xref: /openbmc/linux/fs/f2fs/segment.c (revision 52beb1fc)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *inmem_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_register_inmem_page(struct inode *inode, struct page *page)
189 {
190 	struct inmem_pages *new;
191 
192 	set_page_private_atomic(page);
193 
194 	new = f2fs_kmem_cache_alloc(inmem_entry_slab,
195 					GFP_NOFS, true, NULL);
196 
197 	/* add atomic page indices to the list */
198 	new->page = page;
199 	INIT_LIST_HEAD(&new->list);
200 
201 	/* increase reference count with clean state */
202 	get_page(page);
203 	mutex_lock(&F2FS_I(inode)->inmem_lock);
204 	list_add_tail(&new->list, &F2FS_I(inode)->inmem_pages);
205 	inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
206 	mutex_unlock(&F2FS_I(inode)->inmem_lock);
207 
208 	trace_f2fs_register_inmem_page(page, INMEM);
209 }
210 
211 static int __revoke_inmem_pages(struct inode *inode,
212 				struct list_head *head, bool drop, bool recover,
213 				bool trylock)
214 {
215 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
216 	struct inmem_pages *cur, *tmp;
217 	int err = 0;
218 
219 	list_for_each_entry_safe(cur, tmp, head, list) {
220 		struct page *page = cur->page;
221 
222 		if (drop)
223 			trace_f2fs_commit_inmem_page(page, INMEM_DROP);
224 
225 		if (trylock) {
226 			/*
227 			 * to avoid deadlock in between page lock and
228 			 * inmem_lock.
229 			 */
230 			if (!trylock_page(page))
231 				continue;
232 		} else {
233 			lock_page(page);
234 		}
235 
236 		f2fs_wait_on_page_writeback(page, DATA, true, true);
237 
238 		if (recover) {
239 			struct dnode_of_data dn;
240 			struct node_info ni;
241 
242 			trace_f2fs_commit_inmem_page(page, INMEM_REVOKE);
243 retry:
244 			set_new_dnode(&dn, inode, NULL, NULL, 0);
245 			err = f2fs_get_dnode_of_data(&dn, page->index,
246 								LOOKUP_NODE);
247 			if (err) {
248 				if (err == -ENOMEM) {
249 					memalloc_retry_wait(GFP_NOFS);
250 					goto retry;
251 				}
252 				err = -EAGAIN;
253 				goto next;
254 			}
255 
256 			err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
257 			if (err) {
258 				f2fs_put_dnode(&dn);
259 				return err;
260 			}
261 
262 			if (cur->old_addr == NEW_ADDR) {
263 				f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
264 				f2fs_update_data_blkaddr(&dn, NEW_ADDR);
265 			} else
266 				f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
267 					cur->old_addr, ni.version, true, true);
268 			f2fs_put_dnode(&dn);
269 		}
270 next:
271 		/* we don't need to invalidate this in the sccessful status */
272 		if (drop || recover) {
273 			ClearPageUptodate(page);
274 			clear_page_private_gcing(page);
275 		}
276 		detach_page_private(page);
277 		set_page_private(page, 0);
278 		f2fs_put_page(page, 1);
279 
280 		list_del(&cur->list);
281 		kmem_cache_free(inmem_entry_slab, cur);
282 		dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES);
283 	}
284 	return err;
285 }
286 
287 void f2fs_drop_inmem_pages_all(struct f2fs_sb_info *sbi, bool gc_failure)
288 {
289 	struct list_head *head = &sbi->inode_list[ATOMIC_FILE];
290 	struct inode *inode;
291 	struct f2fs_inode_info *fi;
292 	unsigned int count = sbi->atomic_files;
293 	unsigned int looped = 0;
294 next:
295 	spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
296 	if (list_empty(head)) {
297 		spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
298 		return;
299 	}
300 	fi = list_first_entry(head, struct f2fs_inode_info, inmem_ilist);
301 	inode = igrab(&fi->vfs_inode);
302 	if (inode)
303 		list_move_tail(&fi->inmem_ilist, head);
304 	spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
305 
306 	if (inode) {
307 		if (gc_failure) {
308 			if (!fi->i_gc_failures[GC_FAILURE_ATOMIC])
309 				goto skip;
310 		}
311 		set_inode_flag(inode, FI_ATOMIC_REVOKE_REQUEST);
312 		f2fs_drop_inmem_pages(inode);
313 skip:
314 		iput(inode);
315 	}
316 	congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
317 	cond_resched();
318 	if (gc_failure) {
319 		if (++looped >= count)
320 			return;
321 	}
322 	goto next;
323 }
324 
325 void f2fs_drop_inmem_pages(struct inode *inode)
326 {
327 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
328 	struct f2fs_inode_info *fi = F2FS_I(inode);
329 
330 	do {
331 		mutex_lock(&fi->inmem_lock);
332 		if (list_empty(&fi->inmem_pages)) {
333 			fi->i_gc_failures[GC_FAILURE_ATOMIC] = 0;
334 
335 			spin_lock(&sbi->inode_lock[ATOMIC_FILE]);
336 			if (!list_empty(&fi->inmem_ilist))
337 				list_del_init(&fi->inmem_ilist);
338 			if (f2fs_is_atomic_file(inode)) {
339 				clear_inode_flag(inode, FI_ATOMIC_FILE);
340 				sbi->atomic_files--;
341 			}
342 			spin_unlock(&sbi->inode_lock[ATOMIC_FILE]);
343 
344 			mutex_unlock(&fi->inmem_lock);
345 			break;
346 		}
347 		__revoke_inmem_pages(inode, &fi->inmem_pages,
348 						true, false, true);
349 		mutex_unlock(&fi->inmem_lock);
350 	} while (1);
351 }
352 
353 void f2fs_drop_inmem_page(struct inode *inode, struct page *page)
354 {
355 	struct f2fs_inode_info *fi = F2FS_I(inode);
356 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
357 	struct list_head *head = &fi->inmem_pages;
358 	struct inmem_pages *cur = NULL;
359 
360 	f2fs_bug_on(sbi, !page_private_atomic(page));
361 
362 	mutex_lock(&fi->inmem_lock);
363 	list_for_each_entry(cur, head, list) {
364 		if (cur->page == page)
365 			break;
366 	}
367 
368 	f2fs_bug_on(sbi, list_empty(head) || cur->page != page);
369 	list_del(&cur->list);
370 	mutex_unlock(&fi->inmem_lock);
371 
372 	dec_page_count(sbi, F2FS_INMEM_PAGES);
373 	kmem_cache_free(inmem_entry_slab, cur);
374 
375 	ClearPageUptodate(page);
376 	clear_page_private_atomic(page);
377 	f2fs_put_page(page, 0);
378 
379 	detach_page_private(page);
380 	set_page_private(page, 0);
381 
382 	trace_f2fs_commit_inmem_page(page, INMEM_INVALIDATE);
383 }
384 
385 static int __f2fs_commit_inmem_pages(struct inode *inode)
386 {
387 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
388 	struct f2fs_inode_info *fi = F2FS_I(inode);
389 	struct inmem_pages *cur, *tmp;
390 	struct f2fs_io_info fio = {
391 		.sbi = sbi,
392 		.ino = inode->i_ino,
393 		.type = DATA,
394 		.op = REQ_OP_WRITE,
395 		.op_flags = REQ_SYNC | REQ_PRIO,
396 		.io_type = FS_DATA_IO,
397 	};
398 	struct list_head revoke_list;
399 	bool submit_bio = false;
400 	int err = 0;
401 
402 	INIT_LIST_HEAD(&revoke_list);
403 
404 	list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) {
405 		struct page *page = cur->page;
406 
407 		lock_page(page);
408 		if (page->mapping == inode->i_mapping) {
409 			trace_f2fs_commit_inmem_page(page, INMEM);
410 
411 			f2fs_wait_on_page_writeback(page, DATA, true, true);
412 
413 			set_page_dirty(page);
414 			if (clear_page_dirty_for_io(page)) {
415 				inode_dec_dirty_pages(inode);
416 				f2fs_remove_dirty_inode(inode);
417 			}
418 retry:
419 			fio.page = page;
420 			fio.old_blkaddr = NULL_ADDR;
421 			fio.encrypted_page = NULL;
422 			fio.need_lock = LOCK_DONE;
423 			err = f2fs_do_write_data_page(&fio);
424 			if (err) {
425 				if (err == -ENOMEM) {
426 					memalloc_retry_wait(GFP_NOFS);
427 					goto retry;
428 				}
429 				unlock_page(page);
430 				break;
431 			}
432 			/* record old blkaddr for revoking */
433 			cur->old_addr = fio.old_blkaddr;
434 			submit_bio = true;
435 		}
436 		unlock_page(page);
437 		list_move_tail(&cur->list, &revoke_list);
438 	}
439 
440 	if (submit_bio)
441 		f2fs_submit_merged_write_cond(sbi, inode, NULL, 0, DATA);
442 
443 	if (err) {
444 		/*
445 		 * try to revoke all committed pages, but still we could fail
446 		 * due to no memory or other reason, if that happened, EAGAIN
447 		 * will be returned, which means in such case, transaction is
448 		 * already not integrity, caller should use journal to do the
449 		 * recovery or rewrite & commit last transaction. For other
450 		 * error number, revoking was done by filesystem itself.
451 		 */
452 		err = __revoke_inmem_pages(inode, &revoke_list,
453 						false, true, false);
454 
455 		/* drop all uncommitted pages */
456 		__revoke_inmem_pages(inode, &fi->inmem_pages,
457 						true, false, false);
458 	} else {
459 		__revoke_inmem_pages(inode, &revoke_list,
460 						false, false, false);
461 	}
462 
463 	return err;
464 }
465 
466 int f2fs_commit_inmem_pages(struct inode *inode)
467 {
468 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
469 	struct f2fs_inode_info *fi = F2FS_I(inode);
470 	int err;
471 
472 	f2fs_balance_fs(sbi, true);
473 
474 	down_write(&fi->i_gc_rwsem[WRITE]);
475 
476 	f2fs_lock_op(sbi);
477 	set_inode_flag(inode, FI_ATOMIC_COMMIT);
478 
479 	mutex_lock(&fi->inmem_lock);
480 	err = __f2fs_commit_inmem_pages(inode);
481 	mutex_unlock(&fi->inmem_lock);
482 
483 	clear_inode_flag(inode, FI_ATOMIC_COMMIT);
484 
485 	f2fs_unlock_op(sbi);
486 	up_write(&fi->i_gc_rwsem[WRITE]);
487 
488 	return err;
489 }
490 
491 /*
492  * This function balances dirty node and dentry pages.
493  * In addition, it controls garbage collection.
494  */
495 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
496 {
497 	if (time_to_inject(sbi, FAULT_CHECKPOINT)) {
498 		f2fs_show_injection_info(sbi, FAULT_CHECKPOINT);
499 		f2fs_stop_checkpoint(sbi, false);
500 	}
501 
502 	/* balance_fs_bg is able to be pending */
503 	if (need && excess_cached_nats(sbi))
504 		f2fs_balance_fs_bg(sbi, false);
505 
506 	if (!f2fs_is_checkpoint_ready(sbi))
507 		return;
508 
509 	/*
510 	 * We should do GC or end up with checkpoint, if there are so many dirty
511 	 * dir/node pages without enough free segments.
512 	 */
513 	if (has_not_enough_free_secs(sbi, 0, 0)) {
514 		if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
515 					sbi->gc_thread->f2fs_gc_task) {
516 			DEFINE_WAIT(wait);
517 
518 			prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
519 						TASK_UNINTERRUPTIBLE);
520 			wake_up(&sbi->gc_thread->gc_wait_queue_head);
521 			io_schedule();
522 			finish_wait(&sbi->gc_thread->fggc_wq, &wait);
523 		} else {
524 			down_write(&sbi->gc_lock);
525 			f2fs_gc(sbi, false, false, false, NULL_SEGNO);
526 		}
527 	}
528 }
529 
530 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
531 {
532 	int factor = rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
533 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
534 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
535 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
536 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
537 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
538 	unsigned int threshold = sbi->blocks_per_seg * factor *
539 					DEFAULT_DIRTY_THRESHOLD;
540 	unsigned int global_threshold = threshold * 3 / 2;
541 
542 	if (dents >= threshold || qdata >= threshold ||
543 		nodes >= threshold || meta >= threshold ||
544 		imeta >= threshold)
545 		return true;
546 	return dents + qdata + nodes + meta + imeta >  global_threshold;
547 }
548 
549 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
550 {
551 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
552 		return;
553 
554 	/* try to shrink extent cache when there is no enough memory */
555 	if (!f2fs_available_free_memory(sbi, EXTENT_CACHE))
556 		f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER);
557 
558 	/* check the # of cached NAT entries */
559 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
560 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
561 
562 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
563 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
564 	else
565 		f2fs_build_free_nids(sbi, false, false);
566 
567 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
568 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
569 		goto do_sync;
570 
571 	/* there is background inflight IO or foreground operation recently */
572 	if (is_inflight_io(sbi, REQ_TIME) ||
573 		(!f2fs_time_over(sbi, REQ_TIME) && rwsem_is_locked(&sbi->cp_rwsem)))
574 		return;
575 
576 	/* exceed periodical checkpoint timeout threshold */
577 	if (f2fs_time_over(sbi, CP_TIME))
578 		goto do_sync;
579 
580 	/* checkpoint is the only way to shrink partial cached entries */
581 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
582 		f2fs_available_free_memory(sbi, INO_ENTRIES))
583 		return;
584 
585 do_sync:
586 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
587 		struct blk_plug plug;
588 
589 		mutex_lock(&sbi->flush_lock);
590 
591 		blk_start_plug(&plug);
592 		f2fs_sync_dirty_inodes(sbi, FILE_INODE);
593 		blk_finish_plug(&plug);
594 
595 		mutex_unlock(&sbi->flush_lock);
596 	}
597 	f2fs_sync_fs(sbi->sb, true);
598 	stat_inc_bg_cp_count(sbi->stat_info);
599 }
600 
601 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
602 				struct block_device *bdev)
603 {
604 	int ret = blkdev_issue_flush(bdev);
605 
606 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
607 				test_opt(sbi, FLUSH_MERGE), ret);
608 	return ret;
609 }
610 
611 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
612 {
613 	int ret = 0;
614 	int i;
615 
616 	if (!f2fs_is_multi_device(sbi))
617 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
618 
619 	for (i = 0; i < sbi->s_ndevs; i++) {
620 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
621 			continue;
622 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
623 		if (ret)
624 			break;
625 	}
626 	return ret;
627 }
628 
629 static int issue_flush_thread(void *data)
630 {
631 	struct f2fs_sb_info *sbi = data;
632 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
633 	wait_queue_head_t *q = &fcc->flush_wait_queue;
634 repeat:
635 	if (kthread_should_stop())
636 		return 0;
637 
638 	if (!llist_empty(&fcc->issue_list)) {
639 		struct flush_cmd *cmd, *next;
640 		int ret;
641 
642 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
643 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
644 
645 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
646 
647 		ret = submit_flush_wait(sbi, cmd->ino);
648 		atomic_inc(&fcc->issued_flush);
649 
650 		llist_for_each_entry_safe(cmd, next,
651 					  fcc->dispatch_list, llnode) {
652 			cmd->ret = ret;
653 			complete(&cmd->wait);
654 		}
655 		fcc->dispatch_list = NULL;
656 	}
657 
658 	wait_event_interruptible(*q,
659 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
660 	goto repeat;
661 }
662 
663 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
664 {
665 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
666 	struct flush_cmd cmd;
667 	int ret;
668 
669 	if (test_opt(sbi, NOBARRIER))
670 		return 0;
671 
672 	if (!test_opt(sbi, FLUSH_MERGE)) {
673 		atomic_inc(&fcc->queued_flush);
674 		ret = submit_flush_wait(sbi, ino);
675 		atomic_dec(&fcc->queued_flush);
676 		atomic_inc(&fcc->issued_flush);
677 		return ret;
678 	}
679 
680 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
681 	    f2fs_is_multi_device(sbi)) {
682 		ret = submit_flush_wait(sbi, ino);
683 		atomic_dec(&fcc->queued_flush);
684 
685 		atomic_inc(&fcc->issued_flush);
686 		return ret;
687 	}
688 
689 	cmd.ino = ino;
690 	init_completion(&cmd.wait);
691 
692 	llist_add(&cmd.llnode, &fcc->issue_list);
693 
694 	/*
695 	 * update issue_list before we wake up issue_flush thread, this
696 	 * smp_mb() pairs with another barrier in ___wait_event(), see
697 	 * more details in comments of waitqueue_active().
698 	 */
699 	smp_mb();
700 
701 	if (waitqueue_active(&fcc->flush_wait_queue))
702 		wake_up(&fcc->flush_wait_queue);
703 
704 	if (fcc->f2fs_issue_flush) {
705 		wait_for_completion(&cmd.wait);
706 		atomic_dec(&fcc->queued_flush);
707 	} else {
708 		struct llist_node *list;
709 
710 		list = llist_del_all(&fcc->issue_list);
711 		if (!list) {
712 			wait_for_completion(&cmd.wait);
713 			atomic_dec(&fcc->queued_flush);
714 		} else {
715 			struct flush_cmd *tmp, *next;
716 
717 			ret = submit_flush_wait(sbi, ino);
718 
719 			llist_for_each_entry_safe(tmp, next, list, llnode) {
720 				if (tmp == &cmd) {
721 					cmd.ret = ret;
722 					atomic_dec(&fcc->queued_flush);
723 					continue;
724 				}
725 				tmp->ret = ret;
726 				complete(&tmp->wait);
727 			}
728 		}
729 	}
730 
731 	return cmd.ret;
732 }
733 
734 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
735 {
736 	dev_t dev = sbi->sb->s_bdev->bd_dev;
737 	struct flush_cmd_control *fcc;
738 	int err = 0;
739 
740 	if (SM_I(sbi)->fcc_info) {
741 		fcc = SM_I(sbi)->fcc_info;
742 		if (fcc->f2fs_issue_flush)
743 			return err;
744 		goto init_thread;
745 	}
746 
747 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
748 	if (!fcc)
749 		return -ENOMEM;
750 	atomic_set(&fcc->issued_flush, 0);
751 	atomic_set(&fcc->queued_flush, 0);
752 	init_waitqueue_head(&fcc->flush_wait_queue);
753 	init_llist_head(&fcc->issue_list);
754 	SM_I(sbi)->fcc_info = fcc;
755 	if (!test_opt(sbi, FLUSH_MERGE))
756 		return err;
757 
758 init_thread:
759 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
760 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
761 	if (IS_ERR(fcc->f2fs_issue_flush)) {
762 		err = PTR_ERR(fcc->f2fs_issue_flush);
763 		kfree(fcc);
764 		SM_I(sbi)->fcc_info = NULL;
765 		return err;
766 	}
767 
768 	return err;
769 }
770 
771 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
772 {
773 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
774 
775 	if (fcc && fcc->f2fs_issue_flush) {
776 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
777 
778 		fcc->f2fs_issue_flush = NULL;
779 		kthread_stop(flush_thread);
780 	}
781 	if (free) {
782 		kfree(fcc);
783 		SM_I(sbi)->fcc_info = NULL;
784 	}
785 }
786 
787 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
788 {
789 	int ret = 0, i;
790 
791 	if (!f2fs_is_multi_device(sbi))
792 		return 0;
793 
794 	if (test_opt(sbi, NOBARRIER))
795 		return 0;
796 
797 	for (i = 1; i < sbi->s_ndevs; i++) {
798 		int count = DEFAULT_RETRY_IO_COUNT;
799 
800 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
801 			continue;
802 
803 		do {
804 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
805 			if (ret)
806 				congestion_wait(BLK_RW_ASYNC,
807 						DEFAULT_IO_TIMEOUT);
808 		} while (ret && --count);
809 
810 		if (ret) {
811 			f2fs_stop_checkpoint(sbi, false);
812 			break;
813 		}
814 
815 		spin_lock(&sbi->dev_lock);
816 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
817 		spin_unlock(&sbi->dev_lock);
818 	}
819 
820 	return ret;
821 }
822 
823 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
824 		enum dirty_type dirty_type)
825 {
826 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
827 
828 	/* need not be added */
829 	if (IS_CURSEG(sbi, segno))
830 		return;
831 
832 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
833 		dirty_i->nr_dirty[dirty_type]++;
834 
835 	if (dirty_type == DIRTY) {
836 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
837 		enum dirty_type t = sentry->type;
838 
839 		if (unlikely(t >= DIRTY)) {
840 			f2fs_bug_on(sbi, 1);
841 			return;
842 		}
843 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
844 			dirty_i->nr_dirty[t]++;
845 
846 		if (__is_large_section(sbi)) {
847 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
848 			block_t valid_blocks =
849 				get_valid_blocks(sbi, segno, true);
850 
851 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
852 					valid_blocks == BLKS_PER_SEC(sbi)));
853 
854 			if (!IS_CURSEC(sbi, secno))
855 				set_bit(secno, dirty_i->dirty_secmap);
856 		}
857 	}
858 }
859 
860 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
861 		enum dirty_type dirty_type)
862 {
863 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
864 	block_t valid_blocks;
865 
866 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
867 		dirty_i->nr_dirty[dirty_type]--;
868 
869 	if (dirty_type == DIRTY) {
870 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
871 		enum dirty_type t = sentry->type;
872 
873 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
874 			dirty_i->nr_dirty[t]--;
875 
876 		valid_blocks = get_valid_blocks(sbi, segno, true);
877 		if (valid_blocks == 0) {
878 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
879 						dirty_i->victim_secmap);
880 #ifdef CONFIG_F2FS_CHECK_FS
881 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
882 #endif
883 		}
884 		if (__is_large_section(sbi)) {
885 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
886 
887 			if (!valid_blocks ||
888 					valid_blocks == BLKS_PER_SEC(sbi)) {
889 				clear_bit(secno, dirty_i->dirty_secmap);
890 				return;
891 			}
892 
893 			if (!IS_CURSEC(sbi, secno))
894 				set_bit(secno, dirty_i->dirty_secmap);
895 		}
896 	}
897 }
898 
899 /*
900  * Should not occur error such as -ENOMEM.
901  * Adding dirty entry into seglist is not critical operation.
902  * If a given segment is one of current working segments, it won't be added.
903  */
904 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
905 {
906 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
907 	unsigned short valid_blocks, ckpt_valid_blocks;
908 	unsigned int usable_blocks;
909 
910 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
911 		return;
912 
913 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
914 	mutex_lock(&dirty_i->seglist_lock);
915 
916 	valid_blocks = get_valid_blocks(sbi, segno, false);
917 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
918 
919 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
920 		ckpt_valid_blocks == usable_blocks)) {
921 		__locate_dirty_segment(sbi, segno, PRE);
922 		__remove_dirty_segment(sbi, segno, DIRTY);
923 	} else if (valid_blocks < usable_blocks) {
924 		__locate_dirty_segment(sbi, segno, DIRTY);
925 	} else {
926 		/* Recovery routine with SSR needs this */
927 		__remove_dirty_segment(sbi, segno, DIRTY);
928 	}
929 
930 	mutex_unlock(&dirty_i->seglist_lock);
931 }
932 
933 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
934 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
935 {
936 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
937 	unsigned int segno;
938 
939 	mutex_lock(&dirty_i->seglist_lock);
940 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
941 		if (get_valid_blocks(sbi, segno, false))
942 			continue;
943 		if (IS_CURSEG(sbi, segno))
944 			continue;
945 		__locate_dirty_segment(sbi, segno, PRE);
946 		__remove_dirty_segment(sbi, segno, DIRTY);
947 	}
948 	mutex_unlock(&dirty_i->seglist_lock);
949 }
950 
951 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
952 {
953 	int ovp_hole_segs =
954 		(overprovision_segments(sbi) - reserved_segments(sbi));
955 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
956 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
957 	block_t holes[2] = {0, 0};	/* DATA and NODE */
958 	block_t unusable;
959 	struct seg_entry *se;
960 	unsigned int segno;
961 
962 	mutex_lock(&dirty_i->seglist_lock);
963 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
964 		se = get_seg_entry(sbi, segno);
965 		if (IS_NODESEG(se->type))
966 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
967 							se->valid_blocks;
968 		else
969 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
970 							se->valid_blocks;
971 	}
972 	mutex_unlock(&dirty_i->seglist_lock);
973 
974 	unusable = holes[DATA] > holes[NODE] ? holes[DATA] : holes[NODE];
975 	if (unusable > ovp_holes)
976 		return unusable - ovp_holes;
977 	return 0;
978 }
979 
980 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
981 {
982 	int ovp_hole_segs =
983 		(overprovision_segments(sbi) - reserved_segments(sbi));
984 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
985 		return -EAGAIN;
986 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
987 		dirty_segments(sbi) > ovp_hole_segs)
988 		return -EAGAIN;
989 	return 0;
990 }
991 
992 /* This is only used by SBI_CP_DISABLED */
993 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
994 {
995 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
996 	unsigned int segno = 0;
997 
998 	mutex_lock(&dirty_i->seglist_lock);
999 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
1000 		if (get_valid_blocks(sbi, segno, false))
1001 			continue;
1002 		if (get_ckpt_valid_blocks(sbi, segno, false))
1003 			continue;
1004 		mutex_unlock(&dirty_i->seglist_lock);
1005 		return segno;
1006 	}
1007 	mutex_unlock(&dirty_i->seglist_lock);
1008 	return NULL_SEGNO;
1009 }
1010 
1011 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
1012 		struct block_device *bdev, block_t lstart,
1013 		block_t start, block_t len)
1014 {
1015 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1016 	struct list_head *pend_list;
1017 	struct discard_cmd *dc;
1018 
1019 	f2fs_bug_on(sbi, !len);
1020 
1021 	pend_list = &dcc->pend_list[plist_idx(len)];
1022 
1023 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
1024 	INIT_LIST_HEAD(&dc->list);
1025 	dc->bdev = bdev;
1026 	dc->lstart = lstart;
1027 	dc->start = start;
1028 	dc->len = len;
1029 	dc->ref = 0;
1030 	dc->state = D_PREP;
1031 	dc->queued = 0;
1032 	dc->error = 0;
1033 	init_completion(&dc->wait);
1034 	list_add_tail(&dc->list, pend_list);
1035 	spin_lock_init(&dc->lock);
1036 	dc->bio_ref = 0;
1037 	atomic_inc(&dcc->discard_cmd_cnt);
1038 	dcc->undiscard_blks += len;
1039 
1040 	return dc;
1041 }
1042 
1043 static struct discard_cmd *__attach_discard_cmd(struct f2fs_sb_info *sbi,
1044 				struct block_device *bdev, block_t lstart,
1045 				block_t start, block_t len,
1046 				struct rb_node *parent, struct rb_node **p,
1047 				bool leftmost)
1048 {
1049 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1050 	struct discard_cmd *dc;
1051 
1052 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1053 
1054 	rb_link_node(&dc->rb_node, parent, p);
1055 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1056 
1057 	return dc;
1058 }
1059 
1060 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1061 							struct discard_cmd *dc)
1062 {
1063 	if (dc->state == D_DONE)
1064 		atomic_sub(dc->queued, &dcc->queued_discard);
1065 
1066 	list_del(&dc->list);
1067 	rb_erase_cached(&dc->rb_node, &dcc->root);
1068 	dcc->undiscard_blks -= dc->len;
1069 
1070 	kmem_cache_free(discard_cmd_slab, dc);
1071 
1072 	atomic_dec(&dcc->discard_cmd_cnt);
1073 }
1074 
1075 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1076 							struct discard_cmd *dc)
1077 {
1078 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1079 	unsigned long flags;
1080 
1081 	trace_f2fs_remove_discard(dc->bdev, dc->start, dc->len);
1082 
1083 	spin_lock_irqsave(&dc->lock, flags);
1084 	if (dc->bio_ref) {
1085 		spin_unlock_irqrestore(&dc->lock, flags);
1086 		return;
1087 	}
1088 	spin_unlock_irqrestore(&dc->lock, flags);
1089 
1090 	f2fs_bug_on(sbi, dc->ref);
1091 
1092 	if (dc->error == -EOPNOTSUPP)
1093 		dc->error = 0;
1094 
1095 	if (dc->error)
1096 		printk_ratelimited(
1097 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1098 			KERN_INFO, sbi->sb->s_id,
1099 			dc->lstart, dc->start, dc->len, dc->error);
1100 	__detach_discard_cmd(dcc, dc);
1101 }
1102 
1103 static void f2fs_submit_discard_endio(struct bio *bio)
1104 {
1105 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1106 	unsigned long flags;
1107 
1108 	spin_lock_irqsave(&dc->lock, flags);
1109 	if (!dc->error)
1110 		dc->error = blk_status_to_errno(bio->bi_status);
1111 	dc->bio_ref--;
1112 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1113 		dc->state = D_DONE;
1114 		complete_all(&dc->wait);
1115 	}
1116 	spin_unlock_irqrestore(&dc->lock, flags);
1117 	bio_put(bio);
1118 }
1119 
1120 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1121 				block_t start, block_t end)
1122 {
1123 #ifdef CONFIG_F2FS_CHECK_FS
1124 	struct seg_entry *sentry;
1125 	unsigned int segno;
1126 	block_t blk = start;
1127 	unsigned long offset, size, max_blocks = sbi->blocks_per_seg;
1128 	unsigned long *map;
1129 
1130 	while (blk < end) {
1131 		segno = GET_SEGNO(sbi, blk);
1132 		sentry = get_seg_entry(sbi, segno);
1133 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1134 
1135 		if (end < START_BLOCK(sbi, segno + 1))
1136 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1137 		else
1138 			size = max_blocks;
1139 		map = (unsigned long *)(sentry->cur_valid_map);
1140 		offset = __find_rev_next_bit(map, size, offset);
1141 		f2fs_bug_on(sbi, offset != size);
1142 		blk = START_BLOCK(sbi, segno + 1);
1143 	}
1144 #endif
1145 }
1146 
1147 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1148 				struct discard_policy *dpolicy,
1149 				int discard_type, unsigned int granularity)
1150 {
1151 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1152 
1153 	/* common policy */
1154 	dpolicy->type = discard_type;
1155 	dpolicy->sync = true;
1156 	dpolicy->ordered = false;
1157 	dpolicy->granularity = granularity;
1158 
1159 	dpolicy->max_requests = DEF_MAX_DISCARD_REQUEST;
1160 	dpolicy->io_aware_gran = MAX_PLIST_NUM;
1161 	dpolicy->timeout = false;
1162 
1163 	if (discard_type == DPOLICY_BG) {
1164 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1165 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1166 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1167 		dpolicy->io_aware = true;
1168 		dpolicy->sync = false;
1169 		dpolicy->ordered = true;
1170 		if (utilization(sbi) > DEF_DISCARD_URGENT_UTIL) {
1171 			dpolicy->granularity = 1;
1172 			if (atomic_read(&dcc->discard_cmd_cnt))
1173 				dpolicy->max_interval =
1174 					DEF_MIN_DISCARD_ISSUE_TIME;
1175 		}
1176 	} else if (discard_type == DPOLICY_FORCE) {
1177 		dpolicy->min_interval = DEF_MIN_DISCARD_ISSUE_TIME;
1178 		dpolicy->mid_interval = DEF_MID_DISCARD_ISSUE_TIME;
1179 		dpolicy->max_interval = DEF_MAX_DISCARD_ISSUE_TIME;
1180 		dpolicy->io_aware = false;
1181 	} else if (discard_type == DPOLICY_FSTRIM) {
1182 		dpolicy->io_aware = false;
1183 	} else if (discard_type == DPOLICY_UMOUNT) {
1184 		dpolicy->io_aware = false;
1185 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1186 		dpolicy->granularity = 1;
1187 		dpolicy->timeout = true;
1188 	}
1189 }
1190 
1191 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1192 				struct block_device *bdev, block_t lstart,
1193 				block_t start, block_t len);
1194 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1195 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1196 						struct discard_policy *dpolicy,
1197 						struct discard_cmd *dc,
1198 						unsigned int *issued)
1199 {
1200 	struct block_device *bdev = dc->bdev;
1201 	struct request_queue *q = bdev_get_queue(bdev);
1202 	unsigned int max_discard_blocks =
1203 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1204 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1205 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1206 					&(dcc->fstrim_list) : &(dcc->wait_list);
1207 	int flag = dpolicy->sync ? REQ_SYNC : 0;
1208 	block_t lstart, start, len, total_len;
1209 	int err = 0;
1210 
1211 	if (dc->state != D_PREP)
1212 		return 0;
1213 
1214 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1215 		return 0;
1216 
1217 	trace_f2fs_issue_discard(bdev, dc->start, dc->len);
1218 
1219 	lstart = dc->lstart;
1220 	start = dc->start;
1221 	len = dc->len;
1222 	total_len = len;
1223 
1224 	dc->len = 0;
1225 
1226 	while (total_len && *issued < dpolicy->max_requests && !err) {
1227 		struct bio *bio = NULL;
1228 		unsigned long flags;
1229 		bool last = true;
1230 
1231 		if (len > max_discard_blocks) {
1232 			len = max_discard_blocks;
1233 			last = false;
1234 		}
1235 
1236 		(*issued)++;
1237 		if (*issued == dpolicy->max_requests)
1238 			last = true;
1239 
1240 		dc->len += len;
1241 
1242 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1243 			f2fs_show_injection_info(sbi, FAULT_DISCARD);
1244 			err = -EIO;
1245 			goto submit;
1246 		}
1247 		err = __blkdev_issue_discard(bdev,
1248 					SECTOR_FROM_BLOCK(start),
1249 					SECTOR_FROM_BLOCK(len),
1250 					GFP_NOFS, 0, &bio);
1251 submit:
1252 		if (err) {
1253 			spin_lock_irqsave(&dc->lock, flags);
1254 			if (dc->state == D_PARTIAL)
1255 				dc->state = D_SUBMIT;
1256 			spin_unlock_irqrestore(&dc->lock, flags);
1257 
1258 			break;
1259 		}
1260 
1261 		f2fs_bug_on(sbi, !bio);
1262 
1263 		/*
1264 		 * should keep before submission to avoid D_DONE
1265 		 * right away
1266 		 */
1267 		spin_lock_irqsave(&dc->lock, flags);
1268 		if (last)
1269 			dc->state = D_SUBMIT;
1270 		else
1271 			dc->state = D_PARTIAL;
1272 		dc->bio_ref++;
1273 		spin_unlock_irqrestore(&dc->lock, flags);
1274 
1275 		atomic_inc(&dcc->queued_discard);
1276 		dc->queued++;
1277 		list_move_tail(&dc->list, wait_list);
1278 
1279 		/* sanity check on discard range */
1280 		__check_sit_bitmap(sbi, lstart, lstart + len);
1281 
1282 		bio->bi_private = dc;
1283 		bio->bi_end_io = f2fs_submit_discard_endio;
1284 		bio->bi_opf |= flag;
1285 		submit_bio(bio);
1286 
1287 		atomic_inc(&dcc->issued_discard);
1288 
1289 		f2fs_update_iostat(sbi, FS_DISCARD, 1);
1290 
1291 		lstart += len;
1292 		start += len;
1293 		total_len -= len;
1294 		len = total_len;
1295 	}
1296 
1297 	if (!err && len) {
1298 		dcc->undiscard_blks -= len;
1299 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1300 	}
1301 	return err;
1302 }
1303 
1304 static void __insert_discard_tree(struct f2fs_sb_info *sbi,
1305 				struct block_device *bdev, block_t lstart,
1306 				block_t start, block_t len,
1307 				struct rb_node **insert_p,
1308 				struct rb_node *insert_parent)
1309 {
1310 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1311 	struct rb_node **p;
1312 	struct rb_node *parent = NULL;
1313 	bool leftmost = true;
1314 
1315 	if (insert_p && insert_parent) {
1316 		parent = insert_parent;
1317 		p = insert_p;
1318 		goto do_insert;
1319 	}
1320 
1321 	p = f2fs_lookup_rb_tree_for_insert(sbi, &dcc->root, &parent,
1322 							lstart, &leftmost);
1323 do_insert:
1324 	__attach_discard_cmd(sbi, bdev, lstart, start, len, parent,
1325 								p, leftmost);
1326 }
1327 
1328 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1329 						struct discard_cmd *dc)
1330 {
1331 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->len)]);
1332 }
1333 
1334 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1335 				struct discard_cmd *dc, block_t blkaddr)
1336 {
1337 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1338 	struct discard_info di = dc->di;
1339 	bool modified = false;
1340 
1341 	if (dc->state == D_DONE || dc->len == 1) {
1342 		__remove_discard_cmd(sbi, dc);
1343 		return;
1344 	}
1345 
1346 	dcc->undiscard_blks -= di.len;
1347 
1348 	if (blkaddr > di.lstart) {
1349 		dc->len = blkaddr - dc->lstart;
1350 		dcc->undiscard_blks += dc->len;
1351 		__relocate_discard_cmd(dcc, dc);
1352 		modified = true;
1353 	}
1354 
1355 	if (blkaddr < di.lstart + di.len - 1) {
1356 		if (modified) {
1357 			__insert_discard_tree(sbi, dc->bdev, blkaddr + 1,
1358 					di.start + blkaddr + 1 - di.lstart,
1359 					di.lstart + di.len - 1 - blkaddr,
1360 					NULL, NULL);
1361 		} else {
1362 			dc->lstart++;
1363 			dc->len--;
1364 			dc->start++;
1365 			dcc->undiscard_blks += dc->len;
1366 			__relocate_discard_cmd(dcc, dc);
1367 		}
1368 	}
1369 }
1370 
1371 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1372 				struct block_device *bdev, block_t lstart,
1373 				block_t start, block_t len)
1374 {
1375 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1376 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1377 	struct discard_cmd *dc;
1378 	struct discard_info di = {0};
1379 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1380 	struct request_queue *q = bdev_get_queue(bdev);
1381 	unsigned int max_discard_blocks =
1382 			SECTOR_TO_BLOCK(q->limits.max_discard_sectors);
1383 	block_t end = lstart + len;
1384 
1385 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1386 					NULL, lstart,
1387 					(struct rb_entry **)&prev_dc,
1388 					(struct rb_entry **)&next_dc,
1389 					&insert_p, &insert_parent, true, NULL);
1390 	if (dc)
1391 		prev_dc = dc;
1392 
1393 	if (!prev_dc) {
1394 		di.lstart = lstart;
1395 		di.len = next_dc ? next_dc->lstart - lstart : len;
1396 		di.len = min(di.len, len);
1397 		di.start = start;
1398 	}
1399 
1400 	while (1) {
1401 		struct rb_node *node;
1402 		bool merged = false;
1403 		struct discard_cmd *tdc = NULL;
1404 
1405 		if (prev_dc) {
1406 			di.lstart = prev_dc->lstart + prev_dc->len;
1407 			if (di.lstart < lstart)
1408 				di.lstart = lstart;
1409 			if (di.lstart >= end)
1410 				break;
1411 
1412 			if (!next_dc || next_dc->lstart > end)
1413 				di.len = end - di.lstart;
1414 			else
1415 				di.len = next_dc->lstart - di.lstart;
1416 			di.start = start + di.lstart - lstart;
1417 		}
1418 
1419 		if (!di.len)
1420 			goto next;
1421 
1422 		if (prev_dc && prev_dc->state == D_PREP &&
1423 			prev_dc->bdev == bdev &&
1424 			__is_discard_back_mergeable(&di, &prev_dc->di,
1425 							max_discard_blocks)) {
1426 			prev_dc->di.len += di.len;
1427 			dcc->undiscard_blks += di.len;
1428 			__relocate_discard_cmd(dcc, prev_dc);
1429 			di = prev_dc->di;
1430 			tdc = prev_dc;
1431 			merged = true;
1432 		}
1433 
1434 		if (next_dc && next_dc->state == D_PREP &&
1435 			next_dc->bdev == bdev &&
1436 			__is_discard_front_mergeable(&di, &next_dc->di,
1437 							max_discard_blocks)) {
1438 			next_dc->di.lstart = di.lstart;
1439 			next_dc->di.len += di.len;
1440 			next_dc->di.start = di.start;
1441 			dcc->undiscard_blks += di.len;
1442 			__relocate_discard_cmd(dcc, next_dc);
1443 			if (tdc)
1444 				__remove_discard_cmd(sbi, tdc);
1445 			merged = true;
1446 		}
1447 
1448 		if (!merged) {
1449 			__insert_discard_tree(sbi, bdev, di.lstart, di.start,
1450 							di.len, NULL, NULL);
1451 		}
1452  next:
1453 		prev_dc = next_dc;
1454 		if (!prev_dc)
1455 			break;
1456 
1457 		node = rb_next(&prev_dc->rb_node);
1458 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1459 	}
1460 }
1461 
1462 static int __queue_discard_cmd(struct f2fs_sb_info *sbi,
1463 		struct block_device *bdev, block_t blkstart, block_t blklen)
1464 {
1465 	block_t lblkstart = blkstart;
1466 
1467 	if (!f2fs_bdev_support_discard(bdev))
1468 		return 0;
1469 
1470 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1471 
1472 	if (f2fs_is_multi_device(sbi)) {
1473 		int devi = f2fs_target_device_index(sbi, blkstart);
1474 
1475 		blkstart -= FDEV(devi).start_blk;
1476 	}
1477 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1478 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1479 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1480 	return 0;
1481 }
1482 
1483 static unsigned int __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1484 					struct discard_policy *dpolicy)
1485 {
1486 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1487 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1488 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1489 	struct discard_cmd *dc;
1490 	struct blk_plug plug;
1491 	unsigned int pos = dcc->next_pos;
1492 	unsigned int issued = 0;
1493 	bool io_interrupted = false;
1494 
1495 	mutex_lock(&dcc->cmd_lock);
1496 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
1497 					NULL, pos,
1498 					(struct rb_entry **)&prev_dc,
1499 					(struct rb_entry **)&next_dc,
1500 					&insert_p, &insert_parent, true, NULL);
1501 	if (!dc)
1502 		dc = next_dc;
1503 
1504 	blk_start_plug(&plug);
1505 
1506 	while (dc) {
1507 		struct rb_node *node;
1508 		int err = 0;
1509 
1510 		if (dc->state != D_PREP)
1511 			goto next;
1512 
1513 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1514 			io_interrupted = true;
1515 			break;
1516 		}
1517 
1518 		dcc->next_pos = dc->lstart + dc->len;
1519 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
1520 
1521 		if (issued >= dpolicy->max_requests)
1522 			break;
1523 next:
1524 		node = rb_next(&dc->rb_node);
1525 		if (err)
1526 			__remove_discard_cmd(sbi, dc);
1527 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1528 	}
1529 
1530 	blk_finish_plug(&plug);
1531 
1532 	if (!dc)
1533 		dcc->next_pos = 0;
1534 
1535 	mutex_unlock(&dcc->cmd_lock);
1536 
1537 	if (!issued && io_interrupted)
1538 		issued = -1;
1539 
1540 	return issued;
1541 }
1542 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1543 					struct discard_policy *dpolicy);
1544 
1545 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1546 					struct discard_policy *dpolicy)
1547 {
1548 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1549 	struct list_head *pend_list;
1550 	struct discard_cmd *dc, *tmp;
1551 	struct blk_plug plug;
1552 	int i, issued;
1553 	bool io_interrupted = false;
1554 
1555 	if (dpolicy->timeout)
1556 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1557 
1558 retry:
1559 	issued = 0;
1560 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1561 		if (dpolicy->timeout &&
1562 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1563 			break;
1564 
1565 		if (i + 1 < dpolicy->granularity)
1566 			break;
1567 
1568 		if (i < DEFAULT_DISCARD_GRANULARITY && dpolicy->ordered)
1569 			return __issue_discard_cmd_orderly(sbi, dpolicy);
1570 
1571 		pend_list = &dcc->pend_list[i];
1572 
1573 		mutex_lock(&dcc->cmd_lock);
1574 		if (list_empty(pend_list))
1575 			goto next;
1576 		if (unlikely(dcc->rbtree_check))
1577 			f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
1578 							&dcc->root, false));
1579 		blk_start_plug(&plug);
1580 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1581 			f2fs_bug_on(sbi, dc->state != D_PREP);
1582 
1583 			if (dpolicy->timeout &&
1584 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1585 				break;
1586 
1587 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1588 						!is_idle(sbi, DISCARD_TIME)) {
1589 				io_interrupted = true;
1590 				break;
1591 			}
1592 
1593 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1594 
1595 			if (issued >= dpolicy->max_requests)
1596 				break;
1597 		}
1598 		blk_finish_plug(&plug);
1599 next:
1600 		mutex_unlock(&dcc->cmd_lock);
1601 
1602 		if (issued >= dpolicy->max_requests || io_interrupted)
1603 			break;
1604 	}
1605 
1606 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1607 		__wait_all_discard_cmd(sbi, dpolicy);
1608 		goto retry;
1609 	}
1610 
1611 	if (!issued && io_interrupted)
1612 		issued = -1;
1613 
1614 	return issued;
1615 }
1616 
1617 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1618 {
1619 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1620 	struct list_head *pend_list;
1621 	struct discard_cmd *dc, *tmp;
1622 	int i;
1623 	bool dropped = false;
1624 
1625 	mutex_lock(&dcc->cmd_lock);
1626 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1627 		pend_list = &dcc->pend_list[i];
1628 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1629 			f2fs_bug_on(sbi, dc->state != D_PREP);
1630 			__remove_discard_cmd(sbi, dc);
1631 			dropped = true;
1632 		}
1633 	}
1634 	mutex_unlock(&dcc->cmd_lock);
1635 
1636 	return dropped;
1637 }
1638 
1639 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1640 {
1641 	__drop_discard_cmd(sbi);
1642 }
1643 
1644 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1645 							struct discard_cmd *dc)
1646 {
1647 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1648 	unsigned int len = 0;
1649 
1650 	wait_for_completion_io(&dc->wait);
1651 	mutex_lock(&dcc->cmd_lock);
1652 	f2fs_bug_on(sbi, dc->state != D_DONE);
1653 	dc->ref--;
1654 	if (!dc->ref) {
1655 		if (!dc->error)
1656 			len = dc->len;
1657 		__remove_discard_cmd(sbi, dc);
1658 	}
1659 	mutex_unlock(&dcc->cmd_lock);
1660 
1661 	return len;
1662 }
1663 
1664 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1665 						struct discard_policy *dpolicy,
1666 						block_t start, block_t end)
1667 {
1668 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1669 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1670 					&(dcc->fstrim_list) : &(dcc->wait_list);
1671 	struct discard_cmd *dc, *tmp;
1672 	bool need_wait;
1673 	unsigned int trimmed = 0;
1674 
1675 next:
1676 	need_wait = false;
1677 
1678 	mutex_lock(&dcc->cmd_lock);
1679 	list_for_each_entry_safe(dc, tmp, wait_list, list) {
1680 		if (dc->lstart + dc->len <= start || end <= dc->lstart)
1681 			continue;
1682 		if (dc->len < dpolicy->granularity)
1683 			continue;
1684 		if (dc->state == D_DONE && !dc->ref) {
1685 			wait_for_completion_io(&dc->wait);
1686 			if (!dc->error)
1687 				trimmed += dc->len;
1688 			__remove_discard_cmd(sbi, dc);
1689 		} else {
1690 			dc->ref++;
1691 			need_wait = true;
1692 			break;
1693 		}
1694 	}
1695 	mutex_unlock(&dcc->cmd_lock);
1696 
1697 	if (need_wait) {
1698 		trimmed += __wait_one_discard_bio(sbi, dc);
1699 		goto next;
1700 	}
1701 
1702 	return trimmed;
1703 }
1704 
1705 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1706 						struct discard_policy *dpolicy)
1707 {
1708 	struct discard_policy dp;
1709 	unsigned int discard_blks;
1710 
1711 	if (dpolicy)
1712 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1713 
1714 	/* wait all */
1715 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, 1);
1716 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1717 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, 1);
1718 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1719 
1720 	return discard_blks;
1721 }
1722 
1723 /* This should be covered by global mutex, &sit_i->sentry_lock */
1724 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1725 {
1726 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1727 	struct discard_cmd *dc;
1728 	bool need_wait = false;
1729 
1730 	mutex_lock(&dcc->cmd_lock);
1731 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree(&dcc->root,
1732 							NULL, blkaddr);
1733 	if (dc) {
1734 		if (dc->state == D_PREP) {
1735 			__punch_discard_cmd(sbi, dc, blkaddr);
1736 		} else {
1737 			dc->ref++;
1738 			need_wait = true;
1739 		}
1740 	}
1741 	mutex_unlock(&dcc->cmd_lock);
1742 
1743 	if (need_wait)
1744 		__wait_one_discard_bio(sbi, dc);
1745 }
1746 
1747 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1748 {
1749 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1750 
1751 	if (dcc && dcc->f2fs_issue_discard) {
1752 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1753 
1754 		dcc->f2fs_issue_discard = NULL;
1755 		kthread_stop(discard_thread);
1756 	}
1757 }
1758 
1759 /* This comes from f2fs_put_super */
1760 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1761 {
1762 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1763 	struct discard_policy dpolicy;
1764 	bool dropped;
1765 
1766 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1767 					dcc->discard_granularity);
1768 	__issue_discard_cmd(sbi, &dpolicy);
1769 	dropped = __drop_discard_cmd(sbi);
1770 
1771 	/* just to make sure there is no pending discard commands */
1772 	__wait_all_discard_cmd(sbi, NULL);
1773 
1774 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1775 	return dropped;
1776 }
1777 
1778 static int issue_discard_thread(void *data)
1779 {
1780 	struct f2fs_sb_info *sbi = data;
1781 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1782 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1783 	struct discard_policy dpolicy;
1784 	unsigned int wait_ms = DEF_MIN_DISCARD_ISSUE_TIME;
1785 	int issued;
1786 
1787 	set_freezable();
1788 
1789 	do {
1790 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1791 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1792 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE, 1);
1793 		else
1794 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1795 						dcc->discard_granularity);
1796 
1797 		if (!atomic_read(&dcc->discard_cmd_cnt))
1798 		       wait_ms = dpolicy.max_interval;
1799 
1800 		wait_event_interruptible_timeout(*q,
1801 				kthread_should_stop() || freezing(current) ||
1802 				dcc->discard_wake,
1803 				msecs_to_jiffies(wait_ms));
1804 
1805 		if (dcc->discard_wake)
1806 			dcc->discard_wake = 0;
1807 
1808 		/* clean up pending candidates before going to sleep */
1809 		if (atomic_read(&dcc->queued_discard))
1810 			__wait_all_discard_cmd(sbi, NULL);
1811 
1812 		if (try_to_freeze())
1813 			continue;
1814 		if (f2fs_readonly(sbi->sb))
1815 			continue;
1816 		if (kthread_should_stop())
1817 			return 0;
1818 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
1819 			wait_ms = dpolicy.max_interval;
1820 			continue;
1821 		}
1822 		if (!atomic_read(&dcc->discard_cmd_cnt))
1823 			continue;
1824 
1825 		sb_start_intwrite(sbi->sb);
1826 
1827 		issued = __issue_discard_cmd(sbi, &dpolicy);
1828 		if (issued > 0) {
1829 			__wait_all_discard_cmd(sbi, &dpolicy);
1830 			wait_ms = dpolicy.min_interval;
1831 		} else if (issued == -1) {
1832 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1833 			if (!wait_ms)
1834 				wait_ms = dpolicy.mid_interval;
1835 		} else {
1836 			wait_ms = dpolicy.max_interval;
1837 		}
1838 
1839 		sb_end_intwrite(sbi->sb);
1840 
1841 	} while (!kthread_should_stop());
1842 	return 0;
1843 }
1844 
1845 #ifdef CONFIG_BLK_DEV_ZONED
1846 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1847 		struct block_device *bdev, block_t blkstart, block_t blklen)
1848 {
1849 	sector_t sector, nr_sects;
1850 	block_t lblkstart = blkstart;
1851 	int devi = 0;
1852 
1853 	if (f2fs_is_multi_device(sbi)) {
1854 		devi = f2fs_target_device_index(sbi, blkstart);
1855 		if (blkstart < FDEV(devi).start_blk ||
1856 		    blkstart > FDEV(devi).end_blk) {
1857 			f2fs_err(sbi, "Invalid block %x", blkstart);
1858 			return -EIO;
1859 		}
1860 		blkstart -= FDEV(devi).start_blk;
1861 	}
1862 
1863 	/* For sequential zones, reset the zone write pointer */
1864 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1865 		sector = SECTOR_FROM_BLOCK(blkstart);
1866 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1867 
1868 		if (sector & (bdev_zone_sectors(bdev) - 1) ||
1869 				nr_sects != bdev_zone_sectors(bdev)) {
1870 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1871 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1872 				 blkstart, blklen);
1873 			return -EIO;
1874 		}
1875 		trace_f2fs_issue_reset_zone(bdev, blkstart);
1876 		return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1877 					sector, nr_sects, GFP_NOFS);
1878 	}
1879 
1880 	/* For conventional zones, use regular discard if supported */
1881 	return __queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1882 }
1883 #endif
1884 
1885 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1886 		struct block_device *bdev, block_t blkstart, block_t blklen)
1887 {
1888 #ifdef CONFIG_BLK_DEV_ZONED
1889 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1890 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1891 #endif
1892 	return __queue_discard_cmd(sbi, bdev, blkstart, blklen);
1893 }
1894 
1895 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
1896 				block_t blkstart, block_t blklen)
1897 {
1898 	sector_t start = blkstart, len = 0;
1899 	struct block_device *bdev;
1900 	struct seg_entry *se;
1901 	unsigned int offset;
1902 	block_t i;
1903 	int err = 0;
1904 
1905 	bdev = f2fs_target_device(sbi, blkstart, NULL);
1906 
1907 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
1908 		if (i != start) {
1909 			struct block_device *bdev2 =
1910 				f2fs_target_device(sbi, i, NULL);
1911 
1912 			if (bdev2 != bdev) {
1913 				err = __issue_discard_async(sbi, bdev,
1914 						start, len);
1915 				if (err)
1916 					return err;
1917 				bdev = bdev2;
1918 				start = i;
1919 				len = 0;
1920 			}
1921 		}
1922 
1923 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
1924 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
1925 
1926 		if (f2fs_block_unit_discard(sbi) &&
1927 				!f2fs_test_and_set_bit(offset, se->discard_map))
1928 			sbi->discard_blks--;
1929 	}
1930 
1931 	if (len)
1932 		err = __issue_discard_async(sbi, bdev, start, len);
1933 	return err;
1934 }
1935 
1936 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
1937 							bool check_only)
1938 {
1939 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
1940 	int max_blocks = sbi->blocks_per_seg;
1941 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
1942 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
1943 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
1944 	unsigned long *discard_map = (unsigned long *)se->discard_map;
1945 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
1946 	unsigned int start = 0, end = -1;
1947 	bool force = (cpc->reason & CP_DISCARD);
1948 	struct discard_entry *de = NULL;
1949 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
1950 	int i;
1951 
1952 	if (se->valid_blocks == max_blocks || !f2fs_hw_support_discard(sbi) ||
1953 			!f2fs_block_unit_discard(sbi))
1954 		return false;
1955 
1956 	if (!force) {
1957 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
1958 			SM_I(sbi)->dcc_info->nr_discards >=
1959 				SM_I(sbi)->dcc_info->max_discards)
1960 			return false;
1961 	}
1962 
1963 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
1964 	for (i = 0; i < entries; i++)
1965 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
1966 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
1967 
1968 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
1969 				SM_I(sbi)->dcc_info->max_discards) {
1970 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
1971 		if (start >= max_blocks)
1972 			break;
1973 
1974 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
1975 		if (force && start && end != max_blocks
1976 					&& (end - start) < cpc->trim_minlen)
1977 			continue;
1978 
1979 		if (check_only)
1980 			return true;
1981 
1982 		if (!de) {
1983 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
1984 						GFP_F2FS_ZERO, true, NULL);
1985 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
1986 			list_add_tail(&de->list, head);
1987 		}
1988 
1989 		for (i = start; i < end; i++)
1990 			__set_bit_le(i, (void *)de->discard_map);
1991 
1992 		SM_I(sbi)->dcc_info->nr_discards += end - start;
1993 	}
1994 	return false;
1995 }
1996 
1997 static void release_discard_addr(struct discard_entry *entry)
1998 {
1999 	list_del(&entry->list);
2000 	kmem_cache_free(discard_entry_slab, entry);
2001 }
2002 
2003 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2004 {
2005 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2006 	struct discard_entry *entry, *this;
2007 
2008 	/* drop caches */
2009 	list_for_each_entry_safe(entry, this, head, list)
2010 		release_discard_addr(entry);
2011 }
2012 
2013 /*
2014  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2015  */
2016 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2017 {
2018 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2019 	unsigned int segno;
2020 
2021 	mutex_lock(&dirty_i->seglist_lock);
2022 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2023 		__set_test_and_free(sbi, segno, false);
2024 	mutex_unlock(&dirty_i->seglist_lock);
2025 }
2026 
2027 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2028 						struct cp_control *cpc)
2029 {
2030 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2031 	struct list_head *head = &dcc->entry_list;
2032 	struct discard_entry *entry, *this;
2033 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2034 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2035 	unsigned int start = 0, end = -1;
2036 	unsigned int secno, start_segno;
2037 	bool force = (cpc->reason & CP_DISCARD);
2038 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2039 						DISCARD_UNIT_SECTION;
2040 
2041 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2042 		section_alignment = true;
2043 
2044 	mutex_lock(&dirty_i->seglist_lock);
2045 
2046 	while (1) {
2047 		int i;
2048 
2049 		if (section_alignment && end != -1)
2050 			end--;
2051 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2052 		if (start >= MAIN_SEGS(sbi))
2053 			break;
2054 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2055 								start + 1);
2056 
2057 		if (section_alignment) {
2058 			start = rounddown(start, sbi->segs_per_sec);
2059 			end = roundup(end, sbi->segs_per_sec);
2060 		}
2061 
2062 		for (i = start; i < end; i++) {
2063 			if (test_and_clear_bit(i, prefree_map))
2064 				dirty_i->nr_dirty[PRE]--;
2065 		}
2066 
2067 		if (!f2fs_realtime_discard_enable(sbi))
2068 			continue;
2069 
2070 		if (force && start >= cpc->trim_start &&
2071 					(end - 1) <= cpc->trim_end)
2072 				continue;
2073 
2074 		if (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi)) {
2075 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2076 				(end - start) << sbi->log_blocks_per_seg);
2077 			continue;
2078 		}
2079 next:
2080 		secno = GET_SEC_FROM_SEG(sbi, start);
2081 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2082 		if (!IS_CURSEC(sbi, secno) &&
2083 			!get_valid_blocks(sbi, start, true))
2084 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2085 				sbi->segs_per_sec << sbi->log_blocks_per_seg);
2086 
2087 		start = start_segno + sbi->segs_per_sec;
2088 		if (start < end)
2089 			goto next;
2090 		else
2091 			end = start - 1;
2092 	}
2093 	mutex_unlock(&dirty_i->seglist_lock);
2094 
2095 	if (!f2fs_block_unit_discard(sbi))
2096 		goto wakeup;
2097 
2098 	/* send small discards */
2099 	list_for_each_entry_safe(entry, this, head, list) {
2100 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2101 		bool is_valid = test_bit_le(0, entry->discard_map);
2102 
2103 find_next:
2104 		if (is_valid) {
2105 			next_pos = find_next_zero_bit_le(entry->discard_map,
2106 					sbi->blocks_per_seg, cur_pos);
2107 			len = next_pos - cur_pos;
2108 
2109 			if (f2fs_sb_has_blkzoned(sbi) ||
2110 			    (force && len < cpc->trim_minlen))
2111 				goto skip;
2112 
2113 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2114 									len);
2115 			total_len += len;
2116 		} else {
2117 			next_pos = find_next_bit_le(entry->discard_map,
2118 					sbi->blocks_per_seg, cur_pos);
2119 		}
2120 skip:
2121 		cur_pos = next_pos;
2122 		is_valid = !is_valid;
2123 
2124 		if (cur_pos < sbi->blocks_per_seg)
2125 			goto find_next;
2126 
2127 		release_discard_addr(entry);
2128 		dcc->nr_discards -= total_len;
2129 	}
2130 
2131 wakeup:
2132 	wake_up_discard_thread(sbi, false);
2133 }
2134 
2135 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2136 {
2137 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2138 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2139 	int err = 0;
2140 
2141 	if (!f2fs_realtime_discard_enable(sbi))
2142 		return 0;
2143 
2144 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2145 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2146 	if (IS_ERR(dcc->f2fs_issue_discard))
2147 		err = PTR_ERR(dcc->f2fs_issue_discard);
2148 
2149 	return err;
2150 }
2151 
2152 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2153 {
2154 	struct discard_cmd_control *dcc;
2155 	int err = 0, i;
2156 
2157 	if (SM_I(sbi)->dcc_info) {
2158 		dcc = SM_I(sbi)->dcc_info;
2159 		goto init_thread;
2160 	}
2161 
2162 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2163 	if (!dcc)
2164 		return -ENOMEM;
2165 
2166 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2167 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2168 		dcc->discard_granularity = sbi->blocks_per_seg;
2169 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2170 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2171 
2172 	INIT_LIST_HEAD(&dcc->entry_list);
2173 	for (i = 0; i < MAX_PLIST_NUM; i++)
2174 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2175 	INIT_LIST_HEAD(&dcc->wait_list);
2176 	INIT_LIST_HEAD(&dcc->fstrim_list);
2177 	mutex_init(&dcc->cmd_lock);
2178 	atomic_set(&dcc->issued_discard, 0);
2179 	atomic_set(&dcc->queued_discard, 0);
2180 	atomic_set(&dcc->discard_cmd_cnt, 0);
2181 	dcc->nr_discards = 0;
2182 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2183 	dcc->undiscard_blks = 0;
2184 	dcc->next_pos = 0;
2185 	dcc->root = RB_ROOT_CACHED;
2186 	dcc->rbtree_check = false;
2187 
2188 	init_waitqueue_head(&dcc->discard_wait_queue);
2189 	SM_I(sbi)->dcc_info = dcc;
2190 init_thread:
2191 	err = f2fs_start_discard_thread(sbi);
2192 	if (err) {
2193 		kfree(dcc);
2194 		SM_I(sbi)->dcc_info = NULL;
2195 	}
2196 
2197 	return err;
2198 }
2199 
2200 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2201 {
2202 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2203 
2204 	if (!dcc)
2205 		return;
2206 
2207 	f2fs_stop_discard_thread(sbi);
2208 
2209 	/*
2210 	 * Recovery can cache discard commands, so in error path of
2211 	 * fill_super(), it needs to give a chance to handle them.
2212 	 */
2213 	if (unlikely(atomic_read(&dcc->discard_cmd_cnt)))
2214 		f2fs_issue_discard_timeout(sbi);
2215 
2216 	kfree(dcc);
2217 	SM_I(sbi)->dcc_info = NULL;
2218 }
2219 
2220 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2221 {
2222 	struct sit_info *sit_i = SIT_I(sbi);
2223 
2224 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2225 		sit_i->dirty_sentries++;
2226 		return false;
2227 	}
2228 
2229 	return true;
2230 }
2231 
2232 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2233 					unsigned int segno, int modified)
2234 {
2235 	struct seg_entry *se = get_seg_entry(sbi, segno);
2236 
2237 	se->type = type;
2238 	if (modified)
2239 		__mark_sit_entry_dirty(sbi, segno);
2240 }
2241 
2242 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2243 								block_t blkaddr)
2244 {
2245 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2246 
2247 	if (segno == NULL_SEGNO)
2248 		return 0;
2249 	return get_seg_entry(sbi, segno)->mtime;
2250 }
2251 
2252 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2253 						unsigned long long old_mtime)
2254 {
2255 	struct seg_entry *se;
2256 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2257 	unsigned long long ctime = get_mtime(sbi, false);
2258 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2259 
2260 	if (segno == NULL_SEGNO)
2261 		return;
2262 
2263 	se = get_seg_entry(sbi, segno);
2264 
2265 	if (!se->mtime)
2266 		se->mtime = mtime;
2267 	else
2268 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2269 						se->valid_blocks + 1);
2270 
2271 	if (ctime > SIT_I(sbi)->max_mtime)
2272 		SIT_I(sbi)->max_mtime = ctime;
2273 }
2274 
2275 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2276 {
2277 	struct seg_entry *se;
2278 	unsigned int segno, offset;
2279 	long int new_vblocks;
2280 	bool exist;
2281 #ifdef CONFIG_F2FS_CHECK_FS
2282 	bool mir_exist;
2283 #endif
2284 
2285 	segno = GET_SEGNO(sbi, blkaddr);
2286 
2287 	se = get_seg_entry(sbi, segno);
2288 	new_vblocks = se->valid_blocks + del;
2289 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2290 
2291 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2292 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2293 
2294 	se->valid_blocks = new_vblocks;
2295 
2296 	/* Update valid block bitmap */
2297 	if (del > 0) {
2298 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2299 #ifdef CONFIG_F2FS_CHECK_FS
2300 		mir_exist = f2fs_test_and_set_bit(offset,
2301 						se->cur_valid_map_mir);
2302 		if (unlikely(exist != mir_exist)) {
2303 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2304 				 blkaddr, exist);
2305 			f2fs_bug_on(sbi, 1);
2306 		}
2307 #endif
2308 		if (unlikely(exist)) {
2309 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2310 				 blkaddr);
2311 			f2fs_bug_on(sbi, 1);
2312 			se->valid_blocks--;
2313 			del = 0;
2314 		}
2315 
2316 		if (f2fs_block_unit_discard(sbi) &&
2317 				!f2fs_test_and_set_bit(offset, se->discard_map))
2318 			sbi->discard_blks--;
2319 
2320 		/*
2321 		 * SSR should never reuse block which is checkpointed
2322 		 * or newly invalidated.
2323 		 */
2324 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2325 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2326 				se->ckpt_valid_blocks++;
2327 		}
2328 	} else {
2329 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2330 #ifdef CONFIG_F2FS_CHECK_FS
2331 		mir_exist = f2fs_test_and_clear_bit(offset,
2332 						se->cur_valid_map_mir);
2333 		if (unlikely(exist != mir_exist)) {
2334 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2335 				 blkaddr, exist);
2336 			f2fs_bug_on(sbi, 1);
2337 		}
2338 #endif
2339 		if (unlikely(!exist)) {
2340 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2341 				 blkaddr);
2342 			f2fs_bug_on(sbi, 1);
2343 			se->valid_blocks++;
2344 			del = 0;
2345 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2346 			/*
2347 			 * If checkpoints are off, we must not reuse data that
2348 			 * was used in the previous checkpoint. If it was used
2349 			 * before, we must track that to know how much space we
2350 			 * really have.
2351 			 */
2352 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2353 				spin_lock(&sbi->stat_lock);
2354 				sbi->unusable_block_count++;
2355 				spin_unlock(&sbi->stat_lock);
2356 			}
2357 		}
2358 
2359 		if (f2fs_block_unit_discard(sbi) &&
2360 			f2fs_test_and_clear_bit(offset, se->discard_map))
2361 			sbi->discard_blks++;
2362 	}
2363 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2364 		se->ckpt_valid_blocks += del;
2365 
2366 	__mark_sit_entry_dirty(sbi, segno);
2367 
2368 	/* update total number of valid blocks to be written in ckpt area */
2369 	SIT_I(sbi)->written_valid_blocks += del;
2370 
2371 	if (__is_large_section(sbi))
2372 		get_sec_entry(sbi, segno)->valid_blocks += del;
2373 }
2374 
2375 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2376 {
2377 	unsigned int segno = GET_SEGNO(sbi, addr);
2378 	struct sit_info *sit_i = SIT_I(sbi);
2379 
2380 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2381 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2382 		return;
2383 
2384 	invalidate_mapping_pages(META_MAPPING(sbi), addr, addr);
2385 	f2fs_invalidate_compress_page(sbi, addr);
2386 
2387 	/* add it into sit main buffer */
2388 	down_write(&sit_i->sentry_lock);
2389 
2390 	update_segment_mtime(sbi, addr, 0);
2391 	update_sit_entry(sbi, addr, -1);
2392 
2393 	/* add it into dirty seglist */
2394 	locate_dirty_segment(sbi, segno);
2395 
2396 	up_write(&sit_i->sentry_lock);
2397 }
2398 
2399 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2400 {
2401 	struct sit_info *sit_i = SIT_I(sbi);
2402 	unsigned int segno, offset;
2403 	struct seg_entry *se;
2404 	bool is_cp = false;
2405 
2406 	if (!__is_valid_data_blkaddr(blkaddr))
2407 		return true;
2408 
2409 	down_read(&sit_i->sentry_lock);
2410 
2411 	segno = GET_SEGNO(sbi, blkaddr);
2412 	se = get_seg_entry(sbi, segno);
2413 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2414 
2415 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2416 		is_cp = true;
2417 
2418 	up_read(&sit_i->sentry_lock);
2419 
2420 	return is_cp;
2421 }
2422 
2423 /*
2424  * This function should be resided under the curseg_mutex lock
2425  */
2426 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
2427 					struct f2fs_summary *sum)
2428 {
2429 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2430 	void *addr = curseg->sum_blk;
2431 
2432 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
2433 	memcpy(addr, sum, sizeof(struct f2fs_summary));
2434 }
2435 
2436 /*
2437  * Calculate the number of current summary pages for writing
2438  */
2439 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2440 {
2441 	int valid_sum_count = 0;
2442 	int i, sum_in_page;
2443 
2444 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2445 		if (sbi->ckpt->alloc_type[i] == SSR)
2446 			valid_sum_count += sbi->blocks_per_seg;
2447 		else {
2448 			if (for_ra)
2449 				valid_sum_count += le16_to_cpu(
2450 					F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2451 			else
2452 				valid_sum_count += curseg_blkoff(sbi, i);
2453 		}
2454 	}
2455 
2456 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2457 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2458 	if (valid_sum_count <= sum_in_page)
2459 		return 1;
2460 	else if ((valid_sum_count - sum_in_page) <=
2461 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2462 		return 2;
2463 	return 3;
2464 }
2465 
2466 /*
2467  * Caller should put this summary page
2468  */
2469 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2470 {
2471 	if (unlikely(f2fs_cp_error(sbi)))
2472 		return ERR_PTR(-EIO);
2473 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2474 }
2475 
2476 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2477 					void *src, block_t blk_addr)
2478 {
2479 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2480 
2481 	memcpy(page_address(page), src, PAGE_SIZE);
2482 	set_page_dirty(page);
2483 	f2fs_put_page(page, 1);
2484 }
2485 
2486 static void write_sum_page(struct f2fs_sb_info *sbi,
2487 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2488 {
2489 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2490 }
2491 
2492 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2493 						int type, block_t blk_addr)
2494 {
2495 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2496 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2497 	struct f2fs_summary_block *src = curseg->sum_blk;
2498 	struct f2fs_summary_block *dst;
2499 
2500 	dst = (struct f2fs_summary_block *)page_address(page);
2501 	memset(dst, 0, PAGE_SIZE);
2502 
2503 	mutex_lock(&curseg->curseg_mutex);
2504 
2505 	down_read(&curseg->journal_rwsem);
2506 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2507 	up_read(&curseg->journal_rwsem);
2508 
2509 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2510 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2511 
2512 	mutex_unlock(&curseg->curseg_mutex);
2513 
2514 	set_page_dirty(page);
2515 	f2fs_put_page(page, 1);
2516 }
2517 
2518 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2519 				struct curseg_info *curseg, int type)
2520 {
2521 	unsigned int segno = curseg->segno + 1;
2522 	struct free_segmap_info *free_i = FREE_I(sbi);
2523 
2524 	if (segno < MAIN_SEGS(sbi) && segno % sbi->segs_per_sec)
2525 		return !test_bit(segno, free_i->free_segmap);
2526 	return 0;
2527 }
2528 
2529 /*
2530  * Find a new segment from the free segments bitmap to right order
2531  * This function should be returned with success, otherwise BUG
2532  */
2533 static void get_new_segment(struct f2fs_sb_info *sbi,
2534 			unsigned int *newseg, bool new_sec, int dir)
2535 {
2536 	struct free_segmap_info *free_i = FREE_I(sbi);
2537 	unsigned int segno, secno, zoneno;
2538 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2539 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2540 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2541 	unsigned int left_start = hint;
2542 	bool init = true;
2543 	int go_left = 0;
2544 	int i;
2545 
2546 	spin_lock(&free_i->segmap_lock);
2547 
2548 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
2549 		segno = find_next_zero_bit(free_i->free_segmap,
2550 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2551 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2552 			goto got_it;
2553 	}
2554 find_other_zone:
2555 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2556 	if (secno >= MAIN_SECS(sbi)) {
2557 		if (dir == ALLOC_RIGHT) {
2558 			secno = find_first_zero_bit(free_i->free_secmap,
2559 							MAIN_SECS(sbi));
2560 			f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2561 		} else {
2562 			go_left = 1;
2563 			left_start = hint - 1;
2564 		}
2565 	}
2566 	if (go_left == 0)
2567 		goto skip_left;
2568 
2569 	while (test_bit(left_start, free_i->free_secmap)) {
2570 		if (left_start > 0) {
2571 			left_start--;
2572 			continue;
2573 		}
2574 		left_start = find_first_zero_bit(free_i->free_secmap,
2575 							MAIN_SECS(sbi));
2576 		f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi));
2577 		break;
2578 	}
2579 	secno = left_start;
2580 skip_left:
2581 	segno = GET_SEG_FROM_SEC(sbi, secno);
2582 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2583 
2584 	/* give up on finding another zone */
2585 	if (!init)
2586 		goto got_it;
2587 	if (sbi->secs_per_zone == 1)
2588 		goto got_it;
2589 	if (zoneno == old_zoneno)
2590 		goto got_it;
2591 	if (dir == ALLOC_LEFT) {
2592 		if (!go_left && zoneno + 1 >= total_zones)
2593 			goto got_it;
2594 		if (go_left && zoneno == 0)
2595 			goto got_it;
2596 	}
2597 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2598 		if (CURSEG_I(sbi, i)->zone == zoneno)
2599 			break;
2600 
2601 	if (i < NR_CURSEG_TYPE) {
2602 		/* zone is in user, try another */
2603 		if (go_left)
2604 			hint = zoneno * sbi->secs_per_zone - 1;
2605 		else if (zoneno + 1 >= total_zones)
2606 			hint = 0;
2607 		else
2608 			hint = (zoneno + 1) * sbi->secs_per_zone;
2609 		init = false;
2610 		goto find_other_zone;
2611 	}
2612 got_it:
2613 	/* set it as dirty segment in free segmap */
2614 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2615 	__set_inuse(sbi, segno);
2616 	*newseg = segno;
2617 	spin_unlock(&free_i->segmap_lock);
2618 }
2619 
2620 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2621 {
2622 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2623 	struct summary_footer *sum_footer;
2624 	unsigned short seg_type = curseg->seg_type;
2625 
2626 	curseg->inited = true;
2627 	curseg->segno = curseg->next_segno;
2628 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2629 	curseg->next_blkoff = 0;
2630 	curseg->next_segno = NULL_SEGNO;
2631 
2632 	sum_footer = &(curseg->sum_blk->footer);
2633 	memset(sum_footer, 0, sizeof(struct summary_footer));
2634 
2635 	sanity_check_seg_type(sbi, seg_type);
2636 
2637 	if (IS_DATASEG(seg_type))
2638 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2639 	if (IS_NODESEG(seg_type))
2640 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2641 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2642 }
2643 
2644 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2645 {
2646 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2647 	unsigned short seg_type = curseg->seg_type;
2648 
2649 	sanity_check_seg_type(sbi, seg_type);
2650 	if (f2fs_need_rand_seg(sbi))
2651 		return prandom_u32() % (MAIN_SECS(sbi) * sbi->segs_per_sec);
2652 
2653 	/* if segs_per_sec is large than 1, we need to keep original policy. */
2654 	if (__is_large_section(sbi))
2655 		return curseg->segno;
2656 
2657 	/* inmem log may not locate on any segment after mount */
2658 	if (!curseg->inited)
2659 		return 0;
2660 
2661 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2662 		return 0;
2663 
2664 	if (test_opt(sbi, NOHEAP) &&
2665 		(seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type)))
2666 		return 0;
2667 
2668 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2669 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2670 
2671 	/* find segments from 0 to reuse freed segments */
2672 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2673 		return 0;
2674 
2675 	return curseg->segno;
2676 }
2677 
2678 /*
2679  * Allocate a current working segment.
2680  * This function always allocates a free segment in LFS manner.
2681  */
2682 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2683 {
2684 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2685 	unsigned short seg_type = curseg->seg_type;
2686 	unsigned int segno = curseg->segno;
2687 	int dir = ALLOC_LEFT;
2688 
2689 	if (curseg->inited)
2690 		write_sum_page(sbi, curseg->sum_blk,
2691 				GET_SUM_BLOCK(sbi, segno));
2692 	if (seg_type == CURSEG_WARM_DATA || seg_type == CURSEG_COLD_DATA)
2693 		dir = ALLOC_RIGHT;
2694 
2695 	if (test_opt(sbi, NOHEAP))
2696 		dir = ALLOC_RIGHT;
2697 
2698 	segno = __get_next_segno(sbi, type);
2699 	get_new_segment(sbi, &segno, new_sec, dir);
2700 	curseg->next_segno = segno;
2701 	reset_curseg(sbi, type, 1);
2702 	curseg->alloc_type = LFS;
2703 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2704 		curseg->fragment_remained_chunk =
2705 				prandom_u32() % sbi->max_fragment_chunk + 1;
2706 }
2707 
2708 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2709 					int segno, block_t start)
2710 {
2711 	struct seg_entry *se = get_seg_entry(sbi, segno);
2712 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2713 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2714 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2715 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2716 	int i;
2717 
2718 	for (i = 0; i < entries; i++)
2719 		target_map[i] = ckpt_map[i] | cur_map[i];
2720 
2721 	return __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
2722 }
2723 
2724 /*
2725  * If a segment is written by LFS manner, next block offset is just obtained
2726  * by increasing the current block offset. However, if a segment is written by
2727  * SSR manner, next block offset obtained by calling __next_free_blkoff
2728  */
2729 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
2730 				struct curseg_info *seg)
2731 {
2732 	if (seg->alloc_type == SSR) {
2733 		seg->next_blkoff =
2734 			__next_free_blkoff(sbi, seg->segno,
2735 						seg->next_blkoff + 1);
2736 	} else {
2737 		seg->next_blkoff++;
2738 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) {
2739 			/* To allocate block chunks in different sizes, use random number */
2740 			if (--seg->fragment_remained_chunk <= 0) {
2741 				seg->fragment_remained_chunk =
2742 				   prandom_u32() % sbi->max_fragment_chunk + 1;
2743 				seg->next_blkoff +=
2744 				   prandom_u32() % sbi->max_fragment_hole + 1;
2745 			}
2746 		}
2747 	}
2748 }
2749 
2750 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2751 {
2752 	return __next_free_blkoff(sbi, segno, 0) < sbi->blocks_per_seg;
2753 }
2754 
2755 /*
2756  * This function always allocates a used segment(from dirty seglist) by SSR
2757  * manner, so it should recover the existing segment information of valid blocks
2758  */
2759 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool flush)
2760 {
2761 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2762 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2763 	unsigned int new_segno = curseg->next_segno;
2764 	struct f2fs_summary_block *sum_node;
2765 	struct page *sum_page;
2766 
2767 	if (flush)
2768 		write_sum_page(sbi, curseg->sum_blk,
2769 					GET_SUM_BLOCK(sbi, curseg->segno));
2770 
2771 	__set_test_and_inuse(sbi, new_segno);
2772 
2773 	mutex_lock(&dirty_i->seglist_lock);
2774 	__remove_dirty_segment(sbi, new_segno, PRE);
2775 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2776 	mutex_unlock(&dirty_i->seglist_lock);
2777 
2778 	reset_curseg(sbi, type, 1);
2779 	curseg->alloc_type = SSR;
2780 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2781 
2782 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2783 	if (IS_ERR(sum_page)) {
2784 		/* GC won't be able to use stale summary pages by cp_error */
2785 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2786 		return;
2787 	}
2788 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2789 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2790 	f2fs_put_page(sum_page, 1);
2791 }
2792 
2793 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2794 				int alloc_mode, unsigned long long age);
2795 
2796 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2797 					int target_type, int alloc_mode,
2798 					unsigned long long age)
2799 {
2800 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2801 
2802 	curseg->seg_type = target_type;
2803 
2804 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2805 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2806 
2807 		curseg->seg_type = se->type;
2808 		change_curseg(sbi, type, true);
2809 	} else {
2810 		/* allocate cold segment by default */
2811 		curseg->seg_type = CURSEG_COLD_DATA;
2812 		new_curseg(sbi, type, true);
2813 	}
2814 	stat_inc_seg_type(sbi, curseg);
2815 }
2816 
2817 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2818 {
2819 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2820 
2821 	if (!sbi->am.atgc_enabled)
2822 		return;
2823 
2824 	down_read(&SM_I(sbi)->curseg_lock);
2825 
2826 	mutex_lock(&curseg->curseg_mutex);
2827 	down_write(&SIT_I(sbi)->sentry_lock);
2828 
2829 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2830 
2831 	up_write(&SIT_I(sbi)->sentry_lock);
2832 	mutex_unlock(&curseg->curseg_mutex);
2833 
2834 	up_read(&SM_I(sbi)->curseg_lock);
2835 
2836 }
2837 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2838 {
2839 	__f2fs_init_atgc_curseg(sbi);
2840 }
2841 
2842 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2843 {
2844 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2845 
2846 	mutex_lock(&curseg->curseg_mutex);
2847 	if (!curseg->inited)
2848 		goto out;
2849 
2850 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2851 		write_sum_page(sbi, curseg->sum_blk,
2852 				GET_SUM_BLOCK(sbi, curseg->segno));
2853 	} else {
2854 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2855 		__set_test_and_free(sbi, curseg->segno, true);
2856 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2857 	}
2858 out:
2859 	mutex_unlock(&curseg->curseg_mutex);
2860 }
2861 
2862 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2863 {
2864 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2865 
2866 	if (sbi->am.atgc_enabled)
2867 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2868 }
2869 
2870 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2871 {
2872 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2873 
2874 	mutex_lock(&curseg->curseg_mutex);
2875 	if (!curseg->inited)
2876 		goto out;
2877 	if (get_valid_blocks(sbi, curseg->segno, false))
2878 		goto out;
2879 
2880 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2881 	__set_test_and_inuse(sbi, curseg->segno);
2882 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2883 out:
2884 	mutex_unlock(&curseg->curseg_mutex);
2885 }
2886 
2887 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2888 {
2889 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2890 
2891 	if (sbi->am.atgc_enabled)
2892 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2893 }
2894 
2895 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2896 				int alloc_mode, unsigned long long age)
2897 {
2898 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2899 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
2900 	unsigned segno = NULL_SEGNO;
2901 	unsigned short seg_type = curseg->seg_type;
2902 	int i, cnt;
2903 	bool reversed = false;
2904 
2905 	sanity_check_seg_type(sbi, seg_type);
2906 
2907 	/* f2fs_need_SSR() already forces to do this */
2908 	if (!v_ops->get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2909 		curseg->next_segno = segno;
2910 		return 1;
2911 	}
2912 
2913 	/* For node segments, let's do SSR more intensively */
2914 	if (IS_NODESEG(seg_type)) {
2915 		if (seg_type >= CURSEG_WARM_NODE) {
2916 			reversed = true;
2917 			i = CURSEG_COLD_NODE;
2918 		} else {
2919 			i = CURSEG_HOT_NODE;
2920 		}
2921 		cnt = NR_CURSEG_NODE_TYPE;
2922 	} else {
2923 		if (seg_type >= CURSEG_WARM_DATA) {
2924 			reversed = true;
2925 			i = CURSEG_COLD_DATA;
2926 		} else {
2927 			i = CURSEG_HOT_DATA;
2928 		}
2929 		cnt = NR_CURSEG_DATA_TYPE;
2930 	}
2931 
2932 	for (; cnt-- > 0; reversed ? i-- : i++) {
2933 		if (i == seg_type)
2934 			continue;
2935 		if (!v_ops->get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2936 			curseg->next_segno = segno;
2937 			return 1;
2938 		}
2939 	}
2940 
2941 	/* find valid_blocks=0 in dirty list */
2942 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2943 		segno = get_free_segment(sbi);
2944 		if (segno != NULL_SEGNO) {
2945 			curseg->next_segno = segno;
2946 			return 1;
2947 		}
2948 	}
2949 	return 0;
2950 }
2951 
2952 /*
2953  * flush out current segment and replace it with new segment
2954  * This function should be returned with success, otherwise BUG
2955  */
2956 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
2957 						int type, bool force)
2958 {
2959 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2960 
2961 	if (force)
2962 		new_curseg(sbi, type, true);
2963 	else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
2964 					curseg->seg_type == CURSEG_WARM_NODE)
2965 		new_curseg(sbi, type, false);
2966 	else if (curseg->alloc_type == LFS &&
2967 			is_next_segment_free(sbi, curseg, type) &&
2968 			likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2969 		new_curseg(sbi, type, false);
2970 	else if (f2fs_need_SSR(sbi) &&
2971 			get_ssr_segment(sbi, type, SSR, 0))
2972 		change_curseg(sbi, type, true);
2973 	else
2974 		new_curseg(sbi, type, false);
2975 
2976 	stat_inc_seg_type(sbi, curseg);
2977 }
2978 
2979 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
2980 					unsigned int start, unsigned int end)
2981 {
2982 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2983 	unsigned int segno;
2984 
2985 	down_read(&SM_I(sbi)->curseg_lock);
2986 	mutex_lock(&curseg->curseg_mutex);
2987 	down_write(&SIT_I(sbi)->sentry_lock);
2988 
2989 	segno = CURSEG_I(sbi, type)->segno;
2990 	if (segno < start || segno > end)
2991 		goto unlock;
2992 
2993 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
2994 		change_curseg(sbi, type, true);
2995 	else
2996 		new_curseg(sbi, type, true);
2997 
2998 	stat_inc_seg_type(sbi, curseg);
2999 
3000 	locate_dirty_segment(sbi, segno);
3001 unlock:
3002 	up_write(&SIT_I(sbi)->sentry_lock);
3003 
3004 	if (segno != curseg->segno)
3005 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3006 			    type, segno, curseg->segno);
3007 
3008 	mutex_unlock(&curseg->curseg_mutex);
3009 	up_read(&SM_I(sbi)->curseg_lock);
3010 }
3011 
3012 static void __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3013 						bool new_sec, bool force)
3014 {
3015 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3016 	unsigned int old_segno;
3017 
3018 	if (!curseg->inited)
3019 		goto alloc;
3020 
3021 	if (force || curseg->next_blkoff ||
3022 		get_valid_blocks(sbi, curseg->segno, new_sec))
3023 		goto alloc;
3024 
3025 	if (!get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3026 		return;
3027 alloc:
3028 	old_segno = curseg->segno;
3029 	SIT_I(sbi)->s_ops->allocate_segment(sbi, type, true);
3030 	locate_dirty_segment(sbi, old_segno);
3031 }
3032 
3033 static void __allocate_new_section(struct f2fs_sb_info *sbi,
3034 						int type, bool force)
3035 {
3036 	__allocate_new_segment(sbi, type, true, force);
3037 }
3038 
3039 void f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3040 {
3041 	down_read(&SM_I(sbi)->curseg_lock);
3042 	down_write(&SIT_I(sbi)->sentry_lock);
3043 	__allocate_new_section(sbi, type, force);
3044 	up_write(&SIT_I(sbi)->sentry_lock);
3045 	up_read(&SM_I(sbi)->curseg_lock);
3046 }
3047 
3048 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3049 {
3050 	int i;
3051 
3052 	down_read(&SM_I(sbi)->curseg_lock);
3053 	down_write(&SIT_I(sbi)->sentry_lock);
3054 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3055 		__allocate_new_segment(sbi, i, false, false);
3056 	up_write(&SIT_I(sbi)->sentry_lock);
3057 	up_read(&SM_I(sbi)->curseg_lock);
3058 }
3059 
3060 static const struct segment_allocation default_salloc_ops = {
3061 	.allocate_segment = allocate_segment_by_default,
3062 };
3063 
3064 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3065 						struct cp_control *cpc)
3066 {
3067 	__u64 trim_start = cpc->trim_start;
3068 	bool has_candidate = false;
3069 
3070 	down_write(&SIT_I(sbi)->sentry_lock);
3071 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3072 		if (add_discard_addrs(sbi, cpc, true)) {
3073 			has_candidate = true;
3074 			break;
3075 		}
3076 	}
3077 	up_write(&SIT_I(sbi)->sentry_lock);
3078 
3079 	cpc->trim_start = trim_start;
3080 	return has_candidate;
3081 }
3082 
3083 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3084 					struct discard_policy *dpolicy,
3085 					unsigned int start, unsigned int end)
3086 {
3087 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3088 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3089 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3090 	struct discard_cmd *dc;
3091 	struct blk_plug plug;
3092 	int issued;
3093 	unsigned int trimmed = 0;
3094 
3095 next:
3096 	issued = 0;
3097 
3098 	mutex_lock(&dcc->cmd_lock);
3099 	if (unlikely(dcc->rbtree_check))
3100 		f2fs_bug_on(sbi, !f2fs_check_rb_tree_consistence(sbi,
3101 							&dcc->root, false));
3102 
3103 	dc = (struct discard_cmd *)f2fs_lookup_rb_tree_ret(&dcc->root,
3104 					NULL, start,
3105 					(struct rb_entry **)&prev_dc,
3106 					(struct rb_entry **)&next_dc,
3107 					&insert_p, &insert_parent, true, NULL);
3108 	if (!dc)
3109 		dc = next_dc;
3110 
3111 	blk_start_plug(&plug);
3112 
3113 	while (dc && dc->lstart <= end) {
3114 		struct rb_node *node;
3115 		int err = 0;
3116 
3117 		if (dc->len < dpolicy->granularity)
3118 			goto skip;
3119 
3120 		if (dc->state != D_PREP) {
3121 			list_move_tail(&dc->list, &dcc->fstrim_list);
3122 			goto skip;
3123 		}
3124 
3125 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3126 
3127 		if (issued >= dpolicy->max_requests) {
3128 			start = dc->lstart + dc->len;
3129 
3130 			if (err)
3131 				__remove_discard_cmd(sbi, dc);
3132 
3133 			blk_finish_plug(&plug);
3134 			mutex_unlock(&dcc->cmd_lock);
3135 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3136 			congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
3137 			goto next;
3138 		}
3139 skip:
3140 		node = rb_next(&dc->rb_node);
3141 		if (err)
3142 			__remove_discard_cmd(sbi, dc);
3143 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3144 
3145 		if (fatal_signal_pending(current))
3146 			break;
3147 	}
3148 
3149 	blk_finish_plug(&plug);
3150 	mutex_unlock(&dcc->cmd_lock);
3151 
3152 	return trimmed;
3153 }
3154 
3155 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3156 {
3157 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3158 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3159 	unsigned int start_segno, end_segno;
3160 	block_t start_block, end_block;
3161 	struct cp_control cpc;
3162 	struct discard_policy dpolicy;
3163 	unsigned long long trimmed = 0;
3164 	int err = 0;
3165 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3166 
3167 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3168 		return -EINVAL;
3169 
3170 	if (end < MAIN_BLKADDR(sbi))
3171 		goto out;
3172 
3173 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3174 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3175 		return -EFSCORRUPTED;
3176 	}
3177 
3178 	/* start/end segment number in main_area */
3179 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3180 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3181 						GET_SEGNO(sbi, end);
3182 	if (need_align) {
3183 		start_segno = rounddown(start_segno, sbi->segs_per_sec);
3184 		end_segno = roundup(end_segno + 1, sbi->segs_per_sec) - 1;
3185 	}
3186 
3187 	cpc.reason = CP_DISCARD;
3188 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3189 	cpc.trim_start = start_segno;
3190 	cpc.trim_end = end_segno;
3191 
3192 	if (sbi->discard_blks == 0)
3193 		goto out;
3194 
3195 	down_write(&sbi->gc_lock);
3196 	err = f2fs_write_checkpoint(sbi, &cpc);
3197 	up_write(&sbi->gc_lock);
3198 	if (err)
3199 		goto out;
3200 
3201 	/*
3202 	 * We filed discard candidates, but actually we don't need to wait for
3203 	 * all of them, since they'll be issued in idle time along with runtime
3204 	 * discard option. User configuration looks like using runtime discard
3205 	 * or periodic fstrim instead of it.
3206 	 */
3207 	if (f2fs_realtime_discard_enable(sbi))
3208 		goto out;
3209 
3210 	start_block = START_BLOCK(sbi, start_segno);
3211 	end_block = START_BLOCK(sbi, end_segno + 1);
3212 
3213 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3214 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3215 					start_block, end_block);
3216 
3217 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3218 					start_block, end_block);
3219 out:
3220 	if (!err)
3221 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3222 	return err;
3223 }
3224 
3225 static bool __has_curseg_space(struct f2fs_sb_info *sbi,
3226 					struct curseg_info *curseg)
3227 {
3228 	return curseg->next_blkoff < f2fs_usable_blks_in_seg(sbi,
3229 							curseg->segno);
3230 }
3231 
3232 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3233 {
3234 	switch (hint) {
3235 	case WRITE_LIFE_SHORT:
3236 		return CURSEG_HOT_DATA;
3237 	case WRITE_LIFE_EXTREME:
3238 		return CURSEG_COLD_DATA;
3239 	default:
3240 		return CURSEG_WARM_DATA;
3241 	}
3242 }
3243 
3244 /* This returns write hints for each segment type. This hints will be
3245  * passed down to block layer. There are mapping tables which depend on
3246  * the mount option 'whint_mode'.
3247  *
3248  * 1) whint_mode=off. F2FS only passes down WRITE_LIFE_NOT_SET.
3249  *
3250  * 2) whint_mode=user-based. F2FS tries to pass down hints given by users.
3251  *
3252  * User                  F2FS                     Block
3253  * ----                  ----                     -----
3254  *                       META                     WRITE_LIFE_NOT_SET
3255  *                       HOT_NODE                 "
3256  *                       WARM_NODE                "
3257  *                       COLD_NODE                "
3258  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3259  * extension list        "                        "
3260  *
3261  * -- buffered io
3262  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3263  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3264  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3265  * WRITE_LIFE_NONE       "                        "
3266  * WRITE_LIFE_MEDIUM     "                        "
3267  * WRITE_LIFE_LONG       "                        "
3268  *
3269  * -- direct io
3270  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3271  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3272  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3273  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3274  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3275  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3276  *
3277  * 3) whint_mode=fs-based. F2FS passes down hints with its policy.
3278  *
3279  * User                  F2FS                     Block
3280  * ----                  ----                     -----
3281  *                       META                     WRITE_LIFE_MEDIUM;
3282  *                       HOT_NODE                 WRITE_LIFE_NOT_SET
3283  *                       WARM_NODE                "
3284  *                       COLD_NODE                WRITE_LIFE_NONE
3285  * ioctl(COLD)           COLD_DATA                WRITE_LIFE_EXTREME
3286  * extension list        "                        "
3287  *
3288  * -- buffered io
3289  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3290  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3291  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_LONG
3292  * WRITE_LIFE_NONE       "                        "
3293  * WRITE_LIFE_MEDIUM     "                        "
3294  * WRITE_LIFE_LONG       "                        "
3295  *
3296  * -- direct io
3297  * WRITE_LIFE_EXTREME    COLD_DATA                WRITE_LIFE_EXTREME
3298  * WRITE_LIFE_SHORT      HOT_DATA                 WRITE_LIFE_SHORT
3299  * WRITE_LIFE_NOT_SET    WARM_DATA                WRITE_LIFE_NOT_SET
3300  * WRITE_LIFE_NONE       "                        WRITE_LIFE_NONE
3301  * WRITE_LIFE_MEDIUM     "                        WRITE_LIFE_MEDIUM
3302  * WRITE_LIFE_LONG       "                        WRITE_LIFE_LONG
3303  */
3304 
3305 enum rw_hint f2fs_io_type_to_rw_hint(struct f2fs_sb_info *sbi,
3306 				enum page_type type, enum temp_type temp)
3307 {
3308 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) {
3309 		if (type == DATA) {
3310 			if (temp == WARM)
3311 				return WRITE_LIFE_NOT_SET;
3312 			else if (temp == HOT)
3313 				return WRITE_LIFE_SHORT;
3314 			else if (temp == COLD)
3315 				return WRITE_LIFE_EXTREME;
3316 		} else {
3317 			return WRITE_LIFE_NOT_SET;
3318 		}
3319 	} else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) {
3320 		if (type == DATA) {
3321 			if (temp == WARM)
3322 				return WRITE_LIFE_LONG;
3323 			else if (temp == HOT)
3324 				return WRITE_LIFE_SHORT;
3325 			else if (temp == COLD)
3326 				return WRITE_LIFE_EXTREME;
3327 		} else if (type == NODE) {
3328 			if (temp == WARM || temp == HOT)
3329 				return WRITE_LIFE_NOT_SET;
3330 			else if (temp == COLD)
3331 				return WRITE_LIFE_NONE;
3332 		} else if (type == META) {
3333 			return WRITE_LIFE_MEDIUM;
3334 		}
3335 	}
3336 	return WRITE_LIFE_NOT_SET;
3337 }
3338 
3339 static int __get_segment_type_2(struct f2fs_io_info *fio)
3340 {
3341 	if (fio->type == DATA)
3342 		return CURSEG_HOT_DATA;
3343 	else
3344 		return CURSEG_HOT_NODE;
3345 }
3346 
3347 static int __get_segment_type_4(struct f2fs_io_info *fio)
3348 {
3349 	if (fio->type == DATA) {
3350 		struct inode *inode = fio->page->mapping->host;
3351 
3352 		if (S_ISDIR(inode->i_mode))
3353 			return CURSEG_HOT_DATA;
3354 		else
3355 			return CURSEG_COLD_DATA;
3356 	} else {
3357 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3358 			return CURSEG_WARM_NODE;
3359 		else
3360 			return CURSEG_COLD_NODE;
3361 	}
3362 }
3363 
3364 static int __get_segment_type_6(struct f2fs_io_info *fio)
3365 {
3366 	if (fio->type == DATA) {
3367 		struct inode *inode = fio->page->mapping->host;
3368 
3369 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3370 			return CURSEG_COLD_DATA_PINNED;
3371 
3372 		if (page_private_gcing(fio->page)) {
3373 			if (fio->sbi->am.atgc_enabled &&
3374 				(fio->io_type == FS_DATA_IO) &&
3375 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3376 				return CURSEG_ALL_DATA_ATGC;
3377 			else
3378 				return CURSEG_COLD_DATA;
3379 		}
3380 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3381 			return CURSEG_COLD_DATA;
3382 		if (file_is_hot(inode) ||
3383 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3384 				f2fs_is_atomic_file(inode) ||
3385 				f2fs_is_volatile_file(inode))
3386 			return CURSEG_HOT_DATA;
3387 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3388 	} else {
3389 		if (IS_DNODE(fio->page))
3390 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3391 						CURSEG_HOT_NODE;
3392 		return CURSEG_COLD_NODE;
3393 	}
3394 }
3395 
3396 static int __get_segment_type(struct f2fs_io_info *fio)
3397 {
3398 	int type = 0;
3399 
3400 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3401 	case 2:
3402 		type = __get_segment_type_2(fio);
3403 		break;
3404 	case 4:
3405 		type = __get_segment_type_4(fio);
3406 		break;
3407 	case 6:
3408 		type = __get_segment_type_6(fio);
3409 		break;
3410 	default:
3411 		f2fs_bug_on(fio->sbi, true);
3412 	}
3413 
3414 	if (IS_HOT(type))
3415 		fio->temp = HOT;
3416 	else if (IS_WARM(type))
3417 		fio->temp = WARM;
3418 	else
3419 		fio->temp = COLD;
3420 	return type;
3421 }
3422 
3423 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3424 		block_t old_blkaddr, block_t *new_blkaddr,
3425 		struct f2fs_summary *sum, int type,
3426 		struct f2fs_io_info *fio)
3427 {
3428 	struct sit_info *sit_i = SIT_I(sbi);
3429 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3430 	unsigned long long old_mtime;
3431 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3432 	struct seg_entry *se = NULL;
3433 
3434 	down_read(&SM_I(sbi)->curseg_lock);
3435 
3436 	mutex_lock(&curseg->curseg_mutex);
3437 	down_write(&sit_i->sentry_lock);
3438 
3439 	if (from_gc) {
3440 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3441 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3442 		sanity_check_seg_type(sbi, se->type);
3443 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3444 	}
3445 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3446 
3447 	f2fs_bug_on(sbi, curseg->next_blkoff >= sbi->blocks_per_seg);
3448 
3449 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3450 
3451 	/*
3452 	 * __add_sum_entry should be resided under the curseg_mutex
3453 	 * because, this function updates a summary entry in the
3454 	 * current summary block.
3455 	 */
3456 	__add_sum_entry(sbi, type, sum);
3457 
3458 	__refresh_next_blkoff(sbi, curseg);
3459 
3460 	stat_inc_block_count(sbi, curseg);
3461 
3462 	if (from_gc) {
3463 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3464 	} else {
3465 		update_segment_mtime(sbi, old_blkaddr, 0);
3466 		old_mtime = 0;
3467 	}
3468 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3469 
3470 	/*
3471 	 * SIT information should be updated before segment allocation,
3472 	 * since SSR needs latest valid block information.
3473 	 */
3474 	update_sit_entry(sbi, *new_blkaddr, 1);
3475 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3476 		update_sit_entry(sbi, old_blkaddr, -1);
3477 
3478 	if (!__has_curseg_space(sbi, curseg)) {
3479 		if (from_gc)
3480 			get_atssr_segment(sbi, type, se->type,
3481 						AT_SSR, se->mtime);
3482 		else
3483 			sit_i->s_ops->allocate_segment(sbi, type, false);
3484 	}
3485 	/*
3486 	 * segment dirty status should be updated after segment allocation,
3487 	 * so we just need to update status only one time after previous
3488 	 * segment being closed.
3489 	 */
3490 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3491 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3492 
3493 	up_write(&sit_i->sentry_lock);
3494 
3495 	if (page && IS_NODESEG(type)) {
3496 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3497 
3498 		f2fs_inode_chksum_set(sbi, page);
3499 	}
3500 
3501 	if (fio) {
3502 		struct f2fs_bio_info *io;
3503 
3504 		if (F2FS_IO_ALIGNED(sbi))
3505 			fio->retry = false;
3506 
3507 		INIT_LIST_HEAD(&fio->list);
3508 		fio->in_list = true;
3509 		io = sbi->write_io[fio->type] + fio->temp;
3510 		spin_lock(&io->io_lock);
3511 		list_add_tail(&fio->list, &io->io_list);
3512 		spin_unlock(&io->io_lock);
3513 	}
3514 
3515 	mutex_unlock(&curseg->curseg_mutex);
3516 
3517 	up_read(&SM_I(sbi)->curseg_lock);
3518 }
3519 
3520 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3521 					block_t blkaddr, unsigned int blkcnt)
3522 {
3523 	if (!f2fs_is_multi_device(sbi))
3524 		return;
3525 
3526 	while (1) {
3527 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3528 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3529 
3530 		/* update device state for fsync */
3531 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3532 
3533 		/* update device state for checkpoint */
3534 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3535 			spin_lock(&sbi->dev_lock);
3536 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3537 			spin_unlock(&sbi->dev_lock);
3538 		}
3539 
3540 		if (blkcnt <= blks)
3541 			break;
3542 		blkcnt -= blks;
3543 		blkaddr += blks;
3544 	}
3545 }
3546 
3547 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3548 {
3549 	int type = __get_segment_type(fio);
3550 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3551 
3552 	if (keep_order)
3553 		down_read(&fio->sbi->io_order_lock);
3554 reallocate:
3555 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3556 			&fio->new_blkaddr, sum, type, fio);
3557 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO) {
3558 		invalidate_mapping_pages(META_MAPPING(fio->sbi),
3559 					fio->old_blkaddr, fio->old_blkaddr);
3560 		f2fs_invalidate_compress_page(fio->sbi, fio->old_blkaddr);
3561 	}
3562 
3563 	/* writeout dirty page into bdev */
3564 	f2fs_submit_page_write(fio);
3565 	if (fio->retry) {
3566 		fio->old_blkaddr = fio->new_blkaddr;
3567 		goto reallocate;
3568 	}
3569 
3570 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3571 
3572 	if (keep_order)
3573 		up_read(&fio->sbi->io_order_lock);
3574 }
3575 
3576 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3577 					enum iostat_type io_type)
3578 {
3579 	struct f2fs_io_info fio = {
3580 		.sbi = sbi,
3581 		.type = META,
3582 		.temp = HOT,
3583 		.op = REQ_OP_WRITE,
3584 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3585 		.old_blkaddr = page->index,
3586 		.new_blkaddr = page->index,
3587 		.page = page,
3588 		.encrypted_page = NULL,
3589 		.in_list = false,
3590 	};
3591 
3592 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3593 		fio.op_flags &= ~REQ_META;
3594 
3595 	set_page_writeback(page);
3596 	ClearPageError(page);
3597 	f2fs_submit_page_write(&fio);
3598 
3599 	stat_inc_meta_count(sbi, page->index);
3600 	f2fs_update_iostat(sbi, io_type, F2FS_BLKSIZE);
3601 }
3602 
3603 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3604 {
3605 	struct f2fs_summary sum;
3606 
3607 	set_summary(&sum, nid, 0, 0);
3608 	do_write_page(&sum, fio);
3609 
3610 	f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3611 }
3612 
3613 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3614 					struct f2fs_io_info *fio)
3615 {
3616 	struct f2fs_sb_info *sbi = fio->sbi;
3617 	struct f2fs_summary sum;
3618 
3619 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3620 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3621 	do_write_page(&sum, fio);
3622 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3623 
3624 	f2fs_update_iostat(sbi, fio->io_type, F2FS_BLKSIZE);
3625 }
3626 
3627 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3628 {
3629 	int err;
3630 	struct f2fs_sb_info *sbi = fio->sbi;
3631 	unsigned int segno;
3632 
3633 	fio->new_blkaddr = fio->old_blkaddr;
3634 	/* i/o temperature is needed for passing down write hints */
3635 	__get_segment_type(fio);
3636 
3637 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3638 
3639 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3640 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3641 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3642 			  __func__, segno);
3643 		err = -EFSCORRUPTED;
3644 		goto drop_bio;
3645 	}
3646 
3647 	if (f2fs_cp_error(sbi)) {
3648 		err = -EIO;
3649 		goto drop_bio;
3650 	}
3651 
3652 	invalidate_mapping_pages(META_MAPPING(sbi),
3653 				fio->new_blkaddr, fio->new_blkaddr);
3654 
3655 	stat_inc_inplace_blocks(fio->sbi);
3656 
3657 	if (fio->bio && !(SM_I(sbi)->ipu_policy & (1 << F2FS_IPU_NOCACHE)))
3658 		err = f2fs_merge_page_bio(fio);
3659 	else
3660 		err = f2fs_submit_page_bio(fio);
3661 	if (!err) {
3662 		f2fs_update_device_state(fio->sbi, fio->ino,
3663 						fio->new_blkaddr, 1);
3664 		f2fs_update_iostat(fio->sbi, fio->io_type, F2FS_BLKSIZE);
3665 	}
3666 
3667 	return err;
3668 drop_bio:
3669 	if (fio->bio && *(fio->bio)) {
3670 		struct bio *bio = *(fio->bio);
3671 
3672 		bio->bi_status = BLK_STS_IOERR;
3673 		bio_endio(bio);
3674 		*(fio->bio) = NULL;
3675 	}
3676 	return err;
3677 }
3678 
3679 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3680 						unsigned int segno)
3681 {
3682 	int i;
3683 
3684 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3685 		if (CURSEG_I(sbi, i)->segno == segno)
3686 			break;
3687 	}
3688 	return i;
3689 }
3690 
3691 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3692 				block_t old_blkaddr, block_t new_blkaddr,
3693 				bool recover_curseg, bool recover_newaddr,
3694 				bool from_gc)
3695 {
3696 	struct sit_info *sit_i = SIT_I(sbi);
3697 	struct curseg_info *curseg;
3698 	unsigned int segno, old_cursegno;
3699 	struct seg_entry *se;
3700 	int type;
3701 	unsigned short old_blkoff;
3702 	unsigned char old_alloc_type;
3703 
3704 	segno = GET_SEGNO(sbi, new_blkaddr);
3705 	se = get_seg_entry(sbi, segno);
3706 	type = se->type;
3707 
3708 	down_write(&SM_I(sbi)->curseg_lock);
3709 
3710 	if (!recover_curseg) {
3711 		/* for recovery flow */
3712 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3713 			if (old_blkaddr == NULL_ADDR)
3714 				type = CURSEG_COLD_DATA;
3715 			else
3716 				type = CURSEG_WARM_DATA;
3717 		}
3718 	} else {
3719 		if (IS_CURSEG(sbi, segno)) {
3720 			/* se->type is volatile as SSR allocation */
3721 			type = __f2fs_get_curseg(sbi, segno);
3722 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3723 		} else {
3724 			type = CURSEG_WARM_DATA;
3725 		}
3726 	}
3727 
3728 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3729 	curseg = CURSEG_I(sbi, type);
3730 
3731 	mutex_lock(&curseg->curseg_mutex);
3732 	down_write(&sit_i->sentry_lock);
3733 
3734 	old_cursegno = curseg->segno;
3735 	old_blkoff = curseg->next_blkoff;
3736 	old_alloc_type = curseg->alloc_type;
3737 
3738 	/* change the current segment */
3739 	if (segno != curseg->segno) {
3740 		curseg->next_segno = segno;
3741 		change_curseg(sbi, type, true);
3742 	}
3743 
3744 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3745 	__add_sum_entry(sbi, type, sum);
3746 
3747 	if (!recover_curseg || recover_newaddr) {
3748 		if (!from_gc)
3749 			update_segment_mtime(sbi, new_blkaddr, 0);
3750 		update_sit_entry(sbi, new_blkaddr, 1);
3751 	}
3752 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3753 		invalidate_mapping_pages(META_MAPPING(sbi),
3754 					old_blkaddr, old_blkaddr);
3755 		f2fs_invalidate_compress_page(sbi, old_blkaddr);
3756 		if (!from_gc)
3757 			update_segment_mtime(sbi, old_blkaddr, 0);
3758 		update_sit_entry(sbi, old_blkaddr, -1);
3759 	}
3760 
3761 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3762 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3763 
3764 	locate_dirty_segment(sbi, old_cursegno);
3765 
3766 	if (recover_curseg) {
3767 		if (old_cursegno != curseg->segno) {
3768 			curseg->next_segno = old_cursegno;
3769 			change_curseg(sbi, type, true);
3770 		}
3771 		curseg->next_blkoff = old_blkoff;
3772 		curseg->alloc_type = old_alloc_type;
3773 	}
3774 
3775 	up_write(&sit_i->sentry_lock);
3776 	mutex_unlock(&curseg->curseg_mutex);
3777 	up_write(&SM_I(sbi)->curseg_lock);
3778 }
3779 
3780 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3781 				block_t old_addr, block_t new_addr,
3782 				unsigned char version, bool recover_curseg,
3783 				bool recover_newaddr)
3784 {
3785 	struct f2fs_summary sum;
3786 
3787 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3788 
3789 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3790 					recover_curseg, recover_newaddr, false);
3791 
3792 	f2fs_update_data_blkaddr(dn, new_addr);
3793 }
3794 
3795 void f2fs_wait_on_page_writeback(struct page *page,
3796 				enum page_type type, bool ordered, bool locked)
3797 {
3798 	if (PageWriteback(page)) {
3799 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3800 
3801 		/* submit cached LFS IO */
3802 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3803 		/* sbumit cached IPU IO */
3804 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3805 		if (ordered) {
3806 			wait_on_page_writeback(page);
3807 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3808 		} else {
3809 			wait_for_stable_page(page);
3810 		}
3811 	}
3812 }
3813 
3814 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3815 {
3816 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3817 	struct page *cpage;
3818 
3819 	if (!f2fs_post_read_required(inode))
3820 		return;
3821 
3822 	if (!__is_valid_data_blkaddr(blkaddr))
3823 		return;
3824 
3825 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3826 	if (cpage) {
3827 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3828 		f2fs_put_page(cpage, 1);
3829 	}
3830 }
3831 
3832 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3833 								block_t len)
3834 {
3835 	block_t i;
3836 
3837 	for (i = 0; i < len; i++)
3838 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3839 }
3840 
3841 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3842 {
3843 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3844 	struct curseg_info *seg_i;
3845 	unsigned char *kaddr;
3846 	struct page *page;
3847 	block_t start;
3848 	int i, j, offset;
3849 
3850 	start = start_sum_block(sbi);
3851 
3852 	page = f2fs_get_meta_page(sbi, start++);
3853 	if (IS_ERR(page))
3854 		return PTR_ERR(page);
3855 	kaddr = (unsigned char *)page_address(page);
3856 
3857 	/* Step 1: restore nat cache */
3858 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3859 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3860 
3861 	/* Step 2: restore sit cache */
3862 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3863 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3864 	offset = 2 * SUM_JOURNAL_SIZE;
3865 
3866 	/* Step 3: restore summary entries */
3867 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3868 		unsigned short blk_off;
3869 		unsigned int segno;
3870 
3871 		seg_i = CURSEG_I(sbi, i);
3872 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3873 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3874 		seg_i->next_segno = segno;
3875 		reset_curseg(sbi, i, 0);
3876 		seg_i->alloc_type = ckpt->alloc_type[i];
3877 		seg_i->next_blkoff = blk_off;
3878 
3879 		if (seg_i->alloc_type == SSR)
3880 			blk_off = sbi->blocks_per_seg;
3881 
3882 		for (j = 0; j < blk_off; j++) {
3883 			struct f2fs_summary *s;
3884 
3885 			s = (struct f2fs_summary *)(kaddr + offset);
3886 			seg_i->sum_blk->entries[j] = *s;
3887 			offset += SUMMARY_SIZE;
3888 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3889 						SUM_FOOTER_SIZE)
3890 				continue;
3891 
3892 			f2fs_put_page(page, 1);
3893 			page = NULL;
3894 
3895 			page = f2fs_get_meta_page(sbi, start++);
3896 			if (IS_ERR(page))
3897 				return PTR_ERR(page);
3898 			kaddr = (unsigned char *)page_address(page);
3899 			offset = 0;
3900 		}
3901 	}
3902 	f2fs_put_page(page, 1);
3903 	return 0;
3904 }
3905 
3906 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3907 {
3908 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3909 	struct f2fs_summary_block *sum;
3910 	struct curseg_info *curseg;
3911 	struct page *new;
3912 	unsigned short blk_off;
3913 	unsigned int segno = 0;
3914 	block_t blk_addr = 0;
3915 	int err = 0;
3916 
3917 	/* get segment number and block addr */
3918 	if (IS_DATASEG(type)) {
3919 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3920 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3921 							CURSEG_HOT_DATA]);
3922 		if (__exist_node_summaries(sbi))
3923 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3924 		else
3925 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3926 	} else {
3927 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3928 							CURSEG_HOT_NODE]);
3929 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3930 							CURSEG_HOT_NODE]);
3931 		if (__exist_node_summaries(sbi))
3932 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3933 							type - CURSEG_HOT_NODE);
3934 		else
3935 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3936 	}
3937 
3938 	new = f2fs_get_meta_page(sbi, blk_addr);
3939 	if (IS_ERR(new))
3940 		return PTR_ERR(new);
3941 	sum = (struct f2fs_summary_block *)page_address(new);
3942 
3943 	if (IS_NODESEG(type)) {
3944 		if (__exist_node_summaries(sbi)) {
3945 			struct f2fs_summary *ns = &sum->entries[0];
3946 			int i;
3947 
3948 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
3949 				ns->version = 0;
3950 				ns->ofs_in_node = 0;
3951 			}
3952 		} else {
3953 			err = f2fs_restore_node_summary(sbi, segno, sum);
3954 			if (err)
3955 				goto out;
3956 		}
3957 	}
3958 
3959 	/* set uncompleted segment to curseg */
3960 	curseg = CURSEG_I(sbi, type);
3961 	mutex_lock(&curseg->curseg_mutex);
3962 
3963 	/* update journal info */
3964 	down_write(&curseg->journal_rwsem);
3965 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3966 	up_write(&curseg->journal_rwsem);
3967 
3968 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3969 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3970 	curseg->next_segno = segno;
3971 	reset_curseg(sbi, type, 0);
3972 	curseg->alloc_type = ckpt->alloc_type[type];
3973 	curseg->next_blkoff = blk_off;
3974 	mutex_unlock(&curseg->curseg_mutex);
3975 out:
3976 	f2fs_put_page(new, 1);
3977 	return err;
3978 }
3979 
3980 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3981 {
3982 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3983 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3984 	int type = CURSEG_HOT_DATA;
3985 	int err;
3986 
3987 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
3988 		int npages = f2fs_npages_for_summary_flush(sbi, true);
3989 
3990 		if (npages >= 2)
3991 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
3992 							META_CP, true);
3993 
3994 		/* restore for compacted data summary */
3995 		err = read_compacted_summaries(sbi);
3996 		if (err)
3997 			return err;
3998 		type = CURSEG_HOT_NODE;
3999 	}
4000 
4001 	if (__exist_node_summaries(sbi))
4002 		f2fs_ra_meta_pages(sbi,
4003 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4004 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4005 
4006 	for (; type <= CURSEG_COLD_NODE; type++) {
4007 		err = read_normal_summaries(sbi, type);
4008 		if (err)
4009 			return err;
4010 	}
4011 
4012 	/* sanity check for summary blocks */
4013 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4014 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4015 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4016 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4017 		return -EINVAL;
4018 	}
4019 
4020 	return 0;
4021 }
4022 
4023 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4024 {
4025 	struct page *page;
4026 	unsigned char *kaddr;
4027 	struct f2fs_summary *summary;
4028 	struct curseg_info *seg_i;
4029 	int written_size = 0;
4030 	int i, j;
4031 
4032 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4033 	kaddr = (unsigned char *)page_address(page);
4034 	memset(kaddr, 0, PAGE_SIZE);
4035 
4036 	/* Step 1: write nat cache */
4037 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4038 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4039 	written_size += SUM_JOURNAL_SIZE;
4040 
4041 	/* Step 2: write sit cache */
4042 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4043 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4044 	written_size += SUM_JOURNAL_SIZE;
4045 
4046 	/* Step 3: write summary entries */
4047 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4048 		unsigned short blkoff;
4049 
4050 		seg_i = CURSEG_I(sbi, i);
4051 		if (sbi->ckpt->alloc_type[i] == SSR)
4052 			blkoff = sbi->blocks_per_seg;
4053 		else
4054 			blkoff = curseg_blkoff(sbi, i);
4055 
4056 		for (j = 0; j < blkoff; j++) {
4057 			if (!page) {
4058 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4059 				kaddr = (unsigned char *)page_address(page);
4060 				memset(kaddr, 0, PAGE_SIZE);
4061 				written_size = 0;
4062 			}
4063 			summary = (struct f2fs_summary *)(kaddr + written_size);
4064 			*summary = seg_i->sum_blk->entries[j];
4065 			written_size += SUMMARY_SIZE;
4066 
4067 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4068 							SUM_FOOTER_SIZE)
4069 				continue;
4070 
4071 			set_page_dirty(page);
4072 			f2fs_put_page(page, 1);
4073 			page = NULL;
4074 		}
4075 	}
4076 	if (page) {
4077 		set_page_dirty(page);
4078 		f2fs_put_page(page, 1);
4079 	}
4080 }
4081 
4082 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4083 					block_t blkaddr, int type)
4084 {
4085 	int i, end;
4086 
4087 	if (IS_DATASEG(type))
4088 		end = type + NR_CURSEG_DATA_TYPE;
4089 	else
4090 		end = type + NR_CURSEG_NODE_TYPE;
4091 
4092 	for (i = type; i < end; i++)
4093 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4094 }
4095 
4096 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4097 {
4098 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4099 		write_compacted_summaries(sbi, start_blk);
4100 	else
4101 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4102 }
4103 
4104 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4105 {
4106 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4107 }
4108 
4109 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4110 					unsigned int val, int alloc)
4111 {
4112 	int i;
4113 
4114 	if (type == NAT_JOURNAL) {
4115 		for (i = 0; i < nats_in_cursum(journal); i++) {
4116 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4117 				return i;
4118 		}
4119 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4120 			return update_nats_in_cursum(journal, 1);
4121 	} else if (type == SIT_JOURNAL) {
4122 		for (i = 0; i < sits_in_cursum(journal); i++)
4123 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4124 				return i;
4125 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4126 			return update_sits_in_cursum(journal, 1);
4127 	}
4128 	return -1;
4129 }
4130 
4131 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4132 					unsigned int segno)
4133 {
4134 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4135 }
4136 
4137 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4138 					unsigned int start)
4139 {
4140 	struct sit_info *sit_i = SIT_I(sbi);
4141 	struct page *page;
4142 	pgoff_t src_off, dst_off;
4143 
4144 	src_off = current_sit_addr(sbi, start);
4145 	dst_off = next_sit_addr(sbi, src_off);
4146 
4147 	page = f2fs_grab_meta_page(sbi, dst_off);
4148 	seg_info_to_sit_page(sbi, page, start);
4149 
4150 	set_page_dirty(page);
4151 	set_to_next_sit(sit_i, start);
4152 
4153 	return page;
4154 }
4155 
4156 static struct sit_entry_set *grab_sit_entry_set(void)
4157 {
4158 	struct sit_entry_set *ses =
4159 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4160 						GFP_NOFS, true, NULL);
4161 
4162 	ses->entry_cnt = 0;
4163 	INIT_LIST_HEAD(&ses->set_list);
4164 	return ses;
4165 }
4166 
4167 static void release_sit_entry_set(struct sit_entry_set *ses)
4168 {
4169 	list_del(&ses->set_list);
4170 	kmem_cache_free(sit_entry_set_slab, ses);
4171 }
4172 
4173 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4174 						struct list_head *head)
4175 {
4176 	struct sit_entry_set *next = ses;
4177 
4178 	if (list_is_last(&ses->set_list, head))
4179 		return;
4180 
4181 	list_for_each_entry_continue(next, head, set_list)
4182 		if (ses->entry_cnt <= next->entry_cnt)
4183 			break;
4184 
4185 	list_move_tail(&ses->set_list, &next->set_list);
4186 }
4187 
4188 static void add_sit_entry(unsigned int segno, struct list_head *head)
4189 {
4190 	struct sit_entry_set *ses;
4191 	unsigned int start_segno = START_SEGNO(segno);
4192 
4193 	list_for_each_entry(ses, head, set_list) {
4194 		if (ses->start_segno == start_segno) {
4195 			ses->entry_cnt++;
4196 			adjust_sit_entry_set(ses, head);
4197 			return;
4198 		}
4199 	}
4200 
4201 	ses = grab_sit_entry_set();
4202 
4203 	ses->start_segno = start_segno;
4204 	ses->entry_cnt++;
4205 	list_add(&ses->set_list, head);
4206 }
4207 
4208 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4209 {
4210 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4211 	struct list_head *set_list = &sm_info->sit_entry_set;
4212 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4213 	unsigned int segno;
4214 
4215 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4216 		add_sit_entry(segno, set_list);
4217 }
4218 
4219 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4220 {
4221 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4222 	struct f2fs_journal *journal = curseg->journal;
4223 	int i;
4224 
4225 	down_write(&curseg->journal_rwsem);
4226 	for (i = 0; i < sits_in_cursum(journal); i++) {
4227 		unsigned int segno;
4228 		bool dirtied;
4229 
4230 		segno = le32_to_cpu(segno_in_journal(journal, i));
4231 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4232 
4233 		if (!dirtied)
4234 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4235 	}
4236 	update_sits_in_cursum(journal, -i);
4237 	up_write(&curseg->journal_rwsem);
4238 }
4239 
4240 /*
4241  * CP calls this function, which flushes SIT entries including sit_journal,
4242  * and moves prefree segs to free segs.
4243  */
4244 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4245 {
4246 	struct sit_info *sit_i = SIT_I(sbi);
4247 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4248 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4249 	struct f2fs_journal *journal = curseg->journal;
4250 	struct sit_entry_set *ses, *tmp;
4251 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4252 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4253 	struct seg_entry *se;
4254 
4255 	down_write(&sit_i->sentry_lock);
4256 
4257 	if (!sit_i->dirty_sentries)
4258 		goto out;
4259 
4260 	/*
4261 	 * add and account sit entries of dirty bitmap in sit entry
4262 	 * set temporarily
4263 	 */
4264 	add_sits_in_set(sbi);
4265 
4266 	/*
4267 	 * if there are no enough space in journal to store dirty sit
4268 	 * entries, remove all entries from journal and add and account
4269 	 * them in sit entry set.
4270 	 */
4271 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4272 								!to_journal)
4273 		remove_sits_in_journal(sbi);
4274 
4275 	/*
4276 	 * there are two steps to flush sit entries:
4277 	 * #1, flush sit entries to journal in current cold data summary block.
4278 	 * #2, flush sit entries to sit page.
4279 	 */
4280 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4281 		struct page *page = NULL;
4282 		struct f2fs_sit_block *raw_sit = NULL;
4283 		unsigned int start_segno = ses->start_segno;
4284 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4285 						(unsigned long)MAIN_SEGS(sbi));
4286 		unsigned int segno = start_segno;
4287 
4288 		if (to_journal &&
4289 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4290 			to_journal = false;
4291 
4292 		if (to_journal) {
4293 			down_write(&curseg->journal_rwsem);
4294 		} else {
4295 			page = get_next_sit_page(sbi, start_segno);
4296 			raw_sit = page_address(page);
4297 		}
4298 
4299 		/* flush dirty sit entries in region of current sit set */
4300 		for_each_set_bit_from(segno, bitmap, end) {
4301 			int offset, sit_offset;
4302 
4303 			se = get_seg_entry(sbi, segno);
4304 #ifdef CONFIG_F2FS_CHECK_FS
4305 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4306 						SIT_VBLOCK_MAP_SIZE))
4307 				f2fs_bug_on(sbi, 1);
4308 #endif
4309 
4310 			/* add discard candidates */
4311 			if (!(cpc->reason & CP_DISCARD)) {
4312 				cpc->trim_start = segno;
4313 				add_discard_addrs(sbi, cpc, false);
4314 			}
4315 
4316 			if (to_journal) {
4317 				offset = f2fs_lookup_journal_in_cursum(journal,
4318 							SIT_JOURNAL, segno, 1);
4319 				f2fs_bug_on(sbi, offset < 0);
4320 				segno_in_journal(journal, offset) =
4321 							cpu_to_le32(segno);
4322 				seg_info_to_raw_sit(se,
4323 					&sit_in_journal(journal, offset));
4324 				check_block_count(sbi, segno,
4325 					&sit_in_journal(journal, offset));
4326 			} else {
4327 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4328 				seg_info_to_raw_sit(se,
4329 						&raw_sit->entries[sit_offset]);
4330 				check_block_count(sbi, segno,
4331 						&raw_sit->entries[sit_offset]);
4332 			}
4333 
4334 			__clear_bit(segno, bitmap);
4335 			sit_i->dirty_sentries--;
4336 			ses->entry_cnt--;
4337 		}
4338 
4339 		if (to_journal)
4340 			up_write(&curseg->journal_rwsem);
4341 		else
4342 			f2fs_put_page(page, 1);
4343 
4344 		f2fs_bug_on(sbi, ses->entry_cnt);
4345 		release_sit_entry_set(ses);
4346 	}
4347 
4348 	f2fs_bug_on(sbi, !list_empty(head));
4349 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4350 out:
4351 	if (cpc->reason & CP_DISCARD) {
4352 		__u64 trim_start = cpc->trim_start;
4353 
4354 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4355 			add_discard_addrs(sbi, cpc, false);
4356 
4357 		cpc->trim_start = trim_start;
4358 	}
4359 	up_write(&sit_i->sentry_lock);
4360 
4361 	set_prefree_as_free_segments(sbi);
4362 }
4363 
4364 static int build_sit_info(struct f2fs_sb_info *sbi)
4365 {
4366 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4367 	struct sit_info *sit_i;
4368 	unsigned int sit_segs, start;
4369 	char *src_bitmap, *bitmap;
4370 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4371 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4372 
4373 	/* allocate memory for SIT information */
4374 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4375 	if (!sit_i)
4376 		return -ENOMEM;
4377 
4378 	SM_I(sbi)->sit_info = sit_i;
4379 
4380 	sit_i->sentries =
4381 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4382 					      MAIN_SEGS(sbi)),
4383 			      GFP_KERNEL);
4384 	if (!sit_i->sentries)
4385 		return -ENOMEM;
4386 
4387 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4388 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4389 								GFP_KERNEL);
4390 	if (!sit_i->dirty_sentries_bitmap)
4391 		return -ENOMEM;
4392 
4393 #ifdef CONFIG_F2FS_CHECK_FS
4394 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4395 #else
4396 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4397 #endif
4398 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4399 	if (!sit_i->bitmap)
4400 		return -ENOMEM;
4401 
4402 	bitmap = sit_i->bitmap;
4403 
4404 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4405 		sit_i->sentries[start].cur_valid_map = bitmap;
4406 		bitmap += SIT_VBLOCK_MAP_SIZE;
4407 
4408 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4409 		bitmap += SIT_VBLOCK_MAP_SIZE;
4410 
4411 #ifdef CONFIG_F2FS_CHECK_FS
4412 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4413 		bitmap += SIT_VBLOCK_MAP_SIZE;
4414 #endif
4415 
4416 		if (discard_map) {
4417 			sit_i->sentries[start].discard_map = bitmap;
4418 			bitmap += SIT_VBLOCK_MAP_SIZE;
4419 		}
4420 	}
4421 
4422 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4423 	if (!sit_i->tmp_map)
4424 		return -ENOMEM;
4425 
4426 	if (__is_large_section(sbi)) {
4427 		sit_i->sec_entries =
4428 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4429 						      MAIN_SECS(sbi)),
4430 				      GFP_KERNEL);
4431 		if (!sit_i->sec_entries)
4432 			return -ENOMEM;
4433 	}
4434 
4435 	/* get information related with SIT */
4436 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4437 
4438 	/* setup SIT bitmap from ckeckpoint pack */
4439 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4440 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4441 
4442 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4443 	if (!sit_i->sit_bitmap)
4444 		return -ENOMEM;
4445 
4446 #ifdef CONFIG_F2FS_CHECK_FS
4447 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4448 					sit_bitmap_size, GFP_KERNEL);
4449 	if (!sit_i->sit_bitmap_mir)
4450 		return -ENOMEM;
4451 
4452 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4453 					main_bitmap_size, GFP_KERNEL);
4454 	if (!sit_i->invalid_segmap)
4455 		return -ENOMEM;
4456 #endif
4457 
4458 	/* init SIT information */
4459 	sit_i->s_ops = &default_salloc_ops;
4460 
4461 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4462 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4463 	sit_i->written_valid_blocks = 0;
4464 	sit_i->bitmap_size = sit_bitmap_size;
4465 	sit_i->dirty_sentries = 0;
4466 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4467 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4468 	sit_i->mounted_time = ktime_get_boottime_seconds();
4469 	init_rwsem(&sit_i->sentry_lock);
4470 	return 0;
4471 }
4472 
4473 static int build_free_segmap(struct f2fs_sb_info *sbi)
4474 {
4475 	struct free_segmap_info *free_i;
4476 	unsigned int bitmap_size, sec_bitmap_size;
4477 
4478 	/* allocate memory for free segmap information */
4479 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4480 	if (!free_i)
4481 		return -ENOMEM;
4482 
4483 	SM_I(sbi)->free_info = free_i;
4484 
4485 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4486 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4487 	if (!free_i->free_segmap)
4488 		return -ENOMEM;
4489 
4490 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4491 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4492 	if (!free_i->free_secmap)
4493 		return -ENOMEM;
4494 
4495 	/* set all segments as dirty temporarily */
4496 	memset(free_i->free_segmap, 0xff, bitmap_size);
4497 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4498 
4499 	/* init free segmap information */
4500 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4501 	free_i->free_segments = 0;
4502 	free_i->free_sections = 0;
4503 	spin_lock_init(&free_i->segmap_lock);
4504 	return 0;
4505 }
4506 
4507 static int build_curseg(struct f2fs_sb_info *sbi)
4508 {
4509 	struct curseg_info *array;
4510 	int i;
4511 
4512 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4513 					sizeof(*array)), GFP_KERNEL);
4514 	if (!array)
4515 		return -ENOMEM;
4516 
4517 	SM_I(sbi)->curseg_array = array;
4518 
4519 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4520 		mutex_init(&array[i].curseg_mutex);
4521 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4522 		if (!array[i].sum_blk)
4523 			return -ENOMEM;
4524 		init_rwsem(&array[i].journal_rwsem);
4525 		array[i].journal = f2fs_kzalloc(sbi,
4526 				sizeof(struct f2fs_journal), GFP_KERNEL);
4527 		if (!array[i].journal)
4528 			return -ENOMEM;
4529 		if (i < NR_PERSISTENT_LOG)
4530 			array[i].seg_type = CURSEG_HOT_DATA + i;
4531 		else if (i == CURSEG_COLD_DATA_PINNED)
4532 			array[i].seg_type = CURSEG_COLD_DATA;
4533 		else if (i == CURSEG_ALL_DATA_ATGC)
4534 			array[i].seg_type = CURSEG_COLD_DATA;
4535 		array[i].segno = NULL_SEGNO;
4536 		array[i].next_blkoff = 0;
4537 		array[i].inited = false;
4538 	}
4539 	return restore_curseg_summaries(sbi);
4540 }
4541 
4542 static int build_sit_entries(struct f2fs_sb_info *sbi)
4543 {
4544 	struct sit_info *sit_i = SIT_I(sbi);
4545 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4546 	struct f2fs_journal *journal = curseg->journal;
4547 	struct seg_entry *se;
4548 	struct f2fs_sit_entry sit;
4549 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4550 	unsigned int i, start, end;
4551 	unsigned int readed, start_blk = 0;
4552 	int err = 0;
4553 	block_t total_node_blocks = 0;
4554 
4555 	do {
4556 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4557 							META_SIT, true);
4558 
4559 		start = start_blk * sit_i->sents_per_block;
4560 		end = (start_blk + readed) * sit_i->sents_per_block;
4561 
4562 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4563 			struct f2fs_sit_block *sit_blk;
4564 			struct page *page;
4565 
4566 			se = &sit_i->sentries[start];
4567 			page = get_current_sit_page(sbi, start);
4568 			if (IS_ERR(page))
4569 				return PTR_ERR(page);
4570 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4571 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4572 			f2fs_put_page(page, 1);
4573 
4574 			err = check_block_count(sbi, start, &sit);
4575 			if (err)
4576 				return err;
4577 			seg_info_from_raw_sit(se, &sit);
4578 			if (IS_NODESEG(se->type))
4579 				total_node_blocks += se->valid_blocks;
4580 
4581 			if (f2fs_block_unit_discard(sbi)) {
4582 				/* build discard map only one time */
4583 				if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4584 					memset(se->discard_map, 0xff,
4585 						SIT_VBLOCK_MAP_SIZE);
4586 				} else {
4587 					memcpy(se->discard_map,
4588 						se->cur_valid_map,
4589 						SIT_VBLOCK_MAP_SIZE);
4590 					sbi->discard_blks +=
4591 						sbi->blocks_per_seg -
4592 						se->valid_blocks;
4593 				}
4594 			}
4595 
4596 			if (__is_large_section(sbi))
4597 				get_sec_entry(sbi, start)->valid_blocks +=
4598 							se->valid_blocks;
4599 		}
4600 		start_blk += readed;
4601 	} while (start_blk < sit_blk_cnt);
4602 
4603 	down_read(&curseg->journal_rwsem);
4604 	for (i = 0; i < sits_in_cursum(journal); i++) {
4605 		unsigned int old_valid_blocks;
4606 
4607 		start = le32_to_cpu(segno_in_journal(journal, i));
4608 		if (start >= MAIN_SEGS(sbi)) {
4609 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4610 				 start);
4611 			err = -EFSCORRUPTED;
4612 			break;
4613 		}
4614 
4615 		se = &sit_i->sentries[start];
4616 		sit = sit_in_journal(journal, i);
4617 
4618 		old_valid_blocks = se->valid_blocks;
4619 		if (IS_NODESEG(se->type))
4620 			total_node_blocks -= old_valid_blocks;
4621 
4622 		err = check_block_count(sbi, start, &sit);
4623 		if (err)
4624 			break;
4625 		seg_info_from_raw_sit(se, &sit);
4626 		if (IS_NODESEG(se->type))
4627 			total_node_blocks += se->valid_blocks;
4628 
4629 		if (f2fs_block_unit_discard(sbi)) {
4630 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4631 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4632 			} else {
4633 				memcpy(se->discard_map, se->cur_valid_map,
4634 							SIT_VBLOCK_MAP_SIZE);
4635 				sbi->discard_blks += old_valid_blocks;
4636 				sbi->discard_blks -= se->valid_blocks;
4637 			}
4638 		}
4639 
4640 		if (__is_large_section(sbi)) {
4641 			get_sec_entry(sbi, start)->valid_blocks +=
4642 							se->valid_blocks;
4643 			get_sec_entry(sbi, start)->valid_blocks -=
4644 							old_valid_blocks;
4645 		}
4646 	}
4647 	up_read(&curseg->journal_rwsem);
4648 
4649 	if (!err && total_node_blocks != valid_node_count(sbi)) {
4650 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4651 			 total_node_blocks, valid_node_count(sbi));
4652 		err = -EFSCORRUPTED;
4653 	}
4654 
4655 	return err;
4656 }
4657 
4658 static void init_free_segmap(struct f2fs_sb_info *sbi)
4659 {
4660 	unsigned int start;
4661 	int type;
4662 	struct seg_entry *sentry;
4663 
4664 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4665 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4666 			continue;
4667 		sentry = get_seg_entry(sbi, start);
4668 		if (!sentry->valid_blocks)
4669 			__set_free(sbi, start);
4670 		else
4671 			SIT_I(sbi)->written_valid_blocks +=
4672 						sentry->valid_blocks;
4673 	}
4674 
4675 	/* set use the current segments */
4676 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4677 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4678 
4679 		__set_test_and_inuse(sbi, curseg_t->segno);
4680 	}
4681 }
4682 
4683 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4684 {
4685 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4686 	struct free_segmap_info *free_i = FREE_I(sbi);
4687 	unsigned int segno = 0, offset = 0, secno;
4688 	block_t valid_blocks, usable_blks_in_seg;
4689 	block_t blks_per_sec = BLKS_PER_SEC(sbi);
4690 
4691 	while (1) {
4692 		/* find dirty segment based on free segmap */
4693 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4694 		if (segno >= MAIN_SEGS(sbi))
4695 			break;
4696 		offset = segno + 1;
4697 		valid_blocks = get_valid_blocks(sbi, segno, false);
4698 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4699 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4700 			continue;
4701 		if (valid_blocks > usable_blks_in_seg) {
4702 			f2fs_bug_on(sbi, 1);
4703 			continue;
4704 		}
4705 		mutex_lock(&dirty_i->seglist_lock);
4706 		__locate_dirty_segment(sbi, segno, DIRTY);
4707 		mutex_unlock(&dirty_i->seglist_lock);
4708 	}
4709 
4710 	if (!__is_large_section(sbi))
4711 		return;
4712 
4713 	mutex_lock(&dirty_i->seglist_lock);
4714 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
4715 		valid_blocks = get_valid_blocks(sbi, segno, true);
4716 		secno = GET_SEC_FROM_SEG(sbi, segno);
4717 
4718 		if (!valid_blocks || valid_blocks == blks_per_sec)
4719 			continue;
4720 		if (IS_CURSEC(sbi, secno))
4721 			continue;
4722 		set_bit(secno, dirty_i->dirty_secmap);
4723 	}
4724 	mutex_unlock(&dirty_i->seglist_lock);
4725 }
4726 
4727 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4728 {
4729 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4730 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4731 
4732 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4733 	if (!dirty_i->victim_secmap)
4734 		return -ENOMEM;
4735 	return 0;
4736 }
4737 
4738 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4739 {
4740 	struct dirty_seglist_info *dirty_i;
4741 	unsigned int bitmap_size, i;
4742 
4743 	/* allocate memory for dirty segments list information */
4744 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4745 								GFP_KERNEL);
4746 	if (!dirty_i)
4747 		return -ENOMEM;
4748 
4749 	SM_I(sbi)->dirty_info = dirty_i;
4750 	mutex_init(&dirty_i->seglist_lock);
4751 
4752 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4753 
4754 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4755 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4756 								GFP_KERNEL);
4757 		if (!dirty_i->dirty_segmap[i])
4758 			return -ENOMEM;
4759 	}
4760 
4761 	if (__is_large_section(sbi)) {
4762 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4763 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4764 						bitmap_size, GFP_KERNEL);
4765 		if (!dirty_i->dirty_secmap)
4766 			return -ENOMEM;
4767 	}
4768 
4769 	init_dirty_segmap(sbi);
4770 	return init_victim_secmap(sbi);
4771 }
4772 
4773 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4774 {
4775 	int i;
4776 
4777 	/*
4778 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4779 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4780 	 */
4781 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4782 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4783 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4784 		unsigned int blkofs = curseg->next_blkoff;
4785 
4786 		if (f2fs_sb_has_readonly(sbi) &&
4787 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4788 			continue;
4789 
4790 		sanity_check_seg_type(sbi, curseg->seg_type);
4791 
4792 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4793 			goto out;
4794 
4795 		if (curseg->alloc_type == SSR)
4796 			continue;
4797 
4798 		for (blkofs += 1; blkofs < sbi->blocks_per_seg; blkofs++) {
4799 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4800 				continue;
4801 out:
4802 			f2fs_err(sbi,
4803 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4804 				 i, curseg->segno, curseg->alloc_type,
4805 				 curseg->next_blkoff, blkofs);
4806 			return -EFSCORRUPTED;
4807 		}
4808 	}
4809 	return 0;
4810 }
4811 
4812 #ifdef CONFIG_BLK_DEV_ZONED
4813 
4814 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4815 				    struct f2fs_dev_info *fdev,
4816 				    struct blk_zone *zone)
4817 {
4818 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4819 	block_t zone_block, wp_block, last_valid_block;
4820 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4821 	int i, s, b, ret;
4822 	struct seg_entry *se;
4823 
4824 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4825 		return 0;
4826 
4827 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4828 	wp_segno = GET_SEGNO(sbi, wp_block);
4829 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4830 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4831 	zone_segno = GET_SEGNO(sbi, zone_block);
4832 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4833 
4834 	if (zone_segno >= MAIN_SEGS(sbi))
4835 		return 0;
4836 
4837 	/*
4838 	 * Skip check of zones cursegs point to, since
4839 	 * fix_curseg_write_pointer() checks them.
4840 	 */
4841 	for (i = 0; i < NO_CHECK_TYPE; i++)
4842 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4843 						   CURSEG_I(sbi, i)->segno))
4844 			return 0;
4845 
4846 	/*
4847 	 * Get last valid block of the zone.
4848 	 */
4849 	last_valid_block = zone_block - 1;
4850 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4851 		segno = zone_segno + s;
4852 		se = get_seg_entry(sbi, segno);
4853 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4854 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4855 				last_valid_block = START_BLOCK(sbi, segno) + b;
4856 				break;
4857 			}
4858 		if (last_valid_block >= zone_block)
4859 			break;
4860 	}
4861 
4862 	/*
4863 	 * If last valid block is beyond the write pointer, report the
4864 	 * inconsistency. This inconsistency does not cause write error
4865 	 * because the zone will not be selected for write operation until
4866 	 * it get discarded. Just report it.
4867 	 */
4868 	if (last_valid_block >= wp_block) {
4869 		f2fs_notice(sbi, "Valid block beyond write pointer: "
4870 			    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4871 			    GET_SEGNO(sbi, last_valid_block),
4872 			    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4873 			    wp_segno, wp_blkoff);
4874 		return 0;
4875 	}
4876 
4877 	/*
4878 	 * If there is no valid block in the zone and if write pointer is
4879 	 * not at zone start, reset the write pointer.
4880 	 */
4881 	if (last_valid_block + 1 == zone_block && zone->wp != zone->start) {
4882 		f2fs_notice(sbi,
4883 			    "Zone without valid block has non-zero write "
4884 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4885 			    wp_segno, wp_blkoff);
4886 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4887 					zone->len >> log_sectors_per_block);
4888 		if (ret) {
4889 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4890 				 fdev->path, ret);
4891 			return ret;
4892 		}
4893 	}
4894 
4895 	return 0;
4896 }
4897 
4898 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4899 						  block_t zone_blkaddr)
4900 {
4901 	int i;
4902 
4903 	for (i = 0; i < sbi->s_ndevs; i++) {
4904 		if (!bdev_is_zoned(FDEV(i).bdev))
4905 			continue;
4906 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4907 				zone_blkaddr <= FDEV(i).end_blk))
4908 			return &FDEV(i);
4909 	}
4910 
4911 	return NULL;
4912 }
4913 
4914 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4915 			      void *data)
4916 {
4917 	memcpy(data, zone, sizeof(struct blk_zone));
4918 	return 0;
4919 }
4920 
4921 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4922 {
4923 	struct curseg_info *cs = CURSEG_I(sbi, type);
4924 	struct f2fs_dev_info *zbd;
4925 	struct blk_zone zone;
4926 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4927 	block_t cs_zone_block, wp_block;
4928 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4929 	sector_t zone_sector;
4930 	int err;
4931 
4932 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4933 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4934 
4935 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4936 	if (!zbd)
4937 		return 0;
4938 
4939 	/* report zone for the sector the curseg points to */
4940 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4941 		<< log_sectors_per_block;
4942 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4943 				  report_one_zone_cb, &zone);
4944 	if (err != 1) {
4945 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4946 			 zbd->path, err);
4947 		return err;
4948 	}
4949 
4950 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4951 		return 0;
4952 
4953 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
4954 	wp_segno = GET_SEGNO(sbi, wp_block);
4955 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4956 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
4957 
4958 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
4959 		wp_sector_off == 0)
4960 		return 0;
4961 
4962 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
4963 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
4964 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
4965 
4966 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
4967 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
4968 
4969 	f2fs_allocate_new_section(sbi, type, true);
4970 
4971 	/* check consistency of the zone curseg pointed to */
4972 	if (check_zone_write_pointer(sbi, zbd, &zone))
4973 		return -EIO;
4974 
4975 	/* check newly assigned zone */
4976 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
4977 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
4978 
4979 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
4980 	if (!zbd)
4981 		return 0;
4982 
4983 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
4984 		<< log_sectors_per_block;
4985 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
4986 				  report_one_zone_cb, &zone);
4987 	if (err != 1) {
4988 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
4989 			 zbd->path, err);
4990 		return err;
4991 	}
4992 
4993 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4994 		return 0;
4995 
4996 	if (zone.wp != zone.start) {
4997 		f2fs_notice(sbi,
4998 			    "New zone for curseg[%d] is not yet discarded. "
4999 			    "Reset the zone: curseg[0x%x,0x%x]",
5000 			    type, cs->segno, cs->next_blkoff);
5001 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,
5002 				zone_sector >> log_sectors_per_block,
5003 				zone.len >> log_sectors_per_block);
5004 		if (err) {
5005 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5006 				 zbd->path, err);
5007 			return err;
5008 		}
5009 	}
5010 
5011 	return 0;
5012 }
5013 
5014 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5015 {
5016 	int i, ret;
5017 
5018 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5019 		ret = fix_curseg_write_pointer(sbi, i);
5020 		if (ret)
5021 			return ret;
5022 	}
5023 
5024 	return 0;
5025 }
5026 
5027 struct check_zone_write_pointer_args {
5028 	struct f2fs_sb_info *sbi;
5029 	struct f2fs_dev_info *fdev;
5030 };
5031 
5032 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5033 				      void *data)
5034 {
5035 	struct check_zone_write_pointer_args *args;
5036 
5037 	args = (struct check_zone_write_pointer_args *)data;
5038 
5039 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5040 }
5041 
5042 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5043 {
5044 	int i, ret;
5045 	struct check_zone_write_pointer_args args;
5046 
5047 	for (i = 0; i < sbi->s_ndevs; i++) {
5048 		if (!bdev_is_zoned(FDEV(i).bdev))
5049 			continue;
5050 
5051 		args.sbi = sbi;
5052 		args.fdev = &FDEV(i);
5053 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5054 					  check_zone_write_pointer_cb, &args);
5055 		if (ret < 0)
5056 			return ret;
5057 	}
5058 
5059 	return 0;
5060 }
5061 
5062 static bool is_conv_zone(struct f2fs_sb_info *sbi, unsigned int zone_idx,
5063 						unsigned int dev_idx)
5064 {
5065 	if (!bdev_is_zoned(FDEV(dev_idx).bdev))
5066 		return true;
5067 	return !test_bit(zone_idx, FDEV(dev_idx).blkz_seq);
5068 }
5069 
5070 /* Return the zone index in the given device */
5071 static unsigned int get_zone_idx(struct f2fs_sb_info *sbi, unsigned int secno,
5072 					int dev_idx)
5073 {
5074 	block_t sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5075 
5076 	return (sec_start_blkaddr - FDEV(dev_idx).start_blk) >>
5077 						sbi->log_blocks_per_blkz;
5078 }
5079 
5080 /*
5081  * Return the usable segments in a section based on the zone's
5082  * corresponding zone capacity. Zone is equal to a section.
5083  */
5084 static inline unsigned int f2fs_usable_zone_segs_in_sec(
5085 		struct f2fs_sb_info *sbi, unsigned int segno)
5086 {
5087 	unsigned int dev_idx, zone_idx, unusable_segs_in_sec;
5088 
5089 	dev_idx = f2fs_target_device_index(sbi, START_BLOCK(sbi, segno));
5090 	zone_idx = get_zone_idx(sbi, GET_SEC_FROM_SEG(sbi, segno), dev_idx);
5091 
5092 	/* Conventional zone's capacity is always equal to zone size */
5093 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5094 		return sbi->segs_per_sec;
5095 
5096 	/*
5097 	 * If the zone_capacity_blocks array is NULL, then zone capacity
5098 	 * is equal to the zone size for all zones
5099 	 */
5100 	if (!FDEV(dev_idx).zone_capacity_blocks)
5101 		return sbi->segs_per_sec;
5102 
5103 	/* Get the segment count beyond zone capacity block */
5104 	unusable_segs_in_sec = (sbi->blocks_per_blkz -
5105 				FDEV(dev_idx).zone_capacity_blocks[zone_idx]) >>
5106 				sbi->log_blocks_per_seg;
5107 	return sbi->segs_per_sec - unusable_segs_in_sec;
5108 }
5109 
5110 /*
5111  * Return the number of usable blocks in a segment. The number of blocks
5112  * returned is always equal to the number of blocks in a segment for
5113  * segments fully contained within a sequential zone capacity or a
5114  * conventional zone. For segments partially contained in a sequential
5115  * zone capacity, the number of usable blocks up to the zone capacity
5116  * is returned. 0 is returned in all other cases.
5117  */
5118 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5119 			struct f2fs_sb_info *sbi, unsigned int segno)
5120 {
5121 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5122 	unsigned int zone_idx, dev_idx, secno;
5123 
5124 	secno = GET_SEC_FROM_SEG(sbi, segno);
5125 	seg_start = START_BLOCK(sbi, segno);
5126 	dev_idx = f2fs_target_device_index(sbi, seg_start);
5127 	zone_idx = get_zone_idx(sbi, secno, dev_idx);
5128 
5129 	/*
5130 	 * Conventional zone's capacity is always equal to zone size,
5131 	 * so, blocks per segment is unchanged.
5132 	 */
5133 	if (is_conv_zone(sbi, zone_idx, dev_idx))
5134 		return sbi->blocks_per_seg;
5135 
5136 	if (!FDEV(dev_idx).zone_capacity_blocks)
5137 		return sbi->blocks_per_seg;
5138 
5139 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5140 	sec_cap_blkaddr = sec_start_blkaddr +
5141 				FDEV(dev_idx).zone_capacity_blocks[zone_idx];
5142 
5143 	/*
5144 	 * If segment starts before zone capacity and spans beyond
5145 	 * zone capacity, then usable blocks are from seg start to
5146 	 * zone capacity. If the segment starts after the zone capacity,
5147 	 * then there are no usable blocks.
5148 	 */
5149 	if (seg_start >= sec_cap_blkaddr)
5150 		return 0;
5151 	if (seg_start + sbi->blocks_per_seg > sec_cap_blkaddr)
5152 		return sec_cap_blkaddr - seg_start;
5153 
5154 	return sbi->blocks_per_seg;
5155 }
5156 #else
5157 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5158 {
5159 	return 0;
5160 }
5161 
5162 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5163 {
5164 	return 0;
5165 }
5166 
5167 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5168 							unsigned int segno)
5169 {
5170 	return 0;
5171 }
5172 
5173 static inline unsigned int f2fs_usable_zone_segs_in_sec(struct f2fs_sb_info *sbi,
5174 							unsigned int segno)
5175 {
5176 	return 0;
5177 }
5178 #endif
5179 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5180 					unsigned int segno)
5181 {
5182 	if (f2fs_sb_has_blkzoned(sbi))
5183 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5184 
5185 	return sbi->blocks_per_seg;
5186 }
5187 
5188 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5189 					unsigned int segno)
5190 {
5191 	if (f2fs_sb_has_blkzoned(sbi))
5192 		return f2fs_usable_zone_segs_in_sec(sbi, segno);
5193 
5194 	return sbi->segs_per_sec;
5195 }
5196 
5197 /*
5198  * Update min, max modified time for cost-benefit GC algorithm
5199  */
5200 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5201 {
5202 	struct sit_info *sit_i = SIT_I(sbi);
5203 	unsigned int segno;
5204 
5205 	down_write(&sit_i->sentry_lock);
5206 
5207 	sit_i->min_mtime = ULLONG_MAX;
5208 
5209 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) {
5210 		unsigned int i;
5211 		unsigned long long mtime = 0;
5212 
5213 		for (i = 0; i < sbi->segs_per_sec; i++)
5214 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5215 
5216 		mtime = div_u64(mtime, sbi->segs_per_sec);
5217 
5218 		if (sit_i->min_mtime > mtime)
5219 			sit_i->min_mtime = mtime;
5220 	}
5221 	sit_i->max_mtime = get_mtime(sbi, false);
5222 	sit_i->dirty_max_mtime = 0;
5223 	up_write(&sit_i->sentry_lock);
5224 }
5225 
5226 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5227 {
5228 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5229 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5230 	struct f2fs_sm_info *sm_info;
5231 	int err;
5232 
5233 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5234 	if (!sm_info)
5235 		return -ENOMEM;
5236 
5237 	/* init sm info */
5238 	sbi->sm_info = sm_info;
5239 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5240 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5241 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5242 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5243 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5244 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5245 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5246 	sm_info->rec_prefree_segments = sm_info->main_segments *
5247 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5248 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5249 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5250 
5251 	if (!f2fs_lfs_mode(sbi))
5252 		sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC;
5253 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5254 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5255 	sm_info->min_seq_blocks = sbi->blocks_per_seg;
5256 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5257 	sm_info->min_ssr_sections = reserved_sections(sbi);
5258 
5259 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5260 
5261 	init_rwsem(&sm_info->curseg_lock);
5262 
5263 	if (!f2fs_readonly(sbi->sb)) {
5264 		err = f2fs_create_flush_cmd_control(sbi);
5265 		if (err)
5266 			return err;
5267 	}
5268 
5269 	err = create_discard_cmd_control(sbi);
5270 	if (err)
5271 		return err;
5272 
5273 	err = build_sit_info(sbi);
5274 	if (err)
5275 		return err;
5276 	err = build_free_segmap(sbi);
5277 	if (err)
5278 		return err;
5279 	err = build_curseg(sbi);
5280 	if (err)
5281 		return err;
5282 
5283 	/* reinit free segmap based on SIT */
5284 	err = build_sit_entries(sbi);
5285 	if (err)
5286 		return err;
5287 
5288 	init_free_segmap(sbi);
5289 	err = build_dirty_segmap(sbi);
5290 	if (err)
5291 		return err;
5292 
5293 	err = sanity_check_curseg(sbi);
5294 	if (err)
5295 		return err;
5296 
5297 	init_min_max_mtime(sbi);
5298 	return 0;
5299 }
5300 
5301 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5302 		enum dirty_type dirty_type)
5303 {
5304 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5305 
5306 	mutex_lock(&dirty_i->seglist_lock);
5307 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5308 	dirty_i->nr_dirty[dirty_type] = 0;
5309 	mutex_unlock(&dirty_i->seglist_lock);
5310 }
5311 
5312 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5313 {
5314 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5315 
5316 	kvfree(dirty_i->victim_secmap);
5317 }
5318 
5319 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5320 {
5321 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5322 	int i;
5323 
5324 	if (!dirty_i)
5325 		return;
5326 
5327 	/* discard pre-free/dirty segments list */
5328 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5329 		discard_dirty_segmap(sbi, i);
5330 
5331 	if (__is_large_section(sbi)) {
5332 		mutex_lock(&dirty_i->seglist_lock);
5333 		kvfree(dirty_i->dirty_secmap);
5334 		mutex_unlock(&dirty_i->seglist_lock);
5335 	}
5336 
5337 	destroy_victim_secmap(sbi);
5338 	SM_I(sbi)->dirty_info = NULL;
5339 	kfree(dirty_i);
5340 }
5341 
5342 static void destroy_curseg(struct f2fs_sb_info *sbi)
5343 {
5344 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5345 	int i;
5346 
5347 	if (!array)
5348 		return;
5349 	SM_I(sbi)->curseg_array = NULL;
5350 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5351 		kfree(array[i].sum_blk);
5352 		kfree(array[i].journal);
5353 	}
5354 	kfree(array);
5355 }
5356 
5357 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5358 {
5359 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5360 
5361 	if (!free_i)
5362 		return;
5363 	SM_I(sbi)->free_info = NULL;
5364 	kvfree(free_i->free_segmap);
5365 	kvfree(free_i->free_secmap);
5366 	kfree(free_i);
5367 }
5368 
5369 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5370 {
5371 	struct sit_info *sit_i = SIT_I(sbi);
5372 
5373 	if (!sit_i)
5374 		return;
5375 
5376 	if (sit_i->sentries)
5377 		kvfree(sit_i->bitmap);
5378 	kfree(sit_i->tmp_map);
5379 
5380 	kvfree(sit_i->sentries);
5381 	kvfree(sit_i->sec_entries);
5382 	kvfree(sit_i->dirty_sentries_bitmap);
5383 
5384 	SM_I(sbi)->sit_info = NULL;
5385 	kvfree(sit_i->sit_bitmap);
5386 #ifdef CONFIG_F2FS_CHECK_FS
5387 	kvfree(sit_i->sit_bitmap_mir);
5388 	kvfree(sit_i->invalid_segmap);
5389 #endif
5390 	kfree(sit_i);
5391 }
5392 
5393 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5394 {
5395 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5396 
5397 	if (!sm_info)
5398 		return;
5399 	f2fs_destroy_flush_cmd_control(sbi, true);
5400 	destroy_discard_cmd_control(sbi);
5401 	destroy_dirty_segmap(sbi);
5402 	destroy_curseg(sbi);
5403 	destroy_free_segmap(sbi);
5404 	destroy_sit_info(sbi);
5405 	sbi->sm_info = NULL;
5406 	kfree(sm_info);
5407 }
5408 
5409 int __init f2fs_create_segment_manager_caches(void)
5410 {
5411 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5412 			sizeof(struct discard_entry));
5413 	if (!discard_entry_slab)
5414 		goto fail;
5415 
5416 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5417 			sizeof(struct discard_cmd));
5418 	if (!discard_cmd_slab)
5419 		goto destroy_discard_entry;
5420 
5421 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5422 			sizeof(struct sit_entry_set));
5423 	if (!sit_entry_set_slab)
5424 		goto destroy_discard_cmd;
5425 
5426 	inmem_entry_slab = f2fs_kmem_cache_create("f2fs_inmem_page_entry",
5427 			sizeof(struct inmem_pages));
5428 	if (!inmem_entry_slab)
5429 		goto destroy_sit_entry_set;
5430 	return 0;
5431 
5432 destroy_sit_entry_set:
5433 	kmem_cache_destroy(sit_entry_set_slab);
5434 destroy_discard_cmd:
5435 	kmem_cache_destroy(discard_cmd_slab);
5436 destroy_discard_entry:
5437 	kmem_cache_destroy(discard_entry_slab);
5438 fail:
5439 	return -ENOMEM;
5440 }
5441 
5442 void f2fs_destroy_segment_manager_caches(void)
5443 {
5444 	kmem_cache_destroy(sit_entry_set_slab);
5445 	kmem_cache_destroy(discard_cmd_slab);
5446 	kmem_cache_destroy(discard_entry_slab);
5447 	kmem_cache_destroy(inmem_entry_slab);
5448 }
5449