1 /* 2 * fs/f2fs/segment.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/fs.h> 12 #include <linux/f2fs_fs.h> 13 #include <linux/bio.h> 14 #include <linux/blkdev.h> 15 #include <linux/prefetch.h> 16 #include <linux/kthread.h> 17 #include <linux/swap.h> 18 #include <linux/timer.h> 19 20 #include "f2fs.h" 21 #include "segment.h" 22 #include "node.h" 23 #include "trace.h" 24 #include <trace/events/f2fs.h> 25 26 #define __reverse_ffz(x) __reverse_ffs(~(x)) 27 28 static struct kmem_cache *discard_entry_slab; 29 static struct kmem_cache *discard_cmd_slab; 30 static struct kmem_cache *sit_entry_set_slab; 31 static struct kmem_cache *inmem_entry_slab; 32 33 static unsigned long __reverse_ulong(unsigned char *str) 34 { 35 unsigned long tmp = 0; 36 int shift = 24, idx = 0; 37 38 #if BITS_PER_LONG == 64 39 shift = 56; 40 #endif 41 while (shift >= 0) { 42 tmp |= (unsigned long)str[idx++] << shift; 43 shift -= BITS_PER_BYTE; 44 } 45 return tmp; 46 } 47 48 /* 49 * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since 50 * MSB and LSB are reversed in a byte by f2fs_set_bit. 51 */ 52 static inline unsigned long __reverse_ffs(unsigned long word) 53 { 54 int num = 0; 55 56 #if BITS_PER_LONG == 64 57 if ((word & 0xffffffff00000000UL) == 0) 58 num += 32; 59 else 60 word >>= 32; 61 #endif 62 if ((word & 0xffff0000) == 0) 63 num += 16; 64 else 65 word >>= 16; 66 67 if ((word & 0xff00) == 0) 68 num += 8; 69 else 70 word >>= 8; 71 72 if ((word & 0xf0) == 0) 73 num += 4; 74 else 75 word >>= 4; 76 77 if ((word & 0xc) == 0) 78 num += 2; 79 else 80 word >>= 2; 81 82 if ((word & 0x2) == 0) 83 num += 1; 84 return num; 85 } 86 87 /* 88 * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because 89 * f2fs_set_bit makes MSB and LSB reversed in a byte. 90 * @size must be integral times of unsigned long. 91 * Example: 92 * MSB <--> LSB 93 * f2fs_set_bit(0, bitmap) => 1000 0000 94 * f2fs_set_bit(7, bitmap) => 0000 0001 95 */ 96 static unsigned long __find_rev_next_bit(const unsigned long *addr, 97 unsigned long size, unsigned long offset) 98 { 99 const unsigned long *p = addr + BIT_WORD(offset); 100 unsigned long result = size; 101 unsigned long tmp; 102 103 if (offset >= size) 104 return size; 105 106 size -= (offset & ~(BITS_PER_LONG - 1)); 107 offset %= BITS_PER_LONG; 108 109 while (1) { 110 if (*p == 0) 111 goto pass; 112 113 tmp = __reverse_ulong((unsigned char *)p); 114 115 tmp &= ~0UL >> offset; 116 if (size < BITS_PER_LONG) 117 tmp &= (~0UL << (BITS_PER_LONG - size)); 118 if (tmp) 119 goto found; 120 pass: 121 if (size <= BITS_PER_LONG) 122 break; 123 size -= BITS_PER_LONG; 124 offset = 0; 125 p++; 126 } 127 return result; 128 found: 129 return result - size + __reverse_ffs(tmp); 130 } 131 132 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr, 133 unsigned long size, unsigned long offset) 134 { 135 const unsigned long *p = addr + BIT_WORD(offset); 136 unsigned long result = size; 137 unsigned long tmp; 138 139 if (offset >= size) 140 return size; 141 142 size -= (offset & ~(BITS_PER_LONG - 1)); 143 offset %= BITS_PER_LONG; 144 145 while (1) { 146 if (*p == ~0UL) 147 goto pass; 148 149 tmp = __reverse_ulong((unsigned char *)p); 150 151 if (offset) 152 tmp |= ~0UL << (BITS_PER_LONG - offset); 153 if (size < BITS_PER_LONG) 154 tmp |= ~0UL >> size; 155 if (tmp != ~0UL) 156 goto found; 157 pass: 158 if (size <= BITS_PER_LONG) 159 break; 160 size -= BITS_PER_LONG; 161 offset = 0; 162 p++; 163 } 164 return result; 165 found: 166 return result - size + __reverse_ffz(tmp); 167 } 168 169 void register_inmem_page(struct inode *inode, struct page *page) 170 { 171 struct f2fs_inode_info *fi = F2FS_I(inode); 172 struct inmem_pages *new; 173 174 f2fs_trace_pid(page); 175 176 set_page_private(page, (unsigned long)ATOMIC_WRITTEN_PAGE); 177 SetPagePrivate(page); 178 179 new = f2fs_kmem_cache_alloc(inmem_entry_slab, GFP_NOFS); 180 181 /* add atomic page indices to the list */ 182 new->page = page; 183 INIT_LIST_HEAD(&new->list); 184 185 /* increase reference count with clean state */ 186 mutex_lock(&fi->inmem_lock); 187 get_page(page); 188 list_add_tail(&new->list, &fi->inmem_pages); 189 inc_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 190 mutex_unlock(&fi->inmem_lock); 191 192 trace_f2fs_register_inmem_page(page, INMEM); 193 } 194 195 static int __revoke_inmem_pages(struct inode *inode, 196 struct list_head *head, bool drop, bool recover) 197 { 198 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 199 struct inmem_pages *cur, *tmp; 200 int err = 0; 201 202 list_for_each_entry_safe(cur, tmp, head, list) { 203 struct page *page = cur->page; 204 205 if (drop) 206 trace_f2fs_commit_inmem_page(page, INMEM_DROP); 207 208 lock_page(page); 209 210 if (recover) { 211 struct dnode_of_data dn; 212 struct node_info ni; 213 214 trace_f2fs_commit_inmem_page(page, INMEM_REVOKE); 215 216 set_new_dnode(&dn, inode, NULL, NULL, 0); 217 if (get_dnode_of_data(&dn, page->index, LOOKUP_NODE)) { 218 err = -EAGAIN; 219 goto next; 220 } 221 get_node_info(sbi, dn.nid, &ni); 222 f2fs_replace_block(sbi, &dn, dn.data_blkaddr, 223 cur->old_addr, ni.version, true, true); 224 f2fs_put_dnode(&dn); 225 } 226 next: 227 /* we don't need to invalidate this in the sccessful status */ 228 if (drop || recover) 229 ClearPageUptodate(page); 230 set_page_private(page, 0); 231 ClearPagePrivate(page); 232 f2fs_put_page(page, 1); 233 234 list_del(&cur->list); 235 kmem_cache_free(inmem_entry_slab, cur); 236 dec_page_count(F2FS_I_SB(inode), F2FS_INMEM_PAGES); 237 } 238 return err; 239 } 240 241 void drop_inmem_pages(struct inode *inode) 242 { 243 struct f2fs_inode_info *fi = F2FS_I(inode); 244 245 mutex_lock(&fi->inmem_lock); 246 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 247 mutex_unlock(&fi->inmem_lock); 248 249 clear_inode_flag(inode, FI_ATOMIC_FILE); 250 stat_dec_atomic_write(inode); 251 } 252 253 static int __commit_inmem_pages(struct inode *inode, 254 struct list_head *revoke_list) 255 { 256 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 257 struct f2fs_inode_info *fi = F2FS_I(inode); 258 struct inmem_pages *cur, *tmp; 259 struct f2fs_io_info fio = { 260 .sbi = sbi, 261 .type = DATA, 262 .op = REQ_OP_WRITE, 263 .op_flags = REQ_SYNC | REQ_PRIO, 264 .encrypted_page = NULL, 265 }; 266 pgoff_t last_idx = ULONG_MAX; 267 int err = 0; 268 269 list_for_each_entry_safe(cur, tmp, &fi->inmem_pages, list) { 270 struct page *page = cur->page; 271 272 lock_page(page); 273 if (page->mapping == inode->i_mapping) { 274 trace_f2fs_commit_inmem_page(page, INMEM); 275 276 set_page_dirty(page); 277 f2fs_wait_on_page_writeback(page, DATA, true); 278 if (clear_page_dirty_for_io(page)) { 279 inode_dec_dirty_pages(inode); 280 remove_dirty_inode(inode); 281 } 282 283 fio.page = page; 284 err = do_write_data_page(&fio); 285 if (err) { 286 unlock_page(page); 287 break; 288 } 289 290 /* record old blkaddr for revoking */ 291 cur->old_addr = fio.old_blkaddr; 292 last_idx = page->index; 293 } 294 unlock_page(page); 295 list_move_tail(&cur->list, revoke_list); 296 } 297 298 if (last_idx != ULONG_MAX) 299 f2fs_submit_merged_bio_cond(sbi, inode, 0, last_idx, 300 DATA, WRITE); 301 302 if (!err) 303 __revoke_inmem_pages(inode, revoke_list, false, false); 304 305 return err; 306 } 307 308 int commit_inmem_pages(struct inode *inode) 309 { 310 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 311 struct f2fs_inode_info *fi = F2FS_I(inode); 312 struct list_head revoke_list; 313 int err; 314 315 INIT_LIST_HEAD(&revoke_list); 316 f2fs_balance_fs(sbi, true); 317 f2fs_lock_op(sbi); 318 319 set_inode_flag(inode, FI_ATOMIC_COMMIT); 320 321 mutex_lock(&fi->inmem_lock); 322 err = __commit_inmem_pages(inode, &revoke_list); 323 if (err) { 324 int ret; 325 /* 326 * try to revoke all committed pages, but still we could fail 327 * due to no memory or other reason, if that happened, EAGAIN 328 * will be returned, which means in such case, transaction is 329 * already not integrity, caller should use journal to do the 330 * recovery or rewrite & commit last transaction. For other 331 * error number, revoking was done by filesystem itself. 332 */ 333 ret = __revoke_inmem_pages(inode, &revoke_list, false, true); 334 if (ret) 335 err = ret; 336 337 /* drop all uncommitted pages */ 338 __revoke_inmem_pages(inode, &fi->inmem_pages, true, false); 339 } 340 mutex_unlock(&fi->inmem_lock); 341 342 clear_inode_flag(inode, FI_ATOMIC_COMMIT); 343 344 f2fs_unlock_op(sbi); 345 return err; 346 } 347 348 /* 349 * This function balances dirty node and dentry pages. 350 * In addition, it controls garbage collection. 351 */ 352 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need) 353 { 354 #ifdef CONFIG_F2FS_FAULT_INJECTION 355 if (time_to_inject(sbi, FAULT_CHECKPOINT)) { 356 f2fs_show_injection_info(FAULT_CHECKPOINT); 357 f2fs_stop_checkpoint(sbi, false); 358 } 359 #endif 360 361 if (!need) 362 return; 363 364 /* balance_fs_bg is able to be pending */ 365 if (excess_cached_nats(sbi)) 366 f2fs_balance_fs_bg(sbi); 367 368 /* 369 * We should do GC or end up with checkpoint, if there are so many dirty 370 * dir/node pages without enough free segments. 371 */ 372 if (has_not_enough_free_secs(sbi, 0, 0)) { 373 mutex_lock(&sbi->gc_mutex); 374 f2fs_gc(sbi, false, false); 375 } 376 } 377 378 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi) 379 { 380 /* try to shrink extent cache when there is no enough memory */ 381 if (!available_free_memory(sbi, EXTENT_CACHE)) 382 f2fs_shrink_extent_tree(sbi, EXTENT_CACHE_SHRINK_NUMBER); 383 384 /* check the # of cached NAT entries */ 385 if (!available_free_memory(sbi, NAT_ENTRIES)) 386 try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK); 387 388 if (!available_free_memory(sbi, FREE_NIDS)) 389 try_to_free_nids(sbi, MAX_FREE_NIDS); 390 else 391 build_free_nids(sbi, false, false); 392 393 if (!is_idle(sbi)) 394 return; 395 396 /* checkpoint is the only way to shrink partial cached entries */ 397 if (!available_free_memory(sbi, NAT_ENTRIES) || 398 !available_free_memory(sbi, INO_ENTRIES) || 399 excess_prefree_segs(sbi) || 400 excess_dirty_nats(sbi) || 401 f2fs_time_over(sbi, CP_TIME)) { 402 if (test_opt(sbi, DATA_FLUSH)) { 403 struct blk_plug plug; 404 405 blk_start_plug(&plug); 406 sync_dirty_inodes(sbi, FILE_INODE); 407 blk_finish_plug(&plug); 408 } 409 f2fs_sync_fs(sbi->sb, true); 410 stat_inc_bg_cp_count(sbi->stat_info); 411 } 412 } 413 414 static int __submit_flush_wait(struct block_device *bdev) 415 { 416 struct bio *bio = f2fs_bio_alloc(0); 417 int ret; 418 419 bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH; 420 bio->bi_bdev = bdev; 421 ret = submit_bio_wait(bio); 422 bio_put(bio); 423 return ret; 424 } 425 426 static int submit_flush_wait(struct f2fs_sb_info *sbi) 427 { 428 int ret = __submit_flush_wait(sbi->sb->s_bdev); 429 int i; 430 431 if (sbi->s_ndevs && !ret) { 432 for (i = 1; i < sbi->s_ndevs; i++) { 433 trace_f2fs_issue_flush(FDEV(i).bdev, 434 test_opt(sbi, NOBARRIER), 435 test_opt(sbi, FLUSH_MERGE)); 436 ret = __submit_flush_wait(FDEV(i).bdev); 437 if (ret) 438 break; 439 } 440 } 441 return ret; 442 } 443 444 static int issue_flush_thread(void *data) 445 { 446 struct f2fs_sb_info *sbi = data; 447 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 448 wait_queue_head_t *q = &fcc->flush_wait_queue; 449 repeat: 450 if (kthread_should_stop()) 451 return 0; 452 453 if (!llist_empty(&fcc->issue_list)) { 454 struct flush_cmd *cmd, *next; 455 int ret; 456 457 fcc->dispatch_list = llist_del_all(&fcc->issue_list); 458 fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list); 459 460 ret = submit_flush_wait(sbi); 461 llist_for_each_entry_safe(cmd, next, 462 fcc->dispatch_list, llnode) { 463 cmd->ret = ret; 464 complete(&cmd->wait); 465 } 466 fcc->dispatch_list = NULL; 467 } 468 469 wait_event_interruptible(*q, 470 kthread_should_stop() || !llist_empty(&fcc->issue_list)); 471 goto repeat; 472 } 473 474 int f2fs_issue_flush(struct f2fs_sb_info *sbi) 475 { 476 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 477 struct flush_cmd cmd; 478 479 if (test_opt(sbi, NOBARRIER)) 480 return 0; 481 482 if (!test_opt(sbi, FLUSH_MERGE)) 483 return submit_flush_wait(sbi); 484 485 if (!atomic_read(&fcc->submit_flush)) { 486 int ret; 487 488 atomic_inc(&fcc->submit_flush); 489 ret = submit_flush_wait(sbi); 490 atomic_dec(&fcc->submit_flush); 491 return ret; 492 } 493 494 init_completion(&cmd.wait); 495 496 atomic_inc(&fcc->submit_flush); 497 llist_add(&cmd.llnode, &fcc->issue_list); 498 499 if (!fcc->dispatch_list) 500 wake_up(&fcc->flush_wait_queue); 501 502 if (fcc->f2fs_issue_flush) { 503 wait_for_completion(&cmd.wait); 504 atomic_dec(&fcc->submit_flush); 505 } else { 506 llist_del_all(&fcc->issue_list); 507 atomic_set(&fcc->submit_flush, 0); 508 } 509 510 return cmd.ret; 511 } 512 513 int create_flush_cmd_control(struct f2fs_sb_info *sbi) 514 { 515 dev_t dev = sbi->sb->s_bdev->bd_dev; 516 struct flush_cmd_control *fcc; 517 int err = 0; 518 519 if (SM_I(sbi)->fcc_info) { 520 fcc = SM_I(sbi)->fcc_info; 521 goto init_thread; 522 } 523 524 fcc = kzalloc(sizeof(struct flush_cmd_control), GFP_KERNEL); 525 if (!fcc) 526 return -ENOMEM; 527 atomic_set(&fcc->submit_flush, 0); 528 init_waitqueue_head(&fcc->flush_wait_queue); 529 init_llist_head(&fcc->issue_list); 530 SM_I(sbi)->fcc_info = fcc; 531 init_thread: 532 fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi, 533 "f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev)); 534 if (IS_ERR(fcc->f2fs_issue_flush)) { 535 err = PTR_ERR(fcc->f2fs_issue_flush); 536 kfree(fcc); 537 SM_I(sbi)->fcc_info = NULL; 538 return err; 539 } 540 541 return err; 542 } 543 544 void destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free) 545 { 546 struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info; 547 548 if (fcc && fcc->f2fs_issue_flush) { 549 struct task_struct *flush_thread = fcc->f2fs_issue_flush; 550 551 fcc->f2fs_issue_flush = NULL; 552 kthread_stop(flush_thread); 553 } 554 if (free) { 555 kfree(fcc); 556 SM_I(sbi)->fcc_info = NULL; 557 } 558 } 559 560 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 561 enum dirty_type dirty_type) 562 { 563 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 564 565 /* need not be added */ 566 if (IS_CURSEG(sbi, segno)) 567 return; 568 569 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type])) 570 dirty_i->nr_dirty[dirty_type]++; 571 572 if (dirty_type == DIRTY) { 573 struct seg_entry *sentry = get_seg_entry(sbi, segno); 574 enum dirty_type t = sentry->type; 575 576 if (unlikely(t >= DIRTY)) { 577 f2fs_bug_on(sbi, 1); 578 return; 579 } 580 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t])) 581 dirty_i->nr_dirty[t]++; 582 } 583 } 584 585 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno, 586 enum dirty_type dirty_type) 587 { 588 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 589 590 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type])) 591 dirty_i->nr_dirty[dirty_type]--; 592 593 if (dirty_type == DIRTY) { 594 struct seg_entry *sentry = get_seg_entry(sbi, segno); 595 enum dirty_type t = sentry->type; 596 597 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t])) 598 dirty_i->nr_dirty[t]--; 599 600 if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0) 601 clear_bit(GET_SECNO(sbi, segno), 602 dirty_i->victim_secmap); 603 } 604 } 605 606 /* 607 * Should not occur error such as -ENOMEM. 608 * Adding dirty entry into seglist is not critical operation. 609 * If a given segment is one of current working segments, it won't be added. 610 */ 611 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno) 612 { 613 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 614 unsigned short valid_blocks; 615 616 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno)) 617 return; 618 619 mutex_lock(&dirty_i->seglist_lock); 620 621 valid_blocks = get_valid_blocks(sbi, segno, 0); 622 623 if (valid_blocks == 0) { 624 __locate_dirty_segment(sbi, segno, PRE); 625 __remove_dirty_segment(sbi, segno, DIRTY); 626 } else if (valid_blocks < sbi->blocks_per_seg) { 627 __locate_dirty_segment(sbi, segno, DIRTY); 628 } else { 629 /* Recovery routine with SSR needs this */ 630 __remove_dirty_segment(sbi, segno, DIRTY); 631 } 632 633 mutex_unlock(&dirty_i->seglist_lock); 634 } 635 636 static void __add_discard_cmd(struct f2fs_sb_info *sbi, 637 struct bio *bio, block_t lstart, block_t len) 638 { 639 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 640 struct list_head *cmd_list = &(dcc->discard_cmd_list); 641 struct discard_cmd *dc; 642 643 dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS); 644 INIT_LIST_HEAD(&dc->list); 645 dc->bio = bio; 646 bio->bi_private = dc; 647 dc->lstart = lstart; 648 dc->len = len; 649 dc->state = D_PREP; 650 init_completion(&dc->wait); 651 652 mutex_lock(&dcc->cmd_lock); 653 list_add_tail(&dc->list, cmd_list); 654 mutex_unlock(&dcc->cmd_lock); 655 } 656 657 static void __remove_discard_cmd(struct f2fs_sb_info *sbi, struct discard_cmd *dc) 658 { 659 int err = dc->bio->bi_error; 660 661 if (dc->state == D_DONE) 662 atomic_dec(&(SM_I(sbi)->dcc_info->submit_discard)); 663 664 if (err == -EOPNOTSUPP) 665 err = 0; 666 667 if (err) 668 f2fs_msg(sbi->sb, KERN_INFO, 669 "Issue discard failed, ret: %d", err); 670 bio_put(dc->bio); 671 list_del(&dc->list); 672 kmem_cache_free(discard_cmd_slab, dc); 673 } 674 675 /* This should be covered by global mutex, &sit_i->sentry_lock */ 676 void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr) 677 { 678 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 679 struct list_head *wait_list = &(dcc->discard_cmd_list); 680 struct discard_cmd *dc, *tmp; 681 struct blk_plug plug; 682 683 mutex_lock(&dcc->cmd_lock); 684 685 blk_start_plug(&plug); 686 687 list_for_each_entry_safe(dc, tmp, wait_list, list) { 688 689 if (blkaddr == NULL_ADDR) { 690 if (dc->state == D_PREP) { 691 dc->state = D_SUBMIT; 692 submit_bio(dc->bio); 693 atomic_inc(&dcc->submit_discard); 694 } 695 continue; 696 } 697 698 if (dc->lstart <= blkaddr && blkaddr < dc->lstart + dc->len) { 699 if (dc->state == D_SUBMIT) 700 wait_for_completion_io(&dc->wait); 701 else 702 __remove_discard_cmd(sbi, dc); 703 } 704 } 705 blk_finish_plug(&plug); 706 707 /* this comes from f2fs_put_super */ 708 if (blkaddr == NULL_ADDR) { 709 list_for_each_entry_safe(dc, tmp, wait_list, list) { 710 wait_for_completion_io(&dc->wait); 711 __remove_discard_cmd(sbi, dc); 712 } 713 } 714 mutex_unlock(&dcc->cmd_lock); 715 } 716 717 static void f2fs_submit_discard_endio(struct bio *bio) 718 { 719 struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private; 720 721 complete(&dc->wait); 722 dc->state = D_DONE; 723 } 724 725 static int issue_discard_thread(void *data) 726 { 727 struct f2fs_sb_info *sbi = data; 728 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 729 wait_queue_head_t *q = &dcc->discard_wait_queue; 730 struct list_head *cmd_list = &dcc->discard_cmd_list; 731 struct discard_cmd *dc, *tmp; 732 struct blk_plug plug; 733 int iter = 0; 734 repeat: 735 if (kthread_should_stop()) 736 return 0; 737 738 blk_start_plug(&plug); 739 740 mutex_lock(&dcc->cmd_lock); 741 list_for_each_entry_safe(dc, tmp, cmd_list, list) { 742 if (dc->state == D_PREP) { 743 dc->state = D_SUBMIT; 744 submit_bio(dc->bio); 745 atomic_inc(&dcc->submit_discard); 746 if (iter++ > DISCARD_ISSUE_RATE) 747 break; 748 } else if (dc->state == D_DONE) { 749 __remove_discard_cmd(sbi, dc); 750 } 751 } 752 mutex_unlock(&dcc->cmd_lock); 753 754 blk_finish_plug(&plug); 755 756 iter = 0; 757 congestion_wait(BLK_RW_SYNC, HZ/50); 758 759 wait_event_interruptible(*q, 760 kthread_should_stop() || !list_empty(&dcc->discard_cmd_list)); 761 goto repeat; 762 } 763 764 765 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */ 766 static int __f2fs_issue_discard_async(struct f2fs_sb_info *sbi, 767 struct block_device *bdev, block_t blkstart, block_t blklen) 768 { 769 struct bio *bio = NULL; 770 block_t lblkstart = blkstart; 771 int err; 772 773 trace_f2fs_issue_discard(bdev, blkstart, blklen); 774 775 if (sbi->s_ndevs) { 776 int devi = f2fs_target_device_index(sbi, blkstart); 777 778 blkstart -= FDEV(devi).start_blk; 779 } 780 err = __blkdev_issue_discard(bdev, 781 SECTOR_FROM_BLOCK(blkstart), 782 SECTOR_FROM_BLOCK(blklen), 783 GFP_NOFS, 0, &bio); 784 if (!err && bio) { 785 bio->bi_end_io = f2fs_submit_discard_endio; 786 bio->bi_opf |= REQ_SYNC; 787 788 __add_discard_cmd(sbi, bio, lblkstart, blklen); 789 wake_up(&SM_I(sbi)->dcc_info->discard_wait_queue); 790 } 791 return err; 792 } 793 794 #ifdef CONFIG_BLK_DEV_ZONED 795 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi, 796 struct block_device *bdev, block_t blkstart, block_t blklen) 797 { 798 sector_t sector, nr_sects; 799 int devi = 0; 800 801 if (sbi->s_ndevs) { 802 devi = f2fs_target_device_index(sbi, blkstart); 803 blkstart -= FDEV(devi).start_blk; 804 } 805 806 /* 807 * We need to know the type of the zone: for conventional zones, 808 * use regular discard if the drive supports it. For sequential 809 * zones, reset the zone write pointer. 810 */ 811 switch (get_blkz_type(sbi, bdev, blkstart)) { 812 813 case BLK_ZONE_TYPE_CONVENTIONAL: 814 if (!blk_queue_discard(bdev_get_queue(bdev))) 815 return 0; 816 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 817 case BLK_ZONE_TYPE_SEQWRITE_REQ: 818 case BLK_ZONE_TYPE_SEQWRITE_PREF: 819 sector = SECTOR_FROM_BLOCK(blkstart); 820 nr_sects = SECTOR_FROM_BLOCK(blklen); 821 822 if (sector & (bdev_zone_sectors(bdev) - 1) || 823 nr_sects != bdev_zone_sectors(bdev)) { 824 f2fs_msg(sbi->sb, KERN_INFO, 825 "(%d) %s: Unaligned discard attempted (block %x + %x)", 826 devi, sbi->s_ndevs ? FDEV(devi).path: "", 827 blkstart, blklen); 828 return -EIO; 829 } 830 trace_f2fs_issue_reset_zone(bdev, blkstart); 831 return blkdev_reset_zones(bdev, sector, 832 nr_sects, GFP_NOFS); 833 default: 834 /* Unknown zone type: broken device ? */ 835 return -EIO; 836 } 837 } 838 #endif 839 840 static int __issue_discard_async(struct f2fs_sb_info *sbi, 841 struct block_device *bdev, block_t blkstart, block_t blklen) 842 { 843 #ifdef CONFIG_BLK_DEV_ZONED 844 if (f2fs_sb_mounted_blkzoned(sbi->sb) && 845 bdev_zoned_model(bdev) != BLK_ZONED_NONE) 846 return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen); 847 #endif 848 return __f2fs_issue_discard_async(sbi, bdev, blkstart, blklen); 849 } 850 851 static int f2fs_issue_discard(struct f2fs_sb_info *sbi, 852 block_t blkstart, block_t blklen) 853 { 854 sector_t start = blkstart, len = 0; 855 struct block_device *bdev; 856 struct seg_entry *se; 857 unsigned int offset; 858 block_t i; 859 int err = 0; 860 861 bdev = f2fs_target_device(sbi, blkstart, NULL); 862 863 for (i = blkstart; i < blkstart + blklen; i++, len++) { 864 if (i != start) { 865 struct block_device *bdev2 = 866 f2fs_target_device(sbi, i, NULL); 867 868 if (bdev2 != bdev) { 869 err = __issue_discard_async(sbi, bdev, 870 start, len); 871 if (err) 872 return err; 873 bdev = bdev2; 874 start = i; 875 len = 0; 876 } 877 } 878 879 se = get_seg_entry(sbi, GET_SEGNO(sbi, i)); 880 offset = GET_BLKOFF_FROM_SEG0(sbi, i); 881 882 if (!f2fs_test_and_set_bit(offset, se->discard_map)) 883 sbi->discard_blks--; 884 } 885 886 if (len) 887 err = __issue_discard_async(sbi, bdev, start, len); 888 return err; 889 } 890 891 static void __add_discard_entry(struct f2fs_sb_info *sbi, 892 struct cp_control *cpc, struct seg_entry *se, 893 unsigned int start, unsigned int end) 894 { 895 struct list_head *head = &SM_I(sbi)->dcc_info->discard_entry_list; 896 struct discard_entry *new, *last; 897 898 if (!list_empty(head)) { 899 last = list_last_entry(head, struct discard_entry, list); 900 if (START_BLOCK(sbi, cpc->trim_start) + start == 901 last->blkaddr + last->len && 902 last->len < MAX_DISCARD_BLOCKS(sbi)) { 903 last->len += end - start; 904 goto done; 905 } 906 } 907 908 new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS); 909 INIT_LIST_HEAD(&new->list); 910 new->blkaddr = START_BLOCK(sbi, cpc->trim_start) + start; 911 new->len = end - start; 912 list_add_tail(&new->list, head); 913 done: 914 SM_I(sbi)->dcc_info->nr_discards += end - start; 915 } 916 917 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc, 918 bool check_only) 919 { 920 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 921 int max_blocks = sbi->blocks_per_seg; 922 struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start); 923 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 924 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 925 unsigned long *discard_map = (unsigned long *)se->discard_map; 926 unsigned long *dmap = SIT_I(sbi)->tmp_map; 927 unsigned int start = 0, end = -1; 928 bool force = (cpc->reason == CP_DISCARD); 929 int i; 930 931 if (se->valid_blocks == max_blocks || !f2fs_discard_en(sbi)) 932 return false; 933 934 if (!force) { 935 if (!test_opt(sbi, DISCARD) || !se->valid_blocks || 936 SM_I(sbi)->dcc_info->nr_discards >= 937 SM_I(sbi)->dcc_info->max_discards) 938 return false; 939 } 940 941 /* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */ 942 for (i = 0; i < entries; i++) 943 dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] : 944 (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i]; 945 946 while (force || SM_I(sbi)->dcc_info->nr_discards <= 947 SM_I(sbi)->dcc_info->max_discards) { 948 start = __find_rev_next_bit(dmap, max_blocks, end + 1); 949 if (start >= max_blocks) 950 break; 951 952 end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1); 953 if (force && start && end != max_blocks 954 && (end - start) < cpc->trim_minlen) 955 continue; 956 957 if (check_only) 958 return true; 959 960 __add_discard_entry(sbi, cpc, se, start, end); 961 } 962 return false; 963 } 964 965 void release_discard_addrs(struct f2fs_sb_info *sbi) 966 { 967 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list); 968 struct discard_entry *entry, *this; 969 970 /* drop caches */ 971 list_for_each_entry_safe(entry, this, head, list) { 972 list_del(&entry->list); 973 kmem_cache_free(discard_entry_slab, entry); 974 } 975 } 976 977 /* 978 * Should call clear_prefree_segments after checkpoint is done. 979 */ 980 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi) 981 { 982 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 983 unsigned int segno; 984 985 mutex_lock(&dirty_i->seglist_lock); 986 for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi)) 987 __set_test_and_free(sbi, segno); 988 mutex_unlock(&dirty_i->seglist_lock); 989 } 990 991 void clear_prefree_segments(struct f2fs_sb_info *sbi, struct cp_control *cpc) 992 { 993 struct list_head *head = &(SM_I(sbi)->dcc_info->discard_entry_list); 994 struct discard_entry *entry, *this; 995 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 996 unsigned long *prefree_map = dirty_i->dirty_segmap[PRE]; 997 unsigned int start = 0, end = -1; 998 unsigned int secno, start_segno; 999 bool force = (cpc->reason == CP_DISCARD); 1000 1001 mutex_lock(&dirty_i->seglist_lock); 1002 1003 while (1) { 1004 int i; 1005 start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1); 1006 if (start >= MAIN_SEGS(sbi)) 1007 break; 1008 end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi), 1009 start + 1); 1010 1011 for (i = start; i < end; i++) 1012 clear_bit(i, prefree_map); 1013 1014 dirty_i->nr_dirty[PRE] -= end - start; 1015 1016 if (!test_opt(sbi, DISCARD)) 1017 continue; 1018 1019 if (force && start >= cpc->trim_start && 1020 (end - 1) <= cpc->trim_end) 1021 continue; 1022 1023 if (!test_opt(sbi, LFS) || sbi->segs_per_sec == 1) { 1024 f2fs_issue_discard(sbi, START_BLOCK(sbi, start), 1025 (end - start) << sbi->log_blocks_per_seg); 1026 continue; 1027 } 1028 next: 1029 secno = GET_SECNO(sbi, start); 1030 start_segno = secno * sbi->segs_per_sec; 1031 if (!IS_CURSEC(sbi, secno) && 1032 !get_valid_blocks(sbi, start, sbi->segs_per_sec)) 1033 f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno), 1034 sbi->segs_per_sec << sbi->log_blocks_per_seg); 1035 1036 start = start_segno + sbi->segs_per_sec; 1037 if (start < end) 1038 goto next; 1039 else 1040 end = start - 1; 1041 } 1042 mutex_unlock(&dirty_i->seglist_lock); 1043 1044 /* send small discards */ 1045 list_for_each_entry_safe(entry, this, head, list) { 1046 if (force && entry->len < cpc->trim_minlen) 1047 goto skip; 1048 f2fs_issue_discard(sbi, entry->blkaddr, entry->len); 1049 cpc->trimmed += entry->len; 1050 skip: 1051 list_del(&entry->list); 1052 SM_I(sbi)->dcc_info->nr_discards -= entry->len; 1053 kmem_cache_free(discard_entry_slab, entry); 1054 } 1055 } 1056 1057 static int create_discard_cmd_control(struct f2fs_sb_info *sbi) 1058 { 1059 dev_t dev = sbi->sb->s_bdev->bd_dev; 1060 struct discard_cmd_control *dcc; 1061 int err = 0; 1062 1063 if (SM_I(sbi)->dcc_info) { 1064 dcc = SM_I(sbi)->dcc_info; 1065 goto init_thread; 1066 } 1067 1068 dcc = kzalloc(sizeof(struct discard_cmd_control), GFP_KERNEL); 1069 if (!dcc) 1070 return -ENOMEM; 1071 1072 INIT_LIST_HEAD(&dcc->discard_entry_list); 1073 INIT_LIST_HEAD(&dcc->discard_cmd_list); 1074 mutex_init(&dcc->cmd_lock); 1075 atomic_set(&dcc->submit_discard, 0); 1076 dcc->nr_discards = 0; 1077 dcc->max_discards = 0; 1078 1079 init_waitqueue_head(&dcc->discard_wait_queue); 1080 SM_I(sbi)->dcc_info = dcc; 1081 init_thread: 1082 dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi, 1083 "f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev)); 1084 if (IS_ERR(dcc->f2fs_issue_discard)) { 1085 err = PTR_ERR(dcc->f2fs_issue_discard); 1086 kfree(dcc); 1087 SM_I(sbi)->dcc_info = NULL; 1088 return err; 1089 } 1090 1091 return err; 1092 } 1093 1094 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi, bool free) 1095 { 1096 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 1097 1098 if (dcc && dcc->f2fs_issue_discard) { 1099 struct task_struct *discard_thread = dcc->f2fs_issue_discard; 1100 1101 dcc->f2fs_issue_discard = NULL; 1102 kthread_stop(discard_thread); 1103 } 1104 if (free) { 1105 kfree(dcc); 1106 SM_I(sbi)->dcc_info = NULL; 1107 } 1108 } 1109 1110 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno) 1111 { 1112 struct sit_info *sit_i = SIT_I(sbi); 1113 1114 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) { 1115 sit_i->dirty_sentries++; 1116 return false; 1117 } 1118 1119 return true; 1120 } 1121 1122 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type, 1123 unsigned int segno, int modified) 1124 { 1125 struct seg_entry *se = get_seg_entry(sbi, segno); 1126 se->type = type; 1127 if (modified) 1128 __mark_sit_entry_dirty(sbi, segno); 1129 } 1130 1131 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del) 1132 { 1133 struct seg_entry *se; 1134 unsigned int segno, offset; 1135 long int new_vblocks; 1136 1137 segno = GET_SEGNO(sbi, blkaddr); 1138 1139 se = get_seg_entry(sbi, segno); 1140 new_vblocks = se->valid_blocks + del; 1141 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1142 1143 f2fs_bug_on(sbi, (new_vblocks >> (sizeof(unsigned short) << 3) || 1144 (new_vblocks > sbi->blocks_per_seg))); 1145 1146 se->valid_blocks = new_vblocks; 1147 se->mtime = get_mtime(sbi); 1148 SIT_I(sbi)->max_mtime = se->mtime; 1149 1150 /* Update valid block bitmap */ 1151 if (del > 0) { 1152 if (f2fs_test_and_set_bit(offset, se->cur_valid_map)) { 1153 #ifdef CONFIG_F2FS_CHECK_FS 1154 if (f2fs_test_and_set_bit(offset, 1155 se->cur_valid_map_mir)) 1156 f2fs_bug_on(sbi, 1); 1157 else 1158 WARN_ON(1); 1159 #else 1160 f2fs_bug_on(sbi, 1); 1161 #endif 1162 } 1163 if (f2fs_discard_en(sbi) && 1164 !f2fs_test_and_set_bit(offset, se->discard_map)) 1165 sbi->discard_blks--; 1166 } else { 1167 if (!f2fs_test_and_clear_bit(offset, se->cur_valid_map)) { 1168 #ifdef CONFIG_F2FS_CHECK_FS 1169 if (!f2fs_test_and_clear_bit(offset, 1170 se->cur_valid_map_mir)) 1171 f2fs_bug_on(sbi, 1); 1172 else 1173 WARN_ON(1); 1174 #else 1175 f2fs_bug_on(sbi, 1); 1176 #endif 1177 } 1178 if (f2fs_discard_en(sbi) && 1179 f2fs_test_and_clear_bit(offset, se->discard_map)) 1180 sbi->discard_blks++; 1181 } 1182 if (!f2fs_test_bit(offset, se->ckpt_valid_map)) 1183 se->ckpt_valid_blocks += del; 1184 1185 __mark_sit_entry_dirty(sbi, segno); 1186 1187 /* update total number of valid blocks to be written in ckpt area */ 1188 SIT_I(sbi)->written_valid_blocks += del; 1189 1190 if (sbi->segs_per_sec > 1) 1191 get_sec_entry(sbi, segno)->valid_blocks += del; 1192 } 1193 1194 void refresh_sit_entry(struct f2fs_sb_info *sbi, block_t old, block_t new) 1195 { 1196 update_sit_entry(sbi, new, 1); 1197 if (GET_SEGNO(sbi, old) != NULL_SEGNO) 1198 update_sit_entry(sbi, old, -1); 1199 1200 locate_dirty_segment(sbi, GET_SEGNO(sbi, old)); 1201 locate_dirty_segment(sbi, GET_SEGNO(sbi, new)); 1202 } 1203 1204 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr) 1205 { 1206 unsigned int segno = GET_SEGNO(sbi, addr); 1207 struct sit_info *sit_i = SIT_I(sbi); 1208 1209 f2fs_bug_on(sbi, addr == NULL_ADDR); 1210 if (addr == NEW_ADDR) 1211 return; 1212 1213 /* add it into sit main buffer */ 1214 mutex_lock(&sit_i->sentry_lock); 1215 1216 update_sit_entry(sbi, addr, -1); 1217 1218 /* add it into dirty seglist */ 1219 locate_dirty_segment(sbi, segno); 1220 1221 mutex_unlock(&sit_i->sentry_lock); 1222 } 1223 1224 bool is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr) 1225 { 1226 struct sit_info *sit_i = SIT_I(sbi); 1227 unsigned int segno, offset; 1228 struct seg_entry *se; 1229 bool is_cp = false; 1230 1231 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1232 return true; 1233 1234 mutex_lock(&sit_i->sentry_lock); 1235 1236 segno = GET_SEGNO(sbi, blkaddr); 1237 se = get_seg_entry(sbi, segno); 1238 offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr); 1239 1240 if (f2fs_test_bit(offset, se->ckpt_valid_map)) 1241 is_cp = true; 1242 1243 mutex_unlock(&sit_i->sentry_lock); 1244 1245 return is_cp; 1246 } 1247 1248 /* 1249 * This function should be resided under the curseg_mutex lock 1250 */ 1251 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type, 1252 struct f2fs_summary *sum) 1253 { 1254 struct curseg_info *curseg = CURSEG_I(sbi, type); 1255 void *addr = curseg->sum_blk; 1256 addr += curseg->next_blkoff * sizeof(struct f2fs_summary); 1257 memcpy(addr, sum, sizeof(struct f2fs_summary)); 1258 } 1259 1260 /* 1261 * Calculate the number of current summary pages for writing 1262 */ 1263 int npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra) 1264 { 1265 int valid_sum_count = 0; 1266 int i, sum_in_page; 1267 1268 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1269 if (sbi->ckpt->alloc_type[i] == SSR) 1270 valid_sum_count += sbi->blocks_per_seg; 1271 else { 1272 if (for_ra) 1273 valid_sum_count += le16_to_cpu( 1274 F2FS_CKPT(sbi)->cur_data_blkoff[i]); 1275 else 1276 valid_sum_count += curseg_blkoff(sbi, i); 1277 } 1278 } 1279 1280 sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE - 1281 SUM_FOOTER_SIZE) / SUMMARY_SIZE; 1282 if (valid_sum_count <= sum_in_page) 1283 return 1; 1284 else if ((valid_sum_count - sum_in_page) <= 1285 (PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE) 1286 return 2; 1287 return 3; 1288 } 1289 1290 /* 1291 * Caller should put this summary page 1292 */ 1293 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno) 1294 { 1295 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno)); 1296 } 1297 1298 void update_meta_page(struct f2fs_sb_info *sbi, void *src, block_t blk_addr) 1299 { 1300 struct page *page = grab_meta_page(sbi, blk_addr); 1301 void *dst = page_address(page); 1302 1303 if (src) 1304 memcpy(dst, src, PAGE_SIZE); 1305 else 1306 memset(dst, 0, PAGE_SIZE); 1307 set_page_dirty(page); 1308 f2fs_put_page(page, 1); 1309 } 1310 1311 static void write_sum_page(struct f2fs_sb_info *sbi, 1312 struct f2fs_summary_block *sum_blk, block_t blk_addr) 1313 { 1314 update_meta_page(sbi, (void *)sum_blk, blk_addr); 1315 } 1316 1317 static void write_current_sum_page(struct f2fs_sb_info *sbi, 1318 int type, block_t blk_addr) 1319 { 1320 struct curseg_info *curseg = CURSEG_I(sbi, type); 1321 struct page *page = grab_meta_page(sbi, blk_addr); 1322 struct f2fs_summary_block *src = curseg->sum_blk; 1323 struct f2fs_summary_block *dst; 1324 1325 dst = (struct f2fs_summary_block *)page_address(page); 1326 1327 mutex_lock(&curseg->curseg_mutex); 1328 1329 down_read(&curseg->journal_rwsem); 1330 memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE); 1331 up_read(&curseg->journal_rwsem); 1332 1333 memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE); 1334 memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE); 1335 1336 mutex_unlock(&curseg->curseg_mutex); 1337 1338 set_page_dirty(page); 1339 f2fs_put_page(page, 1); 1340 } 1341 1342 /* 1343 * Find a new segment from the free segments bitmap to right order 1344 * This function should be returned with success, otherwise BUG 1345 */ 1346 static void get_new_segment(struct f2fs_sb_info *sbi, 1347 unsigned int *newseg, bool new_sec, int dir) 1348 { 1349 struct free_segmap_info *free_i = FREE_I(sbi); 1350 unsigned int segno, secno, zoneno; 1351 unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone; 1352 unsigned int hint = *newseg / sbi->segs_per_sec; 1353 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg); 1354 unsigned int left_start = hint; 1355 bool init = true; 1356 int go_left = 0; 1357 int i; 1358 1359 spin_lock(&free_i->segmap_lock); 1360 1361 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) { 1362 segno = find_next_zero_bit(free_i->free_segmap, 1363 (hint + 1) * sbi->segs_per_sec, *newseg + 1); 1364 if (segno < (hint + 1) * sbi->segs_per_sec) 1365 goto got_it; 1366 } 1367 find_other_zone: 1368 secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint); 1369 if (secno >= MAIN_SECS(sbi)) { 1370 if (dir == ALLOC_RIGHT) { 1371 secno = find_next_zero_bit(free_i->free_secmap, 1372 MAIN_SECS(sbi), 0); 1373 f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi)); 1374 } else { 1375 go_left = 1; 1376 left_start = hint - 1; 1377 } 1378 } 1379 if (go_left == 0) 1380 goto skip_left; 1381 1382 while (test_bit(left_start, free_i->free_secmap)) { 1383 if (left_start > 0) { 1384 left_start--; 1385 continue; 1386 } 1387 left_start = find_next_zero_bit(free_i->free_secmap, 1388 MAIN_SECS(sbi), 0); 1389 f2fs_bug_on(sbi, left_start >= MAIN_SECS(sbi)); 1390 break; 1391 } 1392 secno = left_start; 1393 skip_left: 1394 hint = secno; 1395 segno = secno * sbi->segs_per_sec; 1396 zoneno = secno / sbi->secs_per_zone; 1397 1398 /* give up on finding another zone */ 1399 if (!init) 1400 goto got_it; 1401 if (sbi->secs_per_zone == 1) 1402 goto got_it; 1403 if (zoneno == old_zoneno) 1404 goto got_it; 1405 if (dir == ALLOC_LEFT) { 1406 if (!go_left && zoneno + 1 >= total_zones) 1407 goto got_it; 1408 if (go_left && zoneno == 0) 1409 goto got_it; 1410 } 1411 for (i = 0; i < NR_CURSEG_TYPE; i++) 1412 if (CURSEG_I(sbi, i)->zone == zoneno) 1413 break; 1414 1415 if (i < NR_CURSEG_TYPE) { 1416 /* zone is in user, try another */ 1417 if (go_left) 1418 hint = zoneno * sbi->secs_per_zone - 1; 1419 else if (zoneno + 1 >= total_zones) 1420 hint = 0; 1421 else 1422 hint = (zoneno + 1) * sbi->secs_per_zone; 1423 init = false; 1424 goto find_other_zone; 1425 } 1426 got_it: 1427 /* set it as dirty segment in free segmap */ 1428 f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap)); 1429 __set_inuse(sbi, segno); 1430 *newseg = segno; 1431 spin_unlock(&free_i->segmap_lock); 1432 } 1433 1434 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified) 1435 { 1436 struct curseg_info *curseg = CURSEG_I(sbi, type); 1437 struct summary_footer *sum_footer; 1438 1439 curseg->segno = curseg->next_segno; 1440 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno); 1441 curseg->next_blkoff = 0; 1442 curseg->next_segno = NULL_SEGNO; 1443 1444 sum_footer = &(curseg->sum_blk->footer); 1445 memset(sum_footer, 0, sizeof(struct summary_footer)); 1446 if (IS_DATASEG(type)) 1447 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA); 1448 if (IS_NODESEG(type)) 1449 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE); 1450 __set_sit_entry_type(sbi, type, curseg->segno, modified); 1451 } 1452 1453 /* 1454 * Allocate a current working segment. 1455 * This function always allocates a free segment in LFS manner. 1456 */ 1457 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec) 1458 { 1459 struct curseg_info *curseg = CURSEG_I(sbi, type); 1460 unsigned int segno = curseg->segno; 1461 int dir = ALLOC_LEFT; 1462 1463 write_sum_page(sbi, curseg->sum_blk, 1464 GET_SUM_BLOCK(sbi, segno)); 1465 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA) 1466 dir = ALLOC_RIGHT; 1467 1468 if (test_opt(sbi, NOHEAP)) 1469 dir = ALLOC_RIGHT; 1470 1471 get_new_segment(sbi, &segno, new_sec, dir); 1472 curseg->next_segno = segno; 1473 reset_curseg(sbi, type, 1); 1474 curseg->alloc_type = LFS; 1475 } 1476 1477 static void __next_free_blkoff(struct f2fs_sb_info *sbi, 1478 struct curseg_info *seg, block_t start) 1479 { 1480 struct seg_entry *se = get_seg_entry(sbi, seg->segno); 1481 int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long); 1482 unsigned long *target_map = SIT_I(sbi)->tmp_map; 1483 unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map; 1484 unsigned long *cur_map = (unsigned long *)se->cur_valid_map; 1485 int i, pos; 1486 1487 for (i = 0; i < entries; i++) 1488 target_map[i] = ckpt_map[i] | cur_map[i]; 1489 1490 pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start); 1491 1492 seg->next_blkoff = pos; 1493 } 1494 1495 /* 1496 * If a segment is written by LFS manner, next block offset is just obtained 1497 * by increasing the current block offset. However, if a segment is written by 1498 * SSR manner, next block offset obtained by calling __next_free_blkoff 1499 */ 1500 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi, 1501 struct curseg_info *seg) 1502 { 1503 if (seg->alloc_type == SSR) 1504 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1); 1505 else 1506 seg->next_blkoff++; 1507 } 1508 1509 /* 1510 * This function always allocates a used segment(from dirty seglist) by SSR 1511 * manner, so it should recover the existing segment information of valid blocks 1512 */ 1513 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse) 1514 { 1515 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 1516 struct curseg_info *curseg = CURSEG_I(sbi, type); 1517 unsigned int new_segno = curseg->next_segno; 1518 struct f2fs_summary_block *sum_node; 1519 struct page *sum_page; 1520 1521 write_sum_page(sbi, curseg->sum_blk, 1522 GET_SUM_BLOCK(sbi, curseg->segno)); 1523 __set_test_and_inuse(sbi, new_segno); 1524 1525 mutex_lock(&dirty_i->seglist_lock); 1526 __remove_dirty_segment(sbi, new_segno, PRE); 1527 __remove_dirty_segment(sbi, new_segno, DIRTY); 1528 mutex_unlock(&dirty_i->seglist_lock); 1529 1530 reset_curseg(sbi, type, 1); 1531 curseg->alloc_type = SSR; 1532 __next_free_blkoff(sbi, curseg, 0); 1533 1534 if (reuse) { 1535 sum_page = get_sum_page(sbi, new_segno); 1536 sum_node = (struct f2fs_summary_block *)page_address(sum_page); 1537 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE); 1538 f2fs_put_page(sum_page, 1); 1539 } 1540 } 1541 1542 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type) 1543 { 1544 struct curseg_info *curseg = CURSEG_I(sbi, type); 1545 const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops; 1546 int i, cnt; 1547 bool reversed = false; 1548 1549 /* need_SSR() already forces to do this */ 1550 if (v_ops->get_victim(sbi, &(curseg)->next_segno, BG_GC, type, SSR)) 1551 return 1; 1552 1553 /* For node segments, let's do SSR more intensively */ 1554 if (IS_NODESEG(type)) { 1555 if (type >= CURSEG_WARM_NODE) { 1556 reversed = true; 1557 i = CURSEG_COLD_NODE; 1558 } else { 1559 i = CURSEG_HOT_NODE; 1560 } 1561 cnt = NR_CURSEG_NODE_TYPE; 1562 } else { 1563 if (type >= CURSEG_WARM_DATA) { 1564 reversed = true; 1565 i = CURSEG_COLD_DATA; 1566 } else { 1567 i = CURSEG_HOT_DATA; 1568 } 1569 cnt = NR_CURSEG_DATA_TYPE; 1570 } 1571 1572 for (; cnt-- > 0; reversed ? i-- : i++) { 1573 if (i == type) 1574 continue; 1575 if (v_ops->get_victim(sbi, &(curseg)->next_segno, 1576 BG_GC, i, SSR)) 1577 return 1; 1578 } 1579 return 0; 1580 } 1581 1582 /* 1583 * flush out current segment and replace it with new segment 1584 * This function should be returned with success, otherwise BUG 1585 */ 1586 static void allocate_segment_by_default(struct f2fs_sb_info *sbi, 1587 int type, bool force) 1588 { 1589 if (force) 1590 new_curseg(sbi, type, true); 1591 else if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) && 1592 type == CURSEG_WARM_NODE) 1593 new_curseg(sbi, type, false); 1594 else if (need_SSR(sbi) && get_ssr_segment(sbi, type)) 1595 change_curseg(sbi, type, true); 1596 else 1597 new_curseg(sbi, type, false); 1598 1599 stat_inc_seg_type(sbi, CURSEG_I(sbi, type)); 1600 } 1601 1602 void allocate_new_segments(struct f2fs_sb_info *sbi) 1603 { 1604 struct curseg_info *curseg; 1605 unsigned int old_segno; 1606 int i; 1607 1608 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 1609 curseg = CURSEG_I(sbi, i); 1610 old_segno = curseg->segno; 1611 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true); 1612 locate_dirty_segment(sbi, old_segno); 1613 } 1614 } 1615 1616 static const struct segment_allocation default_salloc_ops = { 1617 .allocate_segment = allocate_segment_by_default, 1618 }; 1619 1620 bool exist_trim_candidates(struct f2fs_sb_info *sbi, struct cp_control *cpc) 1621 { 1622 __u64 trim_start = cpc->trim_start; 1623 bool has_candidate = false; 1624 1625 mutex_lock(&SIT_I(sbi)->sentry_lock); 1626 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) { 1627 if (add_discard_addrs(sbi, cpc, true)) { 1628 has_candidate = true; 1629 break; 1630 } 1631 } 1632 mutex_unlock(&SIT_I(sbi)->sentry_lock); 1633 1634 cpc->trim_start = trim_start; 1635 return has_candidate; 1636 } 1637 1638 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range) 1639 { 1640 __u64 start = F2FS_BYTES_TO_BLK(range->start); 1641 __u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1; 1642 unsigned int start_segno, end_segno; 1643 struct cp_control cpc; 1644 int err = 0; 1645 1646 if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize) 1647 return -EINVAL; 1648 1649 cpc.trimmed = 0; 1650 if (end <= MAIN_BLKADDR(sbi)) 1651 goto out; 1652 1653 if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) { 1654 f2fs_msg(sbi->sb, KERN_WARNING, 1655 "Found FS corruption, run fsck to fix."); 1656 goto out; 1657 } 1658 1659 /* start/end segment number in main_area */ 1660 start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start); 1661 end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 : 1662 GET_SEGNO(sbi, end); 1663 cpc.reason = CP_DISCARD; 1664 cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen)); 1665 1666 /* do checkpoint to issue discard commands safely */ 1667 for (; start_segno <= end_segno; start_segno = cpc.trim_end + 1) { 1668 cpc.trim_start = start_segno; 1669 1670 if (sbi->discard_blks == 0) 1671 break; 1672 else if (sbi->discard_blks < BATCHED_TRIM_BLOCKS(sbi)) 1673 cpc.trim_end = end_segno; 1674 else 1675 cpc.trim_end = min_t(unsigned int, 1676 rounddown(start_segno + 1677 BATCHED_TRIM_SEGMENTS(sbi), 1678 sbi->segs_per_sec) - 1, end_segno); 1679 1680 mutex_lock(&sbi->gc_mutex); 1681 err = write_checkpoint(sbi, &cpc); 1682 mutex_unlock(&sbi->gc_mutex); 1683 if (err) 1684 break; 1685 1686 schedule(); 1687 } 1688 out: 1689 range->len = F2FS_BLK_TO_BYTES(cpc.trimmed); 1690 return err; 1691 } 1692 1693 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type) 1694 { 1695 struct curseg_info *curseg = CURSEG_I(sbi, type); 1696 if (curseg->next_blkoff < sbi->blocks_per_seg) 1697 return true; 1698 return false; 1699 } 1700 1701 static int __get_segment_type_2(struct page *page, enum page_type p_type) 1702 { 1703 if (p_type == DATA) 1704 return CURSEG_HOT_DATA; 1705 else 1706 return CURSEG_HOT_NODE; 1707 } 1708 1709 static int __get_segment_type_4(struct page *page, enum page_type p_type) 1710 { 1711 if (p_type == DATA) { 1712 struct inode *inode = page->mapping->host; 1713 1714 if (S_ISDIR(inode->i_mode)) 1715 return CURSEG_HOT_DATA; 1716 else 1717 return CURSEG_COLD_DATA; 1718 } else { 1719 if (IS_DNODE(page) && is_cold_node(page)) 1720 return CURSEG_WARM_NODE; 1721 else 1722 return CURSEG_COLD_NODE; 1723 } 1724 } 1725 1726 static int __get_segment_type_6(struct page *page, enum page_type p_type) 1727 { 1728 if (p_type == DATA) { 1729 struct inode *inode = page->mapping->host; 1730 1731 if (S_ISDIR(inode->i_mode)) 1732 return CURSEG_HOT_DATA; 1733 else if (is_cold_data(page) || file_is_cold(inode)) 1734 return CURSEG_COLD_DATA; 1735 else 1736 return CURSEG_WARM_DATA; 1737 } else { 1738 if (IS_DNODE(page)) 1739 return is_cold_node(page) ? CURSEG_WARM_NODE : 1740 CURSEG_HOT_NODE; 1741 else 1742 return CURSEG_COLD_NODE; 1743 } 1744 } 1745 1746 static int __get_segment_type(struct page *page, enum page_type p_type) 1747 { 1748 switch (F2FS_P_SB(page)->active_logs) { 1749 case 2: 1750 return __get_segment_type_2(page, p_type); 1751 case 4: 1752 return __get_segment_type_4(page, p_type); 1753 } 1754 /* NR_CURSEG_TYPE(6) logs by default */ 1755 f2fs_bug_on(F2FS_P_SB(page), 1756 F2FS_P_SB(page)->active_logs != NR_CURSEG_TYPE); 1757 return __get_segment_type_6(page, p_type); 1758 } 1759 1760 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page, 1761 block_t old_blkaddr, block_t *new_blkaddr, 1762 struct f2fs_summary *sum, int type) 1763 { 1764 struct sit_info *sit_i = SIT_I(sbi); 1765 struct curseg_info *curseg = CURSEG_I(sbi, type); 1766 1767 mutex_lock(&curseg->curseg_mutex); 1768 mutex_lock(&sit_i->sentry_lock); 1769 1770 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg); 1771 1772 f2fs_wait_discard_bio(sbi, *new_blkaddr); 1773 1774 /* 1775 * __add_sum_entry should be resided under the curseg_mutex 1776 * because, this function updates a summary entry in the 1777 * current summary block. 1778 */ 1779 __add_sum_entry(sbi, type, sum); 1780 1781 __refresh_next_blkoff(sbi, curseg); 1782 1783 stat_inc_block_count(sbi, curseg); 1784 1785 /* 1786 * SIT information should be updated before segment allocation, 1787 * since SSR needs latest valid block information. 1788 */ 1789 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr); 1790 1791 if (!__has_curseg_space(sbi, type)) 1792 sit_i->s_ops->allocate_segment(sbi, type, false); 1793 1794 mutex_unlock(&sit_i->sentry_lock); 1795 1796 if (page && IS_NODESEG(type)) 1797 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg)); 1798 1799 mutex_unlock(&curseg->curseg_mutex); 1800 } 1801 1802 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio) 1803 { 1804 int type = __get_segment_type(fio->page, fio->type); 1805 int err; 1806 1807 if (fio->type == NODE || fio->type == DATA) 1808 mutex_lock(&fio->sbi->wio_mutex[fio->type]); 1809 reallocate: 1810 allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr, 1811 &fio->new_blkaddr, sum, type); 1812 1813 /* writeout dirty page into bdev */ 1814 err = f2fs_submit_page_mbio(fio); 1815 if (err == -EAGAIN) { 1816 fio->old_blkaddr = fio->new_blkaddr; 1817 goto reallocate; 1818 } 1819 1820 if (fio->type == NODE || fio->type == DATA) 1821 mutex_unlock(&fio->sbi->wio_mutex[fio->type]); 1822 } 1823 1824 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page) 1825 { 1826 struct f2fs_io_info fio = { 1827 .sbi = sbi, 1828 .type = META, 1829 .op = REQ_OP_WRITE, 1830 .op_flags = REQ_SYNC | REQ_META | REQ_PRIO, 1831 .old_blkaddr = page->index, 1832 .new_blkaddr = page->index, 1833 .page = page, 1834 .encrypted_page = NULL, 1835 }; 1836 1837 if (unlikely(page->index >= MAIN_BLKADDR(sbi))) 1838 fio.op_flags &= ~REQ_META; 1839 1840 set_page_writeback(page); 1841 f2fs_submit_page_mbio(&fio); 1842 } 1843 1844 void write_node_page(unsigned int nid, struct f2fs_io_info *fio) 1845 { 1846 struct f2fs_summary sum; 1847 1848 set_summary(&sum, nid, 0, 0); 1849 do_write_page(&sum, fio); 1850 } 1851 1852 void write_data_page(struct dnode_of_data *dn, struct f2fs_io_info *fio) 1853 { 1854 struct f2fs_sb_info *sbi = fio->sbi; 1855 struct f2fs_summary sum; 1856 struct node_info ni; 1857 1858 f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR); 1859 get_node_info(sbi, dn->nid, &ni); 1860 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version); 1861 do_write_page(&sum, fio); 1862 f2fs_update_data_blkaddr(dn, fio->new_blkaddr); 1863 } 1864 1865 void rewrite_data_page(struct f2fs_io_info *fio) 1866 { 1867 fio->new_blkaddr = fio->old_blkaddr; 1868 stat_inc_inplace_blocks(fio->sbi); 1869 f2fs_submit_page_mbio(fio); 1870 } 1871 1872 void __f2fs_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum, 1873 block_t old_blkaddr, block_t new_blkaddr, 1874 bool recover_curseg, bool recover_newaddr) 1875 { 1876 struct sit_info *sit_i = SIT_I(sbi); 1877 struct curseg_info *curseg; 1878 unsigned int segno, old_cursegno; 1879 struct seg_entry *se; 1880 int type; 1881 unsigned short old_blkoff; 1882 1883 segno = GET_SEGNO(sbi, new_blkaddr); 1884 se = get_seg_entry(sbi, segno); 1885 type = se->type; 1886 1887 if (!recover_curseg) { 1888 /* for recovery flow */ 1889 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) { 1890 if (old_blkaddr == NULL_ADDR) 1891 type = CURSEG_COLD_DATA; 1892 else 1893 type = CURSEG_WARM_DATA; 1894 } 1895 } else { 1896 if (!IS_CURSEG(sbi, segno)) 1897 type = CURSEG_WARM_DATA; 1898 } 1899 1900 curseg = CURSEG_I(sbi, type); 1901 1902 mutex_lock(&curseg->curseg_mutex); 1903 mutex_lock(&sit_i->sentry_lock); 1904 1905 old_cursegno = curseg->segno; 1906 old_blkoff = curseg->next_blkoff; 1907 1908 /* change the current segment */ 1909 if (segno != curseg->segno) { 1910 curseg->next_segno = segno; 1911 change_curseg(sbi, type, true); 1912 } 1913 1914 curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr); 1915 __add_sum_entry(sbi, type, sum); 1916 1917 if (!recover_curseg || recover_newaddr) 1918 update_sit_entry(sbi, new_blkaddr, 1); 1919 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) 1920 update_sit_entry(sbi, old_blkaddr, -1); 1921 1922 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr)); 1923 locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr)); 1924 1925 locate_dirty_segment(sbi, old_cursegno); 1926 1927 if (recover_curseg) { 1928 if (old_cursegno != curseg->segno) { 1929 curseg->next_segno = old_cursegno; 1930 change_curseg(sbi, type, true); 1931 } 1932 curseg->next_blkoff = old_blkoff; 1933 } 1934 1935 mutex_unlock(&sit_i->sentry_lock); 1936 mutex_unlock(&curseg->curseg_mutex); 1937 } 1938 1939 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn, 1940 block_t old_addr, block_t new_addr, 1941 unsigned char version, bool recover_curseg, 1942 bool recover_newaddr) 1943 { 1944 struct f2fs_summary sum; 1945 1946 set_summary(&sum, dn->nid, dn->ofs_in_node, version); 1947 1948 __f2fs_replace_block(sbi, &sum, old_addr, new_addr, 1949 recover_curseg, recover_newaddr); 1950 1951 f2fs_update_data_blkaddr(dn, new_addr); 1952 } 1953 1954 void f2fs_wait_on_page_writeback(struct page *page, 1955 enum page_type type, bool ordered) 1956 { 1957 if (PageWriteback(page)) { 1958 struct f2fs_sb_info *sbi = F2FS_P_SB(page); 1959 1960 f2fs_submit_merged_bio_cond(sbi, page->mapping->host, 1961 0, page->index, type, WRITE); 1962 if (ordered) 1963 wait_on_page_writeback(page); 1964 else 1965 wait_for_stable_page(page); 1966 } 1967 } 1968 1969 void f2fs_wait_on_encrypted_page_writeback(struct f2fs_sb_info *sbi, 1970 block_t blkaddr) 1971 { 1972 struct page *cpage; 1973 1974 if (blkaddr == NEW_ADDR || blkaddr == NULL_ADDR) 1975 return; 1976 1977 cpage = find_lock_page(META_MAPPING(sbi), blkaddr); 1978 if (cpage) { 1979 f2fs_wait_on_page_writeback(cpage, DATA, true); 1980 f2fs_put_page(cpage, 1); 1981 } 1982 } 1983 1984 static int read_compacted_summaries(struct f2fs_sb_info *sbi) 1985 { 1986 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1987 struct curseg_info *seg_i; 1988 unsigned char *kaddr; 1989 struct page *page; 1990 block_t start; 1991 int i, j, offset; 1992 1993 start = start_sum_block(sbi); 1994 1995 page = get_meta_page(sbi, start++); 1996 kaddr = (unsigned char *)page_address(page); 1997 1998 /* Step 1: restore nat cache */ 1999 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 2000 memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE); 2001 2002 /* Step 2: restore sit cache */ 2003 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 2004 memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE); 2005 offset = 2 * SUM_JOURNAL_SIZE; 2006 2007 /* Step 3: restore summary entries */ 2008 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2009 unsigned short blk_off; 2010 unsigned int segno; 2011 2012 seg_i = CURSEG_I(sbi, i); 2013 segno = le32_to_cpu(ckpt->cur_data_segno[i]); 2014 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]); 2015 seg_i->next_segno = segno; 2016 reset_curseg(sbi, i, 0); 2017 seg_i->alloc_type = ckpt->alloc_type[i]; 2018 seg_i->next_blkoff = blk_off; 2019 2020 if (seg_i->alloc_type == SSR) 2021 blk_off = sbi->blocks_per_seg; 2022 2023 for (j = 0; j < blk_off; j++) { 2024 struct f2fs_summary *s; 2025 s = (struct f2fs_summary *)(kaddr + offset); 2026 seg_i->sum_blk->entries[j] = *s; 2027 offset += SUMMARY_SIZE; 2028 if (offset + SUMMARY_SIZE <= PAGE_SIZE - 2029 SUM_FOOTER_SIZE) 2030 continue; 2031 2032 f2fs_put_page(page, 1); 2033 page = NULL; 2034 2035 page = get_meta_page(sbi, start++); 2036 kaddr = (unsigned char *)page_address(page); 2037 offset = 0; 2038 } 2039 } 2040 f2fs_put_page(page, 1); 2041 return 0; 2042 } 2043 2044 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type) 2045 { 2046 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2047 struct f2fs_summary_block *sum; 2048 struct curseg_info *curseg; 2049 struct page *new; 2050 unsigned short blk_off; 2051 unsigned int segno = 0; 2052 block_t blk_addr = 0; 2053 2054 /* get segment number and block addr */ 2055 if (IS_DATASEG(type)) { 2056 segno = le32_to_cpu(ckpt->cur_data_segno[type]); 2057 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type - 2058 CURSEG_HOT_DATA]); 2059 if (__exist_node_summaries(sbi)) 2060 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type); 2061 else 2062 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type); 2063 } else { 2064 segno = le32_to_cpu(ckpt->cur_node_segno[type - 2065 CURSEG_HOT_NODE]); 2066 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type - 2067 CURSEG_HOT_NODE]); 2068 if (__exist_node_summaries(sbi)) 2069 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE, 2070 type - CURSEG_HOT_NODE); 2071 else 2072 blk_addr = GET_SUM_BLOCK(sbi, segno); 2073 } 2074 2075 new = get_meta_page(sbi, blk_addr); 2076 sum = (struct f2fs_summary_block *)page_address(new); 2077 2078 if (IS_NODESEG(type)) { 2079 if (__exist_node_summaries(sbi)) { 2080 struct f2fs_summary *ns = &sum->entries[0]; 2081 int i; 2082 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) { 2083 ns->version = 0; 2084 ns->ofs_in_node = 0; 2085 } 2086 } else { 2087 int err; 2088 2089 err = restore_node_summary(sbi, segno, sum); 2090 if (err) { 2091 f2fs_put_page(new, 1); 2092 return err; 2093 } 2094 } 2095 } 2096 2097 /* set uncompleted segment to curseg */ 2098 curseg = CURSEG_I(sbi, type); 2099 mutex_lock(&curseg->curseg_mutex); 2100 2101 /* update journal info */ 2102 down_write(&curseg->journal_rwsem); 2103 memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE); 2104 up_write(&curseg->journal_rwsem); 2105 2106 memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE); 2107 memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE); 2108 curseg->next_segno = segno; 2109 reset_curseg(sbi, type, 0); 2110 curseg->alloc_type = ckpt->alloc_type[type]; 2111 curseg->next_blkoff = blk_off; 2112 mutex_unlock(&curseg->curseg_mutex); 2113 f2fs_put_page(new, 1); 2114 return 0; 2115 } 2116 2117 static int restore_curseg_summaries(struct f2fs_sb_info *sbi) 2118 { 2119 int type = CURSEG_HOT_DATA; 2120 int err; 2121 2122 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) { 2123 int npages = npages_for_summary_flush(sbi, true); 2124 2125 if (npages >= 2) 2126 ra_meta_pages(sbi, start_sum_block(sbi), npages, 2127 META_CP, true); 2128 2129 /* restore for compacted data summary */ 2130 if (read_compacted_summaries(sbi)) 2131 return -EINVAL; 2132 type = CURSEG_HOT_NODE; 2133 } 2134 2135 if (__exist_node_summaries(sbi)) 2136 ra_meta_pages(sbi, sum_blk_addr(sbi, NR_CURSEG_TYPE, type), 2137 NR_CURSEG_TYPE - type, META_CP, true); 2138 2139 for (; type <= CURSEG_COLD_NODE; type++) { 2140 err = read_normal_summaries(sbi, type); 2141 if (err) 2142 return err; 2143 } 2144 2145 return 0; 2146 } 2147 2148 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr) 2149 { 2150 struct page *page; 2151 unsigned char *kaddr; 2152 struct f2fs_summary *summary; 2153 struct curseg_info *seg_i; 2154 int written_size = 0; 2155 int i, j; 2156 2157 page = grab_meta_page(sbi, blkaddr++); 2158 kaddr = (unsigned char *)page_address(page); 2159 2160 /* Step 1: write nat cache */ 2161 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA); 2162 memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE); 2163 written_size += SUM_JOURNAL_SIZE; 2164 2165 /* Step 2: write sit cache */ 2166 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA); 2167 memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE); 2168 written_size += SUM_JOURNAL_SIZE; 2169 2170 /* Step 3: write summary entries */ 2171 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) { 2172 unsigned short blkoff; 2173 seg_i = CURSEG_I(sbi, i); 2174 if (sbi->ckpt->alloc_type[i] == SSR) 2175 blkoff = sbi->blocks_per_seg; 2176 else 2177 blkoff = curseg_blkoff(sbi, i); 2178 2179 for (j = 0; j < blkoff; j++) { 2180 if (!page) { 2181 page = grab_meta_page(sbi, blkaddr++); 2182 kaddr = (unsigned char *)page_address(page); 2183 written_size = 0; 2184 } 2185 summary = (struct f2fs_summary *)(kaddr + written_size); 2186 *summary = seg_i->sum_blk->entries[j]; 2187 written_size += SUMMARY_SIZE; 2188 2189 if (written_size + SUMMARY_SIZE <= PAGE_SIZE - 2190 SUM_FOOTER_SIZE) 2191 continue; 2192 2193 set_page_dirty(page); 2194 f2fs_put_page(page, 1); 2195 page = NULL; 2196 } 2197 } 2198 if (page) { 2199 set_page_dirty(page); 2200 f2fs_put_page(page, 1); 2201 } 2202 } 2203 2204 static void write_normal_summaries(struct f2fs_sb_info *sbi, 2205 block_t blkaddr, int type) 2206 { 2207 int i, end; 2208 if (IS_DATASEG(type)) 2209 end = type + NR_CURSEG_DATA_TYPE; 2210 else 2211 end = type + NR_CURSEG_NODE_TYPE; 2212 2213 for (i = type; i < end; i++) 2214 write_current_sum_page(sbi, i, blkaddr + (i - type)); 2215 } 2216 2217 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2218 { 2219 if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) 2220 write_compacted_summaries(sbi, start_blk); 2221 else 2222 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA); 2223 } 2224 2225 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk) 2226 { 2227 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE); 2228 } 2229 2230 int lookup_journal_in_cursum(struct f2fs_journal *journal, int type, 2231 unsigned int val, int alloc) 2232 { 2233 int i; 2234 2235 if (type == NAT_JOURNAL) { 2236 for (i = 0; i < nats_in_cursum(journal); i++) { 2237 if (le32_to_cpu(nid_in_journal(journal, i)) == val) 2238 return i; 2239 } 2240 if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL)) 2241 return update_nats_in_cursum(journal, 1); 2242 } else if (type == SIT_JOURNAL) { 2243 for (i = 0; i < sits_in_cursum(journal); i++) 2244 if (le32_to_cpu(segno_in_journal(journal, i)) == val) 2245 return i; 2246 if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL)) 2247 return update_sits_in_cursum(journal, 1); 2248 } 2249 return -1; 2250 } 2251 2252 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi, 2253 unsigned int segno) 2254 { 2255 return get_meta_page(sbi, current_sit_addr(sbi, segno)); 2256 } 2257 2258 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi, 2259 unsigned int start) 2260 { 2261 struct sit_info *sit_i = SIT_I(sbi); 2262 struct page *src_page, *dst_page; 2263 pgoff_t src_off, dst_off; 2264 void *src_addr, *dst_addr; 2265 2266 src_off = current_sit_addr(sbi, start); 2267 dst_off = next_sit_addr(sbi, src_off); 2268 2269 /* get current sit block page without lock */ 2270 src_page = get_meta_page(sbi, src_off); 2271 dst_page = grab_meta_page(sbi, dst_off); 2272 f2fs_bug_on(sbi, PageDirty(src_page)); 2273 2274 src_addr = page_address(src_page); 2275 dst_addr = page_address(dst_page); 2276 memcpy(dst_addr, src_addr, PAGE_SIZE); 2277 2278 set_page_dirty(dst_page); 2279 f2fs_put_page(src_page, 1); 2280 2281 set_to_next_sit(sit_i, start); 2282 2283 return dst_page; 2284 } 2285 2286 static struct sit_entry_set *grab_sit_entry_set(void) 2287 { 2288 struct sit_entry_set *ses = 2289 f2fs_kmem_cache_alloc(sit_entry_set_slab, GFP_NOFS); 2290 2291 ses->entry_cnt = 0; 2292 INIT_LIST_HEAD(&ses->set_list); 2293 return ses; 2294 } 2295 2296 static void release_sit_entry_set(struct sit_entry_set *ses) 2297 { 2298 list_del(&ses->set_list); 2299 kmem_cache_free(sit_entry_set_slab, ses); 2300 } 2301 2302 static void adjust_sit_entry_set(struct sit_entry_set *ses, 2303 struct list_head *head) 2304 { 2305 struct sit_entry_set *next = ses; 2306 2307 if (list_is_last(&ses->set_list, head)) 2308 return; 2309 2310 list_for_each_entry_continue(next, head, set_list) 2311 if (ses->entry_cnt <= next->entry_cnt) 2312 break; 2313 2314 list_move_tail(&ses->set_list, &next->set_list); 2315 } 2316 2317 static void add_sit_entry(unsigned int segno, struct list_head *head) 2318 { 2319 struct sit_entry_set *ses; 2320 unsigned int start_segno = START_SEGNO(segno); 2321 2322 list_for_each_entry(ses, head, set_list) { 2323 if (ses->start_segno == start_segno) { 2324 ses->entry_cnt++; 2325 adjust_sit_entry_set(ses, head); 2326 return; 2327 } 2328 } 2329 2330 ses = grab_sit_entry_set(); 2331 2332 ses->start_segno = start_segno; 2333 ses->entry_cnt++; 2334 list_add(&ses->set_list, head); 2335 } 2336 2337 static void add_sits_in_set(struct f2fs_sb_info *sbi) 2338 { 2339 struct f2fs_sm_info *sm_info = SM_I(sbi); 2340 struct list_head *set_list = &sm_info->sit_entry_set; 2341 unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap; 2342 unsigned int segno; 2343 2344 for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi)) 2345 add_sit_entry(segno, set_list); 2346 } 2347 2348 static void remove_sits_in_journal(struct f2fs_sb_info *sbi) 2349 { 2350 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2351 struct f2fs_journal *journal = curseg->journal; 2352 int i; 2353 2354 down_write(&curseg->journal_rwsem); 2355 for (i = 0; i < sits_in_cursum(journal); i++) { 2356 unsigned int segno; 2357 bool dirtied; 2358 2359 segno = le32_to_cpu(segno_in_journal(journal, i)); 2360 dirtied = __mark_sit_entry_dirty(sbi, segno); 2361 2362 if (!dirtied) 2363 add_sit_entry(segno, &SM_I(sbi)->sit_entry_set); 2364 } 2365 update_sits_in_cursum(journal, -i); 2366 up_write(&curseg->journal_rwsem); 2367 } 2368 2369 /* 2370 * CP calls this function, which flushes SIT entries including sit_journal, 2371 * and moves prefree segs to free segs. 2372 */ 2373 void flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc) 2374 { 2375 struct sit_info *sit_i = SIT_I(sbi); 2376 unsigned long *bitmap = sit_i->dirty_sentries_bitmap; 2377 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2378 struct f2fs_journal *journal = curseg->journal; 2379 struct sit_entry_set *ses, *tmp; 2380 struct list_head *head = &SM_I(sbi)->sit_entry_set; 2381 bool to_journal = true; 2382 struct seg_entry *se; 2383 2384 mutex_lock(&sit_i->sentry_lock); 2385 2386 if (!sit_i->dirty_sentries) 2387 goto out; 2388 2389 /* 2390 * add and account sit entries of dirty bitmap in sit entry 2391 * set temporarily 2392 */ 2393 add_sits_in_set(sbi); 2394 2395 /* 2396 * if there are no enough space in journal to store dirty sit 2397 * entries, remove all entries from journal and add and account 2398 * them in sit entry set. 2399 */ 2400 if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL)) 2401 remove_sits_in_journal(sbi); 2402 2403 /* 2404 * there are two steps to flush sit entries: 2405 * #1, flush sit entries to journal in current cold data summary block. 2406 * #2, flush sit entries to sit page. 2407 */ 2408 list_for_each_entry_safe(ses, tmp, head, set_list) { 2409 struct page *page = NULL; 2410 struct f2fs_sit_block *raw_sit = NULL; 2411 unsigned int start_segno = ses->start_segno; 2412 unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK, 2413 (unsigned long)MAIN_SEGS(sbi)); 2414 unsigned int segno = start_segno; 2415 2416 if (to_journal && 2417 !__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL)) 2418 to_journal = false; 2419 2420 if (to_journal) { 2421 down_write(&curseg->journal_rwsem); 2422 } else { 2423 page = get_next_sit_page(sbi, start_segno); 2424 raw_sit = page_address(page); 2425 } 2426 2427 /* flush dirty sit entries in region of current sit set */ 2428 for_each_set_bit_from(segno, bitmap, end) { 2429 int offset, sit_offset; 2430 2431 se = get_seg_entry(sbi, segno); 2432 2433 /* add discard candidates */ 2434 if (cpc->reason != CP_DISCARD) { 2435 cpc->trim_start = segno; 2436 add_discard_addrs(sbi, cpc, false); 2437 } 2438 2439 if (to_journal) { 2440 offset = lookup_journal_in_cursum(journal, 2441 SIT_JOURNAL, segno, 1); 2442 f2fs_bug_on(sbi, offset < 0); 2443 segno_in_journal(journal, offset) = 2444 cpu_to_le32(segno); 2445 seg_info_to_raw_sit(se, 2446 &sit_in_journal(journal, offset)); 2447 } else { 2448 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno); 2449 seg_info_to_raw_sit(se, 2450 &raw_sit->entries[sit_offset]); 2451 } 2452 2453 __clear_bit(segno, bitmap); 2454 sit_i->dirty_sentries--; 2455 ses->entry_cnt--; 2456 } 2457 2458 if (to_journal) 2459 up_write(&curseg->journal_rwsem); 2460 else 2461 f2fs_put_page(page, 1); 2462 2463 f2fs_bug_on(sbi, ses->entry_cnt); 2464 release_sit_entry_set(ses); 2465 } 2466 2467 f2fs_bug_on(sbi, !list_empty(head)); 2468 f2fs_bug_on(sbi, sit_i->dirty_sentries); 2469 out: 2470 if (cpc->reason == CP_DISCARD) { 2471 __u64 trim_start = cpc->trim_start; 2472 2473 for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) 2474 add_discard_addrs(sbi, cpc, false); 2475 2476 cpc->trim_start = trim_start; 2477 } 2478 mutex_unlock(&sit_i->sentry_lock); 2479 2480 set_prefree_as_free_segments(sbi); 2481 } 2482 2483 static int build_sit_info(struct f2fs_sb_info *sbi) 2484 { 2485 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2486 struct sit_info *sit_i; 2487 unsigned int sit_segs, start; 2488 char *src_bitmap; 2489 unsigned int bitmap_size; 2490 2491 /* allocate memory for SIT information */ 2492 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL); 2493 if (!sit_i) 2494 return -ENOMEM; 2495 2496 SM_I(sbi)->sit_info = sit_i; 2497 2498 sit_i->sentries = f2fs_kvzalloc(MAIN_SEGS(sbi) * 2499 sizeof(struct seg_entry), GFP_KERNEL); 2500 if (!sit_i->sentries) 2501 return -ENOMEM; 2502 2503 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2504 sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2505 if (!sit_i->dirty_sentries_bitmap) 2506 return -ENOMEM; 2507 2508 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2509 sit_i->sentries[start].cur_valid_map 2510 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2511 sit_i->sentries[start].ckpt_valid_map 2512 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2513 if (!sit_i->sentries[start].cur_valid_map || 2514 !sit_i->sentries[start].ckpt_valid_map) 2515 return -ENOMEM; 2516 2517 #ifdef CONFIG_F2FS_CHECK_FS 2518 sit_i->sentries[start].cur_valid_map_mir 2519 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2520 if (!sit_i->sentries[start].cur_valid_map_mir) 2521 return -ENOMEM; 2522 #endif 2523 2524 if (f2fs_discard_en(sbi)) { 2525 sit_i->sentries[start].discard_map 2526 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2527 if (!sit_i->sentries[start].discard_map) 2528 return -ENOMEM; 2529 } 2530 } 2531 2532 sit_i->tmp_map = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL); 2533 if (!sit_i->tmp_map) 2534 return -ENOMEM; 2535 2536 if (sbi->segs_per_sec > 1) { 2537 sit_i->sec_entries = f2fs_kvzalloc(MAIN_SECS(sbi) * 2538 sizeof(struct sec_entry), GFP_KERNEL); 2539 if (!sit_i->sec_entries) 2540 return -ENOMEM; 2541 } 2542 2543 /* get information related with SIT */ 2544 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1; 2545 2546 /* setup SIT bitmap from ckeckpoint pack */ 2547 bitmap_size = __bitmap_size(sbi, SIT_BITMAP); 2548 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP); 2549 2550 sit_i->sit_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2551 if (!sit_i->sit_bitmap) 2552 return -ENOMEM; 2553 2554 #ifdef CONFIG_F2FS_CHECK_FS 2555 sit_i->sit_bitmap_mir = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL); 2556 if (!sit_i->sit_bitmap_mir) 2557 return -ENOMEM; 2558 #endif 2559 2560 /* init SIT information */ 2561 sit_i->s_ops = &default_salloc_ops; 2562 2563 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr); 2564 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg; 2565 sit_i->written_valid_blocks = 0; 2566 sit_i->bitmap_size = bitmap_size; 2567 sit_i->dirty_sentries = 0; 2568 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK; 2569 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time); 2570 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec; 2571 mutex_init(&sit_i->sentry_lock); 2572 return 0; 2573 } 2574 2575 static int build_free_segmap(struct f2fs_sb_info *sbi) 2576 { 2577 struct free_segmap_info *free_i; 2578 unsigned int bitmap_size, sec_bitmap_size; 2579 2580 /* allocate memory for free segmap information */ 2581 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL); 2582 if (!free_i) 2583 return -ENOMEM; 2584 2585 SM_I(sbi)->free_info = free_i; 2586 2587 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2588 free_i->free_segmap = f2fs_kvmalloc(bitmap_size, GFP_KERNEL); 2589 if (!free_i->free_segmap) 2590 return -ENOMEM; 2591 2592 sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2593 free_i->free_secmap = f2fs_kvmalloc(sec_bitmap_size, GFP_KERNEL); 2594 if (!free_i->free_secmap) 2595 return -ENOMEM; 2596 2597 /* set all segments as dirty temporarily */ 2598 memset(free_i->free_segmap, 0xff, bitmap_size); 2599 memset(free_i->free_secmap, 0xff, sec_bitmap_size); 2600 2601 /* init free segmap information */ 2602 free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi)); 2603 free_i->free_segments = 0; 2604 free_i->free_sections = 0; 2605 spin_lock_init(&free_i->segmap_lock); 2606 return 0; 2607 } 2608 2609 static int build_curseg(struct f2fs_sb_info *sbi) 2610 { 2611 struct curseg_info *array; 2612 int i; 2613 2614 array = kcalloc(NR_CURSEG_TYPE, sizeof(*array), GFP_KERNEL); 2615 if (!array) 2616 return -ENOMEM; 2617 2618 SM_I(sbi)->curseg_array = array; 2619 2620 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2621 mutex_init(&array[i].curseg_mutex); 2622 array[i].sum_blk = kzalloc(PAGE_SIZE, GFP_KERNEL); 2623 if (!array[i].sum_blk) 2624 return -ENOMEM; 2625 init_rwsem(&array[i].journal_rwsem); 2626 array[i].journal = kzalloc(sizeof(struct f2fs_journal), 2627 GFP_KERNEL); 2628 if (!array[i].journal) 2629 return -ENOMEM; 2630 array[i].segno = NULL_SEGNO; 2631 array[i].next_blkoff = 0; 2632 } 2633 return restore_curseg_summaries(sbi); 2634 } 2635 2636 static void build_sit_entries(struct f2fs_sb_info *sbi) 2637 { 2638 struct sit_info *sit_i = SIT_I(sbi); 2639 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA); 2640 struct f2fs_journal *journal = curseg->journal; 2641 struct seg_entry *se; 2642 struct f2fs_sit_entry sit; 2643 int sit_blk_cnt = SIT_BLK_CNT(sbi); 2644 unsigned int i, start, end; 2645 unsigned int readed, start_blk = 0; 2646 2647 do { 2648 readed = ra_meta_pages(sbi, start_blk, BIO_MAX_PAGES, 2649 META_SIT, true); 2650 2651 start = start_blk * sit_i->sents_per_block; 2652 end = (start_blk + readed) * sit_i->sents_per_block; 2653 2654 for (; start < end && start < MAIN_SEGS(sbi); start++) { 2655 struct f2fs_sit_block *sit_blk; 2656 struct page *page; 2657 2658 se = &sit_i->sentries[start]; 2659 page = get_current_sit_page(sbi, start); 2660 sit_blk = (struct f2fs_sit_block *)page_address(page); 2661 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)]; 2662 f2fs_put_page(page, 1); 2663 2664 check_block_count(sbi, start, &sit); 2665 seg_info_from_raw_sit(se, &sit); 2666 2667 /* build discard map only one time */ 2668 if (f2fs_discard_en(sbi)) { 2669 memcpy(se->discard_map, se->cur_valid_map, 2670 SIT_VBLOCK_MAP_SIZE); 2671 sbi->discard_blks += sbi->blocks_per_seg - 2672 se->valid_blocks; 2673 } 2674 2675 if (sbi->segs_per_sec > 1) 2676 get_sec_entry(sbi, start)->valid_blocks += 2677 se->valid_blocks; 2678 } 2679 start_blk += readed; 2680 } while (start_blk < sit_blk_cnt); 2681 2682 down_read(&curseg->journal_rwsem); 2683 for (i = 0; i < sits_in_cursum(journal); i++) { 2684 unsigned int old_valid_blocks; 2685 2686 start = le32_to_cpu(segno_in_journal(journal, i)); 2687 se = &sit_i->sentries[start]; 2688 sit = sit_in_journal(journal, i); 2689 2690 old_valid_blocks = se->valid_blocks; 2691 2692 check_block_count(sbi, start, &sit); 2693 seg_info_from_raw_sit(se, &sit); 2694 2695 if (f2fs_discard_en(sbi)) { 2696 memcpy(se->discard_map, se->cur_valid_map, 2697 SIT_VBLOCK_MAP_SIZE); 2698 sbi->discard_blks += old_valid_blocks - 2699 se->valid_blocks; 2700 } 2701 2702 if (sbi->segs_per_sec > 1) 2703 get_sec_entry(sbi, start)->valid_blocks += 2704 se->valid_blocks - old_valid_blocks; 2705 } 2706 up_read(&curseg->journal_rwsem); 2707 } 2708 2709 static void init_free_segmap(struct f2fs_sb_info *sbi) 2710 { 2711 unsigned int start; 2712 int type; 2713 2714 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2715 struct seg_entry *sentry = get_seg_entry(sbi, start); 2716 if (!sentry->valid_blocks) 2717 __set_free(sbi, start); 2718 else 2719 SIT_I(sbi)->written_valid_blocks += 2720 sentry->valid_blocks; 2721 } 2722 2723 /* set use the current segments */ 2724 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) { 2725 struct curseg_info *curseg_t = CURSEG_I(sbi, type); 2726 __set_test_and_inuse(sbi, curseg_t->segno); 2727 } 2728 } 2729 2730 static void init_dirty_segmap(struct f2fs_sb_info *sbi) 2731 { 2732 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2733 struct free_segmap_info *free_i = FREE_I(sbi); 2734 unsigned int segno = 0, offset = 0; 2735 unsigned short valid_blocks; 2736 2737 while (1) { 2738 /* find dirty segment based on free segmap */ 2739 segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset); 2740 if (segno >= MAIN_SEGS(sbi)) 2741 break; 2742 offset = segno + 1; 2743 valid_blocks = get_valid_blocks(sbi, segno, 0); 2744 if (valid_blocks == sbi->blocks_per_seg || !valid_blocks) 2745 continue; 2746 if (valid_blocks > sbi->blocks_per_seg) { 2747 f2fs_bug_on(sbi, 1); 2748 continue; 2749 } 2750 mutex_lock(&dirty_i->seglist_lock); 2751 __locate_dirty_segment(sbi, segno, DIRTY); 2752 mutex_unlock(&dirty_i->seglist_lock); 2753 } 2754 } 2755 2756 static int init_victim_secmap(struct f2fs_sb_info *sbi) 2757 { 2758 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2759 unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi)); 2760 2761 dirty_i->victim_secmap = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2762 if (!dirty_i->victim_secmap) 2763 return -ENOMEM; 2764 return 0; 2765 } 2766 2767 static int build_dirty_segmap(struct f2fs_sb_info *sbi) 2768 { 2769 struct dirty_seglist_info *dirty_i; 2770 unsigned int bitmap_size, i; 2771 2772 /* allocate memory for dirty segments list information */ 2773 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL); 2774 if (!dirty_i) 2775 return -ENOMEM; 2776 2777 SM_I(sbi)->dirty_info = dirty_i; 2778 mutex_init(&dirty_i->seglist_lock); 2779 2780 bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi)); 2781 2782 for (i = 0; i < NR_DIRTY_TYPE; i++) { 2783 dirty_i->dirty_segmap[i] = f2fs_kvzalloc(bitmap_size, GFP_KERNEL); 2784 if (!dirty_i->dirty_segmap[i]) 2785 return -ENOMEM; 2786 } 2787 2788 init_dirty_segmap(sbi); 2789 return init_victim_secmap(sbi); 2790 } 2791 2792 /* 2793 * Update min, max modified time for cost-benefit GC algorithm 2794 */ 2795 static void init_min_max_mtime(struct f2fs_sb_info *sbi) 2796 { 2797 struct sit_info *sit_i = SIT_I(sbi); 2798 unsigned int segno; 2799 2800 mutex_lock(&sit_i->sentry_lock); 2801 2802 sit_i->min_mtime = LLONG_MAX; 2803 2804 for (segno = 0; segno < MAIN_SEGS(sbi); segno += sbi->segs_per_sec) { 2805 unsigned int i; 2806 unsigned long long mtime = 0; 2807 2808 for (i = 0; i < sbi->segs_per_sec; i++) 2809 mtime += get_seg_entry(sbi, segno + i)->mtime; 2810 2811 mtime = div_u64(mtime, sbi->segs_per_sec); 2812 2813 if (sit_i->min_mtime > mtime) 2814 sit_i->min_mtime = mtime; 2815 } 2816 sit_i->max_mtime = get_mtime(sbi); 2817 mutex_unlock(&sit_i->sentry_lock); 2818 } 2819 2820 int build_segment_manager(struct f2fs_sb_info *sbi) 2821 { 2822 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2823 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2824 struct f2fs_sm_info *sm_info; 2825 int err; 2826 2827 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL); 2828 if (!sm_info) 2829 return -ENOMEM; 2830 2831 /* init sm info */ 2832 sbi->sm_info = sm_info; 2833 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2834 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2835 sm_info->segment_count = le32_to_cpu(raw_super->segment_count); 2836 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2837 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2838 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main); 2839 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2840 sm_info->rec_prefree_segments = sm_info->main_segments * 2841 DEF_RECLAIM_PREFREE_SEGMENTS / 100; 2842 if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS) 2843 sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS; 2844 2845 if (!test_opt(sbi, LFS)) 2846 sm_info->ipu_policy = 1 << F2FS_IPU_FSYNC; 2847 sm_info->min_ipu_util = DEF_MIN_IPU_UTIL; 2848 sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS; 2849 2850 sm_info->trim_sections = DEF_BATCHED_TRIM_SECTIONS; 2851 2852 INIT_LIST_HEAD(&sm_info->sit_entry_set); 2853 2854 if (test_opt(sbi, FLUSH_MERGE) && !f2fs_readonly(sbi->sb)) { 2855 err = create_flush_cmd_control(sbi); 2856 if (err) 2857 return err; 2858 } 2859 2860 err = create_discard_cmd_control(sbi); 2861 if (err) 2862 return err; 2863 2864 err = build_sit_info(sbi); 2865 if (err) 2866 return err; 2867 err = build_free_segmap(sbi); 2868 if (err) 2869 return err; 2870 err = build_curseg(sbi); 2871 if (err) 2872 return err; 2873 2874 /* reinit free segmap based on SIT */ 2875 build_sit_entries(sbi); 2876 2877 init_free_segmap(sbi); 2878 err = build_dirty_segmap(sbi); 2879 if (err) 2880 return err; 2881 2882 init_min_max_mtime(sbi); 2883 return 0; 2884 } 2885 2886 static void discard_dirty_segmap(struct f2fs_sb_info *sbi, 2887 enum dirty_type dirty_type) 2888 { 2889 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2890 2891 mutex_lock(&dirty_i->seglist_lock); 2892 kvfree(dirty_i->dirty_segmap[dirty_type]); 2893 dirty_i->nr_dirty[dirty_type] = 0; 2894 mutex_unlock(&dirty_i->seglist_lock); 2895 } 2896 2897 static void destroy_victim_secmap(struct f2fs_sb_info *sbi) 2898 { 2899 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2900 kvfree(dirty_i->victim_secmap); 2901 } 2902 2903 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi) 2904 { 2905 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi); 2906 int i; 2907 2908 if (!dirty_i) 2909 return; 2910 2911 /* discard pre-free/dirty segments list */ 2912 for (i = 0; i < NR_DIRTY_TYPE; i++) 2913 discard_dirty_segmap(sbi, i); 2914 2915 destroy_victim_secmap(sbi); 2916 SM_I(sbi)->dirty_info = NULL; 2917 kfree(dirty_i); 2918 } 2919 2920 static void destroy_curseg(struct f2fs_sb_info *sbi) 2921 { 2922 struct curseg_info *array = SM_I(sbi)->curseg_array; 2923 int i; 2924 2925 if (!array) 2926 return; 2927 SM_I(sbi)->curseg_array = NULL; 2928 for (i = 0; i < NR_CURSEG_TYPE; i++) { 2929 kfree(array[i].sum_blk); 2930 kfree(array[i].journal); 2931 } 2932 kfree(array); 2933 } 2934 2935 static void destroy_free_segmap(struct f2fs_sb_info *sbi) 2936 { 2937 struct free_segmap_info *free_i = SM_I(sbi)->free_info; 2938 if (!free_i) 2939 return; 2940 SM_I(sbi)->free_info = NULL; 2941 kvfree(free_i->free_segmap); 2942 kvfree(free_i->free_secmap); 2943 kfree(free_i); 2944 } 2945 2946 static void destroy_sit_info(struct f2fs_sb_info *sbi) 2947 { 2948 struct sit_info *sit_i = SIT_I(sbi); 2949 unsigned int start; 2950 2951 if (!sit_i) 2952 return; 2953 2954 if (sit_i->sentries) { 2955 for (start = 0; start < MAIN_SEGS(sbi); start++) { 2956 kfree(sit_i->sentries[start].cur_valid_map); 2957 #ifdef CONFIG_F2FS_CHECK_FS 2958 kfree(sit_i->sentries[start].cur_valid_map_mir); 2959 #endif 2960 kfree(sit_i->sentries[start].ckpt_valid_map); 2961 kfree(sit_i->sentries[start].discard_map); 2962 } 2963 } 2964 kfree(sit_i->tmp_map); 2965 2966 kvfree(sit_i->sentries); 2967 kvfree(sit_i->sec_entries); 2968 kvfree(sit_i->dirty_sentries_bitmap); 2969 2970 SM_I(sbi)->sit_info = NULL; 2971 kfree(sit_i->sit_bitmap); 2972 #ifdef CONFIG_F2FS_CHECK_FS 2973 kfree(sit_i->sit_bitmap_mir); 2974 #endif 2975 kfree(sit_i); 2976 } 2977 2978 void destroy_segment_manager(struct f2fs_sb_info *sbi) 2979 { 2980 struct f2fs_sm_info *sm_info = SM_I(sbi); 2981 2982 if (!sm_info) 2983 return; 2984 destroy_flush_cmd_control(sbi, true); 2985 destroy_discard_cmd_control(sbi, true); 2986 destroy_dirty_segmap(sbi); 2987 destroy_curseg(sbi); 2988 destroy_free_segmap(sbi); 2989 destroy_sit_info(sbi); 2990 sbi->sm_info = NULL; 2991 kfree(sm_info); 2992 } 2993 2994 int __init create_segment_manager_caches(void) 2995 { 2996 discard_entry_slab = f2fs_kmem_cache_create("discard_entry", 2997 sizeof(struct discard_entry)); 2998 if (!discard_entry_slab) 2999 goto fail; 3000 3001 discard_cmd_slab = f2fs_kmem_cache_create("discard_cmd", 3002 sizeof(struct discard_cmd)); 3003 if (!discard_cmd_slab) 3004 goto destroy_discard_entry; 3005 3006 sit_entry_set_slab = f2fs_kmem_cache_create("sit_entry_set", 3007 sizeof(struct sit_entry_set)); 3008 if (!sit_entry_set_slab) 3009 goto destroy_discard_cmd; 3010 3011 inmem_entry_slab = f2fs_kmem_cache_create("inmem_page_entry", 3012 sizeof(struct inmem_pages)); 3013 if (!inmem_entry_slab) 3014 goto destroy_sit_entry_set; 3015 return 0; 3016 3017 destroy_sit_entry_set: 3018 kmem_cache_destroy(sit_entry_set_slab); 3019 destroy_discard_cmd: 3020 kmem_cache_destroy(discard_cmd_slab); 3021 destroy_discard_entry: 3022 kmem_cache_destroy(discard_entry_slab); 3023 fail: 3024 return -ENOMEM; 3025 } 3026 3027 void destroy_segment_manager_caches(void) 3028 { 3029 kmem_cache_destroy(sit_entry_set_slab); 3030 kmem_cache_destroy(discard_cmd_slab); 3031 kmem_cache_destroy(discard_entry_slab); 3032 kmem_cache_destroy(inmem_entry_slab); 3033 } 3034