1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/vmalloc.h> 17 18 #include "f2fs.h" 19 #include "segment.h" 20 #include "node.h" 21 22 /* 23 * This function balances dirty node and dentry pages. 24 * In addition, it controls garbage collection. 25 */ 26 void f2fs_balance_fs(struct f2fs_sb_info *sbi) 27 { 28 /* 29 * We should do GC or end up with checkpoint, if there are so many dirty 30 * dir/node pages without enough free segments. 31 */ 32 if (has_not_enough_free_secs(sbi)) { 33 mutex_lock(&sbi->gc_mutex); 34 f2fs_gc(sbi, 1); 35 } 36 } 37 38 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 39 enum dirty_type dirty_type) 40 { 41 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 42 43 /* need not be added */ 44 if (IS_CURSEG(sbi, segno)) 45 return; 46 47 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 48 dirty_i->nr_dirty[dirty_type]++; 49 50 if (dirty_type == DIRTY) { 51 struct seg_entry *sentry = get_seg_entry(sbi, segno); 52 dirty_type = sentry->type; 53 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 54 dirty_i->nr_dirty[dirty_type]++; 55 } 56 } 57 58 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 59 enum dirty_type dirty_type) 60 { 61 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 62 63 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 64 dirty_i->nr_dirty[dirty_type]--; 65 66 if (dirty_type == DIRTY) { 67 struct seg_entry *sentry = get_seg_entry(sbi, segno); 68 dirty_type = sentry->type; 69 if (test_and_clear_bit(segno, 70 dirty_i->dirty_segmap[dirty_type])) 71 dirty_i->nr_dirty[dirty_type]--; 72 clear_bit(segno, dirty_i->victim_segmap[FG_GC]); 73 clear_bit(segno, dirty_i->victim_segmap[BG_GC]); 74 } 75 } 76 77 /* 78 * Should not occur error such as -ENOMEM. 79 * Adding dirty entry into seglist is not critical operation. 80 * If a given segment is one of current working segments, it won't be added. 81 */ 82 void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 83 { 84 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 85 unsigned short valid_blocks; 86 87 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 88 return; 89 90 mutex_lock(&dirty_i->seglist_lock); 91 92 valid_blocks = get_valid_blocks(sbi, segno, 0); 93 94 if (valid_blocks == 0) { 95 __locate_dirty_segment(sbi, segno, PRE); 96 __remove_dirty_segment(sbi, segno, DIRTY); 97 } else if (valid_blocks < sbi->blocks_per_seg) { 98 __locate_dirty_segment(sbi, segno, DIRTY); 99 } else { 100 /* Recovery routine with SSR needs this */ 101 __remove_dirty_segment(sbi, segno, DIRTY); 102 } 103 104 mutex_unlock(&dirty_i->seglist_lock); 105 return; 106 } 107 108 /* 109 * Should call clear_prefree_segments after checkpoint is done. 110 */ 111 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 112 { 113 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 114 unsigned int segno, offset = 0; 115 unsigned int total_segs = TOTAL_SEGS(sbi); 116 117 mutex_lock(&dirty_i->seglist_lock); 118 while (1) { 119 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, 120 offset); 121 if (segno >= total_segs) 122 break; 123 __set_test_and_free(sbi, segno); 124 offset = segno + 1; 125 } 126 mutex_unlock(&dirty_i->seglist_lock); 127 } 128 129 void clear_prefree_segments(struct f2fs_sb_info *sbi) 130 { 131 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 132 unsigned int segno, offset = 0; 133 unsigned int total_segs = TOTAL_SEGS(sbi); 134 135 mutex_lock(&dirty_i->seglist_lock); 136 while (1) { 137 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs, 138 offset); 139 if (segno >= total_segs) 140 break; 141 142 offset = segno + 1; 143 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE])) 144 dirty_i->nr_dirty[PRE]--; 145 146 /* Let's use trim */ 147 if (test_opt(sbi, DISCARD)) 148 blkdev_issue_discard(sbi->sb->s_bdev, 149 START_BLOCK(sbi, segno) << 150 sbi->log_sectors_per_block, 151 1 << (sbi->log_sectors_per_block + 152 sbi->log_blocks_per_seg), 153 GFP_NOFS, 0); 154 } 155 mutex_unlock(&dirty_i->seglist_lock); 156 } 157 158 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 159 { 160 struct sit_info *sit_i = SIT_I(sbi); 161 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) 162 sit_i->dirty_sentries++; 163 } 164 165 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 166 unsigned int segno, int modified) 167 { 168 struct seg_entry *se = get_seg_entry(sbi, segno); 169 se->type = type; 170 if (modified) 171 __mark_sit_entry_dirty(sbi, segno); 172 } 173 174 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 175 { 176 struct seg_entry *se; 177 unsigned int segno, offset; 178 long int new_vblocks; 179 180 segno = GET_SEGNO(sbi, blkaddr); 181 182 se = get_seg_entry(sbi, segno); 183 new_vblocks = se->valid_blocks + del; 184 offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1); 185 186 BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) || 187 (new_vblocks > sbi->blocks_per_seg))); 188 189 se->valid_blocks = new_vblocks; 190 se->mtime = get_mtime(sbi); 191 SIT_I(sbi)->max_mtime = se->mtime; 192 193 /* Update valid block bitmap */ 194 if (del > 0) { 195 if (f2fs_set_bit(offset, se->cur_valid_map)) 196 BUG(); 197 } else { 198 if (!f2fs_clear_bit(offset, se->cur_valid_map)) 199 BUG(); 200 } 201 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 202 se->ckpt_valid_blocks += del; 203 204 __mark_sit_entry_dirty(sbi, segno); 205 206 /* update total number of valid blocks to be written in ckpt area */ 207 SIT_I(sbi)->written_valid_blocks += del; 208 209 if (sbi->segs_per_sec > 1) 210 get_sec_entry(sbi, segno)->valid_blocks += del; 211 } 212 213 static void refresh_sit_entry(struct f2fs_sb_info *sbi, 214 block_t old_blkaddr, block_t new_blkaddr) 215 { 216 update_sit_entry(sbi, new_blkaddr, 1); 217 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 218 update_sit_entry(sbi, old_blkaddr, -1); 219 } 220 221 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 222 { 223 unsigned int segno = GET_SEGNO(sbi, addr); 224 struct sit_info *sit_i = SIT_I(sbi); 225 226 BUG_ON(addr == NULL_ADDR); 227 if (addr == NEW_ADDR) 228 return; 229 230 /* add it into sit main buffer */ 231 mutex_lock(&sit_i->sentry_lock); 232 233 update_sit_entry(sbi, addr, -1); 234 235 /* add it into dirty seglist */ 236 locate_dirty_segment(sbi, segno); 237 238 mutex_unlock(&sit_i->sentry_lock); 239 } 240 241 /* 242 * This function should be resided under the curseg_mutex lock 243 */ 244 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 245 struct f2fs_summary *sum, unsigned short offset) 246 { 247 struct curseg_info *curseg = CURSEG_I(sbi, type); 248 void *addr = curseg->sum_blk; 249 addr += offset * sizeof(struct f2fs_summary); 250 memcpy(addr, sum, sizeof(struct f2fs_summary)); 251 return; 252 } 253 254 /* 255 * Calculate the number of current summary pages for writing 256 */ 257 int npages_for_summary_flush(struct f2fs_sb_info *sbi) 258 { 259 int total_size_bytes = 0; 260 int valid_sum_count = 0; 261 int i, sum_space; 262 263 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 264 if (sbi->ckpt->alloc_type[i] == SSR) 265 valid_sum_count += sbi->blocks_per_seg; 266 else 267 valid_sum_count += curseg_blkoff(sbi, i); 268 } 269 270 total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1) 271 + sizeof(struct nat_journal) + 2 272 + sizeof(struct sit_journal) + 2; 273 sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE; 274 if (total_size_bytes < sum_space) 275 return 1; 276 else if (total_size_bytes < 2 * sum_space) 277 return 2; 278 return 3; 279 } 280 281 /* 282 * Caller should put this summary page 283 */ 284 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 285 { 286 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 287 } 288 289 static void write_sum_page(struct f2fs_sb_info *sbi, 290 struct f2fs_summary_block *sum_blk, block_t blk_addr) 291 { 292 struct page *page = grab_meta_page(sbi, blk_addr); 293 void *kaddr = page_address(page); 294 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE); 295 set_page_dirty(page); 296 f2fs_put_page(page, 1); 297 } 298 299 static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi, 300 int ofs_unit, int type) 301 { 302 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 303 unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE]; 304 unsigned int segno, next_segno, i; 305 int ofs = 0; 306 307 /* 308 * If there is not enough reserved sections, 309 * we should not reuse prefree segments. 310 */ 311 if (has_not_enough_free_secs(sbi)) 312 return NULL_SEGNO; 313 314 /* 315 * NODE page should not reuse prefree segment, 316 * since those information is used for SPOR. 317 */ 318 if (IS_NODESEG(type)) 319 return NULL_SEGNO; 320 next: 321 segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs++); 322 ofs = ((segno / ofs_unit) * ofs_unit) + ofs_unit; 323 if (segno < TOTAL_SEGS(sbi)) { 324 /* skip intermediate segments in a section */ 325 if (segno % ofs_unit) 326 goto next; 327 328 /* skip if whole section is not prefree */ 329 next_segno = find_next_zero_bit(prefree_segmap, 330 TOTAL_SEGS(sbi), segno + 1); 331 if (next_segno - segno < ofs_unit) 332 goto next; 333 334 /* skip if whole section was not free at the last checkpoint */ 335 for (i = 0; i < ofs_unit; i++) 336 if (get_seg_entry(sbi, segno)->ckpt_valid_blocks) 337 goto next; 338 return segno; 339 } 340 return NULL_SEGNO; 341 } 342 343 /* 344 * Find a new segment from the free segments bitmap to right order 345 * This function should be returned with success, otherwise BUG 346 */ 347 static void get_new_segment(struct f2fs_sb_info *sbi, 348 unsigned int *newseg, bool new_sec, int dir) 349 { 350 struct free_segmap_info *free_i = FREE_I(sbi); 351 unsigned int total_secs = sbi->total_sections; 352 unsigned int segno, secno, zoneno; 353 unsigned int total_zones = sbi->total_sections / sbi->secs_per_zone; 354 unsigned int hint = *newseg / sbi->segs_per_sec; 355 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 356 unsigned int left_start = hint; 357 bool init = true; 358 int go_left = 0; 359 int i; 360 361 write_lock(&free_i->segmap_lock); 362 363 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 364 segno = find_next_zero_bit(free_i->free_segmap, 365 TOTAL_SEGS(sbi), *newseg + 1); 366 if (segno < TOTAL_SEGS(sbi)) 367 goto got_it; 368 } 369 find_other_zone: 370 secno = find_next_zero_bit(free_i->free_secmap, total_secs, hint); 371 if (secno >= total_secs) { 372 if (dir == ALLOC_RIGHT) { 373 secno = find_next_zero_bit(free_i->free_secmap, 374 total_secs, 0); 375 BUG_ON(secno >= total_secs); 376 } else { 377 go_left = 1; 378 left_start = hint - 1; 379 } 380 } 381 if (go_left == 0) 382 goto skip_left; 383 384 while (test_bit(left_start, free_i->free_secmap)) { 385 if (left_start > 0) { 386 left_start--; 387 continue; 388 } 389 left_start = find_next_zero_bit(free_i->free_secmap, 390 total_secs, 0); 391 BUG_ON(left_start >= total_secs); 392 break; 393 } 394 secno = left_start; 395 skip_left: 396 hint = secno; 397 segno = secno * sbi->segs_per_sec; 398 zoneno = secno / sbi->secs_per_zone; 399 400 /* give up on finding another zone */ 401 if (!init) 402 goto got_it; 403 if (sbi->secs_per_zone == 1) 404 goto got_it; 405 if (zoneno == old_zoneno) 406 goto got_it; 407 if (dir == ALLOC_LEFT) { 408 if (!go_left && zoneno + 1 >= total_zones) 409 goto got_it; 410 if (go_left && zoneno == 0) 411 goto got_it; 412 } 413 for (i = 0; i < NR_CURSEG_TYPE; i++) 414 if (CURSEG_I(sbi, i)->zone == zoneno) 415 break; 416 417 if (i < NR_CURSEG_TYPE) { 418 /* zone is in user, try another */ 419 if (go_left) 420 hint = zoneno * sbi->secs_per_zone - 1; 421 else if (zoneno + 1 >= total_zones) 422 hint = 0; 423 else 424 hint = (zoneno + 1) * sbi->secs_per_zone; 425 init = false; 426 goto find_other_zone; 427 } 428 got_it: 429 /* set it as dirty segment in free segmap */ 430 BUG_ON(test_bit(segno, free_i->free_segmap)); 431 __set_inuse(sbi, segno); 432 *newseg = segno; 433 write_unlock(&free_i->segmap_lock); 434 } 435 436 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 437 { 438 struct curseg_info *curseg = CURSEG_I(sbi, type); 439 struct summary_footer *sum_footer; 440 441 curseg->segno = curseg->next_segno; 442 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 443 curseg->next_blkoff = 0; 444 curseg->next_segno = NULL_SEGNO; 445 446 sum_footer = &(curseg->sum_blk->footer); 447 memset(sum_footer, 0, sizeof(struct summary_footer)); 448 if (IS_DATASEG(type)) 449 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 450 if (IS_NODESEG(type)) 451 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 452 __set_sit_entry_type(sbi, type, curseg->segno, modified); 453 } 454 455 /* 456 * Allocate a current working segment. 457 * This function always allocates a free segment in LFS manner. 458 */ 459 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 460 { 461 struct curseg_info *curseg = CURSEG_I(sbi, type); 462 unsigned int segno = curseg->segno; 463 int dir = ALLOC_LEFT; 464 465 write_sum_page(sbi, curseg->sum_blk, 466 GET_SUM_BLOCK(sbi, curseg->segno)); 467 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 468 dir = ALLOC_RIGHT; 469 470 if (test_opt(sbi, NOHEAP)) 471 dir = ALLOC_RIGHT; 472 473 get_new_segment(sbi, &segno, new_sec, dir); 474 curseg->next_segno = segno; 475 reset_curseg(sbi, type, 1); 476 curseg->alloc_type = LFS; 477 } 478 479 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 480 struct curseg_info *seg, block_t start) 481 { 482 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 483 block_t ofs; 484 for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) { 485 if (!f2fs_test_bit(ofs, se->ckpt_valid_map) 486 && !f2fs_test_bit(ofs, se->cur_valid_map)) 487 break; 488 } 489 seg->next_blkoff = ofs; 490 } 491 492 /* 493 * If a segment is written by LFS manner, next block offset is just obtained 494 * by increasing the current block offset. However, if a segment is written by 495 * SSR manner, next block offset obtained by calling __next_free_blkoff 496 */ 497 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 498 struct curseg_info *seg) 499 { 500 if (seg->alloc_type == SSR) 501 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 502 else 503 seg->next_blkoff++; 504 } 505 506 /* 507 * This function always allocates a used segment (from dirty seglist) by SSR 508 * manner, so it should recover the existing segment information of valid blocks 509 */ 510 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 511 { 512 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 513 struct curseg_info *curseg = CURSEG_I(sbi, type); 514 unsigned int new_segno = curseg->next_segno; 515 struct f2fs_summary_block *sum_node; 516 struct page *sum_page; 517 518 write_sum_page(sbi, curseg->sum_blk, 519 GET_SUM_BLOCK(sbi, curseg->segno)); 520 __set_test_and_inuse(sbi, new_segno); 521 522 mutex_lock(&dirty_i->seglist_lock); 523 __remove_dirty_segment(sbi, new_segno, PRE); 524 __remove_dirty_segment(sbi, new_segno, DIRTY); 525 mutex_unlock(&dirty_i->seglist_lock); 526 527 reset_curseg(sbi, type, 1); 528 curseg->alloc_type = SSR; 529 __next_free_blkoff(sbi, curseg, 0); 530 531 if (reuse) { 532 sum_page = get_sum_page(sbi, new_segno); 533 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 534 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 535 f2fs_put_page(sum_page, 1); 536 } 537 } 538 539 /* 540 * flush out current segment and replace it with new segment 541 * This function should be returned with success, otherwise BUG 542 */ 543 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 544 int type, bool force) 545 { 546 struct curseg_info *curseg = CURSEG_I(sbi, type); 547 unsigned int ofs_unit; 548 549 if (force) { 550 new_curseg(sbi, type, true); 551 goto out; 552 } 553 554 ofs_unit = need_SSR(sbi) ? 1 : sbi->segs_per_sec; 555 curseg->next_segno = check_prefree_segments(sbi, ofs_unit, type); 556 557 if (curseg->next_segno != NULL_SEGNO) 558 change_curseg(sbi, type, false); 559 else if (type == CURSEG_WARM_NODE) 560 new_curseg(sbi, type, false); 561 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 562 change_curseg(sbi, type, true); 563 else 564 new_curseg(sbi, type, false); 565 out: 566 sbi->segment_count[curseg->alloc_type]++; 567 } 568 569 void allocate_new_segments(struct f2fs_sb_info *sbi) 570 { 571 struct curseg_info *curseg; 572 unsigned int old_curseg; 573 int i; 574 575 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 576 curseg = CURSEG_I(sbi, i); 577 old_curseg = curseg->segno; 578 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 579 locate_dirty_segment(sbi, old_curseg); 580 } 581 } 582 583 static const struct segment_allocation default_salloc_ops = { 584 .allocate_segment = allocate_segment_by_default, 585 }; 586 587 static void f2fs_end_io_write(struct bio *bio, int err) 588 { 589 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 590 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 591 struct bio_private *p = bio->bi_private; 592 593 do { 594 struct page *page = bvec->bv_page; 595 596 if (--bvec >= bio->bi_io_vec) 597 prefetchw(&bvec->bv_page->flags); 598 if (!uptodate) { 599 SetPageError(page); 600 if (page->mapping) 601 set_bit(AS_EIO, &page->mapping->flags); 602 set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG); 603 } 604 end_page_writeback(page); 605 dec_page_count(p->sbi, F2FS_WRITEBACK); 606 } while (bvec >= bio->bi_io_vec); 607 608 if (p->is_sync) 609 complete(p->wait); 610 kfree(p); 611 bio_put(bio); 612 } 613 614 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages) 615 { 616 struct bio *bio; 617 struct bio_private *priv; 618 retry: 619 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS); 620 if (!priv) { 621 cond_resched(); 622 goto retry; 623 } 624 625 /* No failure on bio allocation */ 626 bio = bio_alloc(GFP_NOIO, npages); 627 bio->bi_bdev = bdev; 628 bio->bi_private = priv; 629 return bio; 630 } 631 632 static void do_submit_bio(struct f2fs_sb_info *sbi, 633 enum page_type type, bool sync) 634 { 635 int rw = sync ? WRITE_SYNC : WRITE; 636 enum page_type btype = type > META ? META : type; 637 638 if (type >= META_FLUSH) 639 rw = WRITE_FLUSH_FUA; 640 641 if (sbi->bio[btype]) { 642 struct bio_private *p = sbi->bio[btype]->bi_private; 643 p->sbi = sbi; 644 sbi->bio[btype]->bi_end_io = f2fs_end_io_write; 645 if (type == META_FLUSH) { 646 DECLARE_COMPLETION_ONSTACK(wait); 647 p->is_sync = true; 648 p->wait = &wait; 649 submit_bio(rw, sbi->bio[btype]); 650 wait_for_completion(&wait); 651 } else { 652 p->is_sync = false; 653 submit_bio(rw, sbi->bio[btype]); 654 } 655 sbi->bio[btype] = NULL; 656 } 657 } 658 659 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync) 660 { 661 down_write(&sbi->bio_sem); 662 do_submit_bio(sbi, type, sync); 663 up_write(&sbi->bio_sem); 664 } 665 666 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page, 667 block_t blk_addr, enum page_type type) 668 { 669 struct block_device *bdev = sbi->sb->s_bdev; 670 671 verify_block_addr(sbi, blk_addr); 672 673 down_write(&sbi->bio_sem); 674 675 inc_page_count(sbi, F2FS_WRITEBACK); 676 677 if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1) 678 do_submit_bio(sbi, type, false); 679 alloc_new: 680 if (sbi->bio[type] == NULL) { 681 sbi->bio[type] = f2fs_bio_alloc(bdev, bio_get_nr_vecs(bdev)); 682 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr); 683 /* 684 * The end_io will be assigned at the sumbission phase. 685 * Until then, let bio_add_page() merge consecutive IOs as much 686 * as possible. 687 */ 688 } 689 690 if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) < 691 PAGE_CACHE_SIZE) { 692 do_submit_bio(sbi, type, false); 693 goto alloc_new; 694 } 695 696 sbi->last_block_in_bio[type] = blk_addr; 697 698 up_write(&sbi->bio_sem); 699 } 700 701 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 702 { 703 struct curseg_info *curseg = CURSEG_I(sbi, type); 704 if (curseg->next_blkoff < sbi->blocks_per_seg) 705 return true; 706 return false; 707 } 708 709 static int __get_segment_type_2(struct page *page, enum page_type p_type) 710 { 711 if (p_type == DATA) 712 return CURSEG_HOT_DATA; 713 else 714 return CURSEG_HOT_NODE; 715 } 716 717 static int __get_segment_type_4(struct page *page, enum page_type p_type) 718 { 719 if (p_type == DATA) { 720 struct inode *inode = page->mapping->host; 721 722 if (S_ISDIR(inode->i_mode)) 723 return CURSEG_HOT_DATA; 724 else 725 return CURSEG_COLD_DATA; 726 } else { 727 if (IS_DNODE(page) && !is_cold_node(page)) 728 return CURSEG_HOT_NODE; 729 else 730 return CURSEG_COLD_NODE; 731 } 732 } 733 734 static int __get_segment_type_6(struct page *page, enum page_type p_type) 735 { 736 if (p_type == DATA) { 737 struct inode *inode = page->mapping->host; 738 739 if (S_ISDIR(inode->i_mode)) 740 return CURSEG_HOT_DATA; 741 else if (is_cold_data(page) || is_cold_file(inode)) 742 return CURSEG_COLD_DATA; 743 else 744 return CURSEG_WARM_DATA; 745 } else { 746 if (IS_DNODE(page)) 747 return is_cold_node(page) ? CURSEG_WARM_NODE : 748 CURSEG_HOT_NODE; 749 else 750 return CURSEG_COLD_NODE; 751 } 752 } 753 754 static int __get_segment_type(struct page *page, enum page_type p_type) 755 { 756 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb); 757 switch (sbi->active_logs) { 758 case 2: 759 return __get_segment_type_2(page, p_type); 760 case 4: 761 return __get_segment_type_4(page, p_type); 762 } 763 /* NR_CURSEG_TYPE(6) logs by default */ 764 BUG_ON(sbi->active_logs != NR_CURSEG_TYPE); 765 return __get_segment_type_6(page, p_type); 766 } 767 768 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page, 769 block_t old_blkaddr, block_t *new_blkaddr, 770 struct f2fs_summary *sum, enum page_type p_type) 771 { 772 struct sit_info *sit_i = SIT_I(sbi); 773 struct curseg_info *curseg; 774 unsigned int old_cursegno; 775 int type; 776 777 type = __get_segment_type(page, p_type); 778 curseg = CURSEG_I(sbi, type); 779 780 mutex_lock(&curseg->curseg_mutex); 781 782 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 783 old_cursegno = curseg->segno; 784 785 /* 786 * __add_sum_entry should be resided under the curseg_mutex 787 * because, this function updates a summary entry in the 788 * current summary block. 789 */ 790 __add_sum_entry(sbi, type, sum, curseg->next_blkoff); 791 792 mutex_lock(&sit_i->sentry_lock); 793 __refresh_next_blkoff(sbi, curseg); 794 sbi->block_count[curseg->alloc_type]++; 795 796 /* 797 * SIT information should be updated before segment allocation, 798 * since SSR needs latest valid block information. 799 */ 800 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 801 802 if (!__has_curseg_space(sbi, type)) 803 sit_i->s_ops->allocate_segment(sbi, type, false); 804 805 locate_dirty_segment(sbi, old_cursegno); 806 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 807 mutex_unlock(&sit_i->sentry_lock); 808 809 if (p_type == NODE) 810 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 811 812 /* writeout dirty page into bdev */ 813 submit_write_page(sbi, page, *new_blkaddr, p_type); 814 815 mutex_unlock(&curseg->curseg_mutex); 816 } 817 818 int write_meta_page(struct f2fs_sb_info *sbi, struct page *page, 819 struct writeback_control *wbc) 820 { 821 if (wbc->for_reclaim) 822 return AOP_WRITEPAGE_ACTIVATE; 823 824 set_page_writeback(page); 825 submit_write_page(sbi, page, page->index, META); 826 return 0; 827 } 828 829 void write_node_page(struct f2fs_sb_info *sbi, struct page *page, 830 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr) 831 { 832 struct f2fs_summary sum; 833 set_summary(&sum, nid, 0, 0); 834 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE); 835 } 836 837 void write_data_page(struct inode *inode, struct page *page, 838 struct dnode_of_data *dn, block_t old_blkaddr, 839 block_t *new_blkaddr) 840 { 841 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 842 struct f2fs_summary sum; 843 struct node_info ni; 844 845 BUG_ON(old_blkaddr == NULL_ADDR); 846 get_node_info(sbi, dn->nid, &ni); 847 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 848 849 do_write_page(sbi, page, old_blkaddr, 850 new_blkaddr, &sum, DATA); 851 } 852 853 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page, 854 block_t old_blk_addr) 855 { 856 submit_write_page(sbi, page, old_blk_addr, DATA); 857 } 858 859 void recover_data_page(struct f2fs_sb_info *sbi, 860 struct page *page, struct f2fs_summary *sum, 861 block_t old_blkaddr, block_t new_blkaddr) 862 { 863 struct sit_info *sit_i = SIT_I(sbi); 864 struct curseg_info *curseg; 865 unsigned int segno, old_cursegno; 866 struct seg_entry *se; 867 int type; 868 869 segno = GET_SEGNO(sbi, new_blkaddr); 870 se = get_seg_entry(sbi, segno); 871 type = se->type; 872 873 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 874 if (old_blkaddr == NULL_ADDR) 875 type = CURSEG_COLD_DATA; 876 else 877 type = CURSEG_WARM_DATA; 878 } 879 curseg = CURSEG_I(sbi, type); 880 881 mutex_lock(&curseg->curseg_mutex); 882 mutex_lock(&sit_i->sentry_lock); 883 884 old_cursegno = curseg->segno; 885 886 /* change the current segment */ 887 if (segno != curseg->segno) { 888 curseg->next_segno = segno; 889 change_curseg(sbi, type, true); 890 } 891 892 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & 893 (sbi->blocks_per_seg - 1); 894 __add_sum_entry(sbi, type, sum, curseg->next_blkoff); 895 896 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 897 898 locate_dirty_segment(sbi, old_cursegno); 899 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 900 901 mutex_unlock(&sit_i->sentry_lock); 902 mutex_unlock(&curseg->curseg_mutex); 903 } 904 905 void rewrite_node_page(struct f2fs_sb_info *sbi, 906 struct page *page, struct f2fs_summary *sum, 907 block_t old_blkaddr, block_t new_blkaddr) 908 { 909 struct sit_info *sit_i = SIT_I(sbi); 910 int type = CURSEG_WARM_NODE; 911 struct curseg_info *curseg; 912 unsigned int segno, old_cursegno; 913 block_t next_blkaddr = next_blkaddr_of_node(page); 914 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr); 915 916 curseg = CURSEG_I(sbi, type); 917 918 mutex_lock(&curseg->curseg_mutex); 919 mutex_lock(&sit_i->sentry_lock); 920 921 segno = GET_SEGNO(sbi, new_blkaddr); 922 old_cursegno = curseg->segno; 923 924 /* change the current segment */ 925 if (segno != curseg->segno) { 926 curseg->next_segno = segno; 927 change_curseg(sbi, type, true); 928 } 929 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) & 930 (sbi->blocks_per_seg - 1); 931 __add_sum_entry(sbi, type, sum, curseg->next_blkoff); 932 933 /* change the current log to the next block addr in advance */ 934 if (next_segno != segno) { 935 curseg->next_segno = next_segno; 936 change_curseg(sbi, type, true); 937 } 938 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) & 939 (sbi->blocks_per_seg - 1); 940 941 /* rewrite node page */ 942 set_page_writeback(page); 943 submit_write_page(sbi, page, new_blkaddr, NODE); 944 f2fs_submit_bio(sbi, NODE, true); 945 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr); 946 947 locate_dirty_segment(sbi, old_cursegno); 948 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 949 950 mutex_unlock(&sit_i->sentry_lock); 951 mutex_unlock(&curseg->curseg_mutex); 952 } 953 954 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 955 { 956 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 957 struct curseg_info *seg_i; 958 unsigned char *kaddr; 959 struct page *page; 960 block_t start; 961 int i, j, offset; 962 963 start = start_sum_block(sbi); 964 965 page = get_meta_page(sbi, start++); 966 kaddr = (unsigned char *)page_address(page); 967 968 /* Step 1: restore nat cache */ 969 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 970 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE); 971 972 /* Step 2: restore sit cache */ 973 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 974 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE, 975 SUM_JOURNAL_SIZE); 976 offset = 2 * SUM_JOURNAL_SIZE; 977 978 /* Step 3: restore summary entries */ 979 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 980 unsigned short blk_off; 981 unsigned int segno; 982 983 seg_i = CURSEG_I(sbi, i); 984 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 985 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 986 seg_i->next_segno = segno; 987 reset_curseg(sbi, i, 0); 988 seg_i->alloc_type = ckpt->alloc_type[i]; 989 seg_i->next_blkoff = blk_off; 990 991 if (seg_i->alloc_type == SSR) 992 blk_off = sbi->blocks_per_seg; 993 994 for (j = 0; j < blk_off; j++) { 995 struct f2fs_summary *s; 996 s = (struct f2fs_summary *)(kaddr + offset); 997 seg_i->sum_blk->entries[j] = *s; 998 offset += SUMMARY_SIZE; 999 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1000 SUM_FOOTER_SIZE) 1001 continue; 1002 1003 f2fs_put_page(page, 1); 1004 page = NULL; 1005 1006 page = get_meta_page(sbi, start++); 1007 kaddr = (unsigned char *)page_address(page); 1008 offset = 0; 1009 } 1010 } 1011 f2fs_put_page(page, 1); 1012 return 0; 1013 } 1014 1015 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 1016 { 1017 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1018 struct f2fs_summary_block *sum; 1019 struct curseg_info *curseg; 1020 struct page *new; 1021 unsigned short blk_off; 1022 unsigned int segno = 0; 1023 block_t blk_addr = 0; 1024 1025 /* get segment number and block addr */ 1026 if (IS_DATASEG(type)) { 1027 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 1028 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 1029 CURSEG_HOT_DATA]); 1030 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1031 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 1032 else 1033 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 1034 } else { 1035 segno = le32_to_cpu(ckpt->cur_node_segno[type - 1036 CURSEG_HOT_NODE]); 1037 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 1038 CURSEG_HOT_NODE]); 1039 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) 1040 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 1041 type - CURSEG_HOT_NODE); 1042 else 1043 blk_addr = GET_SUM_BLOCK(sbi, segno); 1044 } 1045 1046 new = get_meta_page(sbi, blk_addr); 1047 sum = (struct f2fs_summary_block *)page_address(new); 1048 1049 if (IS_NODESEG(type)) { 1050 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) { 1051 struct f2fs_summary *ns = &sum->entries[0]; 1052 int i; 1053 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 1054 ns->version = 0; 1055 ns->ofs_in_node = 0; 1056 } 1057 } else { 1058 if (restore_node_summary(sbi, segno, sum)) { 1059 f2fs_put_page(new, 1); 1060 return -EINVAL; 1061 } 1062 } 1063 } 1064 1065 /* set uncompleted segment to curseg */ 1066 curseg = CURSEG_I(sbi, type); 1067 mutex_lock(&curseg->curseg_mutex); 1068 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE); 1069 curseg->next_segno = segno; 1070 reset_curseg(sbi, type, 0); 1071 curseg->alloc_type = ckpt->alloc_type[type]; 1072 curseg->next_blkoff = blk_off; 1073 mutex_unlock(&curseg->curseg_mutex); 1074 f2fs_put_page(new, 1); 1075 return 0; 1076 } 1077 1078 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 1079 { 1080 int type = CURSEG_HOT_DATA; 1081 1082 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) { 1083 /* restore for compacted data summary */ 1084 if (read_compacted_summaries(sbi)) 1085 return -EINVAL; 1086 type = CURSEG_HOT_NODE; 1087 } 1088 1089 for (; type <= CURSEG_COLD_NODE; type++) 1090 if (read_normal_summaries(sbi, type)) 1091 return -EINVAL; 1092 return 0; 1093 } 1094 1095 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 1096 { 1097 struct page *page; 1098 unsigned char *kaddr; 1099 struct f2fs_summary *summary; 1100 struct curseg_info *seg_i; 1101 int written_size = 0; 1102 int i, j; 1103 1104 page = grab_meta_page(sbi, blkaddr++); 1105 kaddr = (unsigned char *)page_address(page); 1106 1107 /* Step 1: write nat cache */ 1108 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 1109 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE); 1110 written_size += SUM_JOURNAL_SIZE; 1111 1112 /* Step 2: write sit cache */ 1113 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 1114 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits, 1115 SUM_JOURNAL_SIZE); 1116 written_size += SUM_JOURNAL_SIZE; 1117 1118 set_page_dirty(page); 1119 1120 /* Step 3: write summary entries */ 1121 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1122 unsigned short blkoff; 1123 seg_i = CURSEG_I(sbi, i); 1124 if (sbi->ckpt->alloc_type[i] == SSR) 1125 blkoff = sbi->blocks_per_seg; 1126 else 1127 blkoff = curseg_blkoff(sbi, i); 1128 1129 for (j = 0; j < blkoff; j++) { 1130 if (!page) { 1131 page = grab_meta_page(sbi, blkaddr++); 1132 kaddr = (unsigned char *)page_address(page); 1133 written_size = 0; 1134 } 1135 summary = (struct f2fs_summary *)(kaddr + written_size); 1136 *summary = seg_i->sum_blk->entries[j]; 1137 written_size += SUMMARY_SIZE; 1138 set_page_dirty(page); 1139 1140 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE - 1141 SUM_FOOTER_SIZE) 1142 continue; 1143 1144 f2fs_put_page(page, 1); 1145 page = NULL; 1146 } 1147 } 1148 if (page) 1149 f2fs_put_page(page, 1); 1150 } 1151 1152 static void write_normal_summaries(struct f2fs_sb_info *sbi, 1153 block_t blkaddr, int type) 1154 { 1155 int i, end; 1156 if (IS_DATASEG(type)) 1157 end = type + NR_CURSEG_DATA_TYPE; 1158 else 1159 end = type + NR_CURSEG_NODE_TYPE; 1160 1161 for (i = type; i < end; i++) { 1162 struct curseg_info *sum = CURSEG_I(sbi, i); 1163 mutex_lock(&sum->curseg_mutex); 1164 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type)); 1165 mutex_unlock(&sum->curseg_mutex); 1166 } 1167 } 1168 1169 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1170 { 1171 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) 1172 write_compacted_summaries(sbi, start_blk); 1173 else 1174 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 1175 } 1176 1177 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 1178 { 1179 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) 1180 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 1181 return; 1182 } 1183 1184 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type, 1185 unsigned int val, int alloc) 1186 { 1187 int i; 1188 1189 if (type == NAT_JOURNAL) { 1190 for (i = 0; i < nats_in_cursum(sum); i++) { 1191 if (le32_to_cpu(nid_in_journal(sum, i)) == val) 1192 return i; 1193 } 1194 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) 1195 return update_nats_in_cursum(sum, 1); 1196 } else if (type == SIT_JOURNAL) { 1197 for (i = 0; i < sits_in_cursum(sum); i++) 1198 if (le32_to_cpu(segno_in_journal(sum, i)) == val) 1199 return i; 1200 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES) 1201 return update_sits_in_cursum(sum, 1); 1202 } 1203 return -1; 1204 } 1205 1206 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 1207 unsigned int segno) 1208 { 1209 struct sit_info *sit_i = SIT_I(sbi); 1210 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno); 1211 block_t blk_addr = sit_i->sit_base_addr + offset; 1212 1213 check_seg_range(sbi, segno); 1214 1215 /* calculate sit block address */ 1216 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 1217 blk_addr += sit_i->sit_blocks; 1218 1219 return get_meta_page(sbi, blk_addr); 1220 } 1221 1222 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 1223 unsigned int start) 1224 { 1225 struct sit_info *sit_i = SIT_I(sbi); 1226 struct page *src_page, *dst_page; 1227 pgoff_t src_off, dst_off; 1228 void *src_addr, *dst_addr; 1229 1230 src_off = current_sit_addr(sbi, start); 1231 dst_off = next_sit_addr(sbi, src_off); 1232 1233 /* get current sit block page without lock */ 1234 src_page = get_meta_page(sbi, src_off); 1235 dst_page = grab_meta_page(sbi, dst_off); 1236 BUG_ON(PageDirty(src_page)); 1237 1238 src_addr = page_address(src_page); 1239 dst_addr = page_address(dst_page); 1240 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE); 1241 1242 set_page_dirty(dst_page); 1243 f2fs_put_page(src_page, 1); 1244 1245 set_to_next_sit(sit_i, start); 1246 1247 return dst_page; 1248 } 1249 1250 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi) 1251 { 1252 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1253 struct f2fs_summary_block *sum = curseg->sum_blk; 1254 int i; 1255 1256 /* 1257 * If the journal area in the current summary is full of sit entries, 1258 * all the sit entries will be flushed. Otherwise the sit entries 1259 * are not able to replace with newly hot sit entries. 1260 */ 1261 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) { 1262 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) { 1263 unsigned int segno; 1264 segno = le32_to_cpu(segno_in_journal(sum, i)); 1265 __mark_sit_entry_dirty(sbi, segno); 1266 } 1267 update_sits_in_cursum(sum, -sits_in_cursum(sum)); 1268 return 1; 1269 } 1270 return 0; 1271 } 1272 1273 /* 1274 * CP calls this function, which flushes SIT entries including sit_journal, 1275 * and moves prefree segs to free segs. 1276 */ 1277 void flush_sit_entries(struct f2fs_sb_info *sbi) 1278 { 1279 struct sit_info *sit_i = SIT_I(sbi); 1280 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 1281 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1282 struct f2fs_summary_block *sum = curseg->sum_blk; 1283 unsigned long nsegs = TOTAL_SEGS(sbi); 1284 struct page *page = NULL; 1285 struct f2fs_sit_block *raw_sit = NULL; 1286 unsigned int start = 0, end = 0; 1287 unsigned int segno = -1; 1288 bool flushed; 1289 1290 mutex_lock(&curseg->curseg_mutex); 1291 mutex_lock(&sit_i->sentry_lock); 1292 1293 /* 1294 * "flushed" indicates whether sit entries in journal are flushed 1295 * to the SIT area or not. 1296 */ 1297 flushed = flush_sits_in_journal(sbi); 1298 1299 while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) { 1300 struct seg_entry *se = get_seg_entry(sbi, segno); 1301 int sit_offset, offset; 1302 1303 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 1304 1305 if (flushed) 1306 goto to_sit_page; 1307 1308 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1); 1309 if (offset >= 0) { 1310 segno_in_journal(sum, offset) = cpu_to_le32(segno); 1311 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset)); 1312 goto flush_done; 1313 } 1314 to_sit_page: 1315 if (!page || (start > segno) || (segno > end)) { 1316 if (page) { 1317 f2fs_put_page(page, 1); 1318 page = NULL; 1319 } 1320 1321 start = START_SEGNO(sit_i, segno); 1322 end = start + SIT_ENTRY_PER_BLOCK - 1; 1323 1324 /* read sit block that will be updated */ 1325 page = get_next_sit_page(sbi, start); 1326 raw_sit = page_address(page); 1327 } 1328 1329 /* udpate entry in SIT block */ 1330 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]); 1331 flush_done: 1332 __clear_bit(segno, bitmap); 1333 sit_i->dirty_sentries--; 1334 } 1335 mutex_unlock(&sit_i->sentry_lock); 1336 mutex_unlock(&curseg->curseg_mutex); 1337 1338 /* writeout last modified SIT block */ 1339 f2fs_put_page(page, 1); 1340 1341 set_prefree_as_free_segments(sbi); 1342 } 1343 1344 static int build_sit_info(struct f2fs_sb_info *sbi) 1345 { 1346 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1347 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1348 struct sit_info *sit_i; 1349 unsigned int sit_segs, start; 1350 char *src_bitmap, *dst_bitmap; 1351 unsigned int bitmap_size; 1352 1353 /* allocate memory for SIT information */ 1354 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 1355 if (!sit_i) 1356 return -ENOMEM; 1357 1358 SM_I(sbi)->sit_info = sit_i; 1359 1360 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry)); 1361 if (!sit_i->sentries) 1362 return -ENOMEM; 1363 1364 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); 1365 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1366 if (!sit_i->dirty_sentries_bitmap) 1367 return -ENOMEM; 1368 1369 for (start = 0; start < TOTAL_SEGS(sbi); start++) { 1370 sit_i->sentries[start].cur_valid_map 1371 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1372 sit_i->sentries[start].ckpt_valid_map 1373 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 1374 if (!sit_i->sentries[start].cur_valid_map 1375 || !sit_i->sentries[start].ckpt_valid_map) 1376 return -ENOMEM; 1377 } 1378 1379 if (sbi->segs_per_sec > 1) { 1380 sit_i->sec_entries = vzalloc(sbi->total_sections * 1381 sizeof(struct sec_entry)); 1382 if (!sit_i->sec_entries) 1383 return -ENOMEM; 1384 } 1385 1386 /* get information related with SIT */ 1387 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 1388 1389 /* setup SIT bitmap from ckeckpoint pack */ 1390 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 1391 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 1392 1393 dst_bitmap = kzalloc(bitmap_size, GFP_KERNEL); 1394 if (!dst_bitmap) 1395 return -ENOMEM; 1396 memcpy(dst_bitmap, src_bitmap, bitmap_size); 1397 1398 /* init SIT information */ 1399 sit_i->s_ops = &default_salloc_ops; 1400 1401 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 1402 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 1403 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count); 1404 sit_i->sit_bitmap = dst_bitmap; 1405 sit_i->bitmap_size = bitmap_size; 1406 sit_i->dirty_sentries = 0; 1407 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 1408 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 1409 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 1410 mutex_init(&sit_i->sentry_lock); 1411 return 0; 1412 } 1413 1414 static int build_free_segmap(struct f2fs_sb_info *sbi) 1415 { 1416 struct f2fs_sm_info *sm_info = SM_I(sbi); 1417 struct free_segmap_info *free_i; 1418 unsigned int bitmap_size, sec_bitmap_size; 1419 1420 /* allocate memory for free segmap information */ 1421 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 1422 if (!free_i) 1423 return -ENOMEM; 1424 1425 SM_I(sbi)->free_info = free_i; 1426 1427 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); 1428 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL); 1429 if (!free_i->free_segmap) 1430 return -ENOMEM; 1431 1432 sec_bitmap_size = f2fs_bitmap_size(sbi->total_sections); 1433 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL); 1434 if (!free_i->free_secmap) 1435 return -ENOMEM; 1436 1437 /* set all segments as dirty temporarily */ 1438 memset(free_i->free_segmap, 0xff, bitmap_size); 1439 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 1440 1441 /* init free segmap information */ 1442 free_i->start_segno = 1443 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr); 1444 free_i->free_segments = 0; 1445 free_i->free_sections = 0; 1446 rwlock_init(&free_i->segmap_lock); 1447 return 0; 1448 } 1449 1450 static int build_curseg(struct f2fs_sb_info *sbi) 1451 { 1452 struct curseg_info *array; 1453 int i; 1454 1455 array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL); 1456 if (!array) 1457 return -ENOMEM; 1458 1459 SM_I(sbi)->curseg_array = array; 1460 1461 for (i = 0; i < NR_CURSEG_TYPE; i++) { 1462 mutex_init(&array[i].curseg_mutex); 1463 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL); 1464 if (!array[i].sum_blk) 1465 return -ENOMEM; 1466 array[i].segno = NULL_SEGNO; 1467 array[i].next_blkoff = 0; 1468 } 1469 return restore_curseg_summaries(sbi); 1470 } 1471 1472 static void build_sit_entries(struct f2fs_sb_info *sbi) 1473 { 1474 struct sit_info *sit_i = SIT_I(sbi); 1475 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 1476 struct f2fs_summary_block *sum = curseg->sum_blk; 1477 unsigned int start; 1478 1479 for (start = 0; start < TOTAL_SEGS(sbi); start++) { 1480 struct seg_entry *se = &sit_i->sentries[start]; 1481 struct f2fs_sit_block *sit_blk; 1482 struct f2fs_sit_entry sit; 1483 struct page *page; 1484 int i; 1485 1486 mutex_lock(&curseg->curseg_mutex); 1487 for (i = 0; i < sits_in_cursum(sum); i++) { 1488 if (le32_to_cpu(segno_in_journal(sum, i)) == start) { 1489 sit = sit_in_journal(sum, i); 1490 mutex_unlock(&curseg->curseg_mutex); 1491 goto got_it; 1492 } 1493 } 1494 mutex_unlock(&curseg->curseg_mutex); 1495 page = get_current_sit_page(sbi, start); 1496 sit_blk = (struct f2fs_sit_block *)page_address(page); 1497 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 1498 f2fs_put_page(page, 1); 1499 got_it: 1500 check_block_count(sbi, start, &sit); 1501 seg_info_from_raw_sit(se, &sit); 1502 if (sbi->segs_per_sec > 1) { 1503 struct sec_entry *e = get_sec_entry(sbi, start); 1504 e->valid_blocks += se->valid_blocks; 1505 } 1506 } 1507 } 1508 1509 static void init_free_segmap(struct f2fs_sb_info *sbi) 1510 { 1511 unsigned int start; 1512 int type; 1513 1514 for (start = 0; start < TOTAL_SEGS(sbi); start++) { 1515 struct seg_entry *sentry = get_seg_entry(sbi, start); 1516 if (!sentry->valid_blocks) 1517 __set_free(sbi, start); 1518 } 1519 1520 /* set use the current segments */ 1521 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 1522 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 1523 __set_test_and_inuse(sbi, curseg_t->segno); 1524 } 1525 } 1526 1527 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 1528 { 1529 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1530 struct free_segmap_info *free_i = FREE_I(sbi); 1531 unsigned int segno = 0, offset = 0; 1532 unsigned short valid_blocks; 1533 1534 while (segno < TOTAL_SEGS(sbi)) { 1535 /* find dirty segment based on free segmap */ 1536 segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset); 1537 if (segno >= TOTAL_SEGS(sbi)) 1538 break; 1539 offset = segno + 1; 1540 valid_blocks = get_valid_blocks(sbi, segno, 0); 1541 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks) 1542 continue; 1543 mutex_lock(&dirty_i->seglist_lock); 1544 __locate_dirty_segment(sbi, segno, DIRTY); 1545 mutex_unlock(&dirty_i->seglist_lock); 1546 } 1547 } 1548 1549 static int init_victim_segmap(struct f2fs_sb_info *sbi) 1550 { 1551 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1552 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); 1553 1554 dirty_i->victim_segmap[FG_GC] = kzalloc(bitmap_size, GFP_KERNEL); 1555 dirty_i->victim_segmap[BG_GC] = kzalloc(bitmap_size, GFP_KERNEL); 1556 if (!dirty_i->victim_segmap[FG_GC] || !dirty_i->victim_segmap[BG_GC]) 1557 return -ENOMEM; 1558 return 0; 1559 } 1560 1561 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 1562 { 1563 struct dirty_seglist_info *dirty_i; 1564 unsigned int bitmap_size, i; 1565 1566 /* allocate memory for dirty segments list information */ 1567 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 1568 if (!dirty_i) 1569 return -ENOMEM; 1570 1571 SM_I(sbi)->dirty_info = dirty_i; 1572 mutex_init(&dirty_i->seglist_lock); 1573 1574 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); 1575 1576 for (i = 0; i < NR_DIRTY_TYPE; i++) { 1577 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL); 1578 if (!dirty_i->dirty_segmap[i]) 1579 return -ENOMEM; 1580 } 1581 1582 init_dirty_segmap(sbi); 1583 return init_victim_segmap(sbi); 1584 } 1585 1586 /* 1587 * Update min, max modified time for cost-benefit GC algorithm 1588 */ 1589 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 1590 { 1591 struct sit_info *sit_i = SIT_I(sbi); 1592 unsigned int segno; 1593 1594 mutex_lock(&sit_i->sentry_lock); 1595 1596 sit_i->min_mtime = LLONG_MAX; 1597 1598 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) { 1599 unsigned int i; 1600 unsigned long long mtime = 0; 1601 1602 for (i = 0; i < sbi->segs_per_sec; i++) 1603 mtime += get_seg_entry(sbi, segno + i)->mtime; 1604 1605 mtime = div_u64(mtime, sbi->segs_per_sec); 1606 1607 if (sit_i->min_mtime > mtime) 1608 sit_i->min_mtime = mtime; 1609 } 1610 sit_i->max_mtime = get_mtime(sbi); 1611 mutex_unlock(&sit_i->sentry_lock); 1612 } 1613 1614 int build_segment_manager(struct f2fs_sb_info *sbi) 1615 { 1616 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1617 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1618 struct f2fs_sm_info *sm_info; 1619 int err; 1620 1621 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 1622 if (!sm_info) 1623 return -ENOMEM; 1624 1625 /* init sm info */ 1626 sbi->sm_info = sm_info; 1627 INIT_LIST_HEAD(&sm_info->wblist_head); 1628 spin_lock_init(&sm_info->wblist_lock); 1629 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1630 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1631 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 1632 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 1633 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 1634 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 1635 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1636 1637 err = build_sit_info(sbi); 1638 if (err) 1639 return err; 1640 err = build_free_segmap(sbi); 1641 if (err) 1642 return err; 1643 err = build_curseg(sbi); 1644 if (err) 1645 return err; 1646 1647 /* reinit free segmap based on SIT */ 1648 build_sit_entries(sbi); 1649 1650 init_free_segmap(sbi); 1651 err = build_dirty_segmap(sbi); 1652 if (err) 1653 return err; 1654 1655 init_min_max_mtime(sbi); 1656 return 0; 1657 } 1658 1659 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 1660 enum dirty_type dirty_type) 1661 { 1662 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1663 1664 mutex_lock(&dirty_i->seglist_lock); 1665 kfree(dirty_i->dirty_segmap[dirty_type]); 1666 dirty_i->nr_dirty[dirty_type] = 0; 1667 mutex_unlock(&dirty_i->seglist_lock); 1668 } 1669 1670 void reset_victim_segmap(struct f2fs_sb_info *sbi) 1671 { 1672 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi)); 1673 memset(DIRTY_I(sbi)->victim_segmap[FG_GC], 0, bitmap_size); 1674 } 1675 1676 static void destroy_victim_segmap(struct f2fs_sb_info *sbi) 1677 { 1678 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1679 1680 kfree(dirty_i->victim_segmap[FG_GC]); 1681 kfree(dirty_i->victim_segmap[BG_GC]); 1682 } 1683 1684 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 1685 { 1686 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1687 int i; 1688 1689 if (!dirty_i) 1690 return; 1691 1692 /* discard pre-free/dirty segments list */ 1693 for (i = 0; i < NR_DIRTY_TYPE; i++) 1694 discard_dirty_segmap(sbi, i); 1695 1696 destroy_victim_segmap(sbi); 1697 SM_I(sbi)->dirty_info = NULL; 1698 kfree(dirty_i); 1699 } 1700 1701 static void destroy_curseg(struct f2fs_sb_info *sbi) 1702 { 1703 struct curseg_info *array = SM_I(sbi)->curseg_array; 1704 int i; 1705 1706 if (!array) 1707 return; 1708 SM_I(sbi)->curseg_array = NULL; 1709 for (i = 0; i < NR_CURSEG_TYPE; i++) 1710 kfree(array[i].sum_blk); 1711 kfree(array); 1712 } 1713 1714 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 1715 { 1716 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 1717 if (!free_i) 1718 return; 1719 SM_I(sbi)->free_info = NULL; 1720 kfree(free_i->free_segmap); 1721 kfree(free_i->free_secmap); 1722 kfree(free_i); 1723 } 1724 1725 static void destroy_sit_info(struct f2fs_sb_info *sbi) 1726 { 1727 struct sit_info *sit_i = SIT_I(sbi); 1728 unsigned int start; 1729 1730 if (!sit_i) 1731 return; 1732 1733 if (sit_i->sentries) { 1734 for (start = 0; start < TOTAL_SEGS(sbi); start++) { 1735 kfree(sit_i->sentries[start].cur_valid_map); 1736 kfree(sit_i->sentries[start].ckpt_valid_map); 1737 } 1738 } 1739 vfree(sit_i->sentries); 1740 vfree(sit_i->sec_entries); 1741 kfree(sit_i->dirty_sentries_bitmap); 1742 1743 SM_I(sbi)->sit_info = NULL; 1744 kfree(sit_i->sit_bitmap); 1745 kfree(sit_i); 1746 } 1747 1748 void destroy_segment_manager(struct f2fs_sb_info *sbi) 1749 { 1750 struct f2fs_sm_info *sm_info = SM_I(sbi); 1751 destroy_dirty_segmap(sbi); 1752 destroy_curseg(sbi); 1753 destroy_free_segmap(sbi); 1754 destroy_sit_info(sbi); 1755 sbi->sm_info = NULL; 1756 kfree(sm_info); 1757 } 1758