xref: /openbmc/linux/fs/f2fs/segment.c (revision 483eb062)
1 /*
2  * fs/f2fs/segment.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
17 #include <linux/swap.h>
18 
19 #include "f2fs.h"
20 #include "segment.h"
21 #include "node.h"
22 #include <trace/events/f2fs.h>
23 
24 #define __reverse_ffz(x) __reverse_ffs(~(x))
25 
26 static struct kmem_cache *discard_entry_slab;
27 
28 /*
29  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
30  * MSB and LSB are reversed in a byte by f2fs_set_bit.
31  */
32 static inline unsigned long __reverse_ffs(unsigned long word)
33 {
34 	int num = 0;
35 
36 #if BITS_PER_LONG == 64
37 	if ((word & 0xffffffff) == 0) {
38 		num += 32;
39 		word >>= 32;
40 	}
41 #endif
42 	if ((word & 0xffff) == 0) {
43 		num += 16;
44 		word >>= 16;
45 	}
46 	if ((word & 0xff) == 0) {
47 		num += 8;
48 		word >>= 8;
49 	}
50 	if ((word & 0xf0) == 0)
51 		num += 4;
52 	else
53 		word >>= 4;
54 	if ((word & 0xc) == 0)
55 		num += 2;
56 	else
57 		word >>= 2;
58 	if ((word & 0x2) == 0)
59 		num += 1;
60 	return num;
61 }
62 
63 /*
64  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c becasue
65  * f2fs_set_bit makes MSB and LSB reversed in a byte.
66  * Example:
67  *                             LSB <--> MSB
68  *   f2fs_set_bit(0, bitmap) => 0000 0001
69  *   f2fs_set_bit(7, bitmap) => 1000 0000
70  */
71 static unsigned long __find_rev_next_bit(const unsigned long *addr,
72 			unsigned long size, unsigned long offset)
73 {
74 	const unsigned long *p = addr + BIT_WORD(offset);
75 	unsigned long result = offset & ~(BITS_PER_LONG - 1);
76 	unsigned long tmp;
77 	unsigned long mask, submask;
78 	unsigned long quot, rest;
79 
80 	if (offset >= size)
81 		return size;
82 
83 	size -= result;
84 	offset %= BITS_PER_LONG;
85 	if (!offset)
86 		goto aligned;
87 
88 	tmp = *(p++);
89 	quot = (offset >> 3) << 3;
90 	rest = offset & 0x7;
91 	mask = ~0UL << quot;
92 	submask = (unsigned char)(0xff << rest) >> rest;
93 	submask <<= quot;
94 	mask &= submask;
95 	tmp &= mask;
96 	if (size < BITS_PER_LONG)
97 		goto found_first;
98 	if (tmp)
99 		goto found_middle;
100 
101 	size -= BITS_PER_LONG;
102 	result += BITS_PER_LONG;
103 aligned:
104 	while (size & ~(BITS_PER_LONG-1)) {
105 		tmp = *(p++);
106 		if (tmp)
107 			goto found_middle;
108 		result += BITS_PER_LONG;
109 		size -= BITS_PER_LONG;
110 	}
111 	if (!size)
112 		return result;
113 	tmp = *p;
114 found_first:
115 	tmp &= (~0UL >> (BITS_PER_LONG - size));
116 	if (tmp == 0UL)		/* Are any bits set? */
117 		return result + size;   /* Nope. */
118 found_middle:
119 	return result + __reverse_ffs(tmp);
120 }
121 
122 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
123 			unsigned long size, unsigned long offset)
124 {
125 	const unsigned long *p = addr + BIT_WORD(offset);
126 	unsigned long result = offset & ~(BITS_PER_LONG - 1);
127 	unsigned long tmp;
128 	unsigned long mask, submask;
129 	unsigned long quot, rest;
130 
131 	if (offset >= size)
132 		return size;
133 
134 	size -= result;
135 	offset %= BITS_PER_LONG;
136 	if (!offset)
137 		goto aligned;
138 
139 	tmp = *(p++);
140 	quot = (offset >> 3) << 3;
141 	rest = offset & 0x7;
142 	mask = ~(~0UL << quot);
143 	submask = (unsigned char)~((unsigned char)(0xff << rest) >> rest);
144 	submask <<= quot;
145 	mask += submask;
146 	tmp |= mask;
147 	if (size < BITS_PER_LONG)
148 		goto found_first;
149 	if (~tmp)
150 		goto found_middle;
151 
152 	size -= BITS_PER_LONG;
153 	result += BITS_PER_LONG;
154 aligned:
155 	while (size & ~(BITS_PER_LONG - 1)) {
156 		tmp = *(p++);
157 		if (~tmp)
158 			goto found_middle;
159 		result += BITS_PER_LONG;
160 		size -= BITS_PER_LONG;
161 	}
162 	if (!size)
163 		return result;
164 	tmp = *p;
165 
166 found_first:
167 	tmp |= ~0UL << size;
168 	if (tmp == ~0UL)        /* Are any bits zero? */
169 		return result + size;   /* Nope. */
170 found_middle:
171 	return result + __reverse_ffz(tmp);
172 }
173 
174 /*
175  * This function balances dirty node and dentry pages.
176  * In addition, it controls garbage collection.
177  */
178 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
179 {
180 	/*
181 	 * We should do GC or end up with checkpoint, if there are so many dirty
182 	 * dir/node pages without enough free segments.
183 	 */
184 	if (has_not_enough_free_secs(sbi, 0)) {
185 		mutex_lock(&sbi->gc_mutex);
186 		f2fs_gc(sbi);
187 	}
188 }
189 
190 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi)
191 {
192 	/* check the # of cached NAT entries and prefree segments */
193 	if (try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK) ||
194 				excess_prefree_segs(sbi))
195 		f2fs_sync_fs(sbi->sb, true);
196 }
197 
198 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
199 		enum dirty_type dirty_type)
200 {
201 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
202 
203 	/* need not be added */
204 	if (IS_CURSEG(sbi, segno))
205 		return;
206 
207 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
208 		dirty_i->nr_dirty[dirty_type]++;
209 
210 	if (dirty_type == DIRTY) {
211 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
212 		enum dirty_type t = sentry->type;
213 
214 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
215 			dirty_i->nr_dirty[t]++;
216 	}
217 }
218 
219 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
220 		enum dirty_type dirty_type)
221 {
222 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
223 
224 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
225 		dirty_i->nr_dirty[dirty_type]--;
226 
227 	if (dirty_type == DIRTY) {
228 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
229 		enum dirty_type t = sentry->type;
230 
231 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
232 			dirty_i->nr_dirty[t]--;
233 
234 		if (get_valid_blocks(sbi, segno, sbi->segs_per_sec) == 0)
235 			clear_bit(GET_SECNO(sbi, segno),
236 						dirty_i->victim_secmap);
237 	}
238 }
239 
240 /*
241  * Should not occur error such as -ENOMEM.
242  * Adding dirty entry into seglist is not critical operation.
243  * If a given segment is one of current working segments, it won't be added.
244  */
245 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
246 {
247 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
248 	unsigned short valid_blocks;
249 
250 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
251 		return;
252 
253 	mutex_lock(&dirty_i->seglist_lock);
254 
255 	valid_blocks = get_valid_blocks(sbi, segno, 0);
256 
257 	if (valid_blocks == 0) {
258 		__locate_dirty_segment(sbi, segno, PRE);
259 		__remove_dirty_segment(sbi, segno, DIRTY);
260 	} else if (valid_blocks < sbi->blocks_per_seg) {
261 		__locate_dirty_segment(sbi, segno, DIRTY);
262 	} else {
263 		/* Recovery routine with SSR needs this */
264 		__remove_dirty_segment(sbi, segno, DIRTY);
265 	}
266 
267 	mutex_unlock(&dirty_i->seglist_lock);
268 }
269 
270 static void f2fs_issue_discard(struct f2fs_sb_info *sbi,
271 				block_t blkstart, block_t blklen)
272 {
273 	sector_t start = SECTOR_FROM_BLOCK(sbi, blkstart);
274 	sector_t len = SECTOR_FROM_BLOCK(sbi, blklen);
275 	blkdev_issue_discard(sbi->sb->s_bdev, start, len, GFP_NOFS, 0);
276 	trace_f2fs_issue_discard(sbi->sb, blkstart, blklen);
277 }
278 
279 static void add_discard_addrs(struct f2fs_sb_info *sbi,
280 			unsigned int segno, struct seg_entry *se)
281 {
282 	struct list_head *head = &SM_I(sbi)->discard_list;
283 	struct discard_entry *new;
284 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
285 	int max_blocks = sbi->blocks_per_seg;
286 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
287 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
288 	unsigned long dmap[entries];
289 	unsigned int start = 0, end = -1;
290 	int i;
291 
292 	if (!test_opt(sbi, DISCARD))
293 		return;
294 
295 	/* zero block will be discarded through the prefree list */
296 	if (!se->valid_blocks || se->valid_blocks == max_blocks)
297 		return;
298 
299 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
300 	for (i = 0; i < entries; i++)
301 		dmap[i] = (cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
302 
303 	while (SM_I(sbi)->nr_discards <= SM_I(sbi)->max_discards) {
304 		start = __find_rev_next_bit(dmap, max_blocks, end + 1);
305 		if (start >= max_blocks)
306 			break;
307 
308 		end = __find_rev_next_zero_bit(dmap, max_blocks, start + 1);
309 
310 		new = f2fs_kmem_cache_alloc(discard_entry_slab, GFP_NOFS);
311 		INIT_LIST_HEAD(&new->list);
312 		new->blkaddr = START_BLOCK(sbi, segno) + start;
313 		new->len = end - start;
314 
315 		list_add_tail(&new->list, head);
316 		SM_I(sbi)->nr_discards += end - start;
317 	}
318 }
319 
320 /*
321  * Should call clear_prefree_segments after checkpoint is done.
322  */
323 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
324 {
325 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
326 	unsigned int segno = -1;
327 	unsigned int total_segs = TOTAL_SEGS(sbi);
328 
329 	mutex_lock(&dirty_i->seglist_lock);
330 	while (1) {
331 		segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
332 				segno + 1);
333 		if (segno >= total_segs)
334 			break;
335 		__set_test_and_free(sbi, segno);
336 	}
337 	mutex_unlock(&dirty_i->seglist_lock);
338 }
339 
340 void clear_prefree_segments(struct f2fs_sb_info *sbi)
341 {
342 	struct list_head *head = &(SM_I(sbi)->discard_list);
343 	struct list_head *this, *next;
344 	struct discard_entry *entry;
345 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
346 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
347 	unsigned int total_segs = TOTAL_SEGS(sbi);
348 	unsigned int start = 0, end = -1;
349 
350 	mutex_lock(&dirty_i->seglist_lock);
351 
352 	while (1) {
353 		int i;
354 		start = find_next_bit(prefree_map, total_segs, end + 1);
355 		if (start >= total_segs)
356 			break;
357 		end = find_next_zero_bit(prefree_map, total_segs, start + 1);
358 
359 		for (i = start; i < end; i++)
360 			clear_bit(i, prefree_map);
361 
362 		dirty_i->nr_dirty[PRE] -= end - start;
363 
364 		if (!test_opt(sbi, DISCARD))
365 			continue;
366 
367 		f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
368 				(end - start) << sbi->log_blocks_per_seg);
369 	}
370 	mutex_unlock(&dirty_i->seglist_lock);
371 
372 	/* send small discards */
373 	list_for_each_safe(this, next, head) {
374 		entry = list_entry(this, struct discard_entry, list);
375 		f2fs_issue_discard(sbi, entry->blkaddr, entry->len);
376 		list_del(&entry->list);
377 		SM_I(sbi)->nr_discards -= entry->len;
378 		kmem_cache_free(discard_entry_slab, entry);
379 	}
380 }
381 
382 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
383 {
384 	struct sit_info *sit_i = SIT_I(sbi);
385 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
386 		sit_i->dirty_sentries++;
387 }
388 
389 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
390 					unsigned int segno, int modified)
391 {
392 	struct seg_entry *se = get_seg_entry(sbi, segno);
393 	se->type = type;
394 	if (modified)
395 		__mark_sit_entry_dirty(sbi, segno);
396 }
397 
398 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
399 {
400 	struct seg_entry *se;
401 	unsigned int segno, offset;
402 	long int new_vblocks;
403 
404 	segno = GET_SEGNO(sbi, blkaddr);
405 
406 	se = get_seg_entry(sbi, segno);
407 	new_vblocks = se->valid_blocks + del;
408 	offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
409 
410 	f2fs_bug_on((new_vblocks >> (sizeof(unsigned short) << 3) ||
411 				(new_vblocks > sbi->blocks_per_seg)));
412 
413 	se->valid_blocks = new_vblocks;
414 	se->mtime = get_mtime(sbi);
415 	SIT_I(sbi)->max_mtime = se->mtime;
416 
417 	/* Update valid block bitmap */
418 	if (del > 0) {
419 		if (f2fs_set_bit(offset, se->cur_valid_map))
420 			BUG();
421 	} else {
422 		if (!f2fs_clear_bit(offset, se->cur_valid_map))
423 			BUG();
424 	}
425 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
426 		se->ckpt_valid_blocks += del;
427 
428 	__mark_sit_entry_dirty(sbi, segno);
429 
430 	/* update total number of valid blocks to be written in ckpt area */
431 	SIT_I(sbi)->written_valid_blocks += del;
432 
433 	if (sbi->segs_per_sec > 1)
434 		get_sec_entry(sbi, segno)->valid_blocks += del;
435 }
436 
437 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
438 			block_t old_blkaddr, block_t new_blkaddr)
439 {
440 	update_sit_entry(sbi, new_blkaddr, 1);
441 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
442 		update_sit_entry(sbi, old_blkaddr, -1);
443 }
444 
445 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
446 {
447 	unsigned int segno = GET_SEGNO(sbi, addr);
448 	struct sit_info *sit_i = SIT_I(sbi);
449 
450 	f2fs_bug_on(addr == NULL_ADDR);
451 	if (addr == NEW_ADDR)
452 		return;
453 
454 	/* add it into sit main buffer */
455 	mutex_lock(&sit_i->sentry_lock);
456 
457 	update_sit_entry(sbi, addr, -1);
458 
459 	/* add it into dirty seglist */
460 	locate_dirty_segment(sbi, segno);
461 
462 	mutex_unlock(&sit_i->sentry_lock);
463 }
464 
465 /*
466  * This function should be resided under the curseg_mutex lock
467  */
468 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
469 					struct f2fs_summary *sum)
470 {
471 	struct curseg_info *curseg = CURSEG_I(sbi, type);
472 	void *addr = curseg->sum_blk;
473 	addr += curseg->next_blkoff * sizeof(struct f2fs_summary);
474 	memcpy(addr, sum, sizeof(struct f2fs_summary));
475 }
476 
477 /*
478  * Calculate the number of current summary pages for writing
479  */
480 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
481 {
482 	int valid_sum_count = 0;
483 	int i, sum_in_page;
484 
485 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
486 		if (sbi->ckpt->alloc_type[i] == SSR)
487 			valid_sum_count += sbi->blocks_per_seg;
488 		else
489 			valid_sum_count += curseg_blkoff(sbi, i);
490 	}
491 
492 	sum_in_page = (PAGE_CACHE_SIZE - 2 * SUM_JOURNAL_SIZE -
493 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
494 	if (valid_sum_count <= sum_in_page)
495 		return 1;
496 	else if ((valid_sum_count - sum_in_page) <=
497 		(PAGE_CACHE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
498 		return 2;
499 	return 3;
500 }
501 
502 /*
503  * Caller should put this summary page
504  */
505 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
506 {
507 	return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
508 }
509 
510 static void write_sum_page(struct f2fs_sb_info *sbi,
511 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
512 {
513 	struct page *page = grab_meta_page(sbi, blk_addr);
514 	void *kaddr = page_address(page);
515 	memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
516 	set_page_dirty(page);
517 	f2fs_put_page(page, 1);
518 }
519 
520 static int is_next_segment_free(struct f2fs_sb_info *sbi, int type)
521 {
522 	struct curseg_info *curseg = CURSEG_I(sbi, type);
523 	unsigned int segno = curseg->segno + 1;
524 	struct free_segmap_info *free_i = FREE_I(sbi);
525 
526 	if (segno < TOTAL_SEGS(sbi) && segno % sbi->segs_per_sec)
527 		return !test_bit(segno, free_i->free_segmap);
528 	return 0;
529 }
530 
531 /*
532  * Find a new segment from the free segments bitmap to right order
533  * This function should be returned with success, otherwise BUG
534  */
535 static void get_new_segment(struct f2fs_sb_info *sbi,
536 			unsigned int *newseg, bool new_sec, int dir)
537 {
538 	struct free_segmap_info *free_i = FREE_I(sbi);
539 	unsigned int segno, secno, zoneno;
540 	unsigned int total_zones = TOTAL_SECS(sbi) / sbi->secs_per_zone;
541 	unsigned int hint = *newseg / sbi->segs_per_sec;
542 	unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
543 	unsigned int left_start = hint;
544 	bool init = true;
545 	int go_left = 0;
546 	int i;
547 
548 	write_lock(&free_i->segmap_lock);
549 
550 	if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
551 		segno = find_next_zero_bit(free_i->free_segmap,
552 					TOTAL_SEGS(sbi), *newseg + 1);
553 		if (segno - *newseg < sbi->segs_per_sec -
554 					(*newseg % sbi->segs_per_sec))
555 			goto got_it;
556 	}
557 find_other_zone:
558 	secno = find_next_zero_bit(free_i->free_secmap, TOTAL_SECS(sbi), hint);
559 	if (secno >= TOTAL_SECS(sbi)) {
560 		if (dir == ALLOC_RIGHT) {
561 			secno = find_next_zero_bit(free_i->free_secmap,
562 							TOTAL_SECS(sbi), 0);
563 			f2fs_bug_on(secno >= TOTAL_SECS(sbi));
564 		} else {
565 			go_left = 1;
566 			left_start = hint - 1;
567 		}
568 	}
569 	if (go_left == 0)
570 		goto skip_left;
571 
572 	while (test_bit(left_start, free_i->free_secmap)) {
573 		if (left_start > 0) {
574 			left_start--;
575 			continue;
576 		}
577 		left_start = find_next_zero_bit(free_i->free_secmap,
578 							TOTAL_SECS(sbi), 0);
579 		f2fs_bug_on(left_start >= TOTAL_SECS(sbi));
580 		break;
581 	}
582 	secno = left_start;
583 skip_left:
584 	hint = secno;
585 	segno = secno * sbi->segs_per_sec;
586 	zoneno = secno / sbi->secs_per_zone;
587 
588 	/* give up on finding another zone */
589 	if (!init)
590 		goto got_it;
591 	if (sbi->secs_per_zone == 1)
592 		goto got_it;
593 	if (zoneno == old_zoneno)
594 		goto got_it;
595 	if (dir == ALLOC_LEFT) {
596 		if (!go_left && zoneno + 1 >= total_zones)
597 			goto got_it;
598 		if (go_left && zoneno == 0)
599 			goto got_it;
600 	}
601 	for (i = 0; i < NR_CURSEG_TYPE; i++)
602 		if (CURSEG_I(sbi, i)->zone == zoneno)
603 			break;
604 
605 	if (i < NR_CURSEG_TYPE) {
606 		/* zone is in user, try another */
607 		if (go_left)
608 			hint = zoneno * sbi->secs_per_zone - 1;
609 		else if (zoneno + 1 >= total_zones)
610 			hint = 0;
611 		else
612 			hint = (zoneno + 1) * sbi->secs_per_zone;
613 		init = false;
614 		goto find_other_zone;
615 	}
616 got_it:
617 	/* set it as dirty segment in free segmap */
618 	f2fs_bug_on(test_bit(segno, free_i->free_segmap));
619 	__set_inuse(sbi, segno);
620 	*newseg = segno;
621 	write_unlock(&free_i->segmap_lock);
622 }
623 
624 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
625 {
626 	struct curseg_info *curseg = CURSEG_I(sbi, type);
627 	struct summary_footer *sum_footer;
628 
629 	curseg->segno = curseg->next_segno;
630 	curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
631 	curseg->next_blkoff = 0;
632 	curseg->next_segno = NULL_SEGNO;
633 
634 	sum_footer = &(curseg->sum_blk->footer);
635 	memset(sum_footer, 0, sizeof(struct summary_footer));
636 	if (IS_DATASEG(type))
637 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
638 	if (IS_NODESEG(type))
639 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
640 	__set_sit_entry_type(sbi, type, curseg->segno, modified);
641 }
642 
643 /*
644  * Allocate a current working segment.
645  * This function always allocates a free segment in LFS manner.
646  */
647 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
648 {
649 	struct curseg_info *curseg = CURSEG_I(sbi, type);
650 	unsigned int segno = curseg->segno;
651 	int dir = ALLOC_LEFT;
652 
653 	write_sum_page(sbi, curseg->sum_blk,
654 				GET_SUM_BLOCK(sbi, segno));
655 	if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
656 		dir = ALLOC_RIGHT;
657 
658 	if (test_opt(sbi, NOHEAP))
659 		dir = ALLOC_RIGHT;
660 
661 	get_new_segment(sbi, &segno, new_sec, dir);
662 	curseg->next_segno = segno;
663 	reset_curseg(sbi, type, 1);
664 	curseg->alloc_type = LFS;
665 }
666 
667 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
668 			struct curseg_info *seg, block_t start)
669 {
670 	struct seg_entry *se = get_seg_entry(sbi, seg->segno);
671 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
672 	unsigned long target_map[entries];
673 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
674 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
675 	int i, pos;
676 
677 	for (i = 0; i < entries; i++)
678 		target_map[i] = ckpt_map[i] | cur_map[i];
679 
680 	pos = __find_rev_next_zero_bit(target_map, sbi->blocks_per_seg, start);
681 
682 	seg->next_blkoff = pos;
683 }
684 
685 /*
686  * If a segment is written by LFS manner, next block offset is just obtained
687  * by increasing the current block offset. However, if a segment is written by
688  * SSR manner, next block offset obtained by calling __next_free_blkoff
689  */
690 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
691 				struct curseg_info *seg)
692 {
693 	if (seg->alloc_type == SSR)
694 		__next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
695 	else
696 		seg->next_blkoff++;
697 }
698 
699 /*
700  * This function always allocates a used segment (from dirty seglist) by SSR
701  * manner, so it should recover the existing segment information of valid blocks
702  */
703 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
704 {
705 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
706 	struct curseg_info *curseg = CURSEG_I(sbi, type);
707 	unsigned int new_segno = curseg->next_segno;
708 	struct f2fs_summary_block *sum_node;
709 	struct page *sum_page;
710 
711 	write_sum_page(sbi, curseg->sum_blk,
712 				GET_SUM_BLOCK(sbi, curseg->segno));
713 	__set_test_and_inuse(sbi, new_segno);
714 
715 	mutex_lock(&dirty_i->seglist_lock);
716 	__remove_dirty_segment(sbi, new_segno, PRE);
717 	__remove_dirty_segment(sbi, new_segno, DIRTY);
718 	mutex_unlock(&dirty_i->seglist_lock);
719 
720 	reset_curseg(sbi, type, 1);
721 	curseg->alloc_type = SSR;
722 	__next_free_blkoff(sbi, curseg, 0);
723 
724 	if (reuse) {
725 		sum_page = get_sum_page(sbi, new_segno);
726 		sum_node = (struct f2fs_summary_block *)page_address(sum_page);
727 		memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
728 		f2fs_put_page(sum_page, 1);
729 	}
730 }
731 
732 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type)
733 {
734 	struct curseg_info *curseg = CURSEG_I(sbi, type);
735 	const struct victim_selection *v_ops = DIRTY_I(sbi)->v_ops;
736 
737 	if (IS_NODESEG(type) || !has_not_enough_free_secs(sbi, 0))
738 		return v_ops->get_victim(sbi,
739 				&(curseg)->next_segno, BG_GC, type, SSR);
740 
741 	/* For data segments, let's do SSR more intensively */
742 	for (; type >= CURSEG_HOT_DATA; type--)
743 		if (v_ops->get_victim(sbi, &(curseg)->next_segno,
744 						BG_GC, type, SSR))
745 			return 1;
746 	return 0;
747 }
748 
749 /*
750  * flush out current segment and replace it with new segment
751  * This function should be returned with success, otherwise BUG
752  */
753 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
754 						int type, bool force)
755 {
756 	struct curseg_info *curseg = CURSEG_I(sbi, type);
757 
758 	if (force)
759 		new_curseg(sbi, type, true);
760 	else if (type == CURSEG_WARM_NODE)
761 		new_curseg(sbi, type, false);
762 	else if (curseg->alloc_type == LFS && is_next_segment_free(sbi, type))
763 		new_curseg(sbi, type, false);
764 	else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
765 		change_curseg(sbi, type, true);
766 	else
767 		new_curseg(sbi, type, false);
768 
769 	stat_inc_seg_type(sbi, curseg);
770 }
771 
772 void allocate_new_segments(struct f2fs_sb_info *sbi)
773 {
774 	struct curseg_info *curseg;
775 	unsigned int old_curseg;
776 	int i;
777 
778 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
779 		curseg = CURSEG_I(sbi, i);
780 		old_curseg = curseg->segno;
781 		SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
782 		locate_dirty_segment(sbi, old_curseg);
783 	}
784 }
785 
786 static const struct segment_allocation default_salloc_ops = {
787 	.allocate_segment = allocate_segment_by_default,
788 };
789 
790 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
791 {
792 	struct curseg_info *curseg = CURSEG_I(sbi, type);
793 	if (curseg->next_blkoff < sbi->blocks_per_seg)
794 		return true;
795 	return false;
796 }
797 
798 static int __get_segment_type_2(struct page *page, enum page_type p_type)
799 {
800 	if (p_type == DATA)
801 		return CURSEG_HOT_DATA;
802 	else
803 		return CURSEG_HOT_NODE;
804 }
805 
806 static int __get_segment_type_4(struct page *page, enum page_type p_type)
807 {
808 	if (p_type == DATA) {
809 		struct inode *inode = page->mapping->host;
810 
811 		if (S_ISDIR(inode->i_mode))
812 			return CURSEG_HOT_DATA;
813 		else
814 			return CURSEG_COLD_DATA;
815 	} else {
816 		if (IS_DNODE(page) && !is_cold_node(page))
817 			return CURSEG_HOT_NODE;
818 		else
819 			return CURSEG_COLD_NODE;
820 	}
821 }
822 
823 static int __get_segment_type_6(struct page *page, enum page_type p_type)
824 {
825 	if (p_type == DATA) {
826 		struct inode *inode = page->mapping->host;
827 
828 		if (S_ISDIR(inode->i_mode))
829 			return CURSEG_HOT_DATA;
830 		else if (is_cold_data(page) || file_is_cold(inode))
831 			return CURSEG_COLD_DATA;
832 		else
833 			return CURSEG_WARM_DATA;
834 	} else {
835 		if (IS_DNODE(page))
836 			return is_cold_node(page) ? CURSEG_WARM_NODE :
837 						CURSEG_HOT_NODE;
838 		else
839 			return CURSEG_COLD_NODE;
840 	}
841 }
842 
843 static int __get_segment_type(struct page *page, enum page_type p_type)
844 {
845 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
846 	switch (sbi->active_logs) {
847 	case 2:
848 		return __get_segment_type_2(page, p_type);
849 	case 4:
850 		return __get_segment_type_4(page, p_type);
851 	}
852 	/* NR_CURSEG_TYPE(6) logs by default */
853 	f2fs_bug_on(sbi->active_logs != NR_CURSEG_TYPE);
854 	return __get_segment_type_6(page, p_type);
855 }
856 
857 void allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
858 		block_t old_blkaddr, block_t *new_blkaddr,
859 		struct f2fs_summary *sum, int type)
860 {
861 	struct sit_info *sit_i = SIT_I(sbi);
862 	struct curseg_info *curseg;
863 	unsigned int old_cursegno;
864 
865 	curseg = CURSEG_I(sbi, type);
866 
867 	mutex_lock(&curseg->curseg_mutex);
868 
869 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
870 	old_cursegno = curseg->segno;
871 
872 	/*
873 	 * __add_sum_entry should be resided under the curseg_mutex
874 	 * because, this function updates a summary entry in the
875 	 * current summary block.
876 	 */
877 	__add_sum_entry(sbi, type, sum);
878 
879 	mutex_lock(&sit_i->sentry_lock);
880 	__refresh_next_blkoff(sbi, curseg);
881 
882 	stat_inc_block_count(sbi, curseg);
883 
884 	/*
885 	 * SIT information should be updated before segment allocation,
886 	 * since SSR needs latest valid block information.
887 	 */
888 	refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
889 
890 	if (!__has_curseg_space(sbi, type))
891 		sit_i->s_ops->allocate_segment(sbi, type, false);
892 
893 	locate_dirty_segment(sbi, old_cursegno);
894 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
895 	mutex_unlock(&sit_i->sentry_lock);
896 
897 	if (page && IS_NODESEG(type))
898 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
899 
900 	mutex_unlock(&curseg->curseg_mutex);
901 }
902 
903 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
904 			block_t old_blkaddr, block_t *new_blkaddr,
905 			struct f2fs_summary *sum, struct f2fs_io_info *fio)
906 {
907 	int type = __get_segment_type(page, fio->type);
908 
909 	allocate_data_block(sbi, page, old_blkaddr, new_blkaddr, sum, type);
910 
911 	/* writeout dirty page into bdev */
912 	f2fs_submit_page_mbio(sbi, page, *new_blkaddr, fio);
913 }
914 
915 void write_meta_page(struct f2fs_sb_info *sbi, struct page *page)
916 {
917 	struct f2fs_io_info fio = {
918 		.type = META,
919 		.rw = WRITE_SYNC | REQ_META | REQ_PRIO
920 	};
921 
922 	set_page_writeback(page);
923 	f2fs_submit_page_mbio(sbi, page, page->index, &fio);
924 }
925 
926 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
927 		struct f2fs_io_info *fio,
928 		unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
929 {
930 	struct f2fs_summary sum;
931 	set_summary(&sum, nid, 0, 0);
932 	do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, fio);
933 }
934 
935 void write_data_page(struct page *page, struct dnode_of_data *dn,
936 		block_t *new_blkaddr, struct f2fs_io_info *fio)
937 {
938 	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
939 	struct f2fs_summary sum;
940 	struct node_info ni;
941 
942 	f2fs_bug_on(dn->data_blkaddr == NULL_ADDR);
943 	get_node_info(sbi, dn->nid, &ni);
944 	set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
945 
946 	do_write_page(sbi, page, dn->data_blkaddr, new_blkaddr, &sum, fio);
947 }
948 
949 void rewrite_data_page(struct page *page, block_t old_blkaddr,
950 					struct f2fs_io_info *fio)
951 {
952 	struct inode *inode = page->mapping->host;
953 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
954 	f2fs_submit_page_mbio(sbi, page, old_blkaddr, fio);
955 }
956 
957 void recover_data_page(struct f2fs_sb_info *sbi,
958 			struct page *page, struct f2fs_summary *sum,
959 			block_t old_blkaddr, block_t new_blkaddr)
960 {
961 	struct sit_info *sit_i = SIT_I(sbi);
962 	struct curseg_info *curseg;
963 	unsigned int segno, old_cursegno;
964 	struct seg_entry *se;
965 	int type;
966 
967 	segno = GET_SEGNO(sbi, new_blkaddr);
968 	se = get_seg_entry(sbi, segno);
969 	type = se->type;
970 
971 	if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
972 		if (old_blkaddr == NULL_ADDR)
973 			type = CURSEG_COLD_DATA;
974 		else
975 			type = CURSEG_WARM_DATA;
976 	}
977 	curseg = CURSEG_I(sbi, type);
978 
979 	mutex_lock(&curseg->curseg_mutex);
980 	mutex_lock(&sit_i->sentry_lock);
981 
982 	old_cursegno = curseg->segno;
983 
984 	/* change the current segment */
985 	if (segno != curseg->segno) {
986 		curseg->next_segno = segno;
987 		change_curseg(sbi, type, true);
988 	}
989 
990 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
991 					(sbi->blocks_per_seg - 1);
992 	__add_sum_entry(sbi, type, sum);
993 
994 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
995 
996 	locate_dirty_segment(sbi, old_cursegno);
997 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
998 
999 	mutex_unlock(&sit_i->sentry_lock);
1000 	mutex_unlock(&curseg->curseg_mutex);
1001 }
1002 
1003 void rewrite_node_page(struct f2fs_sb_info *sbi,
1004 			struct page *page, struct f2fs_summary *sum,
1005 			block_t old_blkaddr, block_t new_blkaddr)
1006 {
1007 	struct sit_info *sit_i = SIT_I(sbi);
1008 	int type = CURSEG_WARM_NODE;
1009 	struct curseg_info *curseg;
1010 	unsigned int segno, old_cursegno;
1011 	block_t next_blkaddr = next_blkaddr_of_node(page);
1012 	unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
1013 	struct f2fs_io_info fio = {
1014 		.type = NODE,
1015 		.rw = WRITE_SYNC,
1016 	};
1017 
1018 	curseg = CURSEG_I(sbi, type);
1019 
1020 	mutex_lock(&curseg->curseg_mutex);
1021 	mutex_lock(&sit_i->sentry_lock);
1022 
1023 	segno = GET_SEGNO(sbi, new_blkaddr);
1024 	old_cursegno = curseg->segno;
1025 
1026 	/* change the current segment */
1027 	if (segno != curseg->segno) {
1028 		curseg->next_segno = segno;
1029 		change_curseg(sbi, type, true);
1030 	}
1031 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
1032 					(sbi->blocks_per_seg - 1);
1033 	__add_sum_entry(sbi, type, sum);
1034 
1035 	/* change the current log to the next block addr in advance */
1036 	if (next_segno != segno) {
1037 		curseg->next_segno = next_segno;
1038 		change_curseg(sbi, type, true);
1039 	}
1040 	curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
1041 					(sbi->blocks_per_seg - 1);
1042 
1043 	/* rewrite node page */
1044 	set_page_writeback(page);
1045 	f2fs_submit_page_mbio(sbi, page, new_blkaddr, &fio);
1046 	f2fs_submit_merged_bio(sbi, NODE, WRITE);
1047 	refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
1048 
1049 	locate_dirty_segment(sbi, old_cursegno);
1050 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
1051 
1052 	mutex_unlock(&sit_i->sentry_lock);
1053 	mutex_unlock(&curseg->curseg_mutex);
1054 }
1055 
1056 void f2fs_wait_on_page_writeback(struct page *page,
1057 				enum page_type type)
1058 {
1059 	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1060 	if (PageWriteback(page)) {
1061 		f2fs_submit_merged_bio(sbi, type, WRITE);
1062 		wait_on_page_writeback(page);
1063 	}
1064 }
1065 
1066 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
1067 {
1068 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1069 	struct curseg_info *seg_i;
1070 	unsigned char *kaddr;
1071 	struct page *page;
1072 	block_t start;
1073 	int i, j, offset;
1074 
1075 	start = start_sum_block(sbi);
1076 
1077 	page = get_meta_page(sbi, start++);
1078 	kaddr = (unsigned char *)page_address(page);
1079 
1080 	/* Step 1: restore nat cache */
1081 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1082 	memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
1083 
1084 	/* Step 2: restore sit cache */
1085 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1086 	memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
1087 						SUM_JOURNAL_SIZE);
1088 	offset = 2 * SUM_JOURNAL_SIZE;
1089 
1090 	/* Step 3: restore summary entries */
1091 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1092 		unsigned short blk_off;
1093 		unsigned int segno;
1094 
1095 		seg_i = CURSEG_I(sbi, i);
1096 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
1097 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
1098 		seg_i->next_segno = segno;
1099 		reset_curseg(sbi, i, 0);
1100 		seg_i->alloc_type = ckpt->alloc_type[i];
1101 		seg_i->next_blkoff = blk_off;
1102 
1103 		if (seg_i->alloc_type == SSR)
1104 			blk_off = sbi->blocks_per_seg;
1105 
1106 		for (j = 0; j < blk_off; j++) {
1107 			struct f2fs_summary *s;
1108 			s = (struct f2fs_summary *)(kaddr + offset);
1109 			seg_i->sum_blk->entries[j] = *s;
1110 			offset += SUMMARY_SIZE;
1111 			if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1112 						SUM_FOOTER_SIZE)
1113 				continue;
1114 
1115 			f2fs_put_page(page, 1);
1116 			page = NULL;
1117 
1118 			page = get_meta_page(sbi, start++);
1119 			kaddr = (unsigned char *)page_address(page);
1120 			offset = 0;
1121 		}
1122 	}
1123 	f2fs_put_page(page, 1);
1124 	return 0;
1125 }
1126 
1127 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1128 {
1129 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1130 	struct f2fs_summary_block *sum;
1131 	struct curseg_info *curseg;
1132 	struct page *new;
1133 	unsigned short blk_off;
1134 	unsigned int segno = 0;
1135 	block_t blk_addr = 0;
1136 
1137 	/* get segment number and block addr */
1138 	if (IS_DATASEG(type)) {
1139 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1140 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1141 							CURSEG_HOT_DATA]);
1142 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1143 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1144 		else
1145 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1146 	} else {
1147 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
1148 							CURSEG_HOT_NODE]);
1149 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1150 							CURSEG_HOT_NODE]);
1151 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1152 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1153 							type - CURSEG_HOT_NODE);
1154 		else
1155 			blk_addr = GET_SUM_BLOCK(sbi, segno);
1156 	}
1157 
1158 	new = get_meta_page(sbi, blk_addr);
1159 	sum = (struct f2fs_summary_block *)page_address(new);
1160 
1161 	if (IS_NODESEG(type)) {
1162 		if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1163 			struct f2fs_summary *ns = &sum->entries[0];
1164 			int i;
1165 			for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1166 				ns->version = 0;
1167 				ns->ofs_in_node = 0;
1168 			}
1169 		} else {
1170 			if (restore_node_summary(sbi, segno, sum)) {
1171 				f2fs_put_page(new, 1);
1172 				return -EINVAL;
1173 			}
1174 		}
1175 	}
1176 
1177 	/* set uncompleted segment to curseg */
1178 	curseg = CURSEG_I(sbi, type);
1179 	mutex_lock(&curseg->curseg_mutex);
1180 	memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1181 	curseg->next_segno = segno;
1182 	reset_curseg(sbi, type, 0);
1183 	curseg->alloc_type = ckpt->alloc_type[type];
1184 	curseg->next_blkoff = blk_off;
1185 	mutex_unlock(&curseg->curseg_mutex);
1186 	f2fs_put_page(new, 1);
1187 	return 0;
1188 }
1189 
1190 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1191 {
1192 	int type = CURSEG_HOT_DATA;
1193 
1194 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1195 		/* restore for compacted data summary */
1196 		if (read_compacted_summaries(sbi))
1197 			return -EINVAL;
1198 		type = CURSEG_HOT_NODE;
1199 	}
1200 
1201 	for (; type <= CURSEG_COLD_NODE; type++)
1202 		if (read_normal_summaries(sbi, type))
1203 			return -EINVAL;
1204 	return 0;
1205 }
1206 
1207 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1208 {
1209 	struct page *page;
1210 	unsigned char *kaddr;
1211 	struct f2fs_summary *summary;
1212 	struct curseg_info *seg_i;
1213 	int written_size = 0;
1214 	int i, j;
1215 
1216 	page = grab_meta_page(sbi, blkaddr++);
1217 	kaddr = (unsigned char *)page_address(page);
1218 
1219 	/* Step 1: write nat cache */
1220 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1221 	memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1222 	written_size += SUM_JOURNAL_SIZE;
1223 
1224 	/* Step 2: write sit cache */
1225 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1226 	memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1227 						SUM_JOURNAL_SIZE);
1228 	written_size += SUM_JOURNAL_SIZE;
1229 
1230 	/* Step 3: write summary entries */
1231 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1232 		unsigned short blkoff;
1233 		seg_i = CURSEG_I(sbi, i);
1234 		if (sbi->ckpt->alloc_type[i] == SSR)
1235 			blkoff = sbi->blocks_per_seg;
1236 		else
1237 			blkoff = curseg_blkoff(sbi, i);
1238 
1239 		for (j = 0; j < blkoff; j++) {
1240 			if (!page) {
1241 				page = grab_meta_page(sbi, blkaddr++);
1242 				kaddr = (unsigned char *)page_address(page);
1243 				written_size = 0;
1244 			}
1245 			summary = (struct f2fs_summary *)(kaddr + written_size);
1246 			*summary = seg_i->sum_blk->entries[j];
1247 			written_size += SUMMARY_SIZE;
1248 
1249 			if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1250 							SUM_FOOTER_SIZE)
1251 				continue;
1252 
1253 			set_page_dirty(page);
1254 			f2fs_put_page(page, 1);
1255 			page = NULL;
1256 		}
1257 	}
1258 	if (page) {
1259 		set_page_dirty(page);
1260 		f2fs_put_page(page, 1);
1261 	}
1262 }
1263 
1264 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1265 					block_t blkaddr, int type)
1266 {
1267 	int i, end;
1268 	if (IS_DATASEG(type))
1269 		end = type + NR_CURSEG_DATA_TYPE;
1270 	else
1271 		end = type + NR_CURSEG_NODE_TYPE;
1272 
1273 	for (i = type; i < end; i++) {
1274 		struct curseg_info *sum = CURSEG_I(sbi, i);
1275 		mutex_lock(&sum->curseg_mutex);
1276 		write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1277 		mutex_unlock(&sum->curseg_mutex);
1278 	}
1279 }
1280 
1281 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1282 {
1283 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1284 		write_compacted_summaries(sbi, start_blk);
1285 	else
1286 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1287 }
1288 
1289 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1290 {
1291 	if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1292 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1293 }
1294 
1295 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1296 					unsigned int val, int alloc)
1297 {
1298 	int i;
1299 
1300 	if (type == NAT_JOURNAL) {
1301 		for (i = 0; i < nats_in_cursum(sum); i++) {
1302 			if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1303 				return i;
1304 		}
1305 		if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1306 			return update_nats_in_cursum(sum, 1);
1307 	} else if (type == SIT_JOURNAL) {
1308 		for (i = 0; i < sits_in_cursum(sum); i++)
1309 			if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1310 				return i;
1311 		if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1312 			return update_sits_in_cursum(sum, 1);
1313 	}
1314 	return -1;
1315 }
1316 
1317 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1318 					unsigned int segno)
1319 {
1320 	struct sit_info *sit_i = SIT_I(sbi);
1321 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1322 	block_t blk_addr = sit_i->sit_base_addr + offset;
1323 
1324 	check_seg_range(sbi, segno);
1325 
1326 	/* calculate sit block address */
1327 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1328 		blk_addr += sit_i->sit_blocks;
1329 
1330 	return get_meta_page(sbi, blk_addr);
1331 }
1332 
1333 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1334 					unsigned int start)
1335 {
1336 	struct sit_info *sit_i = SIT_I(sbi);
1337 	struct page *src_page, *dst_page;
1338 	pgoff_t src_off, dst_off;
1339 	void *src_addr, *dst_addr;
1340 
1341 	src_off = current_sit_addr(sbi, start);
1342 	dst_off = next_sit_addr(sbi, src_off);
1343 
1344 	/* get current sit block page without lock */
1345 	src_page = get_meta_page(sbi, src_off);
1346 	dst_page = grab_meta_page(sbi, dst_off);
1347 	f2fs_bug_on(PageDirty(src_page));
1348 
1349 	src_addr = page_address(src_page);
1350 	dst_addr = page_address(dst_page);
1351 	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1352 
1353 	set_page_dirty(dst_page);
1354 	f2fs_put_page(src_page, 1);
1355 
1356 	set_to_next_sit(sit_i, start);
1357 
1358 	return dst_page;
1359 }
1360 
1361 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1362 {
1363 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1364 	struct f2fs_summary_block *sum = curseg->sum_blk;
1365 	int i;
1366 
1367 	/*
1368 	 * If the journal area in the current summary is full of sit entries,
1369 	 * all the sit entries will be flushed. Otherwise the sit entries
1370 	 * are not able to replace with newly hot sit entries.
1371 	 */
1372 	if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1373 		for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1374 			unsigned int segno;
1375 			segno = le32_to_cpu(segno_in_journal(sum, i));
1376 			__mark_sit_entry_dirty(sbi, segno);
1377 		}
1378 		update_sits_in_cursum(sum, -sits_in_cursum(sum));
1379 		return true;
1380 	}
1381 	return false;
1382 }
1383 
1384 /*
1385  * CP calls this function, which flushes SIT entries including sit_journal,
1386  * and moves prefree segs to free segs.
1387  */
1388 void flush_sit_entries(struct f2fs_sb_info *sbi)
1389 {
1390 	struct sit_info *sit_i = SIT_I(sbi);
1391 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1392 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1393 	struct f2fs_summary_block *sum = curseg->sum_blk;
1394 	unsigned long nsegs = TOTAL_SEGS(sbi);
1395 	struct page *page = NULL;
1396 	struct f2fs_sit_block *raw_sit = NULL;
1397 	unsigned int start = 0, end = 0;
1398 	unsigned int segno = -1;
1399 	bool flushed;
1400 
1401 	mutex_lock(&curseg->curseg_mutex);
1402 	mutex_lock(&sit_i->sentry_lock);
1403 
1404 	/*
1405 	 * "flushed" indicates whether sit entries in journal are flushed
1406 	 * to the SIT area or not.
1407 	 */
1408 	flushed = flush_sits_in_journal(sbi);
1409 
1410 	while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1411 		struct seg_entry *se = get_seg_entry(sbi, segno);
1412 		int sit_offset, offset;
1413 
1414 		sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1415 
1416 		/* add discard candidates */
1417 		if (SM_I(sbi)->nr_discards < SM_I(sbi)->max_discards)
1418 			add_discard_addrs(sbi, segno, se);
1419 
1420 		if (flushed)
1421 			goto to_sit_page;
1422 
1423 		offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1424 		if (offset >= 0) {
1425 			segno_in_journal(sum, offset) = cpu_to_le32(segno);
1426 			seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1427 			goto flush_done;
1428 		}
1429 to_sit_page:
1430 		if (!page || (start > segno) || (segno > end)) {
1431 			if (page) {
1432 				f2fs_put_page(page, 1);
1433 				page = NULL;
1434 			}
1435 
1436 			start = START_SEGNO(sit_i, segno);
1437 			end = start + SIT_ENTRY_PER_BLOCK - 1;
1438 
1439 			/* read sit block that will be updated */
1440 			page = get_next_sit_page(sbi, start);
1441 			raw_sit = page_address(page);
1442 		}
1443 
1444 		/* udpate entry in SIT block */
1445 		seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1446 flush_done:
1447 		__clear_bit(segno, bitmap);
1448 		sit_i->dirty_sentries--;
1449 	}
1450 	mutex_unlock(&sit_i->sentry_lock);
1451 	mutex_unlock(&curseg->curseg_mutex);
1452 
1453 	/* writeout last modified SIT block */
1454 	f2fs_put_page(page, 1);
1455 
1456 	set_prefree_as_free_segments(sbi);
1457 }
1458 
1459 static int build_sit_info(struct f2fs_sb_info *sbi)
1460 {
1461 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1462 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1463 	struct sit_info *sit_i;
1464 	unsigned int sit_segs, start;
1465 	char *src_bitmap, *dst_bitmap;
1466 	unsigned int bitmap_size;
1467 
1468 	/* allocate memory for SIT information */
1469 	sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1470 	if (!sit_i)
1471 		return -ENOMEM;
1472 
1473 	SM_I(sbi)->sit_info = sit_i;
1474 
1475 	sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1476 	if (!sit_i->sentries)
1477 		return -ENOMEM;
1478 
1479 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1480 	sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1481 	if (!sit_i->dirty_sentries_bitmap)
1482 		return -ENOMEM;
1483 
1484 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1485 		sit_i->sentries[start].cur_valid_map
1486 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1487 		sit_i->sentries[start].ckpt_valid_map
1488 			= kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1489 		if (!sit_i->sentries[start].cur_valid_map
1490 				|| !sit_i->sentries[start].ckpt_valid_map)
1491 			return -ENOMEM;
1492 	}
1493 
1494 	if (sbi->segs_per_sec > 1) {
1495 		sit_i->sec_entries = vzalloc(TOTAL_SECS(sbi) *
1496 					sizeof(struct sec_entry));
1497 		if (!sit_i->sec_entries)
1498 			return -ENOMEM;
1499 	}
1500 
1501 	/* get information related with SIT */
1502 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1503 
1504 	/* setup SIT bitmap from ckeckpoint pack */
1505 	bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1506 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1507 
1508 	dst_bitmap = kmemdup(src_bitmap, bitmap_size, GFP_KERNEL);
1509 	if (!dst_bitmap)
1510 		return -ENOMEM;
1511 
1512 	/* init SIT information */
1513 	sit_i->s_ops = &default_salloc_ops;
1514 
1515 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1516 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1517 	sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1518 	sit_i->sit_bitmap = dst_bitmap;
1519 	sit_i->bitmap_size = bitmap_size;
1520 	sit_i->dirty_sentries = 0;
1521 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1522 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1523 	sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1524 	mutex_init(&sit_i->sentry_lock);
1525 	return 0;
1526 }
1527 
1528 static int build_free_segmap(struct f2fs_sb_info *sbi)
1529 {
1530 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1531 	struct free_segmap_info *free_i;
1532 	unsigned int bitmap_size, sec_bitmap_size;
1533 
1534 	/* allocate memory for free segmap information */
1535 	free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1536 	if (!free_i)
1537 		return -ENOMEM;
1538 
1539 	SM_I(sbi)->free_info = free_i;
1540 
1541 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1542 	free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1543 	if (!free_i->free_segmap)
1544 		return -ENOMEM;
1545 
1546 	sec_bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1547 	free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1548 	if (!free_i->free_secmap)
1549 		return -ENOMEM;
1550 
1551 	/* set all segments as dirty temporarily */
1552 	memset(free_i->free_segmap, 0xff, bitmap_size);
1553 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1554 
1555 	/* init free segmap information */
1556 	free_i->start_segno =
1557 		(unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1558 	free_i->free_segments = 0;
1559 	free_i->free_sections = 0;
1560 	rwlock_init(&free_i->segmap_lock);
1561 	return 0;
1562 }
1563 
1564 static int build_curseg(struct f2fs_sb_info *sbi)
1565 {
1566 	struct curseg_info *array;
1567 	int i;
1568 
1569 	array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1570 	if (!array)
1571 		return -ENOMEM;
1572 
1573 	SM_I(sbi)->curseg_array = array;
1574 
1575 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
1576 		mutex_init(&array[i].curseg_mutex);
1577 		array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1578 		if (!array[i].sum_blk)
1579 			return -ENOMEM;
1580 		array[i].segno = NULL_SEGNO;
1581 		array[i].next_blkoff = 0;
1582 	}
1583 	return restore_curseg_summaries(sbi);
1584 }
1585 
1586 static int ra_sit_pages(struct f2fs_sb_info *sbi, int start, int nrpages)
1587 {
1588 	struct address_space *mapping = META_MAPPING(sbi);
1589 	struct page *page;
1590 	block_t blk_addr, prev_blk_addr = 0;
1591 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
1592 	int blkno = start;
1593 	struct f2fs_io_info fio = {
1594 		.type = META,
1595 		.rw = READ_SYNC | REQ_META | REQ_PRIO
1596 	};
1597 
1598 	for (; blkno < start + nrpages && blkno < sit_blk_cnt; blkno++) {
1599 
1600 		blk_addr = current_sit_addr(sbi, blkno * SIT_ENTRY_PER_BLOCK);
1601 
1602 		if (blkno != start && prev_blk_addr + 1 != blk_addr)
1603 			break;
1604 		prev_blk_addr = blk_addr;
1605 repeat:
1606 		page = grab_cache_page(mapping, blk_addr);
1607 		if (!page) {
1608 			cond_resched();
1609 			goto repeat;
1610 		}
1611 		if (PageUptodate(page)) {
1612 			mark_page_accessed(page);
1613 			f2fs_put_page(page, 1);
1614 			continue;
1615 		}
1616 
1617 		f2fs_submit_page_mbio(sbi, page, blk_addr, &fio);
1618 
1619 		mark_page_accessed(page);
1620 		f2fs_put_page(page, 0);
1621 	}
1622 
1623 	f2fs_submit_merged_bio(sbi, META, READ);
1624 	return blkno - start;
1625 }
1626 
1627 static void build_sit_entries(struct f2fs_sb_info *sbi)
1628 {
1629 	struct sit_info *sit_i = SIT_I(sbi);
1630 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1631 	struct f2fs_summary_block *sum = curseg->sum_blk;
1632 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
1633 	unsigned int i, start, end;
1634 	unsigned int readed, start_blk = 0;
1635 	int nrpages = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1636 
1637 	do {
1638 		readed = ra_sit_pages(sbi, start_blk, nrpages);
1639 
1640 		start = start_blk * sit_i->sents_per_block;
1641 		end = (start_blk + readed) * sit_i->sents_per_block;
1642 
1643 		for (; start < end && start < TOTAL_SEGS(sbi); start++) {
1644 			struct seg_entry *se = &sit_i->sentries[start];
1645 			struct f2fs_sit_block *sit_blk;
1646 			struct f2fs_sit_entry sit;
1647 			struct page *page;
1648 
1649 			mutex_lock(&curseg->curseg_mutex);
1650 			for (i = 0; i < sits_in_cursum(sum); i++) {
1651 				if (le32_to_cpu(segno_in_journal(sum, i))
1652 								== start) {
1653 					sit = sit_in_journal(sum, i);
1654 					mutex_unlock(&curseg->curseg_mutex);
1655 					goto got_it;
1656 				}
1657 			}
1658 			mutex_unlock(&curseg->curseg_mutex);
1659 
1660 			page = get_current_sit_page(sbi, start);
1661 			sit_blk = (struct f2fs_sit_block *)page_address(page);
1662 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1663 			f2fs_put_page(page, 1);
1664 got_it:
1665 			check_block_count(sbi, start, &sit);
1666 			seg_info_from_raw_sit(se, &sit);
1667 			if (sbi->segs_per_sec > 1) {
1668 				struct sec_entry *e = get_sec_entry(sbi, start);
1669 				e->valid_blocks += se->valid_blocks;
1670 			}
1671 		}
1672 		start_blk += readed;
1673 	} while (start_blk < sit_blk_cnt);
1674 }
1675 
1676 static void init_free_segmap(struct f2fs_sb_info *sbi)
1677 {
1678 	unsigned int start;
1679 	int type;
1680 
1681 	for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1682 		struct seg_entry *sentry = get_seg_entry(sbi, start);
1683 		if (!sentry->valid_blocks)
1684 			__set_free(sbi, start);
1685 	}
1686 
1687 	/* set use the current segments */
1688 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1689 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1690 		__set_test_and_inuse(sbi, curseg_t->segno);
1691 	}
1692 }
1693 
1694 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1695 {
1696 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1697 	struct free_segmap_info *free_i = FREE_I(sbi);
1698 	unsigned int segno = 0, offset = 0, total_segs = TOTAL_SEGS(sbi);
1699 	unsigned short valid_blocks;
1700 
1701 	while (1) {
1702 		/* find dirty segment based on free segmap */
1703 		segno = find_next_inuse(free_i, total_segs, offset);
1704 		if (segno >= total_segs)
1705 			break;
1706 		offset = segno + 1;
1707 		valid_blocks = get_valid_blocks(sbi, segno, 0);
1708 		if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1709 			continue;
1710 		mutex_lock(&dirty_i->seglist_lock);
1711 		__locate_dirty_segment(sbi, segno, DIRTY);
1712 		mutex_unlock(&dirty_i->seglist_lock);
1713 	}
1714 }
1715 
1716 static int init_victim_secmap(struct f2fs_sb_info *sbi)
1717 {
1718 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1719 	unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SECS(sbi));
1720 
1721 	dirty_i->victim_secmap = kzalloc(bitmap_size, GFP_KERNEL);
1722 	if (!dirty_i->victim_secmap)
1723 		return -ENOMEM;
1724 	return 0;
1725 }
1726 
1727 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1728 {
1729 	struct dirty_seglist_info *dirty_i;
1730 	unsigned int bitmap_size, i;
1731 
1732 	/* allocate memory for dirty segments list information */
1733 	dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1734 	if (!dirty_i)
1735 		return -ENOMEM;
1736 
1737 	SM_I(sbi)->dirty_info = dirty_i;
1738 	mutex_init(&dirty_i->seglist_lock);
1739 
1740 	bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1741 
1742 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
1743 		dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1744 		if (!dirty_i->dirty_segmap[i])
1745 			return -ENOMEM;
1746 	}
1747 
1748 	init_dirty_segmap(sbi);
1749 	return init_victim_secmap(sbi);
1750 }
1751 
1752 /*
1753  * Update min, max modified time for cost-benefit GC algorithm
1754  */
1755 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1756 {
1757 	struct sit_info *sit_i = SIT_I(sbi);
1758 	unsigned int segno;
1759 
1760 	mutex_lock(&sit_i->sentry_lock);
1761 
1762 	sit_i->min_mtime = LLONG_MAX;
1763 
1764 	for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1765 		unsigned int i;
1766 		unsigned long long mtime = 0;
1767 
1768 		for (i = 0; i < sbi->segs_per_sec; i++)
1769 			mtime += get_seg_entry(sbi, segno + i)->mtime;
1770 
1771 		mtime = div_u64(mtime, sbi->segs_per_sec);
1772 
1773 		if (sit_i->min_mtime > mtime)
1774 			sit_i->min_mtime = mtime;
1775 	}
1776 	sit_i->max_mtime = get_mtime(sbi);
1777 	mutex_unlock(&sit_i->sentry_lock);
1778 }
1779 
1780 int build_segment_manager(struct f2fs_sb_info *sbi)
1781 {
1782 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1783 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1784 	struct f2fs_sm_info *sm_info;
1785 	int err;
1786 
1787 	sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1788 	if (!sm_info)
1789 		return -ENOMEM;
1790 
1791 	/* init sm info */
1792 	sbi->sm_info = sm_info;
1793 	INIT_LIST_HEAD(&sm_info->wblist_head);
1794 	spin_lock_init(&sm_info->wblist_lock);
1795 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1796 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1797 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1798 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1799 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1800 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1801 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1802 	sm_info->rec_prefree_segments = DEF_RECLAIM_PREFREE_SEGMENTS;
1803 	sm_info->ipu_policy = F2FS_IPU_DISABLE;
1804 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
1805 
1806 	INIT_LIST_HEAD(&sm_info->discard_list);
1807 	sm_info->nr_discards = 0;
1808 	sm_info->max_discards = 0;
1809 
1810 	err = build_sit_info(sbi);
1811 	if (err)
1812 		return err;
1813 	err = build_free_segmap(sbi);
1814 	if (err)
1815 		return err;
1816 	err = build_curseg(sbi);
1817 	if (err)
1818 		return err;
1819 
1820 	/* reinit free segmap based on SIT */
1821 	build_sit_entries(sbi);
1822 
1823 	init_free_segmap(sbi);
1824 	err = build_dirty_segmap(sbi);
1825 	if (err)
1826 		return err;
1827 
1828 	init_min_max_mtime(sbi);
1829 	return 0;
1830 }
1831 
1832 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1833 		enum dirty_type dirty_type)
1834 {
1835 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1836 
1837 	mutex_lock(&dirty_i->seglist_lock);
1838 	kfree(dirty_i->dirty_segmap[dirty_type]);
1839 	dirty_i->nr_dirty[dirty_type] = 0;
1840 	mutex_unlock(&dirty_i->seglist_lock);
1841 }
1842 
1843 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
1844 {
1845 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1846 	kfree(dirty_i->victim_secmap);
1847 }
1848 
1849 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1850 {
1851 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1852 	int i;
1853 
1854 	if (!dirty_i)
1855 		return;
1856 
1857 	/* discard pre-free/dirty segments list */
1858 	for (i = 0; i < NR_DIRTY_TYPE; i++)
1859 		discard_dirty_segmap(sbi, i);
1860 
1861 	destroy_victim_secmap(sbi);
1862 	SM_I(sbi)->dirty_info = NULL;
1863 	kfree(dirty_i);
1864 }
1865 
1866 static void destroy_curseg(struct f2fs_sb_info *sbi)
1867 {
1868 	struct curseg_info *array = SM_I(sbi)->curseg_array;
1869 	int i;
1870 
1871 	if (!array)
1872 		return;
1873 	SM_I(sbi)->curseg_array = NULL;
1874 	for (i = 0; i < NR_CURSEG_TYPE; i++)
1875 		kfree(array[i].sum_blk);
1876 	kfree(array);
1877 }
1878 
1879 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1880 {
1881 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1882 	if (!free_i)
1883 		return;
1884 	SM_I(sbi)->free_info = NULL;
1885 	kfree(free_i->free_segmap);
1886 	kfree(free_i->free_secmap);
1887 	kfree(free_i);
1888 }
1889 
1890 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1891 {
1892 	struct sit_info *sit_i = SIT_I(sbi);
1893 	unsigned int start;
1894 
1895 	if (!sit_i)
1896 		return;
1897 
1898 	if (sit_i->sentries) {
1899 		for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1900 			kfree(sit_i->sentries[start].cur_valid_map);
1901 			kfree(sit_i->sentries[start].ckpt_valid_map);
1902 		}
1903 	}
1904 	vfree(sit_i->sentries);
1905 	vfree(sit_i->sec_entries);
1906 	kfree(sit_i->dirty_sentries_bitmap);
1907 
1908 	SM_I(sbi)->sit_info = NULL;
1909 	kfree(sit_i->sit_bitmap);
1910 	kfree(sit_i);
1911 }
1912 
1913 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1914 {
1915 	struct f2fs_sm_info *sm_info = SM_I(sbi);
1916 	if (!sm_info)
1917 		return;
1918 	destroy_dirty_segmap(sbi);
1919 	destroy_curseg(sbi);
1920 	destroy_free_segmap(sbi);
1921 	destroy_sit_info(sbi);
1922 	sbi->sm_info = NULL;
1923 	kfree(sm_info);
1924 }
1925 
1926 int __init create_segment_manager_caches(void)
1927 {
1928 	discard_entry_slab = f2fs_kmem_cache_create("discard_entry",
1929 			sizeof(struct discard_entry), NULL);
1930 	if (!discard_entry_slab)
1931 		return -ENOMEM;
1932 	return 0;
1933 }
1934 
1935 void destroy_segment_manager_caches(void)
1936 {
1937 	kmem_cache_destroy(discard_entry_slab);
1938 }
1939