so it should recover the existing segment information of valid blocks
2681  */
2682 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2683 {
2684 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2685 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2686 	unsigned int new_segno = curseg->next_segno;
2687 	struct f2fs_summary_block *sum_node;
2688 	struct page *sum_page;
2689 
2690 	if (flush)
2691 		write_sum_page(sbi, curseg->sum_blk,
2692 					GET_SUM_BLOCK(sbi, curseg->segno));
2693 
2694 	__set_test_and_inuse(sbi, new_segno);
2695 
2696 	mutex_lock(&dirty_i->seglist_lock);
2697 	__remove_dirty_segment(sbi, new_segno, PRE);
2698 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2699 	mutex_unlock(&dirty_i->seglist_lock);
2700 
2701 	reset_curseg(sbi, type, 1);
2702 	curseg->alloc_type = SSR;
2703 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2704 
2705 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2706 	if (IS_ERR(sum_page)) {
2707 		/* GC won't be able to use stale summary pages by cp_error */
2708 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2709 		return;
2710 	}
2711 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2712 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2713 	f2fs_put_page(sum_page, 1);
2714 }
2715 
2716 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2717 				int alloc_mode, unsigned long long age);
2718 
2719 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2720 					int target_type, int alloc_mode,
2721 					unsigned long long age)
2722 {
2723 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2724 
2725 	curseg->seg_type = target_type;
2726 
2727 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2728 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2729 
2730 		curseg->seg_type = se->type;
2731 		change_curseg(sbi, type, true);
2732 	} else {
2733 		/* allocate cold segment by default */
2734 		curseg->seg_type = CURSEG_COLD_DATA;
2735 		new_curseg(sbi, type, true);
2736 	}
2737 	stat_inc_seg_type(sbi, curseg);
2738 }
2739 
2740 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2741 {
2742 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2743 
2744 	if (!sbi->am.atgc_enabled)
2745 		return;
2746 
2747 	down_read(&SM_I(sbi)->curseg_lock);
2748 
2749 	mutex_lock(&curseg->curseg_mutex);
2750 	down_write(&SIT_I(sbi)->sentry_lock);
2751 
2752 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2753 
2754 	up_write(&SIT_I(sbi)->sentry_lock);
2755 	mutex_unlock(&curseg->curseg_mutex);
2756 
2757 	up_read(&SM_I(sbi)->curseg_lock);
2758 
2759 }
2760 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2761 {
2762 	__f2fs_init_atgc_curseg(sbi);
2763 }
2764 
2765 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2766 {
2767 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2768 
2769 	mutex_lock(&curseg->curseg_mutex);
2770 	if (!curseg->inited)
2771 		goto out;
2772 
2773 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2774 		write_sum_page(sbi, curseg->sum_blk,
2775 				GET_SUM_BLOCK(sbi, curseg->segno));
2776 	} else {
2777 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2778 		__set_test_and_free(sbi, curseg->segno, true);
2779 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2780 	}
2781 out:
2782 	mutex_unlock(&curseg->curseg_mutex);
2783 }
2784 
2785 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2786 {
2787 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2788 
2789 	if (sbi->am.atgc_enabled)
2790 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2791 }
2792 
2793 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2794 {
2795 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2796 
2797 	mutex_lock(&curseg->curseg_mutex);
2798 	if (!curseg->inited)
2799 		goto out;
2800 	if (get_valid_blocks(sbi, curseg->segno, false))
2801 		goto out;
2802 
2803 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2804 	__set_test_and_inuse(sbi, curseg->segno);
2805 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2806 out:
2807 	mutex_unlock(&curseg->curseg_mutex);
2808 }
2809 
2810 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2811 {
2812 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2813 
2814 	if (sbi->am.atgc_enabled)
2815 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2816 }
2817 
2818 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2819 				int alloc_mode, unsigned long long age)
2820 {
2821 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2822 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2823 	unsigned segno = NULL_SEGNO;
2824 	unsigned short seg_type = curseg->seg_type;
2825 	int i, cnt;
2826 	bool reversed = false;
2827 
2828 	sanity_check_seg_type(sbi, seg_type);
2829 
2830 	/* f2fs_need_SSR() already forces to do this */
2831 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2832 		curseg->next_segno = segno;
2833 		return 1;
2834 	}
2835 
2836 	/* For node segments, let's do SSR more intensively */
2837 	if (IS_NODESEG(seg_type)) {
2838 		if (seg_type >= CURSEG_WARM_NODE) {
2839 			reversed = true;
2840 			i = CURSEG_COLD_NODE;
2841 		} else {
2842 			i = CURSEG_HOT_NODE;
2843 		}
2844 		cnt = NR_CURSEG_NODE_TYPE;
2845 	} else {
2846 		if (seg_type >= CURSEG_WARM_DATA) {
2847 			reversed = true;
2848 			i = CURSEG_COLD_DATA;
2849 		} else {
2850 			i = CURSEG_HOT_DATA;
2851 		}
2852 		cnt = NR_CURSEG_DATA_TYPE;
2853 	}
2854 
2855 	for (; cnt-- > 0; reversed ? i-- : i++) {
2856 		if (i == seg_type)
2857 			continue;
2858 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2859 			curseg->next_segno = segno;
2860 			return 1;
2861 		}
2862 	}
2863 
2864 	/* find valid_blocks=0 in dirty list */
2865 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2866 		segno = get_free_segment(sbi);
2867 		if (segno != NULL_SEGNO) {
2868 			curseg->next_segno = segno;
2869 			return 1;
2870 		}
2871 	}
2872 	return 0;
2873 }
2874 
2875 /*
2876  * flush out current segment and replace it with new segment
2877  * This function should be returned with success, otherwise BUG
2878  */
2879 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2880 						int type, bool force)
2881 {
2882 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2883 
2884 	if (force)
2885 		new_curseg(sbi, type, true);
2886 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2887 					curseg->seg_type == CURSEG_WARM_NODE)
2888 		new_curseg(sbi, type, false);
2889 	else if (curseg->alloc_type == LFS &&
2890 			is_next_segment_free(sbi, curseg, type) &&
2891 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2892 		new_curseg(sbi, type, false);
2893 	else if (f2fs_need_SSR(sbi) &&
2894 			get_ssr_segment(sbi, type, SSR, 0))
2895 		change_curseg(sbi, type, true);
2896 	else
2897 		new_curseg(sbi, type, false);
2898 
2899 	stat_inc_seg_type(sbi, curseg);
2900 }
2901 
2902 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2903 					unsigned int start, unsigned int end)
2904 {
2905 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2906 	unsigned int segno;
2907 
2908 	down_read(&SM_I(sbi)->curseg_lock);
2909 	mutex_lock(&curseg->curseg_mutex);
2910 	down_write(&SIT_I(sbi)->sentry_lock);
2911 
2912 	segno = CURSEG_I(sbi, type)->segno;
2913 	if (segno < start || segno > end)
2914 		goto unlock;
2915 
2916 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2917 		change_curseg(sbi, type, true);
2918 	else
2919 		new_curseg(sbi, type, true);
2920 
2921 	stat_inc_seg_type(sbi, curseg);
2922 
2923 	locate_dirty_segment(sbi, segno);
2924 unlock:
2925 	up_write(&SIT_I(sbi)->sentry_lock);
2926 
2927 	if (segno != curseg->segno)
2928 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
2929 			    type, segno, curseg->segno);
2930 
2931 	mutex_unlock(&curseg->curseg_mutex);
2932 	up_read(&SM_I(sbi)->curseg_lock);
2933 }
2934 
2935 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
2936 						bool new_sec, bool force)
2937 {
2938 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2939 	unsigned int old_segno;
2940 
2941 	if (!curseg->inited)
2942 		goto alloc;
2943 
2944 	if (force || curseg->next_blkoff ||
2945 		get_valid_blocks(sbi, curseg->segno, new_sec))
2946 		goto alloc;
2947 
2948 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
2949 		return;
2950 alloc:
2951 	old_segno = curseg->segno;
2952 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
2953 	locate_dirty_segment(sbi, old_segno);
2954 }
2955 
2956 static void __allocate_new_section(struct f2fs_sb_info *sbi,
2957 						int type, bool force)
2958 {
2959 	__allocate_new_segment(sbi, type, true, force);
2960 }
2961 
2962 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
2963 {
2964 	down_read(&SM_I(sbi)->curseg_lock);
2965 	down_write(&SIT_I(sbi)->sentry_lock);
2966 	__allocate_new_section(sbi, type, force);
2967 	up_write(&SIT_I(sbi)->sentry_lock);
2968 	up_read(&SM_I(sbi)->curseg_lock);
2969 }
2970 
2971 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
2972 {
2973 	int i;
2974 
2975 	down_read(&SM_I(sbi)->curseg_lock);
2976 	down_write(&SIT_I(sbi)->sentry_lock);
2977 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
2978 		__allocate_new_segment(sbi, i, false, false);
2979 	up_write(&SIT_I(sbi)->sentry_lock);
2980 	up_read(&SM_I(sbi)->curseg_lock);
2981 }
2982 
2983 static const struct segment_allocation default_salloc_ops = {
2984 	.allocate_segment = allocate_segment_by_default,
2985 };
2986 
2987 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
2988 						struct cp_control *cpc)
2989 {
2990 	__u64 trim_start = cpc->trim_start;
2991 	bool has_candidate = false;
2992 
2993 	down_write(&SIT_I(sbi)->sentry_lock);
2994 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
2995 		if (add_discard_addrs(sbi, cpc, true)) {
2996 			has_candidate = true;
2997 			break;
2998 		}
2999 	}
3000 	up_write(&SIT_I(sbi)->sentry_lock);
3001 
3002 	cpc->trim_start = trim_start;
3003 	return has_candidate;
3004 }
3005 
3006 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3007 					struct discard_policy *dpolicy,
3008 					unsigned int start, unsigned int end)
3009 {
3010 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3011 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3012 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3013 	struct discard_cmd *dc;
3014 	struct blk_plug plug;
3015 	int issued;
3016 	unsigned int trimmed = 0;
3017 
3018 next:
3019 	issued = 0;
3020 
3021 	mutex_lock(&dcc->cmd_lock);
3022 	if (unlikely(dcc->rbtree_check))
3023 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3024 							&dcc->root, false));
3025 
3026 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3027 					NULL, start,
3028 					(struct rb_entry **)&prev_dc,
3029 					(struct rb_entry **)&next_dc,
3030 					&insert_p, &insert_parent, true, NULL);
3031 	if (!dc)
3032 		dc = next_dc;
3033 
3034 	blk_start_plug(&plug);
3035 
3036 	while (dc && dc->lstart <= end) {
3037 		struct rb_node *node;
3038 		int err = 0;
3039 
3040 		if (dc->len < dpolicy->granularity)
3041 			goto skip;
3042 
3043 		if (dc->state != D_PREP) {
3044 			list_move_tail(&dc->list, &dcc->fstrim_list);
3045 			goto skip;
3046 		}
3047 
3048 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3049 
3050 		if (issued >= dpolicy->max_requests) {
3051 			start = dc->lstart + dc->len;
3052 
3053 			if (err)
3054 				__remove_discard_cmd(sbi, dc);
3055 
3056 			blk_finish_plug(&plug);
3057 			mutex_unlock(&dcc->cmd_lock);
3058 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3059 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3060 			goto next;
3061 		}
3062 skip:
3063 		node = rb_next(&dc->rb_node);
3064 		if (err)
3065 			__remove_discard_cmd(sbi, dc);
3066 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3067 
3068 		if (fatal_signal_pending(current))
3069 			break;
3070 	}
3071 
3072 	blk_finish_plug(&plug);
3073 	mutex_unlock(&dcc->cmd_lock);
3074 
3075 	return trimmed;
3076 }
3077 
3078 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3079 {
3080 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3081 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3082 	unsigned int start_segno, end_segno;
3083 	block_t start_block, end_block;
3084 	struct cp_control cpc;
3085 	struct discard_policy dpolicy;
3086 	unsigned long long trimmed = 0;
3087 	int err = 0;
3088 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3089 
3090 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3091 		return -EINVAL;
3092 
3093 	if (end < MAIN_BLKADDR(sbi))
3094 		goto out;
3095 
3096 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3097 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3098 		return -EFSCORRUPTED;
3099 	}
3100 
3101 	/* start/end segment number in main_area */
3102 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3103 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3104 						GET_SEGNO(sbi, end);
3105 	if (need_align) {
3106 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3107 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3108 	}
3109 
3110 	cpc.reason = CP_DISCARD;
3111 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3112 	cpc.trim_start = start_segno;
3113 	cpc.trim_end = end_segno;
3114 
3115 	if (sbi->discard_blks == 0)
3116 		goto out;
3117 
3118 	down_write(&sbi->gc_lock);
3119 	err = f2fs_write_checkpoint(sbi, &cpc);
3120 	up_write(&sbi->gc_lock);
3121 	if (err)
3122 		goto out;
3123 
3124 	/*
3125 	 * We filed discard candidates, but actually we don't need to wait for
3126 	 * all of them, since they'll be issued in idle time along with runtime
3127 	 * discard option. User configuration looks like using runtime discard
3128 	 * or periodic fstrim instead of it.
3129 	 */
3130 	if (f2fs_realtime_discard_enable(sbi))
3131 		goto out;
3132 
3133 	start_block = START_BLOCK(sbi, start_segno);
3134 	end_block = START_BLOCK(sbi, end_segno + 1);
3135 
3136 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3137 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3138 					start_block, end_block);
3139 
3140 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3141 					start_block, end_block);
3142 out:
3143 	if (!err)
3144 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3145 	return err;
3146 }
3147 
3148 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3149 					struct curseg_info *curseg)
3150 {
3151 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3152 							curseg->segno);
3153 }
3154 
3155 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3156 {
3157 	switch (hint) {
3158 	case WRITE_LIFE_SHORT:
3159 		return CURSEG_HOT_DATA;
3160 	case WRITE_LIFE_EXTREME:
3161 		return CURSEG_COLD_DATA;
3162 	default:
3163 		return CURSEG_WARM_DATA;
3164 	}
3165 }
3166 
3167 /* This returns write hints for each segment type. This hints will be
3168  * passed down to block layer. There are mapping tables which depend on
3169  * the mount option 'whint_mode'.
3170  *
3171  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3172  *
3173  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3174  *
3175  * User                  F2FS                     Block
3176  * ----                  ----                     -----
3177  *                       META                     WRITE_LIFE_NOT_SET
3178  *                       HOT_NODE                 "
3179  *                       WARM_NODE                "
3180  *                       COLD_NODE                "
3181  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3182  * extension list        "                        "
3183  *
3184  * -- buffered io
3185  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3186  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3187  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3188  * WRITE_LIFE_NONE       "                        "
3189  * WRITE_LIFE_MEDIUM     "                        "
3190  * WRITE_LIFE_LONG       "                        "
3191  *
3192  * -- direct io
3193  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3194  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3195  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3196  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3197  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3198  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3199  *
3200  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3201  *
3202  * User                  F2FS                     Block
3203  * ----                  ----                     -----
3204  *                       META                     WRITE_LIFE_MEDIUM;
3205  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3206  *                       WARM_NODE                "
3207  *                       COLD_NODE                WRITE_LIFE_NONE
3208  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3209  * extension list        "                        "
3210  *
3211  * -- buffered io
3212  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3213  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3214  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3215  * WRITE_LIFE_NONE       "                        "
3216  * WRITE_LIFE_MEDIUM     "                        "
3217  * WRITE_LIFE_LONG       "                        "
3218  *
3219  * -- direct io
3220  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3221  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3222  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3223  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3224  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3225  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3226  */
3227 
3228 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3229 				enum page_type type, enum temp_type temp)
3230 {
3231 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3232 		if (type == DATA) {
3233 			if (temp == WARM)
3234 				return WRITE_LIFE_NOT_SET;
3235 			else if (temp == HOT)
3236 				return WRITE_LIFE_SHORT;
3237 			else if (temp == COLD)
3238 				return WRITE_LIFE_EXTREME;
3239 		} else {
3240 			return WRITE_LIFE_NOT_SET;
3241 		}
3242 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3243 		if (type == DATA) {
3244 			if (temp == WARM)
3245 				return WRITE_LIFE_LONG;
3246 			else if (temp == HOT)
3247 				return WRITE_LIFE_SHORT;
3248 			else if (temp == COLD)
3249 				return WRITE_LIFE_EXTREME;
3250 		} else if (type == NODE) {
3251 			if (temp == WARM || temp == HOT)
3252 				return WRITE_LIFE_NOT_SET;
3253 			else if (temp == COLD)
3254 				return WRITE_LIFE_NONE;
3255 		} else if (type == META) {
3256 			return WRITE_LIFE_MEDIUM;
3257 		}
3258 	}
3259 	return WRITE_LIFE_NOT_SET;
3260 }
3261 
3262 static int __get_segment_type_2(struct f2fs_io_info *fio)
3263 {
3264 	if (fio->type == DATA)
3265 		return CURSEG_HOT_DATA;
3266 	else
3267 		return CURSEG_HOT_NODE;
3268 }
3269 
3270 static int __get_segment_type_4(struct f2fs_io_info *fio)
3271 {
3272 	if (fio->type == DATA) {
3273 		struct inode *inode = fio->page->mapping->host;
3274 
3275 		if (S_ISDIR(inode->i_mode))
3276 			return CURSEG_HOT_DATA;
3277 		else
3278 			return CURSEG_COLD_DATA;
3279 	} else {
3280 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3281 			return CURSEG_WARM_NODE;
3282 		else
3283 			return CURSEG_COLD_NODE;
3284 	}
3285 }
3286 
3287 static int __get_segment_type_6(struct f2fs_io_info *fio)
3288 {
3289 	if (fio->type == DATA) {
3290 		struct inode *inode = fio->page->mapping->host;
3291 
3292 		if (is_cold_data(fio->page)) {
3293 			if (fio->sbi->am.atgc_enabled &&
3294 				(fio->io_type == FS_DATA_IO) &&
3295 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3296 				return CURSEG_ALL_DATA_ATGC;
3297 			else
3298 				return CURSEG_COLD_DATA;
3299 		}
3300 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3301 			return CURSEG_COLD_DATA;
3302 		if (file_is_hot(inode) ||
3303 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3304 				f2fs_is_atomic_file(inode) ||
3305 				f2fs_is_volatile_file(inode))
3306 			return CURSEG_HOT_DATA;
3307 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3308 	} else {
3309 		if (IS_DNODE(fio->page))
3310 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3311 						CURSEG_HOT_NODE;
3312 		return CURSEG_COLD_NODE;
3313 	}
3314 }
3315 
3316 static int __get_segment_type(struct f2fs_io_info *fio)
3317 {
3318 	int type = 0;
3319 
3320 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3321 	case 2:
3322 		type = __get_segment_type_2(fio);
3323 		break;
3324 	case 4:
3325 		type = __get_segment_type_4(fio);
3326 		break;
3327 	case 6:
3328 		type = __get_segment_type_6(fio);
3329 		break;
3330 	default:
3331 		f2fs_bug_on(fio->sbi, true);
3332 	}
3333 
3334 	if (IS_HOT(type))
3335 		fio->temp = HOT;
3336 	else if (IS_WARM(type))
3337 		fio->temp = WARM;
3338 	else
3339 		fio->temp = COLD;
3340 	return type;
3341 }
3342 
3343 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3344 		block_t old_blkaddr, block_t *new_blkaddr,
3345 		struct f2fs_summary *sum, int type,
3346 		struct f2fs_io_info *fio)
3347 {
3348 	struct sit_info *sit_i = SIT_I(sbi);
3349 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3350 	unsigned long long old_mtime;
3351 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3352 	struct seg_entry *se = NULL;
3353 
3354 	down_read(&SM_I(sbi)->curseg_lock);
3355 
3356 	mutex_lock(&curseg->curseg_mutex);
3357 	down_write(&sit_i->sentry_lock);
3358 
3359 	if (from_gc) {
3360 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3361 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3362 		sanity_check_seg_type(sbi, se->type);
3363 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3364 	}
3365 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3366 
3367 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3368 
3369 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3370 
3371 	/*
3372 	 * __add_sum_entry should be resided under the curseg_mutex
3373 	 * because, this function updates a summary entry in the
3374 	 * current summary block.
3375 	 */
3376 	__add_sum_entry(sbi, type, sum);
3377 
3378 	__refresh_next_blkoff(sbi, curseg);
3379 
3380 	stat_inc_block_count(sbi, curseg);
3381 
3382 	if (from_gc) {
3383 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3384 	} else {
3385 		update_segment_mtime(sbi, old_blkaddr, 0);
3386 		old_mtime = 0;
3387 	}
3388 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3389 
3390 	/*
3391 	 * SIT information should be updated before segment allocation,
3392 	 * since SSR needs latest valid block information.
3393 	 */
3394 	update_sit_entry(sbi, *new_blkaddr, 1);
3395 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3396 		update_sit_entry(sbi, old_blkaddr, -1);
3397 
3398 	if (!__has_curseg_space(sbi, curseg)) {
3399 		if (from_gc)
3400 			get_atssr_segment(sbi, type, se->type,
3401 						AT_SSR, se->mtime);
3402 		else
3403 			sit_i->s_ops->allocate_segment(sbi, type, false);
3404 	}
3405 	/*
3406 	 * segment dirty status should be updated after segment allocation,
3407 	 * so we just need to update status only one time after previous
3408 	 * segment being closed.
3409 	 */
3410 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3411 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3412 
3413 	up_write(&sit_i->sentry_lock);
3414 
3415 	if (page && IS_NODESEG(type)) {
3416 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3417 
3418 		f2fs_inode_chksum_set(sbi, page);
3419 	}
3420 
3421 	if (fio) {
3422 		struct f2fs_bio_info *io;
3423 
3424 		if (F2FS_IO_ALIGNED(sbi))
3425 			fio->retry = false;
3426 
3427 		INIT_LIST_HEAD(&fio->list);
3428 		fio->in_list = true;
3429 		io = sbi->write_io[fio->type] + fio->temp;
3430 		spin_lock(&io->io_lock);
3431 		list_add_tail(&fio->list, &io->io_list);
3432 		spin_unlock(&io->io_lock);
3433 	}
3434 
3435 	mutex_unlock(&curseg->curseg_mutex);
3436 
3437 	up_read(&SM_I(sbi)->curseg_lock);
3438 }
3439 
3440 static void update_device_state(struct f2fs_io_info *fio)
3441 {
3442 	struct f2fs_sb_info *sbi = fio->sbi;
3443 	unsigned int devidx;
3444 
3445 	if (!f2fs_is_multi_device(sbi))
3446 		return;
3447 
3448 	devidx = f2fs_target_device_index(sbi, fio->new_blkaddr);
3449 
3450 	/* update device state for fsync */
3451 	f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO);
3452 
3453 	/* update device state for checkpoint */
3454 	if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3455 		spin_lock(&sbi->dev_lock);
3456 		f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3457 		spin_unlock(&sbi->dev_lock);
3458 	}
3459 }
3460 
3461 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3462 {
3463 	int type = __get_segment_type(fio);
3464 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3465 
3466 	if (keep_order)
3467 		down_read(&fio->sbi->io_order_lock);
3468 reallocate:
3469 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3470 			&fio->new_blkaddr, sum, type, fio);
3471 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3472 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3473 					fio->old_blkaddr, fio->old_blkaddr);
3474 
3475 	/* writeout dirty page into bdev */
3476 	f2fs_submit_page_write(fio);
3477 	if (fio->retry) {
3478 		fio->old_blkaddr = fio->new_blkaddr;
3479 		goto reallocate;
3480 	}
3481 
3482 	update_device_state(fio);
3483 
3484 	if (keep_order)
3485 		up_read(&fio->sbi->io_order_lock);
3486 }
3487 
3488 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3489 					enum iostat_type io_type)
3490 {
3491 	struct f2fs_io_info fio = {
3492 		.sbi = sbi,
3493 		.type = META,
3494 		.temp = HOT,
3495 		.op = REQ_OP_WRITE,
3496 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3497 		.old_blkaddr = page->index,
3498 		.new_blkaddr = page->index,
3499 		.page = page,
3500 		.encrypted_page = NULL,
3501 		.in_list = false,
3502 	};
3503 
3504 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3505 		fio.op_flags &= ~REQ_META;
3506 
3507 	set_page_writeback(page);
3508 	ClearPageError(page);
3509 	f2fs_submit_page_write(&fio);
3510 
3511 	stat_inc_meta_count(sbi, page->index);
3512 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3513 }
3514 
3515 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3516 {
3517 	struct f2fs_summary sum;
3518 
3519 	set_summary(&sum, nid, 0, 0);
3520 	do_write_page(&sum, fio);
3521 
3522 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3523 }
3524 
3525 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3526 					struct f2fs_io_info *fio)
3527 {
3528 	struct f2fs_sb_info *sbi = fio->sbi;
3529 	struct f2fs_summary sum;
3530 
3531 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3532 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3533 	do_write_page(&sum, fio);
3534 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3535 
3536 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3537 }
3538 
3539 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3540 {
3541 	int err;
3542 	struct f2fs_sb_info *sbi = fio->sbi;
3543 	unsigned int segno;
3544 
3545 	fio->new_blkaddr = fio->old_blkaddr;
3546 	/* i/o temperature is needed for passing down write hints */
3547 	__get_segment_type(fio);
3548 
3549 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3550 
3551 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3552 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3553 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3554 			  __func__, segno);
3555 		err = -EFSCORRUPTED;
3556 		goto drop_bio;
3557 	}
3558 
3559 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) || f2fs_cp_error(sbi)) {
3560 		err = -EIO;
3561 		goto drop_bio;
3562 	}
3563 
3564 	stat_inc_inplace_blocks(fio->sbi);
3565 
3566 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3567 		err = f2fs_merge_page_bio(fio);
3568 	else
3569 		err = f2fs_submit_page_bio(fio);
3570 	if (!err) {
3571 		update_device_state(fio);
3572 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3573 	}
3574 
3575 	return err;
3576 drop_bio:
3577 	if (fio->bio && *(fio->bio)) {
3578 		struct bio *bio = *(fio->bio);
3579 
3580 		bio->bi_status = BLK_STS_IOERR;
3581 		bio_endio(bio);
3582 		*(fio->bio) = NULL;
3583 	}
3584 	return err;
3585 }
3586 
3587 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3588 						unsigned int segno)
3589 {
3590 	int i;
3591 
3592 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3593 		if (CURSEG_I(sbi, i)->segno == segno)
3594 			break;
3595 	}
3596 	return i;
3597 }
3598 
3599 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3600 				block_t old_blkaddr, block_t new_blkaddr,
3601 				bool recover_curseg, bool recover_newaddr,
3602 				bool from_gc)
3603 {
3604 	struct sit_info *sit_i = SIT_I(sbi);
3605 	struct curseg_info *curseg;
3606 	unsigned int segno, old_cursegno;
3607 	struct seg_entry *se;
3608 	int type;
3609 	unsigned short old_blkoff;
3610 	unsigned char old_alloc_type;
3611 
3612 	segno = GET_SEGNO(sbi, new_blkaddr);
3613 	se = get_seg_entry(sbi, segno);
3614 	type = se->type;
3615 
3616 	down_write(&SM_I(sbi)->curseg_lock);
3617 
3618 	if (!recover_curseg) {
3619 		/* for recovery flow */
3620 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3621 			if (old_blkaddr == NULL_ADDR)
3622 				type = CURSEG_COLD_DATA;
3623 			else
3624 				type = CURSEG_WARM_DATA;
3625 		}
3626 	} else {
3627 		if (IS_CURSEG(sbi, segno)) {
3628 			/* se->type is volatile as SSR allocation */
3629 			type = __f2fs_get_curseg(sbi, segno);
3630 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3631 		} else {
3632 			type = CURSEG_WARM_DATA;
3633 		}
3634 	}
3635 
3636 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3637 	curseg = CURSEG_I(sbi, type);
3638 
3639 	mutex_lock(&curseg->curseg_mutex);
3640 	down_write(&sit_i->sentry_lock);
3641 
3642 	old_cursegno = curseg->segno;
3643 	old_blkoff = curseg->next_blkoff;
3644 	old_alloc_type = curseg->alloc_type;
3645 
3646 	/* change the current segment */
3647 	if (segno != curseg->segno) {
3648 		curseg->next_segno = segno;
3649 		change_curseg(sbi, type, true);
3650 	}
3651 
3652 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3653 	__add_sum_entry(sbi, type, sum);
3654 
3655 	if (!recover_curseg || recover_newaddr) {
3656 		if (!from_gc)
3657 			update_segment_mtime(sbi, new_blkaddr, 0);
3658 		update_sit_entry(sbi, new_blkaddr, 1);
3659 	}
3660 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3661 		invalidate_mapping_pages(META_MAPPING(sbi),
3662 					old_blkaddr, old_blkaddr);
3663 		if (!from_gc)
3664 			update_segment_mtime(sbi, old_blkaddr, 0);
3665 		update_sit_entry(sbi, old_blkaddr, -1);
3666 	}
3667 
3668 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3669 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3670 
3671 	locate_dirty_segment(sbi, old_cursegno);
3672 
3673 	if (recover_curseg) {
3674 		if (old_cursegno != curseg->segno) {
3675 			curseg->next_segno = old_cursegno;
3676 			change_curseg(sbi, type, true);
3677 		}
3678 		curseg->next_blkoff = old_blkoff;
3679 		curseg->alloc_type = old_alloc_type;
3680 	}
3681 
3682 	up_write(&sit_i->sentry_lock);
3683 	mutex_unlock(&curseg->curseg_mutex);
3684 	up_write(&SM_I(sbi)->curseg_lock);
3685 }
3686 
3687 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3688 				block_t old_addr, block_t new_addr,
3689 				unsigned char version, bool recover_curseg,
3690 				bool recover_newaddr)
3691 {
3692 	struct f2fs_summary sum;
3693 
3694 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3695 
3696 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3697 					recover_curseg, recover_newaddr, false);
3698 
3699 	f2fs_update_data_blkaddr(dn, new_addr);
3700 }
3701 
3702 void f2fs_wait_on_page_writeback(struct page *page,
3703 				enum page_type type, bool ordered, bool locked)
3704 {
3705 	if (PageWriteback(page)) {
3706 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3707 
3708 		/* submit cached LFS IO */
3709 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3710 		/* sbumit cached IPU IO */
3711 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3712 		if (ordered) {
3713 			wait_on_page_writeback(page);
3714 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3715 		} else {
3716 			wait_for_stable_page(page);
3717 		}
3718 	}
3719 }
3720 
3721 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3722 {
3723 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3724 	struct page *cpage;
3725 
3726 	if (!f2fs_post_read_required(inode))
3727 		return;
3728 
3729 	if (!__is_valid_data_blkaddr(blkaddr))
3730 		return;
3731 
3732 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3733 	if (cpage) {
3734 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3735 		f2fs_put_page(cpage, 1);
3736 	}
3737 }
3738 
3739 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3740 								block_t len)
3741 {
3742 	block_t i;
3743 
3744 	for (i = 0; i < len; i++)
3745 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3746 }
3747 
3748 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3749 {
3750 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3751 	struct curseg_info *seg_i;
3752 	unsigned char *kaddr;
3753 	struct page *page;
3754 	block_t start;
3755 	int i, j, offset;
3756 
3757 	start = start_sum_block(sbi);
3758 
3759 	page = f2fs_get_meta_page(sbi, start++);
3760 	if (IS_ERR(page))
3761 		return PTR_ERR(page);
3762 	kaddr = (unsigned char *)page_address(page);
3763 
3764 	/* Step 1: restore nat cache */
3765 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3766 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3767 
3768 	/* Step 2: restore sit cache */
3769 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3770 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3771 	offset = 2 * SUM_JOURNAL_SIZE;
3772 
3773 	/* Step 3: restore summary entries */
3774 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3775 		unsigned short blk_off;
3776 		unsigned int segno;
3777 
3778 		seg_i = CURSEG_I(sbi, i);
3779 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3780 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3781 		seg_i->next_segno = segno;
3782 		reset_curseg(sbi, i, 0);
3783 		seg_i->alloc_type = ckpt->alloc_type[i];
3784 		seg_i->next_blkoff = blk_off;
3785 
3786 		if (seg_i->alloc_type == SSR)
3787 			blk_off = sbi->blocks_per_seg;
3788 
3789 		for (j = 0; j < blk_off; j++) {
3790 			struct f2fs_summary *s;
3791 
3792 			s = (struct f2fs_summary *)(kaddr + offset);
3793 			seg_i->sum_blk->entries[j] = *s;
3794 			offset += SUMMARY_SIZE;
3795 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3796 						SUM_FOOTER_SIZE)
3797 				continue;
3798 
3799 			f2fs_put_page(page, 1);
3800 			page = NULL;
3801 
3802 			page = f2fs_get_meta_page(sbi, start++);
3803 			if (IS_ERR(page))
3804 				return PTR_ERR(page);
3805 			kaddr = (unsigned char *)page_address(page);
3806 			offset = 0;
3807 		}
3808 	}
3809 	f2fs_put_page(page, 1);
3810 	return 0;
3811 }
3812 
3813 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3814 {
3815 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3816 	struct f2fs_summary_block *sum;
3817 	struct curseg_info *curseg;
3818 	struct page *new;
3819 	unsigned short blk_off;
3820 	unsigned int segno = 0;
3821 	block_t blk_addr = 0;
3822 	int err = 0;
3823 
3824 	/* get segment number and block addr */
3825 	if (IS_DATASEG(type)) {
3826 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3827 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3828 							CURSEG_HOT_DATA]);
3829 		if (__exist_node_summaries(sbi))
3830 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3831 		else
3832 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3833 	} else {
3834 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3835 							CURSEG_HOT_NODE]);
3836 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3837 							CURSEG_HOT_NODE]);
3838 		if (__exist_node_summaries(sbi))
3839 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3840 							type - CURSEG_HOT_NODE);
3841 		else
3842 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3843 	}
3844 
3845 	new = f2fs_get_meta_page(sbi, blk_addr);
3846 	if (IS_ERR(new))
3847 		return PTR_ERR(new);
3848 	sum = (struct f2fs_summary_block *)page_address(new);
3849 
3850 	if (IS_NODESEG(type)) {
3851 		if (__exist_node_summaries(sbi)) {
3852 			struct f2fs_summary *ns = &sum->entries[0];
3853 			int i;
3854 
3855 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3856 				ns->version = 0;
3857 				ns->ofs_in_node = 0;
3858 			}
3859 		} else {
3860 			err = f2fs_restore_node_summary(sbi, segno, sum);
3861 			if (err)
3862 				goto out;
3863 		}
3864 	}
3865 
3866 	/* set uncompleted segment to curseg */
3867 	curseg = CURSEG_I(sbi, type);
3868 	mutex_lock(&curseg->curseg_mutex);
3869 
3870 	/* update journal info */
3871 	down_write(&curseg->journal_rwsem);
3872 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3873 	up_write(&curseg->journal_rwsem);
3874 
3875 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3876 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3877 	curseg->next_segno = segno;
3878 	reset_curseg(sbi, type, 0);
3879 	curseg->alloc_type = ckpt->alloc_type[type];
3880 	curseg->next_blkoff = blk_off;
3881 	mutex_unlock(&curseg->curseg_mutex);
3882 out:
3883 	f2fs_put_page(new, 1);
3884 	return err;
3885 }
3886 
3887 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3888 {
3889 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3890 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3891 	int type = CURSEG_HOT_DATA;
3892 	int err;
3893 
3894 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3895 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3896 
3897 		if (npages >= 2)
3898 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3899 							META_CP, true);
3900 
3901 		/* restore for compacted data summary */
3902 		err = read_compacted_summaries(sbi);
3903 		if (err)
3904 			return err;
3905 		type = CURSEG_HOT_NODE;
3906 	}
3907 
3908 	if (__exist_node_summaries(sbi))
3909 		f2fs_ra_meta_pages(sbi,
3910 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
3911 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
3912 
3913 	for (; type <= CURSEG_COLD_NODE; type++) {
3914 		err = read_normal_summaries(sbi, type);
3915 		if (err)
3916 			return err;
3917 	}
3918 
3919 	/* sanity check for summary blocks */
3920 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
3921 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
3922 		f2fs_err(sbi, "invalid journal entries nats %u sits %u\n",
3923 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
3924 		return -EINVAL;
3925 	}
3926 
3927 	return 0;
3928 }
3929 
3930 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
3931 {
3932 	struct page *page;
3933 	unsigned char *kaddr;
3934 	struct f2fs_summary *summary;
3935 	struct curseg_info *seg_i;
3936 	int written_size = 0;
3937 	int i, j;
3938 
3939 	page = f2fs_grab_meta_page(sbi, blkaddr++);
3940 	kaddr = (unsigned char *)page_address(page);
3941 	memset(kaddr, 0, PAGE_SIZE);
3942 
3943 	/* Step 1: write nat cache */
3944 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3945 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
3946 	written_size += SUM_JOURNAL_SIZE;
3947 
3948 	/* Step 2: write sit cache */
3949 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3950 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
3951 	written_size += SUM_JOURNAL_SIZE;
3952 
3953 	/* Step 3: write summary entries */
3954 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3955 		unsigned short blkoff;
3956 
3957 		seg_i = CURSEG_I(sbi, i);
3958 		if (sbi->ckpt->alloc_type[i] == SSR)
3959 			blkoff = sbi->blocks_per_seg;
3960 		else
3961 			blkoff = curseg_blkoff(sbi, i);
3962 
3963 		for (j = 0; j < blkoff; j++) {
3964 			if (!page) {
3965 				page = f2fs_grab_meta_page(sbi, blkaddr++);
3966 				kaddr = (unsigned char *)page_address(page);
3967 				memset(kaddr, 0, PAGE_SIZE);
3968 				written_size = 0;
3969 			}
3970 			summary = (struct f2fs_summary *)(kaddr + written_size);
3971 			*summary = seg_i->sum_blk->entries[j];
3972 			written_size += SUMMARY_SIZE;
3973 
3974 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
3975 							SUM_FOOTER_SIZE)
3976 				continue;
3977 
3978 			set_page_dirty(page);
3979 			f2fs_put_page(page, 1);
3980 			page = NULL;
3981 		}
3982 	}
3983 	if (page) {
3984 		set_page_dirty(page);
3985 		f2fs_put_page(page, 1);
3986 	}
3987 }
3988 
3989 static void write_normal_summaries(struct f2fs_sb_info *sbi,
3990 					block_t blkaddr, int type)
3991 {
3992 	int i, end;
3993 
3994 	if (IS_DATASEG(type))
3995 		end = type + NR_CURSEG_DATA_TYPE;
3996 	else
3997 		end = type + NR_CURSEG_NODE_TYPE;
3998 
3999 	for (i = type; i < end; i++)
4000 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4001 }
4002 
4003 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4004 {
4005 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4006 		write_compacted_summaries(sbi, start_blk);
4007 	else
4008 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4009 }
4010 
4011 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4012 {
4013 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4014 }
4015 
4016 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4017 					unsigned int val, int alloc)
4018 {
4019 	int i;
4020 
4021 	if (type == NAT_JOURNAL) {
4022 		for (i = 0; i < nats_in_cursum(journal); i++) {
4023 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4024 				return i;
4025 		}
4026 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4027 			return update_nats_in_cursum(journal, 1);
4028 	} else if (type == SIT_JOURNAL) {
4029 		for (i = 0; i < sits_in_cursum(journal); i++)
4030 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4031 				return i;
4032 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4033 			return update_sits_in_cursum(journal, 1);
4034 	}
4035 	return -1;
4036 }
4037 
4038 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4039 					unsigned int segno)
4040 {
4041 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4042 }
4043 
4044 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4045 					unsigned int start)
4046 {
4047 	struct sit_info *sit_i = SIT_I(sbi);
4048 	struct page *page;
4049 	pgoff_t src_off, dst_off;
4050 
4051 	src_off = current_sit_addr(sbi, start);
4052 	dst_off = next_sit_addr(sbi, src_off);
4053 
4054 	page = f2fs_grab_meta_page(sbi, dst_off);
4055 	seg_info_to_sit_page(sbi, page, start);
4056 
4057 	set_page_dirty(page);
4058 	set_to_next_sit(sit_i, start);
4059 
4060 	return page;
4061 }
4062 
4063 static struct sit_entry_set *grab_sit_entry_set(void)
4064 {
4065 	struct sit_entry_set *ses =
4066 			f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS);
4067 
4068 	ses->entry_cnt = 0;
4069 	INIT_LIST_HEAD(&ses->set_list);
4070 	return ses;
4071 }
4072 
4073 static void release_sit_entry_set(struct sit_entry_set *ses)
4074 {
4075 	list_del(&ses->set_list);
4076 	kmem_cache_free(sit_entry_set_slab, ses);
4077 }
4078 
4079 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4080 						struct list_head *head)
4081 {
4082 	struct sit_entry_set *next = ses;
4083 
4084 	if (list_is_last(&ses->set_list, head))
4085 		return;
4086 
4087 	list_for_each_entry_continue(next, head, set_list)
4088 		if (ses->entry_cnt <= next->entry_cnt)
4089 			break;
4090 
4091 	list_move_tail(&ses->set_list, &next->set_list);
4092 }
4093 
4094 static void add_sit_entry(unsigned int segno, struct list_head *head)
4095 {
4096 	struct sit_entry_set *ses;
4097 	unsigned int start_segno = START_SEGNO(segno);
4098 
4099 	list_for_each_entry(ses, head, set_list) {
4100 		if (ses->start_segno == start_segno) {
4101 			ses->entry_cnt++;
4102 			adjust_sit_entry_set(ses, head);
4103 			return;
4104 		}
4105 	}
4106 
4107 	ses = grab_sit_entry_set();
4108 
4109 	ses->start_segno = start_segno;
4110 	ses->entry_cnt++;
4111 	list_add(&ses->set_list, head);
4112 }
4113 
4114 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4115 {
4116 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4117 	struct list_head *set_list = &sm_info->sit_entry_set;
4118 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4119 	unsigned int segno;
4120 
4121 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4122 		add_sit_entry(segno, set_list);
4123 }
4124 
4125 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4126 {
4127 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4128 	struct f2fs_journal *journal = curseg->journal;
4129 	int i;
4130 
4131 	down_write(&curseg->journal_rwsem);
4132 	for (i = 0; i < sits_in_cursum(journal); i++) {
4133 		unsigned int segno;
4134 		bool dirtied;
4135 
4136 		segno = le32_to_cpu(segno_in_journal(journal, i));
4137 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4138 
4139 		if (!dirtied)
4140 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4141 	}
4142 	update_sits_in_cursum(journal, -i);
4143 	up_write(&curseg->journal_rwsem);
4144 }
4145 
4146 /*
4147  * CP calls this function, which flushes SIT entries including sit_journal,
4148  * and moves prefree segs to free segs.
4149  */
4150 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4151 {
4152 	struct sit_info *sit_i = SIT_I(sbi);
4153 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4154 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4155 	struct f2fs_journal *journal = curseg->journal;
4156 	struct sit_entry_set *ses, *tmp;
4157 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4158 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4159 	struct seg_entry *se;
4160 
4161 	down_write(&sit_i->sentry_lock);
4162 
4163 	if (!sit_i->dirty_sentries)
4164 		goto out;
4165 
4166 	/*
4167 	 * add and account sit entries of dirty bitmap in sit entry
4168 	 * set temporarily
4169 	 */
4170 	add_sits_in_set(sbi);
4171 
4172 	/*
4173 	 * if there are no enough space in journal to store dirty sit
4174 	 * entries, remove all entries from journal and add and account
4175 	 * them in sit entry set.
4176 	 */
4177 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4178 								!to_journal)
4179 		remove_sits_in_journal(sbi);
4180 
4181 	/*
4182 	 * there are two steps to flush sit entries:
4183 	 * #1, flush sit entries to journal in current cold data summary block.
4184 	 * #2, flush sit entries to sit page.
4185 	 */
4186 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4187 		struct page *page = NULL;
4188 		struct f2fs_sit_block *raw_sit = NULL;
4189 		unsigned int start_segno = ses->start_segno;
4190 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4191 						(unsigned long)MAIN_SEGS(sbi));
4192 		unsigned int segno = start_segno;
4193 
4194 		if (to_journal &&
4195 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4196 			to_journal = false;
4197 
4198 		if (to_journal) {
4199 			down_write(&curseg->journal_rwsem);
4200 		} else {
4201 			page = get_next_sit_page(sbi, start_segno);
4202 			raw_sit = page_address(page);
4203 		}
4204 
4205 		/* flush dirty sit entries in region of current sit set */
4206 		for_each_set_bit_from(segno, bitmap, end) {
4207 			int offset, sit_offset;
4208 
4209 			se = get_seg_entry(sbi, segno);
4210 #ifdef CONFIG_F2FS_CHECK_FS
4211 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4212 						SIT_VBLOCK_MAP_SIZE))
4213 				f2fs_bug_on(sbi, 1);
4214 #endif
4215 
4216 			/* add discard candidates */
4217 			if (!(cpc->reason & CP_DISCARD)) {
4218 				cpc->trim_start = segno;
4219 				add_discard_addrs(sbi, cpc, false);
4220 			}
4221 
4222 			if (to_journal) {
4223 				offset = f2fs_lookup_journal_in_cursum(journal,
4224 							SIT_JOURNAL, segno, 1);
4225 				f2fs_bug_on(sbi, offset < 0);
4226 				segno_in_journal(journal, offset) =
4227 							cpu_to_le32(segno);
4228 				seg_info_to_raw_sit(se,
4229 					&sit_in_journal(journal, offset));
4230 				check_block_count(sbi, segno,
4231 					&sit_in_journal(journal, offset));
4232 			} else {
4233 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4234 				seg_info_to_raw_sit(se,
4235 						&raw_sit->entries[sit_offset]);
4236 				check_block_count(sbi, segno,
4237 						&raw_sit->entries[sit_offset]);
4238 			}
4239 
4240 			__clear_bit(segno, bitmap);
4241 			sit_i->dirty_sentries--;
4242 			ses->entry_cnt--;
4243 		}
4244 
4245 		if (to_journal)
4246 			up_write(&curseg->journal_rwsem);
4247 		else
4248 			f2fs_put_page(page, 1);
4249 
4250 		f2fs_bug_on(sbi, ses->entry_cnt);
4251 		release_sit_entry_set(ses);
4252 	}
4253 
4254 	f2fs_bug_on(sbi, !list_empty(head));
4255 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4256 out:
4257 	if (cpc->reason & CP_DISCARD) {
4258 		__u64 trim_start = cpc->trim_start;
4259 
4260 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4261 			add_discard_addrs(sbi, cpc, false);
4262 
4263 		cpc->trim_start = trim_start;
4264 	}
4265 	up_write(&sit_i->sentry_lock);
4266 
4267 	set_prefree_as_free_segments(sbi);
4268 }
4269 
4270 static int build_sit_info(struct f2fs_sb_info *sbi)
4271 {
4272 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4273 	struct sit_info *sit_i;
4274 	unsigned int sit_segs, start;
4275 	char *src_bitmap, *bitmap;
4276 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4277 
4278 	/* allocate memory for SIT information */
4279 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4280 	if (!sit_i)
4281 		return -ENOMEM;
4282 
4283 	SM_I(sbi)->sit_info = sit_i;
4284 
4285 	sit_i->sentries =
4286 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4287 					      MAIN_SEGS(sbi)),
4288 			      GFP_KERNEL);
4289 	if (!sit_i->sentries)
4290 		return -ENOMEM;
4291 
4292 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4293 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4294 								GFP_KERNEL);
4295 	if (!sit_i->dirty_sentries_bitmap)
4296 		return -ENOMEM;
4297 
4298 #ifdef CONFIG_F2FS_CHECK_FS
4299 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 4;
4300 #else
4301 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * 3;
4302 #endif
4303 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4304 	if (!sit_i->bitmap)
4305 		return -ENOMEM;
4306 
4307 	bitmap = sit_i->bitmap;
4308 
4309 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4310 		sit_i->sentries[start].cur_valid_map = bitmap;
4311 		bitmap += SIT_VBLOCK_MAP_SIZE;
4312 
4313 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4314 		bitmap += SIT_VBLOCK_MAP_SIZE;
4315 
4316 #ifdef CONFIG_F2FS_CHECK_FS
4317 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4318 		bitmap += SIT_VBLOCK_MAP_SIZE;
4319 #endif
4320 
4321 		sit_i->sentries[start].discard_map = bitmap;
4322 		bitmap += SIT_VBLOCK_MAP_SIZE;
4323 	}
4324 
4325 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4326 	if (!sit_i->tmp_map)
4327 		return -ENOMEM;
4328 
4329 	if (__is_large_section(sbi)) {
4330 		sit_i->sec_entries =
4331 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4332 						      MAIN_SECS(sbi)),
4333 				      GFP_KERNEL);
4334 		if (!sit_i->sec_entries)
4335 			return -ENOMEM;
4336 	}
4337 
4338 	/* get information related with SIT */
4339 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4340 
4341 	/* setup SIT bitmap from ckeckpoint pack */
4342 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4343 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4344 
4345 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4346 	if (!sit_i->sit_bitmap)
4347 		return -ENOMEM;
4348 
4349 #ifdef CONFIG_F2FS_CHECK_FS
4350 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4351 					sit_bitmap_size, GFP_KERNEL);
4352 	if (!sit_i->sit_bitmap_mir)
4353 		return -ENOMEM;
4354 
4355 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4356 					main_bitmap_size, GFP_KERNEL);
4357 	if (!sit_i->invalid_segmap)
4358 		return -ENOMEM;
4359 #endif
4360 
4361 	/* init SIT information */
4362 	sit_i->s_ops = &default_salloc_ops;
4363 
4364 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4365 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4366 	sit_i->written_valid_blocks = 0;
4367 	sit_i->bitmap_size = sit_bitmap_size;
4368 	sit_i->dirty_sentries = 0;
4369 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4370 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4371 	sit_i->mounted_time = ktime_get_boottime_seconds();
4372 	init_rwsem(&sit_i->sentry_lock);
4373 	return 0;
4374 }
4375 
4376 static int build_free_segmap(struct f2fs_sb_info *sbi)
4377 {
4378 	struct free_segmap_info *free_i;
4379 	unsigned int bitmap_size, sec_bitmap_size;
4380 
4381 	/* allocate memory for free segmap information */
4382 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4383 	if (!free_i)
4384 		return -ENOMEM;
4385 
4386 	SM_I(sbi)->free_info = free_i;
4387 
4388 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4389 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4390 	if (!free_i->free_segmap)
4391 		return -ENOMEM;
4392 
4393 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4394 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4395 	if (!free_i->free_secmap)
4396 		return -ENOMEM;
4397 
4398 	/* set all segments as dirty temporarily */
4399 	memset(free_i->free_segmap, 0xff, bitmap_size);
4400 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4401 
4402 	/* init free segmap information */
4403 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4404 	free_i->free_segments = 0;
4405 	free_i->free_sections = 0;
4406 	spin_lock_init(&free_i->segmap_lock);
4407 	return 0;
4408 }
4409 
4410 static int build_curseg(struct f2fs_sb_info *sbi)
4411 {
4412 	struct curseg_info *array;
4413 	int i;
4414 
4415 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4416 					sizeof(*array)), GFP_KERNEL);
4417 	if (!array)
4418 		return -ENOMEM;
4419 
4420 	SM_I(sbi)->curseg_array = array;
4421 
4422 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4423 		mutex_init(&array[i].curseg_mutex);
4424 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4425 		if (!array[i].sum_blk)
4426 			return -ENOMEM;
4427 		init_rwsem(&array[i].journal_rwsem);
4428 		array[i].journal = f2fs_kzalloc(sbi,
4429 				sizeof(struct f2fs_journal), GFP_KERNEL);
4430 		if (!array[i].journal)
4431 			return -ENOMEM;
4432 		if (i < NR_PERSISTENT_LOG)
4433 			array[i].seg_type = CURSEG_HOT_DATA + i;
4434 		else if (i == CURSEG_COLD_DATA_PINNED)
4435 			array[i].seg_type = CURSEG_COLD_DATA;
4436 		else if (i == CURSEG_ALL_DATA_ATGC)
4437 			array[i].seg_type = CURSEG_COLD_DATA;
4438 		array[i].segno = NULL_SEGNO;
4439 		array[i].next_blkoff = 0;
4440 		array[i].inited = false;
4441 	}
4442 	return restore_curseg_summaries(sbi);
4443 }
4444 
4445 static int build_sit_entries(struct f2fs_sb_info *sbi)
4446 {
4447 	struct sit_info *sit_i = SIT_I(sbi);
4448 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4449 	struct f2fs_journal *journal = curseg->journal;
4450 	struct seg_entry *se;
4451 	struct f2fs_sit_entry sit;
4452 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4453 	unsigned int i, start, end;
4454 	unsigned int readed, start_blk = 0;
4455 	int err = 0;
4456 	block_t total_node_blocks = 0;
4457 
4458 	do {
4459 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4460 							META_SIT, true);
4461 
4462 		start = start_blk * sit_i->sents_per_block;
4463 		end = (start_blk + readed) * sit_i->sents_per_block;
4464 
4465 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4466 			struct f2fs_sit_block *sit_blk;
4467 			struct page *page;
4468 
4469 			se = &sit_i->sentries[start];
4470 			page = get_current_sit_page(sbi, start);
4471 			if (IS_ERR(page))
4472 				return PTR_ERR(page);
4473 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4474 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4475 			f2fs_put_page(page, 1);
4476 
4477 			err = check_block_count(sbi, start, &sit);
4478 			if (err)
4479 				return err;
4480 			seg_info_from_raw_sit(se, &sit);
4481 			if (IS_NODESEG(se->type))
4482 				total_node_blocks += se->valid_blocks;
4483 
4484 			/* build discard map only one time */
4485 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4486 				memset(se->discard_map, 0xff,
4487 					SIT_VBLOCK_MAP_SIZE);
4488 			} else {
4489 				memcpy(se->discard_map,
4490 					se->cur_valid_map,
4491 					SIT_VBLOCK_MAP_SIZE);
4492 				sbi->discard_blks +=
4493 					sbi->blocks_per_seg -
4494 					se->valid_blocks;
4495 			}
4496 
4497 			if (__is_large_section(sbi))
4498 				get_sec_entry(sbi, start)->valid_blocks +=
4499 							se->valid_blocks;
4500 		}
4501 		start_blk += readed;
4502 	} while (start_blk < sit_blk_cnt);
4503 
4504 	down_read(&curseg->journal_rwsem);
4505 	for (i = 0; i < sits_in_cursum(journal); i++) {
4506 		unsigned int old_valid_blocks;
4507 
4508 		start = le32_to_cpu(segno_in_journal(journal, i));
4509 		if (start >= MAIN_SEGS(sbi)) {
4510 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4511 				 start);
4512 			err = -EFSCORRUPTED;
4513 			break;
4514 		}
4515 
4516 		se = &sit_i->sentries[start];
4517 		sit = sit_in_journal(journal, i);
4518 
4519 		old_valid_blocks = se->valid_blocks;
4520 		if (IS_NODESEG(se->type))
4521 			total_node_blocks -= old_valid_blocks;
4522 
4523 		err = check_block_count(sbi, start, &sit);
4524 		if (err)
4525 			break;
4526 		seg_info_from_raw_sit(se, &sit);
4527 		if (IS_NODESEG(se->type))
4528 			total_node_blocks += se->valid_blocks;
4529 
4530 		if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4531 			memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4532 		} else {
4533 			memcpy(se->discard_map, se->cur_valid_map,
4534 						SIT_VBLOCK_MAP_SIZE);
4535 			sbi->discard_blks += old_valid_blocks;
4536 			sbi->discard_blks -= se->valid_blocks;
4537 		}
4538 
4539 		if (__is_large_section(sbi)) {
4540 			get_sec_entry(sbi, start)->valid_blocks +=
4541 							se->valid_blocks;
4542 			get_sec_entry(sbi, start)->valid_blocks -=
4543 							old_valid_blocks;
4544 		}
4545 	}
4546 	up_read(&curseg->journal_rwsem);
4547 
4548 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4549 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4550 			 total_node_blocks, valid_node_count(sbi));
4551 		err = -EFSCORRUPTED;
4552 	}
4553 
4554 	return err;
4555 }
4556 
4557 static void init_free_segmap(struct f2fs_sb_info *sbi)
4558 {
4559 	unsigned int start;
4560 	int type;
4561 	struct seg_entry *sentry;
4562 
4563 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4564 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4565 			continue;
4566 		sentry = get_seg_entry(sbi, start);
4567 		if (!sentry->valid_blocks)
4568 			__set_free(sbi, start);
4569 		else
4570 			SIT_I(sbi)->written_valid_blocks +=
4571 						sentry->valid_blocks;
4572 	}
4573 
4574 	/* set use the current segments */
4575 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4576 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4577 
4578 		__set_test_and_inuse(sbi, curseg_t->segno);
4579 	}
4580 }
4581 
4582 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4583 {
4584 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4585 	struct free_segmap_info *free_i = FREE_I(sbi);
4586 	unsigned int segno = 0, offset = 0, secno;
4587 	block_t valid_blocks, usable_blks_in_seg;
4588 	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4589 
4590 	while (1) {
4591 		/* find dirty segment based on free segmap */
4592 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4593 		if (segno >= MAIN_SEGS(sbi))
4594 			break;
4595 		offset = segno + 1;
4596 		valid_blocks = get_valid_blocks(sbi, segno, false);
4597 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4598 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4599 			continue;
4600 		if (valid_blocks > usable_blks_in_seg) {
4601 			f2fs_bug_on(sbi, 1);
4602 			continue;
4603 		}
4604 		mutex_lock(&dirty_i->seglist_lock);
4605 		__locate_dirty_segment(sbi, segno, DIRTY);
4606 		mutex_unlock(&dirty_i->seglist_lock);
4607 	}
4608 
4609 	if (!__is_large_section(sbi))
4610 		return;
4611 
4612 	mutex_lock(&dirty_i->seglist_lock);
4613 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4614 		valid_blocks = get_valid_blocks(sbi, segno, true);
4615 		secno = GET_SEC_FROM_SEG(sbi, segno);
4616 
4617 		if (!valid_blocks || valid_blocks == blks_per_sec)
4618 			continue;
4619 		if (IS_CURSEC(sbi, secno))
4620 			continue;
4621 		set_bit(secno, dirty_i->dirty_secmap);
4622 	}
4623 	mutex_unlock(&dirty_i->seglist_lock);
4624 }
4625 
4626 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4627 {
4628 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4629 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4630 
4631 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4632 	if (!dirty_i->victim_secmap)
4633 		return -ENOMEM;
4634 	return 0;
4635 }
4636 
4637 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4638 {
4639 	struct dirty_seglist_info *dirty_i;
4640 	unsigned int bitmap_size, i;
4641 
4642 	/* allocate memory for dirty segments list information */
4643 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4644 								GFP_KERNEL);
4645 	if (!dirty_i)
4646 		return -ENOMEM;
4647 
4648 	SM_I(sbi)->dirty_info = dirty_i;
4649 	mutex_init(&dirty_i->seglist_lock);
4650 
4651 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4652 
4653 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4654 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4655 								GFP_KERNEL);
4656 		if (!dirty_i->dirty_segmap[i])
4657 			return -ENOMEM;
4658 	}
4659 
4660 	if (__is_large_section(sbi)) {
4661 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4662 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4663 						bitmap_size, GFP_KERNEL);
4664 		if (!dirty_i->dirty_secmap)
4665 			return -ENOMEM;
4666 	}
4667 
4668 	init_dirty_segmap(sbi);
4669 	return init_victim_secmap(sbi);
4670 }
4671 
4672 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4673 {
4674 	int i;
4675 
4676 	/*
4677 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4678 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4679 	 */
4680 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4681 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4682 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4683 		unsigned int blkofs = curseg->next_blkoff;
4684 
4685 		sanity_check_seg_type(sbi, curseg->seg_type);
4686 
4687 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4688 			goto out;
4689 
4690 		if (curseg->alloc_type == SSR)
4691 			continue;
4692 
4693 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4694 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4695 				continue;
4696 out:
4697 			f2fs_err(sbi,
4698 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4699 				 i, curseg->segno, curseg->alloc_type,
4700 				 curseg->next_blkoff, blkofs);
4701 			return -EFSCORRUPTED;
4702 		}
4703 	}
4704 	return 0;
4705 }
4706 
4707 #ifdef CONFIG_BLK_DEV_ZONED
4708 
4709 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4710 				    struct f2fs_dev_info *fdev,
4711 				    struct blk_zone *zone)
4712 {
4713 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4714 	block_t zone_block, wp_block, last_valid_block;
4715 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4716 	int i, s, b, ret;
4717 	struct seg_entry *se;
4718 
4719 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4720 		return 0;
4721 
4722 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4723 	wp_segno = GET_SEGNO(sbi, wp_block);
4724 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4725 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4726 	zone_segno = GET_SEGNO(sbi, zone_block);
4727 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4728 
4729 	if (zone_segno >= MAIN_SEGS(sbi))
4730 		return 0;
4731 
4732 	/*
4733 	 * Skip check of zones cursegs point to, since
4734 	 * fix_curseg_write_pointer() checks them.
4735 	 */
4736 	for (i = 0; i < NO_CHECK_TYPE; i++)
4737 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4738 						   CURSEG_I(sbi, i)->segno))
4739 			return 0;
4740 
4741 	/*
4742 	 * Get last valid block of the zone.
4743 	 */
4744 	last_valid_block = zone_block - 1;
4745 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4746 		segno = zone_segno + s;
4747 		se = get_seg_entry(sbi, segno);
4748 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4749 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4750 				last_valid_block = START_BLOCK(sbi, segno) + b;
4751 				break;
4752 			}
4753 		if (last_valid_block >= zone_block)
4754 			break;
4755 	}
4756 
4757 	/*
4758 	 * If last valid block is beyond the write pointer, report the
4759 	 * inconsistency. This inconsistency does not cause write error
4760 	 * because the zone will not be selected for write operation until
4761 	 * it get discarded. Just report it.
4762 	 */
4763 	if (last_valid_block >= wp_block) {
4764 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4765 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4766 			    GET_SEGNO(sbi, last_valid_block),
4767 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4768 			    wp_segno, wp_blkoff);
4769 		return 0;
4770 	}
4771 
4772 	/*
4773 	 * If there is no valid block in the zone and if write pointer is
4774 	 * not at zone start, reset the write pointer.
4775 	 */
4776 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4777 		f2fs_notice(sbi,
4778 			    "Zone without valid block has non-zero write "
4779 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4780 			    wp_segno, wp_blkoff);
4781 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4782 					zone->len >> log_sectors_per_block);
4783 		if (ret) {
4784 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4785 				 fdev->path, ret);
4786 			return ret;
4787 		}
4788 	}
4789 
4790 	return 0;
4791 }
4792 
4793 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4794 						  block_t zone_blkaddr)
4795 {
4796 	int i;
4797 
4798 	for (i = 0; i < sbi->s_ndevs; i++) {
4799 		if (!bdev_is_zoned(FDEV(i).bdev))
4800 			continue;
4801 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4802 				zone_blkaddr <= FDEV(i).end_blk))
4803 			return &FDEV(i);
4804 	}
4805 
4806 	return NULL;
4807 }
4808 
4809 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4810 			      void *data)
4811 {
4812 	memcpy(data, zone, sizeof(struct blk_zone));
4813 	return 0;
4814 }
4815 
4816 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4817 {
4818 	struct curseg_info *cs = CURSEG_I(sbi, type);
4819 	struct f2fs_dev_info *zbd;
4820 	struct blk_zone zone;
4821 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4822 	block_t cs_zone_block, wp_block;
4823 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4824 	sector_t zone_sector;
4825 	int err;
4826 
4827 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4828 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4829 
4830 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4831 	if (!zbd)
4832 		return 0;
4833 
4834 	/* report zone for the sector the curseg points to */
4835 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4836 		<< log_sectors_per_block;
4837 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4838 				  report_one_zone_cb, &zone);
4839 	if (err != 1) {
4840 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4841 			 zbd->path, err);
4842 		return err;
4843 	}
4844 
4845 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4846 		return 0;
4847 
4848 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4849 	wp_segno = GET_SEGNO(sbi, wp_block);
4850 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4851 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4852 
4853 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4854 		wp_sector_off == 0)
4855 		return 0;
4856 
4857 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4858 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4859 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4860 
4861 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4862 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4863 
4864 	f2fs_allocate_new_section(sbi, type, true);
4865 
4866 	/* check consistency of the zone curseg pointed to */
4867 	if (check_zone_write_pointer(sbi, zbd, &zone))
4868 		return -EIO;
4869 
4870 	/* check newly assigned zone */
4871 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4872 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4873 
4874 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4875 	if (!zbd)
4876 		return 0;
4877 
4878 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4879 		<< log_sectors_per_block;
4880 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4881 				  report_one_zone_cb, &zone);
4882 	if (err != 1) {
4883 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4884 			 zbd->path, err);
4885 		return err;
4886 	}
4887 
4888 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4889 		return 0;
4890 
4891 	if (zone.wp != zone.start) {
4892 		f2fs_notice(sbi,
4893 			    "New zone for curseg[%d] is not yet discarded. "
4894 			    "Reset the zone: curseg[0x%x,0x%x]",
4895 			    type, cs->segno, cs->next_blkoff);
4896 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
4897 				zone_sector >> log_sectors_per_block,
4898 				zone.len >> log_sectors_per_block);
4899 		if (err) {
4900 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4901 				 zbd->path, err);
4902 			return err;
4903 		}
4904 	}
4905 
4906 	return 0;
4907 }
4908 
4909 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
4910 {
4911 	int i, ret;
4912 
4913 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4914 		ret = fix_curseg_write_pointer(sbi, i);
4915 		if (ret)
4916 			return ret;
4917 	}
4918 
4919 	return 0;
4920 }
4921 
4922 struct check_zone_write_pointer_args {
4923 	struct f2fs_sb_info *sbi;
4924 	struct f2fs_dev_info *fdev;
4925 };
4926 
4927 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
4928 				      void *data)
4929 {
4930 	struct check_zone_write_pointer_args *args;
4931 
4932 	args = (struct check_zone_write_pointer_args *)data;
4933 
4934 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
4935 }
4936 
4937 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
4938 {
4939 	int i, ret;
4940 	struct check_zone_write_pointer_args args;
4941 
4942 	for (i = 0; i < sbi->s_ndevs; i++) {
4943 		if (!bdev_is_zoned(FDEV(i).bdev))
4944 			continue;
4945 
4946 		args.sbi = sbi;
4947 		args.fdev = &FDEV(i);
4948 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
4949 					  check_zone_write_pointer_cb, &args);
4950 		if (ret < 0)
4951 			return ret;
4952 	}
4953 
4954 	return 0;
4955 }
4956 
4957 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
4958 						unsigned int dev_idx)
4959 {
4960 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
4961 		return true;
4962 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
4963 }
4964 
4965 /* Return the zone index in the given device */
4966 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
4967 					int dev_idx)
4968 {
4969 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
4970 
4971 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
4972 						sbi->log_blocks_per_blkz;
4973 }
4974 
4975 /*
4976  * Return the usable segments in a section based on the zone's
4977  * corresponding zone capacity. Zone is equal to a section.
4978  */
4979 static inline unsigned int f2fs_usable_zone_segs_in_sec(
4980 		struct f2fs_sb_info *sbi, unsigned int segno)
4981 {
4982 	unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
4983 
4984 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
4985 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
4986 
4987 	/* Conventional zone's capacity is always equal to zone size */
4988 	if (is_conv_zone(sbi, zone_idx, dev_idx))
4989 		return sbi->segs_per_sec;
4990 
4991 	/*
4992 	 * If the zone_capacity_blocks array is NULL, then zone capacity
4993 	 * is equal to the zone size for all zones
4994 	 */
4995 	if (!FDEV(dev_idx).zone_capacity_blocks)
4996 		return sbi->segs_per_sec;
4997 
4998 	/* Get the segment count beyond zone capacity block */
4999 	unusable_segs_in_sec = (sbi->blocks_per_blkz -
5000 				FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5001 				sbi->log_blocks_per_seg;
5002 	return sbi->segs_per_sec - unusable_segs_in_sec;
5003 }
5004 
5005 /*
5006  * Return the number of usable blocks in a segment. The number of blocks
5007  * returned is always equal to the number of blocks in a segment for
5008  * segments fully contained within a sequential zone capacity or a
5009  * conventional zone. For segments partially contained in a sequential
5010  * zone capacity, the number of usable blocks up to the zone capacity
5011  * is returned. 0 is returned in all other cases.
5012  */
5013 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5014 			struct f2fs_sb_info *sbi, unsigned int segno)
5015 {
5016 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5017 	unsigned int zone_idx, dev_idx, secno;
5018 
5019 	secno = GET_SEC_FROM_SEG(sbi, segno);
5020 	seg_start = START_BLOCK(sbi, segno);
5021 	dev_idx = f2fs_target_device_index(sbi, seg_start);
5022 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5023 
5024 	/*
5025 	 * Conventional zone's capacity is always equal to zone size,
5026 	 * so, blocks per segment is unchanged.
5027 	 */
5028 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5029 		return sbi->blocks_per_seg;
5030 
5031 	if (!FDEV(dev_idx).zone_capacity_blocks)
5032 		return sbi->blocks_per_seg;
5033 
5034 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5035 	sec_cap_blkaddr = sec_start_blkaddr +
5036 				FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5037 
5038 	/*
5039 	 * If segment starts before zone capacity and spans beyond
5040 	 * zone capacity, then usable blocks are from seg start to
5041 	 * zone capacity. If the segment starts after the zone capacity,
5042 	 * then there are no usable blocks.
5043 	 */
5044 	if (seg_start >= sec_cap_blkaddr)
5045 		return 0;
5046 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5047 		return sec_cap_blkaddr - seg_start;
5048 
5049 	return sbi->blocks_per_seg;
5050 }
5051 #else
5052 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5053 {
5054 	return 0;
5055 }
5056 
5057 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5058 {
5059 	return 0;
5060 }
5061 
5062 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5063 							unsigned int segno)
5064 {
5065 	return 0;
5066 }
5067 
5068 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5069 							unsigned int segno)
5070 {
5071 	return 0;
5072 }
5073 #endif
5074 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5075 					unsigned int segno)
5076 {
5077 	if (f2fs_sb_has_blkzoned(sbi))
5078 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5079 
5080 	return sbi->blocks_per_seg;
5081 }
5082 
5083 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5084 					unsigned int segno)
5085 {
5086 	if (f2fs_sb_has_blkzoned(sbi))
5087 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5088 
5089 	return sbi->segs_per_sec;
5090 }
5091 
5092 /*
5093  * Update min, max modified time for cost-benefit GC algorithm
5094  */
5095 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5096 {
5097 	struct sit_info *sit_i = SIT_I(sbi);
5098 	unsigned int segno;
5099 
5100 	down_write(&sit_i->sentry_lock);
5101 
5102 	sit_i->min_mtime = ULLONG_MAX;
5103 
5104 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5105 		unsigned int i;
5106 		unsigned long long mtime = 0;
5107 
5108 		for (i = 0; i < sbi->segs_per_sec; i++)
5109 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5110 
5111 		mtime = div_u64(mtime, sbi->segs_per_sec);
5112 
5113 		if (sit_i->min_mtime > mtime)
5114 			sit_i->min_mtime = mtime;
5115 	}
5116 	sit_i->max_mtime = get_mtime(sbi, false);
5117 	sit_i->dirty_max_mtime = 0;
5118 	up_write(&sit_i->sentry_lock);
5119 }
5120 
5121 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5122 {
5123 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5124 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5125 	struct f2fs_sm_info *sm_info;
5126 	int err;
5127 
5128 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5129 	if (!sm_info)
5130 		return -ENOMEM;
5131 
5132 	/* init sm info */
5133 	sbi->sm_info = sm_info;
5134 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5135 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5136 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5137 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5138 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5139 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5140 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5141 	sm_info->rec_prefree_segments = sm_info->main_segments *
5142 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5143 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5144 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5145 
5146 	if (!f2fs_lfs_mode(sbi))
5147 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5148 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5149 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5150 	sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec;
5151 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5152 	sm_info->min_ssr_sections = reserved_sections(sbi);
5153 
5154 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5155 
5156 	init_rwsem(&sm_info->curseg_lock);
5157 
5158 	if (!f2fs_readonly(sbi->sb)) {
5159 		err = f2fs_create_flush_cmd_control(sbi);
5160 		if (err)
5161 			return err;
5162 	}
5163 
5164 	err = create_discard_cmd_control(sbi);
5165 	if (err)
5166 		return err;
5167 
5168 	err = build_sit_info(sbi);
5169 	if (err)
5170 		return err;
5171 	err = build_free_segmap(sbi);
5172 	if (err)
5173 		return err;
5174 	err = build_curseg(sbi);
5175 	if (err)
5176 		return err;
5177 
5178 	/* reinit free segmap based on SIT */
5179 	err = build_sit_entries(sbi);
5180 	if (err)
5181 		return err;
5182 
5183 	init_free_segmap(sbi);
5184 	err = build_dirty_segmap(sbi);
5185 	if (err)
5186 		return err;
5187 
5188 	err = sanity_check_curseg(sbi);
5189 	if (err)
5190 		return err;
5191 
5192 	init_min_max_mtime(sbi);
5193 	return 0;
5194 }
5195 
5196 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5197 		enum dirty_type dirty_type)
5198 {
5199 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5200 
5201 	mutex_lock(&dirty_i->seglist_lock);
5202 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5203 	dirty_i->nr_dirty[dirty_type] = 0;
5204 	mutex_unlock(&dirty_i->seglist_lock);
5205 }
5206 
5207 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5208 {
5209 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5210 
5211 	kvfree(dirty_i->victim_secmap);
5212 }
5213 
5214 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5215 {
5216 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5217 	int i;
5218 
5219 	if (!dirty_i)
5220 		return;
5221 
5222 	/* discard pre-free/dirty segments list */
5223 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5224 		discard_dirty_segmap(sbi, i);
5225 
5226 	if (__is_large_section(sbi)) {
5227 		mutex_lock(&dirty_i->seglist_lock);
5228 		kvfree(dirty_i->dirty_secmap);
5229 		mutex_unlock(&dirty_i->seglist_lock);
5230 	}
5231 
5232 	destroy_victim_secmap(sbi);
5233 	SM_I(sbi)->dirty_info = NULL;
5234 	kfree(dirty_i);
5235 }
5236 
5237 static void destroy_curseg(struct f2fs_sb_info *sbi)
5238 {
5239 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5240 	int i;
5241 
5242 	if (!array)
5243 		return;
5244 	SM_I(sbi)->curseg_array = NULL;
5245 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5246 		kfree(array[i].sum_blk);
5247 		kfree(array[i].journal);
5248 	}
5249 	kfree(array);
5250 }
5251 
5252 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5253 {
5254 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5255 
5256 	if (!free_i)
5257 		return;
5258 	SM_I(sbi)->free_info = NULL;
5259 	kvfree(free_i->free_segmap);
5260 	kvfree(free_i->free_secmap);
5261 	kfree(free_i);
5262 }
5263 
5264 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5265 {
5266 	struct sit_info *sit_i = SIT_I(sbi);
5267 
5268 	if (!sit_i)
5269 		return;
5270 
5271 	if (sit_i->sentries)
5272 		kvfree(sit_i->bitmap);
5273 	kfree(sit_i->tmp_map);
5274 
5275 	kvfree(sit_i->sentries);
5276 	kvfree(sit_i->sec_entries);
5277 	kvfree(sit_i->dirty_sentries_bitmap);
5278 
5279 	SM_I(sbi)->sit_info = NULL;
5280 	kvfree(sit_i->sit_bitmap);
5281 #ifdef CONFIG_F2FS_CHECK_FS
5282 	kvfree(sit_i->sit_bitmap_mir);
5283 	kvfree(sit_i->invalid_segmap);
5284 #endif
5285 	kfree(sit_i);
5286 }
5287 
5288 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5289 {
5290 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5291 
5292 	if (!sm_info)
5293 		return;
5294 	f2fs_destroy_flush_cmd_control(sbi, true);
5295 	destroy_discard_cmd_control(sbi);
5296 	destroy_dirty_segmap(sbi);
5297 	destroy_curseg(sbi);
5298 	destroy_free_segmap(sbi);
5299 	destroy_sit_info(sbi);
5300 	sbi->sm_info = NULL;
5301 	kfree(sm_info);
5302 }
5303 
5304 int __init f2fs_create_segment_manager_caches(void)
5305 {
5306 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5307 			sizeof(struct discard_entry));
5308 	if (!discard_entry_slab)
5309 		goto fail;
5310 
5311 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5312 			sizeof(struct discard_cmd));
5313 	if (!discard_cmd_slab)
5314 		goto destroy_discard_entry;
5315 
5316 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5317 			sizeof(struct sit_entry_set));
5318 	if (!sit_entry_set_slab)
5319 		goto destroy_discard_cmd;
5320 
5321 	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5322 			sizeof(struct inmem_pages));
5323 	if (!inmem_entry_slab)
5324 		goto destroy_sit_entry_set;
5325 	return 0;
5326 
5327 destroy_sit_entry_set:
5328 	kmem_cache_destroy(sit_entry_set_slab);
5329 destroy_discard_cmd:
5330 	kmem_cache_destroy(discard_cmd_slab);
5331 destroy_discard_entry:
5332 	kmem_cache_destroy(discard_entry_slab);
5333 fail:
5334 	return -ENOMEM;
5335 }
5336 
5337 void f2fs_destroy_segment_manager_caches(void)
5338 {
5339 	kmem_cache_destroy(sit_entry_set_slab);
5340 	kmem_cache_destroy(discard_cmd_slab);
5341 	kmem_cache_destroy(discard_entry_slab);
5342 	kmem_cache_destroy(inmem_entry_slab);
5343 }
5344