1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/fs.h> 9 #include <linux/f2fs_fs.h> 10 #include <linux/bio.h> 11 #include <linux/blkdev.h> 12 #include <linux/prefetch.h> 13 #include <linux/kthread.h> 14 #include <linux/swap.h> 15 #include <linux/timer.h> 16 #include <linux/freezer.h> 17 #include <linux/sched/signal.h> 18 19 #include "f2fs.h" 20 #include "segment.h" 21 #include "node.h" 22 #include "gc.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 bool f2fs_need_SSR(struct f2fs_sb_info *sbi) 170 { 171 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 172 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 173 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 174 175 if (test_opt(sbi, LFS)) 176 return false; 177 if (sbi->gc_mode == GC_URGENT) 178 return true; 179 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 180 return true; 181 182 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 183 SM_I(sbi)->min_ssr_sections + reserved_sections(sbi)); 184 } 185 186 void f2fs_register_inmem_page(struct inode *inode, struct page *page) 187 { 188 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 189 struct f2fs_inode_info *fi = F2FS_I(inode); 190 struct inmem_pages *new; 191 192 f2fs_trace_pid(page); 193 194 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 195 SetPagePrivate(page); 196 197 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 198 199 /* add atomic page indices to the list */ 200 new->page = page; 201 INIT_LIST_HEAD(&new->list); 202 203 /* increase reference count with clean state */ 204 mutex_lock(&fi->inmem_lock); 205 get_page(page); 206 list_add_tail(&new->list, &fi->inmem_pages); 207 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 208 if (list_empty(&fi->inmem_ilist)) 209 list_add_tail(&fi->inmem_ilist, &sbi->inode_list[ATOMIC_FILE]); 210 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 211 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 212 mutex_unlock(&fi->inmem_lock); 213 214 trace_f2fs_register_inmem_page(page, INMEM); 215 } 216 217 static int __revoke_inmem_pages(struct inode *inode, 218 struct list_head *head, bool drop, bool recover) 219 { 220 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 221 struct inmem_pages *cur, *tmp; 222 int err = 0; 223 224 list_for_each_entry_safe(cur, tmp, head, list) { 225 struct page *page = cur->page; 226 227 if (drop) 228 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 229 230 lock_page(page); 231 232 f2fs_wait_on_page_writeback(page, DATA, true); 233 234 if (recover) { 235 struct dnode_of_data dn; 236 struct node_info ni; 237 238 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 239 retry: 240 set_new_dnode(&dn, inode, NULL, NULL, 0); 241 err = f2fs_get_dnode_of_data(&dn, page->index, 242 LOOKUP_NODE); 243 if (err) { 244 if (err == -ENOMEM) { 245 congestion_wait(BLK_RW_ASYNC, HZ/50); 246 cond_resched(); 247 goto retry; 248 } 249 err = -EAGAIN; 250 goto next; 251 } 252 253 err = f2fs_get_node_info(sbi, dn.nid, &ni); 254 if (err) { 255 f2fs_put_dnode(&dn); 256 return err; 257 } 258 259 if (cur->old_addr == NEW_ADDR) { 260 f2fs_invalidate_blocks(sbi, dn.data_blkaddr); 261 f2fs_update_data_blkaddr(&dn, NEW_ADDR); 262 } else 263 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 264 cur->old_addr, ni.version, true, true); 265 f2fs_put_dnode(&dn); 266 } 267 next: 268 /* we don't need to invalidate this in the sccessful status */ 269 if (drop || recover) { 270 ClearPageUptodate(page); 271 clear_cold_data(page); 272 } 273 set_page_private(page, 0); 274 ClearPagePrivate(page); 275 f2fs_put_page(page, 1); 276 277 list_del(&cur->list); 278 kmem_cache_free(inmem_entry_slab, cur); 279 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 280 } 281 return err; 282 } 283 284 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure) 285 { 286 struct list_head *head = &sbi->inode_list[ATOMIC_FILE]; 287 struct inode *inode; 288 struct f2fs_inode_info *fi; 289 next: 290 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 291 if (list_empty(head)) { 292 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 293 return; 294 } 295 fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist); 296 inode = igrab(&fi->vfs_inode); 297 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 298 299 if (inode) { 300 if (gc_failure) { 301 if (fi->i_gc_failures[GC_FAILURE_ATOMIC]) 302 goto drop; 303 goto skip; 304 } 305 drop: 306 set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST); 307 f2fs_drop_inmem_pages(inode); 308 iput(inode); 309 } 310 skip: 311 congestion_wait(BLK_RW_ASYNC, HZ/50); 312 cond_resched(); 313 goto next; 314 } 315 316 void f2fs_drop_inmem_pages(struct inode *inode) 317 { 318 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 319 struct f2fs_inode_info *fi = F2FS_I(inode); 320 321 mutex_lock(&fi->inmem_lock); 322 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 323 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 324 if (!list_empty(&fi->inmem_ilist)) 325 list_del_init(&fi->inmem_ilist); 326 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 327 mutex_unlock(&fi->inmem_lock); 328 329 clear_inode_flag(inode, FI_ATOMIC_FILE); 330 fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0; 331 stat_dec_atomic_write(inode); 332 } 333 334 void f2fs_drop_inmem_page(struct inode *inode, struct page *page) 335 { 336 struct f2fs_inode_info *fi = F2FS_I(inode); 337 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 338 struct list_head *head = &fi->inmem_pages; 339 struct inmem_pages *cur = NULL; 340 341 f2fs_bug_on(sbi, !IS_ATOMIC_WRITTEN_PAGE(page)); 342 343 mutex_lock(&fi->inmem_lock); 344 list_for_each_entry(cur, head, list) { 345 if (cur->page == page) 346 break; 347 } 348 349 f2fs_bug_on(sbi, list_empty(head) || cur->page != page); 350 list_del(&cur->list); 351 mutex_unlock(&fi->inmem_lock); 352 353 dec_page_count(sbi, F2FS_INMEM_PAGES); 354 kmem_cache_free(inmem_entry_slab, cur); 355 356 ClearPageUptodate(page); 357 set_page_private(page, 0); 358 ClearPagePrivate(page); 359 f2fs_put_page(page, 0); 360 361 trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE); 362 } 363 364 static int __f2fs_commit_inmem_pages(struct inode *inode) 365 { 366 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 367 struct f2fs_inode_info *fi = F2FS_I(inode); 368 struct inmem_pages *cur, *tmp; 369 struct f2fs_io_info fio = { 370 .sbi = sbi, 371 .ino = inode->i_ino, 372 .type = DATA, 373 .op = REQ_OP_WRITE, 374 .op_flags = REQ_SYNC | REQ_PRIO, 375 .io_type = FS_DATA_IO, 376 }; 377 struct list_head revoke_list; 378 bool submit_bio = false; 379 int err = 0; 380 381 INIT_LIST_HEAD(&revoke_list); 382 383 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 384 struct page *page = cur->page; 385 386 lock_page(page); 387 if (page->mapping == inode->i_mapping) { 388 trace_f2fs_commit_inmem_page(page, INMEM); 389 390 set_page_dirty(page); 391 f2fs_wait_on_page_writeback(page, DATA, true); 392 if (clear_page_dirty_for_io(page)) { 393 inode_dec_dirty_pages(inode); 394 f2fs_remove_dirty_inode(inode); 395 } 396 retry: 397 fio.page = page; 398 fio.old_blkaddr = NULL_ADDR; 399 fio.encrypted_page = NULL; 400 fio.need_lock = LOCK_DONE; 401 err = f2fs_do_write_data_page(&fio); 402 if (err) { 403 if (err == -ENOMEM) { 404 congestion_wait(BLK_RW_ASYNC, HZ/50); 405 cond_resched(); 406 goto retry; 407 } 408 unlock_page(page); 409 break; 410 } 411 /* record old blkaddr for revoking */ 412 cur->old_addr = fio.old_blkaddr; 413 submit_bio = true; 414 } 415 unlock_page(page); 416 list_move_tail(&cur->list, &revoke_list); 417 } 418 419 if (submit_bio) 420 f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA); 421 422 if (err) { 423 /* 424 * try to revoke all committed pages, but still we could fail 425 * due to no memory or other reason, if that happened, EAGAIN 426 * will be returned, which means in such case, transaction is 427 * already not integrity, caller should use journal to do the 428 * recovery or rewrite & commit last transaction. For other 429 * error number, revoking was done by filesystem itself. 430 */ 431 err = __revoke_inmem_pages(inode, &revoke_list, false, true); 432 433 /* drop all uncommitted pages */ 434 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 435 } else { 436 __revoke_inmem_pages(inode, &revoke_list, false, false); 437 } 438 439 return err; 440 } 441 442 int f2fs_commit_inmem_pages(struct inode *inode) 443 { 444 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 445 struct f2fs_inode_info *fi = F2FS_I(inode); 446 int err; 447 448 f2fs_balance_fs(sbi, true); 449 450 down_write(&fi->i_gc_rwsem[WRITE]); 451 452 f2fs_lock_op(sbi); 453 set_inode_flag(inode, FI_ATOMIC_COMMIT); 454 455 mutex_lock(&fi->inmem_lock); 456 err = __f2fs_commit_inmem_pages(inode); 457 458 spin_lock(&sbi->inode_lock[ATOMIC_FILE]); 459 if (!list_empty(&fi->inmem_ilist)) 460 list_del_init(&fi->inmem_ilist); 461 spin_unlock(&sbi->inode_lock[ATOMIC_FILE]); 462 mutex_unlock(&fi->inmem_lock); 463 464 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 465 466 f2fs_unlock_op(sbi); 467 up_write(&fi->i_gc_rwsem[WRITE]); 468 469 return err; 470 } 471 472 /* 473 * This function balances dirty node and dentry pages. 474 * In addition, it controls garbage collection. 475 */ 476 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 477 { 478 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 479 f2fs_show_injection_info(FAULT_CHECKPOINT); 480 f2fs_stop_checkpoint(sbi, false); 481 } 482 483 /* balance_fs_bg is able to be pending */ 484 if (need && excess_cached_nats(sbi)) 485 f2fs_balance_fs_bg(sbi); 486 487 if (f2fs_is_checkpoint_ready(sbi)) 488 return; 489 490 /* 491 * We should do GC or end up with checkpoint, if there are so many dirty 492 * dir/node pages without enough free segments. 493 */ 494 if (has_not_enough_free_secs(sbi, 0, 0)) { 495 mutex_lock(&sbi->gc_mutex); 496 f2fs_gc(sbi, false, false, NULL_SEGNO); 497 } 498 } 499 500 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 501 { 502 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 503 return; 504 505 /* try to shrink extent cache when there is no enough memory */ 506 if (!f2fs_available_free_memory(sbi, EXTENT_CACHE)) 507 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 508 509 /* check the # of cached NAT entries */ 510 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES)) 511 f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 512 513 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) 514 f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS); 515 else 516 f2fs_build_free_nids(sbi, false, false); 517 518 if (!is_idle(sbi, REQ_TIME) && 519 (!excess_dirty_nats(sbi) && !excess_dirty_nodes(sbi))) 520 return; 521 522 /* checkpoint is the only way to shrink partial cached entries */ 523 if (!f2fs_available_free_memory(sbi, NAT_ENTRIES) || 524 !f2fs_available_free_memory(sbi, INO_ENTRIES) || 525 excess_prefree_segs(sbi) || 526 excess_dirty_nats(sbi) || 527 excess_dirty_nodes(sbi) || 528 f2fs_time_over(sbi, CP_TIME)) { 529 if (test_opt(sbi, DATA_FLUSH)) { 530 struct blk_plug plug; 531 532 blk_start_plug(&plug); 533 f2fs_sync_dirty_inodes(sbi, FILE_INODE); 534 blk_finish_plug(&plug); 535 } 536 f2fs_sync_fs(sbi->sb, true); 537 stat_inc_bg_cp_count(sbi->stat_info); 538 } 539 } 540 541 static int __submit_flush_wait(struct f2fs_sb_info *sbi, 542 struct block_device *bdev) 543 { 544 struct bio *bio = f2fs_bio_alloc(sbi, 0, true); 545 int ret; 546 547 bio->bi_opf = REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH; 548 bio_set_dev(bio, bdev); 549 ret = submit_bio_wait(bio); 550 bio_put(bio); 551 552 trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER), 553 test_opt(sbi, FLUSH_MERGE), ret); 554 return ret; 555 } 556 557 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino) 558 { 559 int ret = 0; 560 int i; 561 562 if (!sbi->s_ndevs) 563 return __submit_flush_wait(sbi, sbi->sb->s_bdev); 564 565 for (i = 0; i < sbi->s_ndevs; i++) { 566 if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO)) 567 continue; 568 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 569 if (ret) 570 break; 571 } 572 return ret; 573 } 574 575 static int issue_flush_thread(void *data) 576 { 577 struct f2fs_sb_info *sbi = data; 578 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 579 wait_queue_head_t *q = &fcc->flush_wait_queue; 580 repeat: 581 if (kthread_should_stop()) 582 return 0; 583 584 sb_start_intwrite(sbi->sb); 585 586 if (!llist_empty(&fcc->issue_list)) { 587 struct flush_cmd *cmd, *next; 588 int ret; 589 590 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 591 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 592 593 cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode); 594 595 ret = submit_flush_wait(sbi, cmd->ino); 596 atomic_inc(&fcc->issued_flush); 597 598 llist_for_each_entry_safe(cmd, next, 599 fcc->dispatch_list, llnode) { 600 cmd->ret = ret; 601 complete(&cmd->wait); 602 } 603 fcc->dispatch_list = NULL; 604 } 605 606 sb_end_intwrite(sbi->sb); 607 608 wait_event_interruptible(*q, 609 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 610 goto repeat; 611 } 612 613 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino) 614 { 615 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 616 struct flush_cmd cmd; 617 int ret; 618 619 if (test_opt(sbi, NOBARRIER)) 620 return 0; 621 622 if (!test_opt(sbi, FLUSH_MERGE)) { 623 ret = submit_flush_wait(sbi, ino); 624 atomic_inc(&fcc->issued_flush); 625 return ret; 626 } 627 628 if (atomic_inc_return(&fcc->issing_flush) == 1 || sbi->s_ndevs > 1) { 629 ret = submit_flush_wait(sbi, ino); 630 atomic_dec(&fcc->issing_flush); 631 632 atomic_inc(&fcc->issued_flush); 633 return ret; 634 } 635 636 cmd.ino = ino; 637 init_completion(&cmd.wait); 638 639 llist_add(&cmd.llnode, &fcc->issue_list); 640 641 /* update issue_list before we wake up issue_flush thread */ 642 smp_mb(); 643 644 if (waitqueue_active(&fcc->flush_wait_queue)) 645 wake_up(&fcc->flush_wait_queue); 646 647 if (fcc->f2fs_issue_flush) { 648 wait_for_completion(&cmd.wait); 649 atomic_dec(&fcc->issing_flush); 650 } else { 651 struct llist_node *list; 652 653 list = llist_del_all(&fcc->issue_list); 654 if (!list) { 655 wait_for_completion(&cmd.wait); 656 atomic_dec(&fcc->issing_flush); 657 } else { 658 struct flush_cmd *tmp, *next; 659 660 ret = submit_flush_wait(sbi, ino); 661 662 llist_for_each_entry_safe(tmp, next, list, llnode) { 663 if (tmp == &cmd) { 664 cmd.ret = ret; 665 atomic_dec(&fcc->issing_flush); 666 continue; 667 } 668 tmp->ret = ret; 669 complete(&tmp->wait); 670 } 671 } 672 } 673 674 return cmd.ret; 675 } 676 677 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi) 678 { 679 dev_t dev = sbi->sb->s_bdev->bd_dev; 680 struct flush_cmd_control *fcc; 681 int err = 0; 682 683 if (SM_I(sbi)->fcc_info) { 684 fcc = SM_I(sbi)->fcc_info; 685 if (fcc->f2fs_issue_flush) 686 return err; 687 goto init_thread; 688 } 689 690 fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL); 691 if (!fcc) 692 return -ENOMEM; 693 atomic_set(&fcc->issued_flush, 0); 694 atomic_set(&fcc->issing_flush, 0); 695 init_waitqueue_head(&fcc->flush_wait_queue); 696 init_llist_head(&fcc->issue_list); 697 SM_I(sbi)->fcc_info = fcc; 698 if (!test_opt(sbi, FLUSH_MERGE)) 699 return err; 700 701 init_thread: 702 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 703 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 704 if (IS_ERR(fcc->f2fs_issue_flush)) { 705 err = PTR_ERR(fcc->f2fs_issue_flush); 706 kfree(fcc); 707 SM_I(sbi)->fcc_info = NULL; 708 return err; 709 } 710 711 return err; 712 } 713 714 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 715 { 716 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 717 718 if (fcc && fcc->f2fs_issue_flush) { 719 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 720 721 fcc->f2fs_issue_flush = NULL; 722 kthread_stop(flush_thread); 723 } 724 if (free) { 725 kfree(fcc); 726 SM_I(sbi)->fcc_info = NULL; 727 } 728 } 729 730 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi) 731 { 732 int ret = 0, i; 733 734 if (!sbi->s_ndevs) 735 return 0; 736 737 for (i = 1; i < sbi->s_ndevs; i++) { 738 if (!f2fs_test_bit(i, (char *)&sbi->dirty_device)) 739 continue; 740 ret = __submit_flush_wait(sbi, FDEV(i).bdev); 741 if (ret) 742 break; 743 744 spin_lock(&sbi->dev_lock); 745 f2fs_clear_bit(i, (char *)&sbi->dirty_device); 746 spin_unlock(&sbi->dev_lock); 747 } 748 749 return ret; 750 } 751 752 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 753 enum dirty_type dirty_type) 754 { 755 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 756 757 /* need not be added */ 758 if (IS_CURSEG(sbi, segno)) 759 return; 760 761 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 762 dirty_i->nr_dirty[dirty_type]++; 763 764 if (dirty_type == DIRTY) { 765 struct seg_entry *sentry = get_seg_entry(sbi, segno); 766 enum dirty_type t = sentry->type; 767 768 if (unlikely(t >= DIRTY)) { 769 f2fs_bug_on(sbi, 1); 770 return; 771 } 772 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 773 dirty_i->nr_dirty[t]++; 774 } 775 } 776 777 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 778 enum dirty_type dirty_type) 779 { 780 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 781 782 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 783 dirty_i->nr_dirty[dirty_type]--; 784 785 if (dirty_type == DIRTY) { 786 struct seg_entry *sentry = get_seg_entry(sbi, segno); 787 enum dirty_type t = sentry->type; 788 789 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 790 dirty_i->nr_dirty[t]--; 791 792 if (get_valid_blocks(sbi, segno, true) == 0) 793 clear_bit(GET_SEC_FROM_SEG(sbi, segno), 794 dirty_i->victim_secmap); 795 } 796 } 797 798 /* 799 * Should not occur error such as -ENOMEM. 800 * Adding dirty entry into seglist is not critical operation. 801 * If a given segment is one of current working segments, it won't be added. 802 */ 803 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 804 { 805 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 806 unsigned short valid_blocks, ckpt_valid_blocks; 807 808 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 809 return; 810 811 mutex_lock(&dirty_i->seglist_lock); 812 813 valid_blocks = get_valid_blocks(sbi, segno, false); 814 ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno); 815 816 if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) || 817 ckpt_valid_blocks == sbi->blocks_per_seg)) { 818 __locate_dirty_segment(sbi, segno, PRE); 819 __remove_dirty_segment(sbi, segno, DIRTY); 820 } else if (valid_blocks < sbi->blocks_per_seg) { 821 __locate_dirty_segment(sbi, segno, DIRTY); 822 } else { 823 /* Recovery routine with SSR needs this */ 824 __remove_dirty_segment(sbi, segno, DIRTY); 825 } 826 827 mutex_unlock(&dirty_i->seglist_lock); 828 } 829 830 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */ 831 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi) 832 { 833 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 834 unsigned int segno; 835 836 mutex_lock(&dirty_i->seglist_lock); 837 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 838 if (get_valid_blocks(sbi, segno, false)) 839 continue; 840 if (IS_CURSEG(sbi, segno)) 841 continue; 842 __locate_dirty_segment(sbi, segno, PRE); 843 __remove_dirty_segment(sbi, segno, DIRTY); 844 } 845 mutex_unlock(&dirty_i->seglist_lock); 846 } 847 848 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi) 849 { 850 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 851 block_t ovp = overprovision_segments(sbi) << sbi->log_blocks_per_seg; 852 block_t holes[2] = {0, 0}; /* DATA and NODE */ 853 struct seg_entry *se; 854 unsigned int segno; 855 856 mutex_lock(&dirty_i->seglist_lock); 857 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 858 se = get_seg_entry(sbi, segno); 859 if (IS_NODESEG(se->type)) 860 holes[NODE] += sbi->blocks_per_seg - se->valid_blocks; 861 else 862 holes[DATA] += sbi->blocks_per_seg - se->valid_blocks; 863 } 864 mutex_unlock(&dirty_i->seglist_lock); 865 866 if (holes[DATA] > ovp || holes[NODE] > ovp) 867 return -EAGAIN; 868 return 0; 869 } 870 871 /* This is only used by SBI_CP_DISABLED */ 872 static unsigned int get_free_segment(struct f2fs_sb_info *sbi) 873 { 874 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 875 unsigned int segno = 0; 876 877 mutex_lock(&dirty_i->seglist_lock); 878 for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) { 879 if (get_valid_blocks(sbi, segno, false)) 880 continue; 881 if (get_ckpt_valid_blocks(sbi, segno)) 882 continue; 883 mutex_unlock(&dirty_i->seglist_lock); 884 return segno; 885 } 886 mutex_unlock(&dirty_i->seglist_lock); 887 return NULL_SEGNO; 888 } 889 890 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi, 891 struct block_device *bdev, block_t lstart, 892 block_t start, block_t len) 893 { 894 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 895 struct list_head *pend_list; 896 struct discard_cmd *dc; 897 898 f2fs_bug_on(sbi, !len); 899 900 pend_list = &dcc->pend_list[plist_idx(len)]; 901 902 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 903 INIT_LIST_HEAD(&dc->list); 904 dc->bdev = bdev; 905 dc->lstart = lstart; 906 dc->start = start; 907 dc->len = len; 908 dc->ref = 0; 909 dc->state = D_PREP; 910 dc->issuing = 0; 911 dc->error = 0; 912 init_completion(&dc->wait); 913 list_add_tail(&dc->list, pend_list); 914 spin_lock_init(&dc->lock); 915 dc->bio_ref = 0; 916 atomic_inc(&dcc->discard_cmd_cnt); 917 dcc->undiscard_blks += len; 918 919 return dc; 920 } 921 922 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi, 923 struct block_device *bdev, block_t lstart, 924 block_t start, block_t len, 925 struct rb_node *parent, struct rb_node **p, 926 bool leftmost) 927 { 928 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 929 struct discard_cmd *dc; 930 931 dc = __create_discard_cmd(sbi, bdev, lstart, start, len); 932 933 rb_link_node(&dc->rb_node, parent, p); 934 rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost); 935 936 return dc; 937 } 938 939 static void __detach_discard_cmd(struct discard_cmd_control *dcc, 940 struct discard_cmd *dc) 941 { 942 if (dc->state == D_DONE) 943 atomic_sub(dc->issuing, &dcc->issing_discard); 944 945 list_del(&dc->list); 946 rb_erase_cached(&dc->rb_node, &dcc->root); 947 dcc->undiscard_blks -= dc->len; 948 949 kmem_cache_free(discard_cmd_slab, dc); 950 951 atomic_dec(&dcc->discard_cmd_cnt); 952 } 953 954 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, 955 struct discard_cmd *dc) 956 { 957 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 958 unsigned long flags; 959 960 trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len); 961 962 spin_lock_irqsave(&dc->lock, flags); 963 if (dc->bio_ref) { 964 spin_unlock_irqrestore(&dc->lock, flags); 965 return; 966 } 967 spin_unlock_irqrestore(&dc->lock, flags); 968 969 f2fs_bug_on(sbi, dc->ref); 970 971 if (dc->error == -EOPNOTSUPP) 972 dc->error = 0; 973 974 if (dc->error) 975 printk_ratelimited( 976 "%sF2FS-fs: Issue discard(%u, %u, %u) failed, ret: %d", 977 KERN_INFO, dc->lstart, dc->start, dc->len, dc->error); 978 __detach_discard_cmd(dcc, dc); 979 } 980 981 static void f2fs_submit_discard_endio(struct bio *bio) 982 { 983 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 984 unsigned long flags; 985 986 dc->error = blk_status_to_errno(bio->bi_status); 987 988 spin_lock_irqsave(&dc->lock, flags); 989 dc->bio_ref--; 990 if (!dc->bio_ref && dc->state == D_SUBMIT) { 991 dc->state = D_DONE; 992 complete_all(&dc->wait); 993 } 994 spin_unlock_irqrestore(&dc->lock, flags); 995 bio_put(bio); 996 } 997 998 static void __check_sit_bitmap(struct f2fs_sb_info *sbi, 999 block_t start, block_t end) 1000 { 1001 #ifdef CONFIG_F2FS_CHECK_FS 1002 struct seg_entry *sentry; 1003 unsigned int segno; 1004 block_t blk = start; 1005 unsigned long offset, size, max_blocks = sbi->blocks_per_seg; 1006 unsigned long *map; 1007 1008 while (blk < end) { 1009 segno = GET_SEGNO(sbi, blk); 1010 sentry = get_seg_entry(sbi, segno); 1011 offset = GET_BLKOFF_FROM_SEG0(sbi, blk); 1012 1013 if (end < START_BLOCK(sbi, segno + 1)) 1014 size = GET_BLKOFF_FROM_SEG0(sbi, end); 1015 else 1016 size = max_blocks; 1017 map = (unsigned long *)(sentry->cur_valid_map); 1018 offset = __find_rev_next_bit(map, size, offset); 1019 f2fs_bug_on(sbi, offset != size); 1020 blk = START_BLOCK(sbi, segno + 1); 1021 } 1022 #endif 1023 } 1024 1025 static void __init_discard_policy(struct f2fs_sb_info *sbi, 1026 struct discard_policy *dpolicy, 1027 int discard_type, unsigned int granularity) 1028 { 1029 /* common policy */ 1030 dpolicy->type = discard_type; 1031 dpolicy->sync = true; 1032 dpolicy->ordered = false; 1033 dpolicy->granularity = granularity; 1034 1035 dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST; 1036 dpolicy->io_aware_gran = MAX_PLIST_NUM; 1037 1038 if (discard_type == DPOLICY_BG) { 1039 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1040 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1041 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1042 dpolicy->io_aware = true; 1043 dpolicy->sync = false; 1044 dpolicy->ordered = true; 1045 if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) { 1046 dpolicy->granularity = 1; 1047 dpolicy->max_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1048 } 1049 } else if (discard_type == DPOLICY_FORCE) { 1050 dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME; 1051 dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME; 1052 dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME; 1053 dpolicy->io_aware = false; 1054 } else if (discard_type == DPOLICY_FSTRIM) { 1055 dpolicy->io_aware = false; 1056 } else if (discard_type == DPOLICY_UMOUNT) { 1057 dpolicy->max_requests = UINT_MAX; 1058 dpolicy->io_aware = false; 1059 } 1060 } 1061 1062 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1063 struct block_device *bdev, block_t lstart, 1064 block_t start, block_t len); 1065 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 1066 static int __submit_discard_cmd(struct f2fs_sb_info *sbi, 1067 struct discard_policy *dpolicy, 1068 struct discard_cmd *dc, 1069 unsigned int *issued) 1070 { 1071 struct block_device *bdev = dc->bdev; 1072 struct request_queue *q = bdev_get_queue(bdev); 1073 unsigned int max_discard_blocks = 1074 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1075 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1076 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1077 &(dcc->fstrim_list) : &(dcc->wait_list); 1078 int flag = dpolicy->sync ? REQ_SYNC : 0; 1079 block_t lstart, start, len, total_len; 1080 int err = 0; 1081 1082 if (dc->state != D_PREP) 1083 return 0; 1084 1085 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) 1086 return 0; 1087 1088 trace_f2fs_issue_discard(bdev, dc->start, dc->len); 1089 1090 lstart = dc->lstart; 1091 start = dc->start; 1092 len = dc->len; 1093 total_len = len; 1094 1095 dc->len = 0; 1096 1097 while (total_len && *issued < dpolicy->max_requests && !err) { 1098 struct bio *bio = NULL; 1099 unsigned long flags; 1100 bool last = true; 1101 1102 if (len > max_discard_blocks) { 1103 len = max_discard_blocks; 1104 last = false; 1105 } 1106 1107 (*issued)++; 1108 if (*issued == dpolicy->max_requests) 1109 last = true; 1110 1111 dc->len += len; 1112 1113 if (time_to_inject(sbi, FAULT_DISCARD)) { 1114 f2fs_show_injection_info(FAULT_DISCARD); 1115 err = -EIO; 1116 goto submit; 1117 } 1118 err = __blkdev_issue_discard(bdev, 1119 SECTOR_FROM_BLOCK(start), 1120 SECTOR_FROM_BLOCK(len), 1121 GFP_NOFS, 0, &bio); 1122 submit: 1123 if (err) { 1124 spin_lock_irqsave(&dc->lock, flags); 1125 if (dc->state == D_PARTIAL) 1126 dc->state = D_SUBMIT; 1127 spin_unlock_irqrestore(&dc->lock, flags); 1128 1129 break; 1130 } 1131 1132 f2fs_bug_on(sbi, !bio); 1133 1134 /* 1135 * should keep before submission to avoid D_DONE 1136 * right away 1137 */ 1138 spin_lock_irqsave(&dc->lock, flags); 1139 if (last) 1140 dc->state = D_SUBMIT; 1141 else 1142 dc->state = D_PARTIAL; 1143 dc->bio_ref++; 1144 spin_unlock_irqrestore(&dc->lock, flags); 1145 1146 atomic_inc(&dcc->issing_discard); 1147 dc->issuing++; 1148 list_move_tail(&dc->list, wait_list); 1149 1150 /* sanity check on discard range */ 1151 __check_sit_bitmap(sbi, start, start + len); 1152 1153 bio->bi_private = dc; 1154 bio->bi_end_io = f2fs_submit_discard_endio; 1155 bio->bi_opf |= flag; 1156 submit_bio(bio); 1157 1158 atomic_inc(&dcc->issued_discard); 1159 1160 f2fs_update_iostat(sbi, FS_DISCARD, 1); 1161 1162 lstart += len; 1163 start += len; 1164 total_len -= len; 1165 len = total_len; 1166 } 1167 1168 if (!err && len) 1169 __update_discard_tree_range(sbi, bdev, lstart, start, len); 1170 return err; 1171 } 1172 1173 static struct discard_cmd *__insert_discard_tree(struct f2fs_sb_info *sbi, 1174 struct block_device *bdev, block_t lstart, 1175 block_t start, block_t len, 1176 struct rb_node **insert_p, 1177 struct rb_node *insert_parent) 1178 { 1179 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1180 struct rb_node **p; 1181 struct rb_node *parent = NULL; 1182 struct discard_cmd *dc = NULL; 1183 bool leftmost = true; 1184 1185 if (insert_p && insert_parent) { 1186 parent = insert_parent; 1187 p = insert_p; 1188 goto do_insert; 1189 } 1190 1191 p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent, 1192 lstart, &leftmost); 1193 do_insert: 1194 dc = __attach_discard_cmd(sbi, bdev, lstart, start, len, parent, 1195 p, leftmost); 1196 if (!dc) 1197 return NULL; 1198 1199 return dc; 1200 } 1201 1202 static void __relocate_discard_cmd(struct discard_cmd_control *dcc, 1203 struct discard_cmd *dc) 1204 { 1205 list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]); 1206 } 1207 1208 static void __punch_discard_cmd(struct f2fs_sb_info *sbi, 1209 struct discard_cmd *dc, block_t blkaddr) 1210 { 1211 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1212 struct discard_info di = dc->di; 1213 bool modified = false; 1214 1215 if (dc->state == D_DONE || dc->len == 1) { 1216 __remove_discard_cmd(sbi, dc); 1217 return; 1218 } 1219 1220 dcc->undiscard_blks -= di.len; 1221 1222 if (blkaddr > di.lstart) { 1223 dc->len = blkaddr - dc->lstart; 1224 dcc->undiscard_blks += dc->len; 1225 __relocate_discard_cmd(dcc, dc); 1226 modified = true; 1227 } 1228 1229 if (blkaddr < di.lstart + di.len - 1) { 1230 if (modified) { 1231 __insert_discard_tree(sbi, dc->bdev, blkaddr + 1, 1232 di.start + blkaddr + 1 - di.lstart, 1233 di.lstart + di.len - 1 - blkaddr, 1234 NULL, NULL); 1235 } else { 1236 dc->lstart++; 1237 dc->len--; 1238 dc->start++; 1239 dcc->undiscard_blks += dc->len; 1240 __relocate_discard_cmd(dcc, dc); 1241 } 1242 } 1243 } 1244 1245 static void __update_discard_tree_range(struct f2fs_sb_info *sbi, 1246 struct block_device *bdev, block_t lstart, 1247 block_t start, block_t len) 1248 { 1249 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1250 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1251 struct discard_cmd *dc; 1252 struct discard_info di = {0}; 1253 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1254 struct request_queue *q = bdev_get_queue(bdev); 1255 unsigned int max_discard_blocks = 1256 SECTOR_TO_BLOCK(q->limits.max_discard_sectors); 1257 block_t end = lstart + len; 1258 1259 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1260 NULL, lstart, 1261 (struct rb_entry **)&prev_dc, 1262 (struct rb_entry **)&next_dc, 1263 &insert_p, &insert_parent, true, NULL); 1264 if (dc) 1265 prev_dc = dc; 1266 1267 if (!prev_dc) { 1268 di.lstart = lstart; 1269 di.len = next_dc ? next_dc->lstart - lstart : len; 1270 di.len = min(di.len, len); 1271 di.start = start; 1272 } 1273 1274 while (1) { 1275 struct rb_node *node; 1276 bool merged = false; 1277 struct discard_cmd *tdc = NULL; 1278 1279 if (prev_dc) { 1280 di.lstart = prev_dc->lstart + prev_dc->len; 1281 if (di.lstart < lstart) 1282 di.lstart = lstart; 1283 if (di.lstart >= end) 1284 break; 1285 1286 if (!next_dc || next_dc->lstart > end) 1287 di.len = end - di.lstart; 1288 else 1289 di.len = next_dc->lstart - di.lstart; 1290 di.start = start + di.lstart - lstart; 1291 } 1292 1293 if (!di.len) 1294 goto next; 1295 1296 if (prev_dc && prev_dc->state == D_PREP && 1297 prev_dc->bdev == bdev && 1298 __is_discard_back_mergeable(&di, &prev_dc->di, 1299 max_discard_blocks)) { 1300 prev_dc->di.len += di.len; 1301 dcc->undiscard_blks += di.len; 1302 __relocate_discard_cmd(dcc, prev_dc); 1303 di = prev_dc->di; 1304 tdc = prev_dc; 1305 merged = true; 1306 } 1307 1308 if (next_dc && next_dc->state == D_PREP && 1309 next_dc->bdev == bdev && 1310 __is_discard_front_mergeable(&di, &next_dc->di, 1311 max_discard_blocks)) { 1312 next_dc->di.lstart = di.lstart; 1313 next_dc->di.len += di.len; 1314 next_dc->di.start = di.start; 1315 dcc->undiscard_blks += di.len; 1316 __relocate_discard_cmd(dcc, next_dc); 1317 if (tdc) 1318 __remove_discard_cmd(sbi, tdc); 1319 merged = true; 1320 } 1321 1322 if (!merged) { 1323 __insert_discard_tree(sbi, bdev, di.lstart, di.start, 1324 di.len, NULL, NULL); 1325 } 1326 next: 1327 prev_dc = next_dc; 1328 if (!prev_dc) 1329 break; 1330 1331 node = rb_next(&prev_dc->rb_node); 1332 next_dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1333 } 1334 } 1335 1336 static int __queue_discard_cmd(struct f2fs_sb_info *sbi, 1337 struct block_device *bdev, block_t blkstart, block_t blklen) 1338 { 1339 block_t lblkstart = blkstart; 1340 1341 trace_f2fs_queue_discard(bdev, blkstart, blklen); 1342 1343 if (sbi->s_ndevs) { 1344 int devi = f2fs_target_device_index(sbi, blkstart); 1345 1346 blkstart -= FDEV(devi).start_blk; 1347 } 1348 mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock); 1349 __update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen); 1350 mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock); 1351 return 0; 1352 } 1353 1354 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi, 1355 struct discard_policy *dpolicy) 1356 { 1357 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1358 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 1359 struct rb_node **insert_p = NULL, *insert_parent = NULL; 1360 struct discard_cmd *dc; 1361 struct blk_plug plug; 1362 unsigned int pos = dcc->next_pos; 1363 unsigned int issued = 0; 1364 bool io_interrupted = false; 1365 1366 mutex_lock(&dcc->cmd_lock); 1367 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 1368 NULL, pos, 1369 (struct rb_entry **)&prev_dc, 1370 (struct rb_entry **)&next_dc, 1371 &insert_p, &insert_parent, true, NULL); 1372 if (!dc) 1373 dc = next_dc; 1374 1375 blk_start_plug(&plug); 1376 1377 while (dc) { 1378 struct rb_node *node; 1379 int err = 0; 1380 1381 if (dc->state != D_PREP) 1382 goto next; 1383 1384 if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) { 1385 io_interrupted = true; 1386 break; 1387 } 1388 1389 dcc->next_pos = dc->lstart + dc->len; 1390 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1391 1392 if (issued >= dpolicy->max_requests) 1393 break; 1394 next: 1395 node = rb_next(&dc->rb_node); 1396 if (err) 1397 __remove_discard_cmd(sbi, dc); 1398 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 1399 } 1400 1401 blk_finish_plug(&plug); 1402 1403 if (!dc) 1404 dcc->next_pos = 0; 1405 1406 mutex_unlock(&dcc->cmd_lock); 1407 1408 if (!issued && io_interrupted) 1409 issued = -1; 1410 1411 return issued; 1412 } 1413 1414 static int __issue_discard_cmd(struct f2fs_sb_info *sbi, 1415 struct discard_policy *dpolicy) 1416 { 1417 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1418 struct list_head *pend_list; 1419 struct discard_cmd *dc, *tmp; 1420 struct blk_plug plug; 1421 int i, issued = 0; 1422 bool io_interrupted = false; 1423 1424 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1425 if (i + 1 < dpolicy->granularity) 1426 break; 1427 1428 if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered) 1429 return __issue_discard_cmd_orderly(sbi, dpolicy); 1430 1431 pend_list = &dcc->pend_list[i]; 1432 1433 mutex_lock(&dcc->cmd_lock); 1434 if (list_empty(pend_list)) 1435 goto next; 1436 if (unlikely(dcc->rbtree_check)) 1437 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 1438 &dcc->root)); 1439 blk_start_plug(&plug); 1440 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1441 f2fs_bug_on(sbi, dc->state != D_PREP); 1442 1443 if (dpolicy->io_aware && i < dpolicy->io_aware_gran && 1444 !is_idle(sbi, DISCARD_TIME)) { 1445 io_interrupted = true; 1446 break; 1447 } 1448 1449 __submit_discard_cmd(sbi, dpolicy, dc, &issued); 1450 1451 if (issued >= dpolicy->max_requests) 1452 break; 1453 } 1454 blk_finish_plug(&plug); 1455 next: 1456 mutex_unlock(&dcc->cmd_lock); 1457 1458 if (issued >= dpolicy->max_requests || io_interrupted) 1459 break; 1460 } 1461 1462 if (!issued && io_interrupted) 1463 issued = -1; 1464 1465 return issued; 1466 } 1467 1468 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi) 1469 { 1470 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1471 struct list_head *pend_list; 1472 struct discard_cmd *dc, *tmp; 1473 int i; 1474 bool dropped = false; 1475 1476 mutex_lock(&dcc->cmd_lock); 1477 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 1478 pend_list = &dcc->pend_list[i]; 1479 list_for_each_entry_safe(dc, tmp, pend_list, list) { 1480 f2fs_bug_on(sbi, dc->state != D_PREP); 1481 __remove_discard_cmd(sbi, dc); 1482 dropped = true; 1483 } 1484 } 1485 mutex_unlock(&dcc->cmd_lock); 1486 1487 return dropped; 1488 } 1489 1490 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi) 1491 { 1492 __drop_discard_cmd(sbi); 1493 } 1494 1495 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi, 1496 struct discard_cmd *dc) 1497 { 1498 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1499 unsigned int len = 0; 1500 1501 wait_for_completion_io(&dc->wait); 1502 mutex_lock(&dcc->cmd_lock); 1503 f2fs_bug_on(sbi, dc->state != D_DONE); 1504 dc->ref--; 1505 if (!dc->ref) { 1506 if (!dc->error) 1507 len = dc->len; 1508 __remove_discard_cmd(sbi, dc); 1509 } 1510 mutex_unlock(&dcc->cmd_lock); 1511 1512 return len; 1513 } 1514 1515 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi, 1516 struct discard_policy *dpolicy, 1517 block_t start, block_t end) 1518 { 1519 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1520 struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ? 1521 &(dcc->fstrim_list) : &(dcc->wait_list); 1522 struct discard_cmd *dc, *tmp; 1523 bool need_wait; 1524 unsigned int trimmed = 0; 1525 1526 next: 1527 need_wait = false; 1528 1529 mutex_lock(&dcc->cmd_lock); 1530 list_for_each_entry_safe(dc, tmp, wait_list, list) { 1531 if (dc->lstart + dc->len <= start || end <= dc->lstart) 1532 continue; 1533 if (dc->len < dpolicy->granularity) 1534 continue; 1535 if (dc->state == D_DONE && !dc->ref) { 1536 wait_for_completion_io(&dc->wait); 1537 if (!dc->error) 1538 trimmed += dc->len; 1539 __remove_discard_cmd(sbi, dc); 1540 } else { 1541 dc->ref++; 1542 need_wait = true; 1543 break; 1544 } 1545 } 1546 mutex_unlock(&dcc->cmd_lock); 1547 1548 if (need_wait) { 1549 trimmed += __wait_one_discard_bio(sbi, dc); 1550 goto next; 1551 } 1552 1553 return trimmed; 1554 } 1555 1556 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi, 1557 struct discard_policy *dpolicy) 1558 { 1559 struct discard_policy dp; 1560 unsigned int discard_blks; 1561 1562 if (dpolicy) 1563 return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX); 1564 1565 /* wait all */ 1566 __init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1); 1567 discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1568 __init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1); 1569 discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX); 1570 1571 return discard_blks; 1572 } 1573 1574 /* This should be covered by global mutex, &sit_i->sentry_lock */ 1575 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 1576 { 1577 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1578 struct discard_cmd *dc; 1579 bool need_wait = false; 1580 1581 mutex_lock(&dcc->cmd_lock); 1582 dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root, 1583 NULL, blkaddr); 1584 if (dc) { 1585 if (dc->state == D_PREP) { 1586 __punch_discard_cmd(sbi, dc, blkaddr); 1587 } else { 1588 dc->ref++; 1589 need_wait = true; 1590 } 1591 } 1592 mutex_unlock(&dcc->cmd_lock); 1593 1594 if (need_wait) 1595 __wait_one_discard_bio(sbi, dc); 1596 } 1597 1598 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi) 1599 { 1600 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1601 1602 if (dcc && dcc->f2fs_issue_discard) { 1603 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1604 1605 dcc->f2fs_issue_discard = NULL; 1606 kthread_stop(discard_thread); 1607 } 1608 } 1609 1610 /* This comes from f2fs_put_super */ 1611 bool f2fs_wait_discard_bios(struct f2fs_sb_info *sbi) 1612 { 1613 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1614 struct discard_policy dpolicy; 1615 bool dropped; 1616 1617 __init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT, 1618 dcc->discard_granularity); 1619 __issue_discard_cmd(sbi, &dpolicy); 1620 dropped = __drop_discard_cmd(sbi); 1621 1622 /* just to make sure there is no pending discard commands */ 1623 __wait_all_discard_cmd(sbi, NULL); 1624 1625 f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt)); 1626 return dropped; 1627 } 1628 1629 static int issue_discard_thread(void *data) 1630 { 1631 struct f2fs_sb_info *sbi = data; 1632 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1633 wait_queue_head_t *q = &dcc->discard_wait_queue; 1634 struct discard_policy dpolicy; 1635 unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME; 1636 int issued; 1637 1638 set_freezable(); 1639 1640 do { 1641 __init_discard_policy(sbi, &dpolicy, DPOLICY_BG, 1642 dcc->discard_granularity); 1643 1644 wait_event_interruptible_timeout(*q, 1645 kthread_should_stop() || freezing(current) || 1646 dcc->discard_wake, 1647 msecs_to_jiffies(wait_ms)); 1648 1649 if (dcc->discard_wake) 1650 dcc->discard_wake = 0; 1651 1652 if (try_to_freeze()) 1653 continue; 1654 if (f2fs_readonly(sbi->sb)) 1655 continue; 1656 if (kthread_should_stop()) 1657 return 0; 1658 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1659 wait_ms = dpolicy.max_interval; 1660 continue; 1661 } 1662 1663 if (sbi->gc_mode == GC_URGENT) 1664 __init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1); 1665 1666 sb_start_intwrite(sbi->sb); 1667 1668 issued = __issue_discard_cmd(sbi, &dpolicy); 1669 if (issued > 0) { 1670 __wait_all_discard_cmd(sbi, &dpolicy); 1671 wait_ms = dpolicy.min_interval; 1672 } else if (issued == -1){ 1673 wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME); 1674 if (!wait_ms) 1675 wait_ms = dpolicy.mid_interval; 1676 } else { 1677 wait_ms = dpolicy.max_interval; 1678 } 1679 1680 sb_end_intwrite(sbi->sb); 1681 1682 } while (!kthread_should_stop()); 1683 return 0; 1684 } 1685 1686 #ifdef CONFIG_BLK_DEV_ZONED 1687 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 1688 struct block_device *bdev, block_t blkstart, block_t blklen) 1689 { 1690 sector_t sector, nr_sects; 1691 block_t lblkstart = blkstart; 1692 int devi = 0; 1693 1694 if (sbi->s_ndevs) { 1695 devi = f2fs_target_device_index(sbi, blkstart); 1696 blkstart -= FDEV(devi).start_blk; 1697 } 1698 1699 /* 1700 * We need to know the type of the zone: for conventional zones, 1701 * use regular discard if the drive supports it. For sequential 1702 * zones, reset the zone write pointer. 1703 */ 1704 switch (get_blkz_type(sbi, bdev, blkstart)) { 1705 1706 case BLK_ZONE_TYPE_CONVENTIONAL: 1707 if (!blk_queue_discard(bdev_get_queue(bdev))) 1708 return 0; 1709 return __queue_discard_cmd(sbi, bdev, lblkstart, blklen); 1710 case BLK_ZONE_TYPE_SEQWRITE_REQ: 1711 case BLK_ZONE_TYPE_SEQWRITE_PREF: 1712 sector = SECTOR_FROM_BLOCK(blkstart); 1713 nr_sects = SECTOR_FROM_BLOCK(blklen); 1714 1715 if (sector & (bdev_zone_sectors(bdev) - 1) || 1716 nr_sects != bdev_zone_sectors(bdev)) { 1717 f2fs_msg(sbi->sb, KERN_INFO, 1718 "(%d) %s: Unaligned discard attempted (block %x + %x)", 1719 devi, sbi->s_ndevs ? FDEV(devi).path: "", 1720 blkstart, blklen); 1721 return -EIO; 1722 } 1723 trace_f2fs_issue_reset_zone(bdev, blkstart); 1724 return blkdev_reset_zones(bdev, sector, 1725 nr_sects, GFP_NOFS); 1726 default: 1727 /* Unknown zone type: broken device ? */ 1728 return -EIO; 1729 } 1730 } 1731 #endif 1732 1733 static int __issue_discard_async(struct f2fs_sb_info *sbi, 1734 struct block_device *bdev, block_t blkstart, block_t blklen) 1735 { 1736 #ifdef CONFIG_BLK_DEV_ZONED 1737 if (f2fs_sb_has_blkzoned(sbi->sb) && 1738 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 1739 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 1740 #endif 1741 return __queue_discard_cmd(sbi, bdev, blkstart, blklen); 1742 } 1743 1744 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 1745 block_t blkstart, block_t blklen) 1746 { 1747 sector_t start = blkstart, len = 0; 1748 struct block_device *bdev; 1749 struct seg_entry *se; 1750 unsigned int offset; 1751 block_t i; 1752 int err = 0; 1753 1754 bdev = f2fs_target_device(sbi, blkstart, NULL); 1755 1756 for (i = blkstart; i < blkstart + blklen; i++, len++) { 1757 if (i != start) { 1758 struct block_device *bdev2 = 1759 f2fs_target_device(sbi, i, NULL); 1760 1761 if (bdev2 != bdev) { 1762 err = __issue_discard_async(sbi, bdev, 1763 start, len); 1764 if (err) 1765 return err; 1766 bdev = bdev2; 1767 start = i; 1768 len = 0; 1769 } 1770 } 1771 1772 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 1773 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 1774 1775 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 1776 sbi->discard_blks--; 1777 } 1778 1779 if (len) 1780 err = __issue_discard_async(sbi, bdev, start, len); 1781 return err; 1782 } 1783 1784 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 1785 bool check_only) 1786 { 1787 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1788 int max_blocks = sbi->blocks_per_seg; 1789 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 1790 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1791 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1792 unsigned long *discard_map = (unsigned long *)se->discard_map; 1793 unsigned long *dmap = SIT_I(sbi)->tmp_map; 1794 unsigned int start = 0, end = -1; 1795 bool force = (cpc->reason & CP_DISCARD); 1796 struct discard_entry *de = NULL; 1797 struct list_head *head = &SM_I(sbi)->dcc_info->entry_list; 1798 int i; 1799 1800 if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi)) 1801 return false; 1802 1803 if (!force) { 1804 if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks || 1805 SM_I(sbi)->dcc_info->nr_discards >= 1806 SM_I(sbi)->dcc_info->max_discards) 1807 return false; 1808 } 1809 1810 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 1811 for (i = 0; i < entries; i++) 1812 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 1813 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 1814 1815 while (force || SM_I(sbi)->dcc_info->nr_discards <= 1816 SM_I(sbi)->dcc_info->max_discards) { 1817 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 1818 if (start >= max_blocks) 1819 break; 1820 1821 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 1822 if (force && start && end != max_blocks 1823 && (end - start) < cpc->trim_minlen) 1824 continue; 1825 1826 if (check_only) 1827 return true; 1828 1829 if (!de) { 1830 de = f2fs_kmem_cache_alloc(discard_entry_slab, 1831 GFP_F2FS_ZERO); 1832 de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start); 1833 list_add_tail(&de->list, head); 1834 } 1835 1836 for (i = start; i < end; i++) 1837 __set_bit_le(i, (void *)de->discard_map); 1838 1839 SM_I(sbi)->dcc_info->nr_discards += end - start; 1840 } 1841 return false; 1842 } 1843 1844 static void release_discard_addr(struct discard_entry *entry) 1845 { 1846 list_del(&entry->list); 1847 kmem_cache_free(discard_entry_slab, entry); 1848 } 1849 1850 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi) 1851 { 1852 struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list); 1853 struct discard_entry *entry, *this; 1854 1855 /* drop caches */ 1856 list_for_each_entry_safe(entry, this, head, list) 1857 release_discard_addr(entry); 1858 } 1859 1860 /* 1861 * Should call f2fs_clear_prefree_segments after checkpoint is done. 1862 */ 1863 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 1864 { 1865 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1866 unsigned int segno; 1867 1868 mutex_lock(&dirty_i->seglist_lock); 1869 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 1870 __set_test_and_free(sbi, segno); 1871 mutex_unlock(&dirty_i->seglist_lock); 1872 } 1873 1874 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi, 1875 struct cp_control *cpc) 1876 { 1877 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1878 struct list_head *head = &dcc->entry_list; 1879 struct discard_entry *entry, *this; 1880 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1881 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 1882 unsigned int start = 0, end = -1; 1883 unsigned int secno, start_segno; 1884 bool force = (cpc->reason & CP_DISCARD); 1885 bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1; 1886 1887 mutex_lock(&dirty_i->seglist_lock); 1888 1889 while (1) { 1890 int i; 1891 1892 if (need_align && end != -1) 1893 end--; 1894 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1895 if (start >= MAIN_SEGS(sbi)) 1896 break; 1897 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1898 start + 1); 1899 1900 if (need_align) { 1901 start = rounddown(start, sbi->segs_per_sec); 1902 end = roundup(end, sbi->segs_per_sec); 1903 } 1904 1905 for (i = start; i < end; i++) { 1906 if (test_and_clear_bit(i, prefree_map)) 1907 dirty_i->nr_dirty[PRE]--; 1908 } 1909 1910 if (!f2fs_realtime_discard_enable(sbi)) 1911 continue; 1912 1913 if (force && start >= cpc->trim_start && 1914 (end - 1) <= cpc->trim_end) 1915 continue; 1916 1917 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 1918 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1919 (end - start) << sbi->log_blocks_per_seg); 1920 continue; 1921 } 1922 next: 1923 secno = GET_SEC_FROM_SEG(sbi, start); 1924 start_segno = GET_SEG_FROM_SEC(sbi, secno); 1925 if (!IS_CURSEC(sbi, secno) && 1926 !get_valid_blocks(sbi, start, true)) 1927 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1928 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1929 1930 start = start_segno + sbi->segs_per_sec; 1931 if (start < end) 1932 goto next; 1933 else 1934 end = start - 1; 1935 } 1936 mutex_unlock(&dirty_i->seglist_lock); 1937 1938 /* send small discards */ 1939 list_for_each_entry_safe(entry, this, head, list) { 1940 unsigned int cur_pos = 0, next_pos, len, total_len = 0; 1941 bool is_valid = test_bit_le(0, entry->discard_map); 1942 1943 find_next: 1944 if (is_valid) { 1945 next_pos = find_next_zero_bit_le(entry->discard_map, 1946 sbi->blocks_per_seg, cur_pos); 1947 len = next_pos - cur_pos; 1948 1949 if (f2fs_sb_has_blkzoned(sbi->sb) || 1950 (force && len < cpc->trim_minlen)) 1951 goto skip; 1952 1953 f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos, 1954 len); 1955 total_len += len; 1956 } else { 1957 next_pos = find_next_bit_le(entry->discard_map, 1958 sbi->blocks_per_seg, cur_pos); 1959 } 1960 skip: 1961 cur_pos = next_pos; 1962 is_valid = !is_valid; 1963 1964 if (cur_pos < sbi->blocks_per_seg) 1965 goto find_next; 1966 1967 release_discard_addr(entry); 1968 dcc->nr_discards -= total_len; 1969 } 1970 1971 wake_up_discard_thread(sbi, false); 1972 } 1973 1974 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 1975 { 1976 dev_t dev = sbi->sb->s_bdev->bd_dev; 1977 struct discard_cmd_control *dcc; 1978 int err = 0, i; 1979 1980 if (SM_I(sbi)->dcc_info) { 1981 dcc = SM_I(sbi)->dcc_info; 1982 goto init_thread; 1983 } 1984 1985 dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL); 1986 if (!dcc) 1987 return -ENOMEM; 1988 1989 dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY; 1990 INIT_LIST_HEAD(&dcc->entry_list); 1991 for (i = 0; i < MAX_PLIST_NUM; i++) 1992 INIT_LIST_HEAD(&dcc->pend_list[i]); 1993 INIT_LIST_HEAD(&dcc->wait_list); 1994 INIT_LIST_HEAD(&dcc->fstrim_list); 1995 mutex_init(&dcc->cmd_lock); 1996 atomic_set(&dcc->issued_discard, 0); 1997 atomic_set(&dcc->issing_discard, 0); 1998 atomic_set(&dcc->discard_cmd_cnt, 0); 1999 dcc->nr_discards = 0; 2000 dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg; 2001 dcc->undiscard_blks = 0; 2002 dcc->next_pos = 0; 2003 dcc->root = RB_ROOT_CACHED; 2004 dcc->rbtree_check = false; 2005 2006 init_waitqueue_head(&dcc->discard_wait_queue); 2007 SM_I(sbi)->dcc_info = dcc; 2008 init_thread: 2009 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 2010 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 2011 if (IS_ERR(dcc->f2fs_issue_discard)) { 2012 err = PTR_ERR(dcc->f2fs_issue_discard); 2013 kfree(dcc); 2014 SM_I(sbi)->dcc_info = NULL; 2015 return err; 2016 } 2017 2018 return err; 2019 } 2020 2021 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi) 2022 { 2023 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2024 2025 if (!dcc) 2026 return; 2027 2028 f2fs_stop_discard_thread(sbi); 2029 2030 kfree(dcc); 2031 SM_I(sbi)->dcc_info = NULL; 2032 } 2033 2034 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 2035 { 2036 struct sit_info *sit_i = SIT_I(sbi); 2037 2038 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 2039 sit_i->dirty_sentries++; 2040 return false; 2041 } 2042 2043 return true; 2044 } 2045 2046 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 2047 unsigned int segno, int modified) 2048 { 2049 struct seg_entry *se = get_seg_entry(sbi, segno); 2050 se->type = type; 2051 if (modified) 2052 __mark_sit_entry_dirty(sbi, segno); 2053 } 2054 2055 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 2056 { 2057 struct seg_entry *se; 2058 unsigned int segno, offset; 2059 long int new_vblocks; 2060 bool exist; 2061 #ifdef CONFIG_F2FS_CHECK_FS 2062 bool mir_exist; 2063 #endif 2064 2065 segno = GET_SEGNO(sbi, blkaddr); 2066 2067 se = get_seg_entry(sbi, segno); 2068 new_vblocks = se->valid_blocks + del; 2069 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2070 2071 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 2072 (new_vblocks > sbi->blocks_per_seg))); 2073 2074 se->valid_blocks = new_vblocks; 2075 se->mtime = get_mtime(sbi, false); 2076 if (se->mtime > SIT_I(sbi)->max_mtime) 2077 SIT_I(sbi)->max_mtime = se->mtime; 2078 2079 /* Update valid block bitmap */ 2080 if (del > 0) { 2081 exist = f2fs_test_and_set_bit(offset, se->cur_valid_map); 2082 #ifdef CONFIG_F2FS_CHECK_FS 2083 mir_exist = f2fs_test_and_set_bit(offset, 2084 se->cur_valid_map_mir); 2085 if (unlikely(exist != mir_exist)) { 2086 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 2087 "when setting bitmap, blk:%u, old bit:%d", 2088 blkaddr, exist); 2089 f2fs_bug_on(sbi, 1); 2090 } 2091 #endif 2092 if (unlikely(exist)) { 2093 f2fs_msg(sbi->sb, KERN_ERR, 2094 "Bitmap was wrongly set, blk:%u", blkaddr); 2095 f2fs_bug_on(sbi, 1); 2096 se->valid_blocks--; 2097 del = 0; 2098 } 2099 2100 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 2101 sbi->discard_blks--; 2102 2103 /* don't overwrite by SSR to keep node chain */ 2104 if (IS_NODESEG(se->type) && 2105 !is_sbi_flag_set(sbi, SBI_CP_DISABLED)) { 2106 if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map)) 2107 se->ckpt_valid_blocks++; 2108 } 2109 } else { 2110 exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map); 2111 #ifdef CONFIG_F2FS_CHECK_FS 2112 mir_exist = f2fs_test_and_clear_bit(offset, 2113 se->cur_valid_map_mir); 2114 if (unlikely(exist != mir_exist)) { 2115 f2fs_msg(sbi->sb, KERN_ERR, "Inconsistent error " 2116 "when clearing bitmap, blk:%u, old bit:%d", 2117 blkaddr, exist); 2118 f2fs_bug_on(sbi, 1); 2119 } 2120 #endif 2121 if (unlikely(!exist)) { 2122 f2fs_msg(sbi->sb, KERN_ERR, 2123 "Bitmap was wrongly cleared, blk:%u", blkaddr); 2124 f2fs_bug_on(sbi, 1); 2125 se->valid_blocks++; 2126 del = 0; 2127 } else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2128 /* 2129 * If checkpoints are off, we must not reuse data that 2130 * was used in the previous checkpoint. If it was used 2131 * before, we must track that to know how much space we 2132 * really have. 2133 */ 2134 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2135 sbi->unusable_block_count++; 2136 } 2137 2138 if (f2fs_test_and_clear_bit(offset, se->discard_map)) 2139 sbi->discard_blks++; 2140 } 2141 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 2142 se->ckpt_valid_blocks += del; 2143 2144 __mark_sit_entry_dirty(sbi, segno); 2145 2146 /* update total number of valid blocks to be written in ckpt area */ 2147 SIT_I(sbi)->written_valid_blocks += del; 2148 2149 if (sbi->segs_per_sec > 1) 2150 get_sec_entry(sbi, segno)->valid_blocks += del; 2151 } 2152 2153 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 2154 { 2155 unsigned int segno = GET_SEGNO(sbi, addr); 2156 struct sit_info *sit_i = SIT_I(sbi); 2157 2158 f2fs_bug_on(sbi, addr == NULL_ADDR); 2159 if (addr == NEW_ADDR) 2160 return; 2161 2162 invalidate_mapping_pages(META_MAPPING(sbi), addr, addr); 2163 2164 /* add it into sit main buffer */ 2165 down_write(&sit_i->sentry_lock); 2166 2167 update_sit_entry(sbi, addr, -1); 2168 2169 /* add it into dirty seglist */ 2170 locate_dirty_segment(sbi, segno); 2171 2172 up_write(&sit_i->sentry_lock); 2173 } 2174 2175 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 2176 { 2177 struct sit_info *sit_i = SIT_I(sbi); 2178 unsigned int segno, offset; 2179 struct seg_entry *se; 2180 bool is_cp = false; 2181 2182 if (!is_valid_data_blkaddr(sbi, blkaddr)) 2183 return true; 2184 2185 down_read(&sit_i->sentry_lock); 2186 2187 segno = GET_SEGNO(sbi, blkaddr); 2188 se = get_seg_entry(sbi, segno); 2189 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 2190 2191 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 2192 is_cp = true; 2193 2194 up_read(&sit_i->sentry_lock); 2195 2196 return is_cp; 2197 } 2198 2199 /* 2200 * This function should be resided under the curseg_mutex lock 2201 */ 2202 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 2203 struct f2fs_summary *sum) 2204 { 2205 struct curseg_info *curseg = CURSEG_I(sbi, type); 2206 void *addr = curseg->sum_blk; 2207 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 2208 memcpy(addr, sum, sizeof(struct f2fs_summary)); 2209 } 2210 2211 /* 2212 * Calculate the number of current summary pages for writing 2213 */ 2214 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 2215 { 2216 int valid_sum_count = 0; 2217 int i, sum_in_page; 2218 2219 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2220 if (sbi->ckpt->alloc_type[i] == SSR) 2221 valid_sum_count += sbi->blocks_per_seg; 2222 else { 2223 if (for_ra) 2224 valid_sum_count += le16_to_cpu( 2225 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 2226 else 2227 valid_sum_count += curseg_blkoff(sbi, i); 2228 } 2229 } 2230 2231 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 2232 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 2233 if (valid_sum_count <= sum_in_page) 2234 return 1; 2235 else if ((valid_sum_count - sum_in_page) <= 2236 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 2237 return 2; 2238 return 3; 2239 } 2240 2241 /* 2242 * Caller should put this summary page 2243 */ 2244 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 2245 { 2246 return f2fs_get_meta_page_nofail(sbi, GET_SUM_BLOCK(sbi, segno)); 2247 } 2248 2249 void f2fs_update_meta_page(struct f2fs_sb_info *sbi, 2250 void *src, block_t blk_addr) 2251 { 2252 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2253 2254 memcpy(page_address(page), src, PAGE_SIZE); 2255 set_page_dirty(page); 2256 f2fs_put_page(page, 1); 2257 } 2258 2259 static void write_sum_page(struct f2fs_sb_info *sbi, 2260 struct f2fs_summary_block *sum_blk, block_t blk_addr) 2261 { 2262 f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr); 2263 } 2264 2265 static void write_current_sum_page(struct f2fs_sb_info *sbi, 2266 int type, block_t blk_addr) 2267 { 2268 struct curseg_info *curseg = CURSEG_I(sbi, type); 2269 struct page *page = f2fs_grab_meta_page(sbi, blk_addr); 2270 struct f2fs_summary_block *src = curseg->sum_blk; 2271 struct f2fs_summary_block *dst; 2272 2273 dst = (struct f2fs_summary_block *)page_address(page); 2274 memset(dst, 0, PAGE_SIZE); 2275 2276 mutex_lock(&curseg->curseg_mutex); 2277 2278 down_read(&curseg->journal_rwsem); 2279 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 2280 up_read(&curseg->journal_rwsem); 2281 2282 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 2283 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 2284 2285 mutex_unlock(&curseg->curseg_mutex); 2286 2287 set_page_dirty(page); 2288 f2fs_put_page(page, 1); 2289 } 2290 2291 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type) 2292 { 2293 struct curseg_info *curseg = CURSEG_I(sbi, type); 2294 unsigned int segno = curseg->segno + 1; 2295 struct free_segmap_info *free_i = FREE_I(sbi); 2296 2297 if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec) 2298 return !test_bit(segno, free_i->free_segmap); 2299 return 0; 2300 } 2301 2302 /* 2303 * Find a new segment from the free segments bitmap to right order 2304 * This function should be returned with success, otherwise BUG 2305 */ 2306 static void get_new_segment(struct f2fs_sb_info *sbi, 2307 unsigned int *newseg, bool new_sec, int dir) 2308 { 2309 struct free_segmap_info *free_i = FREE_I(sbi); 2310 unsigned int segno, secno, zoneno; 2311 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 2312 unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg); 2313 unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg); 2314 unsigned int left_start = hint; 2315 bool init = true; 2316 int go_left = 0; 2317 int i; 2318 2319 spin_lock(&free_i->segmap_lock); 2320 2321 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 2322 segno = find_next_zero_bit(free_i->free_segmap, 2323 GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1); 2324 if (segno < GET_SEG_FROM_SEC(sbi, hint + 1)) 2325 goto got_it; 2326 } 2327 find_other_zone: 2328 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 2329 if (secno >= MAIN_SECS(sbi)) { 2330 if (dir == ALLOC_RIGHT) { 2331 secno = find_next_zero_bit(free_i->free_secmap, 2332 MAIN_SECS(sbi), 0); 2333 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 2334 } else { 2335 go_left = 1; 2336 left_start = hint - 1; 2337 } 2338 } 2339 if (go_left == 0) 2340 goto skip_left; 2341 2342 while (test_bit(left_start, free_i->free_secmap)) { 2343 if (left_start > 0) { 2344 left_start--; 2345 continue; 2346 } 2347 left_start = find_next_zero_bit(free_i->free_secmap, 2348 MAIN_SECS(sbi), 0); 2349 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 2350 break; 2351 } 2352 secno = left_start; 2353 skip_left: 2354 segno = GET_SEG_FROM_SEC(sbi, secno); 2355 zoneno = GET_ZONE_FROM_SEC(sbi, secno); 2356 2357 /* give up on finding another zone */ 2358 if (!init) 2359 goto got_it; 2360 if (sbi->secs_per_zone == 1) 2361 goto got_it; 2362 if (zoneno == old_zoneno) 2363 goto got_it; 2364 if (dir == ALLOC_LEFT) { 2365 if (!go_left && zoneno + 1 >= total_zones) 2366 goto got_it; 2367 if (go_left && zoneno == 0) 2368 goto got_it; 2369 } 2370 for (i = 0; i < NR_CURSEG_TYPE; i++) 2371 if (CURSEG_I(sbi, i)->zone == zoneno) 2372 break; 2373 2374 if (i < NR_CURSEG_TYPE) { 2375 /* zone is in user, try another */ 2376 if (go_left) 2377 hint = zoneno * sbi->secs_per_zone - 1; 2378 else if (zoneno + 1 >= total_zones) 2379 hint = 0; 2380 else 2381 hint = (zoneno + 1) * sbi->secs_per_zone; 2382 init = false; 2383 goto find_other_zone; 2384 } 2385 got_it: 2386 /* set it as dirty segment in free segmap */ 2387 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 2388 __set_inuse(sbi, segno); 2389 *newseg = segno; 2390 spin_unlock(&free_i->segmap_lock); 2391 } 2392 2393 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 2394 { 2395 struct curseg_info *curseg = CURSEG_I(sbi, type); 2396 struct summary_footer *sum_footer; 2397 2398 curseg->segno = curseg->next_segno; 2399 curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno); 2400 curseg->next_blkoff = 0; 2401 curseg->next_segno = NULL_SEGNO; 2402 2403 sum_footer = &(curseg->sum_blk->footer); 2404 memset(sum_footer, 0, sizeof(struct summary_footer)); 2405 if (IS_DATASEG(type)) 2406 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 2407 if (IS_NODESEG(type)) 2408 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 2409 __set_sit_entry_type(sbi, type, curseg->segno, modified); 2410 } 2411 2412 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type) 2413 { 2414 /* if segs_per_sec is large than 1, we need to keep original policy. */ 2415 if (sbi->segs_per_sec != 1) 2416 return CURSEG_I(sbi, type)->segno; 2417 2418 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2419 return 0; 2420 2421 if (test_opt(sbi, NOHEAP) && 2422 (type == CURSEG_HOT_DATA || IS_NODESEG(type))) 2423 return 0; 2424 2425 if (SIT_I(sbi)->last_victim[ALLOC_NEXT]) 2426 return SIT_I(sbi)->last_victim[ALLOC_NEXT]; 2427 2428 /* find segments from 0 to reuse freed segments */ 2429 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2430 return 0; 2431 2432 return CURSEG_I(sbi, type)->segno; 2433 } 2434 2435 /* 2436 * Allocate a current working segment. 2437 * This function always allocates a free segment in LFS manner. 2438 */ 2439 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 2440 { 2441 struct curseg_info *curseg = CURSEG_I(sbi, type); 2442 unsigned int segno = curseg->segno; 2443 int dir = ALLOC_LEFT; 2444 2445 write_sum_page(sbi, curseg->sum_blk, 2446 GET_SUM_BLOCK(sbi, segno)); 2447 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 2448 dir = ALLOC_RIGHT; 2449 2450 if (test_opt(sbi, NOHEAP)) 2451 dir = ALLOC_RIGHT; 2452 2453 segno = __get_next_segno(sbi, type); 2454 get_new_segment(sbi, &segno, new_sec, dir); 2455 curseg->next_segno = segno; 2456 reset_curseg(sbi, type, 1); 2457 curseg->alloc_type = LFS; 2458 } 2459 2460 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 2461 struct curseg_info *seg, block_t start) 2462 { 2463 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 2464 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 2465 unsigned long *target_map = SIT_I(sbi)->tmp_map; 2466 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 2467 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 2468 int i, pos; 2469 2470 for (i = 0; i < entries; i++) 2471 target_map[i] = ckpt_map[i] | cur_map[i]; 2472 2473 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 2474 2475 seg->next_blkoff = pos; 2476 } 2477 2478 /* 2479 * If a segment is written by LFS manner, next block offset is just obtained 2480 * by increasing the current block offset. However, if a segment is written by 2481 * SSR manner, next block offset obtained by calling __next_free_blkoff 2482 */ 2483 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 2484 struct curseg_info *seg) 2485 { 2486 if (seg->alloc_type == SSR) 2487 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 2488 else 2489 seg->next_blkoff++; 2490 } 2491 2492 /* 2493 * This function always allocates a used segment(from dirty seglist) by SSR 2494 * manner, so it should recover the existing segment information of valid blocks 2495 */ 2496 static void change_curseg(struct f2fs_sb_info *sbi, int type) 2497 { 2498 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2499 struct curseg_info *curseg = CURSEG_I(sbi, type); 2500 unsigned int new_segno = curseg->next_segno; 2501 struct f2fs_summary_block *sum_node; 2502 struct page *sum_page; 2503 2504 write_sum_page(sbi, curseg->sum_blk, 2505 GET_SUM_BLOCK(sbi, curseg->segno)); 2506 __set_test_and_inuse(sbi, new_segno); 2507 2508 mutex_lock(&dirty_i->seglist_lock); 2509 __remove_dirty_segment(sbi, new_segno, PRE); 2510 __remove_dirty_segment(sbi, new_segno, DIRTY); 2511 mutex_unlock(&dirty_i->seglist_lock); 2512 2513 reset_curseg(sbi, type, 1); 2514 curseg->alloc_type = SSR; 2515 __next_free_blkoff(sbi, curseg, 0); 2516 2517 sum_page = f2fs_get_sum_page(sbi, new_segno); 2518 f2fs_bug_on(sbi, IS_ERR(sum_page)); 2519 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 2520 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 2521 f2fs_put_page(sum_page, 1); 2522 } 2523 2524 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 2525 { 2526 struct curseg_info *curseg = CURSEG_I(sbi, type); 2527 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 2528 unsigned segno = NULL_SEGNO; 2529 int i, cnt; 2530 bool reversed = false; 2531 2532 /* f2fs_need_SSR() already forces to do this */ 2533 if (v_ops->get_victim(sbi, &segno, BG_GC, type, SSR)) { 2534 curseg->next_segno = segno; 2535 return 1; 2536 } 2537 2538 /* For node segments, let's do SSR more intensively */ 2539 if (IS_NODESEG(type)) { 2540 if (type >= CURSEG_WARM_NODE) { 2541 reversed = true; 2542 i = CURSEG_COLD_NODE; 2543 } else { 2544 i = CURSEG_HOT_NODE; 2545 } 2546 cnt = NR_CURSEG_NODE_TYPE; 2547 } else { 2548 if (type >= CURSEG_WARM_DATA) { 2549 reversed = true; 2550 i = CURSEG_COLD_DATA; 2551 } else { 2552 i = CURSEG_HOT_DATA; 2553 } 2554 cnt = NR_CURSEG_DATA_TYPE; 2555 } 2556 2557 for (; cnt-- > 0; reversed ? i-- : i++) { 2558 if (i == type) 2559 continue; 2560 if (v_ops->get_victim(sbi, &segno, BG_GC, i, SSR)) { 2561 curseg->next_segno = segno; 2562 return 1; 2563 } 2564 } 2565 2566 /* find valid_blocks=0 in dirty list */ 2567 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 2568 segno = get_free_segment(sbi); 2569 if (segno != NULL_SEGNO) { 2570 curseg->next_segno = segno; 2571 return 1; 2572 } 2573 } 2574 return 0; 2575 } 2576 2577 /* 2578 * flush out current segment and replace it with new segment 2579 * This function should be returned with success, otherwise BUG 2580 */ 2581 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 2582 int type, bool force) 2583 { 2584 struct curseg_info *curseg = CURSEG_I(sbi, type); 2585 2586 if (force) 2587 new_curseg(sbi, type, true); 2588 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 2589 type == CURSEG_WARM_NODE) 2590 new_curseg(sbi, type, false); 2591 else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type) && 2592 likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 2593 new_curseg(sbi, type, false); 2594 else if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type)) 2595 change_curseg(sbi, type); 2596 else 2597 new_curseg(sbi, type, false); 2598 2599 stat_inc_seg_type(sbi, curseg); 2600 } 2601 2602 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi) 2603 { 2604 struct curseg_info *curseg; 2605 unsigned int old_segno; 2606 int i; 2607 2608 down_write(&SIT_I(sbi)->sentry_lock); 2609 2610 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2611 curseg = CURSEG_I(sbi, i); 2612 old_segno = curseg->segno; 2613 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 2614 locate_dirty_segment(sbi, old_segno); 2615 } 2616 2617 up_write(&SIT_I(sbi)->sentry_lock); 2618 } 2619 2620 static const struct segment_allocation default_salloc_ops = { 2621 .allocate_segment = allocate_segment_by_default, 2622 }; 2623 2624 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi, 2625 struct cp_control *cpc) 2626 { 2627 __u64 trim_start = cpc->trim_start; 2628 bool has_candidate = false; 2629 2630 down_write(&SIT_I(sbi)->sentry_lock); 2631 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 2632 if (add_discard_addrs(sbi, cpc, true)) { 2633 has_candidate = true; 2634 break; 2635 } 2636 } 2637 up_write(&SIT_I(sbi)->sentry_lock); 2638 2639 cpc->trim_start = trim_start; 2640 return has_candidate; 2641 } 2642 2643 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi, 2644 struct discard_policy *dpolicy, 2645 unsigned int start, unsigned int end) 2646 { 2647 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 2648 struct discard_cmd *prev_dc = NULL, *next_dc = NULL; 2649 struct rb_node **insert_p = NULL, *insert_parent = NULL; 2650 struct discard_cmd *dc; 2651 struct blk_plug plug; 2652 int issued; 2653 unsigned int trimmed = 0; 2654 2655 next: 2656 issued = 0; 2657 2658 mutex_lock(&dcc->cmd_lock); 2659 if (unlikely(dcc->rbtree_check)) 2660 f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi, 2661 &dcc->root)); 2662 2663 dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root, 2664 NULL, start, 2665 (struct rb_entry **)&prev_dc, 2666 (struct rb_entry **)&next_dc, 2667 &insert_p, &insert_parent, true, NULL); 2668 if (!dc) 2669 dc = next_dc; 2670 2671 blk_start_plug(&plug); 2672 2673 while (dc && dc->lstart <= end) { 2674 struct rb_node *node; 2675 int err = 0; 2676 2677 if (dc->len < dpolicy->granularity) 2678 goto skip; 2679 2680 if (dc->state != D_PREP) { 2681 list_move_tail(&dc->list, &dcc->fstrim_list); 2682 goto skip; 2683 } 2684 2685 err = __submit_discard_cmd(sbi, dpolicy, dc, &issued); 2686 2687 if (issued >= dpolicy->max_requests) { 2688 start = dc->lstart + dc->len; 2689 2690 if (err) 2691 __remove_discard_cmd(sbi, dc); 2692 2693 blk_finish_plug(&plug); 2694 mutex_unlock(&dcc->cmd_lock); 2695 trimmed += __wait_all_discard_cmd(sbi, NULL); 2696 congestion_wait(BLK_RW_ASYNC, HZ/50); 2697 goto next; 2698 } 2699 skip: 2700 node = rb_next(&dc->rb_node); 2701 if (err) 2702 __remove_discard_cmd(sbi, dc); 2703 dc = rb_entry_safe(node, struct discard_cmd, rb_node); 2704 2705 if (fatal_signal_pending(current)) 2706 break; 2707 } 2708 2709 blk_finish_plug(&plug); 2710 mutex_unlock(&dcc->cmd_lock); 2711 2712 return trimmed; 2713 } 2714 2715 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 2716 { 2717 __u64 start = F2FS_BYTES_TO_BLK(range->start); 2718 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 2719 unsigned int start_segno, end_segno; 2720 block_t start_block, end_block; 2721 struct cp_control cpc; 2722 struct discard_policy dpolicy; 2723 unsigned long long trimmed = 0; 2724 int err = 0; 2725 bool need_align = test_opt(sbi, LFS) && sbi->segs_per_sec > 1; 2726 2727 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 2728 return -EINVAL; 2729 2730 if (end < MAIN_BLKADDR(sbi)) 2731 goto out; 2732 2733 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 2734 f2fs_msg(sbi->sb, KERN_WARNING, 2735 "Found FS corruption, run fsck to fix."); 2736 return -EIO; 2737 } 2738 2739 /* start/end segment number in main_area */ 2740 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 2741 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 2742 GET_SEGNO(sbi, end); 2743 if (need_align) { 2744 start_segno = rounddown(start_segno, sbi->segs_per_sec); 2745 end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1; 2746 } 2747 2748 cpc.reason = CP_DISCARD; 2749 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 2750 cpc.trim_start = start_segno; 2751 cpc.trim_end = end_segno; 2752 2753 if (sbi->discard_blks == 0) 2754 goto out; 2755 2756 mutex_lock(&sbi->gc_mutex); 2757 err = f2fs_write_checkpoint(sbi, &cpc); 2758 mutex_unlock(&sbi->gc_mutex); 2759 if (err) 2760 goto out; 2761 2762 /* 2763 * We filed discard candidates, but actually we don't need to wait for 2764 * all of them, since they'll be issued in idle time along with runtime 2765 * discard option. User configuration looks like using runtime discard 2766 * or periodic fstrim instead of it. 2767 */ 2768 if (f2fs_realtime_discard_enable(sbi)) 2769 goto out; 2770 2771 start_block = START_BLOCK(sbi, start_segno); 2772 end_block = START_BLOCK(sbi, end_segno + 1); 2773 2774 __init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen); 2775 trimmed = __issue_discard_cmd_range(sbi, &dpolicy, 2776 start_block, end_block); 2777 2778 trimmed += __wait_discard_cmd_range(sbi, &dpolicy, 2779 start_block, end_block); 2780 out: 2781 if (!err) 2782 range->len = F2FS_BLK_TO_BYTES(trimmed); 2783 return err; 2784 } 2785 2786 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 2787 { 2788 struct curseg_info *curseg = CURSEG_I(sbi, type); 2789 if (curseg->next_blkoff < sbi->blocks_per_seg) 2790 return true; 2791 return false; 2792 } 2793 2794 int f2fs_rw_hint_to_seg_type(enum rw_hint hint) 2795 { 2796 switch (hint) { 2797 case WRITE_LIFE_SHORT: 2798 return CURSEG_HOT_DATA; 2799 case WRITE_LIFE_EXTREME: 2800 return CURSEG_COLD_DATA; 2801 default: 2802 return CURSEG_WARM_DATA; 2803 } 2804 } 2805 2806 /* This returns write hints for each segment type. This hints will be 2807 * passed down to block layer. There are mapping tables which depend on 2808 * the mount option 'whint_mode'. 2809 * 2810 * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET. 2811 * 2812 * 2) whint_mode=user-based. F2FS tries to pass down hints given by users. 2813 * 2814 * User F2FS Block 2815 * ---- ---- ----- 2816 * META WRITE_LIFE_NOT_SET 2817 * HOT_NODE " 2818 * WARM_NODE " 2819 * COLD_NODE " 2820 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2821 * extension list " " 2822 * 2823 * -- buffered io 2824 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2825 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2826 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2827 * WRITE_LIFE_NONE " " 2828 * WRITE_LIFE_MEDIUM " " 2829 * WRITE_LIFE_LONG " " 2830 * 2831 * -- direct io 2832 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2833 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2834 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2835 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2836 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2837 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2838 * 2839 * 3) whint_mode=fs-based. F2FS passes down hints with its policy. 2840 * 2841 * User F2FS Block 2842 * ---- ---- ----- 2843 * META WRITE_LIFE_MEDIUM; 2844 * HOT_NODE WRITE_LIFE_NOT_SET 2845 * WARM_NODE " 2846 * COLD_NODE WRITE_LIFE_NONE 2847 * ioctl(COLD) COLD_DATA WRITE_LIFE_EXTREME 2848 * extension list " " 2849 * 2850 * -- buffered io 2851 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2852 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2853 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_LONG 2854 * WRITE_LIFE_NONE " " 2855 * WRITE_LIFE_MEDIUM " " 2856 * WRITE_LIFE_LONG " " 2857 * 2858 * -- direct io 2859 * WRITE_LIFE_EXTREME COLD_DATA WRITE_LIFE_EXTREME 2860 * WRITE_LIFE_SHORT HOT_DATA WRITE_LIFE_SHORT 2861 * WRITE_LIFE_NOT_SET WARM_DATA WRITE_LIFE_NOT_SET 2862 * WRITE_LIFE_NONE " WRITE_LIFE_NONE 2863 * WRITE_LIFE_MEDIUM " WRITE_LIFE_MEDIUM 2864 * WRITE_LIFE_LONG " WRITE_LIFE_LONG 2865 */ 2866 2867 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi, 2868 enum page_type type, enum temp_type temp) 2869 { 2870 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) { 2871 if (type == DATA) { 2872 if (temp == WARM) 2873 return WRITE_LIFE_NOT_SET; 2874 else if (temp == HOT) 2875 return WRITE_LIFE_SHORT; 2876 else if (temp == COLD) 2877 return WRITE_LIFE_EXTREME; 2878 } else { 2879 return WRITE_LIFE_NOT_SET; 2880 } 2881 } else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) { 2882 if (type == DATA) { 2883 if (temp == WARM) 2884 return WRITE_LIFE_LONG; 2885 else if (temp == HOT) 2886 return WRITE_LIFE_SHORT; 2887 else if (temp == COLD) 2888 return WRITE_LIFE_EXTREME; 2889 } else if (type == NODE) { 2890 if (temp == WARM || temp == HOT) 2891 return WRITE_LIFE_NOT_SET; 2892 else if (temp == COLD) 2893 return WRITE_LIFE_NONE; 2894 } else if (type == META) { 2895 return WRITE_LIFE_MEDIUM; 2896 } 2897 } 2898 return WRITE_LIFE_NOT_SET; 2899 } 2900 2901 static int __get_segment_type_2(struct f2fs_io_info *fio) 2902 { 2903 if (fio->type == DATA) 2904 return CURSEG_HOT_DATA; 2905 else 2906 return CURSEG_HOT_NODE; 2907 } 2908 2909 static int __get_segment_type_4(struct f2fs_io_info *fio) 2910 { 2911 if (fio->type == DATA) { 2912 struct inode *inode = fio->page->mapping->host; 2913 2914 if (S_ISDIR(inode->i_mode)) 2915 return CURSEG_HOT_DATA; 2916 else 2917 return CURSEG_COLD_DATA; 2918 } else { 2919 if (IS_DNODE(fio->page) && is_cold_node(fio->page)) 2920 return CURSEG_WARM_NODE; 2921 else 2922 return CURSEG_COLD_NODE; 2923 } 2924 } 2925 2926 static int __get_segment_type_6(struct f2fs_io_info *fio) 2927 { 2928 if (fio->type == DATA) { 2929 struct inode *inode = fio->page->mapping->host; 2930 2931 if (is_cold_data(fio->page) || file_is_cold(inode)) 2932 return CURSEG_COLD_DATA; 2933 if (file_is_hot(inode) || 2934 is_inode_flag_set(inode, FI_HOT_DATA) || 2935 f2fs_is_atomic_file(inode) || 2936 f2fs_is_volatile_file(inode)) 2937 return CURSEG_HOT_DATA; 2938 return f2fs_rw_hint_to_seg_type(inode->i_write_hint); 2939 } else { 2940 if (IS_DNODE(fio->page)) 2941 return is_cold_node(fio->page) ? CURSEG_WARM_NODE : 2942 CURSEG_HOT_NODE; 2943 return CURSEG_COLD_NODE; 2944 } 2945 } 2946 2947 static int __get_segment_type(struct f2fs_io_info *fio) 2948 { 2949 int type = 0; 2950 2951 switch (F2FS_OPTION(fio->sbi).active_logs) { 2952 case 2: 2953 type = __get_segment_type_2(fio); 2954 break; 2955 case 4: 2956 type = __get_segment_type_4(fio); 2957 break; 2958 case 6: 2959 type = __get_segment_type_6(fio); 2960 break; 2961 default: 2962 f2fs_bug_on(fio->sbi, true); 2963 } 2964 2965 if (IS_HOT(type)) 2966 fio->temp = HOT; 2967 else if (IS_WARM(type)) 2968 fio->temp = WARM; 2969 else 2970 fio->temp = COLD; 2971 return type; 2972 } 2973 2974 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 2975 block_t old_blkaddr, block_t *new_blkaddr, 2976 struct f2fs_summary *sum, int type, 2977 struct f2fs_io_info *fio, bool add_list) 2978 { 2979 struct sit_info *sit_i = SIT_I(sbi); 2980 struct curseg_info *curseg = CURSEG_I(sbi, type); 2981 2982 down_read(&SM_I(sbi)->curseg_lock); 2983 2984 mutex_lock(&curseg->curseg_mutex); 2985 down_write(&sit_i->sentry_lock); 2986 2987 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 2988 2989 f2fs_wait_discard_bio(sbi, *new_blkaddr); 2990 2991 /* 2992 * __add_sum_entry should be resided under the curseg_mutex 2993 * because, this function updates a summary entry in the 2994 * current summary block. 2995 */ 2996 __add_sum_entry(sbi, type, sum); 2997 2998 __refresh_next_blkoff(sbi, curseg); 2999 3000 stat_inc_block_count(sbi, curseg); 3001 3002 /* 3003 * SIT information should be updated before segment allocation, 3004 * since SSR needs latest valid block information. 3005 */ 3006 update_sit_entry(sbi, *new_blkaddr, 1); 3007 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 3008 update_sit_entry(sbi, old_blkaddr, -1); 3009 3010 if (!__has_curseg_space(sbi, type)) 3011 sit_i->s_ops->allocate_segment(sbi, type, false); 3012 3013 /* 3014 * segment dirty status should be updated after segment allocation, 3015 * so we just need to update status only one time after previous 3016 * segment being closed. 3017 */ 3018 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3019 locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr)); 3020 3021 up_write(&sit_i->sentry_lock); 3022 3023 if (page && IS_NODESEG(type)) { 3024 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 3025 3026 f2fs_inode_chksum_set(sbi, page); 3027 } 3028 3029 if (add_list) { 3030 struct f2fs_bio_info *io; 3031 3032 INIT_LIST_HEAD(&fio->list); 3033 fio->in_list = true; 3034 fio->retry = false; 3035 io = sbi->write_io[fio->type] + fio->temp; 3036 spin_lock(&io->io_lock); 3037 list_add_tail(&fio->list, &io->io_list); 3038 spin_unlock(&io->io_lock); 3039 } 3040 3041 mutex_unlock(&curseg->curseg_mutex); 3042 3043 up_read(&SM_I(sbi)->curseg_lock); 3044 } 3045 3046 static void update_device_state(struct f2fs_io_info *fio) 3047 { 3048 struct f2fs_sb_info *sbi = fio->sbi; 3049 unsigned int devidx; 3050 3051 if (!sbi->s_ndevs) 3052 return; 3053 3054 devidx = f2fs_target_device_index(sbi, fio->new_blkaddr); 3055 3056 /* update device state for fsync */ 3057 f2fs_set_dirty_device(sbi, fio->ino, devidx, FLUSH_INO); 3058 3059 /* update device state for checkpoint */ 3060 if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) { 3061 spin_lock(&sbi->dev_lock); 3062 f2fs_set_bit(devidx, (char *)&sbi->dirty_device); 3063 spin_unlock(&sbi->dev_lock); 3064 } 3065 } 3066 3067 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 3068 { 3069 int type = __get_segment_type(fio); 3070 bool keep_order = (test_opt(fio->sbi, LFS) && type == CURSEG_COLD_DATA); 3071 3072 if (keep_order) 3073 down_read(&fio->sbi->io_order_lock); 3074 reallocate: 3075 f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 3076 &fio->new_blkaddr, sum, type, fio, true); 3077 if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) 3078 invalidate_mapping_pages(META_MAPPING(fio->sbi), 3079 fio->old_blkaddr, fio->old_blkaddr); 3080 3081 /* writeout dirty page into bdev */ 3082 f2fs_submit_page_write(fio); 3083 if (fio->retry) { 3084 fio->old_blkaddr = fio->new_blkaddr; 3085 goto reallocate; 3086 } 3087 3088 update_device_state(fio); 3089 3090 if (keep_order) 3091 up_read(&fio->sbi->io_order_lock); 3092 } 3093 3094 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 3095 enum iostat_type io_type) 3096 { 3097 struct f2fs_io_info fio = { 3098 .sbi = sbi, 3099 .type = META, 3100 .temp = HOT, 3101 .op = REQ_OP_WRITE, 3102 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 3103 .old_blkaddr = page->index, 3104 .new_blkaddr = page->index, 3105 .page = page, 3106 .encrypted_page = NULL, 3107 .in_list = false, 3108 }; 3109 3110 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 3111 fio.op_flags &= ~REQ_META; 3112 3113 set_page_writeback(page); 3114 ClearPageError(page); 3115 f2fs_submit_page_write(&fio); 3116 3117 stat_inc_meta_count(sbi, page->index); 3118 f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE); 3119 } 3120 3121 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio) 3122 { 3123 struct f2fs_summary sum; 3124 3125 set_summary(&sum, nid, 0, 0); 3126 do_write_page(&sum, fio); 3127 3128 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3129 } 3130 3131 void f2fs_outplace_write_data(struct dnode_of_data *dn, 3132 struct f2fs_io_info *fio) 3133 { 3134 struct f2fs_sb_info *sbi = fio->sbi; 3135 struct f2fs_summary sum; 3136 3137 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 3138 set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version); 3139 do_write_page(&sum, fio); 3140 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 3141 3142 f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE); 3143 } 3144 3145 int f2fs_inplace_write_data(struct f2fs_io_info *fio) 3146 { 3147 int err; 3148 struct f2fs_sb_info *sbi = fio->sbi; 3149 3150 fio->new_blkaddr = fio->old_blkaddr; 3151 /* i/o temperature is needed for passing down write hints */ 3152 __get_segment_type(fio); 3153 3154 f2fs_bug_on(sbi, !IS_DATASEG(get_seg_entry(sbi, 3155 GET_SEGNO(sbi, fio->new_blkaddr))->type)); 3156 3157 stat_inc_inplace_blocks(fio->sbi); 3158 3159 err = f2fs_submit_page_bio(fio); 3160 if (!err) 3161 update_device_state(fio); 3162 3163 f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE); 3164 3165 return err; 3166 } 3167 3168 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi, 3169 unsigned int segno) 3170 { 3171 int i; 3172 3173 for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) { 3174 if (CURSEG_I(sbi, i)->segno == segno) 3175 break; 3176 } 3177 return i; 3178 } 3179 3180 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 3181 block_t old_blkaddr, block_t new_blkaddr, 3182 bool recover_curseg, bool recover_newaddr) 3183 { 3184 struct sit_info *sit_i = SIT_I(sbi); 3185 struct curseg_info *curseg; 3186 unsigned int segno, old_cursegno; 3187 struct seg_entry *se; 3188 int type; 3189 unsigned short old_blkoff; 3190 3191 segno = GET_SEGNO(sbi, new_blkaddr); 3192 se = get_seg_entry(sbi, segno); 3193 type = se->type; 3194 3195 down_write(&SM_I(sbi)->curseg_lock); 3196 3197 if (!recover_curseg) { 3198 /* for recovery flow */ 3199 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 3200 if (old_blkaddr == NULL_ADDR) 3201 type = CURSEG_COLD_DATA; 3202 else 3203 type = CURSEG_WARM_DATA; 3204 } 3205 } else { 3206 if (IS_CURSEG(sbi, segno)) { 3207 /* se->type is volatile as SSR allocation */ 3208 type = __f2fs_get_curseg(sbi, segno); 3209 f2fs_bug_on(sbi, type == NO_CHECK_TYPE); 3210 } else { 3211 type = CURSEG_WARM_DATA; 3212 } 3213 } 3214 3215 f2fs_bug_on(sbi, !IS_DATASEG(type)); 3216 curseg = CURSEG_I(sbi, type); 3217 3218 mutex_lock(&curseg->curseg_mutex); 3219 down_write(&sit_i->sentry_lock); 3220 3221 old_cursegno = curseg->segno; 3222 old_blkoff = curseg->next_blkoff; 3223 3224 /* change the current segment */ 3225 if (segno != curseg->segno) { 3226 curseg->next_segno = segno; 3227 change_curseg(sbi, type); 3228 } 3229 3230 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 3231 __add_sum_entry(sbi, type, sum); 3232 3233 if (!recover_curseg || recover_newaddr) 3234 update_sit_entry(sbi, new_blkaddr, 1); 3235 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) { 3236 invalidate_mapping_pages(META_MAPPING(sbi), 3237 old_blkaddr, old_blkaddr); 3238 update_sit_entry(sbi, old_blkaddr, -1); 3239 } 3240 3241 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 3242 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 3243 3244 locate_dirty_segment(sbi, old_cursegno); 3245 3246 if (recover_curseg) { 3247 if (old_cursegno != curseg->segno) { 3248 curseg->next_segno = old_cursegno; 3249 change_curseg(sbi, type); 3250 } 3251 curseg->next_blkoff = old_blkoff; 3252 } 3253 3254 up_write(&sit_i->sentry_lock); 3255 mutex_unlock(&curseg->curseg_mutex); 3256 up_write(&SM_I(sbi)->curseg_lock); 3257 } 3258 3259 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 3260 block_t old_addr, block_t new_addr, 3261 unsigned char version, bool recover_curseg, 3262 bool recover_newaddr) 3263 { 3264 struct f2fs_summary sum; 3265 3266 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 3267 3268 f2fs_do_replace_block(sbi, &sum, old_addr, new_addr, 3269 recover_curseg, recover_newaddr); 3270 3271 f2fs_update_data_blkaddr(dn, new_addr); 3272 } 3273 3274 void f2fs_wait_on_page_writeback(struct page *page, 3275 enum page_type type, bool ordered) 3276 { 3277 if (PageWriteback(page)) { 3278 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 3279 3280 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type); 3281 if (ordered) 3282 wait_on_page_writeback(page); 3283 else 3284 wait_for_stable_page(page); 3285 } 3286 } 3287 3288 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr) 3289 { 3290 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3291 struct page *cpage; 3292 3293 if (!f2fs_post_read_required(inode)) 3294 return; 3295 3296 if (!is_valid_data_blkaddr(sbi, blkaddr)) 3297 return; 3298 3299 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 3300 if (cpage) { 3301 f2fs_wait_on_page_writeback(cpage, DATA, true); 3302 f2fs_put_page(cpage, 1); 3303 } 3304 } 3305 3306 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr, 3307 block_t len) 3308 { 3309 block_t i; 3310 3311 for (i = 0; i < len; i++) 3312 f2fs_wait_on_block_writeback(inode, blkaddr + i); 3313 } 3314 3315 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 3316 { 3317 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3318 struct curseg_info *seg_i; 3319 unsigned char *kaddr; 3320 struct page *page; 3321 block_t start; 3322 int i, j, offset; 3323 3324 start = start_sum_block(sbi); 3325 3326 page = f2fs_get_meta_page(sbi, start++); 3327 if (IS_ERR(page)) 3328 return PTR_ERR(page); 3329 kaddr = (unsigned char *)page_address(page); 3330 3331 /* Step 1: restore nat cache */ 3332 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3333 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 3334 3335 /* Step 2: restore sit cache */ 3336 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3337 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 3338 offset = 2 * SUM_JOURNAL_SIZE; 3339 3340 /* Step 3: restore summary entries */ 3341 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3342 unsigned short blk_off; 3343 unsigned int segno; 3344 3345 seg_i = CURSEG_I(sbi, i); 3346 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 3347 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 3348 seg_i->next_segno = segno; 3349 reset_curseg(sbi, i, 0); 3350 seg_i->alloc_type = ckpt->alloc_type[i]; 3351 seg_i->next_blkoff = blk_off; 3352 3353 if (seg_i->alloc_type == SSR) 3354 blk_off = sbi->blocks_per_seg; 3355 3356 for (j = 0; j < blk_off; j++) { 3357 struct f2fs_summary *s; 3358 s = (struct f2fs_summary *)(kaddr + offset); 3359 seg_i->sum_blk->entries[j] = *s; 3360 offset += SUMMARY_SIZE; 3361 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 3362 SUM_FOOTER_SIZE) 3363 continue; 3364 3365 f2fs_put_page(page, 1); 3366 page = NULL; 3367 3368 page = f2fs_get_meta_page(sbi, start++); 3369 if (IS_ERR(page)) 3370 return PTR_ERR(page); 3371 kaddr = (unsigned char *)page_address(page); 3372 offset = 0; 3373 } 3374 } 3375 f2fs_put_page(page, 1); 3376 return 0; 3377 } 3378 3379 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 3380 { 3381 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3382 struct f2fs_summary_block *sum; 3383 struct curseg_info *curseg; 3384 struct page *new; 3385 unsigned short blk_off; 3386 unsigned int segno = 0; 3387 block_t blk_addr = 0; 3388 int err = 0; 3389 3390 /* get segment number and block addr */ 3391 if (IS_DATASEG(type)) { 3392 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 3393 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 3394 CURSEG_HOT_DATA]); 3395 if (__exist_node_summaries(sbi)) 3396 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 3397 else 3398 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 3399 } else { 3400 segno = le32_to_cpu(ckpt->cur_node_segno[type - 3401 CURSEG_HOT_NODE]); 3402 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 3403 CURSEG_HOT_NODE]); 3404 if (__exist_node_summaries(sbi)) 3405 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 3406 type - CURSEG_HOT_NODE); 3407 else 3408 blk_addr = GET_SUM_BLOCK(sbi, segno); 3409 } 3410 3411 new = f2fs_get_meta_page(sbi, blk_addr); 3412 if (IS_ERR(new)) 3413 return PTR_ERR(new); 3414 sum = (struct f2fs_summary_block *)page_address(new); 3415 3416 if (IS_NODESEG(type)) { 3417 if (__exist_node_summaries(sbi)) { 3418 struct f2fs_summary *ns = &sum->entries[0]; 3419 int i; 3420 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 3421 ns->version = 0; 3422 ns->ofs_in_node = 0; 3423 } 3424 } else { 3425 err = f2fs_restore_node_summary(sbi, segno, sum); 3426 if (err) 3427 goto out; 3428 } 3429 } 3430 3431 /* set uncompleted segment to curseg */ 3432 curseg = CURSEG_I(sbi, type); 3433 mutex_lock(&curseg->curseg_mutex); 3434 3435 /* update journal info */ 3436 down_write(&curseg->journal_rwsem); 3437 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 3438 up_write(&curseg->journal_rwsem); 3439 3440 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 3441 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 3442 curseg->next_segno = segno; 3443 reset_curseg(sbi, type, 0); 3444 curseg->alloc_type = ckpt->alloc_type[type]; 3445 curseg->next_blkoff = blk_off; 3446 mutex_unlock(&curseg->curseg_mutex); 3447 out: 3448 f2fs_put_page(new, 1); 3449 return err; 3450 } 3451 3452 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 3453 { 3454 struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal; 3455 struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal; 3456 int type = CURSEG_HOT_DATA; 3457 int err; 3458 3459 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 3460 int npages = f2fs_npages_for_summary_flush(sbi, true); 3461 3462 if (npages >= 2) 3463 f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages, 3464 META_CP, true); 3465 3466 /* restore for compacted data summary */ 3467 err = read_compacted_summaries(sbi); 3468 if (err) 3469 return err; 3470 type = CURSEG_HOT_NODE; 3471 } 3472 3473 if (__exist_node_summaries(sbi)) 3474 f2fs_ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 3475 NR_CURSEG_TYPE - type, META_CP, true); 3476 3477 for (; type <= CURSEG_COLD_NODE; type++) { 3478 err = read_normal_summaries(sbi, type); 3479 if (err) 3480 return err; 3481 } 3482 3483 /* sanity check for summary blocks */ 3484 if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES || 3485 sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) 3486 return -EINVAL; 3487 3488 return 0; 3489 } 3490 3491 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 3492 { 3493 struct page *page; 3494 unsigned char *kaddr; 3495 struct f2fs_summary *summary; 3496 struct curseg_info *seg_i; 3497 int written_size = 0; 3498 int i, j; 3499 3500 page = f2fs_grab_meta_page(sbi, blkaddr++); 3501 kaddr = (unsigned char *)page_address(page); 3502 memset(kaddr, 0, PAGE_SIZE); 3503 3504 /* Step 1: write nat cache */ 3505 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 3506 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 3507 written_size += SUM_JOURNAL_SIZE; 3508 3509 /* Step 2: write sit cache */ 3510 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 3511 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 3512 written_size += SUM_JOURNAL_SIZE; 3513 3514 /* Step 3: write summary entries */ 3515 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 3516 unsigned short blkoff; 3517 seg_i = CURSEG_I(sbi, i); 3518 if (sbi->ckpt->alloc_type[i] == SSR) 3519 blkoff = sbi->blocks_per_seg; 3520 else 3521 blkoff = curseg_blkoff(sbi, i); 3522 3523 for (j = 0; j < blkoff; j++) { 3524 if (!page) { 3525 page = f2fs_grab_meta_page(sbi, blkaddr++); 3526 kaddr = (unsigned char *)page_address(page); 3527 memset(kaddr, 0, PAGE_SIZE); 3528 written_size = 0; 3529 } 3530 summary = (struct f2fs_summary *)(kaddr + written_size); 3531 *summary = seg_i->sum_blk->entries[j]; 3532 written_size += SUMMARY_SIZE; 3533 3534 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 3535 SUM_FOOTER_SIZE) 3536 continue; 3537 3538 set_page_dirty(page); 3539 f2fs_put_page(page, 1); 3540 page = NULL; 3541 } 3542 } 3543 if (page) { 3544 set_page_dirty(page); 3545 f2fs_put_page(page, 1); 3546 } 3547 } 3548 3549 static void write_normal_summaries(struct f2fs_sb_info *sbi, 3550 block_t blkaddr, int type) 3551 { 3552 int i, end; 3553 if (IS_DATASEG(type)) 3554 end = type + NR_CURSEG_DATA_TYPE; 3555 else 3556 end = type + NR_CURSEG_NODE_TYPE; 3557 3558 for (i = type; i < end; i++) 3559 write_current_sum_page(sbi, i, blkaddr + (i - type)); 3560 } 3561 3562 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3563 { 3564 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 3565 write_compacted_summaries(sbi, start_blk); 3566 else 3567 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 3568 } 3569 3570 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 3571 { 3572 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 3573 } 3574 3575 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 3576 unsigned int val, int alloc) 3577 { 3578 int i; 3579 3580 if (type == NAT_JOURNAL) { 3581 for (i = 0; i < nats_in_cursum(journal); i++) { 3582 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 3583 return i; 3584 } 3585 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 3586 return update_nats_in_cursum(journal, 1); 3587 } else if (type == SIT_JOURNAL) { 3588 for (i = 0; i < sits_in_cursum(journal); i++) 3589 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 3590 return i; 3591 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 3592 return update_sits_in_cursum(journal, 1); 3593 } 3594 return -1; 3595 } 3596 3597 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 3598 unsigned int segno) 3599 { 3600 return f2fs_get_meta_page_nofail(sbi, current_sit_addr(sbi, segno)); 3601 } 3602 3603 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 3604 unsigned int start) 3605 { 3606 struct sit_info *sit_i = SIT_I(sbi); 3607 struct page *page; 3608 pgoff_t src_off, dst_off; 3609 3610 src_off = current_sit_addr(sbi, start); 3611 dst_off = next_sit_addr(sbi, src_off); 3612 3613 page = f2fs_grab_meta_page(sbi, dst_off); 3614 seg_info_to_sit_page(sbi, page, start); 3615 3616 set_page_dirty(page); 3617 set_to_next_sit(sit_i, start); 3618 3619 return page; 3620 } 3621 3622 static struct sit_entry_set *grab_sit_entry_set(void) 3623 { 3624 struct sit_entry_set *ses = 3625 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 3626 3627 ses->entry_cnt = 0; 3628 INIT_LIST_HEAD(&ses->set_list); 3629 return ses; 3630 } 3631 3632 static void release_sit_entry_set(struct sit_entry_set *ses) 3633 { 3634 list_del(&ses->set_list); 3635 kmem_cache_free(sit_entry_set_slab, ses); 3636 } 3637 3638 static void adjust_sit_entry_set(struct sit_entry_set *ses, 3639 struct list_head *head) 3640 { 3641 struct sit_entry_set *next = ses; 3642 3643 if (list_is_last(&ses->set_list, head)) 3644 return; 3645 3646 list_for_each_entry_continue(next, head, set_list) 3647 if (ses->entry_cnt <= next->entry_cnt) 3648 break; 3649 3650 list_move_tail(&ses->set_list, &next->set_list); 3651 } 3652 3653 static void add_sit_entry(unsigned int segno, struct list_head *head) 3654 { 3655 struct sit_entry_set *ses; 3656 unsigned int start_segno = START_SEGNO(segno); 3657 3658 list_for_each_entry(ses, head, set_list) { 3659 if (ses->start_segno == start_segno) { 3660 ses->entry_cnt++; 3661 adjust_sit_entry_set(ses, head); 3662 return; 3663 } 3664 } 3665 3666 ses = grab_sit_entry_set(); 3667 3668 ses->start_segno = start_segno; 3669 ses->entry_cnt++; 3670 list_add(&ses->set_list, head); 3671 } 3672 3673 static void add_sits_in_set(struct f2fs_sb_info *sbi) 3674 { 3675 struct f2fs_sm_info *sm_info = SM_I(sbi); 3676 struct list_head *set_list = &sm_info->sit_entry_set; 3677 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 3678 unsigned int segno; 3679 3680 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 3681 add_sit_entry(segno, set_list); 3682 } 3683 3684 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 3685 { 3686 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3687 struct f2fs_journal *journal = curseg->journal; 3688 int i; 3689 3690 down_write(&curseg->journal_rwsem); 3691 for (i = 0; i < sits_in_cursum(journal); i++) { 3692 unsigned int segno; 3693 bool dirtied; 3694 3695 segno = le32_to_cpu(segno_in_journal(journal, i)); 3696 dirtied = __mark_sit_entry_dirty(sbi, segno); 3697 3698 if (!dirtied) 3699 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 3700 } 3701 update_sits_in_cursum(journal, -i); 3702 up_write(&curseg->journal_rwsem); 3703 } 3704 3705 /* 3706 * CP calls this function, which flushes SIT entries including sit_journal, 3707 * and moves prefree segs to free segs. 3708 */ 3709 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 3710 { 3711 struct sit_info *sit_i = SIT_I(sbi); 3712 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 3713 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3714 struct f2fs_journal *journal = curseg->journal; 3715 struct sit_entry_set *ses, *tmp; 3716 struct list_head *head = &SM_I(sbi)->sit_entry_set; 3717 bool to_journal = true; 3718 struct seg_entry *se; 3719 3720 down_write(&sit_i->sentry_lock); 3721 3722 if (!sit_i->dirty_sentries) 3723 goto out; 3724 3725 /* 3726 * add and account sit entries of dirty bitmap in sit entry 3727 * set temporarily 3728 */ 3729 add_sits_in_set(sbi); 3730 3731 /* 3732 * if there are no enough space in journal to store dirty sit 3733 * entries, remove all entries from journal and add and account 3734 * them in sit entry set. 3735 */ 3736 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 3737 remove_sits_in_journal(sbi); 3738 3739 /* 3740 * there are two steps to flush sit entries: 3741 * #1, flush sit entries to journal in current cold data summary block. 3742 * #2, flush sit entries to sit page. 3743 */ 3744 list_for_each_entry_safe(ses, tmp, head, set_list) { 3745 struct page *page = NULL; 3746 struct f2fs_sit_block *raw_sit = NULL; 3747 unsigned int start_segno = ses->start_segno; 3748 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 3749 (unsigned long)MAIN_SEGS(sbi)); 3750 unsigned int segno = start_segno; 3751 3752 if (to_journal && 3753 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 3754 to_journal = false; 3755 3756 if (to_journal) { 3757 down_write(&curseg->journal_rwsem); 3758 } else { 3759 page = get_next_sit_page(sbi, start_segno); 3760 raw_sit = page_address(page); 3761 } 3762 3763 /* flush dirty sit entries in region of current sit set */ 3764 for_each_set_bit_from(segno, bitmap, end) { 3765 int offset, sit_offset; 3766 3767 se = get_seg_entry(sbi, segno); 3768 #ifdef CONFIG_F2FS_CHECK_FS 3769 if (memcmp(se->cur_valid_map, se->cur_valid_map_mir, 3770 SIT_VBLOCK_MAP_SIZE)) 3771 f2fs_bug_on(sbi, 1); 3772 #endif 3773 3774 /* add discard candidates */ 3775 if (!(cpc->reason & CP_DISCARD)) { 3776 cpc->trim_start = segno; 3777 add_discard_addrs(sbi, cpc, false); 3778 } 3779 3780 if (to_journal) { 3781 offset = f2fs_lookup_journal_in_cursum(journal, 3782 SIT_JOURNAL, segno, 1); 3783 f2fs_bug_on(sbi, offset < 0); 3784 segno_in_journal(journal, offset) = 3785 cpu_to_le32(segno); 3786 seg_info_to_raw_sit(se, 3787 &sit_in_journal(journal, offset)); 3788 check_block_count(sbi, segno, 3789 &sit_in_journal(journal, offset)); 3790 } else { 3791 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 3792 seg_info_to_raw_sit(se, 3793 &raw_sit->entries[sit_offset]); 3794 check_block_count(sbi, segno, 3795 &raw_sit->entries[sit_offset]); 3796 } 3797 3798 __clear_bit(segno, bitmap); 3799 sit_i->dirty_sentries--; 3800 ses->entry_cnt--; 3801 } 3802 3803 if (to_journal) 3804 up_write(&curseg->journal_rwsem); 3805 else 3806 f2fs_put_page(page, 1); 3807 3808 f2fs_bug_on(sbi, ses->entry_cnt); 3809 release_sit_entry_set(ses); 3810 } 3811 3812 f2fs_bug_on(sbi, !list_empty(head)); 3813 f2fs_bug_on(sbi, sit_i->dirty_sentries); 3814 out: 3815 if (cpc->reason & CP_DISCARD) { 3816 __u64 trim_start = cpc->trim_start; 3817 3818 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 3819 add_discard_addrs(sbi, cpc, false); 3820 3821 cpc->trim_start = trim_start; 3822 } 3823 up_write(&sit_i->sentry_lock); 3824 3825 set_prefree_as_free_segments(sbi); 3826 } 3827 3828 static int build_sit_info(struct f2fs_sb_info *sbi) 3829 { 3830 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3831 struct sit_info *sit_i; 3832 unsigned int sit_segs, start; 3833 char *src_bitmap; 3834 unsigned int bitmap_size; 3835 3836 /* allocate memory for SIT information */ 3837 sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL); 3838 if (!sit_i) 3839 return -ENOMEM; 3840 3841 SM_I(sbi)->sit_info = sit_i; 3842 3843 sit_i->sentries = 3844 f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry), 3845 MAIN_SEGS(sbi)), 3846 GFP_KERNEL); 3847 if (!sit_i->sentries) 3848 return -ENOMEM; 3849 3850 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3851 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, bitmap_size, 3852 GFP_KERNEL); 3853 if (!sit_i->dirty_sentries_bitmap) 3854 return -ENOMEM; 3855 3856 for (start = 0; start < MAIN_SEGS(sbi); start++) { 3857 sit_i->sentries[start].cur_valid_map 3858 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3859 sit_i->sentries[start].ckpt_valid_map 3860 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3861 if (!sit_i->sentries[start].cur_valid_map || 3862 !sit_i->sentries[start].ckpt_valid_map) 3863 return -ENOMEM; 3864 3865 #ifdef CONFIG_F2FS_CHECK_FS 3866 sit_i->sentries[start].cur_valid_map_mir 3867 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3868 if (!sit_i->sentries[start].cur_valid_map_mir) 3869 return -ENOMEM; 3870 #endif 3871 3872 sit_i->sentries[start].discard_map 3873 = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, 3874 GFP_KERNEL); 3875 if (!sit_i->sentries[start].discard_map) 3876 return -ENOMEM; 3877 } 3878 3879 sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 3880 if (!sit_i->tmp_map) 3881 return -ENOMEM; 3882 3883 if (sbi->segs_per_sec > 1) { 3884 sit_i->sec_entries = 3885 f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry), 3886 MAIN_SECS(sbi)), 3887 GFP_KERNEL); 3888 if (!sit_i->sec_entries) 3889 return -ENOMEM; 3890 } 3891 3892 /* get information related with SIT */ 3893 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 3894 3895 /* setup SIT bitmap from ckeckpoint pack */ 3896 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 3897 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 3898 3899 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3900 if (!sit_i->sit_bitmap) 3901 return -ENOMEM; 3902 3903 #ifdef CONFIG_F2FS_CHECK_FS 3904 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 3905 if (!sit_i->sit_bitmap_mir) 3906 return -ENOMEM; 3907 #endif 3908 3909 /* init SIT information */ 3910 sit_i->s_ops = &default_salloc_ops; 3911 3912 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 3913 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 3914 sit_i->written_valid_blocks = 0; 3915 sit_i->bitmap_size = bitmap_size; 3916 sit_i->dirty_sentries = 0; 3917 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 3918 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 3919 sit_i->mounted_time = ktime_get_real_seconds(); 3920 init_rwsem(&sit_i->sentry_lock); 3921 return 0; 3922 } 3923 3924 static int build_free_segmap(struct f2fs_sb_info *sbi) 3925 { 3926 struct free_segmap_info *free_i; 3927 unsigned int bitmap_size, sec_bitmap_size; 3928 3929 /* allocate memory for free segmap information */ 3930 free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL); 3931 if (!free_i) 3932 return -ENOMEM; 3933 3934 SM_I(sbi)->free_info = free_i; 3935 3936 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 3937 free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL); 3938 if (!free_i->free_segmap) 3939 return -ENOMEM; 3940 3941 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 3942 free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL); 3943 if (!free_i->free_secmap) 3944 return -ENOMEM; 3945 3946 /* set all segments as dirty temporarily */ 3947 memset(free_i->free_segmap, 0xff, bitmap_size); 3948 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 3949 3950 /* init free segmap information */ 3951 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 3952 free_i->free_segments = 0; 3953 free_i->free_sections = 0; 3954 spin_lock_init(&free_i->segmap_lock); 3955 return 0; 3956 } 3957 3958 static int build_curseg(struct f2fs_sb_info *sbi) 3959 { 3960 struct curseg_info *array; 3961 int i; 3962 3963 array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE, sizeof(*array)), 3964 GFP_KERNEL); 3965 if (!array) 3966 return -ENOMEM; 3967 3968 SM_I(sbi)->curseg_array = array; 3969 3970 for (i = 0; i < NR_CURSEG_TYPE; i++) { 3971 mutex_init(&array[i].curseg_mutex); 3972 array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL); 3973 if (!array[i].sum_blk) 3974 return -ENOMEM; 3975 init_rwsem(&array[i].journal_rwsem); 3976 array[i].journal = f2fs_kzalloc(sbi, 3977 sizeof(struct f2fs_journal), GFP_KERNEL); 3978 if (!array[i].journal) 3979 return -ENOMEM; 3980 array[i].segno = NULL_SEGNO; 3981 array[i].next_blkoff = 0; 3982 } 3983 return restore_curseg_summaries(sbi); 3984 } 3985 3986 static int build_sit_entries(struct f2fs_sb_info *sbi) 3987 { 3988 struct sit_info *sit_i = SIT_I(sbi); 3989 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 3990 struct f2fs_journal *journal = curseg->journal; 3991 struct seg_entry *se; 3992 struct f2fs_sit_entry sit; 3993 int sit_blk_cnt = SIT_BLK_CNT(sbi); 3994 unsigned int i, start, end; 3995 unsigned int readed, start_blk = 0; 3996 int err = 0; 3997 block_t total_node_blocks = 0; 3998 3999 do { 4000 readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 4001 META_SIT, true); 4002 4003 start = start_blk * sit_i->sents_per_block; 4004 end = (start_blk + readed) * sit_i->sents_per_block; 4005 4006 for (; start < end && start < MAIN_SEGS(sbi); start++) { 4007 struct f2fs_sit_block *sit_blk; 4008 struct page *page; 4009 4010 se = &sit_i->sentries[start]; 4011 page = get_current_sit_page(sbi, start); 4012 if (IS_ERR(page)) 4013 return PTR_ERR(page); 4014 sit_blk = (struct f2fs_sit_block *)page_address(page); 4015 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 4016 f2fs_put_page(page, 1); 4017 4018 err = check_block_count(sbi, start, &sit); 4019 if (err) 4020 return err; 4021 seg_info_from_raw_sit(se, &sit); 4022 if (IS_NODESEG(se->type)) 4023 total_node_blocks += se->valid_blocks; 4024 4025 /* build discard map only one time */ 4026 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4027 memset(se->discard_map, 0xff, 4028 SIT_VBLOCK_MAP_SIZE); 4029 } else { 4030 memcpy(se->discard_map, 4031 se->cur_valid_map, 4032 SIT_VBLOCK_MAP_SIZE); 4033 sbi->discard_blks += 4034 sbi->blocks_per_seg - 4035 se->valid_blocks; 4036 } 4037 4038 if (sbi->segs_per_sec > 1) 4039 get_sec_entry(sbi, start)->valid_blocks += 4040 se->valid_blocks; 4041 } 4042 start_blk += readed; 4043 } while (start_blk < sit_blk_cnt); 4044 4045 down_read(&curseg->journal_rwsem); 4046 for (i = 0; i < sits_in_cursum(journal); i++) { 4047 unsigned int old_valid_blocks; 4048 4049 start = le32_to_cpu(segno_in_journal(journal, i)); 4050 if (start >= MAIN_SEGS(sbi)) { 4051 f2fs_msg(sbi->sb, KERN_ERR, 4052 "Wrong journal entry on segno %u", 4053 start); 4054 set_sbi_flag(sbi, SBI_NEED_FSCK); 4055 err = -EINVAL; 4056 break; 4057 } 4058 4059 se = &sit_i->sentries[start]; 4060 sit = sit_in_journal(journal, i); 4061 4062 old_valid_blocks = se->valid_blocks; 4063 if (IS_NODESEG(se->type)) 4064 total_node_blocks -= old_valid_blocks; 4065 4066 err = check_block_count(sbi, start, &sit); 4067 if (err) 4068 break; 4069 seg_info_from_raw_sit(se, &sit); 4070 if (IS_NODESEG(se->type)) 4071 total_node_blocks += se->valid_blocks; 4072 4073 if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) { 4074 memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE); 4075 } else { 4076 memcpy(se->discard_map, se->cur_valid_map, 4077 SIT_VBLOCK_MAP_SIZE); 4078 sbi->discard_blks += old_valid_blocks; 4079 sbi->discard_blks -= se->valid_blocks; 4080 } 4081 4082 if (sbi->segs_per_sec > 1) { 4083 get_sec_entry(sbi, start)->valid_blocks += 4084 se->valid_blocks; 4085 get_sec_entry(sbi, start)->valid_blocks -= 4086 old_valid_blocks; 4087 } 4088 } 4089 up_read(&curseg->journal_rwsem); 4090 4091 if (!err && total_node_blocks != valid_node_count(sbi)) { 4092 f2fs_msg(sbi->sb, KERN_ERR, 4093 "SIT is corrupted node# %u vs %u", 4094 total_node_blocks, valid_node_count(sbi)); 4095 set_sbi_flag(sbi, SBI_NEED_FSCK); 4096 err = -EINVAL; 4097 } 4098 4099 return err; 4100 } 4101 4102 static void init_free_segmap(struct f2fs_sb_info *sbi) 4103 { 4104 unsigned int start; 4105 int type; 4106 4107 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4108 struct seg_entry *sentry = get_seg_entry(sbi, start); 4109 if (!sentry->valid_blocks) 4110 __set_free(sbi, start); 4111 else 4112 SIT_I(sbi)->written_valid_blocks += 4113 sentry->valid_blocks; 4114 } 4115 4116 /* set use the current segments */ 4117 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 4118 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 4119 __set_test_and_inuse(sbi, curseg_t->segno); 4120 } 4121 } 4122 4123 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 4124 { 4125 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4126 struct free_segmap_info *free_i = FREE_I(sbi); 4127 unsigned int segno = 0, offset = 0; 4128 unsigned short valid_blocks; 4129 4130 while (1) { 4131 /* find dirty segment based on free segmap */ 4132 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 4133 if (segno >= MAIN_SEGS(sbi)) 4134 break; 4135 offset = segno + 1; 4136 valid_blocks = get_valid_blocks(sbi, segno, false); 4137 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 4138 continue; 4139 if (valid_blocks > sbi->blocks_per_seg) { 4140 f2fs_bug_on(sbi, 1); 4141 continue; 4142 } 4143 mutex_lock(&dirty_i->seglist_lock); 4144 __locate_dirty_segment(sbi, segno, DIRTY); 4145 mutex_unlock(&dirty_i->seglist_lock); 4146 } 4147 } 4148 4149 static int init_victim_secmap(struct f2fs_sb_info *sbi) 4150 { 4151 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4152 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 4153 4154 dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL); 4155 if (!dirty_i->victim_secmap) 4156 return -ENOMEM; 4157 return 0; 4158 } 4159 4160 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 4161 { 4162 struct dirty_seglist_info *dirty_i; 4163 unsigned int bitmap_size, i; 4164 4165 /* allocate memory for dirty segments list information */ 4166 dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info), 4167 GFP_KERNEL); 4168 if (!dirty_i) 4169 return -ENOMEM; 4170 4171 SM_I(sbi)->dirty_info = dirty_i; 4172 mutex_init(&dirty_i->seglist_lock); 4173 4174 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 4175 4176 for (i = 0; i < NR_DIRTY_TYPE; i++) { 4177 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size, 4178 GFP_KERNEL); 4179 if (!dirty_i->dirty_segmap[i]) 4180 return -ENOMEM; 4181 } 4182 4183 init_dirty_segmap(sbi); 4184 return init_victim_secmap(sbi); 4185 } 4186 4187 /* 4188 * Update min, max modified time for cost-benefit GC algorithm 4189 */ 4190 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 4191 { 4192 struct sit_info *sit_i = SIT_I(sbi); 4193 unsigned int segno; 4194 4195 down_write(&sit_i->sentry_lock); 4196 4197 sit_i->min_mtime = ULLONG_MAX; 4198 4199 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 4200 unsigned int i; 4201 unsigned long long mtime = 0; 4202 4203 for (i = 0; i < sbi->segs_per_sec; i++) 4204 mtime += get_seg_entry(sbi, segno + i)->mtime; 4205 4206 mtime = div_u64(mtime, sbi->segs_per_sec); 4207 4208 if (sit_i->min_mtime > mtime) 4209 sit_i->min_mtime = mtime; 4210 } 4211 sit_i->max_mtime = get_mtime(sbi, false); 4212 up_write(&sit_i->sentry_lock); 4213 } 4214 4215 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi) 4216 { 4217 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4218 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 4219 struct f2fs_sm_info *sm_info; 4220 int err; 4221 4222 sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL); 4223 if (!sm_info) 4224 return -ENOMEM; 4225 4226 /* init sm info */ 4227 sbi->sm_info = sm_info; 4228 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 4229 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 4230 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 4231 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 4232 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 4233 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 4234 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 4235 sm_info->rec_prefree_segments = sm_info->main_segments * 4236 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 4237 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 4238 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 4239 4240 if (!test_opt(sbi, LFS)) 4241 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 4242 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 4243 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 4244 sm_info->min_seq_blocks = sbi->blocks_per_seg * sbi->segs_per_sec; 4245 sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS; 4246 sm_info->min_ssr_sections = reserved_sections(sbi); 4247 4248 INIT_LIST_HEAD(&sm_info->sit_entry_set); 4249 4250 init_rwsem(&sm_info->curseg_lock); 4251 4252 if (!f2fs_readonly(sbi->sb)) { 4253 err = f2fs_create_flush_cmd_control(sbi); 4254 if (err) 4255 return err; 4256 } 4257 4258 err = create_discard_cmd_control(sbi); 4259 if (err) 4260 return err; 4261 4262 err = build_sit_info(sbi); 4263 if (err) 4264 return err; 4265 err = build_free_segmap(sbi); 4266 if (err) 4267 return err; 4268 err = build_curseg(sbi); 4269 if (err) 4270 return err; 4271 4272 /* reinit free segmap based on SIT */ 4273 err = build_sit_entries(sbi); 4274 if (err) 4275 return err; 4276 4277 init_free_segmap(sbi); 4278 err = build_dirty_segmap(sbi); 4279 if (err) 4280 return err; 4281 4282 init_min_max_mtime(sbi); 4283 return 0; 4284 } 4285 4286 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 4287 enum dirty_type dirty_type) 4288 { 4289 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4290 4291 mutex_lock(&dirty_i->seglist_lock); 4292 kvfree(dirty_i->dirty_segmap[dirty_type]); 4293 dirty_i->nr_dirty[dirty_type] = 0; 4294 mutex_unlock(&dirty_i->seglist_lock); 4295 } 4296 4297 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 4298 { 4299 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4300 kvfree(dirty_i->victim_secmap); 4301 } 4302 4303 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 4304 { 4305 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 4306 int i; 4307 4308 if (!dirty_i) 4309 return; 4310 4311 /* discard pre-free/dirty segments list */ 4312 for (i = 0; i < NR_DIRTY_TYPE; i++) 4313 discard_dirty_segmap(sbi, i); 4314 4315 destroy_victim_secmap(sbi); 4316 SM_I(sbi)->dirty_info = NULL; 4317 kfree(dirty_i); 4318 } 4319 4320 static void destroy_curseg(struct f2fs_sb_info *sbi) 4321 { 4322 struct curseg_info *array = SM_I(sbi)->curseg_array; 4323 int i; 4324 4325 if (!array) 4326 return; 4327 SM_I(sbi)->curseg_array = NULL; 4328 for (i = 0; i < NR_CURSEG_TYPE; i++) { 4329 kfree(array[i].sum_blk); 4330 kfree(array[i].journal); 4331 } 4332 kfree(array); 4333 } 4334 4335 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 4336 { 4337 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 4338 if (!free_i) 4339 return; 4340 SM_I(sbi)->free_info = NULL; 4341 kvfree(free_i->free_segmap); 4342 kvfree(free_i->free_secmap); 4343 kfree(free_i); 4344 } 4345 4346 static void destroy_sit_info(struct f2fs_sb_info *sbi) 4347 { 4348 struct sit_info *sit_i = SIT_I(sbi); 4349 unsigned int start; 4350 4351 if (!sit_i) 4352 return; 4353 4354 if (sit_i->sentries) { 4355 for (start = 0; start < MAIN_SEGS(sbi); start++) { 4356 kfree(sit_i->sentries[start].cur_valid_map); 4357 #ifdef CONFIG_F2FS_CHECK_FS 4358 kfree(sit_i->sentries[start].cur_valid_map_mir); 4359 #endif 4360 kfree(sit_i->sentries[start].ckpt_valid_map); 4361 kfree(sit_i->sentries[start].discard_map); 4362 } 4363 } 4364 kfree(sit_i->tmp_map); 4365 4366 kvfree(sit_i->sentries); 4367 kvfree(sit_i->sec_entries); 4368 kvfree(sit_i->dirty_sentries_bitmap); 4369 4370 SM_I(sbi)->sit_info = NULL; 4371 kfree(sit_i->sit_bitmap); 4372 #ifdef CONFIG_F2FS_CHECK_FS 4373 kfree(sit_i->sit_bitmap_mir); 4374 #endif 4375 kfree(sit_i); 4376 } 4377 4378 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi) 4379 { 4380 struct f2fs_sm_info *sm_info = SM_I(sbi); 4381 4382 if (!sm_info) 4383 return; 4384 f2fs_destroy_flush_cmd_control(sbi, true); 4385 destroy_discard_cmd_control(sbi); 4386 destroy_dirty_segmap(sbi); 4387 destroy_curseg(sbi); 4388 destroy_free_segmap(sbi); 4389 destroy_sit_info(sbi); 4390 sbi->sm_info = NULL; 4391 kfree(sm_info); 4392 } 4393 4394 int __init f2fs_create_segment_manager_caches(void) 4395 { 4396 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 4397 sizeof(struct discard_entry)); 4398 if (!discard_entry_slab) 4399 goto fail; 4400 4401 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 4402 sizeof(struct discard_cmd)); 4403 if (!discard_cmd_slab) 4404 goto destroy_discard_entry; 4405 4406 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 4407 sizeof(struct sit_entry_set)); 4408 if (!sit_entry_set_slab) 4409 goto destroy_discard_cmd; 4410 4411 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 4412 sizeof(struct inmem_pages)); 4413 if (!inmem_entry_slab) 4414 goto destroy_sit_entry_set; 4415 return 0; 4416 4417 destroy_sit_entry_set: 4418 kmem_cache_destroy(sit_entry_set_slab); 4419 destroy_discard_cmd: 4420 kmem_cache_destroy(discard_cmd_slab); 4421 destroy_discard_entry: 4422 kmem_cache_destroy(discard_entry_slab); 4423 fail: 4424 return -ENOMEM; 4425 } 4426 4427 void f2fs_destroy_segment_manager_caches(void) 4428 { 4429 kmem_cache_destroy(sit_entry_set_slab); 4430 kmem_cache_destroy(discard_cmd_slab); 4431 kmem_cache_destroy(discard_entry_slab); 4432 kmem_cache_destroy(inmem_entry_slab); 4433 } 4434