xref: /openbmc/linux/fs/f2fs/segment.c (revision 46fb7121)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/fs.h>
9 #include <linux/f2fs_fs.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/sched/mm.h>
13 #include <linux/prefetch.h>
14 #include <linux/kthread.h>
15 #include <linux/swap.h>
16 #include <linux/timer.h>
17 #include <linux/freezer.h>
18 #include <linux/sched/signal.h>
19 #include <linux/random.h>
20 
21 #include "f2fs.h"
22 #include "segment.h"
23 #include "node.h"
24 #include "gc.h"
25 #include "iostat.h"
26 #include <trace/events/f2fs.h>
27 
28 #define __reverse_ffz(x) __reverse_ffs(~(x))
29 
30 static struct kmem_cache *discard_entry_slab;
31 static struct kmem_cache *discard_cmd_slab;
32 static struct kmem_cache *sit_entry_set_slab;
33 static struct kmem_cache *revoke_entry_slab;
34 
35 static unsigned long __reverse_ulong(unsigned char *str)
36 {
37 	unsigned long tmp = 0;
38 	int shift = 24, idx = 0;
39 
40 #if BITS_PER_LONG == 64
41 	shift = 56;
42 #endif
43 	while (shift >= 0) {
44 		tmp |= (unsigned long)str[idx++] << shift;
45 		shift -= BITS_PER_BYTE;
46 	}
47 	return tmp;
48 }
49 
50 /*
51  * __reverse_ffs is copied from include/asm-generic/bitops/__ffs.h since
52  * MSB and LSB are reversed in a byte by f2fs_set_bit.
53  */
54 static inline unsigned long __reverse_ffs(unsigned long word)
55 {
56 	int num = 0;
57 
58 #if BITS_PER_LONG == 64
59 	if ((word & 0xffffffff00000000UL) == 0)
60 		num += 32;
61 	else
62 		word >>= 32;
63 #endif
64 	if ((word & 0xffff0000) == 0)
65 		num += 16;
66 	else
67 		word >>= 16;
68 
69 	if ((word & 0xff00) == 0)
70 		num += 8;
71 	else
72 		word >>= 8;
73 
74 	if ((word & 0xf0) == 0)
75 		num += 4;
76 	else
77 		word >>= 4;
78 
79 	if ((word & 0xc) == 0)
80 		num += 2;
81 	else
82 		word >>= 2;
83 
84 	if ((word & 0x2) == 0)
85 		num += 1;
86 	return num;
87 }
88 
89 /*
90  * __find_rev_next(_zero)_bit is copied from lib/find_next_bit.c because
91  * f2fs_set_bit makes MSB and LSB reversed in a byte.
92  * @size must be integral times of unsigned long.
93  * Example:
94  *                             MSB <--> LSB
95  *   f2fs_set_bit(0, bitmap) => 1000 0000
96  *   f2fs_set_bit(7, bitmap) => 0000 0001
97  */
98 static unsigned long __find_rev_next_bit(const unsigned long *addr,
99 			unsigned long size, unsigned long offset)
100 {
101 	const unsigned long *p = addr + BIT_WORD(offset);
102 	unsigned long result = size;
103 	unsigned long tmp;
104 
105 	if (offset >= size)
106 		return size;
107 
108 	size -= (offset & ~(BITS_PER_LONG - 1));
109 	offset %= BITS_PER_LONG;
110 
111 	while (1) {
112 		if (*p == 0)
113 			goto pass;
114 
115 		tmp = __reverse_ulong((unsigned char *)p);
116 
117 		tmp &= ~0UL >> offset;
118 		if (size < BITS_PER_LONG)
119 			tmp &= (~0UL << (BITS_PER_LONG - size));
120 		if (tmp)
121 			goto found;
122 pass:
123 		if (size <= BITS_PER_LONG)
124 			break;
125 		size -= BITS_PER_LONG;
126 		offset = 0;
127 		p++;
128 	}
129 	return result;
130 found:
131 	return result - size + __reverse_ffs(tmp);
132 }
133 
134 static unsigned long __find_rev_next_zero_bit(const unsigned long *addr,
135 			unsigned long size, unsigned long offset)
136 {
137 	const unsigned long *p = addr + BIT_WORD(offset);
138 	unsigned long result = size;
139 	unsigned long tmp;
140 
141 	if (offset >= size)
142 		return size;
143 
144 	size -= (offset & ~(BITS_PER_LONG - 1));
145 	offset %= BITS_PER_LONG;
146 
147 	while (1) {
148 		if (*p == ~0UL)
149 			goto pass;
150 
151 		tmp = __reverse_ulong((unsigned char *)p);
152 
153 		if (offset)
154 			tmp |= ~0UL << (BITS_PER_LONG - offset);
155 		if (size < BITS_PER_LONG)
156 			tmp |= ~0UL >> size;
157 		if (tmp != ~0UL)
158 			goto found;
159 pass:
160 		if (size <= BITS_PER_LONG)
161 			break;
162 		size -= BITS_PER_LONG;
163 		offset = 0;
164 		p++;
165 	}
166 	return result;
167 found:
168 	return result - size + __reverse_ffz(tmp);
169 }
170 
171 bool f2fs_need_SSR(struct f2fs_sb_info *sbi)
172 {
173 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
174 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
175 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
176 
177 	if (f2fs_lfs_mode(sbi))
178 		return false;
179 	if (sbi->gc_mode == GC_URGENT_HIGH)
180 		return true;
181 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
182 		return true;
183 
184 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
185 			SM_I(sbi)->min_ssr_sections + reserved_sections(sbi));
186 }
187 
188 void f2fs_abort_atomic_write(struct inode *inode, bool clean)
189 {
190 	struct f2fs_inode_info *fi = F2FS_I(inode);
191 
192 	if (!f2fs_is_atomic_file(inode))
193 		return;
194 
195 	if (clean)
196 		truncate_inode_pages_final(inode->i_mapping);
197 
198 	release_atomic_write_cnt(inode);
199 	clear_inode_flag(inode, FI_ATOMIC_COMMITTED);
200 	clear_inode_flag(inode, FI_ATOMIC_REPLACE);
201 	clear_inode_flag(inode, FI_ATOMIC_FILE);
202 	stat_dec_atomic_inode(inode);
203 
204 	F2FS_I(inode)->atomic_write_task = NULL;
205 
206 	if (clean) {
207 		f2fs_i_size_write(inode, fi->original_i_size);
208 		fi->original_i_size = 0;
209 	}
210 	/* avoid stale dirty inode during eviction */
211 	sync_inode_metadata(inode, 0);
212 }
213 
214 static int __replace_atomic_write_block(struct inode *inode, pgoff_t index,
215 			block_t new_addr, block_t *old_addr, bool recover)
216 {
217 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
218 	struct dnode_of_data dn;
219 	struct node_info ni;
220 	int err;
221 
222 retry:
223 	set_new_dnode(&dn, inode, NULL, NULL, 0);
224 	err = f2fs_get_dnode_of_data(&dn, index, ALLOC_NODE);
225 	if (err) {
226 		if (err == -ENOMEM) {
227 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
228 			goto retry;
229 		}
230 		return err;
231 	}
232 
233 	err = f2fs_get_node_info(sbi, dn.nid, &ni, false);
234 	if (err) {
235 		f2fs_put_dnode(&dn);
236 		return err;
237 	}
238 
239 	if (recover) {
240 		/* dn.data_blkaddr is always valid */
241 		if (!__is_valid_data_blkaddr(new_addr)) {
242 			if (new_addr == NULL_ADDR)
243 				dec_valid_block_count(sbi, inode, 1);
244 			f2fs_invalidate_blocks(sbi, dn.data_blkaddr);
245 			f2fs_update_data_blkaddr(&dn, new_addr);
246 		} else {
247 			f2fs_replace_block(sbi, &dn, dn.data_blkaddr,
248 				new_addr, ni.version, true, true);
249 		}
250 	} else {
251 		blkcnt_t count = 1;
252 
253 		err = inc_valid_block_count(sbi, inode, &count, true);
254 		if (err) {
255 			f2fs_put_dnode(&dn);
256 			return err;
257 		}
258 
259 		*old_addr = dn.data_blkaddr;
260 		f2fs_truncate_data_blocks_range(&dn, 1);
261 		dec_valid_block_count(sbi, F2FS_I(inode)->cow_inode, count);
262 
263 		f2fs_replace_block(sbi, &dn, dn.data_blkaddr, new_addr,
264 					ni.version, true, false);
265 	}
266 
267 	f2fs_put_dnode(&dn);
268 
269 	trace_f2fs_replace_atomic_write_block(inode, F2FS_I(inode)->cow_inode,
270 			index, old_addr ? *old_addr : 0, new_addr, recover);
271 	return 0;
272 }
273 
274 static void __complete_revoke_list(struct inode *inode, struct list_head *head,
275 					bool revoke)
276 {
277 	struct revoke_entry *cur, *tmp;
278 	pgoff_t start_index = 0;
279 	bool truncate = is_inode_flag_set(inode, FI_ATOMIC_REPLACE);
280 
281 	list_for_each_entry_safe(cur, tmp, head, list) {
282 		if (revoke) {
283 			__replace_atomic_write_block(inode, cur->index,
284 						cur->old_addr, NULL, true);
285 		} else if (truncate) {
286 			f2fs_truncate_hole(inode, start_index, cur->index);
287 			start_index = cur->index + 1;
288 		}
289 
290 		list_del(&cur->list);
291 		kmem_cache_free(revoke_entry_slab, cur);
292 	}
293 
294 	if (!revoke && truncate)
295 		f2fs_do_truncate_blocks(inode, start_index * PAGE_SIZE, false);
296 }
297 
298 static int __f2fs_commit_atomic_write(struct inode *inode)
299 {
300 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
301 	struct f2fs_inode_info *fi = F2FS_I(inode);
302 	struct inode *cow_inode = fi->cow_inode;
303 	struct revoke_entry *new;
304 	struct list_head revoke_list;
305 	block_t blkaddr;
306 	struct dnode_of_data dn;
307 	pgoff_t len = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
308 	pgoff_t off = 0, blen, index;
309 	int ret = 0, i;
310 
311 	INIT_LIST_HEAD(&revoke_list);
312 
313 	while (len) {
314 		blen = min_t(pgoff_t, ADDRS_PER_BLOCK(cow_inode), len);
315 
316 		set_new_dnode(&dn, cow_inode, NULL, NULL, 0);
317 		ret = f2fs_get_dnode_of_data(&dn, off, LOOKUP_NODE_RA);
318 		if (ret && ret != -ENOENT) {
319 			goto out;
320 		} else if (ret == -ENOENT) {
321 			ret = 0;
322 			if (dn.max_level == 0)
323 				goto out;
324 			goto next;
325 		}
326 
327 		blen = min((pgoff_t)ADDRS_PER_PAGE(dn.node_page, cow_inode),
328 				len);
329 		index = off;
330 		for (i = 0; i < blen; i++, dn.ofs_in_node++, index++) {
331 			blkaddr = f2fs_data_blkaddr(&dn);
332 
333 			if (!__is_valid_data_blkaddr(blkaddr)) {
334 				continue;
335 			} else if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
336 					DATA_GENERIC_ENHANCE)) {
337 				f2fs_put_dnode(&dn);
338 				ret = -EFSCORRUPTED;
339 				f2fs_handle_error(sbi,
340 						ERROR_INVALID_BLKADDR);
341 				goto out;
342 			}
343 
344 			new = f2fs_kmem_cache_alloc(revoke_entry_slab, GFP_NOFS,
345 							true, NULL);
346 
347 			ret = __replace_atomic_write_block(inode, index, blkaddr,
348 							&new->old_addr, false);
349 			if (ret) {
350 				f2fs_put_dnode(&dn);
351 				kmem_cache_free(revoke_entry_slab, new);
352 				goto out;
353 			}
354 
355 			f2fs_update_data_blkaddr(&dn, NULL_ADDR);
356 			new->index = index;
357 			list_add_tail(&new->list, &revoke_list);
358 		}
359 		f2fs_put_dnode(&dn);
360 next:
361 		off += blen;
362 		len -= blen;
363 	}
364 
365 out:
366 	if (ret) {
367 		sbi->revoked_atomic_block += fi->atomic_write_cnt;
368 	} else {
369 		sbi->committed_atomic_block += fi->atomic_write_cnt;
370 		set_inode_flag(inode, FI_ATOMIC_COMMITTED);
371 	}
372 
373 	__complete_revoke_list(inode, &revoke_list, ret ? true : false);
374 
375 	return ret;
376 }
377 
378 int f2fs_commit_atomic_write(struct inode *inode)
379 {
380 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
381 	struct f2fs_inode_info *fi = F2FS_I(inode);
382 	int err;
383 
384 	err = filemap_write_and_wait_range(inode->i_mapping, 0, LLONG_MAX);
385 	if (err)
386 		return err;
387 
388 	f2fs_down_write(&fi->i_gc_rwsem[WRITE]);
389 	f2fs_lock_op(sbi);
390 
391 	err = __f2fs_commit_atomic_write(inode);
392 
393 	f2fs_unlock_op(sbi);
394 	f2fs_up_write(&fi->i_gc_rwsem[WRITE]);
395 
396 	return err;
397 }
398 
399 /*
400  * This function balances dirty node and dentry pages.
401  * In addition, it controls garbage collection.
402  */
403 void f2fs_balance_fs(struct f2fs_sb_info *sbi, bool need)
404 {
405 	if (time_to_inject(sbi, FAULT_CHECKPOINT))
406 		f2fs_stop_checkpoint(sbi, false, STOP_CP_REASON_FAULT_INJECT);
407 
408 	/* balance_fs_bg is able to be pending */
409 	if (need && excess_cached_nats(sbi))
410 		f2fs_balance_fs_bg(sbi, false);
411 
412 	if (!f2fs_is_checkpoint_ready(sbi))
413 		return;
414 
415 	/*
416 	 * We should do GC or end up with checkpoint, if there are so many dirty
417 	 * dir/node pages without enough free segments.
418 	 */
419 	if (has_enough_free_secs(sbi, 0, 0))
420 		return;
421 
422 	if (test_opt(sbi, GC_MERGE) && sbi->gc_thread &&
423 				sbi->gc_thread->f2fs_gc_task) {
424 		DEFINE_WAIT(wait);
425 
426 		prepare_to_wait(&sbi->gc_thread->fggc_wq, &wait,
427 					TASK_UNINTERRUPTIBLE);
428 		wake_up(&sbi->gc_thread->gc_wait_queue_head);
429 		io_schedule();
430 		finish_wait(&sbi->gc_thread->fggc_wq, &wait);
431 	} else {
432 		struct f2fs_gc_control gc_control = {
433 			.victim_segno = NULL_SEGNO,
434 			.init_gc_type = BG_GC,
435 			.no_bg_gc = true,
436 			.should_migrate_blocks = false,
437 			.err_gc_skipped = false,
438 			.nr_free_secs = 1 };
439 		f2fs_down_write(&sbi->gc_lock);
440 		stat_inc_gc_call_count(sbi, FOREGROUND);
441 		f2fs_gc(sbi, &gc_control);
442 	}
443 }
444 
445 static inline bool excess_dirty_threshold(struct f2fs_sb_info *sbi)
446 {
447 	int factor = f2fs_rwsem_is_locked(&sbi->cp_rwsem) ? 3 : 2;
448 	unsigned int dents = get_pages(sbi, F2FS_DIRTY_DENTS);
449 	unsigned int qdata = get_pages(sbi, F2FS_DIRTY_QDATA);
450 	unsigned int nodes = get_pages(sbi, F2FS_DIRTY_NODES);
451 	unsigned int meta = get_pages(sbi, F2FS_DIRTY_META);
452 	unsigned int imeta = get_pages(sbi, F2FS_DIRTY_IMETA);
453 	unsigned int threshold = (factor * DEFAULT_DIRTY_THRESHOLD) <<
454 				sbi->log_blocks_per_seg;
455 	unsigned int global_threshold = threshold * 3 / 2;
456 
457 	if (dents >= threshold || qdata >= threshold ||
458 		nodes >= threshold || meta >= threshold ||
459 		imeta >= threshold)
460 		return true;
461 	return dents + qdata + nodes + meta + imeta >  global_threshold;
462 }
463 
464 void f2fs_balance_fs_bg(struct f2fs_sb_info *sbi, bool from_bg)
465 {
466 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
467 		return;
468 
469 	/* try to shrink extent cache when there is no enough memory */
470 	if (!f2fs_available_free_memory(sbi, READ_EXTENT_CACHE))
471 		f2fs_shrink_read_extent_tree(sbi,
472 				READ_EXTENT_CACHE_SHRINK_NUMBER);
473 
474 	/* try to shrink age extent cache when there is no enough memory */
475 	if (!f2fs_available_free_memory(sbi, AGE_EXTENT_CACHE))
476 		f2fs_shrink_age_extent_tree(sbi,
477 				AGE_EXTENT_CACHE_SHRINK_NUMBER);
478 
479 	/* check the # of cached NAT entries */
480 	if (!f2fs_available_free_memory(sbi, NAT_ENTRIES))
481 		f2fs_try_to_free_nats(sbi, NAT_ENTRY_PER_BLOCK);
482 
483 	if (!f2fs_available_free_memory(sbi, FREE_NIDS))
484 		f2fs_try_to_free_nids(sbi, MAX_FREE_NIDS);
485 	else
486 		f2fs_build_free_nids(sbi, false, false);
487 
488 	if (excess_dirty_nats(sbi) || excess_dirty_threshold(sbi) ||
489 		excess_prefree_segs(sbi) || !f2fs_space_for_roll_forward(sbi))
490 		goto do_sync;
491 
492 	/* there is background inflight IO or foreground operation recently */
493 	if (is_inflight_io(sbi, REQ_TIME) ||
494 		(!f2fs_time_over(sbi, REQ_TIME) && f2fs_rwsem_is_locked(&sbi->cp_rwsem)))
495 		return;
496 
497 	/* exceed periodical checkpoint timeout threshold */
498 	if (f2fs_time_over(sbi, CP_TIME))
499 		goto do_sync;
500 
501 	/* checkpoint is the only way to shrink partial cached entries */
502 	if (f2fs_available_free_memory(sbi, NAT_ENTRIES) &&
503 		f2fs_available_free_memory(sbi, INO_ENTRIES))
504 		return;
505 
506 do_sync:
507 	if (test_opt(sbi, DATA_FLUSH) && from_bg) {
508 		struct blk_plug plug;
509 
510 		mutex_lock(&sbi->flush_lock);
511 
512 		blk_start_plug(&plug);
513 		f2fs_sync_dirty_inodes(sbi, FILE_INODE, false);
514 		blk_finish_plug(&plug);
515 
516 		mutex_unlock(&sbi->flush_lock);
517 	}
518 	stat_inc_cp_call_count(sbi, BACKGROUND);
519 	f2fs_sync_fs(sbi->sb, 1);
520 }
521 
522 static int __submit_flush_wait(struct f2fs_sb_info *sbi,
523 				struct block_device *bdev)
524 {
525 	int ret = blkdev_issue_flush(bdev);
526 
527 	trace_f2fs_issue_flush(bdev, test_opt(sbi, NOBARRIER),
528 				test_opt(sbi, FLUSH_MERGE), ret);
529 	if (!ret)
530 		f2fs_update_iostat(sbi, NULL, FS_FLUSH_IO, 0);
531 	return ret;
532 }
533 
534 static int submit_flush_wait(struct f2fs_sb_info *sbi, nid_t ino)
535 {
536 	int ret = 0;
537 	int i;
538 
539 	if (!f2fs_is_multi_device(sbi))
540 		return __submit_flush_wait(sbi, sbi->sb->s_bdev);
541 
542 	for (i = 0; i < sbi->s_ndevs; i++) {
543 		if (!f2fs_is_dirty_device(sbi, ino, i, FLUSH_INO))
544 			continue;
545 		ret = __submit_flush_wait(sbi, FDEV(i).bdev);
546 		if (ret)
547 			break;
548 	}
549 	return ret;
550 }
551 
552 static int issue_flush_thread(void *data)
553 {
554 	struct f2fs_sb_info *sbi = data;
555 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
556 	wait_queue_head_t *q = &fcc->flush_wait_queue;
557 repeat:
558 	if (kthread_should_stop())
559 		return 0;
560 
561 	if (!llist_empty(&fcc->issue_list)) {
562 		struct flush_cmd *cmd, *next;
563 		int ret;
564 
565 		fcc->dispatch_list = llist_del_all(&fcc->issue_list);
566 		fcc->dispatch_list = llist_reverse_order(fcc->dispatch_list);
567 
568 		cmd = llist_entry(fcc->dispatch_list, struct flush_cmd, llnode);
569 
570 		ret = submit_flush_wait(sbi, cmd->ino);
571 		atomic_inc(&fcc->issued_flush);
572 
573 		llist_for_each_entry_safe(cmd, next,
574 					  fcc->dispatch_list, llnode) {
575 			cmd->ret = ret;
576 			complete(&cmd->wait);
577 		}
578 		fcc->dispatch_list = NULL;
579 	}
580 
581 	wait_event_interruptible(*q,
582 		kthread_should_stop() || !llist_empty(&fcc->issue_list));
583 	goto repeat;
584 }
585 
586 int f2fs_issue_flush(struct f2fs_sb_info *sbi, nid_t ino)
587 {
588 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
589 	struct flush_cmd cmd;
590 	int ret;
591 
592 	if (test_opt(sbi, NOBARRIER))
593 		return 0;
594 
595 	if (!test_opt(sbi, FLUSH_MERGE)) {
596 		atomic_inc(&fcc->queued_flush);
597 		ret = submit_flush_wait(sbi, ino);
598 		atomic_dec(&fcc->queued_flush);
599 		atomic_inc(&fcc->issued_flush);
600 		return ret;
601 	}
602 
603 	if (atomic_inc_return(&fcc->queued_flush) == 1 ||
604 	    f2fs_is_multi_device(sbi)) {
605 		ret = submit_flush_wait(sbi, ino);
606 		atomic_dec(&fcc->queued_flush);
607 
608 		atomic_inc(&fcc->issued_flush);
609 		return ret;
610 	}
611 
612 	cmd.ino = ino;
613 	init_completion(&cmd.wait);
614 
615 	llist_add(&cmd.llnode, &fcc->issue_list);
616 
617 	/*
618 	 * update issue_list before we wake up issue_flush thread, this
619 	 * smp_mb() pairs with another barrier in ___wait_event(), see
620 	 * more details in comments of waitqueue_active().
621 	 */
622 	smp_mb();
623 
624 	if (waitqueue_active(&fcc->flush_wait_queue))
625 		wake_up(&fcc->flush_wait_queue);
626 
627 	if (fcc->f2fs_issue_flush) {
628 		wait_for_completion(&cmd.wait);
629 		atomic_dec(&fcc->queued_flush);
630 	} else {
631 		struct llist_node *list;
632 
633 		list = llist_del_all(&fcc->issue_list);
634 		if (!list) {
635 			wait_for_completion(&cmd.wait);
636 			atomic_dec(&fcc->queued_flush);
637 		} else {
638 			struct flush_cmd *tmp, *next;
639 
640 			ret = submit_flush_wait(sbi, ino);
641 
642 			llist_for_each_entry_safe(tmp, next, list, llnode) {
643 				if (tmp == &cmd) {
644 					cmd.ret = ret;
645 					atomic_dec(&fcc->queued_flush);
646 					continue;
647 				}
648 				tmp->ret = ret;
649 				complete(&tmp->wait);
650 			}
651 		}
652 	}
653 
654 	return cmd.ret;
655 }
656 
657 int f2fs_create_flush_cmd_control(struct f2fs_sb_info *sbi)
658 {
659 	dev_t dev = sbi->sb->s_bdev->bd_dev;
660 	struct flush_cmd_control *fcc;
661 
662 	if (SM_I(sbi)->fcc_info) {
663 		fcc = SM_I(sbi)->fcc_info;
664 		if (fcc->f2fs_issue_flush)
665 			return 0;
666 		goto init_thread;
667 	}
668 
669 	fcc = f2fs_kzalloc(sbi, sizeof(struct flush_cmd_control), GFP_KERNEL);
670 	if (!fcc)
671 		return -ENOMEM;
672 	atomic_set(&fcc->issued_flush, 0);
673 	atomic_set(&fcc->queued_flush, 0);
674 	init_waitqueue_head(&fcc->flush_wait_queue);
675 	init_llist_head(&fcc->issue_list);
676 	SM_I(sbi)->fcc_info = fcc;
677 	if (!test_opt(sbi, FLUSH_MERGE))
678 		return 0;
679 
680 init_thread:
681 	fcc->f2fs_issue_flush = kthread_run(issue_flush_thread, sbi,
682 				"f2fs_flush-%u:%u", MAJOR(dev), MINOR(dev));
683 	if (IS_ERR(fcc->f2fs_issue_flush)) {
684 		int err = PTR_ERR(fcc->f2fs_issue_flush);
685 
686 		fcc->f2fs_issue_flush = NULL;
687 		return err;
688 	}
689 
690 	return 0;
691 }
692 
693 void f2fs_destroy_flush_cmd_control(struct f2fs_sb_info *sbi, bool free)
694 {
695 	struct flush_cmd_control *fcc = SM_I(sbi)->fcc_info;
696 
697 	if (fcc && fcc->f2fs_issue_flush) {
698 		struct task_struct *flush_thread = fcc->f2fs_issue_flush;
699 
700 		fcc->f2fs_issue_flush = NULL;
701 		kthread_stop(flush_thread);
702 	}
703 	if (free) {
704 		kfree(fcc);
705 		SM_I(sbi)->fcc_info = NULL;
706 	}
707 }
708 
709 int f2fs_flush_device_cache(struct f2fs_sb_info *sbi)
710 {
711 	int ret = 0, i;
712 
713 	if (!f2fs_is_multi_device(sbi))
714 		return 0;
715 
716 	if (test_opt(sbi, NOBARRIER))
717 		return 0;
718 
719 	for (i = 1; i < sbi->s_ndevs; i++) {
720 		int count = DEFAULT_RETRY_IO_COUNT;
721 
722 		if (!f2fs_test_bit(i, (char *)&sbi->dirty_device))
723 			continue;
724 
725 		do {
726 			ret = __submit_flush_wait(sbi, FDEV(i).bdev);
727 			if (ret)
728 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
729 		} while (ret && --count);
730 
731 		if (ret) {
732 			f2fs_stop_checkpoint(sbi, false,
733 					STOP_CP_REASON_FLUSH_FAIL);
734 			break;
735 		}
736 
737 		spin_lock(&sbi->dev_lock);
738 		f2fs_clear_bit(i, (char *)&sbi->dirty_device);
739 		spin_unlock(&sbi->dev_lock);
740 	}
741 
742 	return ret;
743 }
744 
745 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
746 		enum dirty_type dirty_type)
747 {
748 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
749 
750 	/* need not be added */
751 	if (IS_CURSEG(sbi, segno))
752 		return;
753 
754 	if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
755 		dirty_i->nr_dirty[dirty_type]++;
756 
757 	if (dirty_type == DIRTY) {
758 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
759 		enum dirty_type t = sentry->type;
760 
761 		if (unlikely(t >= DIRTY)) {
762 			f2fs_bug_on(sbi, 1);
763 			return;
764 		}
765 		if (!test_and_set_bit(segno, dirty_i->dirty_segmap[t]))
766 			dirty_i->nr_dirty[t]++;
767 
768 		if (__is_large_section(sbi)) {
769 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
770 			block_t valid_blocks =
771 				get_valid_blocks(sbi, segno, true);
772 
773 			f2fs_bug_on(sbi, unlikely(!valid_blocks ||
774 					valid_blocks == CAP_BLKS_PER_SEC(sbi)));
775 
776 			if (!IS_CURSEC(sbi, secno))
777 				set_bit(secno, dirty_i->dirty_secmap);
778 		}
779 	}
780 }
781 
782 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
783 		enum dirty_type dirty_type)
784 {
785 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
786 	block_t valid_blocks;
787 
788 	if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
789 		dirty_i->nr_dirty[dirty_type]--;
790 
791 	if (dirty_type == DIRTY) {
792 		struct seg_entry *sentry = get_seg_entry(sbi, segno);
793 		enum dirty_type t = sentry->type;
794 
795 		if (test_and_clear_bit(segno, dirty_i->dirty_segmap[t]))
796 			dirty_i->nr_dirty[t]--;
797 
798 		valid_blocks = get_valid_blocks(sbi, segno, true);
799 		if (valid_blocks == 0) {
800 			clear_bit(GET_SEC_FROM_SEG(sbi, segno),
801 						dirty_i->victim_secmap);
802 #ifdef CONFIG_F2FS_CHECK_FS
803 			clear_bit(segno, SIT_I(sbi)->invalid_segmap);
804 #endif
805 		}
806 		if (__is_large_section(sbi)) {
807 			unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
808 
809 			if (!valid_blocks ||
810 					valid_blocks == CAP_BLKS_PER_SEC(sbi)) {
811 				clear_bit(secno, dirty_i->dirty_secmap);
812 				return;
813 			}
814 
815 			if (!IS_CURSEC(sbi, secno))
816 				set_bit(secno, dirty_i->dirty_secmap);
817 		}
818 	}
819 }
820 
821 /*
822  * Should not occur error such as -ENOMEM.
823  * Adding dirty entry into seglist is not critical operation.
824  * If a given segment is one of current working segments, it won't be added.
825  */
826 static void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
827 {
828 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
829 	unsigned short valid_blocks, ckpt_valid_blocks;
830 	unsigned int usable_blocks;
831 
832 	if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
833 		return;
834 
835 	usable_blocks = f2fs_usable_blks_in_seg(sbi, segno);
836 	mutex_lock(&dirty_i->seglist_lock);
837 
838 	valid_blocks = get_valid_blocks(sbi, segno, false);
839 	ckpt_valid_blocks = get_ckpt_valid_blocks(sbi, segno, false);
840 
841 	if (valid_blocks == 0 && (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) ||
842 		ckpt_valid_blocks == usable_blocks)) {
843 		__locate_dirty_segment(sbi, segno, PRE);
844 		__remove_dirty_segment(sbi, segno, DIRTY);
845 	} else if (valid_blocks < usable_blocks) {
846 		__locate_dirty_segment(sbi, segno, DIRTY);
847 	} else {
848 		/* Recovery routine with SSR needs this */
849 		__remove_dirty_segment(sbi, segno, DIRTY);
850 	}
851 
852 	mutex_unlock(&dirty_i->seglist_lock);
853 }
854 
855 /* This moves currently empty dirty blocks to prefree. Must hold seglist_lock */
856 void f2fs_dirty_to_prefree(struct f2fs_sb_info *sbi)
857 {
858 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
859 	unsigned int segno;
860 
861 	mutex_lock(&dirty_i->seglist_lock);
862 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
863 		if (get_valid_blocks(sbi, segno, false))
864 			continue;
865 		if (IS_CURSEG(sbi, segno))
866 			continue;
867 		__locate_dirty_segment(sbi, segno, PRE);
868 		__remove_dirty_segment(sbi, segno, DIRTY);
869 	}
870 	mutex_unlock(&dirty_i->seglist_lock);
871 }
872 
873 block_t f2fs_get_unusable_blocks(struct f2fs_sb_info *sbi)
874 {
875 	int ovp_hole_segs =
876 		(overprovision_segments(sbi) - reserved_segments(sbi));
877 	block_t ovp_holes = ovp_hole_segs << sbi->log_blocks_per_seg;
878 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
879 	block_t holes[2] = {0, 0};	/* DATA and NODE */
880 	block_t unusable;
881 	struct seg_entry *se;
882 	unsigned int segno;
883 
884 	mutex_lock(&dirty_i->seglist_lock);
885 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
886 		se = get_seg_entry(sbi, segno);
887 		if (IS_NODESEG(se->type))
888 			holes[NODE] += f2fs_usable_blks_in_seg(sbi, segno) -
889 							se->valid_blocks;
890 		else
891 			holes[DATA] += f2fs_usable_blks_in_seg(sbi, segno) -
892 							se->valid_blocks;
893 	}
894 	mutex_unlock(&dirty_i->seglist_lock);
895 
896 	unusable = max(holes[DATA], holes[NODE]);
897 	if (unusable > ovp_holes)
898 		return unusable - ovp_holes;
899 	return 0;
900 }
901 
902 int f2fs_disable_cp_again(struct f2fs_sb_info *sbi, block_t unusable)
903 {
904 	int ovp_hole_segs =
905 		(overprovision_segments(sbi) - reserved_segments(sbi));
906 	if (unusable > F2FS_OPTION(sbi).unusable_cap)
907 		return -EAGAIN;
908 	if (is_sbi_flag_set(sbi, SBI_CP_DISABLED_QUICK) &&
909 		dirty_segments(sbi) > ovp_hole_segs)
910 		return -EAGAIN;
911 	return 0;
912 }
913 
914 /* This is only used by SBI_CP_DISABLED */
915 static unsigned int get_free_segment(struct f2fs_sb_info *sbi)
916 {
917 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
918 	unsigned int segno = 0;
919 
920 	mutex_lock(&dirty_i->seglist_lock);
921 	for_each_set_bit(segno, dirty_i->dirty_segmap[DIRTY], MAIN_SEGS(sbi)) {
922 		if (get_valid_blocks(sbi, segno, false))
923 			continue;
924 		if (get_ckpt_valid_blocks(sbi, segno, false))
925 			continue;
926 		mutex_unlock(&dirty_i->seglist_lock);
927 		return segno;
928 	}
929 	mutex_unlock(&dirty_i->seglist_lock);
930 	return NULL_SEGNO;
931 }
932 
933 static struct discard_cmd *__create_discard_cmd(struct f2fs_sb_info *sbi,
934 		struct block_device *bdev, block_t lstart,
935 		block_t start, block_t len)
936 {
937 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
938 	struct list_head *pend_list;
939 	struct discard_cmd *dc;
940 
941 	f2fs_bug_on(sbi, !len);
942 
943 	pend_list = &dcc->pend_list[plist_idx(len)];
944 
945 	dc = f2fs_kmem_cache_alloc(discard_cmd_slab, GFP_NOFS, true, NULL);
946 	INIT_LIST_HEAD(&dc->list);
947 	dc->bdev = bdev;
948 	dc->di.lstart = lstart;
949 	dc->di.start = start;
950 	dc->di.len = len;
951 	dc->ref = 0;
952 	dc->state = D_PREP;
953 	dc->queued = 0;
954 	dc->error = 0;
955 	init_completion(&dc->wait);
956 	list_add_tail(&dc->list, pend_list);
957 	spin_lock_init(&dc->lock);
958 	dc->bio_ref = 0;
959 	atomic_inc(&dcc->discard_cmd_cnt);
960 	dcc->undiscard_blks += len;
961 
962 	return dc;
963 }
964 
965 static bool f2fs_check_discard_tree(struct f2fs_sb_info *sbi)
966 {
967 #ifdef CONFIG_F2FS_CHECK_FS
968 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
969 	struct rb_node *cur = rb_first_cached(&dcc->root), *next;
970 	struct discard_cmd *cur_dc, *next_dc;
971 
972 	while (cur) {
973 		next = rb_next(cur);
974 		if (!next)
975 			return true;
976 
977 		cur_dc = rb_entry(cur, struct discard_cmd, rb_node);
978 		next_dc = rb_entry(next, struct discard_cmd, rb_node);
979 
980 		if (cur_dc->di.lstart + cur_dc->di.len > next_dc->di.lstart) {
981 			f2fs_info(sbi, "broken discard_rbtree, "
982 				"cur(%u, %u) next(%u, %u)",
983 				cur_dc->di.lstart, cur_dc->di.len,
984 				next_dc->di.lstart, next_dc->di.len);
985 			return false;
986 		}
987 		cur = next;
988 	}
989 #endif
990 	return true;
991 }
992 
993 static struct discard_cmd *__lookup_discard_cmd(struct f2fs_sb_info *sbi,
994 						block_t blkaddr)
995 {
996 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
997 	struct rb_node *node = dcc->root.rb_root.rb_node;
998 	struct discard_cmd *dc;
999 
1000 	while (node) {
1001 		dc = rb_entry(node, struct discard_cmd, rb_node);
1002 
1003 		if (blkaddr < dc->di.lstart)
1004 			node = node->rb_left;
1005 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1006 			node = node->rb_right;
1007 		else
1008 			return dc;
1009 	}
1010 	return NULL;
1011 }
1012 
1013 static struct discard_cmd *__lookup_discard_cmd_ret(struct rb_root_cached *root,
1014 				block_t blkaddr,
1015 				struct discard_cmd **prev_entry,
1016 				struct discard_cmd **next_entry,
1017 				struct rb_node ***insert_p,
1018 				struct rb_node **insert_parent)
1019 {
1020 	struct rb_node **pnode = &root->rb_root.rb_node;
1021 	struct rb_node *parent = NULL, *tmp_node;
1022 	struct discard_cmd *dc;
1023 
1024 	*insert_p = NULL;
1025 	*insert_parent = NULL;
1026 	*prev_entry = NULL;
1027 	*next_entry = NULL;
1028 
1029 	if (RB_EMPTY_ROOT(&root->rb_root))
1030 		return NULL;
1031 
1032 	while (*pnode) {
1033 		parent = *pnode;
1034 		dc = rb_entry(*pnode, struct discard_cmd, rb_node);
1035 
1036 		if (blkaddr < dc->di.lstart)
1037 			pnode = &(*pnode)->rb_left;
1038 		else if (blkaddr >= dc->di.lstart + dc->di.len)
1039 			pnode = &(*pnode)->rb_right;
1040 		else
1041 			goto lookup_neighbors;
1042 	}
1043 
1044 	*insert_p = pnode;
1045 	*insert_parent = parent;
1046 
1047 	dc = rb_entry(parent, struct discard_cmd, rb_node);
1048 	tmp_node = parent;
1049 	if (parent && blkaddr > dc->di.lstart)
1050 		tmp_node = rb_next(parent);
1051 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1052 
1053 	tmp_node = parent;
1054 	if (parent && blkaddr < dc->di.lstart)
1055 		tmp_node = rb_prev(parent);
1056 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1057 	return NULL;
1058 
1059 lookup_neighbors:
1060 	/* lookup prev node for merging backward later */
1061 	tmp_node = rb_prev(&dc->rb_node);
1062 	*prev_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1063 
1064 	/* lookup next node for merging frontward later */
1065 	tmp_node = rb_next(&dc->rb_node);
1066 	*next_entry = rb_entry_safe(tmp_node, struct discard_cmd, rb_node);
1067 	return dc;
1068 }
1069 
1070 static void __detach_discard_cmd(struct discard_cmd_control *dcc,
1071 							struct discard_cmd *dc)
1072 {
1073 	if (dc->state == D_DONE)
1074 		atomic_sub(dc->queued, &dcc->queued_discard);
1075 
1076 	list_del(&dc->list);
1077 	rb_erase_cached(&dc->rb_node, &dcc->root);
1078 	dcc->undiscard_blks -= dc->di.len;
1079 
1080 	kmem_cache_free(discard_cmd_slab, dc);
1081 
1082 	atomic_dec(&dcc->discard_cmd_cnt);
1083 }
1084 
1085 static void __remove_discard_cmd(struct f2fs_sb_info *sbi,
1086 							struct discard_cmd *dc)
1087 {
1088 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1089 	unsigned long flags;
1090 
1091 	trace_f2fs_remove_discard(dc->bdev, dc->di.start, dc->di.len);
1092 
1093 	spin_lock_irqsave(&dc->lock, flags);
1094 	if (dc->bio_ref) {
1095 		spin_unlock_irqrestore(&dc->lock, flags);
1096 		return;
1097 	}
1098 	spin_unlock_irqrestore(&dc->lock, flags);
1099 
1100 	f2fs_bug_on(sbi, dc->ref);
1101 
1102 	if (dc->error == -EOPNOTSUPP)
1103 		dc->error = 0;
1104 
1105 	if (dc->error)
1106 		printk_ratelimited(
1107 			"%sF2FS-fs (%s): Issue discard(%u, %u, %u) failed, ret: %d",
1108 			KERN_INFO, sbi->sb->s_id,
1109 			dc->di.lstart, dc->di.start, dc->di.len, dc->error);
1110 	__detach_discard_cmd(dcc, dc);
1111 }
1112 
1113 static void f2fs_submit_discard_endio(struct bio *bio)
1114 {
1115 	struct discard_cmd *dc = (struct discard_cmd *)bio->bi_private;
1116 	unsigned long flags;
1117 
1118 	spin_lock_irqsave(&dc->lock, flags);
1119 	if (!dc->error)
1120 		dc->error = blk_status_to_errno(bio->bi_status);
1121 	dc->bio_ref--;
1122 	if (!dc->bio_ref && dc->state == D_SUBMIT) {
1123 		dc->state = D_DONE;
1124 		complete_all(&dc->wait);
1125 	}
1126 	spin_unlock_irqrestore(&dc->lock, flags);
1127 	bio_put(bio);
1128 }
1129 
1130 static void __check_sit_bitmap(struct f2fs_sb_info *sbi,
1131 				block_t start, block_t end)
1132 {
1133 #ifdef CONFIG_F2FS_CHECK_FS
1134 	struct seg_entry *sentry;
1135 	unsigned int segno;
1136 	block_t blk = start;
1137 	unsigned long offset, size, *map;
1138 
1139 	while (blk < end) {
1140 		segno = GET_SEGNO(sbi, blk);
1141 		sentry = get_seg_entry(sbi, segno);
1142 		offset = GET_BLKOFF_FROM_SEG0(sbi, blk);
1143 
1144 		if (end < START_BLOCK(sbi, segno + 1))
1145 			size = GET_BLKOFF_FROM_SEG0(sbi, end);
1146 		else
1147 			size = BLKS_PER_SEG(sbi);
1148 		map = (unsigned long *)(sentry->cur_valid_map);
1149 		offset = __find_rev_next_bit(map, size, offset);
1150 		f2fs_bug_on(sbi, offset != size);
1151 		blk = START_BLOCK(sbi, segno + 1);
1152 	}
1153 #endif
1154 }
1155 
1156 static void __init_discard_policy(struct f2fs_sb_info *sbi,
1157 				struct discard_policy *dpolicy,
1158 				int discard_type, unsigned int granularity)
1159 {
1160 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1161 
1162 	/* common policy */
1163 	dpolicy->type = discard_type;
1164 	dpolicy->sync = true;
1165 	dpolicy->ordered = false;
1166 	dpolicy->granularity = granularity;
1167 
1168 	dpolicy->max_requests = dcc->max_discard_request;
1169 	dpolicy->io_aware_gran = dcc->discard_io_aware_gran;
1170 	dpolicy->timeout = false;
1171 
1172 	if (discard_type == DPOLICY_BG) {
1173 		dpolicy->min_interval = dcc->min_discard_issue_time;
1174 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1175 		dpolicy->max_interval = dcc->max_discard_issue_time;
1176 		dpolicy->io_aware = true;
1177 		dpolicy->sync = false;
1178 		dpolicy->ordered = true;
1179 		if (utilization(sbi) > dcc->discard_urgent_util) {
1180 			dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1181 			if (atomic_read(&dcc->discard_cmd_cnt))
1182 				dpolicy->max_interval =
1183 					dcc->min_discard_issue_time;
1184 		}
1185 	} else if (discard_type == DPOLICY_FORCE) {
1186 		dpolicy->min_interval = dcc->min_discard_issue_time;
1187 		dpolicy->mid_interval = dcc->mid_discard_issue_time;
1188 		dpolicy->max_interval = dcc->max_discard_issue_time;
1189 		dpolicy->io_aware = false;
1190 	} else if (discard_type == DPOLICY_FSTRIM) {
1191 		dpolicy->io_aware = false;
1192 	} else if (discard_type == DPOLICY_UMOUNT) {
1193 		dpolicy->io_aware = false;
1194 		/* we need to issue all to keep CP_TRIMMED_FLAG */
1195 		dpolicy->granularity = MIN_DISCARD_GRANULARITY;
1196 		dpolicy->timeout = true;
1197 	}
1198 }
1199 
1200 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1201 				struct block_device *bdev, block_t lstart,
1202 				block_t start, block_t len);
1203 
1204 #ifdef CONFIG_BLK_DEV_ZONED
1205 static void __submit_zone_reset_cmd(struct f2fs_sb_info *sbi,
1206 				   struct discard_cmd *dc, blk_opf_t flag,
1207 				   struct list_head *wait_list,
1208 				   unsigned int *issued)
1209 {
1210 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1211 	struct block_device *bdev = dc->bdev;
1212 	struct bio *bio = bio_alloc(bdev, 0, REQ_OP_ZONE_RESET | flag, GFP_NOFS);
1213 	unsigned long flags;
1214 
1215 	trace_f2fs_issue_reset_zone(bdev, dc->di.start);
1216 
1217 	spin_lock_irqsave(&dc->lock, flags);
1218 	dc->state = D_SUBMIT;
1219 	dc->bio_ref++;
1220 	spin_unlock_irqrestore(&dc->lock, flags);
1221 
1222 	if (issued)
1223 		(*issued)++;
1224 
1225 	atomic_inc(&dcc->queued_discard);
1226 	dc->queued++;
1227 	list_move_tail(&dc->list, wait_list);
1228 
1229 	/* sanity check on discard range */
1230 	__check_sit_bitmap(sbi, dc->di.lstart, dc->di.lstart + dc->di.len);
1231 
1232 	bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(dc->di.start);
1233 	bio->bi_private = dc;
1234 	bio->bi_end_io = f2fs_submit_discard_endio;
1235 	submit_bio(bio);
1236 
1237 	atomic_inc(&dcc->issued_discard);
1238 	f2fs_update_iostat(sbi, NULL, FS_ZONE_RESET_IO, dc->di.len * F2FS_BLKSIZE);
1239 }
1240 #endif
1241 
1242 /* this function is copied from blkdev_issue_discard from block/blk-lib.c */
1243 static int __submit_discard_cmd(struct f2fs_sb_info *sbi,
1244 				struct discard_policy *dpolicy,
1245 				struct discard_cmd *dc, int *issued)
1246 {
1247 	struct block_device *bdev = dc->bdev;
1248 	unsigned int max_discard_blocks =
1249 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1250 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1251 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1252 					&(dcc->fstrim_list) : &(dcc->wait_list);
1253 	blk_opf_t flag = dpolicy->sync ? REQ_SYNC : 0;
1254 	block_t lstart, start, len, total_len;
1255 	int err = 0;
1256 
1257 	if (dc->state != D_PREP)
1258 		return 0;
1259 
1260 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1261 		return 0;
1262 
1263 #ifdef CONFIG_BLK_DEV_ZONED
1264 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev)) {
1265 		int devi = f2fs_bdev_index(sbi, bdev);
1266 
1267 		if (devi < 0)
1268 			return -EINVAL;
1269 
1270 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1271 			__submit_zone_reset_cmd(sbi, dc, flag,
1272 						wait_list, issued);
1273 			return 0;
1274 		}
1275 	}
1276 #endif
1277 
1278 	trace_f2fs_issue_discard(bdev, dc->di.start, dc->di.len);
1279 
1280 	lstart = dc->di.lstart;
1281 	start = dc->di.start;
1282 	len = dc->di.len;
1283 	total_len = len;
1284 
1285 	dc->di.len = 0;
1286 
1287 	while (total_len && *issued < dpolicy->max_requests && !err) {
1288 		struct bio *bio = NULL;
1289 		unsigned long flags;
1290 		bool last = true;
1291 
1292 		if (len > max_discard_blocks) {
1293 			len = max_discard_blocks;
1294 			last = false;
1295 		}
1296 
1297 		(*issued)++;
1298 		if (*issued == dpolicy->max_requests)
1299 			last = true;
1300 
1301 		dc->di.len += len;
1302 
1303 		if (time_to_inject(sbi, FAULT_DISCARD)) {
1304 			err = -EIO;
1305 		} else {
1306 			err = __blkdev_issue_discard(bdev,
1307 					SECTOR_FROM_BLOCK(start),
1308 					SECTOR_FROM_BLOCK(len),
1309 					GFP_NOFS, &bio);
1310 		}
1311 		if (err) {
1312 			spin_lock_irqsave(&dc->lock, flags);
1313 			if (dc->state == D_PARTIAL)
1314 				dc->state = D_SUBMIT;
1315 			spin_unlock_irqrestore(&dc->lock, flags);
1316 
1317 			break;
1318 		}
1319 
1320 		f2fs_bug_on(sbi, !bio);
1321 
1322 		/*
1323 		 * should keep before submission to avoid D_DONE
1324 		 * right away
1325 		 */
1326 		spin_lock_irqsave(&dc->lock, flags);
1327 		if (last)
1328 			dc->state = D_SUBMIT;
1329 		else
1330 			dc->state = D_PARTIAL;
1331 		dc->bio_ref++;
1332 		spin_unlock_irqrestore(&dc->lock, flags);
1333 
1334 		atomic_inc(&dcc->queued_discard);
1335 		dc->queued++;
1336 		list_move_tail(&dc->list, wait_list);
1337 
1338 		/* sanity check on discard range */
1339 		__check_sit_bitmap(sbi, lstart, lstart + len);
1340 
1341 		bio->bi_private = dc;
1342 		bio->bi_end_io = f2fs_submit_discard_endio;
1343 		bio->bi_opf |= flag;
1344 		submit_bio(bio);
1345 
1346 		atomic_inc(&dcc->issued_discard);
1347 
1348 		f2fs_update_iostat(sbi, NULL, FS_DISCARD_IO, len * F2FS_BLKSIZE);
1349 
1350 		lstart += len;
1351 		start += len;
1352 		total_len -= len;
1353 		len = total_len;
1354 	}
1355 
1356 	if (!err && len) {
1357 		dcc->undiscard_blks -= len;
1358 		__update_discard_tree_range(sbi, bdev, lstart, start, len);
1359 	}
1360 	return err;
1361 }
1362 
1363 static void __insert_discard_cmd(struct f2fs_sb_info *sbi,
1364 				struct block_device *bdev, block_t lstart,
1365 				block_t start, block_t len)
1366 {
1367 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1368 	struct rb_node **p = &dcc->root.rb_root.rb_node;
1369 	struct rb_node *parent = NULL;
1370 	struct discard_cmd *dc;
1371 	bool leftmost = true;
1372 
1373 	/* look up rb tree to find parent node */
1374 	while (*p) {
1375 		parent = *p;
1376 		dc = rb_entry(parent, struct discard_cmd, rb_node);
1377 
1378 		if (lstart < dc->di.lstart) {
1379 			p = &(*p)->rb_left;
1380 		} else if (lstart >= dc->di.lstart + dc->di.len) {
1381 			p = &(*p)->rb_right;
1382 			leftmost = false;
1383 		} else {
1384 			f2fs_bug_on(sbi, 1);
1385 		}
1386 	}
1387 
1388 	dc = __create_discard_cmd(sbi, bdev, lstart, start, len);
1389 
1390 	rb_link_node(&dc->rb_node, parent, p);
1391 	rb_insert_color_cached(&dc->rb_node, &dcc->root, leftmost);
1392 }
1393 
1394 static void __relocate_discard_cmd(struct discard_cmd_control *dcc,
1395 						struct discard_cmd *dc)
1396 {
1397 	list_move_tail(&dc->list, &dcc->pend_list[plist_idx(dc->di.len)]);
1398 }
1399 
1400 static void __punch_discard_cmd(struct f2fs_sb_info *sbi,
1401 				struct discard_cmd *dc, block_t blkaddr)
1402 {
1403 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1404 	struct discard_info di = dc->di;
1405 	bool modified = false;
1406 
1407 	if (dc->state == D_DONE || dc->di.len == 1) {
1408 		__remove_discard_cmd(sbi, dc);
1409 		return;
1410 	}
1411 
1412 	dcc->undiscard_blks -= di.len;
1413 
1414 	if (blkaddr > di.lstart) {
1415 		dc->di.len = blkaddr - dc->di.lstart;
1416 		dcc->undiscard_blks += dc->di.len;
1417 		__relocate_discard_cmd(dcc, dc);
1418 		modified = true;
1419 	}
1420 
1421 	if (blkaddr < di.lstart + di.len - 1) {
1422 		if (modified) {
1423 			__insert_discard_cmd(sbi, dc->bdev, blkaddr + 1,
1424 					di.start + blkaddr + 1 - di.lstart,
1425 					di.lstart + di.len - 1 - blkaddr);
1426 		} else {
1427 			dc->di.lstart++;
1428 			dc->di.len--;
1429 			dc->di.start++;
1430 			dcc->undiscard_blks += dc->di.len;
1431 			__relocate_discard_cmd(dcc, dc);
1432 		}
1433 	}
1434 }
1435 
1436 static void __update_discard_tree_range(struct f2fs_sb_info *sbi,
1437 				struct block_device *bdev, block_t lstart,
1438 				block_t start, block_t len)
1439 {
1440 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1441 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1442 	struct discard_cmd *dc;
1443 	struct discard_info di = {0};
1444 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1445 	unsigned int max_discard_blocks =
1446 			SECTOR_TO_BLOCK(bdev_max_discard_sectors(bdev));
1447 	block_t end = lstart + len;
1448 
1449 	dc = __lookup_discard_cmd_ret(&dcc->root, lstart,
1450 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1451 	if (dc)
1452 		prev_dc = dc;
1453 
1454 	if (!prev_dc) {
1455 		di.lstart = lstart;
1456 		di.len = next_dc ? next_dc->di.lstart - lstart : len;
1457 		di.len = min(di.len, len);
1458 		di.start = start;
1459 	}
1460 
1461 	while (1) {
1462 		struct rb_node *node;
1463 		bool merged = false;
1464 		struct discard_cmd *tdc = NULL;
1465 
1466 		if (prev_dc) {
1467 			di.lstart = prev_dc->di.lstart + prev_dc->di.len;
1468 			if (di.lstart < lstart)
1469 				di.lstart = lstart;
1470 			if (di.lstart >= end)
1471 				break;
1472 
1473 			if (!next_dc || next_dc->di.lstart > end)
1474 				di.len = end - di.lstart;
1475 			else
1476 				di.len = next_dc->di.lstart - di.lstart;
1477 			di.start = start + di.lstart - lstart;
1478 		}
1479 
1480 		if (!di.len)
1481 			goto next;
1482 
1483 		if (prev_dc && prev_dc->state == D_PREP &&
1484 			prev_dc->bdev == bdev &&
1485 			__is_discard_back_mergeable(&di, &prev_dc->di,
1486 							max_discard_blocks)) {
1487 			prev_dc->di.len += di.len;
1488 			dcc->undiscard_blks += di.len;
1489 			__relocate_discard_cmd(dcc, prev_dc);
1490 			di = prev_dc->di;
1491 			tdc = prev_dc;
1492 			merged = true;
1493 		}
1494 
1495 		if (next_dc && next_dc->state == D_PREP &&
1496 			next_dc->bdev == bdev &&
1497 			__is_discard_front_mergeable(&di, &next_dc->di,
1498 							max_discard_blocks)) {
1499 			next_dc->di.lstart = di.lstart;
1500 			next_dc->di.len += di.len;
1501 			next_dc->di.start = di.start;
1502 			dcc->undiscard_blks += di.len;
1503 			__relocate_discard_cmd(dcc, next_dc);
1504 			if (tdc)
1505 				__remove_discard_cmd(sbi, tdc);
1506 			merged = true;
1507 		}
1508 
1509 		if (!merged)
1510 			__insert_discard_cmd(sbi, bdev,
1511 						di.lstart, di.start, di.len);
1512  next:
1513 		prev_dc = next_dc;
1514 		if (!prev_dc)
1515 			break;
1516 
1517 		node = rb_next(&prev_dc->rb_node);
1518 		next_dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1519 	}
1520 }
1521 
1522 #ifdef CONFIG_BLK_DEV_ZONED
1523 static void __queue_zone_reset_cmd(struct f2fs_sb_info *sbi,
1524 		struct block_device *bdev, block_t blkstart, block_t lblkstart,
1525 		block_t blklen)
1526 {
1527 	trace_f2fs_queue_reset_zone(bdev, blkstart);
1528 
1529 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1530 	__insert_discard_cmd(sbi, bdev, lblkstart, blkstart, blklen);
1531 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1532 }
1533 #endif
1534 
1535 static void __queue_discard_cmd(struct f2fs_sb_info *sbi,
1536 		struct block_device *bdev, block_t blkstart, block_t blklen)
1537 {
1538 	block_t lblkstart = blkstart;
1539 
1540 	if (!f2fs_bdev_support_discard(bdev))
1541 		return;
1542 
1543 	trace_f2fs_queue_discard(bdev, blkstart, blklen);
1544 
1545 	if (f2fs_is_multi_device(sbi)) {
1546 		int devi = f2fs_target_device_index(sbi, blkstart);
1547 
1548 		blkstart -= FDEV(devi).start_blk;
1549 	}
1550 	mutex_lock(&SM_I(sbi)->dcc_info->cmd_lock);
1551 	__update_discard_tree_range(sbi, bdev, lblkstart, blkstart, blklen);
1552 	mutex_unlock(&SM_I(sbi)->dcc_info->cmd_lock);
1553 }
1554 
1555 static void __issue_discard_cmd_orderly(struct f2fs_sb_info *sbi,
1556 		struct discard_policy *dpolicy, int *issued)
1557 {
1558 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1559 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
1560 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
1561 	struct discard_cmd *dc;
1562 	struct blk_plug plug;
1563 	bool io_interrupted = false;
1564 
1565 	mutex_lock(&dcc->cmd_lock);
1566 	dc = __lookup_discard_cmd_ret(&dcc->root, dcc->next_pos,
1567 				&prev_dc, &next_dc, &insert_p, &insert_parent);
1568 	if (!dc)
1569 		dc = next_dc;
1570 
1571 	blk_start_plug(&plug);
1572 
1573 	while (dc) {
1574 		struct rb_node *node;
1575 		int err = 0;
1576 
1577 		if (dc->state != D_PREP)
1578 			goto next;
1579 
1580 		if (dpolicy->io_aware && !is_idle(sbi, DISCARD_TIME)) {
1581 			io_interrupted = true;
1582 			break;
1583 		}
1584 
1585 		dcc->next_pos = dc->di.lstart + dc->di.len;
1586 		err = __submit_discard_cmd(sbi, dpolicy, dc, issued);
1587 
1588 		if (*issued >= dpolicy->max_requests)
1589 			break;
1590 next:
1591 		node = rb_next(&dc->rb_node);
1592 		if (err)
1593 			__remove_discard_cmd(sbi, dc);
1594 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
1595 	}
1596 
1597 	blk_finish_plug(&plug);
1598 
1599 	if (!dc)
1600 		dcc->next_pos = 0;
1601 
1602 	mutex_unlock(&dcc->cmd_lock);
1603 
1604 	if (!(*issued) && io_interrupted)
1605 		*issued = -1;
1606 }
1607 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1608 					struct discard_policy *dpolicy);
1609 
1610 static int __issue_discard_cmd(struct f2fs_sb_info *sbi,
1611 					struct discard_policy *dpolicy)
1612 {
1613 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1614 	struct list_head *pend_list;
1615 	struct discard_cmd *dc, *tmp;
1616 	struct blk_plug plug;
1617 	int i, issued;
1618 	bool io_interrupted = false;
1619 
1620 	if (dpolicy->timeout)
1621 		f2fs_update_time(sbi, UMOUNT_DISCARD_TIMEOUT);
1622 
1623 retry:
1624 	issued = 0;
1625 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1626 		if (dpolicy->timeout &&
1627 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1628 			break;
1629 
1630 		if (i + 1 < dpolicy->granularity)
1631 			break;
1632 
1633 		if (i + 1 < dcc->max_ordered_discard && dpolicy->ordered) {
1634 			__issue_discard_cmd_orderly(sbi, dpolicy, &issued);
1635 			return issued;
1636 		}
1637 
1638 		pend_list = &dcc->pend_list[i];
1639 
1640 		mutex_lock(&dcc->cmd_lock);
1641 		if (list_empty(pend_list))
1642 			goto next;
1643 		if (unlikely(dcc->rbtree_check))
1644 			f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
1645 		blk_start_plug(&plug);
1646 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1647 			f2fs_bug_on(sbi, dc->state != D_PREP);
1648 
1649 			if (dpolicy->timeout &&
1650 				f2fs_time_over(sbi, UMOUNT_DISCARD_TIMEOUT))
1651 				break;
1652 
1653 			if (dpolicy->io_aware && i < dpolicy->io_aware_gran &&
1654 						!is_idle(sbi, DISCARD_TIME)) {
1655 				io_interrupted = true;
1656 				break;
1657 			}
1658 
1659 			__submit_discard_cmd(sbi, dpolicy, dc, &issued);
1660 
1661 			if (issued >= dpolicy->max_requests)
1662 				break;
1663 		}
1664 		blk_finish_plug(&plug);
1665 next:
1666 		mutex_unlock(&dcc->cmd_lock);
1667 
1668 		if (issued >= dpolicy->max_requests || io_interrupted)
1669 			break;
1670 	}
1671 
1672 	if (dpolicy->type == DPOLICY_UMOUNT && issued) {
1673 		__wait_all_discard_cmd(sbi, dpolicy);
1674 		goto retry;
1675 	}
1676 
1677 	if (!issued && io_interrupted)
1678 		issued = -1;
1679 
1680 	return issued;
1681 }
1682 
1683 static bool __drop_discard_cmd(struct f2fs_sb_info *sbi)
1684 {
1685 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1686 	struct list_head *pend_list;
1687 	struct discard_cmd *dc, *tmp;
1688 	int i;
1689 	bool dropped = false;
1690 
1691 	mutex_lock(&dcc->cmd_lock);
1692 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
1693 		pend_list = &dcc->pend_list[i];
1694 		list_for_each_entry_safe(dc, tmp, pend_list, list) {
1695 			f2fs_bug_on(sbi, dc->state != D_PREP);
1696 			__remove_discard_cmd(sbi, dc);
1697 			dropped = true;
1698 		}
1699 	}
1700 	mutex_unlock(&dcc->cmd_lock);
1701 
1702 	return dropped;
1703 }
1704 
1705 void f2fs_drop_discard_cmd(struct f2fs_sb_info *sbi)
1706 {
1707 	__drop_discard_cmd(sbi);
1708 }
1709 
1710 static unsigned int __wait_one_discard_bio(struct f2fs_sb_info *sbi,
1711 							struct discard_cmd *dc)
1712 {
1713 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1714 	unsigned int len = 0;
1715 
1716 	wait_for_completion_io(&dc->wait);
1717 	mutex_lock(&dcc->cmd_lock);
1718 	f2fs_bug_on(sbi, dc->state != D_DONE);
1719 	dc->ref--;
1720 	if (!dc->ref) {
1721 		if (!dc->error)
1722 			len = dc->di.len;
1723 		__remove_discard_cmd(sbi, dc);
1724 	}
1725 	mutex_unlock(&dcc->cmd_lock);
1726 
1727 	return len;
1728 }
1729 
1730 static unsigned int __wait_discard_cmd_range(struct f2fs_sb_info *sbi,
1731 						struct discard_policy *dpolicy,
1732 						block_t start, block_t end)
1733 {
1734 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1735 	struct list_head *wait_list = (dpolicy->type == DPOLICY_FSTRIM) ?
1736 					&(dcc->fstrim_list) : &(dcc->wait_list);
1737 	struct discard_cmd *dc = NULL, *iter, *tmp;
1738 	unsigned int trimmed = 0;
1739 
1740 next:
1741 	dc = NULL;
1742 
1743 	mutex_lock(&dcc->cmd_lock);
1744 	list_for_each_entry_safe(iter, tmp, wait_list, list) {
1745 		if (iter->di.lstart + iter->di.len <= start ||
1746 					end <= iter->di.lstart)
1747 			continue;
1748 		if (iter->di.len < dpolicy->granularity)
1749 			continue;
1750 		if (iter->state == D_DONE && !iter->ref) {
1751 			wait_for_completion_io(&iter->wait);
1752 			if (!iter->error)
1753 				trimmed += iter->di.len;
1754 			__remove_discard_cmd(sbi, iter);
1755 		} else {
1756 			iter->ref++;
1757 			dc = iter;
1758 			break;
1759 		}
1760 	}
1761 	mutex_unlock(&dcc->cmd_lock);
1762 
1763 	if (dc) {
1764 		trimmed += __wait_one_discard_bio(sbi, dc);
1765 		goto next;
1766 	}
1767 
1768 	return trimmed;
1769 }
1770 
1771 static unsigned int __wait_all_discard_cmd(struct f2fs_sb_info *sbi,
1772 						struct discard_policy *dpolicy)
1773 {
1774 	struct discard_policy dp;
1775 	unsigned int discard_blks;
1776 
1777 	if (dpolicy)
1778 		return __wait_discard_cmd_range(sbi, dpolicy, 0, UINT_MAX);
1779 
1780 	/* wait all */
1781 	__init_discard_policy(sbi, &dp, DPOLICY_FSTRIM, MIN_DISCARD_GRANULARITY);
1782 	discard_blks = __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1783 	__init_discard_policy(sbi, &dp, DPOLICY_UMOUNT, MIN_DISCARD_GRANULARITY);
1784 	discard_blks += __wait_discard_cmd_range(sbi, &dp, 0, UINT_MAX);
1785 
1786 	return discard_blks;
1787 }
1788 
1789 /* This should be covered by global mutex, &sit_i->sentry_lock */
1790 static void f2fs_wait_discard_bio(struct f2fs_sb_info *sbi, block_t blkaddr)
1791 {
1792 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1793 	struct discard_cmd *dc;
1794 	bool need_wait = false;
1795 
1796 	mutex_lock(&dcc->cmd_lock);
1797 	dc = __lookup_discard_cmd(sbi, blkaddr);
1798 #ifdef CONFIG_BLK_DEV_ZONED
1799 	if (dc && f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(dc->bdev)) {
1800 		int devi = f2fs_bdev_index(sbi, dc->bdev);
1801 
1802 		if (devi < 0) {
1803 			mutex_unlock(&dcc->cmd_lock);
1804 			return;
1805 		}
1806 
1807 		if (f2fs_blkz_is_seq(sbi, devi, dc->di.start)) {
1808 			/* force submit zone reset */
1809 			if (dc->state == D_PREP)
1810 				__submit_zone_reset_cmd(sbi, dc, REQ_SYNC,
1811 							&dcc->wait_list, NULL);
1812 			dc->ref++;
1813 			mutex_unlock(&dcc->cmd_lock);
1814 			/* wait zone reset */
1815 			__wait_one_discard_bio(sbi, dc);
1816 			return;
1817 		}
1818 	}
1819 #endif
1820 	if (dc) {
1821 		if (dc->state == D_PREP) {
1822 			__punch_discard_cmd(sbi, dc, blkaddr);
1823 		} else {
1824 			dc->ref++;
1825 			need_wait = true;
1826 		}
1827 	}
1828 	mutex_unlock(&dcc->cmd_lock);
1829 
1830 	if (need_wait)
1831 		__wait_one_discard_bio(sbi, dc);
1832 }
1833 
1834 void f2fs_stop_discard_thread(struct f2fs_sb_info *sbi)
1835 {
1836 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1837 
1838 	if (dcc && dcc->f2fs_issue_discard) {
1839 		struct task_struct *discard_thread = dcc->f2fs_issue_discard;
1840 
1841 		dcc->f2fs_issue_discard = NULL;
1842 		kthread_stop(discard_thread);
1843 	}
1844 }
1845 
1846 /**
1847  * f2fs_issue_discard_timeout() - Issue all discard cmd within UMOUNT_DISCARD_TIMEOUT
1848  * @sbi: the f2fs_sb_info data for discard cmd to issue
1849  *
1850  * When UMOUNT_DISCARD_TIMEOUT is exceeded, all remaining discard commands will be dropped
1851  *
1852  * Return true if issued all discard cmd or no discard cmd need issue, otherwise return false.
1853  */
1854 bool f2fs_issue_discard_timeout(struct f2fs_sb_info *sbi)
1855 {
1856 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1857 	struct discard_policy dpolicy;
1858 	bool dropped;
1859 
1860 	if (!atomic_read(&dcc->discard_cmd_cnt))
1861 		return true;
1862 
1863 	__init_discard_policy(sbi, &dpolicy, DPOLICY_UMOUNT,
1864 					dcc->discard_granularity);
1865 	__issue_discard_cmd(sbi, &dpolicy);
1866 	dropped = __drop_discard_cmd(sbi);
1867 
1868 	/* just to make sure there is no pending discard commands */
1869 	__wait_all_discard_cmd(sbi, NULL);
1870 
1871 	f2fs_bug_on(sbi, atomic_read(&dcc->discard_cmd_cnt));
1872 	return !dropped;
1873 }
1874 
1875 static int issue_discard_thread(void *data)
1876 {
1877 	struct f2fs_sb_info *sbi = data;
1878 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
1879 	wait_queue_head_t *q = &dcc->discard_wait_queue;
1880 	struct discard_policy dpolicy;
1881 	unsigned int wait_ms = dcc->min_discard_issue_time;
1882 	int issued;
1883 
1884 	set_freezable();
1885 
1886 	do {
1887 		wait_event_interruptible_timeout(*q,
1888 				kthread_should_stop() || freezing(current) ||
1889 				dcc->discard_wake,
1890 				msecs_to_jiffies(wait_ms));
1891 
1892 		if (sbi->gc_mode == GC_URGENT_HIGH ||
1893 			!f2fs_available_free_memory(sbi, DISCARD_CACHE))
1894 			__init_discard_policy(sbi, &dpolicy, DPOLICY_FORCE,
1895 						MIN_DISCARD_GRANULARITY);
1896 		else
1897 			__init_discard_policy(sbi, &dpolicy, DPOLICY_BG,
1898 						dcc->discard_granularity);
1899 
1900 		if (dcc->discard_wake)
1901 			dcc->discard_wake = false;
1902 
1903 		/* clean up pending candidates before going to sleep */
1904 		if (atomic_read(&dcc->queued_discard))
1905 			__wait_all_discard_cmd(sbi, NULL);
1906 
1907 		if (try_to_freeze())
1908 			continue;
1909 		if (f2fs_readonly(sbi->sb))
1910 			continue;
1911 		if (kthread_should_stop())
1912 			return 0;
1913 		if (is_sbi_flag_set(sbi, SBI_NEED_FSCK) ||
1914 			!atomic_read(&dcc->discard_cmd_cnt)) {
1915 			wait_ms = dpolicy.max_interval;
1916 			continue;
1917 		}
1918 
1919 		sb_start_intwrite(sbi->sb);
1920 
1921 		issued = __issue_discard_cmd(sbi, &dpolicy);
1922 		if (issued > 0) {
1923 			__wait_all_discard_cmd(sbi, &dpolicy);
1924 			wait_ms = dpolicy.min_interval;
1925 		} else if (issued == -1) {
1926 			wait_ms = f2fs_time_to_wait(sbi, DISCARD_TIME);
1927 			if (!wait_ms)
1928 				wait_ms = dpolicy.mid_interval;
1929 		} else {
1930 			wait_ms = dpolicy.max_interval;
1931 		}
1932 		if (!atomic_read(&dcc->discard_cmd_cnt))
1933 			wait_ms = dpolicy.max_interval;
1934 
1935 		sb_end_intwrite(sbi->sb);
1936 
1937 	} while (!kthread_should_stop());
1938 	return 0;
1939 }
1940 
1941 #ifdef CONFIG_BLK_DEV_ZONED
1942 static int __f2fs_issue_discard_zone(struct f2fs_sb_info *sbi,
1943 		struct block_device *bdev, block_t blkstart, block_t blklen)
1944 {
1945 	sector_t sector, nr_sects;
1946 	block_t lblkstart = blkstart;
1947 	int devi = 0;
1948 	u64 remainder = 0;
1949 
1950 	if (f2fs_is_multi_device(sbi)) {
1951 		devi = f2fs_target_device_index(sbi, blkstart);
1952 		if (blkstart < FDEV(devi).start_blk ||
1953 		    blkstart > FDEV(devi).end_blk) {
1954 			f2fs_err(sbi, "Invalid block %x", blkstart);
1955 			return -EIO;
1956 		}
1957 		blkstart -= FDEV(devi).start_blk;
1958 	}
1959 
1960 	/* For sequential zones, reset the zone write pointer */
1961 	if (f2fs_blkz_is_seq(sbi, devi, blkstart)) {
1962 		sector = SECTOR_FROM_BLOCK(blkstart);
1963 		nr_sects = SECTOR_FROM_BLOCK(blklen);
1964 		div64_u64_rem(sector, bdev_zone_sectors(bdev), &remainder);
1965 
1966 		if (remainder || nr_sects != bdev_zone_sectors(bdev)) {
1967 			f2fs_err(sbi, "(%d) %s: Unaligned zone reset attempted (block %x + %x)",
1968 				 devi, sbi->s_ndevs ? FDEV(devi).path : "",
1969 				 blkstart, blklen);
1970 			return -EIO;
1971 		}
1972 
1973 		if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) {
1974 			trace_f2fs_issue_reset_zone(bdev, blkstart);
1975 			return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET,
1976 						sector, nr_sects, GFP_NOFS);
1977 		}
1978 
1979 		__queue_zone_reset_cmd(sbi, bdev, blkstart, lblkstart, blklen);
1980 		return 0;
1981 	}
1982 
1983 	/* For conventional zones, use regular discard if supported */
1984 	__queue_discard_cmd(sbi, bdev, lblkstart, blklen);
1985 	return 0;
1986 }
1987 #endif
1988 
1989 static int __issue_discard_async(struct f2fs_sb_info *sbi,
1990 		struct block_device *bdev, block_t blkstart, block_t blklen)
1991 {
1992 #ifdef CONFIG_BLK_DEV_ZONED
1993 	if (f2fs_sb_has_blkzoned(sbi) && bdev_is_zoned(bdev))
1994 		return __f2fs_issue_discard_zone(sbi, bdev, blkstart, blklen);
1995 #endif
1996 	__queue_discard_cmd(sbi, bdev, blkstart, blklen);
1997 	return 0;
1998 }
1999 
2000 static int f2fs_issue_discard(struct f2fs_sb_info *sbi,
2001 				block_t blkstart, block_t blklen)
2002 {
2003 	sector_t start = blkstart, len = 0;
2004 	struct block_device *bdev;
2005 	struct seg_entry *se;
2006 	unsigned int offset;
2007 	block_t i;
2008 	int err = 0;
2009 
2010 	bdev = f2fs_target_device(sbi, blkstart, NULL);
2011 
2012 	for (i = blkstart; i < blkstart + blklen; i++, len++) {
2013 		if (i != start) {
2014 			struct block_device *bdev2 =
2015 				f2fs_target_device(sbi, i, NULL);
2016 
2017 			if (bdev2 != bdev) {
2018 				err = __issue_discard_async(sbi, bdev,
2019 						start, len);
2020 				if (err)
2021 					return err;
2022 				bdev = bdev2;
2023 				start = i;
2024 				len = 0;
2025 			}
2026 		}
2027 
2028 		se = get_seg_entry(sbi, GET_SEGNO(sbi, i));
2029 		offset = GET_BLKOFF_FROM_SEG0(sbi, i);
2030 
2031 		if (f2fs_block_unit_discard(sbi) &&
2032 				!f2fs_test_and_set_bit(offset, se->discard_map))
2033 			sbi->discard_blks--;
2034 	}
2035 
2036 	if (len)
2037 		err = __issue_discard_async(sbi, bdev, start, len);
2038 	return err;
2039 }
2040 
2041 static bool add_discard_addrs(struct f2fs_sb_info *sbi, struct cp_control *cpc,
2042 							bool check_only)
2043 {
2044 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2045 	struct seg_entry *se = get_seg_entry(sbi, cpc->trim_start);
2046 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2047 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2048 	unsigned long *discard_map = (unsigned long *)se->discard_map;
2049 	unsigned long *dmap = SIT_I(sbi)->tmp_map;
2050 	unsigned int start = 0, end = -1;
2051 	bool force = (cpc->reason & CP_DISCARD);
2052 	struct discard_entry *de = NULL;
2053 	struct list_head *head = &SM_I(sbi)->dcc_info->entry_list;
2054 	int i;
2055 
2056 	if (se->valid_blocks == BLKS_PER_SEG(sbi) ||
2057 	    !f2fs_hw_support_discard(sbi) ||
2058 	    !f2fs_block_unit_discard(sbi))
2059 		return false;
2060 
2061 	if (!force) {
2062 		if (!f2fs_realtime_discard_enable(sbi) || !se->valid_blocks ||
2063 			SM_I(sbi)->dcc_info->nr_discards >=
2064 				SM_I(sbi)->dcc_info->max_discards)
2065 			return false;
2066 	}
2067 
2068 	/* SIT_VBLOCK_MAP_SIZE should be multiple of sizeof(unsigned long) */
2069 	for (i = 0; i < entries; i++)
2070 		dmap[i] = force ? ~ckpt_map[i] & ~discard_map[i] :
2071 				(cur_map[i] ^ ckpt_map[i]) & ckpt_map[i];
2072 
2073 	while (force || SM_I(sbi)->dcc_info->nr_discards <=
2074 				SM_I(sbi)->dcc_info->max_discards) {
2075 		start = __find_rev_next_bit(dmap, BLKS_PER_SEG(sbi), end + 1);
2076 		if (start >= BLKS_PER_SEG(sbi))
2077 			break;
2078 
2079 		end = __find_rev_next_zero_bit(dmap,
2080 						BLKS_PER_SEG(sbi), start + 1);
2081 		if (force && start && end != BLKS_PER_SEG(sbi) &&
2082 		    (end - start) < cpc->trim_minlen)
2083 			continue;
2084 
2085 		if (check_only)
2086 			return true;
2087 
2088 		if (!de) {
2089 			de = f2fs_kmem_cache_alloc(discard_entry_slab,
2090 						GFP_F2FS_ZERO, true, NULL);
2091 			de->start_blkaddr = START_BLOCK(sbi, cpc->trim_start);
2092 			list_add_tail(&de->list, head);
2093 		}
2094 
2095 		for (i = start; i < end; i++)
2096 			__set_bit_le(i, (void *)de->discard_map);
2097 
2098 		SM_I(sbi)->dcc_info->nr_discards += end - start;
2099 	}
2100 	return false;
2101 }
2102 
2103 static void release_discard_addr(struct discard_entry *entry)
2104 {
2105 	list_del(&entry->list);
2106 	kmem_cache_free(discard_entry_slab, entry);
2107 }
2108 
2109 void f2fs_release_discard_addrs(struct f2fs_sb_info *sbi)
2110 {
2111 	struct list_head *head = &(SM_I(sbi)->dcc_info->entry_list);
2112 	struct discard_entry *entry, *this;
2113 
2114 	/* drop caches */
2115 	list_for_each_entry_safe(entry, this, head, list)
2116 		release_discard_addr(entry);
2117 }
2118 
2119 /*
2120  * Should call f2fs_clear_prefree_segments after checkpoint is done.
2121  */
2122 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
2123 {
2124 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2125 	unsigned int segno;
2126 
2127 	mutex_lock(&dirty_i->seglist_lock);
2128 	for_each_set_bit(segno, dirty_i->dirty_segmap[PRE], MAIN_SEGS(sbi))
2129 		__set_test_and_free(sbi, segno, false);
2130 	mutex_unlock(&dirty_i->seglist_lock);
2131 }
2132 
2133 void f2fs_clear_prefree_segments(struct f2fs_sb_info *sbi,
2134 						struct cp_control *cpc)
2135 {
2136 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2137 	struct list_head *head = &dcc->entry_list;
2138 	struct discard_entry *entry, *this;
2139 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2140 	unsigned long *prefree_map = dirty_i->dirty_segmap[PRE];
2141 	unsigned int start = 0, end = -1;
2142 	unsigned int secno, start_segno;
2143 	bool force = (cpc->reason & CP_DISCARD);
2144 	bool section_alignment = F2FS_OPTION(sbi).discard_unit ==
2145 						DISCARD_UNIT_SECTION;
2146 
2147 	if (f2fs_lfs_mode(sbi) && __is_large_section(sbi))
2148 		section_alignment = true;
2149 
2150 	mutex_lock(&dirty_i->seglist_lock);
2151 
2152 	while (1) {
2153 		int i;
2154 
2155 		if (section_alignment && end != -1)
2156 			end--;
2157 		start = find_next_bit(prefree_map, MAIN_SEGS(sbi), end + 1);
2158 		if (start >= MAIN_SEGS(sbi))
2159 			break;
2160 		end = find_next_zero_bit(prefree_map, MAIN_SEGS(sbi),
2161 								start + 1);
2162 
2163 		if (section_alignment) {
2164 			start = rounddown(start, SEGS_PER_SEC(sbi));
2165 			end = roundup(end, SEGS_PER_SEC(sbi));
2166 		}
2167 
2168 		for (i = start; i < end; i++) {
2169 			if (test_and_clear_bit(i, prefree_map))
2170 				dirty_i->nr_dirty[PRE]--;
2171 		}
2172 
2173 		if (!f2fs_realtime_discard_enable(sbi))
2174 			continue;
2175 
2176 		if (force && start >= cpc->trim_start &&
2177 					(end - 1) <= cpc->trim_end)
2178 			continue;
2179 
2180 		/* Should cover 2MB zoned device for zone-based reset */
2181 		if (!f2fs_sb_has_blkzoned(sbi) &&
2182 		    (!f2fs_lfs_mode(sbi) || !__is_large_section(sbi))) {
2183 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start),
2184 				(end - start) << sbi->log_blocks_per_seg);
2185 			continue;
2186 		}
2187 next:
2188 		secno = GET_SEC_FROM_SEG(sbi, start);
2189 		start_segno = GET_SEG_FROM_SEC(sbi, secno);
2190 		if (!IS_CURSEC(sbi, secno) &&
2191 			!get_valid_blocks(sbi, start, true))
2192 			f2fs_issue_discard(sbi, START_BLOCK(sbi, start_segno),
2193 						BLKS_PER_SEC(sbi));
2194 
2195 		start = start_segno + SEGS_PER_SEC(sbi);
2196 		if (start < end)
2197 			goto next;
2198 		else
2199 			end = start - 1;
2200 	}
2201 	mutex_unlock(&dirty_i->seglist_lock);
2202 
2203 	if (!f2fs_block_unit_discard(sbi))
2204 		goto wakeup;
2205 
2206 	/* send small discards */
2207 	list_for_each_entry_safe(entry, this, head, list) {
2208 		unsigned int cur_pos = 0, next_pos, len, total_len = 0;
2209 		bool is_valid = test_bit_le(0, entry->discard_map);
2210 
2211 find_next:
2212 		if (is_valid) {
2213 			next_pos = find_next_zero_bit_le(entry->discard_map,
2214 						BLKS_PER_SEG(sbi), cur_pos);
2215 			len = next_pos - cur_pos;
2216 
2217 			if (f2fs_sb_has_blkzoned(sbi) ||
2218 			    (force && len < cpc->trim_minlen))
2219 				goto skip;
2220 
2221 			f2fs_issue_discard(sbi, entry->start_blkaddr + cur_pos,
2222 									len);
2223 			total_len += len;
2224 		} else {
2225 			next_pos = find_next_bit_le(entry->discard_map,
2226 						BLKS_PER_SEG(sbi), cur_pos);
2227 		}
2228 skip:
2229 		cur_pos = next_pos;
2230 		is_valid = !is_valid;
2231 
2232 		if (cur_pos < BLKS_PER_SEG(sbi))
2233 			goto find_next;
2234 
2235 		release_discard_addr(entry);
2236 		dcc->nr_discards -= total_len;
2237 	}
2238 
2239 wakeup:
2240 	wake_up_discard_thread(sbi, false);
2241 }
2242 
2243 int f2fs_start_discard_thread(struct f2fs_sb_info *sbi)
2244 {
2245 	dev_t dev = sbi->sb->s_bdev->bd_dev;
2246 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2247 	int err = 0;
2248 
2249 	if (!f2fs_realtime_discard_enable(sbi))
2250 		return 0;
2251 
2252 	dcc->f2fs_issue_discard = kthread_run(issue_discard_thread, sbi,
2253 				"f2fs_discard-%u:%u", MAJOR(dev), MINOR(dev));
2254 	if (IS_ERR(dcc->f2fs_issue_discard)) {
2255 		err = PTR_ERR(dcc->f2fs_issue_discard);
2256 		dcc->f2fs_issue_discard = NULL;
2257 	}
2258 
2259 	return err;
2260 }
2261 
2262 static int create_discard_cmd_control(struct f2fs_sb_info *sbi)
2263 {
2264 	struct discard_cmd_control *dcc;
2265 	int err = 0, i;
2266 
2267 	if (SM_I(sbi)->dcc_info) {
2268 		dcc = SM_I(sbi)->dcc_info;
2269 		goto init_thread;
2270 	}
2271 
2272 	dcc = f2fs_kzalloc(sbi, sizeof(struct discard_cmd_control), GFP_KERNEL);
2273 	if (!dcc)
2274 		return -ENOMEM;
2275 
2276 	dcc->discard_io_aware_gran = MAX_PLIST_NUM;
2277 	dcc->discard_granularity = DEFAULT_DISCARD_GRANULARITY;
2278 	dcc->max_ordered_discard = DEFAULT_MAX_ORDERED_DISCARD_GRANULARITY;
2279 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2280 		dcc->discard_granularity = BLKS_PER_SEG(sbi);
2281 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2282 		dcc->discard_granularity = BLKS_PER_SEC(sbi);
2283 
2284 	INIT_LIST_HEAD(&dcc->entry_list);
2285 	for (i = 0; i < MAX_PLIST_NUM; i++)
2286 		INIT_LIST_HEAD(&dcc->pend_list[i]);
2287 	INIT_LIST_HEAD(&dcc->wait_list);
2288 	INIT_LIST_HEAD(&dcc->fstrim_list);
2289 	mutex_init(&dcc->cmd_lock);
2290 	atomic_set(&dcc->issued_discard, 0);
2291 	atomic_set(&dcc->queued_discard, 0);
2292 	atomic_set(&dcc->discard_cmd_cnt, 0);
2293 	dcc->nr_discards = 0;
2294 	dcc->max_discards = MAIN_SEGS(sbi) << sbi->log_blocks_per_seg;
2295 	dcc->max_discard_request = DEF_MAX_DISCARD_REQUEST;
2296 	dcc->min_discard_issue_time = DEF_MIN_DISCARD_ISSUE_TIME;
2297 	dcc->mid_discard_issue_time = DEF_MID_DISCARD_ISSUE_TIME;
2298 	dcc->max_discard_issue_time = DEF_MAX_DISCARD_ISSUE_TIME;
2299 	dcc->discard_urgent_util = DEF_DISCARD_URGENT_UTIL;
2300 	dcc->undiscard_blks = 0;
2301 	dcc->next_pos = 0;
2302 	dcc->root = RB_ROOT_CACHED;
2303 	dcc->rbtree_check = false;
2304 
2305 	init_waitqueue_head(&dcc->discard_wait_queue);
2306 	SM_I(sbi)->dcc_info = dcc;
2307 init_thread:
2308 	err = f2fs_start_discard_thread(sbi);
2309 	if (err) {
2310 		kfree(dcc);
2311 		SM_I(sbi)->dcc_info = NULL;
2312 	}
2313 
2314 	return err;
2315 }
2316 
2317 static void destroy_discard_cmd_control(struct f2fs_sb_info *sbi)
2318 {
2319 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
2320 
2321 	if (!dcc)
2322 		return;
2323 
2324 	f2fs_stop_discard_thread(sbi);
2325 
2326 	/*
2327 	 * Recovery can cache discard commands, so in error path of
2328 	 * fill_super(), it needs to give a chance to handle them.
2329 	 */
2330 	f2fs_issue_discard_timeout(sbi);
2331 
2332 	kfree(dcc);
2333 	SM_I(sbi)->dcc_info = NULL;
2334 }
2335 
2336 static bool __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
2337 {
2338 	struct sit_info *sit_i = SIT_I(sbi);
2339 
2340 	if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap)) {
2341 		sit_i->dirty_sentries++;
2342 		return false;
2343 	}
2344 
2345 	return true;
2346 }
2347 
2348 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
2349 					unsigned int segno, int modified)
2350 {
2351 	struct seg_entry *se = get_seg_entry(sbi, segno);
2352 
2353 	se->type = type;
2354 	if (modified)
2355 		__mark_sit_entry_dirty(sbi, segno);
2356 }
2357 
2358 static inline unsigned long long get_segment_mtime(struct f2fs_sb_info *sbi,
2359 								block_t blkaddr)
2360 {
2361 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2362 
2363 	if (segno == NULL_SEGNO)
2364 		return 0;
2365 	return get_seg_entry(sbi, segno)->mtime;
2366 }
2367 
2368 static void update_segment_mtime(struct f2fs_sb_info *sbi, block_t blkaddr,
2369 						unsigned long long old_mtime)
2370 {
2371 	struct seg_entry *se;
2372 	unsigned int segno = GET_SEGNO(sbi, blkaddr);
2373 	unsigned long long ctime = get_mtime(sbi, false);
2374 	unsigned long long mtime = old_mtime ? old_mtime : ctime;
2375 
2376 	if (segno == NULL_SEGNO)
2377 		return;
2378 
2379 	se = get_seg_entry(sbi, segno);
2380 
2381 	if (!se->mtime)
2382 		se->mtime = mtime;
2383 	else
2384 		se->mtime = div_u64(se->mtime * se->valid_blocks + mtime,
2385 						se->valid_blocks + 1);
2386 
2387 	if (ctime > SIT_I(sbi)->max_mtime)
2388 		SIT_I(sbi)->max_mtime = ctime;
2389 }
2390 
2391 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
2392 {
2393 	struct seg_entry *se;
2394 	unsigned int segno, offset;
2395 	long int new_vblocks;
2396 	bool exist;
2397 #ifdef CONFIG_F2FS_CHECK_FS
2398 	bool mir_exist;
2399 #endif
2400 
2401 	segno = GET_SEGNO(sbi, blkaddr);
2402 
2403 	se = get_seg_entry(sbi, segno);
2404 	new_vblocks = se->valid_blocks + del;
2405 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2406 
2407 	f2fs_bug_on(sbi, (new_vblocks < 0 ||
2408 			(new_vblocks > f2fs_usable_blks_in_seg(sbi, segno))));
2409 
2410 	se->valid_blocks = new_vblocks;
2411 
2412 	/* Update valid block bitmap */
2413 	if (del > 0) {
2414 		exist = f2fs_test_and_set_bit(offset, se->cur_valid_map);
2415 #ifdef CONFIG_F2FS_CHECK_FS
2416 		mir_exist = f2fs_test_and_set_bit(offset,
2417 						se->cur_valid_map_mir);
2418 		if (unlikely(exist != mir_exist)) {
2419 			f2fs_err(sbi, "Inconsistent error when setting bitmap, blk:%u, old bit:%d",
2420 				 blkaddr, exist);
2421 			f2fs_bug_on(sbi, 1);
2422 		}
2423 #endif
2424 		if (unlikely(exist)) {
2425 			f2fs_err(sbi, "Bitmap was wrongly set, blk:%u",
2426 				 blkaddr);
2427 			f2fs_bug_on(sbi, 1);
2428 			se->valid_blocks--;
2429 			del = 0;
2430 		}
2431 
2432 		if (f2fs_block_unit_discard(sbi) &&
2433 				!f2fs_test_and_set_bit(offset, se->discard_map))
2434 			sbi->discard_blks--;
2435 
2436 		/*
2437 		 * SSR should never reuse block which is checkpointed
2438 		 * or newly invalidated.
2439 		 */
2440 		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED)) {
2441 			if (!f2fs_test_and_set_bit(offset, se->ckpt_valid_map))
2442 				se->ckpt_valid_blocks++;
2443 		}
2444 	} else {
2445 		exist = f2fs_test_and_clear_bit(offset, se->cur_valid_map);
2446 #ifdef CONFIG_F2FS_CHECK_FS
2447 		mir_exist = f2fs_test_and_clear_bit(offset,
2448 						se->cur_valid_map_mir);
2449 		if (unlikely(exist != mir_exist)) {
2450 			f2fs_err(sbi, "Inconsistent error when clearing bitmap, blk:%u, old bit:%d",
2451 				 blkaddr, exist);
2452 			f2fs_bug_on(sbi, 1);
2453 		}
2454 #endif
2455 		if (unlikely(!exist)) {
2456 			f2fs_err(sbi, "Bitmap was wrongly cleared, blk:%u",
2457 				 blkaddr);
2458 			f2fs_bug_on(sbi, 1);
2459 			se->valid_blocks++;
2460 			del = 0;
2461 		} else if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
2462 			/*
2463 			 * If checkpoints are off, we must not reuse data that
2464 			 * was used in the previous checkpoint. If it was used
2465 			 * before, we must track that to know how much space we
2466 			 * really have.
2467 			 */
2468 			if (f2fs_test_bit(offset, se->ckpt_valid_map)) {
2469 				spin_lock(&sbi->stat_lock);
2470 				sbi->unusable_block_count++;
2471 				spin_unlock(&sbi->stat_lock);
2472 			}
2473 		}
2474 
2475 		if (f2fs_block_unit_discard(sbi) &&
2476 			f2fs_test_and_clear_bit(offset, se->discard_map))
2477 			sbi->discard_blks++;
2478 	}
2479 	if (!f2fs_test_bit(offset, se->ckpt_valid_map))
2480 		se->ckpt_valid_blocks += del;
2481 
2482 	__mark_sit_entry_dirty(sbi, segno);
2483 
2484 	/* update total number of valid blocks to be written in ckpt area */
2485 	SIT_I(sbi)->written_valid_blocks += del;
2486 
2487 	if (__is_large_section(sbi))
2488 		get_sec_entry(sbi, segno)->valid_blocks += del;
2489 }
2490 
2491 void f2fs_invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
2492 {
2493 	unsigned int segno = GET_SEGNO(sbi, addr);
2494 	struct sit_info *sit_i = SIT_I(sbi);
2495 
2496 	f2fs_bug_on(sbi, addr == NULL_ADDR);
2497 	if (addr == NEW_ADDR || addr == COMPRESS_ADDR)
2498 		return;
2499 
2500 	f2fs_invalidate_internal_cache(sbi, addr);
2501 
2502 	/* add it into sit main buffer */
2503 	down_write(&sit_i->sentry_lock);
2504 
2505 	update_segment_mtime(sbi, addr, 0);
2506 	update_sit_entry(sbi, addr, -1);
2507 
2508 	/* add it into dirty seglist */
2509 	locate_dirty_segment(sbi, segno);
2510 
2511 	up_write(&sit_i->sentry_lock);
2512 }
2513 
2514 bool f2fs_is_checkpointed_data(struct f2fs_sb_info *sbi, block_t blkaddr)
2515 {
2516 	struct sit_info *sit_i = SIT_I(sbi);
2517 	unsigned int segno, offset;
2518 	struct seg_entry *se;
2519 	bool is_cp = false;
2520 
2521 	if (!__is_valid_data_blkaddr(blkaddr))
2522 		return true;
2523 
2524 	down_read(&sit_i->sentry_lock);
2525 
2526 	segno = GET_SEGNO(sbi, blkaddr);
2527 	se = get_seg_entry(sbi, segno);
2528 	offset = GET_BLKOFF_FROM_SEG0(sbi, blkaddr);
2529 
2530 	if (f2fs_test_bit(offset, se->ckpt_valid_map))
2531 		is_cp = true;
2532 
2533 	up_read(&sit_i->sentry_lock);
2534 
2535 	return is_cp;
2536 }
2537 
2538 static unsigned short f2fs_curseg_valid_blocks(struct f2fs_sb_info *sbi, int type)
2539 {
2540 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2541 
2542 	if (sbi->ckpt->alloc_type[type] == SSR)
2543 		return BLKS_PER_SEG(sbi);
2544 	return curseg->next_blkoff;
2545 }
2546 
2547 /*
2548  * Calculate the number of current summary pages for writing
2549  */
2550 int f2fs_npages_for_summary_flush(struct f2fs_sb_info *sbi, bool for_ra)
2551 {
2552 	int valid_sum_count = 0;
2553 	int i, sum_in_page;
2554 
2555 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
2556 		if (sbi->ckpt->alloc_type[i] != SSR && for_ra)
2557 			valid_sum_count +=
2558 				le16_to_cpu(F2FS_CKPT(sbi)->cur_data_blkoff[i]);
2559 		else
2560 			valid_sum_count += f2fs_curseg_valid_blocks(sbi, i);
2561 	}
2562 
2563 	sum_in_page = (PAGE_SIZE - 2 * SUM_JOURNAL_SIZE -
2564 			SUM_FOOTER_SIZE) / SUMMARY_SIZE;
2565 	if (valid_sum_count <= sum_in_page)
2566 		return 1;
2567 	else if ((valid_sum_count - sum_in_page) <=
2568 		(PAGE_SIZE - SUM_FOOTER_SIZE) / SUMMARY_SIZE)
2569 		return 2;
2570 	return 3;
2571 }
2572 
2573 /*
2574  * Caller should put this summary page
2575  */
2576 struct page *f2fs_get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
2577 {
2578 	if (unlikely(f2fs_cp_error(sbi)))
2579 		return ERR_PTR(-EIO);
2580 	return f2fs_get_meta_page_retry(sbi, GET_SUM_BLOCK(sbi, segno));
2581 }
2582 
2583 void f2fs_update_meta_page(struct f2fs_sb_info *sbi,
2584 					void *src, block_t blk_addr)
2585 {
2586 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2587 
2588 	memcpy(page_address(page), src, PAGE_SIZE);
2589 	set_page_dirty(page);
2590 	f2fs_put_page(page, 1);
2591 }
2592 
2593 static void write_sum_page(struct f2fs_sb_info *sbi,
2594 			struct f2fs_summary_block *sum_blk, block_t blk_addr)
2595 {
2596 	f2fs_update_meta_page(sbi, (void *)sum_blk, blk_addr);
2597 }
2598 
2599 static void write_current_sum_page(struct f2fs_sb_info *sbi,
2600 						int type, block_t blk_addr)
2601 {
2602 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2603 	struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
2604 	struct f2fs_summary_block *src = curseg->sum_blk;
2605 	struct f2fs_summary_block *dst;
2606 
2607 	dst = (struct f2fs_summary_block *)page_address(page);
2608 	memset(dst, 0, PAGE_SIZE);
2609 
2610 	mutex_lock(&curseg->curseg_mutex);
2611 
2612 	down_read(&curseg->journal_rwsem);
2613 	memcpy(&dst->journal, curseg->journal, SUM_JOURNAL_SIZE);
2614 	up_read(&curseg->journal_rwsem);
2615 
2616 	memcpy(dst->entries, src->entries, SUM_ENTRY_SIZE);
2617 	memcpy(&dst->footer, &src->footer, SUM_FOOTER_SIZE);
2618 
2619 	mutex_unlock(&curseg->curseg_mutex);
2620 
2621 	set_page_dirty(page);
2622 	f2fs_put_page(page, 1);
2623 }
2624 
2625 static int is_next_segment_free(struct f2fs_sb_info *sbi,
2626 				struct curseg_info *curseg, int type)
2627 {
2628 	unsigned int segno = curseg->segno + 1;
2629 	struct free_segmap_info *free_i = FREE_I(sbi);
2630 
2631 	if (segno < MAIN_SEGS(sbi) && segno % SEGS_PER_SEC(sbi))
2632 		return !test_bit(segno, free_i->free_segmap);
2633 	return 0;
2634 }
2635 
2636 /*
2637  * Find a new segment from the free segments bitmap to right order
2638  * This function should be returned with success, otherwise BUG
2639  */
2640 static void get_new_segment(struct f2fs_sb_info *sbi,
2641 			unsigned int *newseg, bool new_sec, bool pinning)
2642 {
2643 	struct free_segmap_info *free_i = FREE_I(sbi);
2644 	unsigned int segno, secno, zoneno;
2645 	unsigned int total_zones = MAIN_SECS(sbi) / sbi->secs_per_zone;
2646 	unsigned int hint = GET_SEC_FROM_SEG(sbi, *newseg);
2647 	unsigned int old_zoneno = GET_ZONE_FROM_SEG(sbi, *newseg);
2648 	bool init = true;
2649 	int i;
2650 
2651 	spin_lock(&free_i->segmap_lock);
2652 
2653 	if (!new_sec && ((*newseg + 1) % SEGS_PER_SEC(sbi))) {
2654 		segno = find_next_zero_bit(free_i->free_segmap,
2655 			GET_SEG_FROM_SEC(sbi, hint + 1), *newseg + 1);
2656 		if (segno < GET_SEG_FROM_SEC(sbi, hint + 1))
2657 			goto got_it;
2658 	}
2659 
2660 	/*
2661 	 * If we format f2fs on zoned storage, let's try to get pinned sections
2662 	 * from beginning of the storage, which should be a conventional one.
2663 	 */
2664 	if (f2fs_sb_has_blkzoned(sbi)) {
2665 		segno = pinning ? 0 : max(first_zoned_segno(sbi), *newseg);
2666 		hint = GET_SEC_FROM_SEG(sbi, segno);
2667 	}
2668 
2669 find_other_zone:
2670 	secno = find_next_zero_bit(free_i->free_secmap, MAIN_SECS(sbi), hint);
2671 	if (secno >= MAIN_SECS(sbi)) {
2672 		secno = find_first_zero_bit(free_i->free_secmap,
2673 							MAIN_SECS(sbi));
2674 		f2fs_bug_on(sbi, secno >= MAIN_SECS(sbi));
2675 	}
2676 	segno = GET_SEG_FROM_SEC(sbi, secno);
2677 	zoneno = GET_ZONE_FROM_SEC(sbi, secno);
2678 
2679 	/* give up on finding another zone */
2680 	if (!init)
2681 		goto got_it;
2682 	if (sbi->secs_per_zone == 1)
2683 		goto got_it;
2684 	if (zoneno == old_zoneno)
2685 		goto got_it;
2686 	for (i = 0; i < NR_CURSEG_TYPE; i++)
2687 		if (CURSEG_I(sbi, i)->zone == zoneno)
2688 			break;
2689 
2690 	if (i < NR_CURSEG_TYPE) {
2691 		/* zone is in user, try another */
2692 		if (zoneno + 1 >= total_zones)
2693 			hint = 0;
2694 		else
2695 			hint = (zoneno + 1) * sbi->secs_per_zone;
2696 		init = false;
2697 		goto find_other_zone;
2698 	}
2699 got_it:
2700 	/* set it as dirty segment in free segmap */
2701 	f2fs_bug_on(sbi, test_bit(segno, free_i->free_segmap));
2702 	__set_inuse(sbi, segno);
2703 	*newseg = segno;
2704 	spin_unlock(&free_i->segmap_lock);
2705 }
2706 
2707 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
2708 {
2709 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2710 	struct summary_footer *sum_footer;
2711 	unsigned short seg_type = curseg->seg_type;
2712 
2713 	curseg->inited = true;
2714 	curseg->segno = curseg->next_segno;
2715 	curseg->zone = GET_ZONE_FROM_SEG(sbi, curseg->segno);
2716 	curseg->next_blkoff = 0;
2717 	curseg->next_segno = NULL_SEGNO;
2718 
2719 	sum_footer = &(curseg->sum_blk->footer);
2720 	memset(sum_footer, 0, sizeof(struct summary_footer));
2721 
2722 	sanity_check_seg_type(sbi, seg_type);
2723 
2724 	if (IS_DATASEG(seg_type))
2725 		SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
2726 	if (IS_NODESEG(seg_type))
2727 		SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
2728 	__set_sit_entry_type(sbi, seg_type, curseg->segno, modified);
2729 }
2730 
2731 static unsigned int __get_next_segno(struct f2fs_sb_info *sbi, int type)
2732 {
2733 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2734 	unsigned short seg_type = curseg->seg_type;
2735 
2736 	sanity_check_seg_type(sbi, seg_type);
2737 	if (f2fs_need_rand_seg(sbi))
2738 		return get_random_u32_below(MAIN_SECS(sbi) * SEGS_PER_SEC(sbi));
2739 
2740 	if (__is_large_section(sbi))
2741 		return curseg->segno;
2742 
2743 	/* inmem log may not locate on any segment after mount */
2744 	if (!curseg->inited)
2745 		return 0;
2746 
2747 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
2748 		return 0;
2749 
2750 	if (seg_type == CURSEG_HOT_DATA || IS_NODESEG(seg_type))
2751 		return 0;
2752 
2753 	if (SIT_I(sbi)->last_victim[ALLOC_NEXT])
2754 		return SIT_I(sbi)->last_victim[ALLOC_NEXT];
2755 
2756 	/* find segments from 0 to reuse freed segments */
2757 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2758 		return 0;
2759 
2760 	return curseg->segno;
2761 }
2762 
2763 /*
2764  * Allocate a current working segment.
2765  * This function always allocates a free segment in LFS manner.
2766  */
2767 static int new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
2768 {
2769 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2770 	unsigned int segno = curseg->segno;
2771 	bool pinning = type == CURSEG_COLD_DATA_PINNED;
2772 
2773 	if (curseg->inited)
2774 		write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, segno));
2775 
2776 	segno = __get_next_segno(sbi, type);
2777 	get_new_segment(sbi, &segno, new_sec, pinning);
2778 	if (new_sec && pinning &&
2779 	    !f2fs_valid_pinned_area(sbi, START_BLOCK(sbi, segno))) {
2780 		__set_free(sbi, segno);
2781 		return -EAGAIN;
2782 	}
2783 
2784 	curseg->next_segno = segno;
2785 	reset_curseg(sbi, type, 1);
2786 	curseg->alloc_type = LFS;
2787 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
2788 		curseg->fragment_remained_chunk =
2789 				get_random_u32_inclusive(1, sbi->max_fragment_chunk);
2790 	return 0;
2791 }
2792 
2793 static int __next_free_blkoff(struct f2fs_sb_info *sbi,
2794 					int segno, block_t start)
2795 {
2796 	struct seg_entry *se = get_seg_entry(sbi, segno);
2797 	int entries = SIT_VBLOCK_MAP_SIZE / sizeof(unsigned long);
2798 	unsigned long *target_map = SIT_I(sbi)->tmp_map;
2799 	unsigned long *ckpt_map = (unsigned long *)se->ckpt_valid_map;
2800 	unsigned long *cur_map = (unsigned long *)se->cur_valid_map;
2801 	int i;
2802 
2803 	for (i = 0; i < entries; i++)
2804 		target_map[i] = ckpt_map[i] | cur_map[i];
2805 
2806 	return __find_rev_next_zero_bit(target_map, BLKS_PER_SEG(sbi), start);
2807 }
2808 
2809 static int f2fs_find_next_ssr_block(struct f2fs_sb_info *sbi,
2810 		struct curseg_info *seg)
2811 {
2812 	return __next_free_blkoff(sbi, seg->segno, seg->next_blkoff + 1);
2813 }
2814 
2815 bool f2fs_segment_has_free_slot(struct f2fs_sb_info *sbi, int segno)
2816 {
2817 	return __next_free_blkoff(sbi, segno, 0) < BLKS_PER_SEG(sbi);
2818 }
2819 
2820 /*
2821  * This function always allocates a used segment(from dirty seglist) by SSR
2822  * manner, so it should recover the existing segment information of valid blocks
2823  */
2824 static void change_curseg(struct f2fs_sb_info *sbi, int type)
2825 {
2826 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
2827 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2828 	unsigned int new_segno = curseg->next_segno;
2829 	struct f2fs_summary_block *sum_node;
2830 	struct page *sum_page;
2831 
2832 	write_sum_page(sbi, curseg->sum_blk, GET_SUM_BLOCK(sbi, curseg->segno));
2833 
2834 	__set_test_and_inuse(sbi, new_segno);
2835 
2836 	mutex_lock(&dirty_i->seglist_lock);
2837 	__remove_dirty_segment(sbi, new_segno, PRE);
2838 	__remove_dirty_segment(sbi, new_segno, DIRTY);
2839 	mutex_unlock(&dirty_i->seglist_lock);
2840 
2841 	reset_curseg(sbi, type, 1);
2842 	curseg->alloc_type = SSR;
2843 	curseg->next_blkoff = __next_free_blkoff(sbi, curseg->segno, 0);
2844 
2845 	sum_page = f2fs_get_sum_page(sbi, new_segno);
2846 	if (IS_ERR(sum_page)) {
2847 		/* GC won't be able to use stale summary pages by cp_error */
2848 		memset(curseg->sum_blk, 0, SUM_ENTRY_SIZE);
2849 		return;
2850 	}
2851 	sum_node = (struct f2fs_summary_block *)page_address(sum_page);
2852 	memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
2853 	f2fs_put_page(sum_page, 1);
2854 }
2855 
2856 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2857 				int alloc_mode, unsigned long long age);
2858 
2859 static void get_atssr_segment(struct f2fs_sb_info *sbi, int type,
2860 					int target_type, int alloc_mode,
2861 					unsigned long long age)
2862 {
2863 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2864 
2865 	curseg->seg_type = target_type;
2866 
2867 	if (get_ssr_segment(sbi, type, alloc_mode, age)) {
2868 		struct seg_entry *se = get_seg_entry(sbi, curseg->next_segno);
2869 
2870 		curseg->seg_type = se->type;
2871 		change_curseg(sbi, type);
2872 	} else {
2873 		/* allocate cold segment by default */
2874 		curseg->seg_type = CURSEG_COLD_DATA;
2875 		new_curseg(sbi, type, true);
2876 	}
2877 	stat_inc_seg_type(sbi, curseg);
2878 }
2879 
2880 static void __f2fs_init_atgc_curseg(struct f2fs_sb_info *sbi)
2881 {
2882 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC);
2883 
2884 	if (!sbi->am.atgc_enabled)
2885 		return;
2886 
2887 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
2888 
2889 	mutex_lock(&curseg->curseg_mutex);
2890 	down_write(&SIT_I(sbi)->sentry_lock);
2891 
2892 	get_atssr_segment(sbi, CURSEG_ALL_DATA_ATGC, CURSEG_COLD_DATA, SSR, 0);
2893 
2894 	up_write(&SIT_I(sbi)->sentry_lock);
2895 	mutex_unlock(&curseg->curseg_mutex);
2896 
2897 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
2898 
2899 }
2900 void f2fs_init_inmem_curseg(struct f2fs_sb_info *sbi)
2901 {
2902 	__f2fs_init_atgc_curseg(sbi);
2903 }
2904 
2905 static void __f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2906 {
2907 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2908 
2909 	mutex_lock(&curseg->curseg_mutex);
2910 	if (!curseg->inited)
2911 		goto out;
2912 
2913 	if (get_valid_blocks(sbi, curseg->segno, false)) {
2914 		write_sum_page(sbi, curseg->sum_blk,
2915 				GET_SUM_BLOCK(sbi, curseg->segno));
2916 	} else {
2917 		mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2918 		__set_test_and_free(sbi, curseg->segno, true);
2919 		mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2920 	}
2921 out:
2922 	mutex_unlock(&curseg->curseg_mutex);
2923 }
2924 
2925 void f2fs_save_inmem_curseg(struct f2fs_sb_info *sbi)
2926 {
2927 	__f2fs_save_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2928 
2929 	if (sbi->am.atgc_enabled)
2930 		__f2fs_save_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2931 }
2932 
2933 static void __f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi, int type)
2934 {
2935 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2936 
2937 	mutex_lock(&curseg->curseg_mutex);
2938 	if (!curseg->inited)
2939 		goto out;
2940 	if (get_valid_blocks(sbi, curseg->segno, false))
2941 		goto out;
2942 
2943 	mutex_lock(&DIRTY_I(sbi)->seglist_lock);
2944 	__set_test_and_inuse(sbi, curseg->segno);
2945 	mutex_unlock(&DIRTY_I(sbi)->seglist_lock);
2946 out:
2947 	mutex_unlock(&curseg->curseg_mutex);
2948 }
2949 
2950 void f2fs_restore_inmem_curseg(struct f2fs_sb_info *sbi)
2951 {
2952 	__f2fs_restore_inmem_curseg(sbi, CURSEG_COLD_DATA_PINNED);
2953 
2954 	if (sbi->am.atgc_enabled)
2955 		__f2fs_restore_inmem_curseg(sbi, CURSEG_ALL_DATA_ATGC);
2956 }
2957 
2958 static int get_ssr_segment(struct f2fs_sb_info *sbi, int type,
2959 				int alloc_mode, unsigned long long age)
2960 {
2961 	struct curseg_info *curseg = CURSEG_I(sbi, type);
2962 	unsigned segno = NULL_SEGNO;
2963 	unsigned short seg_type = curseg->seg_type;
2964 	int i, cnt;
2965 	bool reversed = false;
2966 
2967 	sanity_check_seg_type(sbi, seg_type);
2968 
2969 	/* f2fs_need_SSR() already forces to do this */
2970 	if (!f2fs_get_victim(sbi, &segno, BG_GC, seg_type, alloc_mode, age)) {
2971 		curseg->next_segno = segno;
2972 		return 1;
2973 	}
2974 
2975 	/* For node segments, let's do SSR more intensively */
2976 	if (IS_NODESEG(seg_type)) {
2977 		if (seg_type >= CURSEG_WARM_NODE) {
2978 			reversed = true;
2979 			i = CURSEG_COLD_NODE;
2980 		} else {
2981 			i = CURSEG_HOT_NODE;
2982 		}
2983 		cnt = NR_CURSEG_NODE_TYPE;
2984 	} else {
2985 		if (seg_type >= CURSEG_WARM_DATA) {
2986 			reversed = true;
2987 			i = CURSEG_COLD_DATA;
2988 		} else {
2989 			i = CURSEG_HOT_DATA;
2990 		}
2991 		cnt = NR_CURSEG_DATA_TYPE;
2992 	}
2993 
2994 	for (; cnt-- > 0; reversed ? i-- : i++) {
2995 		if (i == seg_type)
2996 			continue;
2997 		if (!f2fs_get_victim(sbi, &segno, BG_GC, i, alloc_mode, age)) {
2998 			curseg->next_segno = segno;
2999 			return 1;
3000 		}
3001 	}
3002 
3003 	/* find valid_blocks=0 in dirty list */
3004 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
3005 		segno = get_free_segment(sbi);
3006 		if (segno != NULL_SEGNO) {
3007 			curseg->next_segno = segno;
3008 			return 1;
3009 		}
3010 	}
3011 	return 0;
3012 }
3013 
3014 static bool need_new_seg(struct f2fs_sb_info *sbi, int type)
3015 {
3016 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3017 
3018 	if (!is_set_ckpt_flags(sbi, CP_CRC_RECOVERY_FLAG) &&
3019 	    curseg->seg_type == CURSEG_WARM_NODE)
3020 		return true;
3021 	if (curseg->alloc_type == LFS &&
3022 	    is_next_segment_free(sbi, curseg, type) &&
3023 	    likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
3024 		return true;
3025 	if (!f2fs_need_SSR(sbi) || !get_ssr_segment(sbi, type, SSR, 0))
3026 		return true;
3027 	return false;
3028 }
3029 
3030 void f2fs_allocate_segment_for_resize(struct f2fs_sb_info *sbi, int type,
3031 					unsigned int start, unsigned int end)
3032 {
3033 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3034 	unsigned int segno;
3035 
3036 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3037 	mutex_lock(&curseg->curseg_mutex);
3038 	down_write(&SIT_I(sbi)->sentry_lock);
3039 
3040 	segno = CURSEG_I(sbi, type)->segno;
3041 	if (segno < start || segno > end)
3042 		goto unlock;
3043 
3044 	if (f2fs_need_SSR(sbi) && get_ssr_segment(sbi, type, SSR, 0))
3045 		change_curseg(sbi, type);
3046 	else
3047 		new_curseg(sbi, type, true);
3048 
3049 	stat_inc_seg_type(sbi, curseg);
3050 
3051 	locate_dirty_segment(sbi, segno);
3052 unlock:
3053 	up_write(&SIT_I(sbi)->sentry_lock);
3054 
3055 	if (segno != curseg->segno)
3056 		f2fs_notice(sbi, "For resize: curseg of type %d: %u ==> %u",
3057 			    type, segno, curseg->segno);
3058 
3059 	mutex_unlock(&curseg->curseg_mutex);
3060 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3061 }
3062 
3063 static int __allocate_new_segment(struct f2fs_sb_info *sbi, int type,
3064 						bool new_sec, bool force)
3065 {
3066 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3067 	unsigned int old_segno;
3068 
3069 	if (!force && curseg->inited &&
3070 	    !curseg->next_blkoff &&
3071 	    !get_valid_blocks(sbi, curseg->segno, new_sec) &&
3072 	    !get_ckpt_valid_blocks(sbi, curseg->segno, new_sec))
3073 		return 0;
3074 
3075 	old_segno = curseg->segno;
3076 	if (new_curseg(sbi, type, true))
3077 		return -EAGAIN;
3078 	stat_inc_seg_type(sbi, curseg);
3079 	locate_dirty_segment(sbi, old_segno);
3080 	return 0;
3081 }
3082 
3083 int f2fs_allocate_new_section(struct f2fs_sb_info *sbi, int type, bool force)
3084 {
3085 	int ret;
3086 
3087 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3088 	down_write(&SIT_I(sbi)->sentry_lock);
3089 	ret = __allocate_new_segment(sbi, type, true, force);
3090 	up_write(&SIT_I(sbi)->sentry_lock);
3091 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3092 
3093 	return ret;
3094 }
3095 
3096 int f2fs_allocate_pinning_section(struct f2fs_sb_info *sbi)
3097 {
3098 	int err;
3099 	bool gc_required = true;
3100 
3101 retry:
3102 	f2fs_lock_op(sbi);
3103 	err = f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3104 	f2fs_unlock_op(sbi);
3105 
3106 	if (f2fs_sb_has_blkzoned(sbi) && err && gc_required) {
3107 		f2fs_down_write(&sbi->gc_lock);
3108 		f2fs_gc_range(sbi, 0, GET_SEGNO(sbi, FDEV(0).end_blk), true, 1);
3109 		f2fs_up_write(&sbi->gc_lock);
3110 
3111 		gc_required = false;
3112 		goto retry;
3113 	}
3114 
3115 	return err;
3116 }
3117 
3118 void f2fs_allocate_new_segments(struct f2fs_sb_info *sbi)
3119 {
3120 	int i;
3121 
3122 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3123 	down_write(&SIT_I(sbi)->sentry_lock);
3124 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++)
3125 		__allocate_new_segment(sbi, i, false, false);
3126 	up_write(&SIT_I(sbi)->sentry_lock);
3127 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3128 }
3129 
3130 bool f2fs_exist_trim_candidates(struct f2fs_sb_info *sbi,
3131 						struct cp_control *cpc)
3132 {
3133 	__u64 trim_start = cpc->trim_start;
3134 	bool has_candidate = false;
3135 
3136 	down_write(&SIT_I(sbi)->sentry_lock);
3137 	for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++) {
3138 		if (add_discard_addrs(sbi, cpc, true)) {
3139 			has_candidate = true;
3140 			break;
3141 		}
3142 	}
3143 	up_write(&SIT_I(sbi)->sentry_lock);
3144 
3145 	cpc->trim_start = trim_start;
3146 	return has_candidate;
3147 }
3148 
3149 static unsigned int __issue_discard_cmd_range(struct f2fs_sb_info *sbi,
3150 					struct discard_policy *dpolicy,
3151 					unsigned int start, unsigned int end)
3152 {
3153 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
3154 	struct discard_cmd *prev_dc = NULL, *next_dc = NULL;
3155 	struct rb_node **insert_p = NULL, *insert_parent = NULL;
3156 	struct discard_cmd *dc;
3157 	struct blk_plug plug;
3158 	int issued;
3159 	unsigned int trimmed = 0;
3160 
3161 next:
3162 	issued = 0;
3163 
3164 	mutex_lock(&dcc->cmd_lock);
3165 	if (unlikely(dcc->rbtree_check))
3166 		f2fs_bug_on(sbi, !f2fs_check_discard_tree(sbi));
3167 
3168 	dc = __lookup_discard_cmd_ret(&dcc->root, start,
3169 				&prev_dc, &next_dc, &insert_p, &insert_parent);
3170 	if (!dc)
3171 		dc = next_dc;
3172 
3173 	blk_start_plug(&plug);
3174 
3175 	while (dc && dc->di.lstart <= end) {
3176 		struct rb_node *node;
3177 		int err = 0;
3178 
3179 		if (dc->di.len < dpolicy->granularity)
3180 			goto skip;
3181 
3182 		if (dc->state != D_PREP) {
3183 			list_move_tail(&dc->list, &dcc->fstrim_list);
3184 			goto skip;
3185 		}
3186 
3187 		err = __submit_discard_cmd(sbi, dpolicy, dc, &issued);
3188 
3189 		if (issued >= dpolicy->max_requests) {
3190 			start = dc->di.lstart + dc->di.len;
3191 
3192 			if (err)
3193 				__remove_discard_cmd(sbi, dc);
3194 
3195 			blk_finish_plug(&plug);
3196 			mutex_unlock(&dcc->cmd_lock);
3197 			trimmed += __wait_all_discard_cmd(sbi, NULL);
3198 			f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
3199 			goto next;
3200 		}
3201 skip:
3202 		node = rb_next(&dc->rb_node);
3203 		if (err)
3204 			__remove_discard_cmd(sbi, dc);
3205 		dc = rb_entry_safe(node, struct discard_cmd, rb_node);
3206 
3207 		if (fatal_signal_pending(current))
3208 			break;
3209 	}
3210 
3211 	blk_finish_plug(&plug);
3212 	mutex_unlock(&dcc->cmd_lock);
3213 
3214 	return trimmed;
3215 }
3216 
3217 int f2fs_trim_fs(struct f2fs_sb_info *sbi, struct fstrim_range *range)
3218 {
3219 	__u64 start = F2FS_BYTES_TO_BLK(range->start);
3220 	__u64 end = start + F2FS_BYTES_TO_BLK(range->len) - 1;
3221 	unsigned int start_segno, end_segno;
3222 	block_t start_block, end_block;
3223 	struct cp_control cpc;
3224 	struct discard_policy dpolicy;
3225 	unsigned long long trimmed = 0;
3226 	int err = 0;
3227 	bool need_align = f2fs_lfs_mode(sbi) && __is_large_section(sbi);
3228 
3229 	if (start >= MAX_BLKADDR(sbi) || range->len < sbi->blocksize)
3230 		return -EINVAL;
3231 
3232 	if (end < MAIN_BLKADDR(sbi))
3233 		goto out;
3234 
3235 	if (is_sbi_flag_set(sbi, SBI_NEED_FSCK)) {
3236 		f2fs_warn(sbi, "Found FS corruption, run fsck to fix.");
3237 		return -EFSCORRUPTED;
3238 	}
3239 
3240 	/* start/end segment number in main_area */
3241 	start_segno = (start <= MAIN_BLKADDR(sbi)) ? 0 : GET_SEGNO(sbi, start);
3242 	end_segno = (end >= MAX_BLKADDR(sbi)) ? MAIN_SEGS(sbi) - 1 :
3243 						GET_SEGNO(sbi, end);
3244 	if (need_align) {
3245 		start_segno = rounddown(start_segno, SEGS_PER_SEC(sbi));
3246 		end_segno = roundup(end_segno + 1, SEGS_PER_SEC(sbi)) - 1;
3247 	}
3248 
3249 	cpc.reason = CP_DISCARD;
3250 	cpc.trim_minlen = max_t(__u64, 1, F2FS_BYTES_TO_BLK(range->minlen));
3251 	cpc.trim_start = start_segno;
3252 	cpc.trim_end = end_segno;
3253 
3254 	if (sbi->discard_blks == 0)
3255 		goto out;
3256 
3257 	f2fs_down_write(&sbi->gc_lock);
3258 	stat_inc_cp_call_count(sbi, TOTAL_CALL);
3259 	err = f2fs_write_checkpoint(sbi, &cpc);
3260 	f2fs_up_write(&sbi->gc_lock);
3261 	if (err)
3262 		goto out;
3263 
3264 	/*
3265 	 * We filed discard candidates, but actually we don't need to wait for
3266 	 * all of them, since they'll be issued in idle time along with runtime
3267 	 * discard option. User configuration looks like using runtime discard
3268 	 * or periodic fstrim instead of it.
3269 	 */
3270 	if (f2fs_realtime_discard_enable(sbi))
3271 		goto out;
3272 
3273 	start_block = START_BLOCK(sbi, start_segno);
3274 	end_block = START_BLOCK(sbi, end_segno + 1);
3275 
3276 	__init_discard_policy(sbi, &dpolicy, DPOLICY_FSTRIM, cpc.trim_minlen);
3277 	trimmed = __issue_discard_cmd_range(sbi, &dpolicy,
3278 					start_block, end_block);
3279 
3280 	trimmed += __wait_discard_cmd_range(sbi, &dpolicy,
3281 					start_block, end_block);
3282 out:
3283 	if (!err)
3284 		range->len = F2FS_BLK_TO_BYTES(trimmed);
3285 	return err;
3286 }
3287 
3288 int f2fs_rw_hint_to_seg_type(enum rw_hint hint)
3289 {
3290 	switch (hint) {
3291 	case WRITE_LIFE_SHORT:
3292 		return CURSEG_HOT_DATA;
3293 	case WRITE_LIFE_EXTREME:
3294 		return CURSEG_COLD_DATA;
3295 	default:
3296 		return CURSEG_WARM_DATA;
3297 	}
3298 }
3299 
3300 static int __get_segment_type_2(struct f2fs_io_info *fio)
3301 {
3302 	if (fio->type == DATA)
3303 		return CURSEG_HOT_DATA;
3304 	else
3305 		return CURSEG_HOT_NODE;
3306 }
3307 
3308 static int __get_segment_type_4(struct f2fs_io_info *fio)
3309 {
3310 	if (fio->type == DATA) {
3311 		struct inode *inode = fio->page->mapping->host;
3312 
3313 		if (S_ISDIR(inode->i_mode))
3314 			return CURSEG_HOT_DATA;
3315 		else
3316 			return CURSEG_COLD_DATA;
3317 	} else {
3318 		if (IS_DNODE(fio->page) && is_cold_node(fio->page))
3319 			return CURSEG_WARM_NODE;
3320 		else
3321 			return CURSEG_COLD_NODE;
3322 	}
3323 }
3324 
3325 static int __get_age_segment_type(struct inode *inode, pgoff_t pgofs)
3326 {
3327 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3328 	struct extent_info ei = {};
3329 
3330 	if (f2fs_lookup_age_extent_cache(inode, pgofs, &ei)) {
3331 		if (!ei.age)
3332 			return NO_CHECK_TYPE;
3333 		if (ei.age <= sbi->hot_data_age_threshold)
3334 			return CURSEG_HOT_DATA;
3335 		if (ei.age <= sbi->warm_data_age_threshold)
3336 			return CURSEG_WARM_DATA;
3337 		return CURSEG_COLD_DATA;
3338 	}
3339 	return NO_CHECK_TYPE;
3340 }
3341 
3342 static int __get_segment_type_6(struct f2fs_io_info *fio)
3343 {
3344 	if (fio->type == DATA) {
3345 		struct inode *inode = fio->page->mapping->host;
3346 		int type;
3347 
3348 		if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
3349 			return CURSEG_COLD_DATA_PINNED;
3350 
3351 		if (page_private_gcing(fio->page)) {
3352 			if (fio->sbi->am.atgc_enabled &&
3353 				(fio->io_type == FS_DATA_IO) &&
3354 				(fio->sbi->gc_mode != GC_URGENT_HIGH))
3355 				return CURSEG_ALL_DATA_ATGC;
3356 			else
3357 				return CURSEG_COLD_DATA;
3358 		}
3359 		if (file_is_cold(inode) || f2fs_need_compress_data(inode))
3360 			return CURSEG_COLD_DATA;
3361 
3362 		type = __get_age_segment_type(inode, fio->page->index);
3363 		if (type != NO_CHECK_TYPE)
3364 			return type;
3365 
3366 		if (file_is_hot(inode) ||
3367 				is_inode_flag_set(inode, FI_HOT_DATA) ||
3368 				f2fs_is_cow_file(inode))
3369 			return CURSEG_HOT_DATA;
3370 		return f2fs_rw_hint_to_seg_type(inode->i_write_hint);
3371 	} else {
3372 		if (IS_DNODE(fio->page))
3373 			return is_cold_node(fio->page) ? CURSEG_WARM_NODE :
3374 						CURSEG_HOT_NODE;
3375 		return CURSEG_COLD_NODE;
3376 	}
3377 }
3378 
3379 static int __get_segment_type(struct f2fs_io_info *fio)
3380 {
3381 	int type = 0;
3382 
3383 	switch (F2FS_OPTION(fio->sbi).active_logs) {
3384 	case 2:
3385 		type = __get_segment_type_2(fio);
3386 		break;
3387 	case 4:
3388 		type = __get_segment_type_4(fio);
3389 		break;
3390 	case 6:
3391 		type = __get_segment_type_6(fio);
3392 		break;
3393 	default:
3394 		f2fs_bug_on(fio->sbi, true);
3395 	}
3396 
3397 	if (IS_HOT(type))
3398 		fio->temp = HOT;
3399 	else if (IS_WARM(type))
3400 		fio->temp = WARM;
3401 	else
3402 		fio->temp = COLD;
3403 	return type;
3404 }
3405 
3406 static void f2fs_randomize_chunk(struct f2fs_sb_info *sbi,
3407 		struct curseg_info *seg)
3408 {
3409 	/* To allocate block chunks in different sizes, use random number */
3410 	if (--seg->fragment_remained_chunk > 0)
3411 		return;
3412 
3413 	seg->fragment_remained_chunk =
3414 		get_random_u32_inclusive(1, sbi->max_fragment_chunk);
3415 	seg->next_blkoff +=
3416 		get_random_u32_inclusive(1, sbi->max_fragment_hole);
3417 }
3418 
3419 void f2fs_allocate_data_block(struct f2fs_sb_info *sbi, struct page *page,
3420 		block_t old_blkaddr, block_t *new_blkaddr,
3421 		struct f2fs_summary *sum, int type,
3422 		struct f2fs_io_info *fio)
3423 {
3424 	struct sit_info *sit_i = SIT_I(sbi);
3425 	struct curseg_info *curseg = CURSEG_I(sbi, type);
3426 	unsigned long long old_mtime;
3427 	bool from_gc = (type == CURSEG_ALL_DATA_ATGC);
3428 	struct seg_entry *se = NULL;
3429 	bool segment_full = false;
3430 
3431 	f2fs_down_read(&SM_I(sbi)->curseg_lock);
3432 
3433 	mutex_lock(&curseg->curseg_mutex);
3434 	down_write(&sit_i->sentry_lock);
3435 
3436 	if (from_gc) {
3437 		f2fs_bug_on(sbi, GET_SEGNO(sbi, old_blkaddr) == NULL_SEGNO);
3438 		se = get_seg_entry(sbi, GET_SEGNO(sbi, old_blkaddr));
3439 		sanity_check_seg_type(sbi, se->type);
3440 		f2fs_bug_on(sbi, IS_NODESEG(se->type));
3441 	}
3442 	*new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
3443 
3444 	f2fs_bug_on(sbi, curseg->next_blkoff >= BLKS_PER_SEG(sbi));
3445 
3446 	f2fs_wait_discard_bio(sbi, *new_blkaddr);
3447 
3448 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3449 	if (curseg->alloc_type == SSR) {
3450 		curseg->next_blkoff = f2fs_find_next_ssr_block(sbi, curseg);
3451 	} else {
3452 		curseg->next_blkoff++;
3453 		if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
3454 			f2fs_randomize_chunk(sbi, curseg);
3455 	}
3456 	if (curseg->next_blkoff >= f2fs_usable_blks_in_seg(sbi, curseg->segno))
3457 		segment_full = true;
3458 	stat_inc_block_count(sbi, curseg);
3459 
3460 	if (from_gc) {
3461 		old_mtime = get_segment_mtime(sbi, old_blkaddr);
3462 	} else {
3463 		update_segment_mtime(sbi, old_blkaddr, 0);
3464 		old_mtime = 0;
3465 	}
3466 	update_segment_mtime(sbi, *new_blkaddr, old_mtime);
3467 
3468 	/*
3469 	 * SIT information should be updated before segment allocation,
3470 	 * since SSR needs latest valid block information.
3471 	 */
3472 	update_sit_entry(sbi, *new_blkaddr, 1);
3473 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
3474 		update_sit_entry(sbi, old_blkaddr, -1);
3475 
3476 	/*
3477 	 * If the current segment is full, flush it out and replace it with a
3478 	 * new segment.
3479 	 */
3480 	if (segment_full) {
3481 		if (type == CURSEG_COLD_DATA_PINNED &&
3482 		    !((curseg->segno + 1) % sbi->segs_per_sec))
3483 			goto skip_new_segment;
3484 
3485 		if (from_gc) {
3486 			get_atssr_segment(sbi, type, se->type,
3487 						AT_SSR, se->mtime);
3488 		} else {
3489 			if (need_new_seg(sbi, type))
3490 				new_curseg(sbi, type, false);
3491 			else
3492 				change_curseg(sbi, type);
3493 			stat_inc_seg_type(sbi, curseg);
3494 		}
3495 	}
3496 
3497 skip_new_segment:
3498 	/*
3499 	 * segment dirty status should be updated after segment allocation,
3500 	 * so we just need to update status only one time after previous
3501 	 * segment being closed.
3502 	 */
3503 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3504 	locate_dirty_segment(sbi, GET_SEGNO(sbi, *new_blkaddr));
3505 
3506 	if (IS_DATASEG(curseg->seg_type))
3507 		atomic64_inc(&sbi->allocated_data_blocks);
3508 
3509 	up_write(&sit_i->sentry_lock);
3510 
3511 	if (page && IS_NODESEG(curseg->seg_type)) {
3512 		fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
3513 
3514 		f2fs_inode_chksum_set(sbi, page);
3515 	}
3516 
3517 	if (fio) {
3518 		struct f2fs_bio_info *io;
3519 
3520 		INIT_LIST_HEAD(&fio->list);
3521 		fio->in_list = 1;
3522 		io = sbi->write_io[fio->type] + fio->temp;
3523 		spin_lock(&io->io_lock);
3524 		list_add_tail(&fio->list, &io->io_list);
3525 		spin_unlock(&io->io_lock);
3526 	}
3527 
3528 	mutex_unlock(&curseg->curseg_mutex);
3529 
3530 	f2fs_up_read(&SM_I(sbi)->curseg_lock);
3531 }
3532 
3533 void f2fs_update_device_state(struct f2fs_sb_info *sbi, nid_t ino,
3534 					block_t blkaddr, unsigned int blkcnt)
3535 {
3536 	if (!f2fs_is_multi_device(sbi))
3537 		return;
3538 
3539 	while (1) {
3540 		unsigned int devidx = f2fs_target_device_index(sbi, blkaddr);
3541 		unsigned int blks = FDEV(devidx).end_blk - blkaddr + 1;
3542 
3543 		/* update device state for fsync */
3544 		f2fs_set_dirty_device(sbi, ino, devidx, FLUSH_INO);
3545 
3546 		/* update device state for checkpoint */
3547 		if (!f2fs_test_bit(devidx, (char *)&sbi->dirty_device)) {
3548 			spin_lock(&sbi->dev_lock);
3549 			f2fs_set_bit(devidx, (char *)&sbi->dirty_device);
3550 			spin_unlock(&sbi->dev_lock);
3551 		}
3552 
3553 		if (blkcnt <= blks)
3554 			break;
3555 		blkcnt -= blks;
3556 		blkaddr += blks;
3557 	}
3558 }
3559 
3560 static void do_write_page(struct f2fs_summary *sum, struct f2fs_io_info *fio)
3561 {
3562 	int type = __get_segment_type(fio);
3563 	bool keep_order = (f2fs_lfs_mode(fio->sbi) && type == CURSEG_COLD_DATA);
3564 
3565 	if (keep_order)
3566 		f2fs_down_read(&fio->sbi->io_order_lock);
3567 
3568 	f2fs_allocate_data_block(fio->sbi, fio->page, fio->old_blkaddr,
3569 			&fio->new_blkaddr, sum, type, fio);
3570 	if (GET_SEGNO(fio->sbi, fio->old_blkaddr) != NULL_SEGNO)
3571 		f2fs_invalidate_internal_cache(fio->sbi, fio->old_blkaddr);
3572 
3573 	/* writeout dirty page into bdev */
3574 	f2fs_submit_page_write(fio);
3575 
3576 	f2fs_update_device_state(fio->sbi, fio->ino, fio->new_blkaddr, 1);
3577 
3578 	if (keep_order)
3579 		f2fs_up_read(&fio->sbi->io_order_lock);
3580 }
3581 
3582 void f2fs_do_write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
3583 					enum iostat_type io_type)
3584 {
3585 	struct f2fs_io_info fio = {
3586 		.sbi = sbi,
3587 		.type = META,
3588 		.temp = HOT,
3589 		.op = REQ_OP_WRITE,
3590 		.op_flags = REQ_SYNC | REQ_META | REQ_PRIO,
3591 		.old_blkaddr = page->index,
3592 		.new_blkaddr = page->index,
3593 		.page = page,
3594 		.encrypted_page = NULL,
3595 		.in_list = 0,
3596 	};
3597 
3598 	if (unlikely(page->index >= MAIN_BLKADDR(sbi)))
3599 		fio.op_flags &= ~REQ_META;
3600 
3601 	set_page_writeback(page);
3602 	f2fs_submit_page_write(&fio);
3603 
3604 	stat_inc_meta_count(sbi, page->index);
3605 	f2fs_update_iostat(sbi, NULL, io_type, F2FS_BLKSIZE);
3606 }
3607 
3608 void f2fs_do_write_node_page(unsigned int nid, struct f2fs_io_info *fio)
3609 {
3610 	struct f2fs_summary sum;
3611 
3612 	set_summary(&sum, nid, 0, 0);
3613 	do_write_page(&sum, fio);
3614 
3615 	f2fs_update_iostat(fio->sbi, NULL, fio->io_type, F2FS_BLKSIZE);
3616 }
3617 
3618 void f2fs_outplace_write_data(struct dnode_of_data *dn,
3619 					struct f2fs_io_info *fio)
3620 {
3621 	struct f2fs_sb_info *sbi = fio->sbi;
3622 	struct f2fs_summary sum;
3623 
3624 	f2fs_bug_on(sbi, dn->data_blkaddr == NULL_ADDR);
3625 	if (fio->io_type == FS_DATA_IO || fio->io_type == FS_CP_DATA_IO)
3626 		f2fs_update_age_extent_cache(dn);
3627 	set_summary(&sum, dn->nid, dn->ofs_in_node, fio->version);
3628 	do_write_page(&sum, fio);
3629 	f2fs_update_data_blkaddr(dn, fio->new_blkaddr);
3630 
3631 	f2fs_update_iostat(sbi, dn->inode, fio->io_type, F2FS_BLKSIZE);
3632 }
3633 
3634 int f2fs_inplace_write_data(struct f2fs_io_info *fio)
3635 {
3636 	int err;
3637 	struct f2fs_sb_info *sbi = fio->sbi;
3638 	unsigned int segno;
3639 
3640 	fio->new_blkaddr = fio->old_blkaddr;
3641 	/* i/o temperature is needed for passing down write hints */
3642 	__get_segment_type(fio);
3643 
3644 	segno = GET_SEGNO(sbi, fio->new_blkaddr);
3645 
3646 	if (!IS_DATASEG(get_seg_entry(sbi, segno)->type)) {
3647 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3648 		f2fs_warn(sbi, "%s: incorrect segment(%u) type, run fsck to fix.",
3649 			  __func__, segno);
3650 		err = -EFSCORRUPTED;
3651 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
3652 		goto drop_bio;
3653 	}
3654 
3655 	if (f2fs_cp_error(sbi)) {
3656 		err = -EIO;
3657 		goto drop_bio;
3658 	}
3659 
3660 	if (fio->post_read)
3661 		f2fs_truncate_meta_inode_pages(sbi, fio->new_blkaddr, 1);
3662 
3663 	stat_inc_inplace_blocks(fio->sbi);
3664 
3665 	if (fio->bio && !IS_F2FS_IPU_NOCACHE(sbi))
3666 		err = f2fs_merge_page_bio(fio);
3667 	else
3668 		err = f2fs_submit_page_bio(fio);
3669 	if (!err) {
3670 		f2fs_update_device_state(fio->sbi, fio->ino,
3671 						fio->new_blkaddr, 1);
3672 		f2fs_update_iostat(fio->sbi, fio->page->mapping->host,
3673 						fio->io_type, F2FS_BLKSIZE);
3674 	}
3675 
3676 	return err;
3677 drop_bio:
3678 	if (fio->bio && *(fio->bio)) {
3679 		struct bio *bio = *(fio->bio);
3680 
3681 		bio->bi_status = BLK_STS_IOERR;
3682 		bio_endio(bio);
3683 		*(fio->bio) = NULL;
3684 	}
3685 	return err;
3686 }
3687 
3688 static inline int __f2fs_get_curseg(struct f2fs_sb_info *sbi,
3689 						unsigned int segno)
3690 {
3691 	int i;
3692 
3693 	for (i = CURSEG_HOT_DATA; i < NO_CHECK_TYPE; i++) {
3694 		if (CURSEG_I(sbi, i)->segno == segno)
3695 			break;
3696 	}
3697 	return i;
3698 }
3699 
3700 void f2fs_do_replace_block(struct f2fs_sb_info *sbi, struct f2fs_summary *sum,
3701 				block_t old_blkaddr, block_t new_blkaddr,
3702 				bool recover_curseg, bool recover_newaddr,
3703 				bool from_gc)
3704 {
3705 	struct sit_info *sit_i = SIT_I(sbi);
3706 	struct curseg_info *curseg;
3707 	unsigned int segno, old_cursegno;
3708 	struct seg_entry *se;
3709 	int type;
3710 	unsigned short old_blkoff;
3711 	unsigned char old_alloc_type;
3712 
3713 	segno = GET_SEGNO(sbi, new_blkaddr);
3714 	se = get_seg_entry(sbi, segno);
3715 	type = se->type;
3716 
3717 	f2fs_down_write(&SM_I(sbi)->curseg_lock);
3718 
3719 	if (!recover_curseg) {
3720 		/* for recovery flow */
3721 		if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
3722 			if (old_blkaddr == NULL_ADDR)
3723 				type = CURSEG_COLD_DATA;
3724 			else
3725 				type = CURSEG_WARM_DATA;
3726 		}
3727 	} else {
3728 		if (IS_CURSEG(sbi, segno)) {
3729 			/* se->type is volatile as SSR allocation */
3730 			type = __f2fs_get_curseg(sbi, segno);
3731 			f2fs_bug_on(sbi, type == NO_CHECK_TYPE);
3732 		} else {
3733 			type = CURSEG_WARM_DATA;
3734 		}
3735 	}
3736 
3737 	f2fs_bug_on(sbi, !IS_DATASEG(type));
3738 	curseg = CURSEG_I(sbi, type);
3739 
3740 	mutex_lock(&curseg->curseg_mutex);
3741 	down_write(&sit_i->sentry_lock);
3742 
3743 	old_cursegno = curseg->segno;
3744 	old_blkoff = curseg->next_blkoff;
3745 	old_alloc_type = curseg->alloc_type;
3746 
3747 	/* change the current segment */
3748 	if (segno != curseg->segno) {
3749 		curseg->next_segno = segno;
3750 		change_curseg(sbi, type);
3751 	}
3752 
3753 	curseg->next_blkoff = GET_BLKOFF_FROM_SEG0(sbi, new_blkaddr);
3754 	curseg->sum_blk->entries[curseg->next_blkoff] = *sum;
3755 
3756 	if (!recover_curseg || recover_newaddr) {
3757 		if (!from_gc)
3758 			update_segment_mtime(sbi, new_blkaddr, 0);
3759 		update_sit_entry(sbi, new_blkaddr, 1);
3760 	}
3761 	if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
3762 		f2fs_invalidate_internal_cache(sbi, old_blkaddr);
3763 		if (!from_gc)
3764 			update_segment_mtime(sbi, old_blkaddr, 0);
3765 		update_sit_entry(sbi, old_blkaddr, -1);
3766 	}
3767 
3768 	locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
3769 	locate_dirty_segment(sbi, GET_SEGNO(sbi, new_blkaddr));
3770 
3771 	locate_dirty_segment(sbi, old_cursegno);
3772 
3773 	if (recover_curseg) {
3774 		if (old_cursegno != curseg->segno) {
3775 			curseg->next_segno = old_cursegno;
3776 			change_curseg(sbi, type);
3777 		}
3778 		curseg->next_blkoff = old_blkoff;
3779 		curseg->alloc_type = old_alloc_type;
3780 	}
3781 
3782 	up_write(&sit_i->sentry_lock);
3783 	mutex_unlock(&curseg->curseg_mutex);
3784 	f2fs_up_write(&SM_I(sbi)->curseg_lock);
3785 }
3786 
3787 void f2fs_replace_block(struct f2fs_sb_info *sbi, struct dnode_of_data *dn,
3788 				block_t old_addr, block_t new_addr,
3789 				unsigned char version, bool recover_curseg,
3790 				bool recover_newaddr)
3791 {
3792 	struct f2fs_summary sum;
3793 
3794 	set_summary(&sum, dn->nid, dn->ofs_in_node, version);
3795 
3796 	f2fs_do_replace_block(sbi, &sum, old_addr, new_addr,
3797 					recover_curseg, recover_newaddr, false);
3798 
3799 	f2fs_update_data_blkaddr(dn, new_addr);
3800 }
3801 
3802 void f2fs_wait_on_page_writeback(struct page *page,
3803 				enum page_type type, bool ordered, bool locked)
3804 {
3805 	if (PageWriteback(page)) {
3806 		struct f2fs_sb_info *sbi = F2FS_P_SB(page);
3807 
3808 		/* submit cached LFS IO */
3809 		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, type);
3810 		/* submit cached IPU IO */
3811 		f2fs_submit_merged_ipu_write(sbi, NULL, page);
3812 		if (ordered) {
3813 			wait_on_page_writeback(page);
3814 			f2fs_bug_on(sbi, locked && PageWriteback(page));
3815 		} else {
3816 			wait_for_stable_page(page);
3817 		}
3818 	}
3819 }
3820 
3821 void f2fs_wait_on_block_writeback(struct inode *inode, block_t blkaddr)
3822 {
3823 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3824 	struct page *cpage;
3825 
3826 	if (!f2fs_post_read_required(inode))
3827 		return;
3828 
3829 	if (!__is_valid_data_blkaddr(blkaddr))
3830 		return;
3831 
3832 	cpage = find_lock_page(META_MAPPING(sbi), blkaddr);
3833 	if (cpage) {
3834 		f2fs_wait_on_page_writeback(cpage, DATA, true, true);
3835 		f2fs_put_page(cpage, 1);
3836 	}
3837 }
3838 
3839 void f2fs_wait_on_block_writeback_range(struct inode *inode, block_t blkaddr,
3840 								block_t len)
3841 {
3842 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3843 	block_t i;
3844 
3845 	if (!f2fs_post_read_required(inode))
3846 		return;
3847 
3848 	for (i = 0; i < len; i++)
3849 		f2fs_wait_on_block_writeback(inode, blkaddr + i);
3850 
3851 	f2fs_truncate_meta_inode_pages(sbi, blkaddr, len);
3852 }
3853 
3854 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
3855 {
3856 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3857 	struct curseg_info *seg_i;
3858 	unsigned char *kaddr;
3859 	struct page *page;
3860 	block_t start;
3861 	int i, j, offset;
3862 
3863 	start = start_sum_block(sbi);
3864 
3865 	page = f2fs_get_meta_page(sbi, start++);
3866 	if (IS_ERR(page))
3867 		return PTR_ERR(page);
3868 	kaddr = (unsigned char *)page_address(page);
3869 
3870 	/* Step 1: restore nat cache */
3871 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
3872 	memcpy(seg_i->journal, kaddr, SUM_JOURNAL_SIZE);
3873 
3874 	/* Step 2: restore sit cache */
3875 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
3876 	memcpy(seg_i->journal, kaddr + SUM_JOURNAL_SIZE, SUM_JOURNAL_SIZE);
3877 	offset = 2 * SUM_JOURNAL_SIZE;
3878 
3879 	/* Step 3: restore summary entries */
3880 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
3881 		unsigned short blk_off;
3882 		unsigned int segno;
3883 
3884 		seg_i = CURSEG_I(sbi, i);
3885 		segno = le32_to_cpu(ckpt->cur_data_segno[i]);
3886 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
3887 		seg_i->next_segno = segno;
3888 		reset_curseg(sbi, i, 0);
3889 		seg_i->alloc_type = ckpt->alloc_type[i];
3890 		seg_i->next_blkoff = blk_off;
3891 
3892 		if (seg_i->alloc_type == SSR)
3893 			blk_off = BLKS_PER_SEG(sbi);
3894 
3895 		for (j = 0; j < blk_off; j++) {
3896 			struct f2fs_summary *s;
3897 
3898 			s = (struct f2fs_summary *)(kaddr + offset);
3899 			seg_i->sum_blk->entries[j] = *s;
3900 			offset += SUMMARY_SIZE;
3901 			if (offset + SUMMARY_SIZE <= PAGE_SIZE -
3902 						SUM_FOOTER_SIZE)
3903 				continue;
3904 
3905 			f2fs_put_page(page, 1);
3906 			page = NULL;
3907 
3908 			page = f2fs_get_meta_page(sbi, start++);
3909 			if (IS_ERR(page))
3910 				return PTR_ERR(page);
3911 			kaddr = (unsigned char *)page_address(page);
3912 			offset = 0;
3913 		}
3914 	}
3915 	f2fs_put_page(page, 1);
3916 	return 0;
3917 }
3918 
3919 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
3920 {
3921 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3922 	struct f2fs_summary_block *sum;
3923 	struct curseg_info *curseg;
3924 	struct page *new;
3925 	unsigned short blk_off;
3926 	unsigned int segno = 0;
3927 	block_t blk_addr = 0;
3928 	int err = 0;
3929 
3930 	/* get segment number and block addr */
3931 	if (IS_DATASEG(type)) {
3932 		segno = le32_to_cpu(ckpt->cur_data_segno[type]);
3933 		blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
3934 							CURSEG_HOT_DATA]);
3935 		if (__exist_node_summaries(sbi))
3936 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type);
3937 		else
3938 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
3939 	} else {
3940 		segno = le32_to_cpu(ckpt->cur_node_segno[type -
3941 							CURSEG_HOT_NODE]);
3942 		blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
3943 							CURSEG_HOT_NODE]);
3944 		if (__exist_node_summaries(sbi))
3945 			blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
3946 							type - CURSEG_HOT_NODE);
3947 		else
3948 			blk_addr = GET_SUM_BLOCK(sbi, segno);
3949 	}
3950 
3951 	new = f2fs_get_meta_page(sbi, blk_addr);
3952 	if (IS_ERR(new))
3953 		return PTR_ERR(new);
3954 	sum = (struct f2fs_summary_block *)page_address(new);
3955 
3956 	if (IS_NODESEG(type)) {
3957 		if (__exist_node_summaries(sbi)) {
3958 			struct f2fs_summary *ns = &sum->entries[0];
3959 			int i;
3960 
3961 			for (i = 0; i < BLKS_PER_SEG(sbi); i++, ns++) {
3962 				ns->version = 0;
3963 				ns->ofs_in_node = 0;
3964 			}
3965 		} else {
3966 			err = f2fs_restore_node_summary(sbi, segno, sum);
3967 			if (err)
3968 				goto out;
3969 		}
3970 	}
3971 
3972 	/* set uncompleted segment to curseg */
3973 	curseg = CURSEG_I(sbi, type);
3974 	mutex_lock(&curseg->curseg_mutex);
3975 
3976 	/* update journal info */
3977 	down_write(&curseg->journal_rwsem);
3978 	memcpy(curseg->journal, &sum->journal, SUM_JOURNAL_SIZE);
3979 	up_write(&curseg->journal_rwsem);
3980 
3981 	memcpy(curseg->sum_blk->entries, sum->entries, SUM_ENTRY_SIZE);
3982 	memcpy(&curseg->sum_blk->footer, &sum->footer, SUM_FOOTER_SIZE);
3983 	curseg->next_segno = segno;
3984 	reset_curseg(sbi, type, 0);
3985 	curseg->alloc_type = ckpt->alloc_type[type];
3986 	curseg->next_blkoff = blk_off;
3987 	mutex_unlock(&curseg->curseg_mutex);
3988 out:
3989 	f2fs_put_page(new, 1);
3990 	return err;
3991 }
3992 
3993 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
3994 {
3995 	struct f2fs_journal *sit_j = CURSEG_I(sbi, CURSEG_COLD_DATA)->journal;
3996 	struct f2fs_journal *nat_j = CURSEG_I(sbi, CURSEG_HOT_DATA)->journal;
3997 	int type = CURSEG_HOT_DATA;
3998 	int err;
3999 
4000 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG)) {
4001 		int npages = f2fs_npages_for_summary_flush(sbi, true);
4002 
4003 		if (npages >= 2)
4004 			f2fs_ra_meta_pages(sbi, start_sum_block(sbi), npages,
4005 							META_CP, true);
4006 
4007 		/* restore for compacted data summary */
4008 		err = read_compacted_summaries(sbi);
4009 		if (err)
4010 			return err;
4011 		type = CURSEG_HOT_NODE;
4012 	}
4013 
4014 	if (__exist_node_summaries(sbi))
4015 		f2fs_ra_meta_pages(sbi,
4016 				sum_blk_addr(sbi, NR_CURSEG_PERSIST_TYPE, type),
4017 				NR_CURSEG_PERSIST_TYPE - type, META_CP, true);
4018 
4019 	for (; type <= CURSEG_COLD_NODE; type++) {
4020 		err = read_normal_summaries(sbi, type);
4021 		if (err)
4022 			return err;
4023 	}
4024 
4025 	/* sanity check for summary blocks */
4026 	if (nats_in_cursum(nat_j) > NAT_JOURNAL_ENTRIES ||
4027 			sits_in_cursum(sit_j) > SIT_JOURNAL_ENTRIES) {
4028 		f2fs_err(sbi, "invalid journal entries nats %u sits %u",
4029 			 nats_in_cursum(nat_j), sits_in_cursum(sit_j));
4030 		return -EINVAL;
4031 	}
4032 
4033 	return 0;
4034 }
4035 
4036 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
4037 {
4038 	struct page *page;
4039 	unsigned char *kaddr;
4040 	struct f2fs_summary *summary;
4041 	struct curseg_info *seg_i;
4042 	int written_size = 0;
4043 	int i, j;
4044 
4045 	page = f2fs_grab_meta_page(sbi, blkaddr++);
4046 	kaddr = (unsigned char *)page_address(page);
4047 	memset(kaddr, 0, PAGE_SIZE);
4048 
4049 	/* Step 1: write nat cache */
4050 	seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
4051 	memcpy(kaddr, seg_i->journal, SUM_JOURNAL_SIZE);
4052 	written_size += SUM_JOURNAL_SIZE;
4053 
4054 	/* Step 2: write sit cache */
4055 	seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
4056 	memcpy(kaddr + written_size, seg_i->journal, SUM_JOURNAL_SIZE);
4057 	written_size += SUM_JOURNAL_SIZE;
4058 
4059 	/* Step 3: write summary entries */
4060 	for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
4061 		seg_i = CURSEG_I(sbi, i);
4062 		for (j = 0; j < f2fs_curseg_valid_blocks(sbi, i); j++) {
4063 			if (!page) {
4064 				page = f2fs_grab_meta_page(sbi, blkaddr++);
4065 				kaddr = (unsigned char *)page_address(page);
4066 				memset(kaddr, 0, PAGE_SIZE);
4067 				written_size = 0;
4068 			}
4069 			summary = (struct f2fs_summary *)(kaddr + written_size);
4070 			*summary = seg_i->sum_blk->entries[j];
4071 			written_size += SUMMARY_SIZE;
4072 
4073 			if (written_size + SUMMARY_SIZE <= PAGE_SIZE -
4074 							SUM_FOOTER_SIZE)
4075 				continue;
4076 
4077 			set_page_dirty(page);
4078 			f2fs_put_page(page, 1);
4079 			page = NULL;
4080 		}
4081 	}
4082 	if (page) {
4083 		set_page_dirty(page);
4084 		f2fs_put_page(page, 1);
4085 	}
4086 }
4087 
4088 static void write_normal_summaries(struct f2fs_sb_info *sbi,
4089 					block_t blkaddr, int type)
4090 {
4091 	int i, end;
4092 
4093 	if (IS_DATASEG(type))
4094 		end = type + NR_CURSEG_DATA_TYPE;
4095 	else
4096 		end = type + NR_CURSEG_NODE_TYPE;
4097 
4098 	for (i = type; i < end; i++)
4099 		write_current_sum_page(sbi, i, blkaddr + (i - type));
4100 }
4101 
4102 void f2fs_write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4103 {
4104 	if (is_set_ckpt_flags(sbi, CP_COMPACT_SUM_FLAG))
4105 		write_compacted_summaries(sbi, start_blk);
4106 	else
4107 		write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
4108 }
4109 
4110 void f2fs_write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
4111 {
4112 	write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
4113 }
4114 
4115 int f2fs_lookup_journal_in_cursum(struct f2fs_journal *journal, int type,
4116 					unsigned int val, int alloc)
4117 {
4118 	int i;
4119 
4120 	if (type == NAT_JOURNAL) {
4121 		for (i = 0; i < nats_in_cursum(journal); i++) {
4122 			if (le32_to_cpu(nid_in_journal(journal, i)) == val)
4123 				return i;
4124 		}
4125 		if (alloc && __has_cursum_space(journal, 1, NAT_JOURNAL))
4126 			return update_nats_in_cursum(journal, 1);
4127 	} else if (type == SIT_JOURNAL) {
4128 		for (i = 0; i < sits_in_cursum(journal); i++)
4129 			if (le32_to_cpu(segno_in_journal(journal, i)) == val)
4130 				return i;
4131 		if (alloc && __has_cursum_space(journal, 1, SIT_JOURNAL))
4132 			return update_sits_in_cursum(journal, 1);
4133 	}
4134 	return -1;
4135 }
4136 
4137 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
4138 					unsigned int segno)
4139 {
4140 	return f2fs_get_meta_page(sbi, current_sit_addr(sbi, segno));
4141 }
4142 
4143 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
4144 					unsigned int start)
4145 {
4146 	struct sit_info *sit_i = SIT_I(sbi);
4147 	struct page *page;
4148 	pgoff_t src_off, dst_off;
4149 
4150 	src_off = current_sit_addr(sbi, start);
4151 	dst_off = next_sit_addr(sbi, src_off);
4152 
4153 	page = f2fs_grab_meta_page(sbi, dst_off);
4154 	seg_info_to_sit_page(sbi, page, start);
4155 
4156 	set_page_dirty(page);
4157 	set_to_next_sit(sit_i, start);
4158 
4159 	return page;
4160 }
4161 
4162 static struct sit_entry_set *grab_sit_entry_set(void)
4163 {
4164 	struct sit_entry_set *ses =
4165 			f2fs_kmem_cache_alloc(sit_entry_set_slab,
4166 						GFP_NOFS, true, NULL);
4167 
4168 	ses->entry_cnt = 0;
4169 	INIT_LIST_HEAD(&ses->set_list);
4170 	return ses;
4171 }
4172 
4173 static void release_sit_entry_set(struct sit_entry_set *ses)
4174 {
4175 	list_del(&ses->set_list);
4176 	kmem_cache_free(sit_entry_set_slab, ses);
4177 }
4178 
4179 static void adjust_sit_entry_set(struct sit_entry_set *ses,
4180 						struct list_head *head)
4181 {
4182 	struct sit_entry_set *next = ses;
4183 
4184 	if (list_is_last(&ses->set_list, head))
4185 		return;
4186 
4187 	list_for_each_entry_continue(next, head, set_list)
4188 		if (ses->entry_cnt <= next->entry_cnt) {
4189 			list_move_tail(&ses->set_list, &next->set_list);
4190 			return;
4191 		}
4192 
4193 	list_move_tail(&ses->set_list, head);
4194 }
4195 
4196 static void add_sit_entry(unsigned int segno, struct list_head *head)
4197 {
4198 	struct sit_entry_set *ses;
4199 	unsigned int start_segno = START_SEGNO(segno);
4200 
4201 	list_for_each_entry(ses, head, set_list) {
4202 		if (ses->start_segno == start_segno) {
4203 			ses->entry_cnt++;
4204 			adjust_sit_entry_set(ses, head);
4205 			return;
4206 		}
4207 	}
4208 
4209 	ses = grab_sit_entry_set();
4210 
4211 	ses->start_segno = start_segno;
4212 	ses->entry_cnt++;
4213 	list_add(&ses->set_list, head);
4214 }
4215 
4216 static void add_sits_in_set(struct f2fs_sb_info *sbi)
4217 {
4218 	struct f2fs_sm_info *sm_info = SM_I(sbi);
4219 	struct list_head *set_list = &sm_info->sit_entry_set;
4220 	unsigned long *bitmap = SIT_I(sbi)->dirty_sentries_bitmap;
4221 	unsigned int segno;
4222 
4223 	for_each_set_bit(segno, bitmap, MAIN_SEGS(sbi))
4224 		add_sit_entry(segno, set_list);
4225 }
4226 
4227 static void remove_sits_in_journal(struct f2fs_sb_info *sbi)
4228 {
4229 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4230 	struct f2fs_journal *journal = curseg->journal;
4231 	int i;
4232 
4233 	down_write(&curseg->journal_rwsem);
4234 	for (i = 0; i < sits_in_cursum(journal); i++) {
4235 		unsigned int segno;
4236 		bool dirtied;
4237 
4238 		segno = le32_to_cpu(segno_in_journal(journal, i));
4239 		dirtied = __mark_sit_entry_dirty(sbi, segno);
4240 
4241 		if (!dirtied)
4242 			add_sit_entry(segno, &SM_I(sbi)->sit_entry_set);
4243 	}
4244 	update_sits_in_cursum(journal, -i);
4245 	up_write(&curseg->journal_rwsem);
4246 }
4247 
4248 /*
4249  * CP calls this function, which flushes SIT entries including sit_journal,
4250  * and moves prefree segs to free segs.
4251  */
4252 void f2fs_flush_sit_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
4253 {
4254 	struct sit_info *sit_i = SIT_I(sbi);
4255 	unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
4256 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4257 	struct f2fs_journal *journal = curseg->journal;
4258 	struct sit_entry_set *ses, *tmp;
4259 	struct list_head *head = &SM_I(sbi)->sit_entry_set;
4260 	bool to_journal = !is_sbi_flag_set(sbi, SBI_IS_RESIZEFS);
4261 	struct seg_entry *se;
4262 
4263 	down_write(&sit_i->sentry_lock);
4264 
4265 	if (!sit_i->dirty_sentries)
4266 		goto out;
4267 
4268 	/*
4269 	 * add and account sit entries of dirty bitmap in sit entry
4270 	 * set temporarily
4271 	 */
4272 	add_sits_in_set(sbi);
4273 
4274 	/*
4275 	 * if there are no enough space in journal to store dirty sit
4276 	 * entries, remove all entries from journal and add and account
4277 	 * them in sit entry set.
4278 	 */
4279 	if (!__has_cursum_space(journal, sit_i->dirty_sentries, SIT_JOURNAL) ||
4280 								!to_journal)
4281 		remove_sits_in_journal(sbi);
4282 
4283 	/*
4284 	 * there are two steps to flush sit entries:
4285 	 * #1, flush sit entries to journal in current cold data summary block.
4286 	 * #2, flush sit entries to sit page.
4287 	 */
4288 	list_for_each_entry_safe(ses, tmp, head, set_list) {
4289 		struct page *page = NULL;
4290 		struct f2fs_sit_block *raw_sit = NULL;
4291 		unsigned int start_segno = ses->start_segno;
4292 		unsigned int end = min(start_segno + SIT_ENTRY_PER_BLOCK,
4293 						(unsigned long)MAIN_SEGS(sbi));
4294 		unsigned int segno = start_segno;
4295 
4296 		if (to_journal &&
4297 			!__has_cursum_space(journal, ses->entry_cnt, SIT_JOURNAL))
4298 			to_journal = false;
4299 
4300 		if (to_journal) {
4301 			down_write(&curseg->journal_rwsem);
4302 		} else {
4303 			page = get_next_sit_page(sbi, start_segno);
4304 			raw_sit = page_address(page);
4305 		}
4306 
4307 		/* flush dirty sit entries in region of current sit set */
4308 		for_each_set_bit_from(segno, bitmap, end) {
4309 			int offset, sit_offset;
4310 
4311 			se = get_seg_entry(sbi, segno);
4312 #ifdef CONFIG_F2FS_CHECK_FS
4313 			if (memcmp(se->cur_valid_map, se->cur_valid_map_mir,
4314 						SIT_VBLOCK_MAP_SIZE))
4315 				f2fs_bug_on(sbi, 1);
4316 #endif
4317 
4318 			/* add discard candidates */
4319 			if (!(cpc->reason & CP_DISCARD)) {
4320 				cpc->trim_start = segno;
4321 				add_discard_addrs(sbi, cpc, false);
4322 			}
4323 
4324 			if (to_journal) {
4325 				offset = f2fs_lookup_journal_in_cursum(journal,
4326 							SIT_JOURNAL, segno, 1);
4327 				f2fs_bug_on(sbi, offset < 0);
4328 				segno_in_journal(journal, offset) =
4329 							cpu_to_le32(segno);
4330 				seg_info_to_raw_sit(se,
4331 					&sit_in_journal(journal, offset));
4332 				check_block_count(sbi, segno,
4333 					&sit_in_journal(journal, offset));
4334 			} else {
4335 				sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
4336 				seg_info_to_raw_sit(se,
4337 						&raw_sit->entries[sit_offset]);
4338 				check_block_count(sbi, segno,
4339 						&raw_sit->entries[sit_offset]);
4340 			}
4341 
4342 			__clear_bit(segno, bitmap);
4343 			sit_i->dirty_sentries--;
4344 			ses->entry_cnt--;
4345 		}
4346 
4347 		if (to_journal)
4348 			up_write(&curseg->journal_rwsem);
4349 		else
4350 			f2fs_put_page(page, 1);
4351 
4352 		f2fs_bug_on(sbi, ses->entry_cnt);
4353 		release_sit_entry_set(ses);
4354 	}
4355 
4356 	f2fs_bug_on(sbi, !list_empty(head));
4357 	f2fs_bug_on(sbi, sit_i->dirty_sentries);
4358 out:
4359 	if (cpc->reason & CP_DISCARD) {
4360 		__u64 trim_start = cpc->trim_start;
4361 
4362 		for (; cpc->trim_start <= cpc->trim_end; cpc->trim_start++)
4363 			add_discard_addrs(sbi, cpc, false);
4364 
4365 		cpc->trim_start = trim_start;
4366 	}
4367 	up_write(&sit_i->sentry_lock);
4368 
4369 	set_prefree_as_free_segments(sbi);
4370 }
4371 
4372 static int build_sit_info(struct f2fs_sb_info *sbi)
4373 {
4374 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
4375 	struct sit_info *sit_i;
4376 	unsigned int sit_segs, start;
4377 	char *src_bitmap, *bitmap;
4378 	unsigned int bitmap_size, main_bitmap_size, sit_bitmap_size;
4379 	unsigned int discard_map = f2fs_block_unit_discard(sbi) ? 1 : 0;
4380 
4381 	/* allocate memory for SIT information */
4382 	sit_i = f2fs_kzalloc(sbi, sizeof(struct sit_info), GFP_KERNEL);
4383 	if (!sit_i)
4384 		return -ENOMEM;
4385 
4386 	SM_I(sbi)->sit_info = sit_i;
4387 
4388 	sit_i->sentries =
4389 		f2fs_kvzalloc(sbi, array_size(sizeof(struct seg_entry),
4390 					      MAIN_SEGS(sbi)),
4391 			      GFP_KERNEL);
4392 	if (!sit_i->sentries)
4393 		return -ENOMEM;
4394 
4395 	main_bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4396 	sit_i->dirty_sentries_bitmap = f2fs_kvzalloc(sbi, main_bitmap_size,
4397 								GFP_KERNEL);
4398 	if (!sit_i->dirty_sentries_bitmap)
4399 		return -ENOMEM;
4400 
4401 #ifdef CONFIG_F2FS_CHECK_FS
4402 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (3 + discard_map);
4403 #else
4404 	bitmap_size = MAIN_SEGS(sbi) * SIT_VBLOCK_MAP_SIZE * (2 + discard_map);
4405 #endif
4406 	sit_i->bitmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4407 	if (!sit_i->bitmap)
4408 		return -ENOMEM;
4409 
4410 	bitmap = sit_i->bitmap;
4411 
4412 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4413 		sit_i->sentries[start].cur_valid_map = bitmap;
4414 		bitmap += SIT_VBLOCK_MAP_SIZE;
4415 
4416 		sit_i->sentries[start].ckpt_valid_map = bitmap;
4417 		bitmap += SIT_VBLOCK_MAP_SIZE;
4418 
4419 #ifdef CONFIG_F2FS_CHECK_FS
4420 		sit_i->sentries[start].cur_valid_map_mir = bitmap;
4421 		bitmap += SIT_VBLOCK_MAP_SIZE;
4422 #endif
4423 
4424 		if (discard_map) {
4425 			sit_i->sentries[start].discard_map = bitmap;
4426 			bitmap += SIT_VBLOCK_MAP_SIZE;
4427 		}
4428 	}
4429 
4430 	sit_i->tmp_map = f2fs_kzalloc(sbi, SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
4431 	if (!sit_i->tmp_map)
4432 		return -ENOMEM;
4433 
4434 	if (__is_large_section(sbi)) {
4435 		sit_i->sec_entries =
4436 			f2fs_kvzalloc(sbi, array_size(sizeof(struct sec_entry),
4437 						      MAIN_SECS(sbi)),
4438 				      GFP_KERNEL);
4439 		if (!sit_i->sec_entries)
4440 			return -ENOMEM;
4441 	}
4442 
4443 	/* get information related with SIT */
4444 	sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
4445 
4446 	/* setup SIT bitmap from ckeckpoint pack */
4447 	sit_bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
4448 	src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
4449 
4450 	sit_i->sit_bitmap = kmemdup(src_bitmap, sit_bitmap_size, GFP_KERNEL);
4451 	if (!sit_i->sit_bitmap)
4452 		return -ENOMEM;
4453 
4454 #ifdef CONFIG_F2FS_CHECK_FS
4455 	sit_i->sit_bitmap_mir = kmemdup(src_bitmap,
4456 					sit_bitmap_size, GFP_KERNEL);
4457 	if (!sit_i->sit_bitmap_mir)
4458 		return -ENOMEM;
4459 
4460 	sit_i->invalid_segmap = f2fs_kvzalloc(sbi,
4461 					main_bitmap_size, GFP_KERNEL);
4462 	if (!sit_i->invalid_segmap)
4463 		return -ENOMEM;
4464 #endif
4465 
4466 	sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
4467 	sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
4468 	sit_i->written_valid_blocks = 0;
4469 	sit_i->bitmap_size = sit_bitmap_size;
4470 	sit_i->dirty_sentries = 0;
4471 	sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
4472 	sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
4473 	sit_i->mounted_time = ktime_get_boottime_seconds();
4474 	init_rwsem(&sit_i->sentry_lock);
4475 	return 0;
4476 }
4477 
4478 static int build_free_segmap(struct f2fs_sb_info *sbi)
4479 {
4480 	struct free_segmap_info *free_i;
4481 	unsigned int bitmap_size, sec_bitmap_size;
4482 
4483 	/* allocate memory for free segmap information */
4484 	free_i = f2fs_kzalloc(sbi, sizeof(struct free_segmap_info), GFP_KERNEL);
4485 	if (!free_i)
4486 		return -ENOMEM;
4487 
4488 	SM_I(sbi)->free_info = free_i;
4489 
4490 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4491 	free_i->free_segmap = f2fs_kvmalloc(sbi, bitmap_size, GFP_KERNEL);
4492 	if (!free_i->free_segmap)
4493 		return -ENOMEM;
4494 
4495 	sec_bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4496 	free_i->free_secmap = f2fs_kvmalloc(sbi, sec_bitmap_size, GFP_KERNEL);
4497 	if (!free_i->free_secmap)
4498 		return -ENOMEM;
4499 
4500 	/* set all segments as dirty temporarily */
4501 	memset(free_i->free_segmap, 0xff, bitmap_size);
4502 	memset(free_i->free_secmap, 0xff, sec_bitmap_size);
4503 
4504 	/* init free segmap information */
4505 	free_i->start_segno = GET_SEGNO_FROM_SEG0(sbi, MAIN_BLKADDR(sbi));
4506 	free_i->free_segments = 0;
4507 	free_i->free_sections = 0;
4508 	spin_lock_init(&free_i->segmap_lock);
4509 	return 0;
4510 }
4511 
4512 static int build_curseg(struct f2fs_sb_info *sbi)
4513 {
4514 	struct curseg_info *array;
4515 	int i;
4516 
4517 	array = f2fs_kzalloc(sbi, array_size(NR_CURSEG_TYPE,
4518 					sizeof(*array)), GFP_KERNEL);
4519 	if (!array)
4520 		return -ENOMEM;
4521 
4522 	SM_I(sbi)->curseg_array = array;
4523 
4524 	for (i = 0; i < NO_CHECK_TYPE; i++) {
4525 		mutex_init(&array[i].curseg_mutex);
4526 		array[i].sum_blk = f2fs_kzalloc(sbi, PAGE_SIZE, GFP_KERNEL);
4527 		if (!array[i].sum_blk)
4528 			return -ENOMEM;
4529 		init_rwsem(&array[i].journal_rwsem);
4530 		array[i].journal = f2fs_kzalloc(sbi,
4531 				sizeof(struct f2fs_journal), GFP_KERNEL);
4532 		if (!array[i].journal)
4533 			return -ENOMEM;
4534 		if (i < NR_PERSISTENT_LOG)
4535 			array[i].seg_type = CURSEG_HOT_DATA + i;
4536 		else if (i == CURSEG_COLD_DATA_PINNED)
4537 			array[i].seg_type = CURSEG_COLD_DATA;
4538 		else if (i == CURSEG_ALL_DATA_ATGC)
4539 			array[i].seg_type = CURSEG_COLD_DATA;
4540 		array[i].segno = NULL_SEGNO;
4541 		array[i].next_blkoff = 0;
4542 		array[i].inited = false;
4543 	}
4544 	return restore_curseg_summaries(sbi);
4545 }
4546 
4547 static int build_sit_entries(struct f2fs_sb_info *sbi)
4548 {
4549 	struct sit_info *sit_i = SIT_I(sbi);
4550 	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
4551 	struct f2fs_journal *journal = curseg->journal;
4552 	struct seg_entry *se;
4553 	struct f2fs_sit_entry sit;
4554 	int sit_blk_cnt = SIT_BLK_CNT(sbi);
4555 	unsigned int i, start, end;
4556 	unsigned int readed, start_blk = 0;
4557 	int err = 0;
4558 	block_t sit_valid_blocks[2] = {0, 0};
4559 
4560 	do {
4561 		readed = f2fs_ra_meta_pages(sbi, start_blk, BIO_MAX_VECS,
4562 							META_SIT, true);
4563 
4564 		start = start_blk * sit_i->sents_per_block;
4565 		end = (start_blk + readed) * sit_i->sents_per_block;
4566 
4567 		for (; start < end && start < MAIN_SEGS(sbi); start++) {
4568 			struct f2fs_sit_block *sit_blk;
4569 			struct page *page;
4570 
4571 			se = &sit_i->sentries[start];
4572 			page = get_current_sit_page(sbi, start);
4573 			if (IS_ERR(page))
4574 				return PTR_ERR(page);
4575 			sit_blk = (struct f2fs_sit_block *)page_address(page);
4576 			sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
4577 			f2fs_put_page(page, 1);
4578 
4579 			err = check_block_count(sbi, start, &sit);
4580 			if (err)
4581 				return err;
4582 			seg_info_from_raw_sit(se, &sit);
4583 
4584 			if (se->type >= NR_PERSISTENT_LOG) {
4585 				f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4586 							se->type, start);
4587 				f2fs_handle_error(sbi,
4588 						ERROR_INCONSISTENT_SUM_TYPE);
4589 				return -EFSCORRUPTED;
4590 			}
4591 
4592 			sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4593 
4594 			if (!f2fs_block_unit_discard(sbi))
4595 				goto init_discard_map_done;
4596 
4597 			/* build discard map only one time */
4598 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4599 				memset(se->discard_map, 0xff,
4600 						SIT_VBLOCK_MAP_SIZE);
4601 				goto init_discard_map_done;
4602 			}
4603 			memcpy(se->discard_map, se->cur_valid_map,
4604 						SIT_VBLOCK_MAP_SIZE);
4605 			sbi->discard_blks += BLKS_PER_SEG(sbi) -
4606 						se->valid_blocks;
4607 init_discard_map_done:
4608 			if (__is_large_section(sbi))
4609 				get_sec_entry(sbi, start)->valid_blocks +=
4610 							se->valid_blocks;
4611 		}
4612 		start_blk += readed;
4613 	} while (start_blk < sit_blk_cnt);
4614 
4615 	down_read(&curseg->journal_rwsem);
4616 	for (i = 0; i < sits_in_cursum(journal); i++) {
4617 		unsigned int old_valid_blocks;
4618 
4619 		start = le32_to_cpu(segno_in_journal(journal, i));
4620 		if (start >= MAIN_SEGS(sbi)) {
4621 			f2fs_err(sbi, "Wrong journal entry on segno %u",
4622 				 start);
4623 			err = -EFSCORRUPTED;
4624 			f2fs_handle_error(sbi, ERROR_CORRUPTED_JOURNAL);
4625 			break;
4626 		}
4627 
4628 		se = &sit_i->sentries[start];
4629 		sit = sit_in_journal(journal, i);
4630 
4631 		old_valid_blocks = se->valid_blocks;
4632 
4633 		sit_valid_blocks[SE_PAGETYPE(se)] -= old_valid_blocks;
4634 
4635 		err = check_block_count(sbi, start, &sit);
4636 		if (err)
4637 			break;
4638 		seg_info_from_raw_sit(se, &sit);
4639 
4640 		if (se->type >= NR_PERSISTENT_LOG) {
4641 			f2fs_err(sbi, "Invalid segment type: %u, segno: %u",
4642 							se->type, start);
4643 			err = -EFSCORRUPTED;
4644 			f2fs_handle_error(sbi, ERROR_INCONSISTENT_SUM_TYPE);
4645 			break;
4646 		}
4647 
4648 		sit_valid_blocks[SE_PAGETYPE(se)] += se->valid_blocks;
4649 
4650 		if (f2fs_block_unit_discard(sbi)) {
4651 			if (is_set_ckpt_flags(sbi, CP_TRIMMED_FLAG)) {
4652 				memset(se->discard_map, 0xff, SIT_VBLOCK_MAP_SIZE);
4653 			} else {
4654 				memcpy(se->discard_map, se->cur_valid_map,
4655 							SIT_VBLOCK_MAP_SIZE);
4656 				sbi->discard_blks += old_valid_blocks;
4657 				sbi->discard_blks -= se->valid_blocks;
4658 			}
4659 		}
4660 
4661 		if (__is_large_section(sbi)) {
4662 			get_sec_entry(sbi, start)->valid_blocks +=
4663 							se->valid_blocks;
4664 			get_sec_entry(sbi, start)->valid_blocks -=
4665 							old_valid_blocks;
4666 		}
4667 	}
4668 	up_read(&curseg->journal_rwsem);
4669 
4670 	if (err)
4671 		return err;
4672 
4673 	if (sit_valid_blocks[NODE] != valid_node_count(sbi)) {
4674 		f2fs_err(sbi, "SIT is corrupted node# %u vs %u",
4675 			 sit_valid_blocks[NODE], valid_node_count(sbi));
4676 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_NODE_COUNT);
4677 		return -EFSCORRUPTED;
4678 	}
4679 
4680 	if (sit_valid_blocks[DATA] + sit_valid_blocks[NODE] >
4681 				valid_user_blocks(sbi)) {
4682 		f2fs_err(sbi, "SIT is corrupted data# %u %u vs %u",
4683 			 sit_valid_blocks[DATA], sit_valid_blocks[NODE],
4684 			 valid_user_blocks(sbi));
4685 		f2fs_handle_error(sbi, ERROR_INCONSISTENT_BLOCK_COUNT);
4686 		return -EFSCORRUPTED;
4687 	}
4688 
4689 	return 0;
4690 }
4691 
4692 static void init_free_segmap(struct f2fs_sb_info *sbi)
4693 {
4694 	unsigned int start;
4695 	int type;
4696 	struct seg_entry *sentry;
4697 
4698 	for (start = 0; start < MAIN_SEGS(sbi); start++) {
4699 		if (f2fs_usable_blks_in_seg(sbi, start) == 0)
4700 			continue;
4701 		sentry = get_seg_entry(sbi, start);
4702 		if (!sentry->valid_blocks)
4703 			__set_free(sbi, start);
4704 		else
4705 			SIT_I(sbi)->written_valid_blocks +=
4706 						sentry->valid_blocks;
4707 	}
4708 
4709 	/* set use the current segments */
4710 	for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
4711 		struct curseg_info *curseg_t = CURSEG_I(sbi, type);
4712 
4713 		__set_test_and_inuse(sbi, curseg_t->segno);
4714 	}
4715 }
4716 
4717 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
4718 {
4719 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4720 	struct free_segmap_info *free_i = FREE_I(sbi);
4721 	unsigned int segno = 0, offset = 0, secno;
4722 	block_t valid_blocks, usable_blks_in_seg;
4723 
4724 	while (1) {
4725 		/* find dirty segment based on free segmap */
4726 		segno = find_next_inuse(free_i, MAIN_SEGS(sbi), offset);
4727 		if (segno >= MAIN_SEGS(sbi))
4728 			break;
4729 		offset = segno + 1;
4730 		valid_blocks = get_valid_blocks(sbi, segno, false);
4731 		usable_blks_in_seg = f2fs_usable_blks_in_seg(sbi, segno);
4732 		if (valid_blocks == usable_blks_in_seg || !valid_blocks)
4733 			continue;
4734 		if (valid_blocks > usable_blks_in_seg) {
4735 			f2fs_bug_on(sbi, 1);
4736 			continue;
4737 		}
4738 		mutex_lock(&dirty_i->seglist_lock);
4739 		__locate_dirty_segment(sbi, segno, DIRTY);
4740 		mutex_unlock(&dirty_i->seglist_lock);
4741 	}
4742 
4743 	if (!__is_large_section(sbi))
4744 		return;
4745 
4746 	mutex_lock(&dirty_i->seglist_lock);
4747 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
4748 		valid_blocks = get_valid_blocks(sbi, segno, true);
4749 		secno = GET_SEC_FROM_SEG(sbi, segno);
4750 
4751 		if (!valid_blocks || valid_blocks == CAP_BLKS_PER_SEC(sbi))
4752 			continue;
4753 		if (IS_CURSEC(sbi, secno))
4754 			continue;
4755 		set_bit(secno, dirty_i->dirty_secmap);
4756 	}
4757 	mutex_unlock(&dirty_i->seglist_lock);
4758 }
4759 
4760 static int init_victim_secmap(struct f2fs_sb_info *sbi)
4761 {
4762 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
4763 	unsigned int bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4764 
4765 	dirty_i->victim_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4766 	if (!dirty_i->victim_secmap)
4767 		return -ENOMEM;
4768 
4769 	dirty_i->pinned_secmap = f2fs_kvzalloc(sbi, bitmap_size, GFP_KERNEL);
4770 	if (!dirty_i->pinned_secmap)
4771 		return -ENOMEM;
4772 
4773 	dirty_i->pinned_secmap_cnt = 0;
4774 	dirty_i->enable_pin_section = true;
4775 	return 0;
4776 }
4777 
4778 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
4779 {
4780 	struct dirty_seglist_info *dirty_i;
4781 	unsigned int bitmap_size, i;
4782 
4783 	/* allocate memory for dirty segments list information */
4784 	dirty_i = f2fs_kzalloc(sbi, sizeof(struct dirty_seglist_info),
4785 								GFP_KERNEL);
4786 	if (!dirty_i)
4787 		return -ENOMEM;
4788 
4789 	SM_I(sbi)->dirty_info = dirty_i;
4790 	mutex_init(&dirty_i->seglist_lock);
4791 
4792 	bitmap_size = f2fs_bitmap_size(MAIN_SEGS(sbi));
4793 
4794 	for (i = 0; i < NR_DIRTY_TYPE; i++) {
4795 		dirty_i->dirty_segmap[i] = f2fs_kvzalloc(sbi, bitmap_size,
4796 								GFP_KERNEL);
4797 		if (!dirty_i->dirty_segmap[i])
4798 			return -ENOMEM;
4799 	}
4800 
4801 	if (__is_large_section(sbi)) {
4802 		bitmap_size = f2fs_bitmap_size(MAIN_SECS(sbi));
4803 		dirty_i->dirty_secmap = f2fs_kvzalloc(sbi,
4804 						bitmap_size, GFP_KERNEL);
4805 		if (!dirty_i->dirty_secmap)
4806 			return -ENOMEM;
4807 	}
4808 
4809 	init_dirty_segmap(sbi);
4810 	return init_victim_secmap(sbi);
4811 }
4812 
4813 static int sanity_check_curseg(struct f2fs_sb_info *sbi)
4814 {
4815 	int i;
4816 
4817 	/*
4818 	 * In LFS/SSR curseg, .next_blkoff should point to an unused blkaddr;
4819 	 * In LFS curseg, all blkaddr after .next_blkoff should be unused.
4820 	 */
4821 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
4822 		struct curseg_info *curseg = CURSEG_I(sbi, i);
4823 		struct seg_entry *se = get_seg_entry(sbi, curseg->segno);
4824 		unsigned int blkofs = curseg->next_blkoff;
4825 
4826 		if (f2fs_sb_has_readonly(sbi) &&
4827 			i != CURSEG_HOT_DATA && i != CURSEG_HOT_NODE)
4828 			continue;
4829 
4830 		sanity_check_seg_type(sbi, curseg->seg_type);
4831 
4832 		if (curseg->alloc_type != LFS && curseg->alloc_type != SSR) {
4833 			f2fs_err(sbi,
4834 				 "Current segment has invalid alloc_type:%d",
4835 				 curseg->alloc_type);
4836 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4837 			return -EFSCORRUPTED;
4838 		}
4839 
4840 		if (f2fs_test_bit(blkofs, se->cur_valid_map))
4841 			goto out;
4842 
4843 		if (curseg->alloc_type == SSR)
4844 			continue;
4845 
4846 		for (blkofs += 1; blkofs < BLKS_PER_SEG(sbi); blkofs++) {
4847 			if (!f2fs_test_bit(blkofs, se->cur_valid_map))
4848 				continue;
4849 out:
4850 			f2fs_err(sbi,
4851 				 "Current segment's next free block offset is inconsistent with bitmap, logtype:%u, segno:%u, type:%u, next_blkoff:%u, blkofs:%u",
4852 				 i, curseg->segno, curseg->alloc_type,
4853 				 curseg->next_blkoff, blkofs);
4854 			f2fs_handle_error(sbi, ERROR_INVALID_CURSEG);
4855 			return -EFSCORRUPTED;
4856 		}
4857 	}
4858 	return 0;
4859 }
4860 
4861 #ifdef CONFIG_BLK_DEV_ZONED
4862 
4863 static int check_zone_write_pointer(struct f2fs_sb_info *sbi,
4864 				    struct f2fs_dev_info *fdev,
4865 				    struct blk_zone *zone)
4866 {
4867 	unsigned int wp_segno, wp_blkoff, zone_secno, zone_segno, segno;
4868 	block_t zone_block, wp_block, last_valid_block;
4869 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4870 	int i, s, b, ret;
4871 	struct seg_entry *se;
4872 
4873 	if (zone->type != BLK_ZONE_TYPE_SEQWRITE_REQ)
4874 		return 0;
4875 
4876 	wp_block = fdev->start_blk + (zone->wp >> log_sectors_per_block);
4877 	wp_segno = GET_SEGNO(sbi, wp_block);
4878 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
4879 	zone_block = fdev->start_blk + (zone->start >> log_sectors_per_block);
4880 	zone_segno = GET_SEGNO(sbi, zone_block);
4881 	zone_secno = GET_SEC_FROM_SEG(sbi, zone_segno);
4882 
4883 	if (zone_segno >= MAIN_SEGS(sbi))
4884 		return 0;
4885 
4886 	/*
4887 	 * Skip check of zones cursegs point to, since
4888 	 * fix_curseg_write_pointer() checks them.
4889 	 */
4890 	for (i = 0; i < NO_CHECK_TYPE; i++)
4891 		if (zone_secno == GET_SEC_FROM_SEG(sbi,
4892 						   CURSEG_I(sbi, i)->segno))
4893 			return 0;
4894 
4895 	/*
4896 	 * Get last valid block of the zone.
4897 	 */
4898 	last_valid_block = zone_block - 1;
4899 	for (s = sbi->segs_per_sec - 1; s >= 0; s--) {
4900 		segno = zone_segno + s;
4901 		se = get_seg_entry(sbi, segno);
4902 		for (b = sbi->blocks_per_seg - 1; b >= 0; b--)
4903 			if (f2fs_test_bit(b, se->cur_valid_map)) {
4904 				last_valid_block = START_BLOCK(sbi, segno) + b;
4905 				break;
4906 			}
4907 		if (last_valid_block >= zone_block)
4908 			break;
4909 	}
4910 
4911 	/*
4912 	 * The write pointer matches with the valid blocks or
4913 	 * already points to the end of the zone.
4914 	 */
4915 	if ((last_valid_block + 1 == wp_block) ||
4916 			(zone->wp == zone->start + zone->len))
4917 		return 0;
4918 
4919 	if (last_valid_block + 1 == zone_block) {
4920 		/*
4921 		 * If there is no valid block in the zone and if write pointer
4922 		 * is not at zone start, reset the write pointer.
4923 		 */
4924 		f2fs_notice(sbi,
4925 			    "Zone without valid block has non-zero write "
4926 			    "pointer. Reset the write pointer: wp[0x%x,0x%x]",
4927 			    wp_segno, wp_blkoff);
4928 		ret = __f2fs_issue_discard_zone(sbi, fdev->bdev, zone_block,
4929 					zone->len >> log_sectors_per_block);
4930 		if (ret)
4931 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
4932 				 fdev->path, ret);
4933 
4934 		return ret;
4935 	}
4936 
4937 	/*
4938 	 * If there are valid blocks and the write pointer doesn't
4939 	 * match with them, we need to report the inconsistency and
4940 	 * fill the zone till the end to close the zone. This inconsistency
4941 	 * does not cause write error because the zone will not be selected
4942 	 * for write operation until it get discarded.
4943 	 */
4944 	f2fs_notice(sbi, "Valid blocks are not aligned with write pointer: "
4945 		    "valid block[0x%x,0x%x] wp[0x%x,0x%x]",
4946 		    GET_SEGNO(sbi, last_valid_block),
4947 		    GET_BLKOFF_FROM_SEG0(sbi, last_valid_block),
4948 		    wp_segno, wp_blkoff);
4949 
4950 	ret = blkdev_zone_mgmt(fdev->bdev, REQ_OP_ZONE_FINISH,
4951 				zone->start, zone->len, GFP_NOFS);
4952 	if (ret == -EOPNOTSUPP) {
4953 		ret = blkdev_issue_zeroout(fdev->bdev, zone->wp,
4954 					zone->len - (zone->wp - zone->start),
4955 					GFP_NOFS, 0);
4956 		if (ret)
4957 			f2fs_err(sbi, "Fill up zone failed: %s (errno=%d)",
4958 					fdev->path, ret);
4959 	} else if (ret) {
4960 		f2fs_err(sbi, "Finishing zone failed: %s (errno=%d)",
4961 				fdev->path, ret);
4962 	}
4963 
4964 	return ret;
4965 }
4966 
4967 static struct f2fs_dev_info *get_target_zoned_dev(struct f2fs_sb_info *sbi,
4968 						  block_t zone_blkaddr)
4969 {
4970 	int i;
4971 
4972 	for (i = 0; i < sbi->s_ndevs; i++) {
4973 		if (!bdev_is_zoned(FDEV(i).bdev))
4974 			continue;
4975 		if (sbi->s_ndevs == 1 || (FDEV(i).start_blk <= zone_blkaddr &&
4976 				zone_blkaddr <= FDEV(i).end_blk))
4977 			return &FDEV(i);
4978 	}
4979 
4980 	return NULL;
4981 }
4982 
4983 static int report_one_zone_cb(struct blk_zone *zone, unsigned int idx,
4984 			      void *data)
4985 {
4986 	memcpy(data, zone, sizeof(struct blk_zone));
4987 	return 0;
4988 }
4989 
4990 static int fix_curseg_write_pointer(struct f2fs_sb_info *sbi, int type)
4991 {
4992 	struct curseg_info *cs = CURSEG_I(sbi, type);
4993 	struct f2fs_dev_info *zbd;
4994 	struct blk_zone zone;
4995 	unsigned int cs_section, wp_segno, wp_blkoff, wp_sector_off;
4996 	block_t cs_zone_block, wp_block;
4997 	unsigned int log_sectors_per_block = sbi->log_blocksize - SECTOR_SHIFT;
4998 	sector_t zone_sector;
4999 	int err;
5000 
5001 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5002 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5003 
5004 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5005 	if (!zbd)
5006 		return 0;
5007 
5008 	/* report zone for the sector the curseg points to */
5009 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5010 		<< log_sectors_per_block;
5011 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5012 				  report_one_zone_cb, &zone);
5013 	if (err != 1) {
5014 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5015 			 zbd->path, err);
5016 		return err;
5017 	}
5018 
5019 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5020 		return 0;
5021 
5022 	wp_block = zbd->start_blk + (zone.wp >> log_sectors_per_block);
5023 	wp_segno = GET_SEGNO(sbi, wp_block);
5024 	wp_blkoff = wp_block - START_BLOCK(sbi, wp_segno);
5025 	wp_sector_off = zone.wp & GENMASK(log_sectors_per_block - 1, 0);
5026 
5027 	if (cs->segno == wp_segno && cs->next_blkoff == wp_blkoff &&
5028 		wp_sector_off == 0)
5029 		return 0;
5030 
5031 	f2fs_notice(sbi, "Unaligned curseg[%d] with write pointer: "
5032 		    "curseg[0x%x,0x%x] wp[0x%x,0x%x]",
5033 		    type, cs->segno, cs->next_blkoff, wp_segno, wp_blkoff);
5034 
5035 	f2fs_notice(sbi, "Assign new section to curseg[%d]: "
5036 		    "curseg[0x%x,0x%x]", type, cs->segno, cs->next_blkoff);
5037 
5038 	f2fs_allocate_new_section(sbi, type, true);
5039 
5040 	/* check consistency of the zone curseg pointed to */
5041 	if (check_zone_write_pointer(sbi, zbd, &zone))
5042 		return -EIO;
5043 
5044 	/* check newly assigned zone */
5045 	cs_section = GET_SEC_FROM_SEG(sbi, cs->segno);
5046 	cs_zone_block = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, cs_section));
5047 
5048 	zbd = get_target_zoned_dev(sbi, cs_zone_block);
5049 	if (!zbd)
5050 		return 0;
5051 
5052 	zone_sector = (sector_t)(cs_zone_block - zbd->start_blk)
5053 		<< log_sectors_per_block;
5054 	err = blkdev_report_zones(zbd->bdev, zone_sector, 1,
5055 				  report_one_zone_cb, &zone);
5056 	if (err != 1) {
5057 		f2fs_err(sbi, "Report zone failed: %s errno=(%d)",
5058 			 zbd->path, err);
5059 		return err;
5060 	}
5061 
5062 	if (zone.type != BLK_ZONE_TYPE_SEQWRITE_REQ)
5063 		return 0;
5064 
5065 	if (zone.wp != zone.start) {
5066 		f2fs_notice(sbi,
5067 			    "New zone for curseg[%d] is not yet discarded. "
5068 			    "Reset the zone: curseg[0x%x,0x%x]",
5069 			    type, cs->segno, cs->next_blkoff);
5070 		err = __f2fs_issue_discard_zone(sbi, zbd->bdev,	cs_zone_block,
5071 					zone.len >> log_sectors_per_block);
5072 		if (err) {
5073 			f2fs_err(sbi, "Discard zone failed: %s (errno=%d)",
5074 				 zbd->path, err);
5075 			return err;
5076 		}
5077 	}
5078 
5079 	return 0;
5080 }
5081 
5082 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5083 {
5084 	int i, ret;
5085 
5086 	for (i = 0; i < NR_PERSISTENT_LOG; i++) {
5087 		ret = fix_curseg_write_pointer(sbi, i);
5088 		if (ret)
5089 			return ret;
5090 	}
5091 
5092 	return 0;
5093 }
5094 
5095 struct check_zone_write_pointer_args {
5096 	struct f2fs_sb_info *sbi;
5097 	struct f2fs_dev_info *fdev;
5098 };
5099 
5100 static int check_zone_write_pointer_cb(struct blk_zone *zone, unsigned int idx,
5101 				      void *data)
5102 {
5103 	struct check_zone_write_pointer_args *args;
5104 
5105 	args = (struct check_zone_write_pointer_args *)data;
5106 
5107 	return check_zone_write_pointer(args->sbi, args->fdev, zone);
5108 }
5109 
5110 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5111 {
5112 	int i, ret;
5113 	struct check_zone_write_pointer_args args;
5114 
5115 	for (i = 0; i < sbi->s_ndevs; i++) {
5116 		if (!bdev_is_zoned(FDEV(i).bdev))
5117 			continue;
5118 
5119 		args.sbi = sbi;
5120 		args.fdev = &FDEV(i);
5121 		ret = blkdev_report_zones(FDEV(i).bdev, 0, BLK_ALL_ZONES,
5122 					  check_zone_write_pointer_cb, &args);
5123 		if (ret < 0)
5124 			return ret;
5125 	}
5126 
5127 	return 0;
5128 }
5129 
5130 /*
5131  * Return the number of usable blocks in a segment. The number of blocks
5132  * returned is always equal to the number of blocks in a segment for
5133  * segments fully contained within a sequential zone capacity or a
5134  * conventional zone. For segments partially contained in a sequential
5135  * zone capacity, the number of usable blocks up to the zone capacity
5136  * is returned. 0 is returned in all other cases.
5137  */
5138 static inline unsigned int f2fs_usable_zone_blks_in_seg(
5139 			struct f2fs_sb_info *sbi, unsigned int segno)
5140 {
5141 	block_t seg_start, sec_start_blkaddr, sec_cap_blkaddr;
5142 	unsigned int secno;
5143 
5144 	if (!sbi->unusable_blocks_per_sec)
5145 		return BLKS_PER_SEG(sbi);
5146 
5147 	secno = GET_SEC_FROM_SEG(sbi, segno);
5148 	seg_start = START_BLOCK(sbi, segno);
5149 	sec_start_blkaddr = START_BLOCK(sbi, GET_SEG_FROM_SEC(sbi, secno));
5150 	sec_cap_blkaddr = sec_start_blkaddr + CAP_BLKS_PER_SEC(sbi);
5151 
5152 	/*
5153 	 * If segment starts before zone capacity and spans beyond
5154 	 * zone capacity, then usable blocks are from seg start to
5155 	 * zone capacity. If the segment starts after the zone capacity,
5156 	 * then there are no usable blocks.
5157 	 */
5158 	if (seg_start >= sec_cap_blkaddr)
5159 		return 0;
5160 	if (seg_start + BLKS_PER_SEG(sbi) > sec_cap_blkaddr)
5161 		return sec_cap_blkaddr - seg_start;
5162 
5163 	return BLKS_PER_SEG(sbi);
5164 }
5165 #else
5166 int f2fs_fix_curseg_write_pointer(struct f2fs_sb_info *sbi)
5167 {
5168 	return 0;
5169 }
5170 
5171 int f2fs_check_write_pointer(struct f2fs_sb_info *sbi)
5172 {
5173 	return 0;
5174 }
5175 
5176 static inline unsigned int f2fs_usable_zone_blks_in_seg(struct f2fs_sb_info *sbi,
5177 							unsigned int segno)
5178 {
5179 	return 0;
5180 }
5181 
5182 #endif
5183 unsigned int f2fs_usable_blks_in_seg(struct f2fs_sb_info *sbi,
5184 					unsigned int segno)
5185 {
5186 	if (f2fs_sb_has_blkzoned(sbi))
5187 		return f2fs_usable_zone_blks_in_seg(sbi, segno);
5188 
5189 	return BLKS_PER_SEG(sbi);
5190 }
5191 
5192 unsigned int f2fs_usable_segs_in_sec(struct f2fs_sb_info *sbi,
5193 					unsigned int segno)
5194 {
5195 	if (f2fs_sb_has_blkzoned(sbi))
5196 		return CAP_SEGS_PER_SEC(sbi);
5197 
5198 	return SEGS_PER_SEC(sbi);
5199 }
5200 
5201 /*
5202  * Update min, max modified time for cost-benefit GC algorithm
5203  */
5204 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
5205 {
5206 	struct sit_info *sit_i = SIT_I(sbi);
5207 	unsigned int segno;
5208 
5209 	down_write(&sit_i->sentry_lock);
5210 
5211 	sit_i->min_mtime = ULLONG_MAX;
5212 
5213 	for (segno = 0; segno < MAIN_SEGS(sbi); segno += SEGS_PER_SEC(sbi)) {
5214 		unsigned int i;
5215 		unsigned long long mtime = 0;
5216 
5217 		for (i = 0; i < SEGS_PER_SEC(sbi); i++)
5218 			mtime += get_seg_entry(sbi, segno + i)->mtime;
5219 
5220 		mtime = div_u64(mtime, SEGS_PER_SEC(sbi));
5221 
5222 		if (sit_i->min_mtime > mtime)
5223 			sit_i->min_mtime = mtime;
5224 	}
5225 	sit_i->max_mtime = get_mtime(sbi, false);
5226 	sit_i->dirty_max_mtime = 0;
5227 	up_write(&sit_i->sentry_lock);
5228 }
5229 
5230 int f2fs_build_segment_manager(struct f2fs_sb_info *sbi)
5231 {
5232 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
5233 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
5234 	struct f2fs_sm_info *sm_info;
5235 	int err;
5236 
5237 	sm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_sm_info), GFP_KERNEL);
5238 	if (!sm_info)
5239 		return -ENOMEM;
5240 
5241 	/* init sm info */
5242 	sbi->sm_info = sm_info;
5243 	sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
5244 	sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
5245 	sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
5246 	sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
5247 	sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
5248 	sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
5249 	sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
5250 	sm_info->rec_prefree_segments = sm_info->main_segments *
5251 					DEF_RECLAIM_PREFREE_SEGMENTS / 100;
5252 	if (sm_info->rec_prefree_segments > DEF_MAX_RECLAIM_PREFREE_SEGMENTS)
5253 		sm_info->rec_prefree_segments = DEF_MAX_RECLAIM_PREFREE_SEGMENTS;
5254 
5255 	if (!f2fs_lfs_mode(sbi))
5256 		sm_info->ipu_policy = BIT(F2FS_IPU_FSYNC);
5257 	sm_info->min_ipu_util = DEF_MIN_IPU_UTIL;
5258 	sm_info->min_fsync_blocks = DEF_MIN_FSYNC_BLOCKS;
5259 	sm_info->min_seq_blocks = BLKS_PER_SEG(sbi);
5260 	sm_info->min_hot_blocks = DEF_MIN_HOT_BLOCKS;
5261 	sm_info->min_ssr_sections = reserved_sections(sbi);
5262 
5263 	INIT_LIST_HEAD(&sm_info->sit_entry_set);
5264 
5265 	init_f2fs_rwsem(&sm_info->curseg_lock);
5266 
5267 	err = f2fs_create_flush_cmd_control(sbi);
5268 	if (err)
5269 		return err;
5270 
5271 	err = create_discard_cmd_control(sbi);
5272 	if (err)
5273 		return err;
5274 
5275 	err = build_sit_info(sbi);
5276 	if (err)
5277 		return err;
5278 	err = build_free_segmap(sbi);
5279 	if (err)
5280 		return err;
5281 	err = build_curseg(sbi);
5282 	if (err)
5283 		return err;
5284 
5285 	/* reinit free segmap based on SIT */
5286 	err = build_sit_entries(sbi);
5287 	if (err)
5288 		return err;
5289 
5290 	init_free_segmap(sbi);
5291 	err = build_dirty_segmap(sbi);
5292 	if (err)
5293 		return err;
5294 
5295 	err = sanity_check_curseg(sbi);
5296 	if (err)
5297 		return err;
5298 
5299 	init_min_max_mtime(sbi);
5300 	return 0;
5301 }
5302 
5303 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
5304 		enum dirty_type dirty_type)
5305 {
5306 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5307 
5308 	mutex_lock(&dirty_i->seglist_lock);
5309 	kvfree(dirty_i->dirty_segmap[dirty_type]);
5310 	dirty_i->nr_dirty[dirty_type] = 0;
5311 	mutex_unlock(&dirty_i->seglist_lock);
5312 }
5313 
5314 static void destroy_victim_secmap(struct f2fs_sb_info *sbi)
5315 {
5316 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5317 
5318 	kvfree(dirty_i->pinned_secmap);
5319 	kvfree(dirty_i->victim_secmap);
5320 }
5321 
5322 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
5323 {
5324 	struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
5325 	int i;
5326 
5327 	if (!dirty_i)
5328 		return;
5329 
5330 	/* discard pre-free/dirty segments list */
5331 	for (i = 0; i < NR_DIRTY_TYPE; i++)
5332 		discard_dirty_segmap(sbi, i);
5333 
5334 	if (__is_large_section(sbi)) {
5335 		mutex_lock(&dirty_i->seglist_lock);
5336 		kvfree(dirty_i->dirty_secmap);
5337 		mutex_unlock(&dirty_i->seglist_lock);
5338 	}
5339 
5340 	destroy_victim_secmap(sbi);
5341 	SM_I(sbi)->dirty_info = NULL;
5342 	kfree(dirty_i);
5343 }
5344 
5345 static void destroy_curseg(struct f2fs_sb_info *sbi)
5346 {
5347 	struct curseg_info *array = SM_I(sbi)->curseg_array;
5348 	int i;
5349 
5350 	if (!array)
5351 		return;
5352 	SM_I(sbi)->curseg_array = NULL;
5353 	for (i = 0; i < NR_CURSEG_TYPE; i++) {
5354 		kfree(array[i].sum_blk);
5355 		kfree(array[i].journal);
5356 	}
5357 	kfree(array);
5358 }
5359 
5360 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
5361 {
5362 	struct free_segmap_info *free_i = SM_I(sbi)->free_info;
5363 
5364 	if (!free_i)
5365 		return;
5366 	SM_I(sbi)->free_info = NULL;
5367 	kvfree(free_i->free_segmap);
5368 	kvfree(free_i->free_secmap);
5369 	kfree(free_i);
5370 }
5371 
5372 static void destroy_sit_info(struct f2fs_sb_info *sbi)
5373 {
5374 	struct sit_info *sit_i = SIT_I(sbi);
5375 
5376 	if (!sit_i)
5377 		return;
5378 
5379 	if (sit_i->sentries)
5380 		kvfree(sit_i->bitmap);
5381 	kfree(sit_i->tmp_map);
5382 
5383 	kvfree(sit_i->sentries);
5384 	kvfree(sit_i->sec_entries);
5385 	kvfree(sit_i->dirty_sentries_bitmap);
5386 
5387 	SM_I(sbi)->sit_info = NULL;
5388 	kvfree(sit_i->sit_bitmap);
5389 #ifdef CONFIG_F2FS_CHECK_FS
5390 	kvfree(sit_i->sit_bitmap_mir);
5391 	kvfree(sit_i->invalid_segmap);
5392 #endif
5393 	kfree(sit_i);
5394 }
5395 
5396 void f2fs_destroy_segment_manager(struct f2fs_sb_info *sbi)
5397 {
5398 	struct f2fs_sm_info *sm_info = SM_I(sbi);
5399 
5400 	if (!sm_info)
5401 		return;
5402 	f2fs_destroy_flush_cmd_control(sbi, true);
5403 	destroy_discard_cmd_control(sbi);
5404 	destroy_dirty_segmap(sbi);
5405 	destroy_curseg(sbi);
5406 	destroy_free_segmap(sbi);
5407 	destroy_sit_info(sbi);
5408 	sbi->sm_info = NULL;
5409 	kfree(sm_info);
5410 }
5411 
5412 int __init f2fs_create_segment_manager_caches(void)
5413 {
5414 	discard_entry_slab = f2fs_kmem_cache_create("f2fs_discard_entry",
5415 			sizeof(struct discard_entry));
5416 	if (!discard_entry_slab)
5417 		goto fail;
5418 
5419 	discard_cmd_slab = f2fs_kmem_cache_create("f2fs_discard_cmd",
5420 			sizeof(struct discard_cmd));
5421 	if (!discard_cmd_slab)
5422 		goto destroy_discard_entry;
5423 
5424 	sit_entry_set_slab = f2fs_kmem_cache_create("f2fs_sit_entry_set",
5425 			sizeof(struct sit_entry_set));
5426 	if (!sit_entry_set_slab)
5427 		goto destroy_discard_cmd;
5428 
5429 	revoke_entry_slab = f2fs_kmem_cache_create("f2fs_revoke_entry",
5430 			sizeof(struct revoke_entry));
5431 	if (!revoke_entry_slab)
5432 		goto destroy_sit_entry_set;
5433 	return 0;
5434 
5435 destroy_sit_entry_set:
5436 	kmem_cache_destroy(sit_entry_set_slab);
5437 destroy_discard_cmd:
5438 	kmem_cache_destroy(discard_cmd_slab);
5439 destroy_discard_entry:
5440 	kmem_cache_destroy(discard_entry_slab);
5441 fail:
5442 	return -ENOMEM;
5443 }
5444 
5445 void f2fs_destroy_segment_manager_caches(void)
5446 {
5447 	kmem_cache_destroy(sit_entry_set_slab);
5448 	kmem_cache_destroy(discard_cmd_slab);
5449 	kmem_cache_destroy(discard_entry_slab);
5450 	kmem_cache_destroy(revoke_entry_slab);
5451 }
5452